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Malte Henkel and Stoimen Stoimenov

Abstract Meta-conformal invariance is a novel class of dynamical symmetries, with
dynamical exponent z = 1, and distinct from the standard ortho-conformal invari-
ance. The meta-conformal Ward identities can be directly read off from the Lie
algebra generators, but this procedure implicitly assumes that the co-variant corre-
lators should depend holomorphically on time- and space coordinates. Furthermore,
making this assumptions leads to un-physical singularities in the co-variant correla-
tors. We show how to carefully reformulate the meta-conformal Ward identities in
order to obtain regular, but non holomorphic expressions for the co-variant two-point
functions, both in d = 1 and d = 2 spatial dimensions.

1 Introduction

Many brilliant applications of conformal invariance are known, ranging from string
theory and high-energy physics [36], or to two-dimensional phase transitions [9,
16, 19] or the quantum Hall effect [11, 17]. These applications are based on a
geometric definition of conformal transformations, considered as local coordinate
transformations r �→ r ′ = f (r), of spatial coordinates r ∈ R

2 such that angles are
kept unchanged. The associated Lie algebra is called the ‘conformal Lie algebra’.

In Table 1, examples of infinite-dimensional Lie groups of time-space transfor-
mations are shown. They represent attempts to answer the question “Is it possible
to adapt conformal invariance to dynamical problems ?” A minimal requirement
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is to distinguish time and space variables through their global rescaling, accord-
ing to t �→ t ′ = bt and r �→ r ′ = b1/z r which defines the dynamical exponent z .
In what follows, we shall consider infinitesimal transformations where b = 1 + ε,
with |ε| � 1. Then a rescaling transformation is described by an infinitesimal gen-
erator, which for global dilatations on time- and space-coordinates takes the form
X0 = −t∂t − 1

z r · ∂r − δ. The parameter δ is the scaling dimension of the scal-
ing operator ϕ = ϕ(t, r) on which the generator X0 is thought to act. Practical
use of this is made for the computation of n-point correlation functions C [n] =
C [n](t1, . . . , tn; r1, . . . , rn) := 〈ϕ1(t1, r1) · · · ϕn(tn, rn)〉. The dilatation-invariance
of such a correlator is expressed via a Ward identity, which for the global dilata-
tions described by X0 takes the form

n∑

j=1

(
−t j

∂

∂t j
− 1

z
r j · ∂

∂ r j
− δ j

)
C [n](t1, . . . , tn; r1, . . . , rn) = 0 (1)

and it becomes explicit how the dynamical exponent z distinguishes between tempo-
ral and spatial coordinates. Different symmetries will lead to differentWard identities
which describe together constraints on the formof then-point correlatorC [n]. Explicit
examples will be given in later sections. These differential equation constraints are
only consistent if the generators, such as X0, belong to a well-defined algebraic
structure, e.g. a Lie algebra.

It follows from time-space rotation-invariance that conformal invariance must
havez = 1. In general,z has a non-trivial value [44]. In 1 + 1 time-space dimensions,
there exists an infinite hierarchy of models with dynamical exponent 1 < z ≤ 2
[37]. Lower bounds on z are derived from hydrodynamic projections of many-body
dynamics [13]. Attempts of identifying dynamical conformal invariance goes back at
least to critical dynamics of a two-dimensional statistical system [12]. In Table 1, we
distinguish thewell-studied ‘ortho-conformal’ transformations [9], which in the two-
dimensional space made from time-space points (t, r) ∈ R

2 are angle-preserving,
from recently constructed groups of ‘meta-conformal’ transformations [20, 25, 28,
42], which in general are not angle-preserving but which share certain algebraic
properties with ortho-conformal transformations in Table 1.

The most simple prediction of ortho-conformal invariance concerns the form
of the co-variant two-point function C = C(z1, z̄1, z2, z̄2) = 〈φ1(z1, z̄1)φ2(z2, z̄2)〉
built from so-called ‘quasi-primary’ scaling operators φ j , with ‘conformal weights’
Δ j andΔ j [9]. In complex light-cone coordinates z = t + iμr , z̄ = t − iμr , one has

Cortho(z1, z̄1, z2, z̄2) = δΔ1,Δ2δΔ1,Δ2

(
z1 − z2

)−2Δ1
(
z̄1 − z̄2

)−2Δ1 (2)

up to normalisation.Herein, 1/μhas the dimensions of a velocity. In deriving this kind
of result, auxiliary assumptions are made. Analogously with Eq. (1), the requirement
of ortho-conformal co-variance leads to a set of linear partial first-order differential
equations for C , the so-called global ortho-conformal Ward identities. Their joint
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Table 1 Several infinite-dimensional groups of time-space transformations, defined by the corre-
sponding coordinate changes. Unspecified (vector) functions are assumed (complex) differentiable
and R(t) ∈ SO(d) is a smoothly time-dependent rotation matrix. The physical time- and space-
coordinates, the associated dynamical exponent z of this standard representation and the physical
nature of the co-variant n-point functions is also indicated.

