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Preface

The workshop series ‘Lie Theory and Its Applications in Physics’ is designed to
serve the community of theoretical physicists, mathematical physicists and math-
ematicians working on mathematical models for physical systems based on geo-
metrical methods and in the field of Lie theory.

The series reflects the trend toward a geometrization of the mathematical
description of physical systems and objects. A geometric approach to a system
yields in general some notion of symmetry which is very helpful in understanding
its structure. Geometrization and symmetries are meant in their widest sense, i.e.,
representation theory, algebraic geometry, number theory infinite-dimensional Lie
algebras and groups, superalgebras and supergroups, groups and quantum groups,
noncommutative geometry, symmetries of linear and nonlinear PDE, special
functions, functional analysis. This is a big interdisciplinary and interrelated field.

The first three workshops were organized in Clausthal (1995, 1997, 1999), the
4th was part of the 2nd Symposium ‘Quantum Theory and Symmetries’ in Cracow
(2001), the 5th, 7th, 8th, 9th and 11th were organized in Varna (2003, 2007, 2009,
2011, 2013, 2015), the 6th and the 12th were part of the 4th, resp. 10th, Symposium
‘Quantum Theory and Symmetries’ in Varna (2005, 2017).

The 13th Workshop of the series (LT-13) was organized by the Organizing
Committee from the Institute of Nuclear Research and Nuclear Energy of the
Bulgarian Academy of Sciences (BAS) in June 2019 (17-23), at the Guest House of
BAS near Varna on the Bulgarian Black Sea Coast.

The overall number of participants was 78 and they came from 24 countries. The
number of talks was 64.

The scientific level was very high as can be judged by the plenary speakers:
Burkhard Eden (Berlin), Malte Henkel (Nancy), Alexey Isaev (Dubna), Evgeny
Ivanov (Dubna), Toshiyuki Kobayashi (Tokyo), Ivan Kostov (Saclay), Philip
Phillips (Urbana), Gordon Semenoff (Vancouver), Andrei Smilga (Nantes), Birgit
Speh (Cornell U.), Ivan Todorov (Sofia), Joris Van der Jeugt (Ghent), Kentaroh
Yoshida (Kyoto), George Zoupanos (Athens).
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The topics covered the most modern trends in the field of the workshop: sym-
metries in string theories and gravity theories, conformal field theory, integrable
systems, representation theory, supersymmetry, quantum groups, deformations,
quantum computing and deep learning, applications to quantum theory.

The International Steering Committee was: C. Burdik (Prague) V. K. Dobrev
(Sofia, Chair), H. D. Doebner (Clausthal), B. Dragovich (Belgrade), G. S. Pogosyan
(Yerevan & Guadalajara & Dubna).

The Organizing Committee was: V. K. Dobrev (Chair), L. K. Anguelova,
V. L. Doseva, A. Ch. Ganchev, D. T. Nedanovski, S. J. Pacheva, T. V. Popov,
D. R. Staicova, N. I. Stoilova, S. T. Stoimenov.
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Topics on Global Analysis of Manifolds )
and Representation Theory of Reductive e
Groups

Toshiyuki Kobayashi

Abstract Geometric symmetry induces symmetries of function spaces, and the latter
yields a clue to global analysis via representation theory. In this note we summarize
recent developments on the general theory about how geometric conditions affect
representation theoretic properties on function spaces, with focus on multiplicities
and spectrum.

Mathematics Subject Classification (2020): Primary 22E46 - Secondary 43A85,
22F30

1 “Grip Strength” of Representations on Global
Analysis—Geometric Criterion for Finiteness of
Multiplicities

To which extent, does representation theory provide useful information for global
analysis on manifolds?
As a guiding principle, we begin with the following perspective [14].

Basic Problem 1 (“Grip strength” of representations). Suppose that a Lie group
G acts on X. Can the space of functions on X be “sufficiently controlled” by the
representation theory of G?

The vague words, “sufficiently controlled”, or conversely, “uncontrollable”, need
to be formulated as mathematics. Let us observe what may happen in the general
setting of infinite-dimensional representations of Lie groups G.

Observation 2. For an infinite-dimensional G-module V, there may exist infinitely
many different irreducible subrepresentations. Also, the multiplicity of each irre-
ducible representation can range from finite to infinite.

T. Kobayashi (B)
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When confronting such a general situation, one focuses on the principle:

e even though there are infinitely many (sometimes uncountably many) different
irreducible representations, the group action can distinguish the different parts;

e the group action cannot distinguish the parts where the same irreducible repre-
sentations occur with multiplicities.

This observation suggests us to think of the multiplicity of irreducible represen-
tations as an obstruction of “grip strength of a group”. For each irreducible represen-
tation 7 of a group G, we define the multiplicity of IT in the regular representation
C>(X) by

dimcHomg (IT, C*(X)) € N U {co}. (1)

The case dimcHomg (/7, C*°(X)) = 1 (multiplicity-one) provides a strong ‘“‘grip
strength” of representation theory on global analysis, which may be illuminated by
the following example:

Example 1. Let X be amanifold, Dy, - - - , Dy differential operators on X, and G the
group of diffeomorphisms 7 of X suchthat T o D; = Djo T forall j =1,--- k.
Then the space of solutions f to the differential equations on X:

Dif=XNf forl<j=<k 2)
forms a G-module (possibly, zero) for any Ay, - - - , Ay € C. The group G becomes a
Lie group if { Dy, - - - , Dy} contains the Laplacian when X is a Riemannian manifold

(or more generally a pseudo-Riemannian manifold). Assume now that the multiplic-
ity of an irreducible representation /7 of G in C*°(X) is one. Then any function
belonging to the image of a G-homomorphism from I7T to C*°(X) satisfies a system
of differential equations (2) for some Ay, - - - , Ay € C by Schur’s lemma.

‘We formalise Basic Problem 1 as follows.

Problem 1 (Grip strength of representations on global analysis). Let X be a
manifold on which a Lie group G acts. Consider the regular representation of G on
C*®(X) by

C®X)> f(x) ~ f(g7' x) e C®(X) forg eG.

(1) Find a necessary and sufficient on the pair (G, X) for which the multiplicity (1)
of every irreducible representation /7 of G in the regular representation C*°(X)
is finite.

(2) Determine a condition on the pair (G, X) for which the multiplicity is uniformly
bounded with respect to all irreducible representations /7.

A solution to Problem 1 will single out a nice setting of (G, H) in which we could
expect a detailed study of global analysis on the homogeneous manifold X = G/H
by using representation theory of G. The multiplicity may depend on the irreducible
representations /7 in (1), and thus we may think that the group G has “stronger grip
power” in (2) than in (1). We may also consider a multiplicity-free case:
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(3) Determine a condition on the pair (G, X) for which the multiplicity (1) is either
0 or 1 for any irreducible representation I of G.

Clearly, (3) is stronger than (2), however, we do not discuss (3) here.

Problem 1 is settled in Kobayashi—Oshima [17] for homogeneous spaces X of
reductive Lie groups G. To state the necessary and sufficient condition, we recall
some notions from the theory of transformation groups. The following terminology
was introduced in [11].

Definition 3 (Real sphericity). Suppose that a reductive Lie group G acts contin-
uously on a connected real manifold X. We say X is a real spherical if a minimal
parabolic subgroup of G has an open orbit in X.

As is seen in Example 2 below, the classical notion of spherical varieties is a
special case of real sphericity because a minimal parabolic subgroup of a complex
reductive group G is nothing but a Borel subgroup.

Example 2 (Spherical variety). Suppose that X¢ is a connected complex manifold
and that a complex reductive Lie group G¢ acts biholomorphically on X¢. Then
X is called a spherical variety of G, if a Borel subgroup of G¢ has an open
orbit in X¢. Spherical varieties have been extensively studied in algebraic geometry,
geometric representation theory, and number theory.

Here are some further examples.

Example 3. Let X be a homogeneous space of a reductive Lie group G and X¢ its
complexification.

(1) The following basic implications hold (Aomoto, Wolf, and Kobayashi—Oshima).

X is a symmetric space

| Aomoto, Wolf
X is a spherical variety

{ Kobayashi—Oshima [17, Prop. 4.3]
X is a real spherical variety

1 obvious

G is compact.

(2) When X admits a G-invariant Riemannian structure, the following are equivalent
(see Vinberg [24], Wolf [25]):

X is spherical
<X is weakly symmetric in the sense of Selberg
<= X is a commutative space.
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(3) The classification of irreducible symmetric spaces was accomplished by Berger
[3] at the level of Lie algebras.

(4) The classification theory of spherical varieties X¢ has been developed by
Krimer, Brion, Mikityuk, and Yakimova.

(5) The triple space (G x G x G)/diagG is not a symmetric space. It is real spher-
ical if and only if G is locally a direct product of compact Lie groups and
SO(n, 1), see [11]. This geometric result implies a finiteness criterion of mul-
tiplicities for the tensor product of two infinite-dimensional irreducible repre-
sentations ([11], [12, Cor. 4. 2]) The triple space is considered as a special case
of the homogeneous space (G x G) /diagG for a pair of groups G O G. More
generally, the classification of real spherical manifolds (G x G)/diagG was
accomplished in [16] when (G, G) are irreducible symmetric pairs in connec-
tion to the branching problem for G J G, see[12].

(6) Let N be a maximal unipotent subgroup of a real reductive Lie group G. Then
G/N is real spherical, as is easily seen from the Bruhat decomposition. More-
over, the following equivalence holds:

Gc/Nc is spherical <= G is quasi split.

This is related to the fact that the theory of Whittaker models (e.g. Kostant—
Lynch, H. Matumoto) yields stronger consequences when G is assumed to be
quasi split, see Remark 4 below.

We denote by Irr(G) the set of equivalence classes of irreducible admissible
smooth representations of G. We do not assume unitarity for here. The solutions of
Problem 1, which is a reformalisation of Basic Problem 1, are given by the following
two theorems.

Theorem 4 (Criterion for finiteness of multiplicity [17]). Let G be a reductive
Lie group and H a reductive algebraic subgroup of G, and set X = G /H. Then the
following two conditions on the pair (G, H) are equivalent.

(i) (representation theory) dimc Homg (JT, C® (X)) < oo ("IT € Irr(G)).
(ii) (geometry) X is a real spherical variety.

In [17], the proof of the implication (ii) = (i) uses (hyperfunction-valued) bound-
ary maps for a system of partial differential equations with regular singularities,
whereas that of the implication (i) = (ii) is based on a generalization of the Pois-
son transform. This proof gives not only the equivalence of (i) and (ii) in Theorem
4 but also some estimates of the multiplicity from above and below. In turn, these
estimates bring us to the following geometric criterion of the uniform boundedness
of multiplicity.

Theorem 5 (Criterion for uniform boundedness of multiplicity [17]). Let G be a
reductive Lie group and H a reductive algebraic subgroup of G, and set X = G/H.
Then the following three conditions on the pair (G, H) are equivalent.
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(i) (representation theory) There exists a constant C such that
dim¢ Homg (IT, C*®(X)) < € ("IT € Irr(G)).

(ii) (complex geometry) The complexification Xc of X is a spherical variety of
Ge.

(iii) (ring theory) The ring of G-invariant differential operators on X is
commutative.

Remark 1. The equivalence (ii) <> (iii) in Theorem 5 is classical, see e.g., [24],
and the main part here is to characterize the representation theoretic property (i) by
means of conditions in other disciplines.

Remark 2. In general, the constant C in (i) cannot be taken to be 1 when H is
noncompact.

Remark 3. Theorem 5 includes the discovery that the property of “uniform bound-
edness of multiplicity” is determined only by the complexification (G¢, X¢) and is
independent of a real form (G, X). It is expected that this kind of statements could
be generalized for reductive algebraic groups over non-archimedean local fields.
Recently, Sakellaridis—Venkatesh [20] has obtained some affirmative results in this
direction.

Remark 4. Theorems 4 and 5 give solutions to Problem 1 (1) and (2), respectively.
More generally, these theorems hold not only for the space C*°(X) of functions but
also for the space of distributions and the space of sections of an equivariant vector
bundle. Furthermore, a generalization dropping the assumption that the subgroup
H is reductive also holds, see [17, Thm. A, Thm. B] for precise formulation. For
instance, the theory of the Whittaker model considers the case where H is a maximal
unipotent subgroup, see also Example 3 (5). Even for such a case a generalization of
Theorems 4 and 5 can be applied.

Remark 5. We may also consider parabolic subgroups Q instead of a minimal
parabolic subgroup. In this case, we can also consider “generalized Poisson trans-
form”, and extend the implication (i) = (ii) in Theorem 4, see [12, Cor. 6.8] for
a precise formulation. On the other hand, an opposite implication (ii) = (i) for
parabolic subgroups Q is not always true, see Tauchi [22].

Theorems 4 and 5 suggest nice settings of global analysis in which the “grip
strength” of representation theory is “strong”. The well-studied cases such as the
Whittaker model and the analysis on semisimple symmetric spaces may be thought
of in this framework of “strong grip” as was seen in (6) and (1), respectively, of
Example 3. As yet another set of promising directions, let us discuss briefly the
restriction of representations to subgroups (branching problems).

In the spirit of “grip strength” (Basic Problem 1), we may ask “grip strength of a
subgroup” on an irreducible representation of a larger group as follows:
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Basic Problem 6 (Grip strength in branching problem). Let /7 be an irreducible
representation of a group G. We regard IT as a representation of a subgroup G’ by
restriction, and consider how many times another irreducible representation 7 of G’
occurs in the restriction I7|g:

(1) When is the multiplicity of every irreducible representation 7 of G’ occurring
in the restriction I7| s finite?

(2) When is the multiplicity of irreducible representation 7 of G’ occurring in the
restriction I7|g uniformly bounded?

To be precise, we need to clarify what “occur” means, e.g., as a submodule,
as a quotient, or as a support of the direct integral (1) of the unitary representa-
tion, etc. Furthermore, since our concern is with infinite-dimensional irreducible
representations, the definition of “multiplicity” depends also on the topology of the
representation spaces of IT of G and 7 of G'. Typical definitions of multiplicities
include:

dim¢c Homg (IT%°| g/, ©°), 3)
dim¢ Homg (I g/, ), ()
dim¢ Homg (7, Ig/), (5)
dim¢c Homy g (7, k). (6)

Here IT*°, 7> stand for smooth representations, whereas mg: and ITg stand for
the underlying (g’, K’)-modules and (g, K)-modules. If IT and 7 are both unitary
representations, then the quantities (4) and (5) coincide. If (6) 7~ 0 in addition, then
all the quantities (3)—(6) coincide. In general the multiplicity (6) often vanishes, and
its criterion is given in [9, 10].

Concerning the multiplicity (3), see [12, 21] and references therein for the general
theory, in particular, for a geometric necessary and sufficient condition on the pair
(G, G) such that (1) (or more strongly (2)) of Basic Problem 6 is always fulfilled.
When the triple (I1, G, G’) satisfies finiteness (or more strongly, uniform bounded-
ness) of the multiplicity in Basic Problem 6, we could expect a detailed study of the
restriction I7| ¢, see [13], for further “programs” of branching problems of reductive
groups, such as the construction of “symmetry breaking operators” and “holographic
operators” in concrete settings [15, 18, 19].

2 Spectrum of the Regular Representation L2(X)—A
Geometric Criterion for Temperedness

In the previous section, we focused on “multiplicity” from the perspective of “grip
strength” of a group on a function space and proposed (real) spherical varieties as
“a nice framework for detailed study of global analysis”. On the other hand, even
in a case in which the “grip strength” of representation theory is “weak”, we may
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still expect to analyze the space of functions on X from representation theory in a
“coarse standpoint”. In this section, including non-spherical cases, let us focus on
the support of the Plancherel measure and consider the following problem.

Suppose that a Lie group G acts on a manifold X with a Radon measure x and
that G leaves the measure invariant so that G acts naturally on the Hilbert space
L*(X) = L*(X, dyu) as a unitary representation.

Basic Problem 7 (Tempered space [1]). Find a necessary and sufficient condition
on a pair (G, X) for which the regular representation L>(X) of G is a tempered
representation.

We recall the general definition of tempered representations.

Definition 8 (Tempered representation). A unitary representation 7 of a locally
compact group G is called tempered if T is weakly contained in L*(G), namely, if
any matrix coefficient G 3 g — (mw(g)u, v) € C can be approximated by a sequence
of linear combinations of matrix coefficients of the regular representation L*(G) on
every compact set of G.

The classification of irreducible tempered representations of real reductive linear
Lie groups G was accomplished by Knapp—Zuckerman [5]. In contrast to the long-
standing problem of the classification of the unitary dual G, irreducible tempered
representations form a subset of G that is fairly well-understood. Loosely speaking,
from the orbit philosophy due to Kirillov—Kostant—Duflo, irreducible tempered rep-
resentations are supposed to be obtained as a “geometric quantization” of regular
semisimple coadjoint orbits, see e.g., [4, 8].

Tempered representations are unitary representations by definition, however, the
classification theory of Knapp—Zuckerman played also a crucial role in the Langlands
classification of irreducible admissible representations (without asking if they are
unitarizable or not) of real reductive Lie groups.

The general theory of Mautner—Teleman tells that any unitary representation /7 of
a locally compact group G can be decomposed into the direct integral of irreducible
unitary representations:

[$3]
17:/ mdp). (1)

Then the following equivalence (i) < (ii) holds [1, Rem. 2.6]:

(i) IT is tempered;
(ii) irreducible representation 7y is tempered for a.e. A with respect to the measure .

The irreducible decomposition of the regular representation of G on L?(X) is
called the Plancherel-type theorem for X . Thus, if the Plancherel formula is “known”,
then we should be able to answer Basic Problem 7 in principle. However, things are
not so easy:
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Observation 9. The Plancherel-type theorem for semisimple symmetric spaces
G/H was proved by T. Oshima, P. Delorme, E. van den Ban, and H. Schlichtkrull
(up to nonvanishing condition of discrete series representation with singular param-
eters). However, it seems that a necessary and sufficient condition on a symmetric
pair (G, H) for which L?>(G/H) is tempered had not been found until the general
theory [1] is established by a completely different approach. In fact, it is possible
to show that temperedness of L?(G/H) implies a simple geometric condition that
(G/H)am is dense in G/H (see the second statement of Theorem 14) from the
Plancherel-type formula in the case where G/ H is a symmetric space, whereas there
is a counterexample to the converse statement, as was found in [1]. If one employs
the Plancherel-type formula in order to derive the right answer to Problem 7 for
symmetric spaces G/H, one will need a precise (non-)vanishing condition on cer-
tain cohomologies (Zuckerman derived functor modules) with singular parameters,
and such a condition is combinatorially complicated in many cases [7, 23].

Observation 10. More generally, when X is not necessarily a spherical variety of
G, as shown in Theorem 5, the ring D (X) of G-invariant differential operators
on X is not commutative and so we cannot use effectively the existing method on
non-commutative harmonic analysis based on an expansion of functions on X into
joint eigenfunctions with respect to the commutative ring D¢ (X), ¢f. Example 1.

As observed above, to tackle Basic Problem 7, one needs to develop a new method
itself. As a new approach, Benoist and I utilised an idea of dynamical system rather
than differential equations. We begin with some basic notion:

Definition 11 (Proper action). Suppose that a locally compact group G acts con-
tinuously on a locally compact space X. This action is called proper if the map

GxX—>XxX, (gx)—(x,g8 %)

is proper, namely, if
Gs:={geG:g5NS # 0}

is compact for any compact subset S of X.

If G acts properly on X, then the stabilizer of any pointx € X in G is compact. See
[6] for a criterion of proper actions. On the other hand, if H is a compact subgroup
of G, then L?>(G/H) C L*(G) holds, hence the regular representation on L>(G/H)
is tempered. The following can be readily drawn from this.

Example 4. If the action of a group G on X is proper (Definition 11), then the regular
representation in L2(X) is tempered.

Therefore, in the study of Basic Problem 7, we focus on the nontrivial case that
the action of G on X is not proper. Properness of the action is qualitative property,
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namely, there exists a compact subset S of X such thatthe set Gy = {g € G : gSN
S # @} is noncompact. In order to shift it quantitatively, we consider the volume
vol(gS N S). Viewed as a function on G,

G>gmrH vol(gSNS) eR 2)

is a continuous function of g € G. Definition 11 tells that the G-action on X is not
proper if and only if the support of the function (2) is noncompact for some compact
subset S of X. Hence the “decay” of the function (2) at infinity may be considered
as capturing quantitatively a “degree” of non-properness of the action. By pursuing
this idea, Basic Problem 7 is settled in Benoist—Kobayashi [1, 2] when X is an
algebraic G-variety for areductive group G. To describe the solution, let us introduce
a piecewise linear function associated to a finite-dimensional representation of a Lie
algebra.

Definition 12. For a representation o : ) — Endr(V) of a Lie algebra |y on a finite-
dimensional real vector space V, we define a function py on b by

pv:bh— R, Y > the sum of the absolute values of the real parts
of the eigenvalues of o(Y) on V Qg C.

The function py is uniquely determined by the restriction to a maximal abelian
split subalgebra a of h. Further, the restriction py |, is a piecewise linear function on
a, namely, there exist finitely many convex polyhedral cones which cover a and on
which py is linear.

Example 5. When (o, V) is the adjoint representation (ad, f), the restriction py|q

can be computed by using a root system. It coincides with twice the usual “p” in the
dominant Weyl chamber.

With this notation, one can describe a necessary and sufficient condition for Basic
Problem 7.

Theorem 13 (Criterion for temperedness of L2(X), [2]). Let G be a reductive
Lie group and H a connected closed subgroup of G. We denote by g and b the Lie
algebras of G and H, respectively. Then the following two conditions on a pair
(G, H) are equivalent.

(i) (global analysis) The regular representation L>(G/H) is tempered.
(ii) (combinatorial geometry) py < pg/p.

Remark 6. 1If G is an algebraic group acting on an algebraic variety X, then, even
when X is not a homogeneous space of G, one can give an answer to Basic Problem
7 by applying Theorem 13 to generic G-orbits [2].

Theorem 13 was proved in [1] in the special case where both G and H are real
algebraic reductive groups. In this case, the following theorem also holds:
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Theorem 14 ([1]). Let G D H be a pair of real algebraic reductive Lie groups. We
set

(G/H)Am :={x € G/H : the stabilizer of x in H is amenable}
(G/H)ab :=1{x € G/H : the stabilizer of x in H is abelian}.

Then the following implications hold.

geometry (G/H)ap is dense in G/H
U

representation  L*(G/H) is tempered
4

geometry (G/H)anm is densein G/H.

Since a complex Lie group is amenable if and only if it is abelian, Theorem 14
implies the following:

Corollary 1. The following conditions on a pair of complex reductive Lie groups
(G, H) are equivalent:

(i) LZ(G/H) is tempered.
(ii) (G/H)ap is dense in G/H.
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Abstract We consider branching laws for the restriction of some irreducible unitary
representations [T of G = O(p, g) toits subgroup H = O(p — 1, q). In Kobayashi
(arXiv:1907.07994, [14]), the irreducible subrepresentations of O(p — 1, ¢) in the
restriction of the unitary IT|p(p—1,4) are determined. By considering the restriction
of packets of irreducible representations we obtain another very simple branching
law, which was conjectured in @rsted—Speh (arXiv:1907.07544, [17]).
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1 Introduction

The restriction of a finite-dimensional irreducible representation I7¢ of a connected
compact Lie group G to a connected Lie subgroup H is a classical problem. For exam-
ple, the restriction of irreducible representations of SO (n + 1) to the subgroup S O (n)
can be expressed as a combinatorial pattern satisfied by the highest weights of the irre-
ducible representation I7¢ of the large group and of the irreducible representations
appearing in the restriction of 7w [20]. For the pair (G, H) = (SO (n + 1), SO(n)),
the branching law is always multiplicity-free, i.e.,

dim Homy (=, I1%|y) < 1.

In this article we consider a family of infinite-dimensional irreducible rep-
resentations /7{;! with parameters A € Z + 1(p +¢), and § € {+, —} of non-
compact orthogonal groups G = O(p, g) with p > 3 and g > 2, which have the
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same infinitesimal character as a finite-dimensional representation and which
are subrepresentations of L2(O(p,q)/O(p —1,q)) for § = +, respectively of
L*(O(p,q)/O(p, q — 1)) for § = —. We shall assume a regularity condition of the
parameter A (Definition 1). Similarly we consider a family of infinite-dimensional
irreducible unitary representations néf;l’q, ¢ € {+, —} of noncompact orthogonal
groups H = O(p — 1, q).

Reviewing the results of [14] we see in Section IV that the restriction of these
representations to the subgroup H = O(p — 1, q) is either of “finite type” (Conven-
tion 8) if § = + or of “discretely decomposable type” (Convention 5) if § = —. If
the infinitesimal characters of IT; }” and of a direct summand of (I7]’{")| 5 satisfy an
interlacing condition (12) similar to that of the finite-dimensional representations of
(SO +1),S50(n)), then § = + and the restriction of a representations /7 5” ’;’ is of
finite type. On the other hand, if the infinitesimal characters /7 8” ;7 and of a direct sum-
mand of (/7 (5 )| i satisfy another interlacing condition (9) similar to those of the holo-
morphic discrete series representations of (SO (p, 2), SO(p — 1, 2)),then§ = —and
the restriction of a representations I7. gff is of discretely decomposable type.

For each A we define a packet {IT{’{, IT"} of representations with the same
infinitesimal character. For simplicity, we assume p > 3andgq > 2. Using the branch-
ing laws for the individual representations we show in Section V:

Theorem 1. Let (G, H) = (O(p, q), O(p — 1, q)). Suppose that A and |1 are reg-
ular parameters.

(1) Let I, be a representation in the packet {I1y ;, I1_ ,}. There exists exactly one
representations 7, in the packet {m ,,7w_ ,} so that

dim Hompy (IT) |, 7)) = 1.

(2) Letm, beinthe packet {m. ,,m_ ,}. There exists exactly one representation IT,
in the packet {I1, ,, I1_ ,} so that

dim Hompy (IT) |, ,) = 1.

Equivalently we may formulate the result as follows:
Theorem 2 (Version 2). Suppose that A and 1 are regular parameters. Then
dim Homy (M5, & M) |u, (e @ 7 ,)) = 1.
Another version of this theorem using interlacing properties of infinitesimal char-

acters is stated in Section V.
Notation: N ={0,1,2,...,}and N, = {1,2,...,}.
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2 Generalities

‘We will use in this article the notation and conventions of [14] which we recall now.
These conventions differ from those used in [17].

Consider the standard quadratic form on R”*4

QX, X) =X+ Fx, —xp — =X, (1)
of signature (p, g) inabasis e, ..., ep, €11, ...€p14. We define G = O(p, q) to

be the indefinite special orthogonal group that preserves the quadratic form Q. Let
H be the stabilizer of the vector e;. Then H is isomorphic to O(p — 1, q).
Consider another quadratic form on R?+4

2 2 2 2
O-(X,X) =X+ x5 =X, ==X, 2)
of signature (g, p) with respect to a basis e_,...,e_ p,e_ 11, ...€_ p1q. The

orthogonal group G_ = O(gq, p) that preserves the quadratic form Q_ is conjugate to
O(p,q)in GL(p + g, R). Thus we may consider representations of G_ = O(g, p)
as representations of G = O(p, q).

Since G and G_ are conjugate, the subgroup H of G is also conjugate to a sub-
group H_ of G_ which is isomorphic to O(g, p — 1). This group isomorphism
induces an isomorphism of homogeneous spaces G/H = O(p,q)/O(p — 1, q)
andG_/H_ = O(q, p)/O(q, p — 1).On the other hand O(p, q)/O(p — 1, g¢) and
0O(q, p)/O(q — 1, p) are not even homeomorphic to each other if p # ¢g. In the rest
of the article we will assume that the subgroup H_ preserves the vector e_ .

The maximal compact subgroups of G, G_ and H, H_ are denoted by K, K_
respectively Ky , Ky . The Lie algebras of the groups are denoted by the corre-
sponding lowercase Gothic letters.

To avoid considering special cases we make in this article the following:

Assumption O:

p>3and q>2.

3 Representations

We consider in this article a family of irreducible unitary representations introduced
in [14]. Using the notation in [ 14] we recall their parametrization and some important
properties in this section. The main reference is [14, Sect. 2].

The irreducible unitary subrepresentations of L*(0(p,q)/0(p —1,q)) were
considered by many authors after the pioneering work by I. M. Gelfand et. al. [6],
T. Shintani, V. Molchanov, J. Faraut [4], and R. Strichartz [18]. For p > 2and g > 1,
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they are parametrized by A € Z + %( p + ¢) with A > 0. Following the notation of
[14] we denote them by

5.
They have infinitesimal character
p+q ptq ptq ptq
*, -2, =3, — [,
2 2 2 2

in the Harish-Chandra parametrization (see (8) below), and the minimal K -type

. 3)
1X1 if b(A) <0,

:H”W RPYRT  ifb(h) > 0,
whereb(L) := A — %( p —q —2) (€ Z) and H? (R?) stands for the space of spherical
harmonics of degree b. We note that I1}' are so called Flensted-Jensen represen-
tations discussed in [5] if b(A) > 0, namely, if L > %(p — g — 2). This is the case
if A is regular (Definition 1). The underlying (g, K)-module of IT ﬁi is given by a
Zuckerman derived functor module. See [9, Thm. 3] or [14, Sect.2.2].

Remark 1. When p =1 and g > 1, there are no irreducible subrepresentations in
L*(0(p,q)/O(p — 1,q)), and we regard nsz as zero in this case.

Remark 2. (1) For any p >2, g > 1 and Z + %(p 4+ ¢q) > A > 0, the representa-
tion Hﬁ:g of G = O(p, g) stays irreducible when restricted to SO(p, q), see also
Remark 5.

(2)If p=2and » > 1(p + ¢ — 2), then the representation /T{¢ is a direct sum of
a holomorphic discrete series representation and an anti-holomorphic discrete series
representation when restricted to the identity component Gy = SOy (p, q) of G.

Similarly there exist a family of irreducible unitary subrepresentations
nt Z : 0
ezt A>0)

of G_ = 0(q, p) in LXA(G_/H_) = L*(O(q, p)/O(q — 1, p)) when p > 1 and
q > 2, with the same infinitesimal character and the same properties. Via the isomor-
phism between (G_, H_) and (G, H), we may consider them as representations of
G = O(p,q) and irreducible subrepresentations of L>(G/H) = L*(O(p,q)/
O(p,q —1)).

If no confusion is possible we use the simplified notation

— p-q
Il s = 1105



A Hidden Symmetry of a Branching Law 19
and
n_, ~MnyY  (viaG_ ~G),

to denote representations of G = O (p, q).

Remark 3. The irreducible representation I1, ; are nontempered if p > 3,and I1_ ;
are nontempered if g > 3.

Lemma 1. Assume that ) > %(p + g — 2). The representations Il ;, I1_, are
inequivalent, but have the same infinitesimal character.

Proof. The representation [1, ; and I1_, are irreducible representations of G =
O(p, q) with respective minimal K -types

1
HM(RP) K 1, bi=r—5(p—q-2)

, 1
1XHYRY, :=k—§(q—p—2),

because the assumption A > %(p + g — 2) implies both » > 0 and »" > 0 by (3).

Remark 4. Lemma 1 holds in the more general setting where A > 0, see [9, Thm. 3
(4)] for the proof.

Remark 5. For p and g positive and even, the restriction of the representations
I, ,;, _, to SO(p, q) are in an Arthur packet as discussed in [3, 16]. Global
versions of Arthur packets were introduced by J. Arthur in the theory of automorphic
representations and are inspired by the trace formula [1, 2]. Our considerations of
Arthur packets of representations of the orthogonal groups which are discrete series
representations for symmetric spaces are inspired by Arthur’s considerations as well
as by the conjectures of B. Gross and D. Prasad. In this article we will refer to
{I1;,, I1_,} as a packet of irreducible representations.

Similarly we have u € Z + %(p + g — 1) satisfying u > %(p + g — 3) a packet
{4, m— ) of unitary irreducible representations of G' = O(p — 1, q).

Definition 1. We say A € Z + %(p + g) respectively pn € Z + %(p +q—1) are
regular if A > 1(p + g — 2) respectively > 3(p +q — 3).

Remark 6. The irreducible representation I1; ; (or I1_ ;) has the same infinitesimal
character as a finite-dimensional irreducible representation of G = O(p, g) if and
onlyif A > %( p + g — 2), namely, A is regular. Similarly, 7 , (or 7_ ) has the same
infinitesimal character with a finite-dimensional representationof G’ = O(p — 1, q)
if and only if p© > %( p +q — 3), namely, p is regular.
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For later use we define for regular A and u the reducible representations
UV =0, 4)

and
V() = 7s @ 70 5)

of G = O(p, q) respectiveof H = O(p — 1, q).
4 Branching Laws

In this section we summarize the results of [14]. For simplicity, we suppose that the
assumption O is satisfied, namely, we assume p > 3 and g > 2. We note that the
results in Sect. 4.2 hold in the same form for p > 2 and ¢ > 2, and those in Sect. 4.3
hold for p > 3 and g > 1.

4.1 Quick Introduction to Branching Laws

Consider the restriction of a unitary representation I7 of G to a subgroup G’. We
say that an irreducible unitary representation 7 of H is in the discrete spectrum of
the restriction I7|y if there exists an isometric H-homomorphism 7w — 1|y, or
equivalently, if

Homy (7, IT|x) # {0}

where Homy (, ) denotes the space of continuous H-homomorphisms. We define
the multiplicity for the unitary representations by

m([1, ) := dimHomg (7, I[1|y) = dimHomy (1|4, 7).

Remark 7. Asin[7, 15, 19], we also may consider the multiplicity m (I1°°, = *°) for
smooth admissible representations I7°° of G and 7> of G’ by

m(IT®, 7°°) := dim Homy (IT*°, 7).

In general, one has
m(IT°, 7*°) > m(I1, 7).

Besides the discrete spectrum there may be also continuous spectrum. Here are
two interesting cases:

1. There is no continuous spectrum and the representation I7 is a direct sum of
irreducible representations of H, i.e., the underlying Harish-Chandra module is



A Hidden Symmetry of a Branching Law 21

a direct sum of countably many Harish-Chandra modules of (h, Kg). We say
that the restriction 1|y is discretely decomposable.

2. There is continuous spectrum and there are only finitely many representations
in the discrete spectrum in the irreducible decomposition of the restriction I7|j.

We refer to the necessary and sufficient conditions of the parameters of the irre-
ducible representations I1, w sothatm (I1, w) # 0 (orm(I1*°, t*°) # 0)asabranch-
ing law. In the examples below, m(I1*°, 7°°), m(I1, ) € {0, 1} for all IT and .
Examples of branching laws:

1. Finite-dimensional representations of semisimple Lie groups are parametrized
by highest weights. The classical branching law of the restriction of finite-
dimensional representations of SO (n) to SO (n — 1) is phrased as an interlacing
pattern of highest weights, see Weyl [20].

2. The Gross—Prasad conjectures for the restriction of discrete series representations
of SO(2m,2n) to SO(2m — 1, 2n) are expressed as interlacing properties of
their parameters, see [7].

3. The branching laws for the restriction of irreducible self-dual representations
I1*° of SO(n+1,1) to SO(n, 1) are expressed by using signatures, heights
and interlacing properties of weights, see [15].

If IT € {11y, I1_,}, and

Hompy (7y, I1|g) # {0}

then for a character x of O(1)

Homp o)y (g X x, H|gxoq)) # {0}.

Moreover, by [14, Thm. 1.1] there exists a regular u so that my € {74 ,, 7_ ,}.
If I1 is in the packet {I1 ,, [1_ ,} and = in the packet {7} ,, m_ ,} the branching
laws discussed in the next part will involve the parameters A, u, €, §.

4.2 Branching Laws for the Restriction of I1_  to
H = O(p — 1, q)—discretely decomposable type

This section treats the restriction [1_ |y, which is discretely decomposable. We
use the explicit branching law given in [14, Example 1.2 (1)]. The results were also
obtained in [10] by using different techniques, see [12, 13] for details.

We begin with the pair (G_, H-) = (O(q, p), O(q, p — 1)). The restriction
of the representation IT{% of G_ to the subgroup H_ x O(l) = O(q, p — 1) x
0 (0, 1) is adirect sum of irreducible representations, and is isomorphic to the Hilbert
direct sum of countably many Hilbert spaces:
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q,p—1 X n
n
@ 7T+,)\+n+% (sgn)
neN

where sgn stands for the nontrivial character of O (1) = O(0, 1). Then via the identifi-

cation(G_, H.) ~ (G, H) = (0O(p,q), O(p —1,q)) and H}ﬁ’; ~ II_, asarepre-

sentation of G_ >~ G, we see the restrictionof /7_; to H x O(1) = O(p — 1,q) x
0 (1, 0) is discretely decomposable, and we have an isomorphism

-y ~ @ T jqnrt B (sgn)”
neN

Hence
Proposition 3 (Version 1). The restrictionof I1_ ; to H = O(p — 1, q) isa Hilbert

direct sum
@ T ptn+}
neN

and each representation has multiplicity one.

Remark 8. If A is regular, then w is regular whenever Hompg (7w— ,, I1_ ; |5) # {0}.
In contrast, an analogous statement fails for the restriction I1; ; |y, see Remark 12
below.

Remark 9. If G = SOy (p, 2) the representation I1_ ; with A regular is a holomor-
phic discrete series representation. In this case, this result follows from the work of
H. Plesner-Jakobsen and M. Vergne [8, Cor. 3.1] or as a special case of the general
formula proved in [11, Thm. 8.3].

We define x: N — {0, %} by

1
k(n) =20 for n even; = 3 for n odd.

Then the infinitesimal character of the representation /1_ , of G is

4
0 P2 g, ©)

and the infinitesimal character of the representations in w_, , of H is

ptq-—>5
, —— .. k(p+q—1). (7
Here we note that the groups G and H are not of Harish-Chandra class, but the
infinitesimal characters of the centers 35(g) := U(g)¢ and 35 () := U(H)¥ of the
enveloping algebras can be still described by elements of CM with M := [% (» +9)]
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and CV with N := [%( p +¢g — 1)] modulo finite groups via the Harish-Chandra
isomorphisms:

Home.ae(36(9), C) =~ CY/&y w (Z/2Z)M,
Homc.ae(3u(h), C) =~ CY /&y x (Z/2Z)". (8)

In our normalization, the infinitesimal character of the trivial one-dimensional rep-
resentation of G = O(p, q) is given by

(p+q—2 p+qg—4
2 ' 2 ’

<, k(p+q)).

Hence we may also reformulate the branching laws in Proposition 3 as follows.

Proposition 4 (Version 2). Suppose A is a regular parameter (Definition 1). Then
an irreducible representation w of H = O(p — 1, q) in the discrete spectrum of the
restriction of IT” K must be isomorphic to w_ , for some regular parameter i, and
the infinitesimal characters have the interlacing property

p+q—4 1
—>..

nw>A> > ->§>O. 9

Conversely, m = 7_ , occurs in the discrete spectrum of the restriction I1"1|y if
the interlacing property (9) is satisfied.

Convention 5. We say that the restriction of the representation Il1_; of G to H =
O(p — 1, q) is of discretely decomposable type.

4.3 Branching Laws for the Restriction of I1, ) to
H = O(p — 1, g)—finite type

This section treats the restriction I1; ; |y which is not discretely decomposable.
We use [14, Example 1.2 (2)] which determines the whole discrete spectrum in the
restriction I1; | y. A large part of discrete summands are also obtained in [17] using
different techniques.

The restriction I1, ;|y contains at most finitely many irreducible summands.
We recall from [14, Thm. 1.1] (or [14, Ex. 1.2 (2)]), an irreducible representation
mof Hx O(1,0)=0(p—1,q) x O(1) occurs in the discrete spectrum of the
restriction of I, ; if and only it is of the form

r—lg n
< - —
77+,,\7n7% X (sgn)" forsome 0 <n < A >

where sgn stands for the nontrivial character of O(1).
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Proposition 6 (Version 1). An irreducible representation t of H = O(p — 1, q)
occurs in the discrete spectrum of the restriction of Il , of G = O(p, q) when
restricted to H if and only if it is of the form

1

nwhereO§n<A—§.

