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Abstract Let nd,t be the free nilpotent Lie algebra of type d and nilindex t . Starting
out with the derivation algebra and the automorphism group of nd,t , we get a natural
description of derivations and automorphisms of any generic nilpotent Lie algebra of
the same type and nilindex. Moreover, along the paper we discuss several examples
to illustrate the obtained results.

1 Introduction

In the middle of the 20th century, the study of derivations and automorphisms of
algebraswas a central topic of research. It iswell known thatmany linear algebraicLie
groups and their Lie algebras arise from the automorphism groups and the derivation
algebras of certain nonassociative algebras. In fact, for a given finite-dimensional real
nonassociative algebra A, the automorphism group AutA is a closed Lie subgroup of
the lineal group GL(A) and the derivation algebra DerA is the Lie algebra of AutA
(see [20, Proposition 7.1 and 7.3, Chap. 7]).

Paying attention to Lie algebras, a lot of research papers on this topic are devoted
to the study of the interplay between the structures of their derivation algebras,
their groups of automorphisms and Lie algebras themselves (see [24] and references
therein). We point out two simple but elegant results on this direction. According to
[1], any Lie algebra that has an automorphism of prime period without nonzero fixed
points is nilpotent. The same result is valid in the case of Lie algebra has a nonsingular
derivation (see [11, Theorem 2]). So, automorphisms and derivations and the nature
of their elements are interesting tools in the study of structural properties of algebras.

The main motif of this paper is to describe the group of automorphisms and the
algebra of derivations of any finite-dimensional t-step nilpotent Lie algebra n (this
means that nt �= 0 = nt+1) generated by a set U of d elements. The description will
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be given through the derivation algebra and the automorphism group of the free t-step
nilpotent Lie algebra nd,t generated byU . Denoting by u = span〈U 〉, the elements of
the derivation algebra, Dernd,t , arise by extending and combining, in a natural way,
linear maps from u into u and from u to n2d,t . The group of automorphisms, Autnd,t ,
is described through automorphism induced by elements of the general linear group
GL(u) and automorphisms provide by linear maps from u to nd,t which induce the

identity mapping on
nd,t

n2d,t

.

The paper splits into three sections starting fromnumber 2. Section2 collects some
known results about derivations and automorphisms of free nilpotent Lie algebras.
This information let establish the structure of derivations and automorphisms of any
nilpotent Lie algebra in Theorems 1 and 2. Section3 contains examples which show
the way to compute automorphism groups and derivation algebras. This last section
may also be consider as a short illustration of techniques which may be used in this
regard.

Along the paper, vector spaces are of finite dimension over a field F of character-
istic zero. All unexplained definitions may be found in [12] or [10].

2 Theoretical Results

We begin by recalling some basics facts and notations about Lie algebras. Let n be a
Lie algebra with bilinear product [x, y], and Autn denote the automorphism group of
n, that is, the set of linear bijective maps ϕ : n → n such that ϕ[x, y] = [ϕ(x), ϕ(y)].
Also, let Dern denote the set of derivations of n, so, the set of linear maps d : A → A
such thatd[x, y] = [d(x), y] + [x, d(y)]. IfV,W are subspaces ofn, [V,W ]denotes
the space spanned by all products [v,w], v ∈ V, w ∈ W . The terms of the lower
central series of n are defined by n1 = n, and ni+1 = [n, ni ] for i ≥ 2. If nt �= 0 and
nt+1 = 0, then n is said nilpotent of nilpotent index or nilindex t . We refer to them
also as t-step nilpotent. A nilpotent algebra n is generated by any set {y1, . . . , yd}
of n such that {yi + n2 : i = 1, . . . , d} is a basis of n

n2 (see [8, Corollary 1.3]). The
dimension of this space is called the type of n and {y1, . . . , yd} is said minimal set
of generators (m.s.g.). So, the type is just the dimension of any subspace u such that
n = u ⊕ [n, n].