Group Coordinate changes Phys. coordinates z Co-variance

Ortho-conformal (1 + 1)D z′ = f (z) z̄′ = z̄ z = t + iμr 1 Correlator

z′ = z z̄′ = f̄ (z̄) z̄ = t − iμr

Meta-conformal 1D u = f (u) ū′ = ū u = t 1 Correlator

u′ = u ū′ = f̄ (ū) ū = t + μr

Meta-conformal 2D τ ′ = b(τ ) w′ = w w̄′ = w̄ τ = t

τ ′ = τ w′ = f (w) w̄′ = w̄ w = t + μ(r‖ + ir⊥) 1 Correlator

τ ′ = τ w′ = w w̄′ = f̄ (w̄) w̄ = t + μ(r‖ − ir⊥)

Conformal galilean t ′ = b(t) r ′ = (db(t)/dt) r

t ′ = t r ′ = r + a(t) 1 Correlator

t ′ = t r ′ = R (t)r

Schrödinger-Virasoro t ′ = b(t) r ′ = (db(t)/dt)1/2 r

t ′ = t r ′ = r + a(t) 2 Response

t ′ = t r ′ = R (t)r

solutions Eq. (2) are necessarily holomorphic (or anti-holomorphic) functions in the
variables z j , z̄ j [29].

In this work, we shall examine the analogous question for meta-conformal invari-
ance. Known physical examples of confirmed meta-conformal invariance are of two
types. First, there exist spatially non-local representations, which arise as a dynam-
ical symmetry of certain non-local equations of motion which occur for example in
diffusion-limited erosion [34], the kink-terrace-step model for vicinal surfaces [39]
or the associated quantum chain [31] which is a conformal field-theory with cen-
tral charge c = 1 [38]. Some predictions of meta-conformal invariance for response
functions have been confirmed in these models [26, 27]. Second, a different type
of meta-conformal invariance, with spatially local representations, has been identi-
fied recently in the kinetics of biased spin systems, see Fig. 1, such as the kinetic
1D Glauber-Ising model with a bias, sufficiently long-ranged initial conditions and
quenched to zero temperature [28, 43]. The influence of transverse dimensions on the
representations of meta-conformal transformations is currently under investigation.
However, the focus of this work rather is on the formal study of meta-conformal
representations as time-space transformations and the boundedness of the resulting
two-point correlators.

In order to do so, we begin by analysing the consequences of writing analogous
global Ward identities for meta-conformal invariance [20, 28, 42]. As we shall see
in Sect. 2, the straightforward implementation of the global meta-conformal Ward
identities leads to un-physical singularities in the time-space behaviour of such cor-
relators. These singularities arise since the meta-conformally co-variant correlators
are no longer holomorphic functions of their arguments. Therefore, a more careful
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approach is required, which we shall explicitly describe in Sects. 3 and 4, respec-
tively, for d = 1 and d = 2 spatial dimensions. Our main result is the explicit form
of a meta-conformally co-variant two-point function which remains bounded every-
where, as stated in Eqs. (33, 34) in Sect. 5. An appendix contains mathematical
background on Hardy spaces in restricted geometries, for both d = 1 and d = 2.

2 Global Meta-conformal Ward Identities

Meta-conformal invariance arises as a dynamical symmetry of the simple equation
S ϕ(t, r) = (−μ∂t + ∂r‖

)
ϕ(t, r) = 0, which distinguishes a single preferred direc-

tion [41], with coordinate r‖, from the transverse direction(s), with coordinate r⊥.
This is sketched in Fig. 1. Throughout, we shall admit rotation-invariance in the trans-
verse directions, if applicable. Therefore, in more than three spatial dimensions, the
consideration of the two-point function can be reduced to the case of a single trans-
verse direction, r⊥. Therefore, it is enough to discuss explicitly either (i) the case
of one spatial dimension, referred from now one as the 1D case (then there is no
transverse direction), or else (ii) the case of two spatial dimensions, called the 2D
case (with a single transverse direction).

The Lie algebra generators of meta-conformal invariance read off from Table 1 as
follows. In the 1D case, in terms of time- and space-coordinates [20] (with n ∈ Z)

	n = −tn+1

(
∂t − 1

μ
∂r

)
− (n + 1)

(
δ − γ

μ

)
tn

	̄n = − 1

μ

(
t + μr

)
∂r − (n + 1)

γ

μ

(
t + μr

)n
(3)

and in the 2D case [28]

An = −tn+1

(
∂t − 1

μ
∂‖

)
− (n + 1)

(
δ − 2γ‖

μ

)
tn (4)

B±
n = − 1

2μ

(
t + μ(r‖ ± ir⊥)

)n+1(
∂‖ ∓ i∂⊥

) − (n + 1)
γ‖ ∓ iγ⊥

μ

(
t + μ(r‖ ± ir⊥)