—1,
P

p
+A-3

Remark 10. There does not exist discrete spectrum in the restriction Iy , |y if p = 2.
In fact n}r’i is zero for all p if ¢ > 1, see Remark 1.

r=lg
+a—1-
has the same infinitesimal character as a finite-dimensional representation iff

Remark 11. The representation , has a regular parameter, or equivalently,

1 p+qg—>5
A—=-—n>—"—7" =
2 2

Remark 12. In contrast to the discretely decomposable case (Remark 8), Proposition
6 tells that the implication
A regular = p regular

does not necessarily hold when Homy (775 i, I14 5 |#) # {0}, see Remark 11 above.

We observe that for these representations the condition in the proposition depends
only on p + ¢ and thus the proposition for these representations does not depend on
the inner form SO(r, s) of SO(p + g, C) whenr + s = p 4+ q withr > 3.

Recall that the infinitesimal character of the representation I,  is

ptq—4

(* >

e k(P +q)) (10)
and the infinitesimal character of the representations in 7 ,,

+q-5
(u,%,..w(pw—l)) (11)

as in (6) and (7).

Proposition 7 (Version 2). Suppose 7 is an irreducible unitary representation of
H = O(p — 1, q). If w occurs in the discrete spectrum of the restriction of I1, ) to
H, then w must be isomorphic to ., for some p > 0 with u € Z + %(p +q—1).
Assume further that A and . are regular. Then 7., occurs in the discrete spectrum
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of the restriction Il , |y if and only if the two infinitesimal characters (10) and (11)
have the interlacing property

—4 1
%>--->5>0. (12)

A> o>
Remark 13. Consider the example: ¢ = 0 and so G is compact. The representation
I1_ , is finite-dimensional and has highest weight
p

=,0,...,0)

@ =3

for an integer A. A representation 7_ , is a summand of the restriction to H =
SO(p — 1) if it has highest weight

p—1
- ——,0,...,0
(n 7 )

for u € N—l—% with & > ”T_l and A — § > p — % > 0, i.e., if there exists and

integern € Nsothat u = A — % —n > %(p— 1).
This motivates the following:

Convention 8. We say that the restriction of the representation I1_,; to H =
SO(p — 1, q) is of finite type.

5 The Main Theorems

We retain Assumption O, namely, p > 3 and ¢ > 2. Combing the branching laws
in the previous section proves the conjectures in [17, Sect. V] and suggests a gener-
alization of a conjecture by B. Gross and D. Prasad [7], which was formulated for
tempered representations.

5.1 Results for Pairs (O(p,q), O(p — 1, q))

Theorem 9 (Version 1). Suppose that . and . are regular parameters (Definition 1 ).

1. Let IT, be a representations in the packet {I1 ;, I1_,}. There exists exactly one
representations m,, in the packet {m ,,7_ ,} so that

dim Hompy (IT) |, ,) = 1.

2. Letm, be inthe packet {mr. ,,, w_ ,}. There exists exactly one representation IT,
in the packet {I1, ,, I1_ ,} so that

dim Hompy (IT) |, w,) = 1.
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Equivalently we may formulate the results in terms of reducible representations
U (M) and V (u) defined in (4) and (5) as follows:

Theorem 10 (Version 2). Suppose that A and (1 are regular parameters. Then

dim Homy (UM |y, V(n)) = 1.

We may formulate the results in interlacing properties of parameter the infinites-
imal characters similar to the results in [7].
Recall that the infinitesimal character of the representations of G in the packet
{IT; 5., I1- 3} is
ptqg—4

(* >

e k(p+q))

and the infinitesimal character of the representations of the subgroup H in the packet
{7T+,;m n—,u} is

p+qg—>5

(u, >

’7K(p+q_1))1

where we recall (k(p +¢q),k(p+g—1)) = (0, %) if p+q is even, = (%, 0) if
p + g is odd.

Theorem 11 (Version 3). Suppose that ) and  are regular parameters.

1. If the two infinitesimal characters satisfy the following interlacing property:

4 1
2 2
then

dimHompy(11_;|p, m— ) = 1.
2. Ifthe two infinitesimal characters satisfy the following interlacing property:

p+qg—4 1
—_— > >=>0

A ..
) 2

then
dim Hompy ([T4 . |g, 7wy ) = 1.

Remark 14. The trivial representation 1 of H = O(p — 1, g) is in the dual of the
smooth representation /777 but not in the dual of 177, . There is no other represen-
tation in the “packet” of the trivial representation of H and so we deduce

dim Homgz (U (M)®|5,1) =1,
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or equivalently there is exactly one representation 7T, in the set {I177,, 1%, } so that
dim Homy (IT° |y, 1) = 1.
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Exceptional Quantum Algebra for the )
Standard Model of Particle Physics e

Ivan Todorov

Abstract The exceptional euclidean Jordan algebra J$ of 3 x 3 hermitian octo-
nionic matrices, appears to be tailor made for the internal space of the three gen-
erations of quarks and leptons. The maximal rank subgroup of the automorphism
group Fy of J2 that respects the lepton-quark splitting is (SU (3)c x SU (3)ew)/Zs.
Its restriction to the special Jordan subalgebra J$ C J3, associated with a single gen-
eration of fundamental fermions, is precisely the symmetry group S(U (3) x U(2))
of the Standard Model. The Euclidean extension H6(C) ® Hi6(C) of JZS, the subal-
gebra of hermitian matrices of the complexification of the associative envelope of J28,
involves 32 primitive idempotents giving the states of the first generation fermions.
The triality relating left and right Spin(8) spinors to 8-vectors corresponds to the
Yukawa coupling of the Higgs boson to quarks and leptons.

The present study of J38 originated in the paper arXiv:1604.01247v2 by Michel
Dubois-Violette. It reviews and develops ongoing work with him and with Svetla
Drenska: 1806.09450; 1805.06739v2; 1808.08110.

1 Motivation. Alternative Approaches

The gauge group of the Standard Model (SM),

Gy = LD X SZ;Z) *UD _ w3y < vy (L)

and its (highly reducible) representation for the first generation of 16 basic fermions
(and as many antifermions),
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v u
(e_>L <~ (1,2)_4, (d>L <~ (3, 2)% 1.2)

(VR <~ (1? 1)0{))5 61_3 <~ (17 1)—2a Up <> (35 1)%7 dR <~ (37 1)_%

(the subscript standing for the value of the weak hypercharge Y), look rather baroque
for a fundamental symmetry. Unsatisfied, the founding fathers proposed Grand Uni-
fied Theories (GUTs) with (semi)simple symmetry groups: (for a review see [4]):
SU(5) H. Georgi - S.L. Glashow (1974);

Spin(10) H. Georgi (1975), H. Fritzsch - P. Minkowski (1975);

Gps = Spin(6) x Spin(4) = SUQxSURXSUQ) j C Pati - A. Salam (1973).

The first two GUTs, based on simple groups, gained popularity in the beginning,
since they naturally accommodated the fundamental fermions:

5
SU(S):32=A<CS=@A”, A‘:(”) ®d> =5,
=0 -1 i

e

A= <Z>I ®u_s ®ef =10, A =i,() =1,
3

Spin(10) : 32 =16, ® 16z, 16, = A' ® A* & A°. (1.3)

(The question marks on the sterile (anti)neutrino indicate that their existence is only
inferred indirectly - from the neutrino oscillations.) The Pati-Salam GUT is the only
one to exploit the quark lepton symmetry: the group SU (4) C G ps combines the
three colours with the lepton number. The left and right fermion octets are formed by
SU(2), and SU (2)g doublets, respectively (and conversely for the antifermions):

8, =4,21),8:;=4,12) 8r=4,2,1), 8 = 4,1,2)). (1.4)

The quark-lepton symmetry plays a pivotal role in our approach, too, and the Lie
subalgebra su(4) @ su(2) of gpg will appear in Sect. 4.1.

If the fermions fit nicely in all GUTs, the gauge bosons start posing problems.
The adjoint representations 24 (of SU (5)) and 45 (of Spin(10)) carry, besides the
expected eight gluons and four electroweak gauge bosons, unwanted leptoquarks;
for instance,

24=0810® 131D ®G,2:®32)_s. (1.5)

Moreover, the presence of twelve gauge leptoquarks in (1.5) yields a proton decay
rate that contradicts current experimental bounds [48]. It is noteworthy that the Pati-
Salam GUT is the only one which does not predict a gauge triggered proton decay
(albeit it allows model dependent interactions with scalar fields that would permit
such a decay). Accordingly, the Pati-Salam group appears in a preferred reduction of
the Spin(10) GUT. Intriguingly, a version of this symmetry is also encountered in
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the noncommutative geometry approach to the SM, [13]. Concerning the most pop-
ular nowadays supersymmetric GUTs advocated authoritatively in [58], the lack of
experimental evidence for any superpartner makes us share the misgivings expressed
forcefully in [59] (see also the recent popular account [35]).

The noncommutative geometry approach, was started in 1988 (according to the
dates of submission of [15, 25]), see [17, 24], “at the height of the string revolution”
(to cite [14]) and pursued vigorously by Alain Connes and collaborators (work that
can be traced back from [11-13, 16]) and by followers [8, 41] (for a pedagogical
exposition see [53]).

The algebraic approach to quantum theory has, in fact, been initiated back in
the 1930’s by Pascual Jordan (1902-1980),! [46], who axiomatized the concept of
observable algebra, the prime example of which is the algebra of complex hermitian
matrices (or self-adjoint operators in a Hilbert space) equipped with the symmetrized
product

AoB:%(AB—i—BA) (= BoA). (1.6)

Such a (finite dimensional) Jordan algebra should appear as an “internal” counter-
part of the algebra of smooth functions of classical fields. In the case of a special
Jordan algebra (i.e., a Jordan subalgebra of an associative algebra equipped with the
product (1.6)) one can of course work with its associative envelope, - i.e., with the
corresponding matrix algebra. In the noncommutative geometry approach to the SM,
based on a real spectral triple [11], one arrives at the finite algebra [12] (Proposition
3 of [14]):

Ar=Cao Heo C[3] (1.7)

(A[n] standing for the algebra of n x n matrices with entries in the coordinate ring A).
The only hermitian elements of the quaternion algebra H, however, are the real num-
bers, so Ar does not appear as the associative envelope of an interesting observable
algebra. We shall, by contrast, base our treatment on an appropriate finite dimen-
sional Jordan algebra suited for a quantum theory - permitting, in particular, a
spectral decomposition of observables.

IThe only one of the “Boys’ Club”, [36], that did not get a Nobel Prize. The work on Jordan
algebras (called so by A.A. Albert, 1946), of 1932—-1934, that culminated in [37], was preceded
by the analysis (by Dirac, Jordan and von Neumann) of quantum transformation theory reviewed
insightfully in [27]. There are but a few papers on the applications of Jordan algebras to quantum
theory, [3, 5, 6, 21, 33, 43, 45, 57].

ZRecently, a new paper, [9], was posted where an alternative approach, closer to Connes’ real
spectral triple, involving a different Jordan algebra, is being developed.
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2 Euclidean Jordan Algebras

An euclidean Jordan algebra is a real vector space J equipped with a commutative
product X o Y with a unit 1 satisfying the formal reality condition

X+ 4+ X=0=>X,=..=X,=0(X?:=X;0X)) 2.1)

and power associativity. Jordan has found a simple necessary and sufficient con-
dition for power associativity. Introducing the operator L(X) of multiplication by
X : L(X)Y = X oY, it can be written in the form:

[LX),L(X)]=0& Xo(YoX)=X’0(YoX), X,Y €J. (2.2)

(In general, non-associativity of the Jordan product is encoded in the noncommuta-
tivity of the maps L(X).) A prototype example of a Jordan algebra is the space of
n x n hermitian matrices with anticommutator product (1.6), X o Y = %(X Y+YX)
where XY stands for the (associative) matrix multiplication. More generally, a Jor-
dan algebra is called special if it is a Jordan subalgebra of an associative algebra
with Jordan product defined by (1.6). If A is an associative involutive (star) alge-
bra the symmetrized product (1.6) is not the only one which preserves hermiticity.
The quadratic (in X) operator U(X)Y = XY X, X,Y € A also maps a pair X, Y of
hermitian elements into a hermitian element. For a general (not necessarily special)
Jordan algebra the map U (X) (whose role is emphasized in [44]) and its polarized
formU(X,Y):=UX +Y)— U(X) — U(Y) can be defined in terms of L(X):

U(X)=2L*(X) — L(X*,U(X,Y) =2(L(X)L(Y) + L(Y)L(X) — L(X o ¥)).
(2.3)
The conditions (2.1) and (2.2) are necessary and sufficient to have spectral decom-
position of any element of J and thus treat it as an observable.

2.1 Spectral Decomposition, Characteristic Polynomial

To begin with, power associativity means that the subalgebra (including the unit)
generated by an arbitrary element X of J is associative. In particular, any power of
X is defined unambiguously. In order to introduce spectral decomposition we need
the algebraic counterpart of a projector. An element e € J satisfying e = e(# 0) is
called a (non zero) idempotent. Two idempotents e and f are orthogonal ife o f = 0;
then multiplication by e and f commute and e 4 f is another idempotent. The formal
reality condition (2.1) allows to define partial order in J saying that X is smaller
than Y, X < Y,if Y — X can be written as a sum of squares. Noting that f = f? we
conclude that e < e 4+ f. A non-zero idempotent is called minimal or primitive if it
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cannot be decomposed into a sum of (nontrivial) orthogonal idempotents. A Jordan
frame is a set of orthogonal primitive idempotents ey, ..., e, satisfying

e1+...+e = 1 (e,» ocej = 5,-jei). (24)

Each such frame gives rise to a complete set of commuting observables. The number
of elements r in a Jordan frame is independent of its choice and is called the rank of
J.Each X € J has a spectral decomposition of the form

X=> Ne, MeR A=< <. (2.5)

i=1

For an X for which all ; in (2.5) are different the spectral decomposition is unique.
Such regular X form a dense open set in J. The rank of J coincides with the degree
of the characteristic polynomial (defined for any X € J):

Ft,X)=t" —ay(X)t" '+ ...+ (=D a,(X),
ar(X) € R, a(aX) = o*ar(X) (a > 0). (2.6)

The roots of F, are (t =)\, ..., A, (some of which may coincide). Given a regular X
the idempotents e; can be expressed as polynomials in X of degree r — 1, determined
from the system of equations

e1+...+e =1,
)\161 + ...+ )\,er = X,

Noley + o+ X Tle, = X7 2.7)
whose Vandermonde determinant is non zero for distinct J;.

We are now ready to define a trace and an inner product in J. The trace, tr(X),
is a linear functional on J taking value 1 on primitive idempotents:

tr(X) =Y N(=ai(X)), tr()=r, (2.8)

for X given by (2.5) (and a; (X) of (2.6)). The inner product, defined as the trace of
the Jordan product, is positive definite:

(X, Y):=tr(XoY)= (X, X) >0 forX #0. (2.9)
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This justifies the name euclidean for a formally real Jordan algebra. The last coeffi-
cient, a,, of (2.6) is the determinant of X:

a,(X) = det(X) = M.\ (2.10)

If det (X) # O then X is invertible and its inverse is given by

ot CV

r—1 _ r—1 vl
'_dez(x)(x a (X)X 4+ (D e (XD, (2.11)

The theory of euclidean Jordan algebras is simplified by the fact that any such algebra
can be written as a direct sum of simple ones (which cannot be further decomposed
into nontrivial direct sums).

2.2 Simple Jordan Algebras. Euclidean Extensions

The finite dimensional simple euclidean Jordan algebras were classified at the dawn
of the theory, in 1934, by Jordan et al.> The argument is based on the Peirce decom-
position in a Jordan algebra which we are going to sketch.

To begin with, by repeated manipulation of the Jordan identity (2.2) one obtains
the basic third degree formula (see Proposition II.1.1 (iii) of [28]):

L(X?0Y)—L(X)L(Y)=2(L(XoY)— L(X)L(Y))L(X), (2.12)
that is equivalent to

L(X*) —3L(X)L(X)+2L*X) =0,
[[L(X), L(Y)], L(D]+ L(X,Z,Y]) =0, (2.13)

[X,Z,Y]:=(Xo0Z)oY — X o(ZoY)is the associator. For an idempotent, X =
e(= e?), the first equation (2.13) takes the form:

2L%(e) — 3L%(e) + L(e) = L(e)(2L(e) — 1)(L(e) — 1) = 0, (2.14)

thus restricting the eigenvalues of L(e) to three possibilities (0, 1/2, 1).

Let e € J be a nontrivial idempotent: 0 < e(= e%) < 1. The eigensubspace
Ji(e) C J of L(e) corresponding to eigenvalue 1 coincides with U (e)[J], the sub-
space of elements Y of the form Y = U(e) X, X € J where U is the quadratic map
(2.3). If the idempotent e is minimal then J; (e) is one-dimensional: it us spanned by
real multiples of e. Similarly, the subspace Jy(e) annihilated by L(e) can be written

3 A streamlined pedagogical version of the original argument, [37], that follows [39], can be found
in Chapters II-V of the book [28].
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as Jo(e) = U(e)[J]for.e' =1 — e.For J simple (of rank r > 1) the subspace J% (e)
has to be nontrivial as well:

, 1 1
Jy(e) = Ue. )1 = (L(e) = 5)T1(e) = (L(e) = 5)J1(e) =0.  (2.15)

Given a frame of primitive idempotents (ey, ..., e,) in a rank r Jordan algebra J,,
we can introduce a set of (’erl) orthogonal subspaces, a counterpart of Weyl’s matrix
units:

Eii =U(e)lJr], Eij =U(ei, e (= Ejp), i,j=1,...,r,i #j. (2.16)

They are eigenspaces of the set {L(e;), k = 1, ..., r} of commuting operators:
1
L(ep)E;; = 5(5ik + 60 Ejj. (2.17)

The subalgebras E;; are one-dimensional while E;;, i # j (fora givensimple algebra
J;) have the same dimension, called the degree, d > 0. It turns out that the two
positive numbers, the rank r and the degree d, determine all finite dimensional
simple euclidean Jordan algebras, to be, hence, denoted J,d. (The single rank one
Jordan algebra is the field R of real numbers - no room for off diagonal elements and
no need for a degree in this case.) For r = 2 the degree d can take any positive integer
value. For r = 3 the allowed values of d are the dimensions 1, 2, 4, 8 of the (normed)
division rings. For r > 4 only the dimensions 1, 2, 4 of the associative division rings
are permitted. The resulting simple Jordan algebras split into four infinite series and
one exceptional algebra (proven to have no associative envelope by A. Albert also
in 1934 and often called the Albert algebra):

IN=H®), =1 P =H0),r=2;
TP =MW, r>2; J¢=JSpind+ 1);

I8 = H3(0), dim(J9) = <;>d tr (2.18)

dim(H,(R)) = (1), dim(H,(C)) = r?, dim(J§) = d + 2, dim(J$) = 27).The
first three algebras in the above list consist of familiar hermitian matrices (with entries
in associative division rings). We stress once more that all items in (2.18) (including
‘H, (C) and 'H, (H) which involve matrices with complex and quaternionic entries) are
regarded as algebras over the reals. The spin factor sz C C{ ;4 can be thought of as
the set of 2 x 2 matrices of the form

X=E614%, R, tri =0, X> =26X —detX,

d
detX =& —N(x), 2= Nx)1, N(x) = ij (2.19)
©=0
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(cf. Remark 3.1 of [56]). The fact that the algebras J Spin(n)(= Jz"_l) are special
requires an argument (while it is obvious for the first three series of matrix algebras
(2.18)). In fact they admit interesting euclidean extensions.

The algebra J Spin(n) is isomorphic to the Jordan subalgebra of the real Clifford
algebra C¢,, spanned by the unit element and an orthonormal basis of gamma matrices
with Jordan product

1
Iio Iy =51 Il = 61, (2.20)

To define an appropriate euclidean extension we use the classification of real (later
also of complex) Clifford algebras (see e.g. [42, 54]):

Cl, =R[2], Cl3 = C[2], Cly = H[2], Cts = HI[2] @ HI[2], C¢c = HI[4],
Ct; = C[8], Cts = R[16], Cly = R[16] ® R[16]; Cl,+3 = CL, @ R[16]. (2.21)

It seems natural to define the euclidean extensions of the spin factors JSpin(n) as
the corresponding subalgebras of hermitian (in the real case - symmetric) matrices:
Hr(R), H2(C), Ha(H), ..., Hic(R) & Hi6(R). In the case of real symmetric matri-
ces (including the euclidean Jordan subalgebras of C¥¢;, C€g and C¥{y), however,
such a definition would exclude the most important observables: the hermitian coun-
terparts of the symmetry generators. Indeed the derivations I, = [[, [3],a, b =
1, ..., n of C¥¢, are antihermitian matrices; the hermitian observables i I, only belong
to the corresponding matrix Jordan algebra if we are dealing with complex hermitian
(rather than real symmetric) matrices. More generally, we shall complexify from the
outset the assoiciative envelope of the spin factors as postulated in [26]:

J§ € Clyyr € Clay1(C), Clyy(C) = C[27],
Clyni1(C) = C[2"] & C[2"]. (2.22)

(See the insightful discussion in (Sect. 3 of [3].) We will identify the optimal extension
f2d of sz with the corresponding subalgebra of hermitian matrices. We shall exploit,
in particular, y

I3 = Jis @ Jis = Hi6(C) ® Hi6(C). (2.23)

Coming back to the list (2.18) we observe that it involves three obvious repetitions:
the spin factors sz ford = 1, 2, 4 coincide with the first items in the three families
of matrix algebras in the above list. We could also write

J¥ = Hy(0)(C Cly); (2.24)
here (as in 138) O stands for the nonassociative division ring of octonions (see the

review [2]). The (10-dimensional) spin factor Jz8 (unlike J38) is special - as a Jordan
subalgebra of the (2°-dimensional) associative algebra Cto.
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2.3 Symmetric Cone, States, Structure Group

Remarkably, an euclidean Jordan algebra gives room not only to the observables of
a quantum theory, it also contains its states: these are, roughly speaking, the positive
observables. We proceed to more precise definitions.

Each euclidean Jordan algebra J contains a convex, open cone C consisting of
all positive elements of J (i.e., all invertible elements that can be written as sums
of squares, so that all their eigenvalues are positive). Jordan frames belong to the
closure C (in fact, to the boundary) of the open cone, not to C itself, as primitive
idempotents (for r > 1) are not invertible.

The states are (normalized) positive linear functionals on the space of observables,
so they belong to the closure of the dual cone

C*={peJ;(p,X)>0VX eC. (2.25)

In fact, the positive cone is self-dual, C = C*. An element p € C C J of trace one
defines a state assigning to any observable X € J an expectation value

<X>=(p,X)=tr(poX), pel, trp(=<Il>) = 1. (2.26)

The primitive idempotents define pure states; they are extreme points in the convex
set of normalized states. All positive states (in the open cone C) are (mixed) density
matrices. There is a distinguished mixed state in J,d , the normalized unit matrix,
called by Baez the state of maximal ignorance:

<X>= %tr(X) r = tr(1)). (2.27)

Any other state can be obtained by multiplying it by a (suitably normalized) observ-
able - thus displaying a state observable correspondence [3].

The cone C is homogeneous: it has a transitively acting symmetry group that
defines the structure group of the Jordan algebra, Aut (C) =: Str(J), the product of
a central subgroup R of uniform dilation with a (semi)simple Lie group Stry(J),
the group that preserves the determinant of each element of J. Here is a list of the
corresponding simple Lie algebras stro(J%):

stro(J)) = sl(r, R), stro(J?) = sl(r, C), stro(J*) = su*(2r),
stro(J§) = so(d + 1, )(= spin(d + 1, 1)), stro(J¥) = es_25).  (2.28)
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The stabilizer of the point 1 of the cone is the maximal compact subgroup of Aut (C)
whose Lie algebra coincides with the derivation algebra* of J:

ver(J) = s0(r), ver(J?) = su(r), ver(J) = usp(2r),
ver(J§) = so(d + 1) (= spin(d + 1)), ver(J3) = 4. (2.29)

The structure Lie algebra acts by automorphisms on J. For the simple Jordan
algebras er, d =1, 2,4 of hermitian matrices over an associative division ring an
element u of str(J,d ) transforms hermitian matrices into hermitian by the formula:

u:(J3)X — uX + Xu*, d=1,2,4, (2.30)

where u* is the hermitian conjugate of u. If u belongs to the derivation subalgebra
ver(J9) C str(J¢) then u* = —u and (2.30) becomes a commutator (thus annihi-
lating the Jordan unit). In general, (2.30) can be viewed as a Z, graded commutator
(regarding the hermitian matrices as odd elements).

We shall argue that the exceptional Jordan algebra J3 should belong to the observ-
able algebra of the SM. It has three (special) Jordan subalgebras J§ whose euclidean
extensions match each one family of basic fermions.

3 Octonions, Quark-Lepton Symmetry, J§

3.1 Why Octonions?

The octonions O, the non-associative 8-dimensional composition algebra (reviewed
in [2, 18], in Chaps. 19, 23 of [42, 50], and in [56], Sect. 1), were originally intro-
duced as pairs of quaternions (the “Cayley-Dickson construction). But it was the
decomposition of O into complex spaces,

0=CoC, x=z+4+2Z,7=x"+x"e;, Z=2Z"e, + Z%e; + Z'ey,
Z) = x] 433 m0de; j=1,2,4;

€i€it1 = €i13(mod7)s Ci€k +exe; = =20y, i,k=1,..7, (3.1)

that led Feza Giirsey (and his student Murat Giinaydin) back in 1973, [32, 34], to
apply it to the quarks (then the newly proposed constituents of hadrons). They figured
out that the subgroup SU (3) of the automorphism group G, of the octonions, that
fixes the first C in (3.1), can be identified with the quark colour group. Giirsey
tried to relate the non-associativity of the octonions to the quark confinement - the
unobservability of free quarks. Only hesitantly did he propose (in [34], 1974, Sect.

4The corresponding automorphism group need not be connected. For instance, Aut(lrz) is the
semi-direct product of SU (r)/Z, with a Z, generated by complex conjugation.
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VII) “as another speculation” that the first C in (3.1) “could be related to leptons”.
Interpreting (3.1) as a manifestation of the quark-lepton symmetry was only taken
seriously in 1987 by A. Govorkov [31] in Dubna. The subject has been later pursued
by G.M. Dixon, - see e.g. [19, 20] and in [29] among others. M. Dubois-Violette
pointed out [22] that, conversely, the unimodularity of the quark’s colour symmetry
yields - through an associated invariant volume form - an essentially unique octonion
product with a multiplicative norm. The octonions (just like the quaternions) do not
represent an observable algebra. They take part, however, in J28 and in the exceptional
Jordan algebra J? whose elements obey the following Jordan product rules:

&1 X3 X5
X =|x&x
x xf &
3
Y (GEi+ Fi(x)), EioE;=0;E;, EioF;=

i=1

1
Fi(x) o F;(y) = (x, y)(Eiy1 + Eit2), Fi(x) o Fi11(y) = 3 i (¥ x™) (3.2)

1 —dij
2

F;,

(indices being counted mod 3). The (order three) characteristic equation for X (¢, x)
has the form:

X2 —trX)XP+SX)X —det(X) =0; tr(X) =& + 6+ &,
S(X) =&1& — x3x; +6&& —xix] + 68 — x5x0,

3
det(X) = §168 + 2Re(xixpx3) — Y Gxixf. (3.3)

i=1

The exceptional algebra J¥ incorporates triality that will be related - developing
an idea of [26] - to the three generations of basic fermions.

3.2 Quark-Lepton Splitting of J38 and Its Symmetry

The automorphism group of 138 is the compact exceptional Lie group Fj of rank 4
and dimension 52 whose Lie algebra is spanned by the (maximal rank) subalgebra
s0(9) and its spinorial representation 16, and can be expressed in terms of so(8) and
its three (inequivalent) 8-dimensional representations:

Oet(J38) =4 =5009)+16 = 50(8) B8y B8, P 8; 3.4

here 8y stands for the 8-vector, 8, and 8y for the left and right chiral so(8) spinors.
The group Fy leaves the unit element 1 = E; + E; 4+ Ej3 invariant and transforms
the traceless part of J§ into itself (under its lowest dimensional fundamental repre-
sentation 26).



40 1. Todorov
The lepton-quark splitting (3.1) yields the following decomposition of J3:

X(€x) =X +Z, X(&2) €7 =H3(0),
Z=(Z/,j=1,2,4,r=1,2,3) e C[3]. (3.5)

The subgroup of Aut (J§) which respects this decomposition is the commutant F}’ C
F,4 of the automorphism w € G, C Spin(8) C F4 (of order three):

_HT& W=1=uwd). (3.6

3
WX (& x) =Y (GEi + Fi(wx), wy =
i=1

It consists of two SU (3) factors (with their common centre acting trivially):

Fy = 20O ZSUG)”" 5 (W, V): X(§x) > VX(E 9V +UZV™. (37
3

We see that the factor, U acts on each quark’s colour index j(= 1, 2, 4), so it corre-
sponds to the exact SU (3). colour symmetry while V acts on the first term in (3.5)
and on the flavour index r(= 1, 2, 3) and is identified with (an extension of) the
broken electroweak symmetry as suggested by its restriction to the first generation
of fermions (Sect.4).

4 The First Generation Algebra
4.1 The Ggy; Subgroup of Spin(9) and Observables in jzs

The Jordan subalgebra J$ C J$, orthogonal, say, to the projector Ej,

L) =(1—ENJ(1~Ey, 4.1
is special, its associative envelope being C{y. Its automorphism group’ is Spin(9) C
F4, whose intersection with F}’, that respects the quark-lepton splitting, coincides

with - and explains - the gauge group (1.1) of the SM:

Gsy = F¥ N Spin(9) = Spin(9)° = S(UB3) x U(2)). 4.2)

5 Another instance of a (closed connected) maximal rank subgroup of a compact Lie group that have
been studied by mathematicians [7] back in 1949 (see also [55]). The group Spin(9) had another
appearance in the algebraic dreams of Ramond [51].
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As argued in Sect. 2.2 the optimal euclidean extension J3 (2.23) of J$ is obtained by
replacing the real symmetric by complex hermitian matrices in the maximal euclidean
Jordan subalgebra of its associative envelope:

J¥c Cly =R[16] @ R[16] — J)x @ J(C Cly), J = His(R)
J3— I3 = Uk @ JX C Cly(C), Ji =His(C). (4.3)

The resulting (reducible) Jordan algebra of rank 32 gives room precisely to the state
space (of internal quantum numbers) of fundamental fermions of one generation -
including the right handed “sterile” neutrino. In fact, it is acted upon by the simple
structure group of ng whose generators belong to the even part of the Clifford algebra
C{(9, 1) isomorphic to Cly; its Dirac spinor representation splits into two chiral
(Majorana-)Weyl spinors:

Stro(J8) = Spin(9, 1) € C°(9, 1) (= Clo) = 32 =16, ® 16;. (4.4)

Here is an explicit realization of the above embedding/extension. Let e,, v =
0, 1, ..., 7, be the octonionic units satisfying (3.1). The anticommutation relations of
the imaginary octonion units e; can be realized by the real skew-symmetric 8 x 8
matrices P; generating C{_g and their product:

[Pj, Ply i= PjPc + PtPj = =205, Py := P1..Pe = [P7, Pj]l. =0, P} =—1.  (4.5)

The nine two-by-two hermitian traceless octonionic matrices é, that generate ng (cf.
(2.19)) are represented by similar real symmetric 16 x 16 matrices P,:

A A . . * 3
eg=o1eg(eo=1),e; =cej, j=1,..,7, c=ioy, ¢ =—c=c",

€.8p + epe, = 204, = teg = €y...67 = 0'16‘7(—1) = —03;
Pi=c®P,j=1,...,7, h=01® Py, =13, k=03 ® Py.  (4.6)

The nine matrices f’a, a =0, 1, ..., 8 generate an irreducible component of the Clif-
ford algebra C¥¢g. Then the ten real 32 x 32 matrices

Faz(j]@ﬁa, a=0,1,...,8, I, =C®116 =
I'1=v%®P,Io=71®P,Ij=im®P;,j=1,..,7T3=130F
(o=c"®L,y=0®0;,j=123,v5=innnn=0381L) 47
generate the Clifford algebra C£(9, 1). We make correspond to the generators &,
(4.6) of 128 the hermitian elements I"_; I, of the even subalgebra C 2°(9, 1) >~ C,.

The generators of the symmetry algebra so(9) of the spin factor J§ are given by the
antihermitian matrices

Ly =TTy, I Iy] = [, )= =T, =. = —T). (4.8)
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The corresponding observables i I, only belong to the subalgebra f28 (2.23) of pairs
of complex hermitian 16 x 16 matrices.

In order to identify a complete commuting set of observables we introduce a
maximal abelian subalgebra A of hermitian elements of the universal enveloping
algebra U (so(9, 1)) and the commutant Ag of I in A:

A=R[I_3,ilv7,il3, i, iI4s] C U(so(9, 1)),
Ag = R[ily7, T3, i1, iT4s5] C U(so(8)). 4.9)

(The multilinear functions of Ag span a 16-dimensional vector subspace of the 32-
dimensional real vector space .A.) To reveal the physical meaning of the generators of
As C A we identify them with the Cartan elements of the maximal rank semisimple
Lie subalgebra so(6) & so(3), the intersection

g4 :=50(6) ®so(3) = su(4) ®su2) =gps Nso(9) (4.10)

of the Pati-Salam algebra gps = su(4) @ su(2); ® su(2)g with so(9), both viewed
as Lie subalgebras of so(10). Here su(2) is embedded diagonally® into su(2); @®
su(2)g. Itis easily verified that the Lie algebra g4 acting on the vector representation
9 of Spin(9) preserves the quark lepton splitting in J28. It does not preserve this
splitting in the full Albert algebra J38 which also involves the spinor representation
16 of Spin(9). In accord with our statement in the beginning of this section only its
subgroup Gy (4.2) does respect the required symmetry for both nontrivial IRs of
Spin(9) contained in the fundamental representation 26 of Fj.

All elementary fermions can be labeled by the eigenvalues of two commuting
operators in the centralizer of su(3). in g4(C s0(9)):

. L R 2 I
2L = —ily(=21y +215), Q)" =1, B— L=~ Z I 3jmoary (4.11)

3
j=1.2.4

and of the chirality given by the Coxeter element of C£(9, 1):
Y i=Wo 1 = F_1FOF1...Fg =75 ® 18 (S Cfo(g, 1) (: ’}/*, ’)/2 = 1) (412)
Here B — L (the difference between the baryon and the lepton number) is given

by the commutant of su(3). in so(6)(= Span{lj,i,k =1, ...6}) C g4. The electric
charge is a linear function of B — L and I3:

0= %(B—L)+13. (4.13)

OWe recall that while I5 € su (2) is a convenient global label for fundamental fermions, itis su(2); &
u(1) which carries the local gauge symmetry of weakly interacting bosons.
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The right and left isospins I3R " and the hypercharge Y involve I'_; g ¢ Ag and their
expressions in terms of /3, B — L and -y are more complicated:

AIf =T 15 —ily=(1+~v(B—L)3Yv(B—L)—1)(3v(B — L) -2,
4If = —T g —ily =4 -1, Y =B - L+2I, “4.14)

but we won’t need them. Remarkably, all quarks and leptons are labeled by a single
quantum number B — L(= %1, £1/3) and two signs (2I3 = 1,y = =%).

As the quark colour is not observable we only have to distinguish SU (3), rep-
resentations as labels: 3 for a quark triplet, 3 for an antiquark, and 1 for an SU (3).
singlet. These are encoded in the value of B — L:

1 1 -
B—L=§<—>3,B—L=—§<—>3,B—L::I:1<—>1.
We have eight primitive idempotents corresponding to the left and right (anti)leptons
and eight (non primitive) chiral (anti)quark idempotents (colour singlets of trace
three); for instance,

)=y ><vl« RL=1,B—-L=—-1,y=1), (e;f) < (1,1, =-1);

(i)=Y |ﬁg><ag|e<_1,_%,1), (dL)e(—l,%,l). (4.15)

j=12.4

4.2 Observables. Odd Chirality Operators

The 16-dimensional vector spaces Sk and S; can be identified with the subspaces
of J38 spanned by F,(x3) and F3(x3) of Eq. (3.2), respectively. (As we shall recall
in Sect.5.1 below, they transform as expected under the Spin(8) subgroup of the
automorphism group Fy of J3.) The (extended) observables belong by definition to
the complexification of the even part, C£°(9, 1), of C£(9, 1)(= R[32]), thus commute
with chirality and preserve individually the spaces Sk and S; . The elements of the
odd subspace, Cc?'9, 1), in particular the generators I, of C£(9, 1), by contrast,
anticommute with chirality and interchange the left and right spinors. They can
serve to define the internal space part of the Dirac operator.

We shall now present an explicit realization of both I, and the basic observables
in terms of fermionic oscillators (anticommuting creation and annihilation operators
- updating Sect.5 of [56]), inspired by [1, 30]. To begin with, we note that the
complexification of C£(9, 1) contains a five dimensional isotropic subspace spanned
by the anticommuting operators
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ap = %(Fo—kiﬁ),al = %(Fl +il3),a, = %(Fz—i-ifo),m = %(F4+ifs)
(ieaj= %(Fj +il3jmear), J =1,2,4, i’=-1), ag = %(Fg +1_)).(4.16)
The a,, and their conjugate a;; obey the canonical anticommutation relations,
lau, a4 =0, [a,, ajly =0, v =0,1,2,4,8, 4.17)

equivalent to the defining Clifford algebra relations for I,, « = —1,0, 1, ..., 8.

Remark. The 32 x 32 matrices I'_{, I',(n=0,1,2,4,8),il%,il3,il%, i[5 gener-
ate the split real form C£(5, 5)(= C4(9, 1)) of C€o(C). The split forms C£(n, n)
(which allow to treat spinors as differential forms) have been used by K. Krasnov
[40] (for n = 7) in his attempt to make the SM natural.

We now proceed to translate the identification of basic observables of Sect.4.1 in
terms of the five products a* s = 0, 1,2, 4, 8. The set of 15 quadratic combina-
tlons of af, a; (nine a}a;, three independent products a;a; = —aja;, and as many

*) generate the Patl Salam Lie algebra su(4). The centralizer B — L (4.11) of
su(?;)C in su(4) now assumes the form:

B—L:—Z[ ,aj] = [B — La] [B—L,ajaas] = —ajazas

3 f ’
(4.18)
(j = 1,2,4). The indices 0, 8 correspond to the left and right isospins:

Ii = agay, It = ajas, 2IL [I1E, 15 = agag — ajao;
IR = ajag, If = agay, 213 =[IR 1% = agag — agap; (4.19)
Ly =1+ If = ao, I =1+ 18 =ai Iy, 21, = (14, 1] = [a, a]].

The hypercharge and the chirality also involve I'_; Iy = [ag, ag]:

2
Y =3 D aja; —afa — ajas. v = laf. apllaf. arlla3. arlia]. asllag. asl.  (4.20)
J

All fermion states and the commuting observables are expressed in terms of five
basic idempotents 7, and their complements:

- _ I 2 =2
T, =1 Ty = a,dy, T, = Ty, T,

T4 T, =1, tr1 =32 = trm, = trir, = 16, p =0, 1,2, 4,8(4.21)

— *
T, = aua

w = ﬁ-p,s Wuﬁp =0, [71'#, m] =0,

As 7, commute among themselves, products of 7,, are again idempotents. No product
of less than five factors is primitive; for instance mom T, Ty = Tom Mo T4 (g + T3).
Any of the 23 products of five 7, 7, of different indices is primitive. We shall take
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as “vacuum” vector the product of all 7, which carry the quantum numbers of the
right chiral (“sterile”) neutrino:

2 =mommamyng = (W) < QL =1,B—L=—-1,y=-1), a,2 =0.
4.22)
The left chiral states involve products of an even number of 7, (an odd number for
the right chiral states). In particular, (1), the antiparticle of (vg), only involves 7,
factors:
(L) = 2 1= TomTaTamy < (=1, 1, 1), a’2 = 0. (4.23)

Each primitive idempotent can be obtained from either £2 or £2 by consecutive
action of the involutive chirality changing bilinear maps (cf. (2.3)):

U(az, a,)X = aZXa,,, +a,Xa;, Xe A=R[r], n=0,1,2,4,8; (4.24)

W

here m = {mg, 7, ™, T4, Mg} is a basis of idempotents of the abelian multilinear
algebra A (4.9). More economically, we obtain all eight lepton states by acting with
the above operators for x = 0, 8 on both §2 and §2 (or only on £2 but also using the

“colourless” operator U (afaja}, asaxay)):

(Wr) = 82, (ef) = Ulag, ap)2 = ajRay, (vy) = agRag (apRaj = 0 = agf2ag);
(eg) = agag 2agay, (e}f) = agapRajay = afdial Qasaar; 4.25)

(7R) = agQag = ag(ef)ao, (ef) = aoRaj = ag(ef)as, (v1) = 2 = aj(ef)ao.

