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Abstract We show how T-duality in string theory implies the presence of exotic
branes, that is branes of the lower-dimensional theory that do not have a geometric
higher-dimensional origin. We then move to discuss the potentials under which these
branes are electrically charged. We show that these are mixed-symmetry potentials,
andwediscuss the duality relations among these potentials and the standard potentials
of ten-dimensional supergravity. Finally, we discuss how such duality relations can
be naturally described within the framework of double field theory, and we show one
particular physical consequence of this description.

1 Introduction

Duality symmetries play a crucial role in our understanding of various aspects of
string theory. In particular, S and U dualities relate BPS branes with tensions scaling
with different powers of the string dilaton, and therefore allow us to gain information
on non-perturbative aspects of the theory. In general, these duality symmetries act as
discrete subgroups of the global symmetry groups of the low-energy supergravity the-
ory. In this talk we are interested in theories with maximal supersymmetry, that arise
as torus reductions of IIA/IIB string theories. The global symmetry group of the the-
ory in 10 − d dimensions is Ed+1(d+1), and the non-perturbative U-duality symmetry
of the full quantum theory is conjectured to be its discrete subgroup Ed+1(d+1)(Z)

[14].
The T-duality group O(d, d;Z), which is a subgroup of U-duality, is a sym-

metry of the perturbative string spectrum of the theory dimensionally reduced on
T d . Correspondingly, in the low energy supergravity one can consider the maximal
subgroup R

+ × O(d, d) of Ed+1(d+1), where R+ is a symmetry under shifts of the
d-dimensional string dilaton,whileO(d, d) leaves the dilaton invariant and it is there-
fore a perturbative symmetry of the low-energy action. In four dimensions, the R+
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symmetry is enhanced to SL(2,R), while in three dimensions the fullR+ × O(7, 7)
is enhanced to SO(8, 8).

We quickly review how the O(d, d) symmetry acts on the scalar fields of the
maximal supergravity theory in 10 − d dimensions. In particular we are interested in
the scalars coming from the metric and the B field, that parametrise the coset space
O(d, d)/[O(d) × O(d)] by forming the O(d, d) matrix

MMN =
⎛
⎝

gmn −gmpBpn

Bmpgpn gmn − Bmpgpq Bqn

⎞
⎠. (1)

Under an O(d, d) transformation O, this matrix transforms as

M → OTMO. (2)

T-duality is the discrete subgroup O(d, d;Z). That is, given background values for
the G and B scalars, every O(d, d;Z) transformation, that acts on these background
fields as in (2), leaves the string spectrum invariant. One defines the O(d, d) invariant
tensor

ηMN =
(
0 I

I 0

)
, (3)

which identifies the “lightlike” O(d, d) coordinates X and X̃ . The coordinates X
are precisely the coordinates of the d-dimensional torus, and one can ask what is
the physical meaning of the coordinates X̃ . To answer this question, one writes X in
terms of the string coordinates XL(σ, τ ) and XR(σ, τ ) which describe the left and
the right modes respectively, as

X = XL + XR . (4)

The factorised T-duality transformation that maps IIA to IIB inverting the compact-
ification radius corresponds to

Xa
L → Xa

L Xa
R → −Xa

R, (5)

where a is the direction one is T-dualising. On the other hand, such transformation
is the O(d, d) matrix that maps Xa to X̃ a . This means that the coordinates X̃ are the
“winding” coordinates

X̃ = XL − XR . (6)

The fact that T-duality transformations exchange themetric and the B field implies
that in string theory one has to generalise the concept of geometry. In particular one
can consider compactifications ongeneralisedmanifolds such that the transition func-
tions are T-duality transformations [13]. As a simple occurrence of non-geometry, we
can consider the IIB theory compactified to six dimensions on the orbifold T 4/Z2.
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The six-dimensional low-energy theory is N = (2, 0) supergravity coupled to 21
tensor multiplets. Can we interpret this as arising from IIA? We can, but from the
point of view of IIA the Z2 involution will act non-geometrically.

In the following we will first discuss how T-duality implies that in string theory
one has to consider, together with “standard” branes, that are the branes of the 10-
dimensional IIA or IIB theory, also “exotic” branes, that are branes that arise in the
lower-dimensional theory but do not have a clear higher-dimensional origin. We will
then move to study the potentials under which these branes are electrically charged,
and show that these are in general mixed-symmetry potentials related by “exotic”
duality relations to the potentials of the ten-dimensional theories. Finally, we will
show how these duality relations are unified in the framework of double field theory
(DFT), and we will discuss what information can be gained from the DFT picture.