)n

with the short-hands ∂‖ = ∂
∂r‖ and ∂⊥ = ∂

∂r⊥ . The constants δ and γ (respectively
γ‖,⊥) are the scaling dimension and the rapidity of the scaling operators on which
these generators act and μ−1 is a constant with the dimension of a velocity. Each

Fig. 1 Schematic
illustration of ballistic
transport in a channel, with
the spatial coordinates r‖, r⊥

r⊥

r||

upstream downstream
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Fig. 2 Real part (orange) and imaginary part (blue) of the 1D meta-conformally co-variant two-
point function C(t, r), with δ1 = 0.22, γ1 = 0.33 and μ = 1. Left panel: Spurious singularities
arise in (5). Right panel: Regularised form after correction of the spurious singular behaviour.

of the infinite families of generators in (3, 4) produces a Virasoro algebra (with
zero central charge). Therefore, the 1D meta-conformal algebra is isomorphic to
a direct sum of two Virasoro algebras. In the 2D case, there is an isomorphism
with the direct sum of three Virasoro algebras. Their maximal finite-dimensional Lie
sub-algebras (isomorphic to a direct sum of two or three sl(2,R) algebras) fix the
form of two-point correlators C(t, r) = 〈ϕ1(t, r)ϕ2(0, 0)〉 built from quasi-primary
scaling operators. Since the generators (3, 4) already contain the termswhich describe
how the scaling operators ϕ = ϕ(t, r) transform under their action, the global meta-
conformal Ward identities can simply be written down. The requirement of meta-
conformal co-variance leads to

Cmeta(t, r) =
⎧
⎨

⎩
t−2δ1

(
1 + μ r

t

)−2γ1/μ ; if d = 1

t−2δ1
(
1 + μ

r‖+ir⊥
t

)−2γ1/μ (
1 + μ

r‖−ir⊥
t

)−2γ̄1/μ ; if d = 2
(5)

andwhere r = r ∈ R for d = 1 and r = (r‖, r⊥) ∈ R
2 for d = 2where we also write

γ := γ‖ − iγ⊥ and γ̄ := γ‖ + iγ⊥. In addition, the constraints δ1 = δ2
and γ1 = γ2 in 1D or γ‖,1 = γ‖,2 and γ⊥,1 = γ⊥,2 in 2D are implied.

Formally, the procedure to derive (5) is completely analogous to the used above
for the derivation of (2) from ortho-conformal co-variance. The explicit forms (5)
make it apparent thatCmeta(t, r) is not necessarily bounded for all t or r . In Fig. 2, we
illustrate this for the 1D case—a spurious singularity appears whenever μr = −t .

In the limit μ → 0, the meta-conformal algebras contract into the galilean con-
formal algebras [18]. Carrying out the limit on the correlator (4), one obtains, as has
been stated countless times in the literature, see e.g. [3–6, 35]

Ccga(t, r) =
{

t−2δ1 exp
(−2 γ1r

t

) ; if d = 1
t−2δ1 exp

(−4 γ 1·r
t

) ; if d = 2
(6)
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with the definition γ = (γ‖, γ⊥). While this correlator decays in one spatial direc-
tion (where γ1r > 0 or γ 1 · r > 0 and assuming t > 0), it diverges in the opposite
direction. In view of the large interest devoted to conformal galilean field-theory, see
[1, 6–8, 10, 14, 15, 30, 33, 35] and refs. therein, it appears important to be able
to formulate well-defined correlators which remain bounded everywhere in time-
space. We mention in passing that the 1D form of (6) can also be obtained from
2D ortho-conformal invariance: it is enough to consider complex conformal weights
Δ = 1

2 (δ − iγ /μ) and Δ = 1
2 (δ + iγ /μ). Then (2) can be rewritten as

Cortho(t, r) = t−2δ

[
1 +

(μr

t

)2
]−δ

exp

[
−2γ

μ
arctan

μr

t

]
μ→0−→ t−2δe−2γ r/t (7)

In what follows, we shall describe how to find correlators bounded every-
where. Since the implicit assumption of holomorphicity in the coordinates gave the
unbounded results (5, 6),we shall explore how to derive non-holomorphic correlators.
Our treatment follows [25], to be generalised to the case d = 2 where necessary.

3 Regularised Meta-conformal Correlator: The 1D Case

Non-holomorphic correlators can only be foundbygoing beyond the local differential
operators derived from the meta-conformal Ward identities. We shall do so in a few
simple steps [25], restricting for the moment to the 1D case. First, we consider
the ‘rapidity’ γ as a new variable. Second, it is dualised [22–24] through a Fourier
transformation, which gives the quasi-primary scaling operator

ϕ̂(ζ, t, r) = 1√
2π

∫

R

dγ eiγ ζ ϕγ (t, r) (8)

This leads to the following representation of the dualised meta-conformal algebra

Xn = i(n + 1)
[
(t + μr)n − tn]

∂ζ − tn+1∂t −
[
(t + μr)n+1 − tn+1

]
∂r − (n + 1)δtn

Yn = i(n + 1)