The SU (3). invariant (trivalent) quark states are obtained by acting with the operator

Ug= Y Uaj.a)) (4.26)

j=12,4

on the corresponding lepton states:

Uy(r) = (dr), Uy(eg) = (ar); Uy(vp) = (dr), Uy(er) = (ig);
Uy(ep) = (ug), Uy(n) = (dg); Uylep) = (ur), Uy(Ug) = (d). (4.27)

We note that while (vg) is the lowest weight vector of so(9, 1) with five sim-
ple roots corresponding to the commutators [ay;, a,], the state that minimizes our
choice of observables, 213, B — L, v, is the right electron singlet (ey) - the lowest
weight vector of g4 x . (The corresponding highest weight vectors are given by the
respective antiparticle states.)

Remark. Each of the rank 16 extensions of J28 appears as a subrepresentation of the
defining module 26 of the automorphism group Fy of J§, which splits into three
irreducible components of Spin(9):

26=16 + 9 +1. (4.28)
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The vector representation 9 of SO (9) is spanned by the generators I, of C{y. Their
splitting into the defining representations of the two factors of its maximal rank
subgroup SO (6) x SO(3) displays the quantum numbers of a pair of conjugate
leptoquark and a triplet of weak interaction bosons:

9=(6,1)&(1,3); 6=(a;,a}, j=1,2,4) = (D, D);

1 2)[) (01 2)
=== D0, 2,2
373 3'3

2 2
[B—L,a;]= —39 [B—L,aj]1= gajf =D < (0,—
3=(a}, Iy, a0) == W, WO, W) Y=B—-L=0, Q0=(1,0,—1). (429
Combining the 3 with the singlet 1 one can find the mixtures that define the (neutral)
Z-boson and the photon. The leptoquarks D, D also appear in the 27 of the E¢ GUT
(see, e.g. [52] where they are treated as superheavy).
As pointed out in the beginning of this subsection we shall view instead the 9 & 1

as the gamma matrices which anticommute with chirality and (are not observables
but) should enter the definition of the Dirac operator.

5 Triality and Yukawa Coupling

5.1 Associative Trilinear Form. The Principle of Triality

The trace of an octonion x = Y . X"e,, is areal valued linear form on O:
tr(x) =x +x* =2x" = 2Re(x) (ep = 1). 5.1)

It allows to define an associative and symmetric under cyclic permutations normed
triality form t (x, y, z7) = Re(xyz) satisfying:

2t(x, y,z) = tr((xy)z) = tr(x(yz)) =: tr(xyz) = tr(zxy) = tr(yzx). (5.2)
The normalization factor 2 is chosen to have:

t(x, ¥, 2> < NOON ()N (2), N(x) = xx*(€ R). (5.3)

While the norm N (x) and the corresponding scalar product are SO (8)-invariant,

the trilinear form ¢ corresponds to the invariant product of the three inequivalent
8-dimensional fundamental representations of Spin(8), the 8-vector and the two
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chiral spinors, say ST (denoted by 8; and 83 in (3.4)). We proceed to formulating
the more subtle trilinear invariance law.’

Theorem 5.1 (Principle of triality - see [60], Theorem 1.14.2). For any g € SO(8)
there exists a pair (g*, g7) of elements of SO(8), such that

gxy) = (g x) (g y), x,y €. (5.4)

If the pair (g, g™) satisfies (5.4) then the only other pair which obeys the principle
of triality is (—g*, —g ™).

Corollary. Ifthe triple g, g™, g~ obeys (5.4) then the form ¢ (5.2) satisfies the invari-
ance condition

tgtx, g7y, g7 '2) =t(x,y,2). (5.5)

Proposition 5.2 (see [60] Theorem 1.16.2). The setof triples (g, g™, g7) € SO(8) x
SO(8) x SO (8) satisfying the principle of triality form a group isomorphic to the
double cover Spin(8) of SO(8).

An example of a triple (g+, g, g~ !) satisfying (5.5) is provided by left-, right-
and bi-multiplication by a unit octonion:

t(Lyx, Ryy, By»z) =1t(x,y,2), Lyx =ux, R,y = yu, Byz = vzv, uu* = 1.
(5.6)

The permutations among g, g, g~ belong to the group of outer automorphisms of
the Lie algebra so(8) which coincides with the symmetric group Sz that permutes the
nodes of the Dynkin diagram for so(8). In particular, the map that permutes cyclicly
L,, R,, B, belongs to the subgroup Z3 C Ss:

v:L,— R, > By =1’ =1. 5.7

Remark. The associativity law expressed in terms of left (or right) multiplication
reads
L.Ly =Ly, R:R,=R,,. (5.8)

Itis valid for complex numbers and for quaternions; for octonions Eq. (5.8) only takes
place for real multiples of powers of a single element. Left and right multiplications
by unit quaternions generate different SO (3) subgroups of the full isometry group
SO (4) of quaternions. By contrast, products of up to 7 left multiplications of unit
octonions (and similarly of up to 7 R, or B,) generate the entire S O (8) (see Sect. 8.4
of [18]).

7For systematic expositions of the Spin(8) triality see, in order of appearance, [50] (Chap.24), [42]
(Chap. 23), [2] (Sect.2.4), [18] (Sect.8.3), [60] (Sects. 1.14-1.16).
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Proposition 5.3 (see [60] Theorem 2.7.1). The subgroup Spin(8) of F, leaves the
diagonal projectors E; in the generic element X (£, x) (3.2) of J38 invariant and
transforms the off diagonal elements as follows:

Fi(x1) + F2(x2) + F3(x3) = Fi(gx1) + F2(g7x2) + F3(g ™ x3). (5.9

Thus if we regard x; as a Spin(8) vector, then x; and x3 should transform as S*
and S~ spinors, respectively.

5.2 Speculations About Yukawa Couplings

It would be attractive to interpret the invariant trilinear form 7 (xy, x5, x3) as the
internal symmetry counterpart of the Yukawa coupling between a vector and two
(conjugate) spinors. Viewing the 8-vector x; as the finite geometry image of the Higgs
boson, the associated Yukawa coupling would be responsible for the appearance of
(the first generation) fermion masses. There are, in fact, three possible choices for
the SO (8) vector, one for each generation i corresponding to the Jordan subalgebra

J3i) =0 —E)NJi(1—E), i =1,2,3. (5.10)

According to Jacobson [38] any finite (unital) module over J§ has the form J§ ® E
for some finite dimensional real vector space E. The above consideration suggests
that dim (E) should be a multiple of three so that there would be room for an octonion
counterpart of a vector current for each generation.

As demonstrated in Sect.4 the natural euclidean extension of J3 gives rise to a
Jordan frame fitting nicely one generation of fermions. We also observed that the
generators I, of C{y anticommute with chirality and thus do not belong to the
observable algebra but may serve to define (the internal part of) the Dirac operator.
Unfortunately, according to Albert’s theorem, J3 admits no associative envelope and
hence no such an euclidean extension either. To search for a possible substitute it
would be instructive to see what exactly would go wrong if we try to imitate the
construction of Sect.4.1. The first step, the map (cf. (4.5))

,
0O3x— P(x) = Zx“Pa € Cl_g = R[],

a=0

Pxx®)=Px)P(x)" =xx"Py, P(x)* = Z Px“, Py=1g, (5.11)

for each of the arguments of F;,i = 1, 2, 3, respects all binary relations. We have,
for instance (in the notation of (3.2)),

1
Fi(P(x1)) o F2(P(x2)) = EFs(P(XE‘XT)), P(x*y") = P(X)"P(y)*. (5.12)



Exceptional Quantum Algebra for the Standard Model of Particle Physics 49

The map (5.11) fails, however, to preserve the trilinear form (5.2) which appears in
det(X) (3.3) and in triple products like

1
(F(x1) o F(x2)) o F(x3) = Et(xla X2, x3)(E1 + E»); (5.13)

setting P(x;) = X; we find instead of # more general 8 x 8 matrices:

(F1(X1) o F2(X3)) o F3(X3) =
1
Z((XﬁXikxi + X3X1X2)E1 + (X1 X2X5 + X5 X7 X5) E»). (5.14)

Moreover, while 7 (e, ez, e3) = 0, t(ey, ez, e4) = —1, the corresponding (symmet-
ric, traceless, mutually orthogonal) matrices P; P, Ps, P; P> P, have both square 1 and
can be interchanged by an inner automorphism.

In order to apply properly the full exceptional Jordan algebra to particle dynam-
ics we need further study of differential calculus and connection forms on Jor-
dan modules, as pursued in [10, 23], on one side, and connect with current phe-
nomenological understanding of the SM, on the other. In particular, the Cabibbo-
Kobayashi-Maskawa (CKM) quark- and the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) lepton-mixing matrices [47, 49] should be reflected in a corresponding
mixing of their finite geometry counterpart. Its concrete realization should help us
fit together the euclidean extensions of the three subalgebras J3 (i) and the Yukawa
couplings expressed in terms of the invariant trilinear form in J3.

6 Outlook

The idea of a finite quantum geometry appeared in the late 1980’s in an attempt to
make the Standard Model natural, avoiding at the same time the excessive number
of new unobserved states accompanying GUTs and higher dimensional theories. It
was developed and attained maturity during the past thirty years in the framework of
noncommutative geometry and the real spectral triple in work of Alain Connes and
others [8, 14, 16]. Here we survey the progress in an alternative attempt, put for-
ward by Michel Dubois-Violette, [22] (one of the originators of the noncommutative
geometry approach, too) based on a finite dimensional counterpart of the algebra of
observables, hence, a (commutative) euclidean Jordan algebra. As the deep ideas of
Pascual Jordan seem to have found a more receptive audience among mathematicians
than among physicists, we used the opportunity to emphasize (in Sect.2) how well
suited a Jordan algebra J is for describing both the observables and the states of a
quantum system.

Recalling (Sect.2.2) the classification of finite dimensional simple euclidean
observable algebras (of [37], 1934) and the quark-lepton symmetry (Sect.3.1) we
argue that it is a multiple of the exceptional Jordan (or Albert) algebra J§ that
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describes the three generations of fundamental fermions. We postulate that the sym-
metry group of the SM is the subgroup F;’ of Aut( 138) = F4 that respects the quark-
lepton splitting. Remarkably, the intersection of F;* with the automorphism group
Spin(9) of the subalgebra J¥ C J3 of a single generation is just the gauge group of
the SM.

The next big problem we should face is to fix an appropriate J38 module (following
our discussion in Sect. 5.2) and to write down the Lagrangian in terms of fields taking
values in this module.
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Polylogarithms from the Bound State )
S-matrix Grecs

M. de Leeuw, B. Eden, D. le Plat, and T. Meier

Abstract Higher-point functions of gauge invariant composite operators in A = 4
super Yang-Mills theory can be computed via triangulation. The elementary tile in this
process is the hexagon introduced for the evaluation of structure constants. A gluing
procedure welding the tiles back together is needed to return to the original object. In
this note we present work in progress on n-point functions of BPS operators. In this
case, quantum corrections are entirely carried by the gluing procedure. The lowest
non-elementary process is the gluing of three adjacent tiles by the exchange of two
single magnons. This problem has been analysed before. With a view to resolving
some conceptional questions and to generalising to higher processes we are trying to
develop an algorithmic approach using the representation of hypergeometric sums
as integrals over Euler kernels.

1 Introductory Remarks

The spectrum problem of the AdS/CFT correspondence in the original form—so
connecting N = 4 super Yang-Mills theory in four dimensions to IIB string theory
on AdSsxS>—has been successfully described by an integrable system [7, 8, 10].
The effects of higher-loop corrections in the field theory can be incorporated into the
corresponding Bethe equations using the Zhukowski variables x («) defined by
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2

i+ & =y (1)
2x
where u is a Bethe rapidity. In particular, since the Bethe ansatz involves the quantities
u®™ = u £ £ one introduces x*(u) = x(u®).

A double Wick rotation from the original model to a mirror theory enables one to
use the thermodynamic Bethe ansatz (TBA) for the discussion of finite size effects
in the AdS/CFT integrable model [1, 2, 11, 15, 18]. W.r.t. the Bethe rapidities, the
mirror transformation is (here the scaling is adapted to the string side).

y ox = — 2)

1
.t
27/.)( _)x_i’
1
3y:x+—>x+,x_—>F, (3)

4y xF - x*.

The 2y transformation has the interpretation of crossing from particles to antiparti-
cles. Other ny transformations are the same modulo 4 on expressions only depending
on the square root functions x*. However, another element of the integrable system
is the dressing phase [9] obeying a crossing equation [16] implying that it does
not return to itself at 4y . Developing the TBA has necessitated understanding the
scattering of bound states of the model [3, 4].

For a long time, higher-point functions remained hard to address using these
methods. The introduction of the hexagon operator meant a break-through w.r.t. the
three-point problem [5]. In a nutshell, to evaluate the hexagon one can move all
excitations to one spin chain by appropriate ny transformations and then scatter by
the psu(2|2) invariant S-matrix [6], or its bound state variant [4]. Every scattering
is accompanied by a certain scalar factor 4 containing the (inverse of the) dressing
phase and some factor of x* type.

Finally, it was noticed in [12, 13] that higher-point functions can likely be evalu-
ated by tilings with hexagon patches, for a four-point function see Fig. 1. The circular
openings in the figure are spin chains equivalent to the gauge theory operator. The
faces of the figure yield four hexagons. The cut in the left panel is not promising
because it introduces a sum over a complete set of physical states (the OPE), already
at tree level. The second cut is suggested by tree-level Feynman diagrams and is
much more useful because there is no sum over intermediate states.

To get back to the original uncut figure the tiles are glued by the procedure defined
in [5] for the three-point case. This can be thought of as the insertion of a complete
set of states. In fact, relevant are the bound states of the TBA analysis. This is a
complicated but—as we shall see—hopefully manageable sum.
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Fig. 1 OPE and non-OPE O,
cuts of a four-point function
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Fig. 2 Gluing three tiles by 1
two virtual exchanges; the

bound states are marked as & ¢
red squares

The gluing of three adjacent tiles has been evaluated in [14] by matching a trun-
cated residue calculation on an ansatz. The motivation for our study is to expand
on this work: how can we integrate/sum in closed form? Second, in [14] it became
apparent that extra braiding factors ¢’”/? (here p denotes the momentum of the bound
state particles) have to be introduced. We would eventually like to answer whether
the choice of braiding adopted there is the only possible one.

Now, according to [S] we have to choose s/(2) sector bound states, c.f. Eq. (8). The
scattering matrix available in the literature [4] is originally written for the opposite
case: su(2) bound states obtained from (8) by exchanging the réle of bosonic and
fermionic constituents. We argue below that—at least in the situation at hand—the
formulae of [4] apply directly. We find a very clean integration scheme, although we
cannot yet answer whether the result matches complete correlation functions.

2 Elements of the Calculation

Let us first consider gluing two neighbouring hexagons by a single mirror magnon.
Let the first hexagon, as in the three-point problem in [5], connect operators at the
positions

x1 ={0,1,0,0}, x> ={0,0,0,0}, x3 = {0,00,0,0}. “4)

The second hexagon shares the edge between 0, oo but its third point is parametrised
by the variables z, z, so it depends on

xp = {0,0,0,0}, x3 ={0,00,0,0}, x4 = {0,—-S(2),9N(2),0} (5)

and the gluing is over the common edge 23. In a four-point problem this is not a
restriction on the kinematics. One finds the frequently used parametrisation
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2.2 2.2
XX _ Xi4%5; _

PR =z, FE=0-20-2 (6)
X12X34 X12X34

for the two independent cross-ratios. In [13] it is suggested to obtain the non-standard
coordinates z, z from the usual situation 0, 1, co by the operator

L

W(z.2) = e Pleldl L=Lj—1; @)

S

Z
z

where D is the dilatation generator. This leaves 0, oo invariant but maps 1 — (z, 2).
In calculations one will not transform coordinates but rather act on the states scatter-
ing over the second hexagon. Since the operator above is diagonal on these one can
finally evaluate both hexagons as in the three-point problem.

Gluing means inserting s/(2) bound states [5]. This antisymmetric representation
at level (or length) a has the parts

€70 Y €/ L~ LN (V2 el V72 LN (/A R (/) W 10 SR )|

Customarily, in the first case one separately considers i = 1,2. In a four-point
calculation one can [13] act on the states on the second hexagon by the tilting
transformation (7). To this end we rewrite

%(D_J)zEziﬁziu—l—... ©)

where the dots indicate O (g?) corrections in a weak coupling expansion. The gener-
ator J acts on the scalars in the s/(2) bound states, of which there are only one or two.
Our purpose in this note is to re-sum the infinite series in z, z that the weight factor
creates; for now we turn a blind eye on all transformations required to rotate the
second hexagon in the internal space. We can also send ¢* %=1 — %% etc. since
these are constant shifts, while the summation ranges must, of course, be respected
to obtain sensible results.
Then,

[T

k
W) @H W) = @™ (g) WH Wt (10)
because L (the Cartan generator of the Lorentz transformation) attributes weight
1, —1to !, ¥2, respectively.

In the five-point process in Fig. 2, the central tile is glued to two neighbouring
hexagons. Full fledged five-point kinematics cannot be parametrised using only the
coordinates of the 1, 2 plane, so that the Cartan generators used above are not enough
to recover it. Nonetheless, to get started we follow [14] and use restricted kinematics.
We then obtain a weight factor for either gluing, so W(z1, z1) W(z2, 7). Clearly, the
fifth cross ratio is lost.
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On the left and the right hexagon there is only one bound state and thus no
scattering. Yet, the contraction rule for the outer hexagons enforces the scattering
on the middle tile to be diagonal. Further, let us choose 3y, 1y kinematics on the
middle hexagon in which case the scalar factor becomes

™, vy = T, v") (11)
with the improved BES dressing phase [3, 9] in mirror/mirror kinematics

w T+ +iu] T+ 5 —iv] T+ %2 —i(u—v)]
T4 S —iul T+ +iv] I+ %L i — )]

+0(g). (12)

A comprehensive discussion of the bound state S-matrix is given in [4]. By way
of example, we consider the scattering of two states of the first type in (8), both with
i = 1 or both with i = 2. The relevant scattering matrix is called Xﬁl (a,u,b,v) in
[4], where we associate the bound state counter a and the rapidity u as well as x*w)
with the first particle and b, v, yi(v) with the second.

In the symmetric representation, the role of bosons and fermions is exchanged,
in particular in (8). As a consequence, at bound state length 1 (so for fundamental
particles) the X element describes the scattering of two equal fermions. Hence in [4]
it is called D in agreement with the nomenclature of [6]. The entire S-matrix can be
changed by an overall factor, and indeed this D is equal to the A-element in [6].!

We repeated the steps of [4] to re-derive the S-matrix in the antisymmetric repre-
sentation. Flipping the statistics means exchanging Poincaré and conformal super-
symmetry, and also Lorentz and internal symmetry generators. Sticking to the same
algebra conventions one obtains a sign flip on the rapidity parameters, so in particular
x* < xT. The X element at bound state length 1 now describes the scattering of
two equal bosons. We observe that what was called D before now becomes A~!.
Hence for the antisymmetric representation the construction yields S~! without any
rescaling.

Next, by observation—at least in 3y, 1y kinematics and at leading order in g—
the diagonal elements of our S~! in the antisymmetric representation are related to
those of [4] by flipping the sign of the rapidities, which has the interpretation of a
complex conjugation or of taking a second inverse. It follows that we can use the
S-matrix of [4] for our purposes, without any changes!

1t follows from here that the bound state length 1 part of the S-matrix of [4] is in fact the inverse
of that derived in [6].
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Verbatim,

o [T_ia—HIE"e -5
Xn =D l_[k ( pa a+b - *
j=1la — 7 H, 1(b_1)1_[ ((—idu+ 5= =)

k I—n k—m
(k m)(n— )HC 1_[ Hdk j+2 l_[dka j+2
0

m= j=1—-m

¢ =—idu i#—j—i—l, d,:#, d‘,:%, (13)
where u = u — v and
D= % == (14)
simply applying the 3y, 1y transformation
x = 1/x7, yt = 1/y". (15)
At lowest order in g,
D — u = v Vutu—Avtu— - (16)
ut —ov- u-vt

Including the mirror measure [5] for the propagation of either particle over an edge of
width zero—so when no propagators run along the common edges of the hexagons—
we obtain the expression

o e lbt dudvabg* b ok
1(X) = E E YRR b22W1W22” Xy
ab=1 k=0 4 (u” + )7+ %)

Naively, this is not a one-loop contribution, because there is a factor g* from the mea-
sure for the two bound states. Yet, we expect the scattering of the scalar constituents
to introduce braiding factors like

e e 3;/_;;/ —u+u— vivo (17
where we have scaled back to the field theory convention of (1) to meet the weak-
coupling expansion. Importantly, this factor does not only adjust the power to g2, but
it also removes the square-root branch cuts that would render inefficient the residue
theorem as a means of evaluating the integrals over the rapidities u, v. In [14] an
averaging prescription for such additional braiding factors is suggested. Building
on the work here presented we want to study whether this prescription is the only
possible one.
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Despite of the appearance, the X matrix has singularities in du only in the lower
half-plane. Poles in X can therefore be avoided simply by closing the integration
contour over the upper half-plane for # and the lower half-plane for v. Doing so,
the poles u~, v* from the measure can contribute. Likewise, in the numerator of the
phase, I'[1 + % +iuland I'[1 + % — i v] develop singularities. Note however, that
we cannot localise both rapidities by poles from the phase:

u:i(m+§),u=-4<n+§):: FU+Z%£+KM—W]
=TI[1—m—n] (18)

form, n € N so that this denominator I"-function creates a zero in these cases. Thus
at least one pole, perhaps a higher one, must come from the measure. Then, e.g. with

u:i%,

b . b .
Fll+all[1+5+iv]l[1+5—iv]

and therefore the term in the phase that could create apoleatv = —i(n + g) actually
drops. In conclusion, only the poles from the measure are relevant.

3 Integrating/Summing into Polylogarithms

Substituting u = i4, v = —i%’ the phase reduces to X% = I'l4+a+bl/(I'[1+
a]I'[1 + b]) and we find the cross ratio dependence

R (20)

in accordance with the domain of convergence of the integrals over u, v. In order to
unclutter the notation and to be able to straightforwardly Taylor-expand results in
small quantities we will relabel the variables as

11
{Z1, 1, —, —} = {z1, b1, »2, a2}. (21
72 22

Due to the numerator of the A factor in X, the integrand of 7 (x) has the pole struc-
ture 1/((u™)?v") — 1/(u~ (v*)?).Infact, the polylog level is set by the power of these
poles. In the case at hand we obtain homogeneous transcendentality 2. The residue
at either double pole can create a single log(b; z1) or log(a, y»), respectively, as is
expected from one-loop Feynman graphs, while the remaining terms are regular when
all four variables become small. Derivatives from the double poles can fallontou™, v=
creating an extra a or b in the denominator or onto §u in the m-sum in X, c.f.(13).
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Due to explicit definition of X we can analytically evaluate all contributions to 7 (X)
by the methods developed below on a simpler example.

In (8) we list the four types of bound states forming the complete multiplet. The
S-matrix will then have 16 diagonal elements. There is a second instance of X for the
scattering of two bound states of the first type given in (8), but withi = 2. This matrix
is algebraically equal. Second, scattering of the first type of bound state over the other
two is called Y in [4]—there are four diagonal elements for both cases,i = 1,2 and
again, the two Y-matrices are equal. Last we have six diagonal elements Z; for the
scattering of the last two types of bound states. Note that to some extent an averaging
over braiding factors is automatic, if the dressing by momentum factors is tied to the
i-index in Y; the set of Z-elements is symmetric in this respect.

The Y, Z cases are linear combinations of several instances of X with shifted
k, 1, n-indices, with coefficients depending on x*, y* and the counters. All unphys-
ical poles from the coefficient matrices cancel, but this property is not manifest in
the formulae spelled out in [4]. Ultimately, all the diagonal Y, Z cases—at least to
leading order in g in the given kinematics—share the property of X to have poles
only in du in the lower half-plane. Our reasoning about the locus of poles therefore
directly carries over.

In the 3y, 1y kinematics, the Y elements are of order 1/g. Nicely, to eliminate
a single square root branch cut we also need one additional braiding factor e*7/2.
Similarly, the Z elements start to come in at 1/ g2and Zyy ... Zy require no braiding,
while Zss, Zgs could be dressed by both, e*(?1¥r2)/2 Here the averaging of [14]
means to put in both possibilities with coefficient 1/2.

Remarkably, at the pointu = i%, v = —i g, the matrix elements Y;;, Y>> and
Z\1, Zy, Z33, Zss, Zge factor into simple products of I'-functions. Below we
describe how this enables us to calculate the part of the one-loop contribution where a
derivative from the residue at 1 /(™) falls upon (z;Z;) ", orupon 1 /u*, creating an
extra factor 1/a (equivalently for the second particle with z,, v, b). Since there is no
fully explicit writing for Y, Z we cannot yet compute the contribution with a deriva-
tive on the scattering matrix itself in the way described in the following, because this
destroys the factorisation properties. Yet, integrating all available pieces we could pin
down the space of functions and use the symbol to fit the remaining parts, also for the
non-factoring cases. This could be done separately for the individual contributions.

Let us illustrate the idea on the example of Y, in particular the contribution in
which a derivative acts on (z1b;)™*:

log (Y1) _ Zza—kbkyl—bal I'la—k+b—11 TI'[l+k+I]
log(z1by) abkl’l 2 2 4ara— K[l +b—11T[1+k] I'[1+1]
22)
wherea,b = 1...00, k,l =0...a—1,b — 1. Define
2 2 <1 0 akyk a—kk
r’=zub, p°= = r—z{"b] = az{7"b]. (23)

_b_l ar
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The inverse operation is | dr/r. Comparing to the original series the constant part of
the indefinite integral must be subtracted. We can thus eliminate a from the denom-
inator of (22) with no loss of information. Next we swap the sums over a, k and b, [
respectively and shift the variables by a — a + k, b +— b + [ in order to decouple
the summations. The sums are of geometric type and yield

Dog(Y11) /' dr 21 (a2 + y2 —axyr — by, — azz1) (24)

log(zib)) ) r4(0—b)(I—ay—b)(I—z)(I—y,—21)

Hence the root of the procedure is a rational function and we add polylogarithm
levels by the integration in the modulus 7:

Dog(Y11)  zy (log[1 — by] —log[1l —z;])
log(ziby) 4 (b1 —z1)
z1 (log[1 — ap] — log[1 — ax — by] — log[1 — y,] + log[1 — y2 — z1])
4(by — z1 — biyr + azz1)

(25)

upon subtraction of the constant part in ». To obtain the contribution from the deriva-
tive falling onto 1/u™ we can use the operation [ dr/r asecond time. As in [14] we
assumed that factors like |u|, |v| do not arise from the x (z) functions or the expan-
sion of X, and that (—1)“? is unphysical and has to be undone by the contraction
prescription on the central hexagon.

For the other factoring matrix elements we proceed similarly. For X one can
again decouple the (five) sums by swapping the order of summation and shifting
the counters. Since everything is expressed in terms of I'-functions we can even
address the contributions in which a single derivative falls on du. The sums are of
the type » F or 3F, and can be rewritten in terms of parametric integrations over
Euler kernels by the standard formulae. Putting aside the integrations as long as
possible we can find a path through the computation that always closes on the same
type of summand/integrand. The final parametric integrations yield polylogarithms
much as the integration in the modulus in the simple case above. Note that the Gauss
hypergeometric function also appeared in the context of re-summing the POPE at
one loop, see [17] and references therein.

In our problem we find eight different denominators:

a—-y,b—z,by—az,a—y+by—az,b—by—z+az,
ab—aby—abz—yz+ayz+byz, (26)
ab—aby—yz+4+ayz,ab—abz—yz+byz

Confusion with the bound state counters cannot arise anymore so that we dropped
the 1, 2 subscript on the variables. The complete amplitudes are written as sums of
weight two logarithmic functions over these denominators, with single terms of each
denominator as a coefficient. Formula (25) illustrates what we mean here.
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The symbol letters are
l—a,a,1—b,1—a—-b,b,1—y,a—vy,y,1—2,b—z,1—y—2z,2z (27
and

a—y+by—az, b—by—z+az, ab—aby—abz—yz+ayz+byz.
(28)
All the denominators are point permutations of the denominator z — b of the Bloch-
Wigner dilogarithm. Three of them also occur in the symbols. One can generate all
the symbols of this type from

. z r .,
Li, (1 - 5) — 5 log’(®) (29)

by permutations. At one loop, N = 4 field theory results contain only Bloch-Wigner
dilogarithms. Since there will be several double gluing processes in complete cor-
relators our results can correctly reproduce one-loop field theory if (29) cancels. A
difficulty is that each of the three incarnations of the function occurs with various
denominators making it hard to unambiguously associate terms to Bloch-Wigner
dilogs or the part that has to drop.

Finally, as done in [14], one might choose to bring one of the particles around the
central hexagon, so instead of scattering X (u”)Y (v™") one studies —Y (W)X "),
where in this context X, Y are some bound states. Due to the odd number of crossing
transformations the sign of the rapidities in the phase and the S-matrix in the antisym-
metric representation is not aligned in this version of the computation. What is more,
the scalar factor i contains the pole 1/(u* — v*) now, which we would have dubbed
unphysical above. Picking the residue u = i 5 from the measure this becomes a pole
atv = —i (g — a), which is (on the border of) the lower half-plane if b > 2a. Prelim-
inary studies suggest that both effects introduce polylogarithms with root arguments,”
and that uniform transcendentality may not be manifest. Yet, the end result must agree.
In scattering processes with more virtual particles it will be hard to avoid this situation
so that we should try to develop methods appropriate also in this kinematics. At the
new residue all the factorisation properties are spoiled so that we could not proceed as
before without substantial progress on simplifying ¥, Z.

4 Conclusions

In the evaluation of n-point functions in A/ = 4 super Yang-Mills theory by hexagon
tesselations, the first complicated process is the gluing of three adjacent tiles by two
single mirror magnons. On the central tile this necessitates the evaluation of diagonal
scattering of two so-called s/(2) bound states.

2We thank C. Duhr for some test calculations.
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We find a beautiful and efficient integration scheme for this two-magnon problem,
although we cannot yet ascertain that the outcome is the physical result. To answer

this question must be one aim of future work.

Remarkably, the problem yields a multilinear alphabet of letters in the symbol of
the relevant generalised polylogarithms, suggesting that the two-magnon problem can
be integrated in closed form also beyond the leading order in the coupling constant.?

Last, another direction of future research will be to simplify the bound state
scattering matrix in the various kinematical regimes in order to be able to address

higher processes, too.
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Meta-conformal Invariance and Their )
Covariant Correlation Functions A

Malte Henkel and Stoimen Stoimenov

Abstract Meta-conformal invariance is a novel class of dynamical symmetries, with
dynamical exponent z = 1, and distinct from the standard ortho-conformal invari-
ance. The meta-conformal Ward identities can be directly read off from the Lie
algebra generators, but this procedure implicitly assumes that the co-variant corre-
lators should depend holomorphically on time- and space coordinates. Furthermore,
making this assumptions leads to un-physical singularities in the co-variant correla-
tors. We show how to carefully reformulate the meta-conformal Ward identities in
order to obtain regular, but non holomorphic expressions for the co-variant two-point
functions, both in d = 1 and d = 2 spatial dimensions.

1 Introduction

Many brilliant applications of conformal invariance are known, ranging from string
theory and high-energy physics [36], or to two-dimensional phase transitions [9,
16, 19] or the quantum Hall effect [11, 17]. These applications are based on a
geometric definition of conformal transformations, considered as local coordinate
transformations r — r’ = f(r), of spatial coordinates r € R? such that angles are
kept unchanged. The associated Lie algebra is called the ‘conformal Lie algebra’.
In Table 1, examples of infinite-dimensional Lie groups of time-space transfor-
mations are shown. They represent attempts to answer the question “Is it possible
to adapt conformal invariance to dynamical problems ?” A minimal requirement
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is to distinguish time and space variables through their global rescaling, accord-
ing to t > t' = bt and r > r’ = b"/?r which defines the dynamical exponent z.
In what follows, we shall consider infinitesimal transformations where b = 1 + ¢,
with |e| <« 1. Then a rescaling transformation is described by an infinitesimal gen-
erator, which for global dilatations on time- and space-coordinates takes the form
Xo = —t0, — ér - 0 — 6. The parameter ¢ is the scaling dimension of the scal-
ing operator ¢ = @(¢,r) on which the generator X is thought to act. Practical
use of this is made for the computation of n-point correlation functions C!"! =
CH(ty, ...ty r1, ... 1) = {(@i(t1, 71) - @, (t., ). The dilatation-invariance
of such a correlator is expressed via a Ward identity, which for the global dilata-
tions described by X takes the form

- a1 ]
E —ti— — —r; - — —§; C[”]t,...,t,l; oo, ) =0 1
j_l< jé)tj zrj arj j) (1 ri r) ()

and it becomes explicit how the dynamical exponent z distinguishes between tempo-
ral and spatial coordinates. Different symmetries will lead to different Ward identities
which describe together constraints on the form of the n-point correlator C!"!. Explicit
examples will be given in later sections. These differential equation constraints are
only consistent if the generators, such as Xy, belong to a well-defined algebraic
structure, e.g. a Lie algebra.

It follows from time-space rotation-invariance that conformal invariance must
have z = 1.In general, z has a non-trivial value [44].In 1 + 1 time-space dimensions,
there exists an infinite hierarchy of models with dynamical exponent 1 < z < 2
[37]. Lower bounds on z are derived from hydrodynamic projections of many-body
dynamics [13]. Attempts of identifying dynamical conformal invariance goes back at
least to critical dynamics of a two-dimensional statistical system [12]. In Table 1, we
distinguish the well-studied ‘ortho-conformal’ transformations [9], which in the two-
dimensional space made from time-space points (z, 7) € R? are angle-preserving,
from recently constructed groups of ‘meta-conformal’ transformations [20, 25, 28,
42], which in general are not angle-preserving but which share certain algebraic
properties with ortho-conformal transformations in Table 1.

The most simple prediction of ortho-conformal invariance concerns the form
of the co-variant two-point function C = C(zy, 21, 22, 22) = {($1(z1, 21)92(22, 22))
built from so-called ‘quasi-primary’ scaling operators ¢, with ‘conformal weights’
Aj; and A ; [9]. In complex light-cone coordinates z = ¢ +iur,z =t —iur, one has

_ _ =24y - - \—24
Cortho(21, 215 22, 22) = 84,407, 3,(21 —22) (21 —22) 2
up to normalisation. Herein, 1/u has the dimensions of a velocity. In deriving this kind
of result, auxiliary assumptions are made. Analogously with Eq. (1), the requirement
of ortho-conformal co-variance leads to a set of linear partial first-order differential
equations for C, the so-called global ortho-conformal Ward identities. Their joint
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Table 1 Several infinite-dimensional groups of time-space transformations, defined by the corre-
sponding coordinate changes. Unspecified (vector) functions are assumed (complex) differentiable
and Z(t) € SO(d) is a smoothly time-dependent rotation matrix. The physical time- and space-
coordinates, the associated dynamical exponent z of this standard representation and the physical
nature of the co-variant n-point functions is also indicated.

Group Coordinate changes Phys. coordinates z| Co-variance

Ortho-conformal (1+ 1)D| 7/ = f(z)| 7 =2 z=1t+iur 1| Correlator
7=z Z/=f(5) Z=t—iur

Meta-conformal 1D u=fw =i u=t 1| Correlator
W =u i = f(i) i =t+pr

Meta-conformal 2D ' =b() w=w w =w T=t
=1 w = fw) @' =w w=1+u(ry+iry)| 1| Correlator
=1 w =w W' = f(w) W=1+p(r —iry)

Conformal galilean t'=b(@)| r=db@)/dt)r
t' =t r'=r+a() 1| Correlator
t'=t r'=%@)r

Schrédinger-Virasoro ' =b@)| r =db@)/dnl/?r
=1t r'=r+a() 2| Response
=1t r'=%@)r

solutions Eq. (2) are necessarily holomorphic (or anti-holomorphic) functions in the
variables z;, z; [29].

In this work, we shall examine the analogous question for meta-conformal invari-
ance. Known physical examples of confirmed meta-conformal invariance are of two
types. First, there exist spatially non-local representations, which arise as a dynam-
ical symmetry of certain non-local equations of motion which occur for example in
diffusion-limited erosion [34], the kink-terrace-step model for vicinal surfaces [39]
or the associated quantum chain [31] which is a conformal field-theory with cen-
tral charge ¢ = 1 [38]. Some predictions of meta-conformal invariance for response
functions have been confirmed in these models [26, 27]. Second, a different type
of meta-conformal invariance, with spatially /ocal representations, has been identi-
fied recently in the kinetics of biased spin systems, see Fig. 1, such as the kinetic
1D Glauber-Ising model with a bias, sufficiently long-ranged initial conditions and
quenched to zero temperature [28, 43]. The influence of transverse dimensions on the
representations of meta-conformal transformations is currently under investigation.
However, the focus of this work rather is on the formal study of meta-conformal
representations as time-space transformations and the boundedness of the resulting
two-point correlators.

In order to do so, we begin by analysing the consequences of writing analogous
global Ward identities for meta-conformal invariance [20, 28, 42]. As we shall see
in Sect. 2, the straightforward implementation of the global meta-conformal Ward
identities leads to un-physical singularities in the time-space behaviour of such cor-
relators. These singularities arise since the meta-conformally co-variant correlators
are no longer holomorphic functions of their arguments. Therefore, a more careful
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approach is required, which we shall explicitly describe in Sects. 3 and 4, respec-
tively, for d = 1 and d = 2 spatial dimensions. Our main result is the explicit form
of a meta-conformally co-variant two-point function which remains bounded every-
where, as stated in Egs. (33, 34) in Sect. 5. An appendix contains mathematical
background on Hardy spaces in restricted geometries, for bothd = 1 and d = 2.

2 Global Meta-conformal Ward Identities

Meta-conformal invariance arises as a dynamical symmetry of the simple equation
Lo, r)= (— no, + B,H) @(t, r) = 0, which distinguishes a single preferred direc-
tion [41], with coordinate r, from the transverse direction(s), with coordinate r | .
This is sketched in Fig. 1. Throughout, we shall admit rotation-invariance in the trans-
verse directions, if applicable. Therefore, in more than three spatial dimensions, the
consideration of the two-point function can be reduced to the case of a single trans-
verse direction, r, . Therefore, it is enough to discuss explicitly either (i) the case
of one spatial dimension, referred from now one as the 1D case (then there is no
transverse direction), or else (ii) the case of two spatial dimensions, called the 2D
case (with a single transverse direction).

The Lie algebra generators of meta-conformal invariance read off from Table 1 as
follows. In the 1D case, in terms of time- and space-coordinates [20] (with n € Z)

1
0, = —t"! <a, — —a,) —(m+1) (5 - Z) "
% W

1 y n
_— 9, — n- 3
M(t+w) (n+ )M(t+w) 3)

~
B
I

and in the 2D case [28]

A, = —t"H! (a, — la”> —(m+1) (5 — 21) " 4)
® 7

1 : . i R
By = =5 (1 £ ir))" (0 Fi0L) — (n + 1)V”TLJ(t + (g £iry))

with the short-hands 9 = diru and 9, = % The constants § and y (respectively
v|,..) are the scaling dimension and the rapidity of the scaling operators on which

these generators act and p~! is a constant with the dimension of a velocity. Each

Fig.1 Schematic

n
illustration of ballistic
. . upstream downstream
transport in a channel, with
the spatial coordinates |, r 1.