The free t-step nilpotent Lie algebra on the set U = {x1, . . . , xd} (where d ≥
2) is the quotient algebra nd,t = FL(U )/FL(U )t+1, where FL(U ) is the free Lie
algebra generated by U (see [12, Section4, Chapter V]). The elements of FL(U )

are linear combinations of monomials [xi1 , . . . , xis ] = [. . . [[xi1 , xi2 ], xi3 ], . . . , xis ],
s ≥ 1 and xi j ∈ U . So, the free nilpotent algebra nd,t is generated as vector space by
s-monomials [xi1 , . . . , xis ], for 1 ≤ s ≤ t .

Again, if we set u = span〈U 〉, the subspace us = [us−1, u] is the linear span of the
s-monomials. Thus nd,t is anN-graded algebra whose s-th homogeneous component
is us . The dimension of any subspace us , 1 ≤ s ≤ t is:
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1

s

∑

a|s
μ(a)ds/a,

where μ is the Möebius function.
The algebra nd,t enjoys the followingUniversalMapping Property (see [8, Propo-

sition 1.4] and [21, Proposition 4]): for any k-step nilpotent Lie algebra n with k ≤ t
of type d, and any d-elements y1, . . . , yd of n, the correspondence xi 
→ yi extends
to a unique algebra homomorphism nd,t → n. In the particular case that {y1, . . . , yd}
is a m.s.g., the image contains a set of generators, so the map is surjective. Therefore,

any t-step nilpotent Lie algebra of type d is an homomorphic image
nd,t

t
where t is

an ideal such that t ⊆ n2d,t and ntd,t � t .
Derivations and automorphisms of nd,t are completely determine by their effect

on u. Conversely, any linear map from u into nd,t (bijection from a basis of u to
any m.s.g.) determines a unique derivation (automorphism) of nd,t . This assertion is
covered by the next result and its corollary. A detailed proof can be found in [21,
Propositions 2 and 3].

Proposition 1. Let ϕ denote any linear map from the vector space u = span〈x1,
. . . , xd〉 into nd,t , where {x1, . . . , xd} is a m.s.g. of nd,t . Then:

a) ϕ extends to a derivation of nd,t by declaring

dϕ([xα1 , . . . , xαr ]) =
∑

1≤i≤r

[xα1 , . . . , ϕ(xαi ), . . . , xαr ].

b) ϕ extends to an algebra homomorphism of nd,t by declaring

Φϕ([xα1 , . . . , xαr ]) = [ϕ(xα1), . . . , ϕ(xαr )].

Moreover if p u stands for the projection map from nd,t into u, then Φϕ is an auto-
morphism iff {p u(ϕ(x1)), . . . , p u(ϕ(xn))} is a linearly independent set.
Corollary 1. Let nd,t be the free t-nilpotent Lie algebra on d-generators x1, . . . , xd
and u = span〈xi 〉. The derivation algebra and the automorphism group of nd,t are
described as Dernd,t = {dϕ : ϕ ∈ Hom (u, nd,t )} and Autnd,t = {Φϕ : ϕ ∈ Hom (u,
nd,t ) and {p u(ϕ(x1)), . . . , p u(ϕ(xd))} m.s.g.}.
Remark 1. The Levi factor Sd,t of Dernd,t is given by the maps dϕ for ϕ ∈ sl(u).
Clearly, Sd,t is isomorphic to the special Lie algebra sld(F). The elements of the
nilpotent radicalNd,t are the linear maps dϕ where ϕ ∈ Hom (u, n2d,t ). And the solv-
able radical is just Rd,t = k · idd,t ⊕ Nd,t where idd,t (ak) = k · ak for any ak ∈ uk

(see [3, Proposition 2.4]).