μ
(t + μr)n ∂ζ − 1

μ
(t + μr)n+1 ∂r (9)

such that meta-conformal Lie algebra is given by

[Xn, Xm ] = (n − m)Xn+m , [Xn, Ym ] = (n − m)Yn+m , [Yn, Ym ] = (n − m)Yn+m
(10)

This formwill bemore convenient for us than the one used in [25], since the parameter
μ does no longer appear in the Lie algebra commutators (10). Third, it was suggested
[22, 25] to look for a further generator N in the Cartan sub-algebra h, viz. adNX =
αX X for any meta-conformal generator X . It can be shown that
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N = −ζ∂ζ − r∂r + μ∂μ + iκ(μ)∂ζ − ν(μ) (11)

is the only possibility [25], where the functions κ(μ) and ν(μ) remain undetermined.
Since in this generator, the parameter μ is treated as a further variable, we see
the usefulness of the chosen normalisation of the generators in (9). On the other
hand, the generator of spatial translations now reads Y−1 = −μ−1∂r , with immediate
consequences for the form of the two-point correlator. In dual space, the two-point
correlator is defined as

F̂ = 〈ϕ̂1(ζ1, t1, r1, μ1)ϕ̂2(ζ2, t2, r2, μ2)〉 = F̂(ζ1, ζ2, t1, t2, r1, r2, μ1, μ2) (12)

Lifting the generators from the representation (9) to two-body operators, the global
meta-conformal Ward identities (derived from the maximal finite dimensional sub-
algebra isomorphic to sl(2,C) ⊕ sl(2,C)) become a set of linear partial differential
equations of first order for the function F̂ . While the solution will certainly be
holomorphic in its variables, the back-transformation according to (8) can introduce
non- holomorphic behaviour but will also lead to a correlator bounded everywhere.

The function F̂ is obtained as follows. First, co-variance under X−1 and Y−1 gives

F̂ = F̂(ζ1, ζ2, t, ξ, μ1, μ2); t = t1 − t2, ξ = μ1r1 − μ2r2 (13)

The action of the generators Y0 and Y1 on F̂ is best described by introducing the
new variables η := μ1ζ1 + μ2ζ2 and ζ := μ1ζ1 − μ2ζ2. Then the corresponding
Ward identities become

(
2i∂η − (t + ξ)∂ξ

)
F̂ = 0, ∂ζ F̂ = 0 (14)

Finally, the Ward identities coming from the generators X0 and X1 become

(−t∂t − ξ∂ξ − δ1 − δ2
)

F̂ = 0, t (δ1 − δ2) F̂ = 0 (15)

The second of these gives the constraint δ1 = δ2. The two remaining equations have
the general solution

F̂ = (t1 − t2)
−2δ1F̂

(
1

2
(μ1ζ1 + μ2ζ2) + i ln

(
1 + μ1r1 − μ2r2

t1 − t2

)
;μ1, μ2

)
(16)

with an undetermined function F̂ . Spatial translation-invariance only holds in amore
weak form, which could become useful for the description of physical situations
where the propagation speed of each scaling operator can be different.

In [25], we tried to use co-variance under the further generator N in order to fix
the function F̂ . However, therein a choice of basis in themeta-conformal Lie algebra
was used where the parameter μ appears in the structure constants, but it became
possible to fix F̂ and furthermore to show that F̂ with respect to the variable η is
in the Hardy space H+

2 , see the appendix for the mathematical details. If we want to
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consider μ as a further variable, as it is necessary because of the explicit form of N ,
objects such as “μYn+m” are not part of the meta-conformal Lie algebra. Therefore,
it is necessary, to use the normalisation (9) which leads to the Lie algebra (10) which
is independent ofμ. In order to illustrate the generic consequences, let ν = ν(μ) and
σ = −μκ(μ) be constants. The co-variance condition N F̂ = 0 gives

F̂ (w : μ1, μ2) = (μ1μ2)
ν F̂

(
w + iσ

μ1 + μ2

2
,
μ1

μ2

)
(17)

where the function F̂ remains undetermined. In contrast to our earlier treatment, we
can no longer show that F̂ had to be in the Hardy space H+

2 . On the other hand, this
mathematical property had turned out to be very useful for the derivation of bounded
correlators. This motivates the following.

First, we re-write the result (16) as follows (with the constraint δ1 = δ2)

F̂ = (t1 − t2)
−2δ1F̂ (ζ+ + iλ) , ζ+ := μ1ζ1 + μ2ζ2

2
, λ := ln

(
1 + μ1r1 − μ2r2

t1 − t2

)

(18)
and we also denote F̂λ(ζ+) := F̂ (ζ+ + iλ). Then, we require:

Postulate. If λ > 0, then F̂λ ∈ H+
2 and if λ < 0, then F̂λ ∈ H−

2 .