— >
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Fig. 2 Real part (orange) and imaginary part (blue) of the 1D meta-conformally co-variant two-
point function C(¢, r), with §; = 0.22, y; = 0.33 and n = 1. Left panel: Spurious singularities
arise in (5). Right panel: Regularised form after correction of the spurious singular behaviour.

of the infinite families of generators in (3, 4) produces a Virasoro algebra (with
zero central charge). Therefore, the 1D meta-conformal algebra is isomorphic to
a direct sum of two Virasoro algebras. In the 2D case, there is an isomorphism
with the direct sum of three Virasoro algebras. Their maximal finite-dimensional Lie
sub-algebras (isomorphic to a direct sum of two or three s[(2, R) algebras) fix the
form of two-point correlators C (¢, r) = (¢ (¢, r)@>(0, 0)) built from quasi-primary
scaling operators. Since the generators (3, 4) already contain the terms which describe
how the scaling operators ¢ = (¢, r) transform under their action, the global meta-
conformal Ward identities can simply be written down. The requirement of meta-
conformal co-variance leads to

=2 (1 +M§)*2V1/“ s ifd=1
Creta (1, 1) = 2 (1 N Mr“'ti”>_2yl/“ (1 + MM)—2V|/M Cifd =2 5)

t 9

andwherer =r € Rford = landr = (r, 7)) € R2 for d = 2 where we also write
y =y —1yL. and y:=y +iy,. In addition, the constraints § =4,
and yy = ypinl1Dory = yj2and y; | = Y12 in 2D are implied.

Formally, the procedure to derive (5) is completely analogous to the used above
for the derivation of (2) from ortho-conformal co-variance. The explicit forms (5)
make it apparent that Cpe, (¢, 7) is not necessarily bounded for all ¢ or r. In Fig. 2, we
illustrate this for the 1D case—a spurious singularity appears whenever ur = —t.

In the limit 4 — 0, the meta-conformal algebras contract into the galilean con-
formal algebras [18]. Carrying out the limit on the correlator (4), one obtains, as has
been stated countless times in the literature, see e.g. [3—06, 35]

1~Prexp (—248) ; ifd =1
Ceoalt, 1) = {t_zsl exp %—44)) ; ifd =2 ©
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with the definition y = ()|, y.). While this correlator decays in one spatial direc-
tion (where y;r > 0 or y, - r > 0 and assuming ¢ > 0), it diverges in the opposite
direction. In view of the large interest devoted to conformal galilean field-theory, see
[1, 6-8, 10, 14, 15, 30, 33, 35] and refs. therein, it appears important to be able
to formulate well-defined correlators which remain bounded everywhere in time-
space. We mention in passing that the 1D form of (6) can also be obtained from
2D ortho-conformal invariance: it is enough to consider complex conformal weights
A= % (6 —iy/w) and A= % (8 +1iy/w). Then (2) can be rewritten as

277° 2 N
Coho(t,7) =172 |:1 + (g) i| exp I:—% arctan %] ey 12872t ()

In what follows, we shall describe how to find correlators bounded every-
where. Since the implicit assumption of holomorphicity in the coordinates gave the
unbounded results (5, 6), we shall explore how to derive non-holomorphic correlators.
Our treatment follows [25], to be generalised to the case d = 2 where necessary.

3 Regularised Meta-conformal Correlator: The 1D Case

Non-holomorphic correlators can only be found by going beyond the local differential
operators derived from the meta-conformal Ward identities. We shall do so in a few
simple steps [25], restricting for the moment to the 1D case. First, we consider
the ‘rapidity’ y as a new variable. Second, it is dualised [22-24] through a Fourier
transformation, which gives the quasi-primary scaling operator

1 .
P, t,r) = —/dy et g, (t,r) ®)
V2 Jr 4
This leads to the following representation of the dualised meta-conformal algebra

Xp =i+ D[+ pr) — "] o, — "o, — [(t + oyl t"“] 9 — (n + 18"
_iln+1)

1
(1 )" O = = (1 + )" oy )

n

such that meta-conformal Lie algebra is given by

[Xn, Xm]l = (n —m)Xntm, [Xn,Yml=0—m)Ypim, [Yn,VYml= 0 —m)Ynim
(10)
This form will be more convenient for us than the one used in [25], since the parameter
wu does no longer appear in the Lie algebra commutators (10). Third, it was suggested
[22, 25] to look for a further generator N in the Cartan sub-algebra b, viz. ady 2~ =
ag Z for any meta-conformal generator 2. It can be shown that
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N = =8, — rd, + udy, + ik (1)d; — v() (11)

is the only possibility [25], where the functions « (1) and v(1) remain undetermined.
Since in this generator, the parameter p is treated as a further variable, we see
the usefulness of the chosen normalisation of the generators in (9). On the other
hand, the generator of spatial translations now reads Y_; = —u~'9,, with immediate
consequences for the form of the two-point correlator. In dual space, the two-point
correlator is defined as

F= @@t 0)@2(Cas 1o, 12y 12)) = F @Gy Gy 1, 1o, 71, 72, s h2) - (12)

Lifting the generators from the representation (9) to two-body operators, the global
meta-conformal Ward identities (derived from the maximal finite dimensional sub-
algebra isomorphic to s[(2, C) @ s[(2, C)) become a set of linear partial differential
equations of first order for the function F. While the solution will certainly be
holomorphic in its variables, the back-transformation according to (8) can introduce
non- holomorphic behaviour but will also lead to a correlator bounded everywhere.

The function F is obtained as follows. First, co-variance under X _; and Y_; gives

F=FQ.otE m ) =1 —0, &=ur — pan (13)

The action of the generators Y, and Y; on F is best described by introducing the
new variables 1 := @& + w2l and ¢ = w18 — (2&. Then the corresponding
Ward identities become

(2i9, — (1 +£)) F =0, 9 F =0 (14)
Finally, the Ward identities coming from the generators X, and X; become
(—rat—gag -8 —Sz)f:O, 18 —8)F=0 (15)

The second of these gives the constraint §; = §,. The two remaining equations have
the general solution

~ s o~ (1 . Uiry — Uor
F=(—1t) 25'«?<§ (1181 + pu28p) +iln (1 +1t1—t222)§m,ﬂ2> (16)
| —

with an undetermined function .%. Spatial translation-invariance only holds in a more
weak form, which could become useful for the description of physical situations
where the propagation speed of each scaling operator can be different.

In [25], we | tried to use co-variance under the further generator N in order to fix
the function .% . However, therein a choice of basis in the meta-conformal Lie algebra
was used where the parameter 1 appears in the structure constants, but it became
possible to fix .# and furthermore to show that F with respect to the variable 7 is
in the Hardy space H,', see the appendix for the mathematical details. If we want to
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consider u as a further variable, as it is necessary because of the explicit form of N,
objects such as “uY,4,,” are not part of the meta-conformal Lie algebra. Therefore,
it is necessary, to use the normalisation (9) which leads to the Lie algebra (10) which
is independent of . In order to illustrate the generic consequences, letv = v(u) and

o = —uk () be constants. The co-variance condition N F = 0 gives
= v LMt
F(w:py, w2) = ()" F w—HUT’,u_ a7
2

where the function ? remains undetermined. In contrast to our earlier treatment, we
can no longer show that F had to be in the Hardy space H2+ . On the other hand, this
mathematical property had turned out to be very useful for the derivation of bounded
correlators. This motivates the following.

First, we re-write the result (16) as follows (with the constraint §; = §5)

_ B8+ p2lo

F=( - tz)fz‘s‘ﬁ:?\(u +iA) L, o4 >

,A;:1n<1+w>

n—n
R R (18)
and we also denote % ({+) := .Z (¢4 + iA). Then, we require:

Postulate. If 1 > 0, then %, € Hy and if » <0, then .7, € H; .

The Hardy spaces H2i on the upper and lower complex half-planes H_. are defined
in the appendix. There, it is also shown t/l\lat, under mild Corlglitions, that if )‘,? 0 and
if there exist finite positive constants .Z©, & such that |.7 (¢4 +i0)| < F Pe™,
then .%, is indeed in the Hardy space H, . Physically, this amounts to a requirement
of an algebraic decay with respect to the scaling variable.

The utility of our postulate is easily verified, following [25]. From Theorem 1 of
the appendix, especially (A.3), we can write

9] . . —~ o] . . ~
Faler) = OM) /0 Ay G ZL () + O (-2 /0 dy_e 1GHY=- 2 (o))

(19)
where the Heaviside functions & (£A) select the two cases. For A > 0, we find

1 . PN
F = _/ d§1d§2 e nhi—ine @
27 R2
— 5 3/2/ d¢ides t—251/ dy, e—lym—11/2{2el(m§1+M2C2+21?»)V+/29+(y+)
2m)>7> Jpe 0

V32 *° 2 2 ~
= Y2 / dyy e 78 (J/+ - ﬂ) 8 <V+ - ﬂ) Fi(vy)
0 M1 U2

123V 2%}

V32T o0 _ 2 ~
—t 2818)’1/#10’2/#2/ dy, e 78 (V+ — —) T (Vs)
13V %) 0 M1

=2y1/m1
_ Mmiry — Har2 Y1
= cste. 8y, /oy (1 — 12) 720 (1 + —> ) (-) (20)
nh—=n M
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where the definitions (18) were used. Similarly, for A < O we obtain
1 N
F=— deide e y&i—ins g
27T R2

— (27[)3/2/ dgdes 1= 251/ dy_ e—l)/l4'1—lyzé'ze—l(ul§1+M2§2+21)\)V—/2§'7(yi)

32 2y 2 ~
= _ﬂt—%l d)/ M-8 (J/ + _) S (V + ﬂ) F_(y-)

i M2
V321 / 2\ =
= ——18, . dy_ M-8 (y_ — ‘— )9_(y_)
L1 Y1/ 1sy2/ e o 0
=2ly1/ml
Hiry — Mol 14!
= cste. 8V1/M15V2/M2 (H — 1)~ 201 ( —) e <_—> 21
h—0n M1

Combining these two forms gives our final 1D two-point correlator

=2[y/ il
> (22)

up to normalisation. As shown in Fig. 2, this is real-valued and bounded in the entire
time-space, although not a holomorphic function of the time-space coordinates.

Finally, it appears that our original motivation for allowing the 1 ; to become
free variables, is not very strong. We might have fixed the u; from the outset, had
not included a factor 1/u into the generators Y,, (such that the spatial translations
are generated by Y_; = —d, and continue immediately with our Postulate. Since a
consideration of the meta-conformal three-point function shows that u; = u, = 3
[21, chap. 5], we can then consider ™! as an universal Velocity.1

Hiry — Qa2
Hh—1n

F= 831,52871/M1sy2//12 (1 + ‘

4 Regularised Meta-conformal Correlator: The 2D Case

The derivation of the 2D meta-conformal correlator starts essentially along the same
lines as in the 1D case, but is based now on the generators (3). The dualisation is
now carried out with respect to the chiral rapidities y =y — iy and y =y +1iyy
and we also use the light-cone coordinates z = r| +ir; and z = r) — ir . Taking
the translation generators A_j, Bfl into account, we consider the dual correlator

F=F(,0,0,0,1,6 &, 11, 1) (23)

'In the conformal galilean limit & — 0, recover the bounded result F ~ exp (—=2|y1r|/t) [25].
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where we defined the variables

t=1t—1t, §=wz — M2z, &§ =121 — u222 24)

In complete analogy with the 1D case, we further define the variables

n=mé + malo, 1=+ mb (25)

such that the correlator F = I?(n, n,t, &, § 1, o) obeys the equations

(219, — (t +£)de) F =0, (2id; — (t +£)3;) F =0, (26)
(10, + &8 +E0; +28)) F =0

along with the constraint §; = §,. The most general solution of this system is

-~

F= t—%lﬁ(g +iln(1 +&/1), g +iln(1 +§/t)> =1F (u+ir, il +ik)

27)
with the abbreviations (u is obtained from u by replacing ¢; — ¢;)
2 Mrl/t 1 | 2 AT 2
=LC tan ——=1" = <1 (1 —) (—)
u 2(§1+§2)+arcanl+ur”/t 5 n[ +—) 15
—_—
B (28)

and we simplified the notation by letting @ = u» = u and assumed translation-
invariance in time and space. As before, we expect that a Hardy space will permit
to_ derive the boundedness, see the appendix for details. We define %, (u, i1) :=
Z (u +iA, i + 1)) and require:

Postulate. If 1 > 0, then 7, € Hy* and if A < 0, then .7, € Hy ~.

Theorem 2 in the appendix, especially (A.11), then states that
oo oo
% — @()\’)/ dT / df ei(u+i)»)f+i(ﬁ+ik)f§+(t .E)
0 0
o o . . - . - o~
+O(—1) / dr / df ¢ HWTHEENTE (7, T) (29)
0 0

Then, we can Write_ the two-point function in the case A > 0, with the short-hand
Pt = dg;ddg,de,; and the abbreviations from (28)
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1 61— b —ita by T
F = D e MO -ING—inhL—int p
(2m)? / ¢
t—251 . s H 17, 7
_ 9 e MO —iGi— il -l
2n)3 /1;4 ¢
00 00 7+ 73
x / dr / d7 PO+ 2T G+ F2T2AE Z (1 )
—281
_ d‘[/ dz ﬁ. (1, 7) ela(r D-AMTHD)
@ny / i
D DL TPt AH (=71
]R4
— i -y - z ! _1
— cste. t 28‘5),1’1,28)7]’);2 2=/ =32+ /1 <%> (C) (%) 30)

Herein, variables were changed according to ¢} = ¢4 +¢— and {, = ¢ — ¢ and
similarly for the ¢;. The case A < 0 is treated in the same manner

t7251

(2m)3
%) ) . A

X/ df/ dz e—i(ll«(Cl+§2)+261)T/2+Me—i(//-<(1+§2)+2a)f/2+kfy+(t ) (1)
0 0

F

/ D e*iyltl*i}7151*i)/2€2*i}7252 %

— cste. 128, 8o o e2aln/ul=Ii/ul) g=20n/ki+HR /1D 6 <_ﬂ) ) (_ﬂ>
YLY2EY Y2 m m

In order to understand the meaning of these expression, we return to the physical
interpretation of the conditions A > 0 and A < 0. From (28), the most restrictive case
occurs for r; = 0. Then A > 0 is equivalent to |/t > 0. On the other hand, since
y1/ 1 will have a definite sign, it is a fortiori also real. Hence y; | = 0 and we can
conclude that

—2y1/1
_ ury N2 2
F = 85,58, 85,5 172 [(1 +|EL) + (5 } (32)

up to normalisation, is the final form for the 2 D meta-conformally co-variant corre-
lator which is bounded in the entire time-space.

5 Conclusions

It has been shown that via a dualisation procedure of the rapidities in the meta-
conformal generators, a refined form of the global Ward identities can be found
which leads to expressions of the quasi-primary two-point functions which remain
bounded in the entire time-space. Herein, we postulate that the dualised two-point
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functions, whose dual variables are naturally seen to occur in a tube of the first (or the

forth) quadrant, belong to a Hardy space. In this way, we can formulate a sufficient
condition for the construction of bounded two-point functions, namely
) =2[y1/ml

(33)

MiFr1 — M2l
Hh—=n

F(t1, 1, 71, 72) = 85, 5,80 jusyajn (11 — 12) 20" (1 + ‘

(up to normalisation) in d = 1 spatial dimensions and

—28
F(t, 0, ry15 12, FL T L2) = 855,840y (F1 — 02)777 X

i1 — or 2 ’ o 2 2a/k
% [(1 I ‘,le 1 — M2r) 2 ) n (,ul 11— M2 ¢,2> ] (34)
Hh—t h—0n

in d > 2 spatial dimensions, where rotation-invariance in the d — 1 transverse direc-
tions is assumed (provided y | = 0).
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Appendix. Background on Hardy Spaces

In the main text, we need precise statements on the Fourier transform on semi-infinite
spaces. These can be conveniently formulated in terms of Hardy spaces. Here, we
restrict to the special case H,. Our brief summary is based on [2, 40].

We begin with the case of functions of a single complex variable z, defined in the
upper half-plane H; :={z € C|z =x +1iy,y > 0}.

Definition 1: A function f : H, — C belongs to the Hardy space H," if it is holo-
morphic on H,. and if

M? = sup/ dx |f(x+iy)|2<oo (A.1)

y>0J—o00
The main results of interest to us can be summarised as follows.

Theorem 1 [2]: Let f : H, — C be a holomorphic function. Then the following
statements are equivalent:

1. feH,
2. there exists a function f : R — C, which is square-integrable f € L>(R), such
that limy_,o+ f(x +1iy) = f (x) and
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T 2 £ —

(A2)

Fo) = _/ f(é) oo ! f(s)

where z* = x — iy denotes the complex conjugate of z. For notational simplicity,
one often writes f(x) = limy_o+ f(x +1iy), withx € R.
3. there exists a function f R, —- C, f e L*>(R.), such that for all y > 0

f@) = fx+iy) = dg e HY8 £(z) (A3)

7

The property (A.3) is of major interest to us in the main text.
If fe H; , one has the following bounds [2]

lin}) f(x +1iy) =0 ; uniformly for allx € R (A4a)
y—>

liI:EI f(x +1iy) =0 ; uniformly with respect toy > yg > 0 (A.4b)
X—>T00

Equation (A.4a) follows from the bound (in turn obtained from (A.3)), see also [32]

If(x+iy)| < fooy /2 (A4c)

which holds for all x € R and where the constant f., > 0 depends on the function
f. There is a simple sufficient criterion which can be used to establish that a given
function f is in the Hardy space H2+ :

Lemma: [f the complex function f(z) = f(x +1iy) is holomorphic for all y > 0,
obeys the bound |f(2)| < foe™®, with the constants fo >0 and § > 0 and if
[ dx | f(x)]* < oo, then f € Hy'.

Proof: Since f(z) is holomorphic on the closure H, (which includes the real axis),
one has the Cauchy formula

P
1@ =5 [ aw aw I [ I = R+ R

-z = 2ni _R w—z 2mi Cup w

where the integration contour ¢’ consists of the segment [— R, R] on the real axis and
the superior semi-circle €y,p. One may write w = u + iv = Ré e Geup- 1t follows
that on the superior semi-circle | f(w)| < foe %" = foe *ksi"? Now, for R large
enough, one has |w — z| = |w(l — z/w)| > R%,forz € H, fixedand w € Goup- We
can then estimate the contribution F,(z) of the superior semi-circle

|F2(2)]

I A

b4 —38Rsinf
_/ Al L [T foe PR
sup

=zl = 2wy R}

2 2
ﬁ/ do exp (——RQ) < %E — 0, forR - o©
0

T
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Hence, the integral representation f(z) = # f]Rdw f(w)(w — z)~" holds for R —
oo. Since f € L?(R), the assertion follows from Eq. (A.2) of Theorem 1. q.e.d.

Clearly, one may also define a Hardy space H, for functions holomorphic on the
lower complex half-plane H_, by adapting the above definition. All results transpose
in an evident way.

Further conceptual preparations are necessary for the generalisation of these
results to higher dimensions. Here, we shall merely treat the 2D case, which is
enough for our purposes (and generalisations to n > 2 will be obvious). We denote
Z = (21, 22) € C? and write the scalar product z - w = zjw; + Zow, for z, w € C2.
Following [40], H,-spaces can be defined as follows.

Definition 2: If B C R? is an open set, the tube Ty with base B is
Tp:={z=x+iyeC’|y € B,x e R*} (A.5)

A function f : Ty — C which is holomorphic on Ty is in the Hardy space H,(Tg) if

M? = Sup/ dx | f(x +iy)|> < o0 (A.6)
yeB JR?

However, it turns out that this definition is too general. More interesting results are
obtained if one uses cones as a base of the tubes.

Definition 3: (i) An open cone I" C R" satisfies the properties O ¢ I" and if x, y €
I'anda, B > 0, thenax + By € I'. A closed cone is the closure I of an open cone
I'. (ii) If I is a cone, and if the set

r={xeR'|x-t>0witht € I} (A7)

has a non-vanishing interior, then I'* is the dual cone with respect to I'. The cone

I' is called self-dual, if ' =T .

For illustration, note that in one dimension (n = 1) the only cbne is I" =
{x e R|x > 0} = R,.Itisself-dual, since I'* = T = Ry, +.Intwo dimensions (n =
2), consider the cone '™ := {x € R? [x = (x1, x2) with x; > 0, x, > 0} which s
the first quadrant in the 2D plane. Since

rt+**={xeR’|x-t >0, forallt e I'*} =Ry, ®Roy =T+F (A.)

the set I't™ is a self-dual cone.
Hardy spaces defined on the tube Tr++ of the first quadrant provide the structure
required here.

Definition 4 [40]: If I't™" denotes the first quadrant of the plane R?, a function
f : Tr++ — C holomorphic on Tr++ is in the Hardy space H, * := Hy(Tr++) if
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M? = sup /‘defu—FUH2<cw (A.9)
RZ

yelr++

Theorem 2 [40]: Let the function f : Tr++ — C be holomorphic. Then the follow-
ing statements are equivalent:

1. feH™
2. there exists a function f : R — C, which is square-integrable f € L2(R), such
thatlim,_, ¢+ f(x +1iy) = f (x) and

_ fw Ff(w)
f@ = (27i)? fdew w—2z 0= (2mi)? /de w—z* (A-10)
where (w — 2)~! := (w1 — z1) " (w2 — 22) "' and z* = x — iy denotes the com-

plex conjugate of z. For notational simplicity, one often writes f(x) = lim,_, ¢+
fx +iy), withx € R, R
3. there exists afunction f : R, ® R, — C,with f € L*(Ry ® R, ) andz; € H,

1 PPN 1 o0 o0 . ~
f@:Eﬁmenglm%dmwme(mn

The property (A.11) is of major interest to us in the main text. Summarising, the
restriction to the first quadrant I" ™ allows to carry over the known results from the
1D case, separately for each component.

Of course, one may also define a Hardy space H, ~ := H,(Tr--) on the forth
quadrant, in complete analogy.
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Infinite Spin Particles and Superparticles | m)

Check for
updates

I. L. Buchbinder, S. Fedoruk, and A. P. Isaev

Abstract We give a new twistorial field formulation of a massless infinite spin parti-
cle. We quantize the world-line infinite spin particle model and construct a twistorial
infinite spin field. The helicity decomposition of this field is derived. Making use
of the field twistor transform, we construct the space-time infinite (continuous) spin
field, which depends on the coordinate four-vector and additional commuting Weyl
spinor. We show that the infinite integer-spin field and infinite half-integer-spin field
form A/ = 1 infinite spin supermultiplet. We prove that the supersymmetry transfor-
mations are closed on-shell and form the A = 1 superalgebra.

1 Introduction

In our recent papers [ 1, 2] we constructed a new model of an infinite (continuous) spin
particles. The states of these particles defines the space of massless unitary irreducible
representation of the Poincaré group IS0 (1, 3) (or its covering ISL(2, C)).

Classification of the /SO (1, 3) unitary irreducible representations was given in
[3-5]. To characterize these irreducible representations we need to consider the corre-
sponding irreducible representations of the Lie algebra iso(1, 3) with the momentum
P, and the angular momentum M™* Hermitian generators and defining relations
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[ﬁnv ﬁm]ZO» [ﬁnv Mmk]zi(nknﬁm_ nmnﬁk)v (1)
[MIIWH Mkl] =i (nnkal - nmanZ + nmEMnk - nnEMmk)’

where metric tensor is ||9,x|| = diag(+1, —1, —1, —1). The algebra iso(1, 3) has
two Casimir operators

P"P, and W"W,, )
where 1
Wn = 5 Enmkr Mmk ﬁr (3)

are components of the Pauli-Lubanski pseudovector which satisfy
W, =0, W, BI=0,  [Wn, Wal =i e, WP

On the space of states of massless irreducible representation of infinite (continuous)
spin the Casimir operators of iso(1, 3) take the values

A

PP, =m?>=0, W2=W"'W,=—u? 4)

where m is the particle mass and u is real mass-dimensional parameter.
To describe the massless irreducible representation of infinite (continuous) spin
we have to introduce “canonically conjugate” to Py, W, variables' x¢, vy

x = (xp, X1, %2, x3) € R™, 'y = (yo,¥1,¥2, ¥3) € R,

Then, as it was shown in [3-5], the massless infinite integer-spin irreducible repre-
sentations of the Poincaré group are realized in the space of the fields @ (x, y) which
satisfy the conditions

d 0 Jd 0
oo, T T =0
XM 0xy, XM oy,
) 5)
CI 5 S0
— o=y, —iy'— D=0,
ay™ Ay, ax™m

The massless infinite half-integer-spin irreducible representations of the Poincaré
group are realized in the space of wave functions (WF) @ 4 (x, y) with external Dirac
index A = 1, 2, 3, 4 which satisfy the conditions [3-5]

TAs we will see below in Sect.2, variables y, are not canonically conjugate to components W, in
the standard sense of phase space variables.
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0 a 0
(ym)AquB:O9 U ¢A=07
dx™m oxm aym
(6)
99 @ g gm0 Py=0
— = , —i — = .
0y™ Oym A= T B axm A A

This report is devoted to some problems of theory of massless infinite (or contin-
ues) spin unitary irreducible representations of the / SL(2, C) group. Various aspects
of this theory were considered in a wide range of works (see, e.g., [6—18]). Moti-
vation of the investigations of the infinite spin representations is caused by an iden-
tical spectrum of states of the infinite spin theory [6] and the higher-spin theory
(see, e.g., [19]) and by its potential relation to the string theory (see [20], recent
paper [21], and references therein). Here we present a generalization of the twistor
formulation of standard (with fixed helicity) massless particle [22] to massless infi-
nite spin representations. Making use of the field twistor transform, we obtain the
space-time—spinorial presentation for infinite spin fields which describe all integer
or all half-integer helicities. These fields form N = 1 supermultiplet of infinite spins
[7, 14]. The present report is based on the results obtained in [1, 2].

2 Twistorial and Space-Time Formulations of Infinite Spin
Particles

The twistorial formulation of the infinite (continuous) spin particle is described (see
[1, 2]) in terms of even Weyl spinors”

Mo, 7o = (M) Par P = (Pa)”, (7
and their canonically conjugated spinors

o, %=t =0 ®)
with Poisson brackets {w®, 75} = {n*, pp} = 8% and (0% 73} ={n* ps} = Sg
(other Poisson brackets are equal to zero). Twistorial Lagrangian of the infinite (con-

tinuous) spin particle is written in the form [1, 2]:

Livisior = Ta®* + 7o + pal® + pal® + IM + kU + LF + LF, (9)

2We will use the following two-spinor conventions. The totally antisymmetric tensor €% has the
componente0123 = 1. We use the set of o -matrices: 6" = (00 =Dh,o!, o2, 03) and the set of dual
o-matrices: 6" = (69, —o!, —02, —03), where o' are usual Pauli matrices. We also use standard

van der Waerden spinor notation with dotted and undotted spinor indices and raise and lower them
by means of metrics: €48, €, A and their inverse €*f, ¢ with components €;p = —ez; = 1. In
particular (Em)d‘ﬂ = %Py (am)y ;- The links between the Minkowski four-vectors and spinorial

quantities are Ayj = J5 An(0™)ghs Am = J5 Aq(@n), 50 that A™ B,y = A, BP.
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Where @(7) := d;w(7) and t is an evolution parameter. Functions /(7), k(7), £(7),
£(t) are Lagrange multipliers for the constraints

M = 1%p, pait® — n?/2 ~ 0, (10)
Fi=nn, —1=~0, F o= mai® —1~0, (11)
U =i (0"y — 740" + 0" pe — pail®) ~ 0. (12)

The first-class constraints (10), (11), (12) generate abelian Lie group which acts in
the phase space of spinors (7), (8) as follows:

B
T P1 T P1 e’ ae
N ) 13
<7T2 Pz) <7T2 Pz) (0 6’;) (13)
moyr) _ (mol e P —Ole_fiﬁ +£(,6~7%"") T P1 y 0 (14)
n2 Wy maw)\ 0 e u2 w2 ) \0—-y)’

where 8(7), y(7) € Rand a(r) € C\0 are the parameters of the gauge group which

is generated by constraints (10), (11), (12).
The Noether charges of the Poincaré transformations have the following form
Muipp = €apMap + €apMaj.  Paic = TaTlj, (15)

where (anti)self-dual spin-tensors are

Map = T@wp) + patlpy.  Myg = Tadp) + pailp). (16)
In the Weyl-spinor notation the Pauli-Lubanski vector (3) has the form
Wag = —i (Maﬂpf - MdBPf) (17)

and for considered twistorial realization (15), (16) we obtain

[ Y N _
Waie = APus — 5 | G4 )mapic = (egn®) pue | (8)
@ 5 maia — (P pp)nat
+§ (T" pp)Tane — (7TF Pp)NaTa |

where )
l o
A::E( pof — 75 ) (19)

The square of the vector (18) gives Casimir operator

W2 = WW,oy = —2 7% po|? |mpn (20)
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and, due to the constraints (10), (11), we reproduce (4): W? = —u2. So, the twistorial
model (9) indeed describes massless particles of infinite spin.
The pairs of spinors 7, ®* and p,, 7% form two Penrose twistors [22]

Zy = (ﬂa, (I)d) s Yy = (potv ﬁd) . e2y)

Conjugated spinors 74, @* and py, n“ constitute the dual twistors

ZA ._ * GA . n*
77 = (-i;;) , Y® .= (—ﬁa) . (22)

It means that our description of infinite spin particles uses a couple of twistors as
opposed to the one-twistor description of the massless particle with fixed helicity.
Following [22], we choose the norms of twistors (21), (22) as

ZYZs = oy — 730", Y'Ya = 1%pa — PeTl" (23)
and write the constraint (12) in concise form
U =i(Z'Z,+ YY) =~ 0. (24)

The norm Z4Z, of the twistor Z commutes with constraints (10), (11), (12) and
therefore is independent of t. For a massless particle with fixed helicity the norm
Z4Z 4 defines the helicity operator
I 5a
A= 3 Z%Z4. (25)

So in the considered model of the infinite (continuous) spin particle, in view of the
constraint (24), the particle helicity is not fixed since it is proportional to —Y4Y,.

Now we consider Wigner-Bargmann space-time formulation [3-5] of the irre-
ducible infinite integer-spin massless representation. This formulation can be realized
by means of quantization of the particle model with the following Lagrangian

ﬁsp.ftime = mefm + mem + erPm (26)
+e1pmq” + e (gng” +1*) + e (puy™ — 1),

where p,(t) and ¢, (tr) are momenta canonically conjugated to coordinates x,(7)
and y, (t), respectively. The Lagrangian (26) yields the canonical Poisson brackets

{x".pu} =01 " an} =38y

and first-class constraints
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Q

T :=pup" =0, T :=puq" =0,

(27)
T =quq" +u* ~ 0, T3:=p,y"—1=0,

which correspond to the Wigner-Bargmann equations (5). The functions e(7), ) (1),
e>(t) and e3(r) are Lagrange multipliers for the constraints (27). Nonvanishing
Poisson brackets of the constraints (27) are {T}, T3} = —T and {T», T3} = —2T},i.e.
the algebra of the constraints is nonabelian.

The action Ssp _ime = / dt Ly, _time is invariant under the transformations

which are generated by quantities

Py = pm, Moy = X Pn — X0 Pm + YmGn — YnGm)-

These charges form the classical analog of the Poincaré algebra (1) with respect to
Poisson brackets. We see that additional coordinates y™ in the arguments of these
fields play the role of spin variables.

Now by making use of constraints 7 ~ 0, T} = 0, T, ~ 0, T35 =~ 0 we obtain
relations

1
PyP" X0, W, W" =2 My M™ Py P™ — My M™ PX Py~ — i,

where W,, = %smnklP"M kK are the components of the Pauli-Lubanski pseudovec-
tor. Therefore, the model with Lagrangian £, _;i. indeed describes the massless
particle with continuous spin. We note that vectors g,, and W,,, = &, p" qul do
not coincide to each other and components W,, strictly speaking are not canonically
conjugated to yy,.

After canonical quantization the constraints (27) yield the Wigner-Bargmann
equations (5) for the continuous spin fields @ (x, y).

Proposition 1. The Wigner-Bargmann space-time (26) and twistorial (9) formula-
tions of the infinite (continuous) spin particle are equivalent on the classical level
by means of the generalized Cartan-Penrose relations [22]

Pop = TaTlgs  duf = TaPj + PuTlf, (28)

and by the following generalized incidence relations [22]:
o = Ax oy, O = 2%+ ¥, (29)
" =7y, it =y . (30)

The proof of this Proposition is straightforward and is given in [1, 2].
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3 Quantization of the Twistorial Model and Twistor Field
of the Infinite Spin Particle

Quantization of the model is vastly simplified if we introduce new spinorial variables
by means of Bogolyubov canonical transformations (cf. gauge transformations (13),

(14)):
1 P1 M PP 0 1 p®
(25) =9 (Gl o) (671)

() = (i) (61 ) e () 62)
mwr ) \ =t/m! 2o/M 1 M \mp) 0-1)

where M := /+/2 and new variables are defined by relations

PR =m,/NM,  pY =np /M, pV =p/m,
| 1 Sal 1 Sal (31)

o o

0= ——7" — —s5p* — —1tp® "= —sa* + —1t.

JM M T ’ M Ty

The nonzero canonical Poisson brackets of the new variables and their complex
conjugated variables z%, 5, 7, pS°, p, p®) are

{Z ,pfgz)] = Sg, {Za, 131(; } = (Sgs

{s. PV} =150V} =1 {r.p"}={r. 5"} =1.

In terms of new variables (31) the constraints (10), (11), (12) of spinorial model (9)
take very simple form

M = pD5® _1 ~ 0, (32)
F=t—-1~0 F :=i-1=0, (33)
u :=% (z"‘p‘(j) Z¢ (Z)) + i (sp¥ —5pY) ~ 0. (34)
After canonical quantization [.,.] =i {., .} these constraints turn into equations of
motion
(p(S)ﬁ(S) _ 1) g© — 0, (35)
d 0
— g = — P = g (36)
ap® ap0

1 ad 0 ad d
- (2) —(2) (s) _ =) g© — ~yg© 37
|:2 (pa apéZ) — P4 8[55{1)) + p ap(s) P 8ﬁ(s)i| c s ( )
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where differential operators in their left hand sides are quantum counterparts of the
constraints (32), (33), (34). In equations (35), (36), (37) wave function (or spinorial
field)

) —(Z>_ o —(5). -
lp(c)(péz)’ s p(s)7 p(é)’ p(t), p(t))’

is taken in “momentum representation” and describes physical states, which form

the space of irreducible representation of Poincaré group with continues spin. The

constant c is related to the ambiguity of operator ordering in Eq. (37). In other words,

constant ¢ is an analog of the vacuum energy in the quantum oscillator model.
Equations of motion (35), (36) can be solved explicitly in the form

o]

'1/(5) =5 (p(s) . ﬁ(s) _ 1) e*i(PerIa“)) Z e*ikga 1‘Z(chk)(p(z)’ [3(2))’ (38)

k=—00

where ¢/? := (p®@/p®) /2. Due to the constraint (37) the coefficient functions
Y+ (p,, p.) satisfy the equations

1 0 0 . ~
L o @ () _ (c+b)
5 (pa e Dg 8[3?) v = (c+ k) Pv. (39)

Now we can restore the dependence of the wave function (38) on the twistor
variables. As result we obtain the following statement.

Proposition 2. The twistor wave function which is general solution of the equations
of motion (35), (36), (37) is represented in the form

. p1 51)
()
v, 7 p,p) = 8((mp)(p7T) — M?) e (”' T W, 7 p, p), (40)

where we make use the shorthand notation (7p) = nﬁpﬂ, (pm) = ,6377[3 and
o0 oo
GO, 750, 0) = YO0, A1) + Y (PR Y Y o)y @)
k=1 k=1

The coefficient functions v €+ (n, 7'1) obey the condition

Ay @) = —(c£k) Y O, 1), (42)
1 0 _ 0 . ..
where A = —— | my —— — 73— | is the helicity operator.
2 07T, 07T

Equations of motion (35), (36), (37) are written in terms of twistor variables as
following
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3
ine — WO =99 g v =g (43)

o Pa

3 d 9 9
— 7 s v = 209, 44
(ﬂa 87Ta 87{0, + Pu7— apa - P aﬁd) ¢ ( )

To describe the bosonic infinite spin representation related to all integer helicities,
we put (in view of condition (42)) ¢ = 0 and therefore consider the twistorial field
O, 7 p, p). Similarly, to describe the infinite spin representation related to half-
integer helicities we takec = — 5 Accordmg to the condition (42), the corresponding
wave function ¥ ~1/? (7, 7; p, p) contains in its expansion only half-integer helic-
ities. Note that the complex conjugate field ¥© also has zero charge ¢ = 0, but the
complex conjugate field ¥ t1/2 (7, ; p, p) has the opposite charge ¢ = +1/2.

Proposition 3. The twistor wave function v, 75 p, p), defined in Proposition 2,
describes the massless particle of the infinite (continuous) spin:

W Wy - w9 = —p2 @@, (45)

where Wy, = \%Wm (0™)ay is the Pauli-Lubariski operator

Wy = maity A + % [naﬁy- (7 %) — outy (5 %)] (46)

1 ad _ ad
EI:(P”)ﬂaa—y — (mp) 7y 8p"‘:|'

Proof. See [1] and [2].

In conclusion of this Section we stress once again that the twistorial wave function
¥ © is complex and therefore all component fields ¥ “*%) (77, 77) in its expansion are
also complex. In view of this we must consider together with the field ¥ ©) its complex
conjugated field (¥ ©)* := ¥ (=9 which has the opposite charge ¢ — —c.

4 Twistor Transform for Infinite Spin Fields

Here we establish a correspondence between twistor fields in momentum represen-
tation and fields defined in the four-dimensional Minkowski space-time.
For further convenience we introduce the dimensionless spinor

wi=MPpy, &= MR

Then, the twistor wave function ¥ (© of infinite integer-spin particle (40) for ¢ = 0
can be represented in the form [2]



92 1. L. Buchbinder et al.
WO (2,7 6,8) = 8 (E)ER) — M) e A0/PO O 72 ), @7)

VO =y O m)+ Y EDfyP e )+ ) @)y P, 7).

k=1 k=1

In the expansion of ¥, all components ¥® (7, 7) (k € Z) in general are com-
plex functions (fields). Moreover, the quantity py/qo is expressed by means of the
generalized Cartan-Penrose representations (28) in spinorial form as

g VM Y (b + EaTla)
0 o=
Po - Z g 7_[,6
B=p
In the case ¢ = —1/2, the wave function of the infinite half-integer spin particle

is
WO (o, 738, 8) = 8 (&) ER) — M) e 10/ PO (7 7,8 F), (48)

-1 = 1/,(—%)(7-[7 )+ Z(éﬁ—)k 1//(—%“"‘)(71, )

k=1

+Y @e (7).

k=1

The expansion of the complex conjugated wave function & +2) has the form
- 1 _ - - _ . o) 1 _ -
GO (o, 75 6, 8) = 5 (&) (ER) — M) 90/POY D (7,8, F),  (49)

G — v, 7) + Z(éﬁ)k PG (o, 7)
k=1

+Y (@e) p O ),

k=1

where the component fields v (i, 7) are complex conjugation of the component
fields ¥~ (7, 7):

(w(*%”‘))* —yCh, keZ

In the case of integer spins the U(1)-charge is zero, ¢ = 0, and the space-time
wave function is determined by means of the integral Fourier transformation of
twistor field ¥ O (r, 7; &, &):

D(x; £, ) = /d“nei”amd“ WO (7, 71 &, F). (50)
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where we have used the representation p,4 = 7,7, and perform integration over
the measure d*m := % drmy Admy Adrty Adrs =d¢ d4p S(pz) (here ¢ is common
phase in 7, which is not presented in pyy = 7, 7T4).