Remark 2. The group Autnd,t is the semidirect product of the general linear group
GL(d, t), obtained from the automorphisms Φϕ where ϕ ∈ GL(u), and the nilpotent
group NL(d, t), whose elements are Φσ and σ = Idu + δ and δ ∈ End(u, n2d,t ) (see
[4, Proposition 3.1]).
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For any ideal t of nd,t such that ntd,t � t ⊆ n2d,t , let denote by Dert nd,t and
Dernd,t ,t nd,t the subset of derivations which map t into itself, and nd,t into t respec-
tively. Both sets are subalgebras of Dernd,t , even more, Dernd,t ,t nd,t is an ideal inside
Dert nd,t , and the following result follows [21, Proposition 5]:

Theorem 1. Let t be an ideal of nd,t such that ntd,t � t ⊆ n2d,t , the algebra of

derivations of
nd,t

t
is isomorphic to

Dert nd,t

Dernd,t ,t nd,t
, where Dert nd,t and Dernd,t ,t nd,t

maps t and nd,t into t respectively.

In a similar vein to the previous theorem, it is possible to arrive at a structural
description of automorphisms of homomorphic images of free nilpotent algebras.
For any ideal t of nd,t , ntd,t � t ⊆ n2d,t , let denote by Autt nd,t the subset of auto-
morphisms which map t into itself. It is easily checked that Autt nd,t is a subgroup
of Autnd,t . Consider now the map

θ : Autt nd,t → Aut
nd,t

t
, θ(Φ)(x + t ) = Φ(x) + t .

ByusingΦ(t ) = t andΦ homomorphism,wecan easily check that θ iswell defined.
Now, a straightforward computation shows that θ is a group homomorphism with
kernel,

Ker θ = {Φ ∈ Autnd,t : Im (Φ − I d) ⊆ t }.

Then, we have the following result:

Theorem 2. For any ideal t of nd,t such that ntd,t � t ⊆ n2d,t , the set Aut◦t nd,t =
{Φ ∈ Autnd,t : Im (Φ − I d) ⊆ t } is a normal subgroup of the group of automor-

phisms of
nd,t

t
. Moreover Aut

nd,t

t
is isomorphic to

Autt nd,t

Aut◦t nd,t
, where Autt nd,t maps

t into t .

Proof. From previous comments we only need to proof that the map θ is onto. Let
ρt : nd,t → nd,t

t
be the canonical projection and let { f1 + t , . . . , fk + t } be a basis

of nd,t

t
and {e1 + t , . . . , ed + t } a m.s.g. of nd,t

t
. Then {e1, . . . , ed} is also a m.s.g.

of nd,t . If we take a generic automorphism Â ∈ Aut
nd,t

t
,

Â(ei + t ) =
k∑

j=1

αi j f j + t , and declare A(ei ) =
k∑

j=1

αi j f j ,

A extends to a linear homomorphism, A : e → nd,t , where e = span〈e1, . . . , ed〉.
Let ΦA be the homomorphism given by Proposition 1. We check that θ(ΦA) = Â
noting that, for a generic element [[. . . [a1, a2], . . . , al ] where ai ∈ e, up to linear
combinations, we have that
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ρt ◦ ΦA[[. . . [a1, a2], . . . , al ] = [[. . . [ρt ◦ A(a1), ρt ◦ A(a2)], . . . , ρt ◦ A(al)]
= [[. . . [ Â ◦ ρ(a1), Â ◦ ρt (a2)], . . . , Â ◦ ρt (al)]
= Â ◦ ρt [[. . . [a1, a2], . . . , al ].

The second equality follows because for every ai = ∑d
j=1 β j i e j ,

ρt ◦ A(ai ) = ρt ◦ A

⎛

⎝
d∑

j=1

β j i e j

⎞

⎠ =
d∑

j=1

β j iρt ◦ A(e j ) =
d∑

j=1

β j iρt

(
k∑

l=1

α jl fl

)

=
d∑

j=1

β j i

k∑

l=1

(α jl fl + t ) =
d∑

j=1

β j i Â(ei + t ) =
d∑

j=1

β j i Â ◦ ρt (ei ) = Â ◦ ρt (ai ).