The Hardy spaces H±
2 on the upper and lower complex half-planes H± are defined

in the appendix. There, it is also shown that, under mild conditions, that if λ > 0 and
if there exist finite positive constants F̂ (0), ε such that |F̂ (ζ+ + iλ)| < F̂ (0)e−ελ,
then F̂λ is indeed in the Hardy space H+

2 . Physically, this amounts to a requirement
of an algebraic decay with respect to the scaling variable.

The utility of our postulate is easily verified, following [25]. From Theorem 1 of
the appendix, especially (A.3), we can write

F̂λ(ζ+) = Θ(λ)

∫ ∞
0

dγ+ei(ζ++iλ)γ+F̂+(γ+) + Θ(−λ)

∫ ∞
0

dγ−e−i(ζ++iλ)γ−F̂−(γ−)

(19)
where the Heaviside functions Θ(±λ) select the two cases. For λ > 0, we find

F = 1

2π

∫

R2
dζ1dζ2 e−iγ1ζ1−iγ2ζ2 F̂

= 1

(2π)3/2

∫

R2
dζ1dζ2 t−2δ1

∫ ∞

0
dγ+ e−iγ1ζ1−iγ2ζ2ei(μ1ζ1+μ2ζ2+2iλ)γ+/2F̂+(γ+)

=
√
32π

μ1μ2
t−2δ1

∫ ∞

0
dγ+ e−λγ+δ

(
γ+ − 2γ1

μ1

)
δ

(
γ+ − 2γ2

μ2

)
F̂+(γ+)

=
√
32π

μ1μ2
t−2δ1δγ1/μ1,γ2/μ2

∫ ∞

0
dγ+ e−λγ+δ

(
γ+ − 2γ1

μ1

)
F̂+(γ+)

= cste. δγ1/μ1,γ2/μ2(t1 − t2)
−2δ1

(
1 + μ1r1 − μ2r2

t1 − t2

)−2γ1/μ1

Θ

(
γ1

μ1

)
(20)
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where the definitions (18) were used. Similarly, for λ < 0 we obtain

F = 1

2π

∫

R2
dζ1dζ2 e−iγ1ζ1−iγ2ζ2 F̂

= 1

(2π)3/2

∫

R2
dζ1dζ2 t−2δ1

∫ ∞

0
dγ− e−iγ1ζ1−iγ2ζ2e−i(μ1ζ1+μ2ζ2+2iλ)γ−/2F̂−(γ−)

=
√
32π

μ1μ2
t−2δ1

∫ ∞

0
dγ− eλγ−δ

(
γ− + 2γ1

μ1

)
δ

(
γ− + 2γ2

μ2

)
F̂−(γ−)

=
√
32π

μ1μ2
t−2δ1δγ1/μ1,γ2/μ2

∫ ∞

0
dγ− eλγ−δ

(
γ− −

∣∣∣∣
2γ1
μ1

∣∣∣∣

)
F̂−(γ−)

= cste. δγ1/μ1,γ2/μ2(t1 − t2)
−2δ1

(
1 − μ1r1 − μ2r2

t1 − t2

)−2|γ1/μ1|
Θ

(
− γ1

μ1

)
(21)

Combining these two forms gives our final 1D two-point correlator

F = δδ1,δ2δγ1/μ1,γ2/μ2

(
1 +

∣∣∣∣
μ1r1 − μ2r2

t1 − t2

∣∣∣∣

)−2|γ1/μ1|
(22)

up to normalisation. As shown in Fig. 2, this is real-valued and bounded in the entire
time-space, although not a holomorphic function of the time-space coordinates.

Finally, it appears that our original motivation for allowing the μ j to become
free variables, is not very strong. We might have fixed the μ j from the outset, had
not included a factor 1/μ into the generators Yn (such that the spatial translations
are generated by Y−1 = −∂r and continue immediately with our Postulate. Since a
consideration of the meta-conformal three-point function shows that μ1 = μ2 = μ3

[21, chap. 5], we can then consider μ−1 as an universal velocity.1

4 Regularised Meta-conformal Correlator: The 2D Case

The derivation of the 2D meta-conformal correlator starts essentially along the same
lines as in the 1D case, but is based now on the generators (3). The dualisation is
now carried out with respect to the chiral rapidities γ = γ‖ − iγ⊥ and γ̄ = γ‖ + iγ⊥
and we also use the light-cone coordinates z = r‖ + ir⊥ and z̄ = r‖ − ir⊥. Taking
the translation generators A−1, B±

−1 into account, we consider the dual correlator

F̂ = F̂(ζ1, ζ2, ζ̄1, ζ̄2, t, ξ, ξ̄ , μ1, μ2) (23)

1In the conformal galilean limit μ → 0, recover the bounded result F ∼ exp (−2|γ1r |/t) [25].
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where we defined the variables

t = t1 − t2, ξ = μ1z1 − μ2z2, ξ̄ = μ1 z̄1 − μ2 z̄2 (24)