Proposition 4. The field @ (x; &, €) defined by the integral transformation (50) in
coordinate representation satisfies four equations

3"y O (x; £,E) =0, (z%aai - M) D(x;£,6) =0,

& (51)
cen g0 . =\ 0 . 9 . £\ —
(i£%0usE% + M) @ (x; £, ) =0, (sa—asa sa—aéd)cb(x,m)—o.

Proof. Make use the integral transformation (50) and equations of motion (43), (44)
forc = 0.

In the case of half-integer spins the U(1)-charge equals ¢ = —1/2. Then we use the
standard prescription of the twistorial definition of space-time fields with nonvan-
ishing helicities. Namely, we have to insert the twistorial spinor 7, in the integrand
in the Fourier transformation:

_ = BB _
o (x: £, E) =fd4”mﬂ”ﬁx g WV (o, 71 £, B, (52)

and obtain the external spinor index «. Then the complex conjugate twistorial field
with charge ¢ = +1/2 is defined analogously

_ _ i~ BB _ _
By (x; £,8) = fd“ne PEBTAY 2, U D (75 £, B). (53)

Proposition 5. The space-time fields ®q(x; €,&) and ®g(x; &, &), which corre-
spond to the states with half-integer helicities, satisfy massless Dirac-Weyl equations

3D (x;E,6) = 0, " Pe(x;£,E) = 0, (54)

and integer spin equations:

(170558 + M) (i £.5) =0, (1670558 — M) Bax: 6.5 =0,

0 g PN R PO B VS
(l@aﬁﬂag‘é M)®a(X,§,$)—O, lagﬂaﬁﬁaéﬁ+M>q§a(x,,§,§)_()’

0 ;9 : 5~ 8\ . i}
5/3@—538—;3) Dy (x;6,8) =0, 5,3@—55@) Py (x; £,8) = 0.
(55)
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Proof. Make use the integral transformations (52), (53) and equations of motion
(43), (44) for c = +1/2.

We stress that although the fields gD (g, 7 £, é) and w(+1/2) (m,m; &, é) have
nonvanishing charges ¢ = 1/2, their integral transformed versions @, (x; &, é‘E ) and
@, (x; £, &) have zero U(1)-charge. This fact is crucial for forming infinite spin
supermultiplets, as we will see below.

5 Infinite Spin Supermultiplet

We unify fields @ (x; &, 5) and @, (x; &, 5) with integer and half-integer helicities
into one supermultiplet. The fields @ (x; &, § ) and &, (x; &, § ) contain the bosonic
Y ® (, 7) and fermionic ¥ *~1/? (7, 7) component fields (k € Z) with all integer
and half-integer spins, respectively.

As in the case of the Wess-Zumino supermultiplet (see, e.g., [23, 24]), we write
supersymmetry transformations of the fields @ and @, in the form

5P = B, 8d, = 2i5P9,;0, (56)

where &, €4 are the constant odd Weyl spinors. Applying these transformations twice

we obtain )
(5152 — 8281) b = —2ia’358ﬁ3®,
. . (57)
(5182 — 8281) (pa = —Ziaﬂﬂaﬁg% + 2iaaﬂ~aﬁﬂq§ﬁ,

where Agp = slaézﬁ- — &208 - According to the Dirac-Weyl equations of motion
(54), the commutators of variations in the left hand side of (57) are closed on-shell
since in the right hand side of (57) we obtain generator of translations

Pgp = —i0gp.

Moreover, one can show that the whole system of equations of motion (51), (54),
(55) is invariant with respect to supersymmetry transformations (57).

Using the inverse integral Fourier transformations, we rewrite (57) as super-
symmetry transformations for the fields ¥ © (7, 7; £, &), W V2 (r, 7; £, €) in the
momentum representation:

or in terms of bosonic ¥® (, ) and fermionic ¥ 2% (7, ) twistorial compo-
nents we have

aw(k) = &%, w(—%-rk)’ 5w(—%+k) _ _ngn.d W(k)’ Vk e Z. (59)
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Recall that bosonic field ¥® and fermionic field (2 +% at fixed k € Z describe
massless states with helicities (—k) and (% — k), respectively. Thus, the infinite-
component supermultiplet of the infinite spin splits into an infinite number of A" = 1
supermultiplets of the component fields ¥ ®), v~ with fixed k € Z. However we
stress that boosts of the Poincare group mix the fields with different values of k.

We point out that superfield description of infinite spin supermultiplet was con-
sidered in recent paper [25].

6 Conclusion

Let us summarize obtained results and discuss some open problems.

e We have presented the new twistorial formulation of the massless infinite spin
particles and fields.

e We gave the helicity decomposition of twistorial infinite spin fields and constructed
the field twistor transform to define the space-time infinite (continuous) spin fields
D(x;§,8) and Dy (x; &, §).

e Asopposed to the Wigner-Bargmann space-time formulation [3-5] the space-time
infinite spin fields @ (x; £, &) and @, (x; &, £) depend on the Weyl spinor variables
Sa, %_o'z-

e The use of auxiliary spinor variables &,, £, instead of vector variables allowed us to
describe massless irreducible representations of infinite half-integer spin without
introducing additional Grassmann variables.

e We found the equations of motion for @ (x; &, § )and @, (x; &, é_' ) and showed that
these fields form the A'= 1 infinite spin supermultiplet.

e A natural question arises about status of such fields in Lagrangian field theory and
also about possibility to construct self-consistent interaction of such fields. One of
the commonly used methods for this purpose is the BRST approach, which was
used in the case of continuous spin particles in [10, 16, 17]. In a recent paper
[18] the covariant Lagrangian formulation of the infinite integer-spin field was
constructed by using the methods developed in [26]. A natural continuation of
our research is the construction of the BRST Lagrangian formulation of infinite
half-integer spin representation in the framework of the approach developed here.
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Supersymmetric Calogero-Type Models m
via Gauging in Superspace e

Evgeny Ivanov

Abstract A new kind of .4 =2 and .#" = 4 supersymmetric extensions of both
the rational and hyperbolic Calogero models is derived by gauging U (n) symmetry
of the appropriate superfield matrix models. The common feature of these systems
is the non-standard number .#'n? of fermionic variables. An essential ingredient of
the construction of .4~ = 4 models is the semi-dynamical spin variables described
by d = 1 Wess-Zumino terms. The bosonic cores of .4 = 4 models are U (2) spin
Calogero and Calogero-Sutherland models. In the hyperbolic case there exist two
non-equivalent .4~ = 4 extensions, with and without the interacting center-of-mass
coordinate in the bosonic sector.

1 Motivations and Contents

Calogero-type models (CM) [1] (see also [2]) are notorious text-book examples of
integrable d = 1 systems. Most known is the rational n-particle Calogero model

2

SC:fd:[Zxaxa—Zmach)z]. (1)

a#b

The integrable Calogero-Moser system corresponds to adding the oscillator-type
term ~) . 25 (Xa — x3)? to (1). The rational CM models are conformal: the action
(1) is invariant under d = 1 conformal group SO(1, 2)

1. 3
8t =, dx, = —ax,, 0o =0.

t
Conformal CM models can be closely related to black holes and M-theory [3]. Besides
conformal models, there exist other integrable CM-type models, e.g., the trigono-
metric and hyperbolic Calogero-Sutherland systems, the latter being presented by
the d = 1 action
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cs . . C2
S =/dt|:2x‘1xa_zm]. (2)
a a#b

The first version of .4~ = 2 superextended CM model was constructed in [4]: each
bosonic coordinate x, was enlarged to the supermultiplet (1, 2, 1), i.e. n bosonic par-
ticles were completed by 2n fermionic d = 1 fields. The appropriate A4 = 2,d = 1
superfield action can be shown to yield the rational CM model in the limit of vanishing
fermions. Analogously, .4~ = 2 extension of the Calogero-Sutherland models can
be constructed. An important role in producing the correct pairwise potential terms
in the bosonic limit is played by auxiliary fields of the supermultiplets (1, 2, 1).

Higher ./ extensions meet some problems [5-7]. In .#" = 4 case, x, should
be enlarged to the supermultiplets (1, 4, 3), i.e. there are present n bosonic and 4n
fermionic fields of physical dimension. It is very difficult to construct the appropriate
superfield action yielding the n-particle Calogero potential in the bosonic sector.
There appear a few functions of x, related by the complicated WDVV [8, 9] equations
the explicit solutions of which are known only for a few lowest values of n.

No universal convenient method was suggested so far for constructing the “stan-
dard” .4 n-extended supersymmetric CM systems with .4" > 2.

Fortunately, exists another type of supersymmetrization, such that the above-
mentioned problems do not arise. The models constructed in this way are “non-
minimal”: they contain .#'n? fermions for n bosonic coordinates [10-12]. The
method for constructing such models generalizes the gauge approach to bosonic
CM models developed earlier in [13—15]. One takes some simple free matrix model
as the departure point and gauge the appropriate linear isometries by non-propagating
d = 1 gauge fields. Eliminating gauge fields by their algebraic equations of motion
leaves us with one or another CM model.

Generalization to the supersymmetry case is rather straightforward: one gauges
the isometry of some free superfield matrix model by a gauge superfield. After passing
to components and fixing a gauge, some supersymmetric CM model is recovered.

I will explain this approach on the examples of .4#” =2 and .#" = 4 superfield
matrix models and show that some new versions of the supersymmetric CM models
can be discovered in this way.

To a large extent, the talk is based on the papers [10-12].

2 Conformal Mechanics via Gauging

The well-known conformal mechanics model [16] is described by the action:

Sozfdt ()'62—)/2)6_2) E/dt,,%.
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Let us demonstrate that this action can be recovered by gauging procedure applied
to some another action. Consider the Lagrangian of free complex field z(z)

L,=z7+4im (32 —z22).

It is obviously invariant under rigid phase transformations

Then we gauge this abelian symmetry, A — A(#), and introduce d = 1 gauge field
A(t),sothatz — z +iAz:

L.~ LS = (i +iAz) R —iAZ) +im (32 — 22+ 2iAzZ) + 2y A,
A=A+

Here, a “Fayet-Iliopoulos term” o y has been added. It is gauge invariant (up to a
total derivative) by itself.
The next step is to impose the appropriate gauge:
z=z=4q().
Plugging it back into L#, we obtain:

. . - 2 2 A2 2 2
LS =(q+iAq)(q —iAq) +2imAq” +2y A= (§)"+ A’q" —2mAq® + 2y A.

The field A(¢) is a typical auxiliary field: it can be eliminated by its algebraic equation
of motion:

8A : A=m—yq L
The final form of the gauge-fixed Lagrangian is
. 12 . -
L8 = () = (mg —vq™") = (@ —m’q* —y’q 7> +2ym.

Up to an additive constant, this Lagrangian coincides with the mass-modified AFF.
At m = 0, the standard conformal mechanics is recovered:

Lfng) = (Q)z - qu_2~

The initial action S, = [ dtL. atm = Ois invariant under the conformal SO(1, 2)
transformations 8t = f(¢t), éz = % f z, (8,3 f = 0. The conformal invariance is
preserved by the gauging procedure, if the gauge field A(¢) is assumed to trans-
form as 9, i.e. SA(t) = — f A(t).
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3 Calogero and Calogero-Sutherland by Gauging

The generalization of the above setting to the CM case is accomplished as follows.

One starts from the U (n) invariant free action of the system of n x n hermitian
matrix field XZ and complex U(n)-spinor field Z,(¢), Z°=(Z),a,b=1,...,n.
The U (n) symmetry is gauged by n* hermitian gauge fields A2. The resulting gauge
invariant action reads

Sc = /dt |:tr (VXVX) + £ (ZVZ - VZZ) +ctrAi|, (3)
VX = X +i[A.X]. VZ=Z+4iAZ VZI=Z7—iZA.

The last term (Fayet-Iliopoulos term) contains only U (1) gauge field, ¢ being a real
constant. As the next step, one fixes U (n) gauge in such a way that all non-diagonal
components of X’ are gauged away

Xub = xaaubs = [X, A]ab = (xa - xb)Aub-

Just n? — n gauge parameters have been used, but there still remains the residual
abelian gauge subgroup [U (1)]", with local parameters ¢, (¢):

Zo— %7, 7% — e 7% A" - A" — @, (nosum with respect to a).

The next gauge-fixing is as follows:

Z°=127,.
It leads to the gauge-fixed action in the form
Se = /dt > [xx T (ty — )AL AN — Z,Z,AL + cAa"]
a,b
Varying it with respect to the non-propagating gauge fields, we obtain

b ZaZb
Al = —"20  fora #b,
2(xg — xp)*

Z,Z,=c VYa (nosum with respect to a).

The diagonal entries A% drop out from the action and, after substituting the explicit
expressions for the remaining A%, one obtains

SC:%/dz[Xa:xaxa—Z—cz |

_ 2
iz Xa = xp)
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which is the rational Calogero model action. The original action is conformal, so is
the final Calogero action.

The Calogero-Sutherland model can be re-derived by the same techniques, the
only difference is that the initial action should be of the nonlinear sigma-model type:

Sc = /dt |:tr (X 'VXX'VX) 4+ £(ZVZ - VZZ) +ctrA]. 4)

Passing through the same steps as in the rational case yields the gauge-fixed action
in the form

. )
se=t [ar] S s -2 ]

atb (xq — xb)z

Introducing the new variables as x, = e brings this action to the standard Calogero-
Sutherland form

2

CS_ . . C
S _/dtI:Z%‘Za_ZW]'
a a#b

This action is not conformal, since the initial action lacks this symmetry.

4 ¥ =2 Calogero and Calogero-Sutherland

Once again, both cases follow the same strategy, are defined on the same setofd = 1
superfields and differ only in the choice of the initial .4~ = 2 matrix model action to
be gauged.

The starting point in the first case is the free .4 = 2,d = 1 action of the n x n
matrix hermitian superfield Z2.0(t,0,0), a,b=1,...,n, with each entry carry-
ing (1, 2, 1) multiplet, and of chiral U (n)-spinor superfield Z, (g, 0), Z(1L, 0),
D%, =0,D%" =0,

sW=D _ /dtdedé [«(D2 D)+ 7 2]
This action is evidently invariant under rigid U (n) transformations acting as rotations
of the fundamental and co-fundamental indice_s a,b.
In order to preserve the chiralities of Z;, 27, we gauge this global symmetry by

chiral and anti-chiral superfield parameters A and A,

¥ =, ff/zp@‘;e_";‘, X = et I emi*,
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In order to construct the gauge invariant action, one introduces the hermitian gauge
superfield V,
o2V = it g2V ik

Then, the gauge-covariantized action reads
SN=2 — /dtd29 |:tr (2% V92 )+ 3 ZeVy — ctrVi|, %)

where
9% =DZ +e V(DY X, 9% =DX — X 2V (De™).

It can be shown that the original matrix action, as well as the final gauge-covariantized
one, are invariant under the .#” = 2 superconformal symmetry SU (1, 1|1).
In the component expansions,

X =X +0W — 0¥ +600Y, ¥ =7 +207 +i007, F =7 + 26T —i00Z,
all the fields, except for 2n? fermionic ones,
278

are auxiliary and can be eliminated by their equations of motion.
After choosing the standard Wess-Zumino gauge V = 06 A(t), the component
action takes the form

S = /dt [tr VXVX+L1(ZVZ—-VZZ)—ctrA + ic(¢V¥ — thfxp)],

where
VU = +i[¥, A], V¥ =¥ +i[¥,A]

and VZ, VX are given by the purely bosonic expressions presented earlier. In the
limit of zero fermions, the standard gauge-invariant “pre-action” of the rational
Calogero is recovered.

So we have gained a new .4#"= 2 extension of the n-particle Calogero model with
n bosons and 2n? fermions, as opposed to the standard . #” = 2 super Calogero system
of Freedman and Mende with only 2n fermions.

In terms of the physical variables, the component action reads
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N=2 .. . T b < b
SN=2 — /dt [ le,xa + i (T — v e — V], (6)

i MY e

P (222,78 + 2210, ) 2y + (9. D)0, 01" ).
a — Ab

The constraint on Z (after fixing the gauge Z, = Z¢) also essentially involves
fermions:

(Za)z =c—R,, R,= {l[/, l[_/}a’l = Z(Wahlpba + lj[ablpba)v
(R 1'=0 (nilpotency).

It is as yet unclear how to treat this huge amount of fermionic fields, and whether
this number could be reduced by imposing some extra (perhaps, fermionic) gauge
invariance. More detailed study of the fermionic sectors of such models was recently
performed in [17, 18].

Like in the bosonic case, .# = 2 CS system is obtained by proceeding from a
sigma-model type gauged action

sN=2 = ;/dtdzé[ (2 '9% 27'922) —Q’_’ezvﬁp+20trV]. (7

After passing through the same steps as before, we obtain the component action

§N=2 = /dtLsz,

LV=2 = %tr(x”vx X'VX) + IE (ZVZ —-VZZ)+ctrA
+ % w(X'UXTIVY - X'V X w)
- % w(X'wXT'wX e x ).
In the bosonic limit it yields the gauge-invariant CS action. A new interesting feature

of the hyperbolic case as compared to .#” = 2 rational Calogero, is the appearance
of the quartic fermionic term in the gauge-covariantized action.



104 E. Ivanov

5 _¥ =4 Calogero system

The .4 = 4 model is of special interest because the same gauge procedure applied
to it results in the U (2) spin Calogero systems. The reason is that the additional mul-
tiplets Z, Z now cannot be entirely eliminated by using the gauge freedom and/or the
constraints, as earlier. What remains is just a sort of the target space U (2) harmonics.

The universal superfield approach to .4/~ = 4 mechanics, both one-particle and
multi-particle, is .4~ = 4, d = 1 harmonic superspace (HSS) [19], whichisthed = 1
version of A4 = 2,d = 4 HSS [20].

The d =1 HSS is an extension of the standard /" =4,d = 1 superspace
(¢, 6;, 6% by the harmonic coordinates uli

(t,0%,0%, u), 0F =60'uF, 6* =0'uF, utu; =1.

The commuting SU (2) variables uli parametrize the 2-sphere S2 ~ SU2)g /U,
where SU (2) is the automorphism group of 4" = 4, d = 1 “Poincaré” superalge-
bra. The most important property of HSS is the presence of the invariant harmonic
analytic superspace in it, involving half of the original Grassmann coordinates:

Cou) = (ta, 01,00 u), ta=1+i(@6 +0767).

Most off-shell .4 =4, d = 1 multiplets are described by superfields “living” on
this subspace, the analytic superfields.
The direct analog of the .4~ = 2 multiplet (1, 2, 1) is the multiplet (1, 4, 3) rep-
resented by a general superfield 2" (¢, %, 6*, u) subjected to the constraints
++ ++ +i 0 0+t
D 3{20, D =Uu F—i—h@@&u,

DD~ % =0, D"'D-2 =0, (DD +D"D")2 =0.

These constraints are solved for by the analytic prepotential ¥,

%(I’Qi,éi) = /du W(tAve-’—» 9_+,M)

Oizéfu,.i, 9}:07"14,i )

The needed field content is ensured by the invariance under gauge analytic transfor-
mations

8V =DYTATT, AT =AT(u)
and is recovered in the appropriate WZ gauge for 7.

The ./ = 4 analogs of the chiral 4" = 2 multiplet 2, Z“ are the complex
analytic superfields 2, 2%, subjected to the additional constraints
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Dt ot — ptt gt —
which imply the off-shell content (4, 4, 0) for these superfields:

It =7uf +0tp+6T¢p—2i070"8, 2 u; .

Finally, the gauge field A(¢) is a component of the analytic unconstrained gauge
prepotential V*+,

iy iAoy ik s Ayt ik
\% ="V Te " —je" (D e,

where 12 (¢, u®) € u(n) is the hermitian analytic matrix parameter. Using this gauge
freedom we can choose the WZ gauge

VIt =2i 0707 A(1y).

Now we have all the objects needed for constructing .4 = 4 Calogero and
Calogero-Sutherland models. We will firstly discuss the first class of systems.

Our guiding principle will be invariance under the most general 4" =4,d = 1
conformal supergroup D (2, 1; «). The appropriate matrix superfield action reads

—1/2 —2) . T . i -2
s:—mfuﬂ(tr%z) e _ %/u; %&V“*gj—gcfug ‘wvtt.  (8)

Here, all the superfields defined above are involved, with all derivatives properly
covariantized with respect to local U (n) group, which acts as

X = A, b gt G gt ein,
Eg., D'Vt 2T — @9t 2+ = DT T +iv T+t 2T, The object ¥ is a real ana-

lytic gauge prepotential for the U(n) singlet (1, 4, 3) superfield 2y = tr (Z). Itis
defined by the integral transform

1,08 = [ du (10,67.5" )

0*:9%?‘, 9+=6i u[i

In what follows, we will be interested in the choice « = —1/2, which corresponds
to the free superfield Lagrangian ~ tr.2"? for the multiplet (1, 4, 3), and with which
D2, 1; o) ~ osp(4]2).

In WZ gauge, and with auxiliary fields eliminated, we end up with the action:
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S4 = Sp+ Sy,
Sy = /dt[tr(VXVX +cA)+ B(ZYZONZ:Z) + £ Xo(ZkV ZF = VZi 2],

_ _ w2,z
Sp = itr/dt(lI/leI/k — v wt) —/dz%,
0
Xp = tr(X), 'Jf(f = tr(¥), lf/(f = tr(¥).

After fixing gauges with respect to the residual gauge group, elimination of A, a #
b, and some further redefinitions, the bosonic core of this action proves to be as

follows

L ok Ea tr(SaSp) ntr(83)
Sb:/dz{Zxaxl,—i—gZ(ZkZ’;—ZkZ§)+Z o _;’b)2 Ty } ©)
a a a#b a

Here, the fields Z* are subject to the constraints
Z'7Z! =c Va,
and

S =220 S =Y [0 - 8] s0it]

a

To clarify the meaning of these composite objects, we note that, in the Hamiltonian
approach, the kinetic WZ term for Z gives rise to the following Dirac brackets:

(27, 231, = i5;8],
that implies
(ST (5], = idas {81 (S0 — 85"}

So, for each index a the quantities S, form mutually commuting u(2) algebras.
The object Sis just the conserved Noether SU (2) current of the total system. Thus,
the new feature of the .#"=4 case is that not all out of the bosonic variables Z/ are
eliminated by fixing gauges and solving the constraint; there survives a non-vanishing
WZ term for them. After quantization these variables become purely internal (U (2)-
spin) degrees of freedom. Since 18§ is a constant of motion, the conformal inverse-
square potential appears even in the sector of the center-of-mass coordinate Xg. This
is an essential difference of the .#'=4 case from the ./ = 1, 2 cases where this
coordinate decouples. Modulo this extra conformal potential, the bosonic limit of
the .#"=4 system constructed is none other than the integrable U (2)-spin Calogero
model as it was formulated in [2, 22].
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6 .+ = 4 Calogero-Sutherland systems

Like in the previous case, the input superfield action in the hyperbolic case is the
sum of three parts

SV=t =Sy + Swz + Sk (10)

The basic distinguishing feature of this system is the choice of .2 action

sz:%/wu(m%), (11)

while the structure of the remaining two pieces is the same, as well as the form of
the superfield constraints.

The full structure of the component action is restored by passing through the same
steps as in the rational Calogero case, i.e., imposing various gauges, elimination
of the auxiliary fields, etc. It is rather involved, especially in the fermionic sector.
In particular, it contains a few terms quartic in fermions. The number of physical
fermions is the same, just 4n>. The actions, both the superfield and the component
ones, lack superconformal symmetry, only “flat” 4" = 4, d = 1 supersymmetry and
SU(2) R-symmetry are present.

The bosonic sector is described by the action

1 _ _
Sposah = 3 /dz [tr(X*‘VXX*‘VX +2cA) +i(ZVZ —VZ Z¥)

(Z9ZY(Z: Zy) 1 (X?)
2(Xo)? ]

Upon fixing U (n) gauge as X’ =0, a # b, eliminating fields A¢, using the con-
straint Z{ Zfl = cVa, and passing to x, = e’«, the action becomes

N=4 1 .. . Sa Sk Za—k (Sa)ik(Sb)ki
Sbose =3 dt Z [qaqa + Z(ZkZa - ZkZa)] - Z T a —an
2 a azb 4sinh? %

ST (8,) gy tr(X>
+Z( ) (Sp) iy tr( )}’ (12)

— 2(Xo)?

Tr (Xz) = Zez‘f", Xy = Zeq“, (S = Z?Z’;.
c c

The quantities (S.):* generate n copies of U (2) algebra. As aresult, the above action,
up to the last term, describes the hyperbolic U (2)-spin Calogero-Sutherland system
[2, 14].
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The choice of the 27" action in the .#” = 4 rational Calogero model was mainly
caused by the requirement of superconformal invariance. In the hyperbolic case, no
such a symmetry is present from the very beginning. In particular, the 2" part of the
action already lacks such an invariance. So, there are no intrinsic reasons to require
it for other pieces.

Then it is natural to choose the simplest action for the (4, 4, 0) multiplets, just
-172f ,uﬁ(z) Fa 2.+ . Under this choice, all steps are radically simplified, in par-
ticular, all fermionic auxiliary fields of (4, 4, 0) multiplets become zero on shell. The
bosonic sector of the component action reads

§N=4 1 d .. . Sa sk = ak (Sa)ik(sb)ki
bose =75 [ dI Y [duda +i(ZiZ — 232D = ) oz iz - (1Y
a a#b 2

The previous bosonic action involved tr(X?) and X,. The latter coordinate (the
center-of-mass coordinate) decouples only for the trivial cases n = 1, 2. In contrast,
the new action in the bosonic sector yields the pure hyperbolic U (2)-spin Calogero-
Sutherland system for any n, without any additional interaction. The center-of-mass
coordinate is fully detached and it is described by the free action in this sector.

While for n = 1 the 2~ sector in the system obtained fully decouples from the %
sector and describes a free dynamics, at n = 2 one is left with a non-trivial system.
The relative coordinate ¢ := %(ql — ¢») involves a non-trivial interaction with the
spin variables Z’lc and Z§

tr($i5%) fz) . (14)
4 sinh” ¢

So, in the bosonic sector we find an extension of the standard hyperbolic Poschl-Teller
mechanics [23] by the spin variables. This new .4~ = 4 superextended Poschl-Teller
system certainly deserves a careful analysis. Inthe .4~ = 1, 2 cases analogous Pdschl-
Teller potential without any additional variables is recovered (the known versions of
supersymmetric Poschl-Teller mechanics were given, e.g., in [24]).

7 Summary and Outlook

e We have presented a universal method of constructing supersymmetric extensions
of the Calogero-type models through the superfield gauging procedure, which
directly generalizes the similar one for the n-particle bosonic Calogero systems.
This method yields a non-standard supersymmetrization, with .#'n? physical
fermionic fields, in contrast to .#'n such fields within the standard supersym-
metrization.

e In this way, we have explicitly constructed new .#* = 2 and .4~ = 4 superfield sys-
tems containing the rational Calogero and hyperbolic Calogero-Sutherland models



Supersymmetric Calogero-Type Models via Gauging in Superspace 109

as the bosonic cores. In the hyperbolic models, new superxtensions of the Poschl-
Teller mechanics for the relative coordinate arise at n = 2, with the extra spin
variables in the .4~ = 4 case.

e Recently, it was shown, in the on-shell Hamiltonian approach, that similar systems,
atleast in the rational case, can be formulated for arbitrary 4" [17, 25]. Itis unclear,
whether such systems can be re-obtained within the superfield gauging since the
off-shell superfield matrix models (the starting point of the gauging procedure) are
known only until 4" = 8.

7.1 Further Lines of Study

In conclusion, we indicate some further possible lines of study:

(a) Aninteresting question is as to whether the new super Calogero models preserve
the remarkable classical and quantum integrability of the bosonic models.

(b) Itwould be also interesting to learn whether some other .4~ = 4, d = 1 multiplets
(e.g., the multiplets (2, 4, 2) or (3, 4, 1)) can be used to represent spin variables
in various .4~ = 4 Calogero systems.

(c) To generalize new .4 super Calogero to the case of “weak” A" = 4 (SU(2|1))
supersymmetry [26-28], as well as to analogous deformed versions of .4 =
8 supersymmetry [29, 30]. Such generalizations involve an intrinsic mass-
dimension parameter m which deforms the Calogero models to a kind of
Calogero-Moser systems, with extra oscillator-type terms.

(d) Quantizing all these models. In fact, the quantization of the deformed SU (2|1)
Calogero-Moser systems was recently done in [31]. The quantization of the
A =2 models described here was undertaken in a recent paper [32].

(e) At last, other integrable Calogero-like multiparticle models are known [33, 34],
e.g., the trigonometric Calogero-Sutherland models, the elliptic models, etc. All
of them still wait their supersymmetrization. It is likely that the trigonometric
Calogero-Sutherland models, at least up to .#” = 2, can be constructed by start-
ing from the matrix models with the unitary U (n) matrix as the basic d = 1
field, in contrast to the hermitian such matrix in the hyperbolic case.
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The Octagon Form Factor in N/ = 4 m
SYM and Free Fermions e

Ivan Kostov

Abstract The computation of a certain class of polarised four-point functions of
heavily charged BPS in A/ = 4 SYM operators boils down to the computation of a
special form factor - the octagon. Here I review the representation of the octagon in
terms of free fermions and the determinant formulas that follow. The presentation is
based mainly on a common work with Valentina Petkova and Didina Serban [1, 2],
but I also mention some recent developments obtained by other authors.

1 Introduction: The Octagon

Starting with the pioneer paper by Minahan and Zarembo [3], the integrability tech-
niques developed for two-dimensional models were conditioned to solve higher-
dimensional field theories. A notorious example is the planar maximally supersym-
metric Yang-Mills theory, or shortly A" =4 SYM. This field of activity is now
referred to as Integrability in Gauge and String Theories (IGST). IGST appeared
as the result of interbreeding of ideas and conjectures about gauge-string duality,
in particular the AdS/CFT correspondence, and the powerful technology developed
for solving two-dimensional integrable models. The interbreeding was successful
because the four-dimensional A" = 4 SYM is secretly a two-dimensional integrable
theory defined by a factorised scattering matrix. The world-sheet description of
N = 4 SYM involves the particle excitations of this two-dimensional theory.

The spectrum of the single-trace operators in A" =4 SYM is determined by
the two-point function, which is described by a world sheet with the geometry of
an asymptotically long cylinder, with the two operators associated with the two
extremities. The two-point function can be computes in principle with methods of
the Thermodynamical Bethe Ansatz (TBA), which tells us how to sum over the
virtual particles wrapping the cylinder.
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For n > 2, the n-point correlation function of single-trace operators are given by
a semi-classical n-closed-string amplitude, the world sheet of which is topologically
a sphere with n punctures. It happens that this world-sheet picture applies for any
coupling, after being properly formulated.

The vicinity of each puncture can be described by an asymptotic Hilbert space.
Hence one can formulate the problem in terms of factorised scattering of these
asymptotic states. It is important that particles from different Hilbert spaces are
allowed to scatter. In this way one can construct a “worldsheet” which is the arena for
the scattering of ingoing and outcoming particles for the asymptotic spaces associated
with the different operators whose correlation function is computed. Besides the
physical particles representing asymptotic states in the physical Hilbert spaces, one
should admit that there are also virtual particles circling around the main cycles or
connecting pairs of singularities on the world sheet which are other than the physical
operators.

There is a single metric compatible with the factorised scattering. In this metric the
proper time on the world sheet is defined globally. In a worldsheet with n punctures
and no handles there should be 2(n — 2) local curvature defects, each housing a
negative curvature —. In a local QFT such defects are known as twist operators [4].
In exceptional cases two twist operators can merge into a branch point. In this case on
speaks of extremal correlators. Importantly, the world-sheet distance between each
pair of operators is infinite after removing the regularisation.

A intuitively appealing non-perturbative Ansatz for the computation of the n-point
correlation functions, known as “hexagonisation” [5—10], prescribes to construct the
punctured sphere from elementary blocks called hexagon form factors or shortly
hexagons. The hexagon is a special form factor of the above mentioned generalised
twist operator. It has three physical edges (time slices) and three mirror edges (space
slices). The lengths of the physical edges are determined by the charges of the n
operators while the length of the mirror edges is asymptotically large. The hexagons
are glued together along their mirror edges by inserting complete sets of virtual
particles. In other words, the hexagonalisation can be viewed as a higher-genus
generalisation of the thermodynamical Bethe Ansatz techniques.

The result is a sum over all possible physical and virtual particle excitations,
with quantisation conditions for the momenta determined by the moduli of the world
sheet. The computation of this sum in full generality is a formidable challenge, and
has been performed only in the lowest wrapping order [11].

Remarkably, a class of four-point functions of half-BPS operators with large
R-charges and specially tuned polarisations, discovered in [12, 13], can be evaluated
exactly. In this case all virtual particles are suppressed except those associated with
two pairs of hexagons. Such a correlation function factorises into a product or a
sum of products of two simpler objects called octagons. An octagon is represents
two hexagons glued together by summing over a complete set of mirror particles
associates with their common edge. Very recently it was discovered that similar
factorisation occurs in any given order of the 1/N, expansion [14].
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1.1 The Simplest 4-Point Correlation Function

The simplest one-trace operators in N' = 4 SYM are the half-BPS ones. Such an
operator is characterised by its position x in the Minkowski space, a null vector y
giving its s0(6) polarisation, and its scaling dimension K,

O(x) = Tr[(y - @ (x)*1. (1.1)

The correlation function for four such operators depends on the 't Hooft coupling g,
the coordinates x1, ..., x4 and the polarisations yy, ..., y4 of the four operators. Thanks
to the conformal symmetry the dependence on x;, y; is only through the cross ratios
in the coordinate and in the flavour spaces

2 .2 2 2
_ X1 X _ x% x
7 = 122 :;4 =u, (1 —Z)(l _Z) — % =,
X13%24 Xi3X54 (12)

-y (2 ya)’ 132 ya)

The hexagonalisation prescription gives an expression of the four-point function
as a sum over virtual particles associated with the six mirror channels associated
with pair of operators O; and O ;. Each mirror channel is characterised by a “bridge”
of length ¢;; = #[tree-level Wick contractions between the operators O; and O;].
The six bridge lengths obey four constraints of the type K| = £1, + €13 + £14. The
propagation of virtual particles across a bridge is exponentially suppressed for large
bridge length.

The sum over virtual particles simplifies for heavy fields (large K) and particular
choices of the polarisations because some of the channels for propagation are sup-
pressed [12]. In this case the four-point function factorises into a product or into a
sum of products of two simpler objects, octagons. The octagon Oy is composed of
two hexagons glued together by inserting a complete set of virtual states The two
hexagons may be separated by a bridge of £. The octagon depends only on the ’t
Hooft coupling g, the cross ratios (1.2) and the bridge length ¢,

O¢ =0¢(z, 2, o, ). (1.3)

The simplest four-point function that leads to such a factorisation, named in [12]
the simplest, is characterised by (y; - y4) = (2 - y3) = 0. For example (the dots stand
for the sum over permutations)

0:1(0) = t(ZKXK) + .., 05(z,2) = tr(X*),

_ _ 1.4
O4(00) = t(ZKXE) + ..., 03(1) = tr(Z°%). (4

At tree level, the four-point function is given by a single Feynman graph, Fig. 1, left.
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In the limit K — oo the simplest four-point correlator factorises to a product of
two identical octagons with £ = 0, and « = o = 1, sketched in Fig. 1, right,

Oz, 1, )P
= 7 2 7 2NK°
K—oo (x7,X3,X13X5,)K

(010,0304) (1.5)

There is another class of four-point functions considered in [12], which are expressed
in terms of octagons Q with £ > 0. In the recent paper [ 14] the non-planar corrections
to the four-point correlators are expressed as polynomials of (O)%.

1.2 The Octagon Form Factor

The octagon has four physical and four mirror edges with the corresponding BMN
vacuum at each physical edge, as shown schematically in Fig. 3. Because of the
choice of the four operators there are no physical excitations. There are only multi-
particle mirror excitations associated with the common edge of the two hexagons.
The octagon is given by a sum over a complete set of such mirror states. Symbolically

Ou(z, 2, 0,@) = ) (W) (Halr) e " (y|Hy)
v

(1.6)
=3 u@) (g HIY) e B gl ().
14

In the second line the two hexagons are rotated as shown in Fig. 4 to the canonical
hexagon H which is defined for collinear operators. The dependence of the cross
ratios is through the rotation g € PSU (2, 2|4),

octagon 1 octagon 2

Fig. 1 Left: The simplest 4p function is given at tree level by a single Feynman graph. Right:
Factorisation of the 4p function into a product of two octagons

Fig. 2 The Zhukovskymap.
The physical sheet of the

rapidity Riemann surface is B % e Q
parametrised by the exteriour

of the unit circle in the
x-plane

<
=
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(Vlglp) = e*Pvs e!tvd ! Rut gl (1.7

where L is the angular momentum, Ry, and Jy, are the R-charges and it is used that
221 = E =ip [6]. The parameters ¢, &, 6, ¢ are related to the cross ratios in the
Minkowski and in the flavour spaces, Eq. (1.2), as

~+io, o5t

z=e 7=

o = ew_§+i0’ 5[ — ew_s_ie' (18)

For an n-particle virtual state ¢ the contribution of the chemical potentials gener-
ated by the rotation g together with the matrix part of the hexagon weights factorise
into a product of one-particle weights. An n-particle mirror state is characterised by
the rapidities u; and the bound-state numbers a; of its particles. The octagon (1.6) can
be thus expanded as a series of multiple integrals with integrand given by a product
of local and bi-local weights [12]

[e.¢] n . n
0, = 2;% > /]_[1 % Wa, (u) ]._{Wuj,ak(uj, ). (1.9)
n= a j= j<

e Bi-local weights.
The bi-local weights are defined in terms of the function

the common edge ~
(0, 0)—(00, 00) by inserting a (1,1 2 (2,7, a, @)
complete set of virtual states =

Y with energies E,p. Each \f

x(u) —x(v)
Wu,v) = ——— = (1.10)
x(u)x(v) —1
Fig. 3 Symbolic (0,0)
representation of the octagon —_— i ——
obtained by gluing the | | \
hexagons H; and H along e i N

state consists of particles \
transforming in the |
skew-symmetric
representations of
psu(2]2) xpsu(2|2)

Fig. 4 Rotation from 7 = g=EHid
canonical hexagons to a 0,

general position. The .'\ oL
rotation angles & and ¢ N

correspond respectively to a
dilatation and rotation

(5 [ =t
S -
%)

S

N
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where the function x (u) is defined by the Zhukovskymap g =x+ % transforming
the physical sheet in the rapidity plane into the exterior of the unit circle (Fig. 2).
Namely

Wap@u,v) = [ W+ ia, v+ ib). (1.11)

+,+

e Local weights.
Assume for simplicity that « = o = 0, that is & = 0 and ¢ = &. Then the one-
particle factor is given by the product

1 . . . .
Wal0) = - Qe+ 5020 = ) (1" %a(@. &) % W+ Sa.u = ba) (112)

where

1 ¢i88x—=1/x] ei88 lx—=1/x] dlogx
2¢w) = - =g 7 ,
xt x—1/x X du

(1.13)

Xa 18 the character of the a-th antisymmetric representation of psu(2|2)

sin(a¢)

Xa(®, &) = tra[(—1)F L] = (1)« 2=
sin ¢

[2cos¢p —2coshé&], (1.14)

and the last factor completes the product od the bi-local weights, as we will see later.
The function $2 () reflects the form of the momentum and the energy of the mirror
magnons as functions of the rapidity u,

Pa(u) = 38(x — Dutiay + (& = Ducias2, (L15)
Ea(u) = 10gx|u+ia/2 + 10gx|u—ia/2a .