NowKer ρt = t and ρt ◦ ΦA = Â ◦ ρt impliesΦA(t ) = t and,ΦA(t ) automor-
phism, follows by using the equivalence given in Proposition 1 and the fact that Â is
an automorphism.

3 Examples, Techniques and Patterns

From the generator set U = {x1, . . . , xd}, we easily get the standard monomials
[xi1 , . . . , xir ] that (linearly) generate the Lie algebra nd,t . However, the anticommuta-
tivity law ([xi , x j ] + [x j , xi ] = 0) and the Jacobi identity (

∑
cyclic[[xi , x j ], xk] = 0),

both set linear dependence relations. This makes it difficult to find a basis formed
by monomials. The problem was solved by M. Hall in 1950. Focusing on the behav-
ior of algorithms, the most natural basis to work on free nilpotent Lie algebras, is
the Hall basis (see [9] for definition, and [23, Chapter IV, Section5] for a detailed
construction).

Starting with the total order xd < xd−1 < · · · < x1, the definition of Hall basis
states recursively if a given standard monomial depends on the previous ones. The
recursive algorithm is covered by the pseudocode given in Table1 and provides a
Hall basis that we will denote as Hd,t (U<) or Hd,t if the total order inU is clear. This
algorithm checks if an element v belongs to the Hall basis once we have defined a
monomial order. For some small d and t values, the output of Hall basis algorithm
is given in Table2.
Now we introduce several examples which illustrate (among other things):

1. The way to describe a generic d-generated t-nilpotent Lie algebra as an homo-
morphic image of nd,t .

2. The way to compute automorphisms and derivations regarding Proposition 1 and
Theorems 1 and 2.

3. The recognition of some structural patterns of nilpotent algebras depending on
the nature of their derivations and automorphisms.
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Table 1 Hall basis algorithm

Table 2 Hall basis of nd,t

In the sequel, if a map ϕ is given in a matrix form A = (ai j ) attached to a basis
B = {v1, . . . , vn}, then ϕ(vi ) = ∑n

j=1 a jiv j .
The Universal Mapping Property lets us describe any t-nilpotent Lie algebra n of

type d as a homomorphic image of nd,t in a easy way. From any m.s.g. {e1, . . . , ed}
of n, the correspondence xi 
→ ei for i = 1, . . . , d extends uniquely to a surjective

algebra homomorphism θn : nd,t → n and n ∼= nd,t

Ker θn
. We will compute ideals of

this type in our following example:
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Example 1. Let n1 and n2 be the 8-dimensional and 5-dimensional Lie algebras
described through the basis {e1, . . . , e8} and {u1, . . . , u5} by the following multipli-
cation table ([a, b] = −[b, a] and [a, b] = 0 is not in the table):

[e1, e2] = e5,

[e1, e3] = e6,

[e1, e4] = e7,

[e1, e5] = −e8,

[e2, e3] = e8,

[e2, e4] = e6,

[e2, e6] = −e7,

[e3, e4] = −e5,

[e3, e5] = −e7,

[e4, e6] = −e8,

[u1, u3] = u5,

[u2, u4] = u5,

The lower central series of these algebras are:

n21 = span〈e5, e6, e7, e8〉, n31 = span〈e7, e8〉, n41 = 0,

and
n22 = span〈u5〉, n32 = 0.