In complete analogy with the 1D case, we further define the variables

η = μ1ζ1 + μ2ζ2, η̄ = μ1ζ̄1 + μ2ζ̄2 (25)

such that the correlator F̂ = F̂(η, η̄, t, ξ, ξ̄ , μ1, μ2) obeys the equations

(
2i∂η − (t + ξ)∂ξ

)
F̂ = 0,

(
2i∂η̄ − (t + ξ̄ )∂ξ̄

)
F̂ = 0, (26)

(
t∂t + ξ∂ξ + ξ̄ ∂ξ̄ + 2δ1

)
F̂ = 0

along with the constraint δ1 = δ2. The most general solution of this system is

F̂ = t−2δ1F̂

(
η

2
+ i ln(1 + ξ/t),

η̄

2
+ i ln(1 + ξ̄ /t)

)
= t−2δ1F̂ (u + iλ, ū + iλ)

(27)
with the abbreviations (ū is obtained from u by replacing ζ j �→ ζ̄ j )

u := μ

2
(ζ1 + ζ2) + arctan

μr⊥/t

1 + μr‖/t︸ ︷︷ ︸
=: a

, λ := 1

2
ln

[(
1 + μr‖

t

)2 +
(μr⊥

t

)2
]

(28)
and we simplified the notation by letting μ1 = μ2 = μ and assumed translation-
invariance in time and space. As before, we expect that a Hardy space will permit
to derive the boundedness, see the appendix for details. We define F̂λ(u, ū) :=
F̂ (u + iλ, ū + iλ) and require:

Postulate. If λ > 0, then F̂λ ∈ H++
2 and if λ < 0, then F̂λ ∈ H−−

2 .

Theorem 2 in the appendix, especially (A.11), then states that

F̂λ = Θ(λ)

∫ ∞

0
dτ

∫ ∞

0
dτ̄ ei(u+iλ)τ+i(ū+iλ)τ̄ F̂+(τ, τ̄ )

+Θ(−λ)

∫ ∞

0
dτ

∫ ∞

0
dτ̄ e−i(u+iλ)τ−i(ū+iλ)τ̄ F̂−(τ, τ̄ ) (29)

Then, we can write the two-point function in the case λ > 0, with the short-hand
Dζ := dζ1dζ̄1dζ2dζ̄2 and the abbreviations from (28)
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F = 1

(2π)2

∫

R4
Dζ e−iγ1ζ1−iγ̄1 ζ̄1−iγ2ζ2−iγ̄2 ζ̄2 F̂

= t−2δ1

(2π)3

∫

R4
Dζ e−iγ1ζ1−iγ̄1 ζ̄1−iγ2ζ2−iγ̄2 ζ̄2 ×

×
∫ ∞

0
dτ

∫ ∞

0
dτ̄ ei(μ(ζ1+ζ2)+2a)τ/2−λτ ei(μ(ζ̄1+ζ̄2)+2a)τ̄ /2−λτ̄ F̂+(τ, τ̄ )

= t−2δ1

(2π)3

∫ ∞

0
dτ

∫ ∞

0
dτ̄ F̂+(τ, τ̄ ) eia(τ−τ̄ )−λ(τ+τ̄ ) ×

×
∫

R4
Dζ ei(−γ1−γ2+μτ)ζ++i(−γ1+γ2)ζ−ei(−γ̄1−γ̄2+μτ̄)ζ̄++i(−γ̄1+γ̄2)ζ̄−

= cste. t−2δ1δγ1,γ2δγ̄1,γ̄2 ei2a(γ1−γ̄1)/μ e−λ2(γ1+γ̄1)/μΘ

(
γ1

μ

)
Θ

(
γ̄1

μ

)
(30)

Herein, variables were changed according to ζ1 = ζ+ + ζ− and ζ2 = ζ+ − ζ− and
similarly for the ζ̄ j . The case λ < 0 is treated in the same manner

F = t−2δ1

(2π)3

∫

R4
Dζ e−iγ1ζ1−iγ̄1 ζ̄1−iγ2ζ2−iγ̄2 ζ̄2 ×

×
∫ ∞

0
dτ

∫ ∞

0
dτ̄ e−i(μ(ζ1+ζ2)+2a)τ/2+λτ e−i(μ(ζ̄1+ζ̄2)+2a)τ̄ /2+λτ̄ F̂+(τ, τ̄ ) (31)

= cste. t−2δ1δγ1,γ2δγ̄1,γ̄2 ei2a(|γ1/μ|−|γ̄1/μ|) e−|λ|2(|γ1/μ|+|γ̄1/μ|)Θ
(

−γ1

μ

)
Θ

(
− γ̄1

μ

)

In order to understand the meaning of these expression, we return to the physical
interpretation of the conditions λ > 0 and λ < 0. From (28), the most restrictive case
occurs for r⊥ = 0. Then λ > 0 is equivalent to r‖/t > 0. On the other hand, since
γ1/μ will have a definite sign, it is a fortiori also real. Hence γ1,⊥ = 0 and we can
conclude that

F = δδ1,δ2δγ1,γ2δγ̄1,γ̄2 t−2δ1

[(
1 +

∣∣∣
μr‖

t

∣∣∣
)2 +

(μr⊥
t

)2
]−2γ1,‖/μ

(32)

up to normalisation, is the final form for the 2D meta-conformally co-variant corre-
lator which is bounded in the entire time-space.