For later use let us remind the generating function of the psu(2|2) characters

- — e (1 —e ek
W(k):Z(_l)aXae—ak_ (1 —efe )1 — et et »
a=1

(1 —e?e*)(1 — e i¢e*) (1.16)
cos¢ — cosh &

coshk —cos¢’

2 The Octagon in Terms of Free Fermions

The expansion (1.9) of the octagon can be nicely written in terms of free fermions.
The fermionic representation allows to sum up the series with no pain and also opens
the possibility to use the intuition and the techniques coming from CFT. Before
proceeding with the operator formulation we will remind some standard formulas
about free fermions.
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2.1 Free Fermions: Conventions

We mostly follow the conventions in the review by Jimbo and Miwa [15]. The
fermionic amplitudes satisfy canonical anti-commutation relations

(Y, ¥ 14 = Smns m,n € Z, (2.1)

and the left and right vacua represent the Fermi sea filled up to the level ¢,

(€l = (vac| [ Twr, 16) =]]wnlvac). 22)

n<0 n<0

Here (vac]| is the absolute vacuum annihilated by all 1, and its dual | vac) is annihilated
by all . The two vacua satisfy

Yall) =0, LIy, =0 (n<0),

* (2.3)
Y =0, ¥, 16) =0 (n=40).
The non-vanishing correlators are
WUn¥y) = 0w (m <O, (Y, ¥n) =8mn (m=10), (2.4)

where (...) = (£|...|£).
A pair of analytic fermionic fields ¥ (x), ¥ *(x) is defined by the mode expansions

Y =Y Ynx " Yt =) Y at 2.5)

nez nez

The two-point correlator of these fields is

1
1—x/y’

-
G@JO=MW«@W@N@=<§) x#£y. (26

The correlation function of a product of fermions is given by the determinant of the
two-point correlators

JTvan[Tv e = det Gy x. 27

j=1 j=1
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2.2 The Octagon as a Fock Space Expectation Value

Our goal is to construct real fermions defined on the physical sheet of the rapidity
Riemann surface parametrised by the exteriour of the unit disk, |x| > 1, and having
the two-point function

—-)
—1

V@Y === (Ixl > 1L |yl > D). (2.8)

generating the bi-local weights in the expansion (1.9). The idea of the fermionic
construction was given in [2].

With the bare Fock vacua the two-point correlator of the field ¢ vanishes. In order
to obtain the correlator (2.12) we replace the left vacuum by a coherent state'

cr1=tc. c=ew(} X vicwsi) =ewd S urasonw.
m,ne’ x|=1
(2.9)
Coun = 8m+1,n - Smfl,n- (2.10)

The state (B| can be seen as a boundary state associated with the unit circle |x| = 1.
The chiral fermion ¢ (x) lives in the exterior of the unit disk which is the image of
the physical sheet in the rapidity plane.

The non-vanishing correlations of the ¢ oscillators

(ClYm¥nll) = Cun (m>4t€,n>1). 2.11)
are obtained by commuting the fermions with the operator B and applying the rules

(2.3) which also imply (¢|B|¢) = 1.
The two-point function in the coordinate representation has the desired form

B YY) = Y Cppx "yt

m,n20 (2.12)
L b A N T N
B xlyt xy—1’ Y ’

The 2n-point correlator is the pfaffian of the two-point correlators:

L 2n
(CIY (1)t (2 1€) = PE [M]
ijk — 1 ij=1

2 1 2 —xk
=I5 TS

(2.13)

11 thank Y. Matsuo for suggesting to construct the Fock space in this way.
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Now we can readily sum up the expansion (1.9) of Sect. 1. Nicely, all the bilinear
factors are produced by the correlation functions of the fermions,

n

O = Z g Z /H % (=D Xa; (@, &) [820]u;+ia;2[820]u;~ia; 12
i - (2.14)
< (CIT]v; + siapyu; — Yiap|e).
j=1

Since the length of the bridge ¢ became the charge of the left and right vacuum states,
wy is replaced by wy—¢. The series (2.14) exponentiates,

O¢ = (¢|C exp(3 Y K)|¢) (2.15)
with the quadratic form defined by the infinite sum

du p
YKy :g/;gﬁ[;(_l) Xa (@, 8) [0V )uriapy (209 )i iaa -

d
g /R T 2D a6 [20¥ o (20 )i (2.16)

a>1

d
— & [ 5@ lo 1 a0 O 200 Wi

a>1

In the second line of (2.16) the integration variable in the a-th term of the series is
shifted as u — u —ia/2 — i0 which is justified by the integrand being analytic in
the strip |Ju| < a/2. After the shift of the argument, the integrands in all terms have
the same cut [—2g, 2¢] on the real axis. In the last line we wrote a more compact
representation of the sum in terms of the shift operator I, = e/%/2,

Dy flx)] — flx@u+i/2)]. 2.17)

Because of the cut, the action of the shift operator should be considered as analytic
continuation from the interval |u| > 2g.

The sum in the last line of (2.16) is essentially the generating function for the
5[(2]2) characters, Eq. (1.16) of Sect. 2, with operator spectral parameter k = id/du.
Introducing the operator

o0
W= (=) "Wy, (p, 6D, >
i (2.18)
_ _isslo1/x) CONE ZCOSP iy
cos d, — cos ¢

which can be regarded as the quantum spectral curve for the octagon, we can write
the quadratic form as



122 I. Kostov
d
YKy = g/ gul.[au log x ¥ (xX)]uvio W [0, log x ¥ (x)]u—io- (2.19)
R

By Fourier transformation the action of the operator W can be represented by an
integration kernel

VKy = / sz (9, 10g X W () Lusio K (u, v) [8y log x ¥ (x)]u_io (2.20)

with
IE'(M — —g 2i 88 W =1/x)] ,igh [x(v)=1/x(v)]
cosh § cos ¢ (2.21)
—z sink(u —v) —
coshk —cos¢’

When this kernel is substituted in (2.19), an important simplification occurs.
Namely the integrals in the rapidities # and v can be transformed into a contour
integrals along the init circle in the x-space. Indeed, whenever k — |£| > 0, the inte-
gral over u which goes below the real axis can be transformed into an integral around
the Zhukovskycut, otherwise the integral vanishes. The same holds for the integration
in v. Therefore one can write the quadratic form as a double contour integral

dlogx/ dlogx
Ix|=1 2mi ly|=1 2mi

YKy = K(x,y), (2.22)

with

K(x,y)=g o868 [x—1/x+y—1/y]
o cosh& — cos
x/ dksin[gk(x +1/x +y 4+ 1/y)] 5 0
&

coshk — cos¢

(2.23)
g [* dk eSO+ EE —iglk—E)y+5%] coshé——cos¢

2i Je coshk — cos ¢
— {x < y}.

In conclusion, we have seen that the expansion of the octagon as a sum over mirror
magnons can be formulated as a Fock expectation value of a free chiral fermion with
correlator (2.12)

0, = (£|eéfmzl 3 VOV 3 fm T Fyir T V@KENVO) gy (2.24)

with the kernel K(x, y) defined by (2.23).
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2.3 Discrete Basis

When expressed in terms of the fermionic amplitudes v,,, the quadratic form is given
by the semi-infinite matrix

'lﬁK'W - Z Kmn wm wnv (225)

m,nez

where K, are the coefficients in the Laurent expansion of the analytic kernel (2.23)

Kx,y)= Y Kun x"y" (2.26)

m,nez

valid in a ring containing the unit circle. After acting on the right vacuum, only the
modes with m, n > £ survive in the double sum.

Assume that the relevant fermionic oscillators 7, ¥, are truncated to 0 < n —
£ < N and define the N x N matrices

K = {Kmn}efm,anJrEv C= {Cmn}éfm,anw%v (227)

with Cy,.p = 8m+1.0 — Smon+1. In terms of the discrete modes the operator in the
fermionic representation (2.24) has the form of the Balian-Brézin decomposition for
a Bogolyubov transformation [16]

lim (’)(N)

N—o00

Oy

O = (ele2V"CV" 2V KV p) (2.28)

N+¢

/H[de d9 ] 6—9(39 %0 —9 Kn.

m={

In the second line the expectation value is represented as a Grassmannian integral,
where we ignored the sign factor in the measure. The expectation value is evaluated
as the pfaffian of the 2N x 2N skew-symmetric matrix

c 1
M:(_IK). (2.29)

The octagon is equal to the pfaffian of this matrix,

=PfM = /Det[1 — CK]. (2.30)

The matrix elements can be evaluated as double contour integrals [2]
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Kmn=/ dX/X/ dy/y X"y K (x, y)
! |

x|=1 2mi yl=1 2mi

_ gl k=8 T k=& o 231
= i/gdk (z k+§) (l k+§) (2.31)

X Jm(zg / k2 _%-2) Jn(zg / k2 _52) M

coshk —cos¢’

or, after changing the integration variable to t = /k? — &2,

Ky = _Zg/oodt X(t) Hmfn(%‘/t) Jm(zgt) Jn(zgt) (232)
0

with

X(1) = coshé — cos ¢ (2.33)
cosh /12 4+ &2 — cos ¢

and the polynoms I7,(z) are the Chebyshev polynomials of second kind with imag-
inary argument,

n

in(VEFT+2) —i (VEFT—2)

_ L\ 2.34)
I1,(2) = Up 1 (i2) = (
" 2iVE+1
and satisfy the recurrence relation
Il -1 (2) + 41 (2) = 2iz [T, (2) . (2.35)

3 Species Doubling Phenomenon: The Pfaffian as a
Determinant

3.1 Doubling of the Eigenvalues and Similarity
Transformation

The matrix elements of the matrix CK decrease rapidly with m and n, which allows
to truncate it with reasonable precision to a finite-dimensional matrix. The truncation
works better for small coupling g.

The numerical diagonalisation reveals that the eigenvalues of the matrix CK are
real, negative and doubly degenerate. This is a non-trivial fact because the matrix
K., 1s anti-symmetric but not real, its even-odd elements are real while the even-
even and odd-odd elements are pure imaginary. It is therefore plausible that the
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antisymmetric matrix M can be transformed by a similarity transformation into a
real skew-symmetric matrix, which is diagonalised by orthogonal transformation as

M=03x0", x= diag{((i)\m gm)}. 3.1)

In [2], it was conjectured that there exist a similarity transformation from K to a
real anti-symmetric matrix K° with non-zero matrix elements only if m — n is odd.
A perturbative series for the matrix K° was proposed and it was checked that the
matrices K and K° give identical results for the first several orders of the perturbative
expansion of the octagon.

Later Belitsky and Korchemsky [17] proposed an elegant integral expression for
the matrix elements of K° which reproduces the perturbative series found in [2]
and presumably hold for any value of the gauge coupling. The integral formula is
obtained by replacing in the integrand in (2.31) of the previous section the polyno-
mials I7,(§/t) by their constant terms s,,:

o0
K2, = —2g $un Lne Lunn = / dt X(1) JnQ2gt) Jo2gD).  (32)
0

It is easy to see that the matrix elements of K are linear combinations of the
matrix elements of K°. This can be demonstrated using the fact that I7,(£/t) are
polynomials in 1/¢ and the recurrence relations for the Bessel functions

Jn112gt] + Ju—112g1]
n

§

;Jn [2g1] = &g (3.3)
Since the form of the matrix elements K, is linked to the parity of m — n, it is

natural to reorder the lines and the rows of the 2N x 2N matrix M in order to reveal

an additional 2 x 2 block structure.” Assuming that N is even (otherwise the pfaffian

vanishes), we have

0O C IO
-C0 0 I
M=1_10 0K 34
0 -I-KO
The matrices in the blocks are defined as follows,
K={Kij}ij0.. 21 Kj=K5,,=-¢ (=) Loisenjriees  (3.5)
C={Cijlijmo..x1»  Cij = Canjy1 = 8ij — 8 jt1. (3.6)

The pfaffian of the matrix (3.4) becomes a determinant

2Such a appears also in other problems in A" = 4 SYM as pointed out by Basso and Dixon [18].
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0, = Pf[M] = £det[l + R®], R® = _CK. (3.7)

The matrix elements of R(¢) = CK are expressed in terms of the integrals L,,,,
Eq. (3.2), as

R =2g(=1)"~/ (Laiyejise + Laivasenjie)s i,j =0, (3.8)

Applying the recurrence relation (3.3), one can write the matrix elements
of R, as

® dt
Rﬁ=—%%w4+m/ —Lniree 28 Lnpre gD X, (3.9)
0

cosh& — cos ¢

X)) = .
cosh /12 + &2 — cos ¢

(3.10)

Here we ignored the sign factor (—1)”~" as it cancels when computing the moments.

4 Weak Coupling Expansion

4.1 Expansion of the Kernel in Polylogs

The coefficients of the weak coupling expansion of the matrix elements (3.9) can
be expressed in terms of a set of functions f;(z, z) known as ladder integrals. The
(conveniently normalised) ladder integrals evaluate the so-called ladder Feynman
graphs represented in Fig. 5.

The ladder integrals can be expanded in polylogarithms, but we will need here only
their integral representation which can be extracted from the results reported in [19]

% o 21
fies= | dr
0 cosh/t2+ &2 —cos¢

zi_ﬁ;ﬂi_@%y#HMMPUﬁy
(-2 — ) .z

4.1)

Fig. 5 A ladder Feynman X,
graph and its dual. In the
x-space the graph has k&
vertices and k lines meeting .= X X3
at the points x, and x4. The
dual graph in the momentum X,
space has the form of a lader
with k + 1 rungs

k lines
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The integrands in the expressions for the matrix elements (2.32) or (3.9) are linear
combinations of the integrand of (4.1). Hence both the original matrix K, Eq. (2.31),
and the “improved” matrix K°, Eq. (3.2), can be expanded in ladder integrals.

Here we will give the expression for the improved kernel only. For that it is
sufficient to expand the numerator of the integrand in (3.9), which is done according
to the formula

JiQgt) i (2gt) = Z Ch (g2,
" (4.2)
Cp:(2p+k+l>i
’ p k+p)d+ p)!

We thus find Oy (z, Z, %) = Det [I+ R®] with

R k)

i,j=0°
o0
RO =(1=21=2) Qi+ 1)) fijupn &2 CE 000 (43)
p=0

The determinant can be evaluated by expanding the logarithm of the octagon in the
moments of the matrix R®,

o0 [ee]

1
_ (0) [(OFY (9]
logQ; = Y R — 5 » REORY 4 (4.4)
i=0 i,j=0

Alternatively, and more efficiently from the computational point of view, one can

truncate the semi-infinite matrix R to a N x N matrix Rf\f)x N= {R,(f)j}gfk, J<N—1-

Such a truncation reproduces the perturbative expansion of the octagon to loop order
2N +£€—1,

4N+2¢

O =det@+R" ) +o(g" ). (4.5)

For example, the truncation to a 3 x 3 matrix gives the perturbative expansion up to
0(g"),
Op—o =det (1+RY),  +o0(g")
=1+ -20-2) (fig®— 28" +1/:8° — £ fag® + 5% /58")
+HA == P (5(fifs = D8* = m(fifs = £2£2)8"°) +0(g").

The nine loop result presented in [12] is reproduced by truncating to a 5 x 5 matrix.
To compare with [12] one should take f,, = n!l(n — 1)!F),.
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4.2 Ladders and Fishnets

There is an intriguing relation with the fishnet graphs studied originally by A.
Zamolodchikov [20] and recently rediscovered in certain limits of the N' = 4 SYM
theory [21-25]. Namely, in [13] it was conjectured that the octagon was expanded
in a basis made of the minors of the semi-infinite matrix

fifafs.
N S
r= fi fa fs. (46)

Some of these minors evaluate rectangular fishnet graphs. The diagonal minor of
the determinant (4.6) with rows and lines labeled by ¢, £ + 1, ..., £ 4+ n equals the
n x (n + £) rectangular fishnet graph [23]

X2

Jitit1+e

fish]y, pte = 0 1 =det - -
fishlr RGeS ) B

4.7)

4

The n x (n + £) fishnet Feynman diagram gives the lowest order of the n-magnon
contribution to the octagon,

O = D [0 =)A= DI g ([fishlyure +0(g?) , 4.8)
n=0

This property of the octagon is obvious from the representation (4.5), which can
be written as a sum over minors of the matrix K, Eq. (4.3),

o0
= ©
Oc=3 > det([RiaJﬁ]aﬁzl )
n=0 0<ij <..<in p=1,...,

0=ji <-<jn 4.9)

oo
= detR" (14 0(g%).
n=0

Indeed, to the lowest order the determinant of the matrix REfX]N is given by the fishnet
integral normalised as in (4.7),

det RV, =[(1 — 2)(1 — D)I" g2"*0 [fish], s +0(g2""+O+2).  (4.10)



The Octagon Form Factor in N' = 4 SYM and Free Fermions 129
5 Strong Coupling Limit

The strong coupling limit studied in [26] can be viewed as the semiclassical limit of
the fermionic system where the free energy is given by an integral over the Fermi
sea. First let us note that the pole of the fermionic correlator C(x, y) isatxy = 1. It
is more natural to replace the correlator by

Clx. y) I x-—y
X, y) = —
Y xtyt xy —1

Cxy—1
- Cx, 1)y) = % xy_ S (5.1)

and simultaneously replace the kernel by K (1/x, y). The semiclassical kernel is
evaluates by using the strong coupling approximation of the mirror momentum
2pa(u) = ap(u), with p(u) = igd,(x — 1/x),

oo

—Eq(u.k) _ a —ak 2i€p.(u) jial/gx __ cosh& — cos ¢
e = E (=% e e e =, 5.2)

p— coshk —cos ¢

with
1

- s . Xty ¢
ktk,u, ) =k —iP, iP=itpu)—il/x =& i (5.3)

— 2 gx

Here k is coupled to the fast variable u; — u, and the mirror momentum depends on
the slow variable u = (u; + uy)/2. The function K{™ (k, u) = k — i P(u) gives the
profile of the Fermi sea. The dependence on £ shows up only in the subleading order
exceptif £ ~ g.

As is well-known, the grand potential in the semi-classical limit is given by the
integral over the phase space,

InQ, :/d—”/oo dk In (1 + e~ Fath)
21 0

d 00 1 — e kHiP+Ey (] — p—k+iP=£
Z/_“/ dklog D —¢ Mz ) gy
27 0 (1 — e~ k+iP+i¢ )(1 _ efkﬂszqb)

The integral in k gives a sum of dilogarithms and the result matches with the expres-
sion obtained in [26].

28
d A 4 . o
log 0= / 2—“ (—Liz(e’”f)—Liz(e”"f)Jr Liy(e/PHi%) + Liz(e"’“¢)),
T

% (5.5)

x+1/x l/g

P =
Ex—l/x_H
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6 The Octagon as a Fredholm Determinant with Modified
Bessel Kernel

6.1 A Generalised Bessel Kernel

Here we give the representation of the octagon as a Fredholm determinant of a
modified Bessel kernel which was thoroughly studied in [17] for £ = 0. Using the
summation formula

i(zm N Som1 Q) Jom1(22) _ we1 Qw)Je(22) — 2Je41 (22 Je Cw)
m={

Wz w? — 72
(6.1)
the determinant can be written [17] as a Fredholm determinant of the type
oo
Diz.5) =Detll = Kol [Kefl) = [ dnKetwn)f@. (62
0

The integration kernel K, (¢, ) is given by

Ko(t1, o] = K (11, 1) X (1),
fita t1Jer1(gt1)Je(2gt2) — taJe1(2812) Je(2g11) (6.3)
Vi -1 ’

All dependence on ¢ and £ is carried by the factor £2(z).

Itis convenient, following [27], to change the variable so that also the dependence
on the 't Hooft coupling g gets absorbed into the local factor. In terms of the new
variable x defined by

K11, 1) =

29t = J/x (6.4)

the kernel Ky becomes the Bessel kernel which describes the statistics of the spacing
of the eigenvalues of orthogonal (¢ = —1/2) or symplectic (£ = 1/2) matrices of
large order [28],

oY () — v ()e(y)

B 2(x —y)

_ $0y6() —dxdd _ 1
X —y 4

P(x) = Je(Vx), ¥(x) = —vxJr1(Vx),

(K f10x) = /0 K(x.y)f(5)dy.

KB(.X, )’)

1
/O dap@nglay). o



The Octagon Form Factor in N' = 4 SYM and Free Fermions 131

The representations in the second line follow from the form of the derivatives
2x0:p(x) = Lp(x) + ¥ (x), —2x0:¥(x) =LY (x) + xp(x), (6.6)

which allows one to replace in the definition of the Bessel kernel in the first line

Y(x) — 2x0,¢(x). (6.7)

In our case the Bessel kernel is modified by a factor x (x) obtained by changing
the variable of X,

Ky(x,y) = Kp(x, ) x (),

X (x) = X(ﬁ/4g) _ cosh& — cos ¢ (6.8)

cosh (éw/l n x/(4g§)2> —cos¢

6.2 Differential Equations

The analysis by Belitsky and Korchemsky [17, 27] works for any function x provided
it satisfies the homogeneity property

ad ad
Ax =0, A=2x—+g—. (6.9)
ox ag

They derived a system of integro-differential equations for the functions

U = —2gd, log O, 0(x) = (x|

1
I—K, ). (6.10)

assuming that £ = 0. Here we formulate the equations for general bridge length ¢,

0, U = /oodXQZ(X)aax(X), a=g,¢,§&, (6.11)
0
(A7 —g@3,U)+U) Q= (> —x)Q. (6.12)

The differential equations are supplemented with the boundary condition at weak
coupling

0(x) = Ji(Vx) + 0(g?). (6.13)

Assuming that the solution is found, the octagon is given by the integral
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8 d /
©=/ B U@t (6.14)
0o &

Once the function Q is found, the derivatives of the octagon with respect of o =
{&, g, ¢} are computed as

9y log O = %/ dx(dex) Q*3:Alog Q. (6.15)
0

Taking into account the particular form of y the three differential equations take
the form

dU = foo dx Q*(x)dsx (x), (6.16)
0
gd,U = —Z/wdx 0% (x)xd, x (x), (6.17)
0

sinh(&)

cosh& —cos¢ Jy dx Q°(x)x (x) (6.18)

8:U = 8g%¢ /Oo dx Q*(x)d, x (x) +
0

together with the Eq. (6.12) for Q. In [17] perturbative methods of solution were
developed for the weak and strong coupling limits.

7 Conclusions

Here we reviewed the methods for computing the octagon form factor, which appears
as a building block of a class of polarised four-point functions of heavy half-BPS
operators. The octagon is made of two hexagons are glued together which do not
interact with the rest and appears whenever a skeleton graph contains a square delim-
ited by four large bridges.

We reviewed the determinantal representation of the octagon obtained in [1, 2]
and gave a simplified derivation based on the Fock-space representation in terms
of free fermions. The fermionic representation was possible because the dressing
factors of the scattering matrices do not appear in the expansion.

The pure octagon appears in the simplest case where the hexagons are forced to
stay in couples. It is worth exploring the possibility of higher order form factors rep-
resenting chains of hexagons in interaction (decagon, dodecagon) by several species
of free fermions. Such form factors occur the higher-point polarised correlation func-
tions of heavy half-BPS operators or if one of the charges in the four-point function
is kept finite.

Very recently, Belitsky and Korchemsky developed a powerful approach to the
octagon based on a system of integro-differential equations [17, 27]. Their approach
allows to construct systematically the strong coupling expansion, which is notori-
ously difficult problem in general.
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Concerning weak coupling, the appearance of the fishnet graphs is somewhat
mysterious, although not completely unexpected. It would be interesting to find an
interpretation of the higher order graphs as fishnet graphs with defects.

Finally, it seems that the integrability structure of the octagon is not completely
unveiled. The operator fermionic representation of the octagon resembles the tau-
function of a Toda chain hierarchy and it is thus possible that there exist Hirota-like
equations relating octagons with bridges £ and ¢ &= 1. Once the integrable structure
of the octagon is completely understood, one can try to generalise it to non-BPS
operators.

Acknowledgements I am grateful to Gregory Korchemsky and Valentina Petkova for useful dis-
cussions during the preparation of this text.
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Nother’s Second Theorem m)
as an Obstruction to Charge e
Quantization

Philip Phillips and Gabriele La Nave

Abstract While it is a standard result in field theory that the scaling dimension
of conserved currents and their associated gauge fields are determined strictly by
dimensional analysis and hence cannot change under any amount of renormaliza-
tion, it is also the case that the standard conservation laws for currents, dJ = 0,
remain unchanged in form if any differential operator that commutes with the total
exterior derivative, [d, % ] = 0, multiplies the current. Such an operator, effectively
changing the dimension of the current, increases the allowable gauge transformations
in electromagnetism and is at the heart of Nother’s second theorem. We review here
our recent work on one particular instance of this theorem, namely fractional electro-
magnetism and highlight the holographic dilaton models that exhibit such behavior
and the physical consequences this theory has for charge quantization. Namely, the
standard electromagnetic gauge and the fractional counterpart cannot both yield inte-
ger values of Planck’s constant when they are integrated around a closed loop, thereby
leading to a breakdown of charge quantization.

1 Preliminaries

Although Néther [12] has two theorems, the second is little known but ultimately
more important, as we will see. The first theorem which sits at the foundation of
gauge theories asserts that applying the gauge-invariant condition of electromag-
netism A, — A, + 9, A to the Maxwell action

S = —%/ddx(Fz + J, A% ()
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results in the conservation law
9,4, =0, 2)

with F = dA. Because A is a dimensionless function, [A] = 1 and the current has
fixed dimension [J] = d — 1. Had we retained the dimensionful charge, we would
have that [g A] = 1. Note the covariant derivative, heuristically written as D — ig A,
only fixes the dimension of the product [ A] = 1. Hence, it is entirely possible to
construct theories [4] in which ¢ and A have arbitrary dimensions without changing
how the gauge group acts. In what remains, we have set ¢ = 1 but our remarks
apply to the dimensionful case as well. The well known ambiguity (or “improvement
transformations” [15]) of the current, namely that the conservation laws remain fixed
under shifting the current by a total derivative of the form, Jy — Jy + 9, X* and
Ju — Ju + 3°X,,, have no effect on the conserved charge nor the dimension of the
current. In fact as Gross [6, 13] pointed out, because it is the action of the U (1) group
that ultimately fixes the dimension of the current through

8(xo = y0)[Jo(x), (] = 8¢ (18’ (x — y), 3)

the dimension of the current, [J, ] = d — 1, is sacrosanct unless one changes how
the U (1) group acts.

This is the context [12] for NST. Noéther [12] noticed that the form of the con-
servation law for the current is determined by the order of the derivative retained in
the degeneracy condition for A,,. In fact, there is no unique way of specifying this
as can be seen from the following argument. Consider the Maxwell action,

1 [ d%
S=_ / — A, ()K" — K"k A, (k)

2 ) 2md
1 4 o
= E/d kA ()M A, (k). “4)

All gauge transformations arise as zero-eigenvalues of M. For example,
M"*k, =0, (&)

which yields the standard gauge-invariant condition in electromagnetism because
ik, is just the Fourier transform of d,,. The ambiguity that leads to NST comes from
noticing that if k, is an eigenvector, then so is fk,, where f is a scalar. Whence,
there are a whole family of eigenvectors,

M;vakv = 07 (6)
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that satisfy the zero eigenvalue condition, each characterizing a perfectly valid elec-
tromagnetism. It is for this reason that Nother [12] devoted the second half of her
paper to the consequences of retaining all possible integer derivatives,

Ay — Ay + 0, A+0,0,G" + -, 7

in the gauge-invariant condition for A, on the conservation laws for the current.
Stated succinctly, the second theorem finds that the full family of generators of U (1)
invariance determines the dimension of the current not just the linear derivative term
A, — A, +9,A. In general, the second theorem applies anytime there are either a
collection of infinitesimal symmetries or one symmetry parametrized by an arbitrary
number of functions as in Eq. (7). What Nother [12] found is that the higher-order
derivatives in the gauge-invariant condition add further constraints on the current.
They can even change the order of the current. However, as long as only integer
derivatives [1] are retained, the constraint equations yield no new content. It is for
this reason that Nother’s second theorem has garnered little interest.

However, there is a generalization of Eq. (7) that does yield non-trivial results.
Consider the fact that the current conservation equation remains unchanged if a
differential operator Y exists such that [, Y] = 0. If such an operator exists then the
conservation law becomes

30, YJ, =0,J, =0, (8)

which the redefines the current to be J = ¥ J. This is an ambiguity distinct from the
“improvement transformations” of the first theorem because Y is linked to the gauge
symmetry. We can construct Y directly from Eq. (6). Since fk, is the generator of the
gauge symmetry, there are some constraintson f. (1) f mustberotationally invariant.
(2) f cannot change the fact that A is dimensionless; equivalently it cannot change the
fact that A is a 1-form. (3) f must commute with the total exterior derivative; that is,
[f, k] =0justas|d, Y] = 0. Hence, finding f is equivalent to fixing Y. Aform of f
that satisfies all of these constraints is f = f(k?). In momentum space, k2 is simply
the Fourier transform of the Laplacian, —A. As a result, the general form of f(k?) in
real space is just the Laplacian raised to an arbitrary power, and the generalization in
Eq. (6) implies that there are a multitude of possible electromagnetisms (in vacuum)
that are invariant under the transformation,

Ay = Ay + f(KDik, A, 9)
or in real space,

Ay, — A+ (—A4)9,4, (10)



138 P. Phillips and G. La Nave

resulting in [A,] =14 2[f] = y. The definition of the fractional Laplacian we
adopt here is due to Reisz:

Jx) = f(&)

_ v =
(=4y) f()C) - Cﬂ,V - |x _S |n+2}’

d& an

for some constant C,, ,,. Note rather than just depending on the information of f (x) at
apoint, the fractional Laplacian requires information everywhere in R”. The standard
Maxwell theory is just a special case in which y = 1. In general, the theories that
result for y # 1 allow for the current to have an arbitrary dimension not necessarily
d — 1. Identifying Y with the fractional Laplacian yields the conservation law

(=) D2 = 0. (12)

Conservation laws such as the one in Eq. (12) are in some sense more fundamental, as
one can infer the standard ones from them but more importantly they can occur earlier
[9, 11] in the hierarchy of conservation laws that stem from Néther’s first theorem.
This is the same conclusion reached from the degeneracy of the eigenvalue of Eq.
(6). This consilience is not surprising because the degeneracy of the eigenvalue is
another way of stating Nother’s second theorem. That is, the current is not unique in
gauge theories. It is the lack of the uniqueness of the current that yields a breakdown
of charge quantization. As expected, this ambiguity shows up at the level of the Ward
identities. The current-current correlator for the photon

CY (k) o (kz)y<n“ - ﬂ) (13)

does not just satisfy k,,C*¥ = 0 but also k¥ ~'k,, C*” = 0. This translates into either
9,C*" = 0, the standard Ward identity, or

3. (—A)T " =0 (14)

which illustrates beautifully the fact that the current conservation equation only
specifies the current up to any operator that commutes with the total differential. As
we mentioned previously, this appears to be the first time this ambiguity has been
linked to Nother’s Second Theorem.

Because the fractional Laplacian is a non-local operator, the corresponding gauge
theories are all non-local and offer a much broader formulation of electricity mag-
netism than previously thought possible. All such anomalies can be understood as
particular instances of Nother’s Second Theorem. We will show how such theories
arise from holographic bulk dilaton models [5, 8] and show that Eq. (8) leads to a
breakdown of charge quantization as can be seen from the fractional version of the
Aharonov-Bohm effect [10, 11].
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2 Charge Quantization

Changing the dimension of the vector potential has profound consequences for the
quantization of charge. This can be seen immediately because the integration of the
gauge field around a closed loop

q?§A.de=hz (15)

must be an integer multiple of Planck’s constant, /. This condition amounts to the
integrability condition for the cohomology class of g A to be an integral class. Con-
sequently, charge quantization is equivalent to the geometric requirement that the
form F4 = d A be indeed the curvature of a connection D =d — gA ona U(1) prin-
cipal bundle P. It is on this fact that the Byers-Yang [2] theorem is based. Clearly
then when [A] # 1, the integral above is no longer dimensionless, leading to an
inapplicability of the Byers-Yang theorem. What is required in such cases is the
construction of a new fictitious gauge field that does have the requisite dimension.
While the new gauge will preserve Eq. (15), the original one will not [8, 10]. Con-
sequently, if it is the fractional gauge field that describes the material in question,
strictly speaking, charge is not quantized. That is, both gauges cannot preserve Eq.
(15) simultaneously. Maxwell’s equations amount to setting f =1 or y = 1. As
f # 1 1is a perfectly valid electromagnetism, charge quantization is essentially a
choice. This is a physical consequence of N&ther’s second theorem.

3 Holographic Models with Fractional Gauge
Transformations

The preliminaries lay play that within a model with local interactions and with U (1)
symmetry in tact, there is no way around Gross’s [6] argument that the dimension of
the gauge field and the current are fixed to [A] = 1 and [J] = d — 1, respectively.
However, Nother’s second theorem suggests that other possibilities exist. Interest-
ingly [17, 19], superconductivity provides a simple counter example, in which the
current,

Ji = —f Kij(x,x’) (Aj(x’) - V}d)(x/)) d3x' (16)

has dimension d — dgx — 1 and hence is a non-local function of the gauge field,
A(x') as a result of the kernel K;; which arises from expanding the free energy
around the minimum V¢ — A = 0 with ¢ the U (1) phase. The Pippard kernel [14],
relevant to explaining the disorder dependence of the Meissner effect, amounts to a
particular choice for K;;. Holographic constructions offer a possibility as a result of
the extra dimension which allows for the boundary (either at the UV or the IR) to
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have properties quite distinct from the bulk. A distinct claim of dilatonic models of
the form

2
S = /dd“xdy«/_—g [R — % — %‘b)ﬂ + V(¢>):| , (17)

is that the boundary gauge field acquires an anomalous dimension that is determined
solely by the asymptotic form of the action

Shia = /dvddy(y"F2 +oe, (18)

where y is the radial coordinate in the anti-de Sitter spacetime. That such models
change the gauge structure at the boundary can be seen by interpreting the dilaton
term y“ as a running charge coupling g(a) which depending on the exponent a can
yield a relevant interaction at either the UV or at the IR horizon. In the standard
holographic set-up [7, 18], the boundary lacks a global U (1) structure only the bulk
does where the gauge field acts as source for the boundary current. That is, the
conformal boundary, which we denote by the zero of the radial coordinate, y = 0,
is not imbued by a local gauge structure in which A(y =0, x) = A +dA. More
explicitly, once the boundary conditionis set, A(y = 0, x) = A, the gauge degree of
freedom is lost. Of course, the gauge structure can be reinstated simply by changing
the boundary conditions from Dirichlet to von Neumann. Alternatively, the theory
can have a non-trivial structure at the IR or at the horizon. Theories valid at either
the UV or the IR boundary can be constructed using the membrane paradigm [16].
In this case, this approach is particularly apropos as either the IR or UV limits are
relevant depending on the value of a as can be seen from the equations of motion,

VE(p“ Fuw) =0, 19)

where we have introduced the radius p = r — r;, which measures the distance from
the horizon. As depicted in Fig. 1 it is the IR limit which is relevant if @ > 0 and the
UV in the opposite limit.

To construct solve this boundary value problem, we appeal to a well known the-
orem in analysis. In 2007, Caffarelli and Silvestre (CS) [3] proved that standard
second-order elliptic differential equations in the upper half-plane in Rf’jl reduce
to one with the fractional Laplacian, (—A)”, when one of the dimensions is elimi-
nated to achieve R". For y = 1/2, the equation is non-degenerate and the well known
reduction of the elliptic problem to that of Laplace’s obtains. The precise statement of
this highly influential theorem is as follows. Let f (x) be a smooth bounded function
in R" that we use to solve the extension problem,

g,y =0)=f)
a
Axg + ;gy + gyy = Oa (20)
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A B

conformal boundary
r — 00

p= T‘ —Tp
horizon

Fig. 1 A.) A depiction on an AdS spacetime with a conformal boundary at r = co and a black
hole horizon at r = rj,. The Maxwell-dilaton action in the bulk has equations of motion of the form
d(xp®dA) = 0. B.) p-form generalization of the Caffarelli-Silvestre [3]-extension theorem. A; are
the boundary (tangential) components of the bulk gauge field, A. For a dilaton action in R”" with the
equations of motion d(xy*dA) = 0, the restriction of these equations of motion to the boundary
yields the fractional Box operator where the exponent is given by y = (1 — a)/2. Depending on
the sign of a, the bulk dilaton action either yields fractional Maxwell equations of motion at the
conformal UV (a < 0) boundary or at the IR limit (¢ > 0) demarcated by the horizon radius, rj

to yield a smooth bounded function, g(x, y) in R’fl . f(x) functions as the Dirichlet
boundary condition of g(x, y) at y = 0. These equations can be recast in degenerate
elliptic form,

div(y*Vg) =0 eR"M, (1)

which CS proved has the property that

lim 28 = ¢, (~a) f (22)
y—0* ay n,y
for some (explicit) constant C, ,, only depending on d and y = '%" with (—A)Y,

the Reisz fractional Laplacian defined earlier. That is, the fractional Laplacian serves
as a Dirichlet to Neumann map for elliptic differential equations when the number
of dimensions is reduced by one. Consider a simple solution in which, g(x, 0) = b,
a constant, but also g, = 0. This implies that g(y) = b + y'~¢h with (1 —a) > 0.
Imposing that the solution be bounded as y — oo requires that 4 = 0 leading to a
vanishing of the LHS of Eq. (22). The RHS also vanishes because (—A,)"b = 0.
As a final note on the theorem, from the definition of the fractional Laplacian, it
is clear that it is a non-local operator in the sense that it requires knowledge of
the function everywhere in space for it to be computed at a single point. In fact, it
is explicitly an anti-local operator. Anti locality of an operator Tina space V(x)
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means that for any function f(x), the only solution to f(x) = 0 (for some x € V)
and T f(x) =0is f(x) = 0everywhere. Fractional Laplacians naturally satisfy this
property of anti-locality as can seen from their Fourier transform of Eq. (11).

Equation (19) is highly reminiscent of Eq. (21) of the CS construction. The only
difference is that g is a scalar in the CS-extension theorem and the gauge field is a 1-
form. Hence, the p-form generalization [11] of the CS-extension theorem is precisely
the tool we need to determine the gauge structure either at the conformal boundary or
at the horizon. The key ingredient in this proof is the fractional differential. Because
the Hodge Laplacian

A=dd*+d*d: 2V(M) - 2P(M), (23)
does not change the order of a p-form, as it is a product of d and d*, it can be used

to define the fractional differential

y—1 y—1
2

dy=dAT = AT, &' =d"A"7. 24)

y
Since [d, A”] = 0 for any power b, a key benefit of d,, is that the composition
(dydy +dyd))o = Ao (25)

offers a way of computing the action of fractional Laplacian on the differential form w.

These definitions allow an immediate construction of the p-form generalization
of the CS-extension theorem for o € £2” and a bounded solution to the extension
problem

dy*d*a) +d*(y*da) =0e M x Ry

o lgy=wand d*o |yy=djw, (26)
then
lll’% yaivd(x = Cn,a (A)Vw’ (27)
y—)

with 2y = 1 —a and where iyw indicates the (p — 1)-form determined by iyw
X, Xpo) =Xy, -, Xpog, V), v = aiw for some positive constant C,, ,.
This is the p-form generalization of the Caffarelli/Silvestre extension theorem. It
implies that the CS extension theorem on forms is the CS extension theorem on
the components of the p-form. The method of proof was simply component-by-
component. The succinct statement in terms of the components is easiest to formulate

from the equations of motion

div(y*Vai,.;) =0 € M x Ry,

(ai|~~~i,,) loy= wi,..;, andd*a |yu= djw. (28)
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Therefore, using the CS theorem, we have that

oo e
lim ya— = Cpa(—A)* jyis (29)
y

y—0
which proves that
lin}) yi,da = (A)w, (30)
y—
since by (elliptic) regularity of solutions to Eq. (26)

lim y¢ doe,, -t
y—0 0xJ

=0. (€20

Applying this result to the dilaton equations of motion, Eq. (19) results in the
fractional Maxwell equations

ATA, =0. (32)

for the boundary components of the gauge field. Since the only restriction is that
2y =1 — a, this proof applies equally, with the use of the membrane paradigm [16],
at the conformal boundary and the horizon. Hence, even the dynamics in the IR
(horizon) are governed by a fractional Maxwell action. The curvature that generates
these boundary equations of motion is

F,=d,A=dA"7 A, (33)
with gauge-invariant condition,

A— A+d,A, (34)
where the fractional differential is as before in Eq. (24) which preserves the 1-form
nature of the gauge field. This feature is guaranteed because by construction, the
fractional Lagrangian cannot change the order of a form. As is evident, [A,] = y,
rather than unity. This gauge transformation is precisely of the form permitted by

the preliminary considerations on Nother’s second theorem presented at the outset
of this article and also consistent with the zero eigenvalue of the matrix M in Eq. (4).