Consider now the maps θn1 : xi → ei for i = 1, . . . , 4 from n4,3 onto n1 and
θn2 : xi → ui for i = 1, . . . , 4 from n4,2 onto n2. Both correspondences extend
to homomorphisms of algebras by following the proof in [21, Proposition 4]
(θ [xα1 . . . xαs ] = [θ(xα1) . . . θ(xαs )]). It is not hard to see that:

Ker θn1 = span〈[x3, x4] + [x1, x2], [x2, x4] − [x1, x3], [x2, x3] − [[x1, x3], x1],
[x1, x4] + [[x1, x2], x2], [[x3, x4], x4] − [[x1, x3], x1], [[x3, x4], x3],

[[x3, x4], x2] + [[x1, x2], x2], [[x3, x4], x1], [[x2, x4], x4], [[x1, x4], x2],
[[x2, x4], x3] + [[x1, x2], x2], [[x2, x4], x2], [[x2, x4], x1] − [[x1, x3], x1],

[[x2, x3], x3], [[x2, x3], x2], [[x2, x3], x1], [[x1, x4], x4], [[x1, x4], x3],
[[x1, x4], x1], [[x1, x3], x3] + [[x1, x2], x2], [[x1, x3], x2], [[x1, x2], x1]〉,

and

Ker θn2 = span〈[x3, x4], [x2, x3], [x1, x4], [x1, x2], [x1, x3] − [x2, x4]〉.

We point out that Ker θn2 is an homogeneous ideal in the N-graded structure of n4,2
and Ker θn1 is not an homogeneous ideal of n4,3. Therefore, n2 inherits the grading
of n4,2, but n1 does not inherit that of n4,3.

Example 2. According to Proposition 1, derivations and automorphisms of n2,4 in
Hall basis H2,4 can be easily obtained by iterating the Leibniz rule ϕ([a, b]) =
[ϕ(a), b])] + [a, ϕ(b)] and the law ϕ([a, b]) = [ϕ(a), ϕ(b)]. The matrices repre-
senting the elements of Autn2,4 = GL(2, 4) � NL(2, 4) are product of matrices of
the following shapes:
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⎛

⎜⎜⎝

a1 a2
a3 a4

0 0 0

0 ε 0 0

0 0
εa1 εa2
εa3 εa4

0

0 0 0 ε · A′

⎞

⎟⎟⎠ ∈ GL(2, 4),

⎛

⎜⎜⎜⎝

I2 0 0 0
b1 b2 1 0 0
c1 c2
c3 c4

b2
−b1

I2 0

d1 d2
d3 d4
d5 d6

c2
c4 − c1

−c3

b2 0
−b1 b2
0 −b1

I3

⎞

⎟⎟⎟⎠ ∈ NL(2, 4);

here Ik denotes the k × k identity matrix, ε = a1a4 − a2a3 �= 0 and

A′ =
(

a21 a1a2 a22
2a1a3 a1a4 + a2a3 2a2a4
a23 a3a4 a24

)
.

From the decomposition Dern2,4 = S2,4 ⊕ F · id2,4 ⊕ N2,4, the matrices that repre-
sent derivations of n2,4 are sum of matrices of three different types:

⎛

⎜⎜⎜⎜⎜⎝

a1 a2
a3 −a1

0 0 0

0 0 0 0

0 0
a1 a2
a3 −a1

0

0 0 0
2a1 a2 0
2a3 0 2a2
0 a3 −2a1

⎞

⎟⎟⎟⎟⎟⎠
∈ S2,4, λid2,4 =

⎛

⎜⎜⎜⎜⎜⎝

λ 0
0 λ

0 0 0

0 2λ 0 0

0 0
3λ 0
0 3λ

0

0 0 0
4λ 0 0
0 4λ 0
0 0 4λ

⎞

⎟⎟⎟⎟⎟⎠

and ⎛

⎜⎜⎜⎝

0 0 0 0
b1 b2 0 0 0
c1 c2
c3 c4

b2
−b1

0 0

d1 d2
d3 d4
d5 d6

c2
c4 − c1

−c3

b2 0
−b1 b2
0 −b1

0

⎞

⎟⎟⎟⎠ ∈ N2,4.