5 Conclusions

It has been shown that via a dualisation procedure of the rapidities in the meta-
conformal generators, a refined form of the global Ward identities can be found
which leads to expressions of the quasi-primary two-point functions which remain
bounded in the entire time-space. Herein, we postulate that the dualised two-point
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functions, whose dual variables are naturally seen to occur in a tube of the first (or the
forth) quadrant, belong to a Hardy space. In this way, we can formulate a sufficient
condition for the construction of bounded two-point functions, namely

F(t1, t2, r1, r2) = δδ1,δ2δγ1/μ1,γ2/μ2 (t1 − t2)
−2δ1

(
1 +

∣∣∣∣
μ1r1 − μ2r2

t1 − t2

∣∣∣∣

)−2|γ1/μ1|

(33)
(up to normalisation) in d = 1 spatial dimensions and

F(t1, t2, r‖,1, r‖,2, r⊥,1, r⊥,2) = δδ1,δ2δγ1,‖,γ2,‖ (t1 − t2)
−2δ1 ×

×
[(

1 +
∣∣∣∣
μ1r‖,1 − μ2r‖,2

t1 − t2

∣∣∣∣

)2

+
(

μ1r⊥,1 − μ2r⊥,2

t1 − t2

)2
]−2γ1,‖/μ

(34)

in d ≥ 2 spatial dimensions, where rotation-invariance in the d − 1 transverse direc-
tions is assumed (provided γ ⊥ = 0).
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Appendix. Background on Hardy Spaces

In themain text, we need precise statements on the Fourier transform on semi-infinite
spaces. These can be conveniently formulated in terms of Hardy spaces. Here, we
restrict to the special case H2. Our brief summary is based on [2, 40].

We begin with the case of functions of a single complex variable z, defined in the
upper half-plane H+ := {z ∈ C |z = x + iy, y ≥ 0 }.
Definition 1: A function f : H+ → C belongs to the Hardy space H+

2 if it is holo-
morphic on H+ and if

M2 := sup
y>0

∫ ∞

−∞
dx | f (x + iy)|2 < ∞ (A.1)

The main results of interest to us can be summarised as follows.

Theorem 1 [2]: Let f : H+ → C be a holomorphic function. Then the following
statements are equivalent:

1. f ∈ H+
2

2. there exists a function f : R → C, which is square-integrable f ∈ L2(R), such
that limy→0+ f (x + iy) = f (x) and
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f (z) = 1

2π i

∫ ∞

−∞
dξ

f (ξ)

ξ − z
, 0 = 1

2π i

∫ ∞

−∞
dξ

f (ξ)

ξ − z∗ (A.2)

where z∗ = x − iy denotes the complex conjugate of z. For notational simplicity,
one often writes f (x) = limy→0+ f (x + iy), with x ∈ R.

3. there exists a function f̂ : R+ → C, f̂ ∈ L2(R+), such that for all y > 0

f (z) = f (x + iy) = 1√
2π

∫ ∞

0
dζ ei(x+iy)ζ f̂ (ζ ) (A.3)

The property (A.3) is of major interest to us in the main text.
If f ∈ H+

2 , one has the following bounds [2]

lim
y→0

f (x + iy) = 0 ; uniformly for all x ∈ R (A.4a)

lim
x→±∞ f (x + iy) = 0 ; uniformly with respect to y ≥ y0 > 0 (A.4b)

Equation (A.4a) follows from the bound (in turn obtained from (A.3)), see also [32]

| f (x + iy)| ≤ f∞ y−1/2 (A.4c)

which holds for all x ∈ R and where the constant f∞ > 0 depends on the function
f . There is a simple sufficient criterion which can be used to establish that a given
function f is in the Hardy space H+

2 :

Lemma: If the complex function f (z) = f (x + iy) is holomorphic for all y ≥ 0,
obeys the bound | f (z)| < f0e−δy , with the constants f0 > 0 and δ > 0 and if∫ ∞
−∞dx | f (x)|2 < ∞, then f ∈ H+

2 .