4 Nother’s Second Theorem Revisited

In order to determine how the fractional gauge acts, we first define the covariant
derivative. To this end, we consider the ansatz,

Dy pap = (d+i0F AT, (35)
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with @ and B to be determined. The reason behind this ansatz for the covariant
derivative is that we require the existence of a non-local transformation of the field
¢, the vector potential A and the infinitesimal gauge group generator A such that
the covariant derivative transforms in the usual way Dy g 4 to the standard Dy ¢' =
(d +iA")¢’ with the field redefinitions

¢ =0"¢ A =0°A (36)
The Gauge action on ¢’ and A’ is thus the classical one
¢ — ety A > A +dA (37)
and
Dy (¢'¢') = e Darand’ (38)

Following the non-local transformations of Eq. (36), it is natural to suppose a field
redefinition for the infinitesimal generators of the Gauge group as

A =01PA. (39)

Naturally, after such a change, there is only one way to define the Gauge group
action,

éro¢=07(dT100), (40)
to make Dy g 4 equivariant. The equivariant condition is then

Dupa (e @) =" Dyparaciad. (41)
We will define the curvature of Dy g 4 to be
Fupad = (d~+i0PA)Dyp adh. 42)

This definition has the feature that it reduces to the curvature F, after the trans-
formations in Eq. (36). In fact, it also reduces to the curvature Fys 4 after the mere
change of fields ¢ — ¢’. At this point, we have not fixed the values of «, 8 and
8. There are three natural conditions which we impose that will determine uniquely
their values (hence the covariant derivative) and the nature of the Gauge group action
at the same time:

1. Dgy g a¢ restricts to the fractional differential d,, ¢ on functions when A = 0.
2. The Gauge group action on connection fields mustbe A — A +d, A.
3. The curvature Fy g o = id, A.
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The restriction that the covariant derivative reduce to the fractional differential, d,,,
when the fields are functions (Condition 1) imposes that o = nyl Next, we use
Condition 2 to determine the value §. A quick read of Eq. (41) will convince the
reader that the Gauge transformation sends A to A + d[° A. Therefore, in order for
condition 2 to hold, we require that § = Fmally, in order to satisfy Condition
3, we make explicit the formula in Eq. (42)

Fupad = (d+i0PA)d +i0F A)D"¢
=dd0%¢ +id (0F AD"¢) +i0P AdO*¢ — P A AP A9
=id(0P A — iTPAd" ¢ + iP A ¢ = id(OF A)g. (43)

Therefore for Condition 3 to hold, we require that 8 = Summarlzmg, we have

Dy ap = (d+i07 AHO7 ¢
PENe) ¢ = D%y <eiDZA|:|"21¢>
Fya=(d+i07 A)D, 14, (44)

and the equivariance condition is

Dya (e O @) = eiDTADa,ﬂ,A+dVA¢~ (45)

We can now put Nother’s second theorem in this context of the redefined fields A’
and ¢’. What we will show is that the standard version of Néther’s second theorem
can be applied straightforwardly to a gauge action with A" and ¢’ which can then be
translated back to its non-local counterpart in terms of A and ¢. Given a schematic
action for some field ®(x),

S(@) = /de(x, P (x)), (46)

we consider the infinitesimal action of Lie algebras and infinitesimal generators
represented by vector fields

D , 47

= (D; 0% o (47)
With D; = Di' i” for any multi-index [ = (i1, ---,i,), @(x)% = a);,,
aw ®% and D, = ax,,, D oal %f 507 by solving the (linearized) symmetry con-
ditions

X(Eq(L)) =0, (48)
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where E, (L) are the Euler-Lagrange operators
Eo(L) = (-1"'D/L (49)

and |I| =), im. The solution, Q(®) = (Qi, --- Q) is called the characteristic
of the symmetries generated by X. Nother’s second theorem can now be stated as
follows.

Theorem 1. The action S admits an infinite dimensional group of symmetries with
characteristics Q(®, B) that depend on arbitrary functions B if and only if there
exist differential operators P; such that

Y PE(L)=0. (50)

In this language, the content of the second theorem is that P; are determined by the

vector field X and the statement is that there are infinitely many characteristics, that

is, charges, if the sum preserves the total symmetry of the Euler-Lagrange equations.
We apply this discussion and Néther’s second theorem to the Lagrangian

1
L' = ZFLF™ 4 (D)),9/ (D)9 +m’g'¢" (51)

of the redefined fields A’, ¢’ defined in the previous section. The Euler-Lagrange
equations have components

Ey(L) =~ ((D)) (DY) +m*¢p™* =0
Eg-(L) = —(D)),(D))"¢ +m?*¢ =0 (52)
Ea, (L) =i¢ (D))" — i¢”* (D)ud + nua FY = 0.

Amongst the variational symmetries, one finds the Gauge symmetries
¢ — Ny A A 4dA (53)

The generalized characteristics of the Gauge symmetries in components define an
infinite set of charges

0¥ =—i¢'B QY =i@)'B Q" =n"B,, (54)

for some arbitrary real function B. The differential identity, Eq. (50), in Nother’s
theorem is now

—i¢'Ey(L) +i¢p™* Ey(L") — Do (f"VE, (L") =0, (55)
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where D, is the total derivative. The key here is that the charges are arbitrary but yield
nothing new [1] in the classical theory where only integer derivatives are present.
Clearly this is an operator equation as one can see by carrying out the calculations
for [ DgDAe 5@ with arbitrary insertions.

When going back to the fields A, ¢ and the infinitesimal Gauge parameter A, we
find that there is now a new non-trivial relation which gives rise to the action A —
A + d, A and anew charge Q = [ j, which did not exist in the theory corresponding
to the action S’ (i.e., the classical Maxwell’s equations). Effectively, one can see
the fractional Maxwell equations as emergent from imposing the symmetry to be
generated by the non-local action ¢/=*4 for some a.

S Aharonov-Bohm and Charge Quantization

The inherent problem the degree of freedom f (see Eq. (6)) introduces into electro-
magnetism is that the multiplicity of gauge fields that are related by the fractional
Laplacian, A and A’, each satisfy

fdyA :7§ A, (56)
P 91X

with A’ = A7 A. As pointed out previously, although this equality follows from
Stokes’ theorem, the result does not seem to have the units to be a quantizable flux.
That is, it is not simply an integer x/c/e. The implication is then that the charge
depends on the scale. In fact, because [d, [J”] = 0, the equations of motion can be
rewritten as

0T d(xd0'T A) = #J. (57)
The current that emerges when Eq. (57) is invertible has the equations of motion,
d(xdA) =07 J = j. (58)

. . . . - .
Similarly, the classical electromagnetic gauge a = (12 A = [J'~7 A’, hence having
unit dimension, obeys the equations of motion

d(xda) = 07 j =030, (59)
Each of these choices for the gauge field defining different currents are all equally

valid descriptions of nature. The problem is that they are not all quantizable simul-
taneously. For example, we have shown [9] that

Norm </ A’) = f[—A, (60)
) I'(s+1)
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Fig. 2 Disk geometry for
the Aharonov-Bohm phase
[10]. The fractional magnetic
field pierces the disk in a
small region of radius, r

with s = I_Ty, provided y < 1, and

/A/ =0 61)
4

if y > 1. Hence, the line integral A or A’ cannot both yield integer values, the basic
requirement for quantization. Similarly,

Norm (/a) = fl—A (62)
, rGs+1)

with s = lTy, when y > 1 and

/a =0 (63)
¢
when y < 1.

All of this is a consequence of Nother’s second theorem: ambiguity in the gauge
transformation leads to a breakdown of the standard charge quantization rules. What
is the convention then for choosing the value of ¢ ? The answer is material dependent.
If either A or A’ are the physical gauge fields then the corresponding electric and
magnetic fields in the material are indeed fractional. That is, each has an anomalous
dimension. Consequently, the flux enclosed in a disk of radius r is no longer 7r%B
simply because [B] # 2 and hence a failure of the key ingredient of the Byers-Yang
theorem [2]. The Aharonov-Bohm phase in this case for the disk geometry shown in
Fig. 2 must be constructed by constructing using the fictitious gauge a = 07 A=
[0'=7 A’ so that the correct dimensions are engineered in the usual covariant derivative
d — iqa. The result for the phase when a is integrated around a closed loop

22—2011* 2 _ 2
Adp = %nr2aBR2“—2 (JZH(I —a,2—a,2 =

o ; ﬁ) (64
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involves the standard result, 77>B multiplied by a quantity that depends on the
total outer radius of the sample such that the total quantity is dimensionless. Here
2F1(a, b; c; 7) is a hypergeometric function and the terms in the parenthesis reduce
to unity in the limit @« — 1. This is the key experimental prediction of the fractional
formulation of electricity and magnetism: the flux depends on the outer radius. This
stems from the non-local nature of the underlying theory and is the key signature
that charge is no longer quantized in that is determined by a topological integral.

6 Concluding Remarks

In actuality, the ambiguity in defining the redundancy condition for the gauge field,
Eq. (6), ultimately leads to a landscape problem for charge quantization. This is the
physical import of Nother’s Second Theorem and the guiding mathematical idea
behind our work on fractional electromagnetism [9-11]. There is no easy fix here.
Each choice for y defines a valid vacuum theory of electromagnetism. Ultimately it
is a materials problem whether or not the fractional or standard gauge describe the
interaction of matter with radiation. In this sense, charge is ultimately emergent.
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Entanglement and the Infrared ®)

Check for
updates

Gordon W. Semenoff

Abstract We shall outline some results regarding the infrared catastrophes of
quantum electrodynamics and perturbative quantum gravity and their implications
for information loss in quantum processes involving electrically or gravitationally
charged particles. We will argue that two common approaches to the solution of
the infrared problem, using transition probabilities which are inclusive of copious
soft photon and graviton production and using dressed states describe fundamen-
tally different quantizations of electrodynamics and low energy gravity which are,
in principle, distinguishable by experiments.

1 Prologue

Motivated by the idea that subtle infrared effects could be relevant to the black hole
information paradox, interest in the infrared problems in quantum electrodynamics
and in perturbative quantum gravity has recently seen a rebirth [1-22]. These happen
to be the two known theories of nature which contain massless physical particles and
which describe long-ranged interactions. There are two well developed ways of
dealing with the infrared divergences in these theories.

The first of the two has been known since the early days of quantum electrodynam-
ics [23-25], and was generalized to perturbative quantum gravity by Weinberg [26].
In this approach, the infrared divergences that occur in internal loops in Feynman dia-
grams, and which afflict the S-matrix that is computed in renormalized perturbation
theory, are canceled by computing the probabilities of processes which also include
the production of soft photons and soft gravitons. In this approach, the infrared diver-
gences of the perturbative S-matrix cancel with those which occur in the integration
of transition probabilities over the wave-vectors of the outgoing soft particles, leaving
infrared finite inclusive transition probabilities. The precise order by order cancella-
tion of the infrared divergences by this mechanism is due to unitarity and it can be
seen as a consequence an optical theorem for the S-matrix.
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The second formalism considers dressed states where the quantum states of
charged particles are dressed by adding soft on-shell photons and gravitons. The
soft particle content of the dressed state is fine-tuned in such a way that transition
amplitudes between dressed states are infrared finite [27-32]. Moreover, to an accu-
racy which is governed by the detector resolution, the transition probabilities which
are computed in this second approach are identical to those of the first approach.

The replacement of charged particle states by dressed states can be implemented
as a canonical transformation [19] which decouples the infrared, so that the copious
production of arbitrarily soft particles, beyond those already included in the dressed
states, no longer occurs in a scattering processes. In this approach, the S-matrix
elements between dressed states is infrared finite. However, the canonical transfor-
mation which dresses the charged particles is an improper unitary transformation. All
of the dressed states are orthogonal to all of the multi-particle Fock states. As aresult,
the first and second approaches are not equivalent, they have different, orthogonal,
Hilbert spaces. They should be considered different, inequivalent theories of how to
deal with infrared divergences.

Recently, it has been noted that the two approaches, dressed and un-dressed, have
important and potentially physically observable differences in how quantum infor-
mation is distributed by the interactions when a scattering process occurs [33-36].
It is known that even elastic scattering results in entanglement of the quantum states
of the out-going particles [38—40]. In the first approach to the infrared, the copious
production of a cloud of soft photons or soft gravitons, which then fly away, unde-
tected, from a scattering event, results in a quantum state where the soft photon or
soft graviton cloud and the hard particles that are left behind are highly entangled.
The result of this entanglement and the inaccessibility of the soft photon cloud to
measurements is decoherence which, although very small in any realistic experi-
ment, could in principle be measured. If the particles are dressed, and the infrared
is decoupled, so that pure states evolve to pure states, this fundamental decoherence
must be absent.

We will mostly use the language of quantum electrodynamics in the following
as we anticipate that it may be more familiar to the reader. Practically all of our
considerations also apply to perturbative quantum gravity in the low energy regime
and we will give some of the relevant formulae. Of course quantized gravity is not a
consistent, renormalizable quantum field theory. Moreover, it is not clear that it can
have an infrared cutoff which leaves it unitary. We will ignore these difficulties here.

2 Inclusive Approach to Infrared Singularity Cancellation

If we wanted to use quantum electrodynamics to compute the amplitude for Moller
scattering, for example, we would begin with the Feynman diagram which is illus-
trated in Fig. 1. That diagram gives an estimate of the quantum amplitude that two
incoming electrons will interact and then re-emerge as two electrons. The modulus
square of this amplitude gives an answer for the probability that the process will
happen which, because of the small value of the electromagnetic coupling constant

2 .
¢ ~ L s already accurate to one percent.

ir 137
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Fig.1 The Feynman
diagram which is used to
compute the quantum
amplitude for Moller
scattering is depicted. The
probability of the
two-electron state, incoming
from the bottom of the
diagram, emerging as a
two-electron state is gotten
by taking the square of the
modulus of this amplitude.
Because quantum
electrodynamics is a weakly
coupled theory, the result is
already accurate to the one
percent level

If we want to improve the accuracy of the computation, we must include higher
order corrections in the way of loop diagrams. The next correction occurs at one loop
and it consists of several processes. One of them is illustrated in the second diagram
in Fig.2 where the electron emits a virtual photon, interacts with the other electron
and then re-absorbs the virtual photon. This contribution will be infrared divergent.
Unlike ultraviolet divergences, which are well understood, and are dealt with by
using the usual renormalization procedure, the infrared divergence is physical and it
must be dealt with by using physical reasoning.

The solution to this infrared problem is well known and it dates back to the early
days of quantum electrodynamics [23-25], in fact it predates the understanding of
ultraviolet renormalization by a few decades. The solution is to consider an additional
process which is physically indistinguishable from the process that we have described
up to now. That process considers the same Moller scattering, but with the additional
production of a soft photon. The photon should be so soft that it eludes detection by
the detection apparatus, and thus, it flies away undetected from our Moller scattering
experiment. The idea is that we should add the possibility of this process to the one
which where no soft photon is produced. That probability is the one represented by
the last term in Fig.2. If that last contribution is integrated over the wave-vectors
of the soft photon, it is also infrared divergent. In fact, it is divergent in such a
way as to cancel the infrared divergence in the same order (¢®) cross-term in the
first contribution. This cancellation is exact. Its fine-tuning is a result of unitarity—
the optical theorem—and this sort of argument can be seen to cancel the infrared
divergences encountered in any amplitude which involves charged particle scattering
and to all orders in perturbation theory.

An important consequence of the argument in the paragraphs above is the fact that,
even though the lowest order Feynman diagram in Fig. 1 turns out to be the correct
one to accurately analyze Moller scattering, the physics of what is happening is much
more complicated. The amplitude for the process in Fig. 1 is zero. The processes which
dominate are those where infinite numbers of soft photons are produced, as in Fig. 3.



154

Fig. 2 The probability of a
Moller scattering process is
gotten by taking the squared
modulus of the sum of the
leading order and higher
order Feynman diagrams
which contribute to Moller
scattering amplitude and
then adding a similar squared
modulus of the amplitude for
Moller scattering plus the
production of a soft photon.
Here, only one example
diagram of the several that
contribute at the
next-to-leading order are
displayed. The infrared
divergence from the internal
loop is canceled by the
integration over soft
momenta of the extra emitted
photon. The cancellation is
between the last term and the
cross term in the first bracket

+
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The infinite numbers of photons which fly away undetected carry very little energy
or momentum. To accuracy of the detector resolution, their influence on the kinemat-
ics of the experiment is not noticeable. However, even if they have very little energy,
each photon has a polarization and a direction of motion. Specifying the details of
their quantum state involves a significant amount of information. A question that one
could then ask is, when this cloud of photons escapes detection, how much infor-
mation is lost? What we mean here is information in the quantum sense, as we shall
try to explain in the next section. This question has only been recently addressed
[33-36] and as we will explain in the rest of this review, the results were somewhat

surprising.

Fig. 3 The physical
processes which contribute
to Moller scattering and
which have non-zero
probability involve the
copious production of soft
photons

N
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3 Information Loss Due to Quantum Entanglement

Let us try to explain precisely what we mean by information loss. Let us consider
a model system of two qubits, qubit #1 and qubit #2. We could think of qubit #1 as
the analog of the hard particles in our scattering experiment and quit #2 as the soft
photons and gravitons that are produced. Bases for the Hilbert spaces of the quantum
states of qubit #1 are the two vectors | 1> and | | >; and for the qubit #2 the states
| 4>, and | | >;. Let us assume that the qubits are dynamically independent, that is,
they do not interact with each other.

The question that we want to ask is, if qubit #2 becomes inaccessible to us, how
much information about the quantum state of qubit #1 have we lost. In the classical
world, if these were classical bits, rather then qubits, the answer would be easy—
none! Everything that we could find out by classical measurements of qubit #1 before
qubit #2 was misplaced could still be done afterward. As far as qubit #1 is concerned,
we would have lost no information at all.

In the quantum world the answer will depend on the quantum state of the joint
two-qubit system at the time when qubit #2 was lost. Let us consider two examples
for that quantum state, an un-entangled state

[ > = [cosp| 1> +sinp| >2] @[ 1>

and an entangled state

[ > = [cosp| 1>1 ®| t>1 +sinp| > @] |>2]

These two states have the same expectation values of the “spin” of qubit 1, that is,
the expectation values of the operator | 1> <% | ® Z,, whichis cos> g or | | >, <]
| ® I, which is sin? . The difference between the two states is that the un-entangled
state has a wave-function which is a direct product of the wave-functions of qubit #1
and qubit #2. The entangled state, on the other hand, is a superposition of direct prod-
ucts, which cannot itself be written as a single direct product of states of #1 and #2.

Now, let us assume that, in the quantum world, we have lost track of qubit #2. What
is the implication for qubit #1. We getinformation from a quantum system by quantum
measurements. Quantum measurements are represented mathematically by projection
operators. If we have no access to qubit #2, all quantum measurements that we can do
must act on qubit #2 like the unit operator on its factor in the Hilbert space. Therefore,
for the sake of quantum measurements, we can once and for all contract the states of
qubit #2 with the unit operator, that is, we can form the reduced density matrix which
describes qubit #1, in our first example, by tracing over the states of qubit #2,

p =Tl >< | =[cosp| 1> +singl §>1[ <1 [cos o+ <| [sing]

[ cos’¢  cospsing
~ | cospsing sin g sin g
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or, in our second example,

p=Trl >< 1| = (cos” p| t>1<1 | +sin’ p| | >1<{ |)

_[eos’o 0
| 0 sin?p

In the first, unentangled example, the reduced density matrix is still that of a pure
state. Qubit #1 is sure to be in the quantum state [cos | 1> +sinp| |>;]. No
information about its state has been lost. However, in the second case, the reduced
density matrix is now that of a mixed state with classical probabilities cos? ¢ of
finding | 1>, and sin? ¢ of | | >;. What is missing are the off-diagonal elements of
the density matrix. These contain interference terms. We can see the difference if we
ask what is the expectation value of the Hermitian operator

O =[alt=1 +/T=1aPl{=1][2 <t la* + 2 <) WI=laP| & T,

In the first case, the expectation value is

2
TrOp = ’cosgp a+singy/1 — |a|2‘

whereas in the second case it is

2
TeOp = |cos  af® + ‘sin o1 = |oz|2‘

The difference is, in the second case the cross-terms, that is, the interference terms
are missing. In the second case, we have lost the possibility of interference. This
is called decoherence. In the entangled case, when qubit #2 was lost, the quantum
probabilities of the two spin outcomes became classical probabilities. On the other
hand, in the un-entangled case, no information was lost. The outcomes of all possible
measurements of qubit #1 remain unchanged.

The property of the state |1y > which distinguishes it from state |¢) > and which
results in decoherence is quantum entanglement. A quantitative measure of entan-
glement is the entanglement entropy, defined as the Von Neumann entropy of the
reduced density matrix,

S=—-Trplnp
In the un-entangled case, S = 0, whereas in the entangled case, S = — cos? pln cos?
@ — sin” pInsin® .
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4 Entanglement of Soft and Hard

Let us return to quantum electrodynamics and consider a scattering event where an
incoming state o > evolves to an out-going state. The outgoing state is a superpo-
sition of incoming states. The coefficients in this super-position are the elements of
the S-matrix,
T
o> = D18y > S,
By

Here, in |3, v >, we are separating the soft photons, which we call -y, from the hard
particles, which we denote by (.

In a perturbative computation, the S matrix turns out to be logarithmically infrared
divergent and an infrared cutoff is needed in order to define it. We shall introduce such
an infrared cutoff which we will denote by u. A nice example of how this could be
done is by assuming that the photon has a small mass, 1, so Maxwell theory coupled
to charged matter becomes Proca theory of a massive vector field, coupled to the
conserved charged currents of the charged matter. This is still a Lorentz invariant,
renormalizable quantum field theory with a unitary S-matrix that we shall denote
SZ{, where the superscript © reminds us that it is to be computed with the infrared
cutoff y in internal loops. The infrared cutoff S-matrix is unitary,

utoon s
> oS St = 050y

«

where the sum on the left-hand side is schematic for integrations and sums over
the momenta and quantum numbers of the particles in the incoming state and the
right-hand-side is schematic for an assembly of Dirac and Kronecker delta functions
which identify momenta and discrete quantum numbers in the states |3,y > and
187 >.

Generally, our incoming states can be either eigenstates of energy and momentum
or they can be wave-packets. In order to address the most general consideration, we
will consider an in-coming density matrix of the form

o >< |

where o and ¢ are states where each of the incoming particles has a fixed energy
and momentum. If these states contain photons, they are hard photons, with energies
and wave-vectors much larger than the fundamental infrared cutoff 1 and we will
also need them to be much larger than another intermediate cutoff, which we shall
call \, the detector resolution.

We could make a wave-packet from this state as, for example

If ><fl = Y ful@fi@)]a><d|

’

aw
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with

Dlfa@P =1, < fIf >=1

During the scattering process our in-state evolves to the out-state which is given
by

a><d| — Z 1By > Sgl'a Z Stvgy < B
‘3’>/ ﬂ/,-‘,/

where we have separated the scattering products into hard particles, 3, 3, those
whose momenta are above a the cutoff A, the detector resolution, and soft particles
v, v" whose frequencies and wave-numbers are greater than the fundamental cutoff,
1 but smaller than the detector resolution, . Any state of free particles can be divided
in this way.

We then reduce the density matrix of the final state by tracing over the soft degrees
of freedom. This yields

p= Z <Alpouly'> = Z <A 1By =S| D oSk, <BY1 15>
vy Y

By By

or, simplifying the notation,

<BlplB'> =Y S Sk, (1)
v

Now, we would like to use a soft photon theorem to simplify this expression, partic-
ularly the trace over soft photons. A nice derivation and discussion of the soft photon
theorem can be found in Weinberg’s quantum field theory book [43].

A soft photon theorem is valid only when we have a large hierarchy of scales.
That means that we can apply it to our out-state only when the masses, energies and
momenta of all of the particles in the states | > and |3’ > are much greater than
the detector resolution, A and also when )\ is much greater than the fundamental
cutoff, u. This means that we cannot analyze every possible out-state, but only those
which meet this requirement. We will not worry about this limitation here or in the
following. We emphasize that we shall also need that A >> p. In addition, we shall
cut off the total energy of the photons that escape with a cutoff E. To be clear, E is
the maximum value of the sum of all of the energies of the soft photons. The soft
photon theorem then tells us that, when there is a hierarchy of scales, A >> u, we
can replace Eq. (1) by the expression

Aug g
<ﬁ|p|ﬁ/> _ S“TS“ é o f i A L )
— Mparap 1 Ev af,a' g
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where the exponent is a complicated function of the four-momenta of the hard par-
ticles in the initial and final states,

enen’nnnn’ -1 1 + ﬁnn’
Axy = — E E Al 3
XY 82 /By,n n 1= B 3)

neX n'eY

where e, are the charges of particles, and 77, = 1 for an incoming particle and 7, =

—1 for an outgoing particle.
72
ﬁnn’ = /1- WL/)Z
(p-p)

are the relativistic relative velocities of particles m and n. The last factor comes from
imposing the cutoff on the total energy and it contributes

1 [  sinu Ydw ,
f(x, A) = —/ du exp (A/ — (e"“” — 1)) 4)
T J_oo u 0 w
—~A

The factor f(\/E, A) is smooth, of order one and obeys f(0, A) = 1. We have
included the result of an energy cutoff for completeness, however, it will play no role
in the following, so we will put E — oo where f(A\/E, A) — 1.

The trace over soft photons produces energy and momentum-dependent factors
multiplying the S-matrix for the hard particles alone. These factors, as well as the
S-matrix, depend on the fundamental cutoff 1. Now that we have assumed a hierarchy
of scales, we can also exchange the infrared cutoff . for a larger cutoff A where it
appears in the S-matrix. We can choose the new cutoff A and a further soft photon

theorem tells us that s
b aA ILI, af.af
Saﬂ - Saﬂ <Z)
The right-hand-side of this equation does not depend on A, at least over a range of A
that respects the hierarchy of scales aa/85" >> E, A\, A >> p, where, by ad/ 3,
we mean the masses, energies and momenta of all of the particles in the states.
Using this equation, we find

M Aad.(:s3/2 /_L An’é",u’i//z )\ A(m,"‘%i/
s o= §ArgA (—) (—) A 6
<BlplB'> af Pap \ 7y A " (6)
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This is our expression for the reduced density matrix that we use to describe the
quantum state of the out-going hard particles. We can see, by studying the exponents,
Ayy that its diagonal matrix elements, for a fixed in-state « = «/, are

A Aap.ap

<BlplB> = 15517 (—) (7
/ A

which no longer depends on the fundamental cutoff. In fact it simply has the form of

the square of the transition amplitude for | >— |3 >, computed with an infrared

cutoff A for internal loops in Feynman diagrams, times the Sudakov-like factor

Al\(kﬁ L . . . . .
(%) 7 with the ratio of detector resolution ) and A. This result is well known.

Now, what about the off-diagonal elements? They can be written as

A Aud! 5 1\ AAad/ BB
/ frd SA* SA/ 7 - (_) 8
<fBlplB'> ap Pa'f\ 4 A ®

Now the small © behaviour is dependent on the exponent
AA(O(O/, /Bﬂ,) = Aa/f,a"ﬂ’ - Am’i,nﬂ/z - Aa’ﬁ’,a’ﬂ’/z > 0

This exponent can be shown to be positive semi-definite [33, 35]. This means
that, as we remove the fundamental cutoff, to make the photon truly massless,
some off-diagonal elements of the density matrix are set to zero. Only those where
AA(ad/, B3") = 0 survive. This turns out to be a surprisingly strict restriction on
which elements survive. It turns out that, AA(aq/, B5") = 0 if and only if the four
sets of ingoing and outgoing electric currents.

e pl' e;jpl
l—pl:ei’piea — #:e‘j’p‘je/g/
Jp? +m? Jp; +m?

u 1

erp eyp
—k e d = —— e, prep
\/Pi"‘mz \/p? + m?

That is, the sets of electric currents are identical. In conclusion, the matrix element
of the reduced density matrix survives if and only if the set of all electric currents
contained in the states «, 3’ is identical (up to permutations) to the set of all electric
currents in the states ', 3. If these currents do not match, AA > 0 and the matrix
elements vanish in the limit where the photon is massless. Perturbative quantum
gravity has a similar conclusion with the matching condition on the in-coming and
outgoing energy-momentum currents
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v o1 vt

" D: pP;D;j ,
&:ei’piea — A:e‘l’p‘leﬁ
VP; +m? p; +m?

Py pip;
——F g, ped =1 ———=e,pef
/Pt +m? /p?+ m?

This is remarkably restrictive. If we assume that the incoming state is a pure state
with in-coming plane waves, o = «/, we find that the off-diagonal elements of the
density matrix vanish unless the electric and energy-momentum currents in the two
states match exactly. For some simple processes, this can mean that the out-going
density matrix is just diagonal. Of course this argument says nothing about their
diagonal elements, they are as they have always been, the transition probabilities
between plane-wave states.

The zeroing of off-diagonal elements of the density matrix is decoherence. One
loses the quantum coherence that is necessary for quantum interference to occur.
An even more dramatic effect occurs with incoming wave-packets, superpositions
of plane-wave states. There, scattering seems to be suppressed in many cases. For
example, if we look at even diagonal components of the final state density matrix for
in-coming wave-packets,

)\ Aniuj.éfﬁ /’(‘ AA(CkiOtjﬁ,B)
At oA
<BlplB> = Zfifj*sﬁai Sﬂjﬂ’ (Z) (Z)
ij

and the massless limit of the photon still requires that we now put ¢ — 0. This, at
least partially, concentrates the sum over Z, j in the region i ~ j. However, this sum
is actually an integral and the limit ¢« — O suppresses scattering. There are many
processes for which only the unit matrix part of the S-matrix will contribute to the
scattering of wave packets [35].

5 Dressed Quantum States

Now we turn to the second way of dealing with the infrared problem, that of dressing
the incoming and out-going states of charged particles with soft on-shell photons and
gravitons with the dressing fine tuned in a way that cancels the infrared singularities.
For a given distribution of incoming currents, the dressed state is obtained by a
canonical transformation which creates a coherent state of the photons which is
tuned to the currents of the charged particles,
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|p1, P2y ... >— |P1, P2, .. >D

= X i 7 ft( ) (k) - h C | > ( )
= p dg .C. Pi1, P2, --- 9
«/2|k ?ky ie : ?

Z pﬁefl( )
«/_2|k —ie

ag(k) — ay(k) +

, n< |kl < A

where €’ (k) is the physical polarization of the photon. If we take matrix elements
of the S-matrix in these states, the infrared singularities which are contained in
the S-matrix are canceled by additional ones coming from the interactions with the
photons in the dressed states. These matrix elements are finite. The statement is that
p<«a|S*|B>p are have a finite limit as u — 0. This moreover, the probabilities of
transitions agree with those which are computed in the inclusive approach,

Ip<alS"1B>pl*= Y | <als"B.y> " =] <al$}|B >

H<y<A

and the result is as if one simply computed the usual perturbative S matrix for hard
particles, but with the detector resolution A as an infrared cutoff for the otherwise
infrared divergent internal loops in Feynman diagrams.

Dressing is a canonical transformation. However, when the fundamental cutoff
is removed, the canonical transformation in Eq. (9) is not a proper unitary transfor-
mation. Every undressed state in the undressed Hilbert space is orthogonal to every
dressed state in the dressed Hilbert space. This means that, if the photon were truly
massless, the dressed and undressed formalisms are inequivalent quantizations of
quantum electrodynamics.

What is more, there is a fundamental difference between the two procedures.
This difference appears on the off-diagonal elements of the density matrix. With
dressed states, the production of soft photons is already included in the state and
there is no further soft photon production when charged particles scatter. Pure states
evolve to pure states and there is no decoherence. In the inclusive formalism, as we
have argued, there should be some fundamental decoherence and even suppression
of some scattering. These are, in principle, physical differences which could be
measured by experiments. The conclusion is that there are two different quantizations
of electrodynamics, with physically measurable differences, and only one of them
can be the correct fundamental theory to describe nature.

When i — 0, the dressed states have other peculiarities. For example the dressed
states are never eigenstates of the total momentum. They are always mixtures of states
with different momenta, the spread of momenta being governed by the detector reso-
lution. They are also not Lorentz invariant. This is apparent in that the coherent photon
field has a classical piece. If the dressing were obtained by a unitary transformation,
we could Lorentz transform a state simply by undressing it, Lorentz transforming it,
and then re-dressing it. When this is not possible, the Lorentz transformation itself
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is not a proper unitary transformation. It is not clear what the implications of this
subtlety are. There has already been some discussion of it in the context of infrared
divergences [44—47] and it would be interesting to understand that work in the present
context.

6 Epilogue

We have argued that, in the limit where fundamental infrared cutoffs are removed,
there are two fundamentally different interpretations of quantum electrodynamics
and perturbative quantum gravity. What is more, the differences are measurable in
principle, although perhaps very difficult in practice. For example, in a non-ideal
scattering experiment, one which takes place over a finite time, a rough estimate of
the decoherence effect would be to replace i by the inverse time. For example, if
we consider Compton scattering, where the in-state is an electron and a hard photon
and the out-state is also an electron and hard photon, the off-diagonal elements of
the density matrix have the suppression factor

p k: /k/’\’(/i
p.ip, A

where 32 =1 — —(p;“;, 7 is the relativistic relative velocity of the out-going electrons,
7

with momenta p, p’, on the two legs of the reduced density matrix. If we take the

detector resolution A to be the electron mass and p to be an inverse second, the value

of this suppression factor is graphed as a function of 3 in Fig. 4. We see there that the

suppression is significant only for very far off-diagonal elements where the relative

velocity is close to that of light.

Fig. 4 The magnitude of the

suppression factor for 0.76
off-diagonal elements of the

outgoing density matrix for 0.744
Compton scattering when the

time scale of the experiment 0727

is of the order of one second
and the detector resolution is
the electron mass is plotted
on the vertical axis versus
the relative velocity (3 of the
outgoing electrons on the
horizontal axis
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For dressed states, one might worry about locality as the state is created by exci-
tations which occupy far separated positions in space. The breakdown of Lorentz
invariance and the fact that states are not eigenstates of the momentum are also
consequences that deserve attention. This balances the alternative of fundamental
decoherence of the inclusive approach. This fundamental decoherence is likely very
small (and even smaller for perturbative quantum gravity) in any realistic interaction
of charged particles. It would be interesting to find an experimental scenario where
it would be detectable.
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Comments on the Newlander-Nirenberg )
Theorem S

A. V. Smilga

Abstract The Newlander-Nirenberg theorem says that a necessary and sufficient
condition for the complex coordinates associated with a given almost complex struc-
ture tensor /)" to exist is the vanishing of the Nijenhuis tensor A/y;xX. In the first
part of the paper, we give a heuristic but very simple proof of this fact. In the second
part, we discuss a supersymmetric interpretation of this theorem. (i) The condition
Nun® = 0is necessary for certain N = 1 supersymmetric mechanical sigma mod-
els to enjoy A = 2 supersymmetry. (ii) The sufficiency of this condition for the
existence of complex coordinates implies that the representation of the supersym-
metry algebra realized by the superfields associated with all the real coordinates and
their superpartners can be presented as a direct sum of d irreducible representations
(d is the complex dimension of the manifold).

1 Introduction

Since 1982, we know that many well-known structures of differential geometry,
such as the de Rham complex, allow for a supersymmetric interpretation [1]. For any
manifold, one can define a certain supersymmetric quantum mechanical model. The
dynamical time-dependent variables of this model include the coordinates and their
Grassmann-valued superpartners.

Supersymmetric language is very useful. Besides giving a new unexpected inter-
pretation of known mathematical facts, it allows one to derive many new nontrivial
results, which are difficult to derive in a traditional way. I give here only one example.
The so-called HKT manifolds were first discovered by supersymmetric methods [2]
and only then they attracted the attention of pure mathematicians who gave their
traditional description [3]. The full classification of HKT metrics was also recently
constructed using supersymmetric tools [4, 5].

Supersymmetry is a standard method to study geometrical properties of the man-
ifolds used by “physicists” (I've put here the quotation marks because we are talking
in this case about the scholars who may have studied physics at university, but who

A. V. Smilga (X))
University of Nantes, Nantes, France
e-mail: Smilga@subatech.in2p3.fr

© Springer Nature Singapore Pte Ltd. 2020 167
V. Dobrev (ed.), Lie Theory and Its Applications in Physics,

Springer Proceedings in Mathematics & Statistics 335,
https://doi.org/10.1007/978-981-15-7775-8_11


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7775-8_11&domain=pdf
mailto:Smilga@subatech.in2p3.fr
https://doi.org/10.1007/978-981-15-7775-8_11

168 A. V. Smilga

are now solving pure mathematical problems without much relationship to the phys-
ical world) in the papers published in the hep-th section of the arXiv. On the other
hand, pure mathematicians are reluctant to use it, preferring traditional methods.

It is an unfortunate fact of our life that a large gap exists between the two com-
munities. The languages in which the papers are written and the ways of thinking
derived from these languages are often very different, to the extent that mathemati-
cians and physicists do not often understand each other, even though the subject of
their studies could be practically identical.

That is exactly the reason by which I've decided to write this methodical paper.
Its second half is mainly addressed to mathematicians who might be curious to learn
that a certain well-known mathematical fact admits an unexpected interpretation in
the supersymmetry framework. And its first half is addressed to physicists who might
have heard about the NN theorem, but probably do not know how it is proven. Indeed,
its rigourous mathematical proof is not so trivial. So I give here a heuristic but simple
reasoning, presenting the solution to the Eq. (5) as the perturbative series over a devi-
ation of the complex structure tensor I, (x) from its flat form. This reasoning might
be upgraded to a rigourous proof if the convergence of this series is proven.

2 Geometry

2.1 Preliminaries

Definition 1. A complex manifold is a manifold of even dimension D = 2d which
can be represented as a union of several overlapping charts such that:

1. Each chart is homeomorphic to R”.

2. In each chart, one can define complex coordinates z".

3. In a region where two charts overlap, the coordinates z” in one chart and the
coordinates w” in another chart are related by holomorphic transition functions

Zl’l — fl‘l(wm)'

Definition 2. A Hermitian manifold is a complex manifold endowed by Hermitian
metric

ds* = 2h,; dzZ"d7" (1)

with A = hoi.

The factor 2 was introduced here for further conveniences—to make contact with
the standard normalization in (58) and (60). Mathematicians sometimes consider
manifolds not endowed with the metric. In particular, the NN theorem can be for-
mulated and proven without using the notion of metric. But we are interested in a
supersymmetric interpretation of the NN theorem, and we can only give it if the
Hermitian metric (1) is defined. Thus, its existence will be assumed.
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An interesting and important fact is that one can describe complex manifolds
without explicitly introducing complex charts, but working exclusively in the real
terms.! To this end, we introduce first the notion of an almost complex manifold:

Definition 3. An almost complex manifold is a manifold of even dimension D
endowed with a globally defined tensor field Iy satisfying the properties (i)
Iyy = —Iyy and (i) IyN Iy® = —87,. The tensor 1)," is called the almost complex
Structure.

To understand why a real tensor is called complex structure, consider first
the simplest possible example—flat 2-dimensional Euclidean space. It can be
parametrized by the real Cartesian coordinates x', x?> or by the complex coordi-
nate z = (x' + ix2)/+/2. An obvious relation dz/9x% = idz/dx" holds, which can
also be presented in the form

0z 0z
= — =0 2
™ LEAB 9xp )

0-1
&= (1 0 ) . 3)
The tensor €45 satisfies both conditions in the definition above and is the complex
structure in this case. Note that the property (2) holds not only for z, but for any
holomorphic function f(z). In the latter case, the real and imaginary parts of (2) are
none other than the Cauchy-Riemann conditions.

If a 2-dimensional manifold is not flat, 7,;” may have a little bit more complicated
form, but its tangent space projection I4p = Iyy e% eg’ coincides with the matrix €
or probably with —e. Indeed, an antisymmetric 2 x 2 matrix whose square is —1
coincides with (3) up to a sign. It describes rotations by /2 or by —m /2.