2 Exotic Branes

We start by considering the IIA or IIB theory compactified on a 2-torus to eight
dimensions. In this case the perturbative global symmetry of the supergravity theory
is SO(2, 2), which is isomorphic to SL(2,R) × SL(2,R). This means that the G
and B scalars parametrise the coset manifold (SL(2,R)/SO(2))2. The scalars can
be grouped in two complex scalars τ and ρ each transforming under one of the two
SL(2,R)’s in a linear fractional way. While the scalar τ is made purely in terms of
the metric, the scalar ρ is

ρ = B89 + i
√
detG (7)

and therefore a transformation

ρ → aρ + b

cρ + d
(8)

mixes the B field and the determinant of the internal metric.
The NS5-brane solution in the string frame is

ds2 = ημνdx
μdxν + H(r)dymdym, (9)

where the NS-NS 3-form field strength and the dilaton are related to the harmonic
function H(r) as

Hmnp = εmnpq∂q H(r) eφ = H 1/2(r). (10)

Wewant to T-dualise along the transverse directions 8 and 9. Sowe first have to smear
the NS5 along these directions. After smearing, the harmonic function becomes
logarithmic. The equation for B89 becomes 1

r ∂θ B89 = −∂r H(r). Hence B89 depends
linearly on θ , that is

B89 = θ

2π
, (11)



278 F. Riccioni

and if one rotates around the brane B89 → B89 + 1. That is, the monodromy is the
T-duality transformation

ρ → ρ + 1, (12)

which is a symmetry of the eight-dimensional theory.
One can askwhat happens to this solution after a generic T-duality transformation.

In particular, one can consider the transformation corresponding to two factorised
T-dualities in the directions 8 and 9. The action of such transformation on the scalar
ρ is

ρ → −1/ρ. (13)

Hence, one ends up with a solution with monodromy

β89 → β89 + 1 (14)

where
β89 = Re(−1/ρ) = −B89/(B

2
89 + detG). (15)

Because of the monodromy, the explicit solution [8] is such that the internal metric
is not well-defined. This means that the resulting 5-brane is globally non-geometric,
i.e. it is “exotic”. It is called 522 in the literature, where the top number denotes the
number of isometries (in this case directions 8 and 9), while the bottom number
denotes the scaling of the tension with respect to the dilaton (in this case g−2

S ).
Models constructed introducing these branes had already appeared in the literature
[10] well before the work of [8]. In particular, the model of [10] describes IIA 5-
branes localised on a 2-sphere S2, with monodromy SL(2,Z)ρ × SL(2,Z)τ . If the
monodromy is non-trivial only with respect to SL(2,Z)τ , the model hasN = (1, 1)
supersymmetry and it is geometric, that is it is IIA on K3 where the K3 is elliptically
fibered. If the monodromy is non-trivial only with respect to the other SL(2,Z), the
model hasN = (2, 0) supersymmetry and it is in general non-geometric. Finally, if
the monodromy is non-trivial with respect to both groups, supersymmetry is broken
to N = (1, 0).

In general, using chains of S and T dualities one finds all the non-geometric
solutions of the type of the 522-brane [16]. Moreover, using the same dualities one
derives also the expression for the tension of all such branes as functions of the
string coupling and the compactification radii [9, 17, 18]. Following [17], one can
consider instead of the tension the mass that arises when one compactifies the brane
to a particle in three dimensions. So for instance for the D7-brane one gets mD7 ∼
g−1
s R3...R9, while for its S-dual we havemSD7 ∼ g−3

s R3...R9. The NS5 gives a mass
g−2
s R3...R7 and the 522 gives g

−2
s R3...R7R2

8R
2
9 . The fact that the exotic brane gives a

mass proportional to a power of the radius higher than one is completely general and
implies that the tension of the exotic brane diverges in the decompactification limit.

We want to associate to each brane the potential under which the brane is elec-
trically charged. We use the following notation: if tension scales like g−n

s , with
n = 1, 2, 3, 4..., we denote the potentials with letters C, D, E, F, .... That is, n is
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associated to the order in the alphabet. The indices of these potentials correspond
to the directions contributing to that mass formulae for the three-dimensional parti-
cles above (plus the time direction). This means that the wrapped D7-brane above is
charged with respect to the component C03456789 of the RR 8-form C8, its S-dual is
charged with respect to E03456789, which is a component of the 8-from E8, and the
NS5 gives D034567 (potential D6). The square dependence on the radii R8 and R9 for
the 522 give a potential D03456789,89, which is a component of the mixed-symmetry
potential D8,2 (that is a field in a hook Young Tableau representation made of two
columns, one with 8 boxes and one with 2). This gives a precise mapping between
exotic branes and mixed-symmetry potentials [5]. What we want to analyse in the
following is what are these mixed-symmetry potentials and how can they be related
to the standard potentials of supergravity.