For any 0 �= λ ∈ F, the linear map ϕλ(xi ) = λxi provides the (semisimple)
automorphism Φϕλ

([xα1 . . . xαr ]) = λr [xα1 . . . xαr ] and the (semisimple) derivation
dϕλ

([xα1 . . . xαr ]) = rλ[xα1 . . . xαr ].
Consider now the 5-dimensional Lie algebra n3 with basis {z1, . . . , z5} and

nonzero products:

[z1, z2] = z3, [z1, z3] = z4, [z1, z4] = [z2, z3] = z5.

The lower central series is n23 = span〈z3, z4, z5〉, n33 = span〈z4, z5〉, n43 = span〈z5〉
and n53 = 0. So, the correspondence xi 
→ zi for i = 1, 2 extends to a surjective

algebra homomorphism θn3 : n2,4 → n3 and n3 ∼= n2,4

Ker θn3

. In this case, the kernel is

the 3-dimensional ideal:

Ker θn3 = span〈[[[x1, x2], x2], x2], [[[x1, x2], x2], x1],
[[x1, x2], x2] + [[[x1, x2], x1], x1]〉.



Derivations and automorphisms of nilpotent Lie algebras 549

Example 3. Let denote t = Ker θn3 . According to Theorems 1 and 2, derivations
(automorphisms) of n3 are a quotient of the set of derivations (automorphisms) of
n2,4 that leave t invariant. These sets are:

Dertn2,4 :

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2
0 1

2 a1
0 0 0

b1 b2
3
2 a1 0 0

c1 c2
c3 c4

b2
−b1

5
2 a1 a2
0 2a1

0

d1 d2
d3 d4
d5 d6

c2
c4 − c1

−c3

b2 0

−b1 b2
0 −b1

7
2 a1 a2 0

0 3a1 2a2
0 0 5

2 a1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

and, for a4 �= 0,

Auttn2,4 :

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

a24 a2 0 0 0 0 0 0

0 a4 0 0 0 0 0 0

b1 b2 a34 0 0 0 0 0

c1 c2 a24b2 − a2b1 a54 a2a
3
4 0 0 0

c3 c4 −a4b1 0 a44 0 0 0

d1 d2 a24c2 − a2c1 a44b2 − a2a
2
4b1 a2

(
a24b2 − a2b1

)
a74 a2a

5
4 a22a

3
4

d3 d4 c4a
2
4 − a4c1 − a2c3 −a34b1 a34b2 − 2a2a4b1 0 a64 2a2a

4
4

d5 d6 −a4c3 0 −a24b1 0 0 a54

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that the isomorphism n2,4

t
→ n3 is provided by the correspondence z′

i 
→ zi
by taking z′

1 = x1 + t, z′
2 = x2 + t, z′

3 = [x1, x2] + t, z′
4 = [x1, [x1, x2]] + t, z′

5 =
[x2, [x1, x2]] + t. So B′ = {z′

1, z
′
2, z

′
3, z

′
4, z

′
5} is a basis. Now, by using the isomor-

phisms in Theorem 1 and Theorem 2 and a minor change of basis, we get a complete

description of derivations and automorphisms of n3 ∼= n2,4

t
. Relative to the basis

{z1, z2, z3, z4, z5}:

Der
n2,4

t
:
⎛

⎜⎝

a1 0
a3 2a1

0 0 0

b1 b2 3a1 0 0
c1 c2 b2 4a1 0
d1 d2 c2 − b1 a3 + b2 5a1

⎞

⎟⎠ ,

and, for a4 �= 0,

Aut
n2,4

t
:

⎛

⎜⎜⎜⎝

a4 0 0 0 0

a2 a24 0 0 0

b2 b1 a34 0 0

−c4 −c3 a4b1 a44 0

d6 − c2 d5 − c1 a2b1 − a4(a4b2 + c3) a24 (a2a4 + b1) a54

⎞

⎟⎟⎟⎠ .