Proof: Since f (z) is holomorphic on the closureH+ (which includes the real axis),
one has the Cauchy formula

f (z) = 1

2π i

∫

C
dw

f (w)

w − z
= 1

2π i

∫ R

−R
dw

f (w)

w − z
+ 1

2π i

∫

C sup
dw

f (w)

w − z
=: F1(z) + F2(z)

where the integration contourC consists of the segment [−R, R] on the real axis and
the superior semi-circle Csup. One may write w = u + iv = Reiθ ∈ Csup. It follows
that on the superior semi-circle | f (w)| < f0e−δv = f0e−δR sin θ . Now, for R large
enough, one has |w − z| = |w(1 − z/w)| ≥ R 1

2 , for z ∈ H+ fixed andw ∈ Csup. We
can then estimate the contribution F2(z) of the superior semi-circle

|F2(z)| ≤ 1

2π

∫

C sup

|dw| |F(w)|
|w(1 − z/w)| ≤ 1

2π

∫ π

0
dθ

f0e−δR sin θ R

R 1
2

≤ 2 f0
π

∫ π/2

0
dθ exp

(
−2δ

π
Rθ

)
≤ f0

δ

1

R
→ 0 , forR → ∞
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Hence, the integral representation f (z) = 1
2π i

∫
R
dw f (w)(w − z)−1 holds for R →

∞. Since f ∈ L2(R), the assertion follows from Eq. (A.2) of Theorem 1. q.e.d.

Clearly, one may also define a Hardy space H−
2 for functions holomorphic on the

lower complex half-planeH−, by adapting the above definition. All results transpose
in an evident way.

Further conceptual preparations are necessary for the generalisation of these
results to higher dimensions. Here, we shall merely treat the 2D case, which is
enough for our purposes (and generalisations to n > 2 will be obvious). We denote
z = (z1, z2) ∈ C

2 and write the scalar product z · w = z1w1 + z2w2 for z,w ∈ C
2.

Following [40], H2-spaces can be defined as follows.

Definition 2: If B ⊂ R
2 is an open set, the tube TB with base B is

TB := {
z = x + i y ∈ C

2
∣∣ y ∈ B, x ∈ R

2
}

(A.5)

A function f : TB → C which is holomorphic on TB is in the Hardy space H2(TB) if

M2 := sup
y∈B

∫

R2
dx | f (x + i y)|2 < ∞ (A.6)

However, it turns out that this definition is too general. More interesting results are
obtained if one uses cônes as a base of the tubes.

Definition 3: (i) An open cône Γ ⊂ R
n satisfies the properties 0 /∈ Γ and if x, y ∈

Γ and α, β > 0, then αx + β y ∈ Γ . A closed cône is the closure Γ of an open cône
Γ . (ii) If Γ is a cône, and if the set

Γ ∗ := {
x ∈ R

n |x · t ≥ 0 with t ∈ Γ
}

(A.7)

has a non-vanishing interior, then Γ ∗ is the dual cone with respect to Γ . The cône
Γ is called self-dual, if Γ ∗ = Γ .

For illustration, note that in one dimension (n = 1) the only cône is Γ =
{x ∈ R |x > 0 } = R+. It is self-dual, sinceΓ ∗ = Γ = R0,+. In two dimensions (n =
2), consider the cône Γ ++ := {

x ∈ R
2 |x = (x1, x2) with x1 > 0, x2 > 0

}
which is

the first quadrant in the 2D plane. Since

Γ ++ ∗ = {
x ∈ R

2
∣∣x · t ≥ 0, for all t ∈ Γ ++ } = R0,+ ⊕ R0,+ = Γ ++ (A.8)

the set Γ ++ is a self-dual cône.
Hardy spaces defined on the tube TΓ ++ of the first quadrant provide the structure

required here.

Definition 4 [40]: If Γ ++ denotes the first quadrant of the plane R
2, a function

f : TΓ ++ → C holomorphic on TΓ ++ is in the Hardy space H++
2 := H2(TΓ ++) if
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M2 := sup
y∈Γ ++

∫

R2
dx | f (x + i y)|2 < ∞ (A.9)

Theorem 2 [40]: Let the function f : TΓ ++ → C be holomorphic. Then the follow-
ing statements are equivalent:

1. f ∈ H++
2

2. there exists a function f : R → C, which is square-integrable f ∈ L2(R), such
that lim y→0+ f (x + i y) = f (x) and

f (z) = 1

(2π i)2

∫

R2
dw

f (w)

w − z
, 0 = 1

(2π i)2

∫

R2
dw

f (w)

w − z∗ (A.10)

where (w − z)−1 := (w1 − z1)−1(w2 − z2)−1 and z∗ = x − i y denotes the com-
plex conjugate of z. For notational simplicity, one often writes f (x) = lim y→0+

f (x + i y), with x ∈ R
2.

3. there exists a function f̂ : R+ ⊕ R+ → C, with f̂ ∈ L2(R+ ⊕ R+) and zi ∈ H+

f (z) = 1

2π

∫

Γ ++
dt eiz·t f̂ (t) = 1

2π

∫ ∞

0
dt1

∫ ∞

0
dt2 ei(z1t1+z2t2) f̂ (t) (A.11)

The property (A.11) is of major interest to us in the main text. Summarising, the
restriction to the first quadrant Γ ++ allows to carry over the known results from the
1D case, separately for each component.

Of course, one may also define a Hardy space H−−
2 := H2(TΓ −−) on the forth

quadrant, in complete analogy.
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