3 Exotic Dualities

We start by considering the NS5-brane. This brane is electrically charged under the
potential D6, which is the electromagnetic dual of the NS-NS 2-form B2. We know
how to dualise the NS-NS 2-form potential Bab. We start from the kinetic term of
the 2-form,

S[B] =
∫

d10x
(

− 1

12
HabcH

abc
)
, (16)

where H3 = dB2, and we write the parent action

S[D, H ] =
∫

d10x
(

− 1

12
HabcH

abc − 1

6
εa1...a6abcd Da1...a6∂aHbcd

)
, (17)

where now the 3-form H3 is treated as an independent field. The equation for D6

gives the Bianchi identity dH3 = 0, which implies H3 = dB2 and plugging this back
into the action (17) gives back Eq. (16). On the other hand, the equation for H3 gives
the duality relation

Ha1...a7 = 7∂[a1Da2...a7] = 1

6
εa1...a7abcHabc, (18)

and solving this for H3 in terms of D6 in Eq. (17) gives the dual action for D6.
In the full supergravity theory, this potential turns out not only to transform with

respect to its own gauge transformations, but also with respect to the gauge trans-
formations of the RR potentials. As a result, the NS5 brane effective action contains
couplings to the RR potentials which give information on which type of brane can
end on the NS5. In particular, in the IIA theory the NS5 Wess-Zumino term has the
form ∫

[D6 + G1C5 + G3C3 + G5C1], (19)
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where G1 and G5 are the field strengths of a world-volume scalar and its dual, while
G3 is the field strength of a world-volume self-dual 2-form. The NS5 in IIA is
the end-point of D0, D2 and D4 branes. Similar considerations apply to the IIB
NS5-brane.

We want to repeat the same analysis in eight dimensions. We want 6-form poten-
tials that couple to the NS5, the KK monopole and the 522. These potentials are
in the (3, 1) ⊕ (1, 3) of SL(2,R) × SL(2,R), which is as we already mentioned
the perturbative symmetry of the eight-dimensional theory, and they come from the
10-dimensional mixed-symmetry potentials

D6 D7,1 D8,2. (20)

We want to identify the last two potentials as dual to the standard fields of the ten-
dimensional theory. As we will show, the D7,1 is the dual of the graviton, while the
D8,2 is the exotic dual of B2.

We first consider the dual graviton. We dualise linearised gravity in the frame
formulation, i.e. we dualise the linearised vielbein eμ

a = δμ
a + hμ

a [22]. One starts
with the linearised EH action written as

SEH[h] =
∫

ddx
[
fab

b f acc − 1
2 fabc f

acb − 1
4 fabc f

abc
]
, (21)

where
fab

c = ∂ahb
c − ∂bha

c. (22)

In terms of f , the linearised Einstein equations are

∂c fc(ab) + ∂(a fb)c
c − ηab ∂c fcd

d = 0, (23)

where f satisfies the Bianchi identity

∂[a fbc]d = 0. (24)

One then moves to a first order formulation and considers the parent action adding
the lagrange multiplier Dd−3,1 that imposes the Bianchi identity,

∫
dd x εa1...ad−3bcd Da1...ad−3,e∂b fcd

e. (25)
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Observe that now you cannot impose that the (d − 3, 1) potential is irreducible:
there is also a completely antisymmetric part. The equation for D gives the Bianchi
identity, while the equation for f gives the duality relation, and using the latter to
solve for f in terms of Dd−3,1 and plugging this back in the action gives the linearised
action for the dual graviton. In ten dimensions the potential is D7,1.

We now move on to discuss the potential D8,2, and show that it is related to B2 by
an exotic duality relation. By suitably integrating by parts, we write the B2 kinetic
action as

S[B] = −1

4

∫
ddx

(
Qa,bcQ

a,bc − 2Qa
abQc

cb

)
, (26)

where Qa,bc = ∂a Bbc (only antisymmetric in bc).We then introduce the parent action

S[Q, D] = −1

4

∫
ddx

(
Qa,bcQa,bc − 2Qa

abQc
cb + εa1...ad−2abDa1...ad−2,cd∂aQb

cd
)

(27)
where the Dd−2,2 potential imposes the Bianchi identity ∂[aQb]cd = 0, and as before
it is in a reducible representation. The equation for D gives the Bianchi identity, while
the equation for Q gives the duality relation, and plugging this back into the action
one then recovers the second order equation for the dual field [6]. In ten dimensions
the exotic dual potential is precisely D8,2.