From previous descriptions, it is clear that the map ϕλ : xi → λxi , for i = 1, 2,
extends to a derivation iff λ = 0 and ϕλ extends to an automorphism iff λ = 1. We
also remark that, t is not an homogeneous ideal, so n3 does not inherit the natural
N-grading of n2,4. However Φλ : xi → λi xi is an automorphism for all 0 �= λ ∈ F
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with eigenvalues λi for 1 ≤ i ≤ 5. In the case of F be the reals and λ > 1, Φλ is
an (expanding) automorphism that provides the N-grading n3 = ⊕5

i=1S(λi ) where
S(λi ) = {v ∈ n3 : Φλ(v) = λiv}.

As in the previous example, in the final one we get the conditions that determine
derivations and automorphisms of n2 by using Dern4,2 and Aut4,2.

Example 4. Derivations and automorphisms of n4,2 in Hall basis H4,2 are (here
Δ

k,l
i, j = aia j − akal ):

Dern4,2 : dA =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 a4 0 0 0 0 0 0
a5 a6 a7 a8 0 0 0 0 0 0
a9 a10 a11 a12 0 0 0 0 0 0
a13 a14 a15 a16 0 0 0 0 0 0
b1 b2 b3 b4 a1 + a6 a7 −a3 a8 −a4 0
b5 b6 b7 b8 a10 a1 + a11 a2 a12 0 −a4
b9 b10 b11 b12 −a9 a5 a6 + a11 0 a12 −a8
b13 b14 b15 b16 a14 a15 0 a1 + a16 a2 a3
b17 b18 b19 b20 −a13 0 a15 a5 a6 + a16 a7
b21 b22 b23 b24 0 −a13 −a14 a9 a10 a11 + a16

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

and, for nonsingular matrices with entries ai ,

Autn4,2 : ΦA =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a2 a3 a4 0 0 0 0 0 0

a5 a6 a7 a8 0 0 0 0 0 0

a9 a10 a11 a12 0 0 0 0 0 0

a13 a14 a15 a16 0 0 0 0 0 0

b1 b2 b3 b4 Δ
2,5
1,6 Δ

3,5
1,7 Δ

3,6
2,7 Δ

4,5
1,8 Δ

4,6
2,8 Δ

4,7
3,8

b5 b6 b7 b8 Δ
2,9
1,10 Δ

3,9
1,11 Δ

3,10
2,11 Δ

4,9
1,12 Δ

4,10
2,12 Δ

4,11
3,12

b9 b10 b11 b12 Δ
6,9
5,10 Δ

7,9
5,11 Δ

7,10
6,11 Δ

8,9
5,12 Δ

8,10
6,12 Δ

8,11
7,12

b13 b14 b15 b16 Δ
2,13
1,14 Δ

3,13
1,15 Δ

3,14
2,15 Δ

4,13
1,16 Δ

4,14
2,16 Δ

4,15
3,16

b17 b18 b19 b20 Δ
6,13
5,14 Δ

7,13
5,15 Δ

7,14
6,15 Δ

8,13
5,16 Δ

8,14
6,16 Δ

8,15
7,16

b21 b22 b23 b24 Δ
10,13
9,14 Δ

11,13
9,15 Δ

11,14
10,15 Δ

12,13
9,16 Δ

12,14
10,16 Δ

12,15
11,16

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let dA ∈ Dern2,4 be and ΦA ∈ Autn2,4. An easy computation shows that

dA ∈ Dertn2,4 iff

{
a12 = −a2, a14 = a9, a8 = a3,
a15 = −a5, a16 = −a1 + a6 + a11,

and

dA ∈ Auttn2,4 iff

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Δ
6,9
5,10 + Δ

2,13
1,14 = Δ

8,11
7,12 + Δ

4,15
3,16 = 0,

Δ
7,9
5,11 + Δ

3,13
1,15 = Δ

8,10
6,12 + Δ

4,14
2,16 = 0,

Δ
8,9
7,10 + Δ

6,11
5,12 + Δ

4,13
3,14 + Δ

2,15
1,16 = 0.