4 Exotic Dualities in DFT

The duality relations described in the previous section have a natural unified descrip-
tion in the framework of double field theory (DFT) [15, 20, 21]. In DFT the coordi-
nates X and X̃ discussed in the introduction are treated on the same footing, and are
grouped together in XM = (Xm, X̃m), where M is an SO(10, 10) index. The fields
can depend in principle on both sets of coordinates, provided that they satisfy the
section condition, that is on any pair of fields on the doubled space one must impose

ηMN∂M ⊗ ∂N = 0. (28)

We are only interested in linearised field equations, andwe employ the formulation
of [1, 2], which is the DFT extension of the vierbein formulation of gravity. One
introduces the generalised fluxes

FABC = 3 ∂[AhBC] , FA = ∂ BhBA + 2 ∂Aφ, (29)

where A, B, ... are SO(1, 9) × SO(1, 9) indices, hAB is the generalised vierbein and
φ is the dilaton. The linearised action is
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SDFT =
∫

d2d X e−2φ̄

(
SABFAFB + 1

6
SABCDEFFABCFDEF

)
, (30)

where SAB and SABCDEF are invariant tensors of SO(1, 9) × SO(1, 9).
The fluxes obey Bianchi identities, which in a first order formulation we want to

obtain as equations for the dual fields.We thus consider a parent actionwith Lagrange
multipliers DABCD and DAB ,

∫
d2d X [DABCD ∂AFBCD + DAB

(
∂CFCAB + 2 ∂AFB

) + D ∂ AFA], (31)

whose field equations are the linearised Bianchi identities

∂[AFBCD] = 0

∂CFCAB + 2 ∂[AFB] = 0 (32)

∂ AFA = 0.

The equations for the fluxes give the duality relations, and plugging this back in the
parent action gives the linearised action for the dual fields. The potentials D6, D7,1

and D8,2 of the previous section are the components Dabcd , Dabc
d and Dab

cd of the
DFT potential DABCD , and this analysis reproduces exactly the duality relations of
D6, D7,1 and D8,2 [3]. In particular, the standard dualisation and the exotic dualisation
of B2 are unified in DFT.

To go back to the brane effective actions, we want to write down a DFT equivalent
of the WZ term in Eq. (19). To do this, one needs a DFT formulation of the RR
potentials. This formulation was given in [12], and it consists in collecting the RR
potentials in a chiral spinor of SO(10, 10)

χ =
10∑
p=0

1

p!Cm1...mp Γ m1···mp |0〉, (33)

with the Clifford vacuum |0〉 annihilated by all the gamma matrices Γm . The field
strengths of the world-volume potentials describing D-branes ending on the NS5-
brane and their T-duals is also a chiral spinor G, and the DFT expression for the WZ
term is [4]

SW Z =
∫

d6ξ QMNPQ[DMNPQ + GΓ MNPQχ ], (34)

where GΓ MNPQχ is an SO(10, 10) spinor bilinear. The charge QMNPQ selects
the type of brane one is considering. In particular, Qmnpq corresponds to the NS5,
Qmnp

q to the KKmonopole and Qmn
pq to the 522-brane, while the remaining charges

correspond to branes whose solutions are not even locally geometric.
As a nice application of this framework, we can consider the form of this effective

action when the IIA Romans mass [19] is turned on. It is known [7] that massive
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couplings in WZ terms give anomalous creation of branes. For instance, for the
D0-brane, one has in the WZ term:

Smassive D0−brane ∼
∫

m b1 (35)

which implies that when a D0 crosses a D8, a fundamental string is created:

D0 : × − − − − − − − − −
D8 : × × × × × × × × × −
F1 : × − − − − − − − − ×

Similarly, for the NS5-brane, one has

Smassive NS5−brane ∼
∫

m c6 (36)

giving rise to the creation of a D6 brane when a D8 crosses an NS5:

NS5 : × × × × × × − − − −
D8 : × × × × × × × × × −
D6 : × × × × × × − − − ×

What our WZ term shows is that one can similarly consider the T-dual picture, in
which a 522 crosses a D8 giving rise to a D6 [4]:

522 : × × × × × × − − ⊗ ⊗
D8 : × × × × × × × × − ×
D6 : × × × × × × − − × −

To conclude, we have shown that at least at the linearised level one can introduce
mixed-symmetry potentials which couple to exotic branes and are related to the
standard potentials by exotic duality relations.Wehave also shownhowDFTprovides
a unified framework in which standard dualities and exotic dualities are treated on
the same footing. One can then write down unified effective actions. It would be
extremely interesting both from a conceptual point of view and from the point of
view of model building to understand whether this descriptions could be extended at
the interacting level.
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