Therefore, the correspondence ui 
→ λui for i = 1, . . . , 4, and u5 
→ 2λu5 extends
by linearity to a derivation of n2 for all λ. The correspondence ui 
→ λui for i =
1, . . . , 4, and u5 
→ λ2u5 extends to an automorphism if λ �= 0.
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Epilogue
In 1955, N. Jacobson proved in [11, Theorem 3] that any Lie algebra of characteristic
zero with a nonsingular derivation is nilpotent. The author also noted that the validity
of the converse was an open question. Two years later, J. Dixmier and W.G. Lister
supplied in [5] a negative answer to the question by means of the algebra n1 that we
have revisited in Example 1. Every derivation of n1 is nilpotent, so the elements of
Dern1 are nilpotent maps, and therefore, Dern1 is a nilpotent Lie algebra. It can be
also proved that Autn1 is not a nilpotent group (see [15]). The existence of n1 is the
starting point of the study of the so called characteristically nilpotent Lie algebras,
that is, Lie algebras in which any derivation is nilpotent. Over fields of characteristic
zero, this class of algebrasmatches to the class of algebras in which every semisimple
automorphism is of finite order (see [16, Theorem 3]) or the class of algebras inwhich
the algebra of derivations is nilpotent (see [16, Theorem 1]).

Quasi-cyclic Lie algebraswere introduced at [17] byG. Leger in 1963.A nilpotent
Lie algebra n is called quasi-cyclic (also known in the literature as homogenous) if n
has a subspace u such that n decomposes as the direct sum of subspaces uk = [uk, u];
in particular, quasi-cyclic algebras are N-graded. Free nilpotent Lie algebras nd,t are
examples of this type of algebras. It is not hard to see that a nilpotent Lie algebra
n ∼= nd,t

t
is quasi-cyclic iff t is a homogeneous ideal of nd,t . In fact, quasi-cyclic

Lie algebras are the class of nilpotent Lie algebras that contain a minimal set of
generators {e1, . . . , ed}, so d is the type of n, such that the correspondence ei 
→ ei
extends to a derivation of n according to [13, Corollary 1]. By reviewing Ker θni , we
conclude that n2 is quasi-cyclic, but n1 and n3 are not.

An automorphism of a real Lie algebra is called expanding automorphism if it
is a semisimple automorphism whose eigenvalues are all greater than 1 in absolute
value. In 1970, J. L. Dyer states in [6] that quasi-cyclic Lie algebras admits expanding
automorphisms, the converse is false. The Lie algebra n3 provides a counterexample:
according to Example 3, n3 admits expanding automorphisms, but it is not quasi-
cyclic. The algebra n3 has been introduced in [17] and [13] to illustrate the results
therein. The latter paper includes the characterization of (real) quasi-cyclic Lie alge-
bras as those algebras that admit grading automorphisms.

As it is noted by J. Scheuneman in [22, Section1], “(. . . ) the Lie algebra of a
simply transitive group of affine motions of R

n has an affine structure (. . . )". The
main result in this paper is that each 3-step nilpotent Lie algebra has an complete (also
known as transitive) affine structure. Therefore, any homomorphic image nd,3

t
can be

endowed with a such structure. The notion of (complete or transitive) affine structure
on Lie algebras is equivalent to that of (complete) left-symmetric structure (see [7]
and references therein). In fact any positively Z-graded real Lie algebra admits a
complete left symmetric structure according to [2, Theorem 3.1]. Therefore, any
quasi-cyclic nilpotent Lie algebra admits a complete left symmetric structure. There
is an interesting interplay among gradings, expanding and hyperbolic automorphisms
and affine structures.

It is not difficult to find recent research on derivations and automorphisms algebras
and their applications. For nilpotent Lie algebras we point out [14, 18, 19]. So, this
research area deserves to be considered.
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