In the general multidimensional case, one can prove a simple theorem:

with

Theorem 1. Take atensor IV satisfying the conditions above. With a proper choice
of the vielbeins e’ (with a proper choice of the orthonormal base in the tangent
space), its tangent space projection can be brought to the canonical form

I,p = diag(e,...,¢). @)

Proof. To construct an orthonormal base in the tangent space E where the complex
structure acquires the form (4), we start with choosing in E an arbitrary unit vector
e;. It follows from I = —IT and I? = —1 that the vector ¢, = Ie; has also unit
length and is orthogonal to e;. Obviously, /e, = I?e; = —e;. Consider the subspace
E* C E that is orthogonal to e; and e,. If it is not empty, choose there an arbitrary

1t is convenient—especially, for supersymmetric applications—but is not necessary. For example,
the popular textbook [6] uses only complex but not real description.
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unit vector f; and consider f, = I f;. One can easily see that f, also belongs to E*.
Now consider the subspace E** C E* C E thatis orthogonal to e; 5, fi2 and, if E**
is not empty, repeat the procedure. We arrive at the matrix (4).

Now consider the equation system

il S =0 5)

If not only 7435, but also 1 ™ has the form (4), solutions to (5) can be easily found.
A simple set of d independent solutions is

L xl+ix? > x3+ixt
Z(O)—T, Z(O)—T,... (6)

or any set of d non-degenerate analytic functions of z{,.

In a generic case, the solutions to (5) are more complicated. Moreover, they do not
always exist. The conditions under which they do, is the content of the NN theorem
to be proven in the next section. For the time being, we will prove that

Theorem 2. If the equation system (5) has d independent solutions, the manifold is
complex. Its metric is Hermitian.

Actually, as follows from Theorem 3 below, it is sufficient to require the existence
of only one such solution.

Proof. We will show first that the metric has a Hermitian form (i.e. the components
g™ etc vanish) Let us trade x™ for (z", z) and write

nm __ azn azm MN .
= —_— =ily

p 02" 92" iy NP 9z" 9z"
axM gxN

oxP 8xNg a axP axN

by symmetry considerations. The vanishing of g follows from the same argument.
The properties g™ = g™ = 0 imply also the vanishing of the components g,,, and
gnim of the inverse tensor.

Next, we need to show that the transition functions between two overlapping
charts with the coordinates (2", z") and (w™, w™) are holomorhic. To this end, we
express, using (5), I;V in the complex frame,

n M n M
L= IMN 07" dx _ 07" ox — s
dxN 9zm axM 9gzm "
;" =8k, L, = I;" =0 (7)

and consider the transformation of the tensor (7) from one chart to another. Knowing
that I keeps the form (7) after this transformation, one can derive that dw™ /97" = 0.



Comments on the Newlander-Nirenberg Theorem 171

2.2 NN Theorem

Not wishing to plunge into not relevant for us details, we assume that the mani-
fold and all its structures are real analytic (can be expanded in the Taylor series).
The traditional proof of the NN theorem in [7] assumes the existence of D = 2d
derivatives. Hormander proved that it is sufficient to require the existence of the first
derivative [8].

Introduce the object

Nun® = dIn® — In" Iv2op1o)%. (8)

It is a tensor, in spite of the presence of the ordinary rather than covariant derivatives.
This is so because one can replace the ordinary derivatives by the covariant ones—
the terms involving the Christoffel symbols cancel out in this case. Using a sloppy
language, we will call the L.H.S. of Eq. (8) the Nijenhuis tensor.> We will do so
because the object (8) has a more transparent structure, and it is this combination
that will directly appear later in (12).

The NN theorem says that

Theorem 3 [7]. The complex coordinates satisfying the condition (5) can be intro-
duced and the manifold is complex iff the condition

Nun® =0 (10)
holds.

Proof.
Necessity. Represent the system (5) as Dy z" = 0 with

Dy = oy — il oy. (11)
For self-consistency, the conditions [Dy;, Dy1z" = 0 should also hold. We derive

[Dy, Dylz" = [_ia[MIN]Q - I[MP(3P1NJQ)] dpz"
= [—idmIn™ — ili” @pIn @) 1" 0k 2" — " BpIn©)Doz".  (12)
Bearing in mind that Dyz" = 0, the last term in the R.H.S. vanishes. The middle

term can be transformed by flipping the derivative, (BPINQ)IQK =—Iy%p IQK
(this holds due to /> = —1), and we finally obtain

2 A conventional definition of the Nijenhuis tensor is a little bit different:
NMNK(convemional) — IM PNPNK(lhis paper) — [MPa[PINJK + INPBLM IPJK (9)

(the last equality holds due to 1> = —1).
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[Py, Dy1z" = —iNun k" (13)

For this to vanish, the tensor Ay X should also vanish (to see this, choose the real
coordinates as the real and imaginary parts of z").

Sufficiency. This part of the theorem [the proof of existence of the solution to the
system (5) under the condition (10)] is more difficult. Well, it might be not so dif-
ficult for the mathematicians in the case when the complex structures IV repre-
sent analytic functions of the coordinates. Then the sufficiency of the conditions
[Py, Dyl = Kyn D, for the equation system Dy z" = 0 to have a solution is a
corollary of the classical Frobenius theorem [9]. We will give here instead a heuristic
proof of the NN theorem using “physical” language. This proof will elucidate the
meaning of the constraint (10). Its linearized version is similar in spirit to multidi-
mensional Cauchy-Riemann conditions.

e Let the complex structure /" has a canonic form (4). Then the solutions to (5)
exist, and one of the solution is given by (6).
Suppose now that the complex structure does not coincide with (Ip)y™ =
diag(e, ..., €),butisclose toit: I = Iy + A, A < 1. As a first step in the proof,
we will show that, after such an infinitesimal deformation, solutions to (5) still
exist.

e Let us first do so in the simplest case D = 2. Then the condition (10) is fulfilled
identically. The condition /> = —1 means that {A, Iy} = 0, which is so iff 3

Al =—A%, Al = AL (14)
Look now at the system (5). We set z = z(g) + 6z. The equations acquire the form

1

9 : 9 . 1 2
@((SZ)—FIW(SZ) = ﬁ(lAl _Al ),

) 9 I
§(8Z)_lﬁ(8Z) = ﬁ(lAz —Az ) (15)

Bearing in mind (14), these two equations coincide. Introducing the notation
X'+2 = X! 4 i X?, they can be expressed as

BIC) j :
0o _ Lapn, (16)
aZ(o) 2

which can be easily integrated on a disk. Indeed, the whole discussion applies to
a particular topologically trivial chart in a set of which a manifold is subdivided.
e The simplest nontrivial case is D = 4. The condition {A, Iy} = 0 implies

a=1,2,3

3In physical notation, A = ac! 4+ o3, where o are the Pauli matrices.
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A= —A2, A = A,
AP =-4¢ At = A,
A3t = — A2, AP = Ay
AP = A8 A = AL (17)

We pose 7! — 7,72 — w. A short calculation shows that, bearing the relations
(17) in mind, the Eq. (5) are reduced to

9000z) i

- — —A]IHZ,
9z
3(_82) _ £A31+52,
au}(o)
8(§w) _ £A13+i4’
BZ(O) 2
a(s ] :
(_w) — l—A33+l4. (18)
8w(0) 2

If D > 2, the conditions (10) provide nontrivial constraints. Their linearized ver-
sion is

Ip AN —anAp™ = (To)pCIo)n° [dpAs™ — 8sA0™]. (19)
Again, bearing in mind (17), one can show that, for D = 4, out of 24 real conditions

in (19), only 4 independent real or 2 independent complex constraints are left. The
latter have a simple form

_a 1+i2 _ _8 A11+i2 — 0’
9Z(0) dw(o)

J 3+id 9 3+id
— AP —— AP =0, (20
3Z() dW(o)

The first equation in (20) is the integrability condition for the system of the first
two equations in (18). It is necessary and also sufficient for the solution of this
system to exist. Indeed, it implies that the (0,1)-form

© = A11+i2d2(0)+A31+i2d11_)(0)

is closed, dy @ = 0. Bearing in mind the trivial topology of a chart of our complex
manifold that we are discussing, w is also exact (see e.g. Theorem 6.1 in [6]),
which is tantamount to saying that the solution exists. The second relation in (20)
is the necessary and sufficient integrability condition for the system of the third
and fourth equations in (18).
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e This reasoning can be translated to the case of higher dimensions. For an arbitrary
D = 2d, the Eq. (5) are reduced, bearing in mind / 2 = —1, to d? conditions
similar to (18) but with differentiation over each antiholomorphic variable Zf’m
for each complex function 8z". The conditions (10) lead to d*(d — 1)/2 complex
constraints which represent integrability conditions of the type (20). They imply
that the forms

w = A11+i2 dzé()) + A31+i2 dz%()) 4+ ,
wy = APTHAZ 4+ ATz + 1)

etc. are all closed. Due to the trivial topology of the chart, it also means that they
are exact.

e Once the complex coordinates z" = z{,, + 82" satisfying the Eq. (5) are found, the
complex structure acquires in these new coordinates the canonical form (7) and
(4). Thus, we have actually proven that a small deformation of /), can be brought
to the form (4) by an infinitesimal diffeomorphism, provided the condition (10) is
satisfied.

e Let now I,V (x) be arbitrary, not necessarily close to Iy of Eq. (4). Using analyt-
icity, we expand it into a formal series in a small parameter o:

[(x) =Ip+ali(x) +a*Lx) +... (22)
Do the same for the solutions z”(x) that we are looking for:
7" (x) = z{o) + az(}(x) + azz?z)(x) 4. (23)

The correction azz’l)(x) was determined before. Let 7' (x) = z?o) + az?])(x). As
was just mentioned, the complex structure in these new coordinates has the canon-
ical form (7) up to the terms ox . Introducing the real and imaginary parts of
7"(x) and calling them ¥, we may bring it to the form (4).

e Taking also into account the term ol (x) in (22), we may express the complex
structure in the new coordinates X as

I(%) = Iy + o’ (X) + higher-order terms. (24)

Repeating the same procedure that we used to determine z{},(x), we can now
determine Z’Zz) (x), from that z?‘z) (x), and likewise all the terms in the series (23).

e With the only reservation that we did not address a difficult question of the con-
vergence of the series (23), the theorem is proven.
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3 Supersymmetry

3.1 Preliminaries

To begin with, we present some basic “superfacts”, bearing in mind a reader who is
an expert in differential geometry, but may not know much about supersymmetry.
We give, however, only the minimal necessary information assuming that our reader
knows the basics of Grassmann algebra and, which is not so much necessary but
desirable, of classical and quantum mechanics of the systems involving Grassmann
dynamical variables. More details can be found in the review [10]. See especially
Chap. 8.1 there.
The simplest supersymmetry algebra reads

0i=0; = H, 010>+ 0,0, = 0. (25)

Here H is the Hamiltonian and Q) , are two different Hermitian operators called
supercharges. As follows from (25), they commute with H. If one introduces a
complex supercharge Q = (Q; +iQ>)/2, one can also present (25) in the form

0*=(0) =0, 00+00 = H. (26)

The algebra (25) involves two supercharges and, correspondingly, is usually called
the algebraof N = 2 supersymmetric quantummechanics (SQM). More complicated
algebras may involve extra supercharges* or also the momentum operators P;. The
latter algebras are relevant for supersymmetric quantum field theories. But in this
paper we are going to discuss only the algebra (25) and also still more simple N' = 1
supersymmetry algebra,

Q*=H 27)

withreal Q. Physically, the latter is too simple to be interesting. After diagonalisation,
one can always extract a square root of the Hamiltonian whose spectrum is bounded
from below. If some energies in the spectrum are negative, one just redefines H by
adding an appropriate positive constant. However, we will use in what follows the
algebra (27) and its representations as a fechnical tool.

The algebra (25) leads to a double degeneracy of the spectrum. It also follows
from (25) that the eigenvalues of the Hamiltonian are positive or zero. The doublets
involving two positive energy states |B) and | F') with the properties

H|B) = E|B), H|F) = E|F),
Q|B) = VEIF), Q|F) = 0,
Q|B) = 0, O|F) = VE|B) (28)

4The SQM systems enjoying A" = 4 or A’ = 8 supersymmetry are known.
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represent a simple 2-dimensional irreducible representation of the algebra (26). There
exist also finite-dimensional representations involving a larger even number of states,
but it is easy to show that they are all reducible. In physical language, any set of 2n
states providing a representation of (26) is split into n doublets.

The only irreducible finite-dimensional representations of the algebra (27) are the
trivial singlets—the eigenstates of Q and H.

We will be interested, however, in more complicated infinite-dimensional repre-
sentations of the AV = 1 and N = 2 algebra where the supercharges and the Hamil-
tonian are realized as linear differential operators acting in superspace.’

The A = 1 superspace includes time ¢ and a real Grassmann nilpotent variable
0: 6% = 0. The supercharges and the Hamiltonian are realized as the differential
operators.

H=—i— (29)

The Hamiltonian is the generator for the time shifts. The supercharge is the gen-
erator for somewhat more complicated transformations:

06— 6+n,
t—t+ind (30)

with a real Grassmann parameter 7.
Consider now N = 1 superfields (or supervariables) representing functions of ¢
and 6. Due to the nilpotency of 6, they can be presented as

X(t,0) =x(t) +i0y(1). 3D

The ordinary real function x(¢) and the Grassmann-odd real function v (¢) are
called the components of the superfield (31). The shifts (30) induce the shift

X = X(@t+ind,0+n) —X(t,0) = inQX (32)
of the superfield X implying the following shifts of its components:
Sx(r) = iny (1), Sy (t) = —nx. (33)

Note that the product of two superfields is also a superfield: § (X} X3) = inQ(X Ay).
Now we introduce the covariant supersymmetric derivative

SWell, in supersymmetric mechanical problems, we are dealing not with “superspace”, but rather
with “supertime”, because we do not have any space variables and spatial dependence. But we stick
to the terms commonly used in the literature.
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D= ——-if0—. (34)

This operator is Hermitian, nilpotent and anticommutes with Q. The property

9
D = —i— 35
i (35)

holds.
Theorem 4. If X is a superfield, the same is true for DX.

Proof. We have
8(DX)=DX =iD(nQxX) =inQ(DX)

(do not forget that n anticommutes with D).

We understand now why D is called the covariant derivative. In the same way as
the covariant derivative in Riemannian geometry makes a tensor out of a tensor, the
derivative (34) makes a superfield out of a superfield.

The superfield (31) with its transformation law (33) defines an infinite-dimensional
representation of the algebra (27). But it is a reducible representation. Indeed, one
can now impose the constraint of reality X = X. A real superfield stays real under
the variation (32).

N = 2 superspace and the A = 2 superfields are defined in a similar manner. The
superspace now includes time ¢ and a complex Grassmann anticommuting variable
0: 6% = 6> = {#, 0}, = 0. The supertransformations are

60— 0+e¢,
0 —>0+e,
t — t+i(el + €0) (36)

with complex Grassmann €. These transformations are generated by a complex super-
charge Q and its Hermitian conjugate:

i d -0
0=~ (5 +75)
_ ] 0 0
e=-5 (@ + %) 37

[the factor 1/ /2 is added to ensure the validity of (26)]. A generic N = 2 superfield
reads

D(t,0,0) = z(t) +i0x(t) +i0r(@) +O0F (1) (38)
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with Grassmann-even complex z(¢) and F'(¢) and Grassmann-odd complex y (¢) and
A(t). The supersymmetric variation of @ reads

8@ = iv2(e0 +€0)®. (39)

The covariant supersymmetric derivatives which are nilpotent and anticommute with
Q and Q are

B] _ 9
D=——if—,
20 ot
D 0 +i6 9 (40)
= —— lo—-.
26 ot

The operator i D is the Hermitian conjugate of i D. If & is a superfield, then D& and
D® are also superfields.

The superfield (38) defines an infinite-dimensional representation of the algebra
(26). This representation is reducible. Two different irreducible representations are
obtained after imposing the constraints:

e The reality constraint @ = @. If & is real, the variation 8 is also real.

e The chirality constraints D@ = 0 or D® = 0. Again, if D@ vanishes, so does
D8®, and the same for D. Note that if DZ = 0, then DZ = 0. We will call Z a
left chiral superfield and Z a right chiral superfield.®

In what follows, we will not be interested in the real N' = 2 superfields, but
exclusively in the chiral ones.

For a chiral superfield, the component expansion (38) can be simplified if one
introduces “left” and “right” times:

fL = t—1i60, R = t+i680.

The supersymmetric variation of 7, depends only on 6, §¢;, = 2i€6, and the super-
symmetric variation of 7z depends only on 6.

The set of coordinates (¢, , 8) describes the holomorphic chiral N = 2 superspace
and the set (tg, ) describes the antiholomorphic chiral N* = 2 superspace.

Then, if DZ = 0, we may write

Z = Z(t,,0) = z(t,) + iv20 x(11)
Z = Z(tg,0) = Z(tg) +iv20 % (1x). 1)

The components of a left chiral superfield are transformed as

8z = iN2e x, Sx = —2éz. (42)

5The terms “left” and “right” have a physical origin which is irrelevant for us here.
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Let us pose now

X1 +ixp Y1 +iyn n+in
7= ) X=——"=: €= . (43)
V2 V2 V2
Suppose first that € is real, 7 = 0. Then we derive
Sxyp = inyn, 8y = —nxy,
Sxy = iny, 8y = —nxs. (44)

We see that the components (x;, Y1) are not mixed with the components (x;, ¥);
each set is transformed in the same way as the components of an A/ = 1 superfield
[see Eq. (33)]! In other words, the representation Z is an irreducible representation
of the N = 2 superalgebra, but it can also be thought of as a reducible representation
of N' = 1 superalgebra realized by the transformations (42) with real €. When going
down from N = 2 to A/ = 1, the chiral superfield Z is split into two real superfields
X, and X,. To see it quite explicitly, substitute 6 = (6; + i@z)/ﬁ in (41). Then
t; =t + 6,0,. We derive

Z = % (X1, 01) +iX(, 01) +i6[DX (2, 0)) +iDXa(t, 0]} . (45)
Look now at the transformations (42) when € = i7/+/2 is imaginary. We obtain
ij = —inyn, (ilﬂl = —1x2,
8xp = iny, 8Yr = 1x; (46)
or in a compact form:
Xy = feap DXp (47)

[with ¢ defined as in (3)].
The generators of the transformations (44 and (46) obey the algebra (25). Indeed,

e Itisrather evident that the transformations (44) and (46, 47) commute. Indeed, § X4
is a superfield, and hence § (5 X4) and § (6X4) coincide, having both the form (32)
with X replaced by 5§.X4. A corollary of this is the vanishing of the anticommutator
Q90 + QQ of the corresponding quantum supercharges.

e Bearing in mind (35), the Lie bracket of two different tilde-transformations reads

(8182 — 82810 X4 = 21172 X, (48)

which is tantamount to saying that 2 coincides with the Hamiltonian (the gener-
ator of time shifts).
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3.2 NN Theorem: Supersymmetric Interpretation

The tensor ¢ 45 entering (47) can be interpreted as a 2 x 2 block in the flat complex
structure (4). The components x4 of the superfields X4 can be interpreted as the flat
Cartesian coordinates. Suppose now that we have 2d N = 1 superfields X™. One of
the supersymmetries follows from the transformations of the superspace coordinates
as in (44):

sxM = inyM, SyM = —nxM. (49)

Looking for a generalization of (47), we anticipate the presence of the second super-
symmetry,

sxM = gryMatypav, (50)
where
I = -1, (51)

and ask: under what conditions is it possible? Under what conditions do the gener-
ators of the transformations (49) and (50) obey the algebra (25)?

Theorem 5. The algebra (25) holds iff the Nijenhuis tensor (10) vanishes.

Proof. The Lie bracket [8, 5] vanishes by the same reason as in the flat case treated

before: the transformation § mixes the components of each multiplet, while the

transformation & mixes different superfields and does not bother much about their

internal structure. Thus, we only need to explore the Lie bracket (5 152 — 5251)2( M,
Note first that

S(DXYy =DEBXN) = —iDUNDXY) = -5 [LY)DXE DX +if N X"
The commutator of two transformations (50) is then derived to be
(3152 - 5251) M = 2idjy o (1% M XK
—2771772[1KL <3L1NM> + <3N1KL> ILM} pxkpxN. (52)

If we want it to coincide with —2i 7,7, 8; XM [as is dictated by Eq.(25)] the conditions
(51) as well as
O n™) I)" + OwI)") 1LY = 0 (53)

follow. Using again (51) and flipping the derivative in the second term, the L.H.S. of
Eq. (53) can be brought into the form (9). The condition (10) follows.
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Thus, the condition Ay X = 0 is necessary and sufficient for A" = 2 supersym-
metry associated with the given complex structure to hold. But the NN theorem is
formulated differently: it affirms that the condition (10) is necessary and sufficient
for the existence of complex coordinates.

Well, as far as necessity is concerned, the equivalence of Theorems 3 and 5 is rather
clear. Suppose that complex coordinates z” exist. But then each such coordinate can
be upgraded to a complex chiral superfield Z" whose components are transformed
under supersymmetry as in (42). Each superfield Z" can be expressed via a pair of
N = 1 real superfields as in (45). The complex structure tensor I/ has in this case
the form (4) and does not depend on the coordinates. The tensor Ay, X vanishes
automatically.

Now, if the Nijenhuis tensor vanishes, we know from Theorem 5 that the algebra of
N = 2 supersymmetry holds. The set of 2d superfields X' is an infinite-dimensional
representation of this algebra. Then the sufficiency of (10) means that, ford > 1, this
representation is reducible and can be decomposed in a direct sum of d irreducible
representations realized by the components of the chiral complex superfields Z".

This latter statement looks very natural, it is widely used by physicists, but [ am
not aware of its independent proof. The only known proof of this fact is the proof of
the sufficiency part of the NN theorem that we outlined in Sect.2 and that does not
resort to supersymmetric description.

3.2.1 Invariant Actions
Up to now, when talking about the supersymmetric aspects of the NN theorem, we
stayed at the purely algebraic level, having discussed only the algebras (25), (27)
and their representations. A reader-mathematician may stop reading this paper at
this point.

But, when a physicist thinks of a symmetry, s/he is always interested in dynamical
systems that enjoy these symmetries. An industrial method to find supersymmetric
dynamical systems is based on the following theorem:

Theorem 6. Let X (¢, 0) be an A/ = 1 superfield that vanishes at ¢ = #00. Then the
integral (associated with the physical action)

S = /d@/ dt X (54)

is invariant under transformations (30).

Here the symbol [d# is the Berezin integral,

3
/ dox = —X. (55)
30

Proof. We have
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85:/(19[ dt(SX:—E/dG/ dt | — +i0— | X.
oo 0 a0 ot

The first term vanishes due to the definition (55) and the Grassmannian nature of 6.
The second term vanishes due to the condition X' (o0, 6) = 0.

Obviously, the same property holds for the integral

o0
S = /déde/ dt @ (56)
—00
of a N = 2 superfield @.

The superfield X in Eq. (54) and the superfield @ in Eq. (56) can be constructed
out of certain basic superfields by multiplications, time differentiations and covariant
differentiations with the operator D in the ' = 1 case and with the operators D and
D in the N = 2 case. In particular, one can write [11]

1 _ o
S = 1 / d0dodt hy,;(Z*, Z*Y DZ" (1g) DZ" (1), (57)

where Z¥=1-+4 are left chiral superfields and h,,; is Hermitian. Substituting there
the expansions (41), not forgetting to expand over 6 and 6 also #; g =t F 06 and
performing the integral over dfdfdt, one can derive the following expression for
the Lagrangian:

L = hpui(z,2)z2"z" + terms including superpartners x™ (t) (58)

We can now interpret z" and z" as the coordinates on a complex manifold with
the metric h,,;(z, Z). The displayed term of the Lagrangian can be interpreted as the
kinetic energy of a particle with unit mass moving along the manifold. The dynamical
system describing such a motion is called sigma model. And the whole Lagrangian
[due to Theorem 6, the corresponding action is invariant under (42)] represents its
supersymmetric version.

The same dynamical system can also be described in the A" = 1 superfield lan-
guage. Consider the action [12]

S = % f dOdt gyn(X) XMDXN, (59)

This is not a most general form. The action (59) describes (under the condition that
Ny X vanishes) only the Kéhler manifolds; to describe generic complex manifolds,
one should add an extra term. But we do not want to plunge into too much details
here, addressing an interested reader to Sect.4 of Ref. [5].

After integration over dfdt, we obtain the Lagrangian
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1
L = EgMN MV 4+ terms including superpartners 1//M (1), (60)

i.e. gy n has the meaning of the real metric.

By construction, the action (59) is invariant under A" = 1 transformations, but it
is also invariant under the extra supersymmetry transformations (50) provided the
conditions (51), (10) and the condition I,y = —1Iyy; hold.

Note that, to relate I,y to I, we need the metric. The notion of metric was not
used in the proof of Theorem 5 or Theorem 3, which thus hold also for non-metric
manifolds. Indeed, the equation system (5) for the complex coordinates has solutions
provided the condition (10) is fulfilled even when Iy # — Iy . But we need the
metric for the physical applications. And then the condition of the antisymmetry of
Iysn should be imposed.

The equations of motion that follow from the Lagrangian (60) describe classical
supersymmetric dynamics. The Legendre transformation of (60) gives us the classical
Hamiltonian from which the quantum Hamiltonian can be derived. The quantum
system has the same symmetry as the classical one. If we are dealing with N = 2
supersymmetry, a pair of Hermitially conjugate supercharges satisfying the algebra
(26) exist. This guarantees the two-fold degeneracy of all positive energy states as
in (28).

Acknowledgements I am indebted to G. Carron, G. Papadopoulos and A. Rosly for illuminating
discussions.
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A Class of Representations )
of the Orthosymplectic Lie e
Superalgebras B(n, n) and B(oco, 00)

N. L. Stoilova and J. Van der Jeugt

Abstract In 1982 Palev showed that the algebraic structure generated by the cre-
ation and annihilation operators of a system of m parafermions and n parabosons,
satisfying the mutual parafermion relations, is the Lie superalgebra osp(2m + 1|2n).
The “parastatistics Fock spaces” of order p of such systems are then certain lowest
weight representations of osp(2m 4+ 1|2n). We investigate now the situation when
the number of parafermions and parabosons becomes infinite, which is of interest
not only in a physics context but also from the mathematical point of view. In this
contribution, we will discuss the various steps that are needed to understand the
infinite-rank case. First, we will introduce appropriate bases and Dynkin diagrams
forB(n, n) = osp(2n + 1|2n) that allow us to extend n — oo. Then we will develop
a new matrix form for B (n, n) = osp(2n + 1|2n), because the standard one is not
appropriate for taking this limit. Following this, we construct a new Gelfand-Zetlin
basis of the parastatistics Fock spaces in the finite rank case (in correspondence with
this new matrix form). The new structures, related to a non-distinguished simple
root system, allow the extension to n — oo. This leads to the definition of the alge-
bra B(co, co) as a Lie superalgebra generated by an infinite number of creation
and annihilation operators (subject to certain relations), or as an algebra of certain
infinite-dimensional matrices. We study the parastatistics Fock spaces, as certain
lowest weight representations of 28 (o0, 00). In particular, we construct a basis con-
sisting of well-described row-stable Gelfand-Zetlin patterns.
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1 Introduction

Throughout this paper we will use square brackets for a commutator, [A, B] =
AB — BA; curly brackets for an anti-commutator: {A, B} = AB + BA; and dou-
ble brackets if we are dealing with operators from a Z, graded algebra: [[A, B]] =
AB — (=)W B BA_ where (A) = deg(A) € {0, 1} is the degree of A.

In this contribution we will consider Fock spaces for bosons, fermions, para-
bosons, parafermions, and combined systems of parabosons and parafermions. The
emphasis is on algebraic structures behind these systems, on identifying Fock spaces
with a class of representations of these algebras, and on constructing a basis for these
representations.

For a system described by n pairs of boson (creation and annihilation) operators
BijE (i=1,...,n),satisfying

(B, B 1=24; )]

and all other commutators zero, the Fock space with vacuum vector |0) characterized
by (Bii)T = Bl.:F and B;|0) = 0 has a very simple (orthonormal) basis:

_ (Bl+)k1 ce (Bn+)kn
ki k!

withk; € {0, 1,2, ...}. Similarly, a system described by m pairs of fermion operators
Ff@i=1,...,m), with

k..o k) 0) 2

{F, Fj+} =8 3)

and all other anti-commutators zero, the Fock space is characterized by (F7*) = F.F
and F; |0) = 0, and has a basis similar to (2) but with all k; € {0, 1}.

More interesting structures are provided by parabosons and parafermions, espe-
cially from the algebraic point of view. These were first introduced by Green [1] and
their Fock spaces were first studied by Greenberg and Messiah [2].

A system of n pairs of parabosons bf (j =1, ..., n)isdefined by means of triple
relations:

[(b5. b}, bf1 = (¢ — £)8;b] + (€ — M)dub’, 4

where j, k,l € {1,2,...,n}andn, €, & € {+, —} (to be interpreted as +1 and —1 in
the algebraic expressions € — & and € — 7). In this case, there is not a unique Fock
space, but for every positive integer p (referred to as the order of statistics) there is
a Fock space V(p) characterized by (b;:)Jr = bf, b; |0) = 0 and

{b7.b}0) = p8;c10). (5)
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Similarly, a system of m pairs of parafermions f ji (j =1,...,m)is defined by the
triple relations

Lf5, A0 ) = le = i/ — le — €180 £, ©

Their Fock spaces W(p), also labelled by a positive integer p, are characterized by
(f)F = fF, £;10) =0 and

Lf7 . £E110) = p 8 10). )

These cubic or triple relations involve nested (anti-)commutators, just like the
Jacobi identity of Lie (super)algebras. It was indeed shown later [3, 4] that the
parafermionic algebra generated by 2m elements fl.i subject to (6) is the orthogonal
Lie algebra so(2m + 1). The Fock space W(p) is the unitary irreducible represen-
tation of s0(2m + 1) with lowest weight (=%, —£, ..., —£) in the standard basis.

Many years later, it was shown that the parabosonic algebra generated by 2n odd
elements bii subject to (4) is the orthosymplectic Lie superalgebra osp(1|2n) [5].
In this case the Fock space V(p) is the unitary irreducible osp(1|2n) representation
with lowest weight (£, £, ..., £) in the standard basis.

For p = 1, V(p) becomes the ordinary boson Fock space and VW (p) becomes the
ordinary fermion Fock space.

Already in their first paper, Greenberg and Messiah [2] considered combined
systems of parafermions and parabosons. In combined systems, it will be convenient
to use negative indices for parafermions and positive indices for parabosons, and to
use the common operator notation cii:

cr=fF (-m=<j<-1); c¢=b" (1<i<n). ®)

Apart from two trivial combinations, there are two non-trivial relative commutation
relations between parafermions and parabosons, also expressed by means of triple
relations. The case considered here is the so-called “relative parafermion relation”
and is determined by the parastatistics relations

[lc), e ¢/ 1 =28uc,  llc). ¢ 1 ¢ 1=0, ©)

ey, lefs e I =28c;, ey, el e T =0. (10)

The complete set of relations can also be written in the somewhat complicated form

[0cs. c{T. cf 1 = —28:8c e (—1)O V] + 26V55, _, 5. (11)

where (k) refers to the grading of c,f, and thus is O for negative k and 1 for positive
k, following (8).

It was shown by Palev [6] that the Lie superalgebra (LSA) generated by 2m
even elements f ji and 2n odd elements bji subject to the above relations (11) is
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B(m, n) = 0sp(2m + 1|2n). The Fock spaces, denoted by V (p) and labelled by a
positive integer p, are characterized by (cj[)i" = cj.F, ¢;10) =0 and [c;, 10y =
P8k |0). V(p) is the unitary irreducible representation of osp(2m + 1]2n) with
lowest weight (=%, ..., —£|%, ..., £) in the standard basis. These are referred to
as the parastatistics Fock spaces.

Understanding the algebraic structure behind such systems of parabosons/
parafermions is one step. But understanding the structure of the corresponding Fock
spaces is another important step. A major contribution here is the so-called Green
ansatz, where one considers the p-fold tensor product of an ordinary boson/fermion
Fock space and extracts an irreducible component herein. This is far from trivial,
and computing matrix elements for generators remains a difficult problem in this
approach [7, 8]. For the case of parabosons (osp(1|2n) representations V(p)), a
complete basis with all matrix elements was given for the first time in [9]. The
same type of construction was given for parafermions (so(2m + 1) representations
W(p)) in [10]. Interesting character formulas for these representations were also
given, and these could be extended to characters of the parastatistics representa-
tions V(p) of osp(2m + 1]2n) [11]. An actual basis of the parastatistics Fock spaces
was constructed in [12], where again all matrix elements of the generators could be
computed.

All the above constructions of basis vectors rely on the development of an appro-
priate Gelfand-Zetlin (GZ) basis, which in turn depends on an appropriate chain of
subalgebras under which the reduction of V (p) is multiplicity free at every step of
the chain. For the parastatistics case, this subalgebra chain is

0sp(2m + 1|2n) D gl(m|n) D gl(m|ln — 1) D glimin —2) O - --
D glim|l) D glim) D glm —1) D --- D gl(2) D gl(1). (12)

Since it follows from the character formula [12] that the decomposition of V (p) in the
chain osp(2m + 1|2n) D gl(m|n) is easy and multiplicity free, the GZ-basis consists
of a (triangular) pattern with m + n rows, each row corresponding to a highest of a
gl algebra in the chain (12).

In the present contribution, we consider the case for which m and n become
infinite. If one tries to extend the above mentioned GZ-patterns to infinite patterns,
starting from the bottom row corresponding to gl(1) and gradually increasing the
rank of the algebra, it is obvious that one cannot let both m and n go to infinity.

In the next paragraph, we shall explain how the introduction of an “odd GZ-
basis” can overcome this problem, however only in the case m = n. This will lead to
a new basis for the Fock spaces of 8 (n, n) = 0sp(2n + 1|2n). This new basis was
constructed in [13], to which we refer for further details. The current contribution
summarizes some of the main results in [13] and it is inevitable to have some overlap
with [13]. Here, we first give a justification for the necessity of a new GZ-basis.
Then we will proceed to a new matrix realization of ‘B(n, n), and give the paras-
tatistics generators in this new basis. The parastatistics Fock representations are then
described in the new GZ-basis. We also include an example (given in the Appendix)
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to illustrate the various notions. Finally, it is shown how to extend this to the case
when n — oo, where so-called row-stable GZ-patters are of importance. For some
details and explicit formulas, the reader will be referred to [13].

2 Introducing an Odd GZ-Basis

Looking back at the original idea of a Gelfand-Zetlin basis, for the case of the Lie
algebra gl(n), the construction of the basis is according to the chain of subalgebras

gl(n) D gln — 1) O --- D gl(2) D gl(1). (13)

Every row of a GZ-basis vector consist of a highest weight of gl(k), the top row
(“row n”’) corresponding to gl(n) and the bottom row (“row 1) to gl(1). Such GZ-
patterns can easily be extended to the infinite rank case by introducing infinitely large
GZ-patterns according to

gl)cgl@c---Cgln—1) Cgln) C---. (14)

In order to label basis vectors of an irreducible gl(co) representation, with locally
finite action of gl(oco) generators, one should require certain stability properties of
the infinite GZ-patterns. The main idea is however that one can reverse the chain (13)
to (14) allowing the limit n — oo. Also in terms of Dynkin diagrams, this process
of letting n increase to infinity is somehow clear from the Dynkin diagram of gl(n),

€l —€ € —€3 €3 —€ €1 €&

O—O—0— —O

and its extension as n increases:

€1 —€2 €3 — €3 €3 — € €n-1 €y €p —€ptl
O—O0—0— —O0—0—
For the Lie superalgebra gl(m|n), one can also construct (at least for a class of
representations) a GZ-basis [14] according to the chain

gl(m|n) D glmin — 1) D gl(m|ln —2) D - --
D glm|1) D glim) D glim — 1) D --- D gl(2) D gl(1). (15)

In an attempt to let m and n increase to infinity, the GZ-patterns corresponding to
the above chain are no longer appropriate. Indeed, if one reverses the chain (15) in
which m grows to infinity,

glh)cgl@ c---cglm—1) Cglim) Cglm+1) C --- (16)
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one somehow never reaches the point where a Lie superalgebra can be included, and
there is no way of having also n — oo.

In a previous paper [15], this was solved by introducing the so-called odd GZ-basis
for gl(n|n) (m and n must be equal). This arises from the chain of superalgebras

glnin) Dglnln—D Dgln—1n—1) D ---
- D gl(2]2) D gl(2[1) D gl(1[1) D gl(1). (17)

This chain can easily be reversed and continued to infinity,

gl(1) C gl(1]1) C gl2|1) C gl22) C -- -
Cgl(n—1n—1)Cgl(nln — 1) C gl(nln) C - -- (18)

leading to an appropriate GZ-basis for gl(oco|oo) representations [15], in which each
row of the infinite GZ-pattern corresponds to a highest weight in the chain (18) (with
certain stability requirements). Note that such a chain corresponds to a consecutive
inclusion of Dynkin diagrams of Lie superalgebras of type gl with odd simple roots
only. In a convenient basis (..., €_3, €_, €_1; €], €2, €3, .. .), the Dynkin diagram is

€-n —€p € —€.pnp1 €2 — € €3 —€_ €1 — €

R X

Hence, starting from the right and extending each time by one node to the left, one
finds consecutively the Dynkin diagrams of gl(1|1), gl(1|2), gl(2|2), etc. This process
can continue to the left basically up to infinity.

It is in this context that the convenient GZ-basis and Dynkin diagrams for
B(n,n) = osp(2n + 1|2n) are introduced. Adding the extra odd root €; to the
right, one finds by extending to the left consecutive Dynkin diagrams of B(n, n)
orB(n,n+1).

€n —€_pt1 €2 — €2 €3 —€_1 €_1— €1 €1

@—@F% & K@

3 New Matrix Realization of 25 (n, n)

Following the previous remarks, it is convenient to work in a new matrix realization
of *B(n, n). Rows and columns, and indices of other objects, will be labelled by both
negative and positive numbers. For non-negative integers m and n we will use the
following notation for ordered sets:

-m,n]={-m,...,—2,—-1,0,1,2,...,n},
={-m,...,—2,—-1,1,2,...,n}. (19)



Representations of B(co, 00) 191

When more convenient, we write the minus sign of an index as an overlined num-
ber, e.g. [2,3]* = {2, 1, 1, 2, 3}. We will also use Z* = Z\ {0}, Z, = {0, 1,2, ...},
Zr =1{1,2,3,...}.

Let 7 and J be the (2 x 2)-matrices

01 01
1::(10), J:=<_10>, 20)

and let B be the (4n 4 1) x (4n + 1)-matrix, with indices in [—2n, 2n], given by
B=1®---®Id1dJ D ---& J,or written in block form:

2y

Herein, 0 stands for the zero (2 x 2)-matrix, the entry 1 is at position (0, 0), and the
empty parts of the matrix consist of zeros.

The matrices X of the Lie superalgebra B(n, n) will have the following block
form:

Xig - Xa1iXao|Xa1 -+ Xin

X:=| Xos - Xo1 0 |Xo1 - Xon |- (22)

Xn,ﬁ e Xn,I!Xn,O Xn,l te Xn,n

Herein, any matrix of the form X;; with i, j € [n, n]* is a (2 x 2)-matrix, Xy, iSa
(1 x 2)-matrix and X; g a (2 x 1)-matrix.

The Lie superalgebra B (n, n) = osp(2n + 1|2n) is Z,-graded and its homoge-
neous elements are referred to as even and odd elements, with the degree denoted
by deg(X). The even matrices X will have zeros in the upper right and bottom left
blocks, i.e. X;; =0 for all (i, j) € [1,0] x [1,n] and (i, j) € [1,n] x [n, 0]. The
odd matrices X will have zeros in the upper left and bottom right blocks, i.e. X;; = 0
for all (i, j) € [n,0] x [r,0] and (i, j) € [1, n] x [1, n].

The actual definition, derived from [16], is then as follows: B (n, n), consists of
all even matrices X of the form (22) such that

X"B+ BX =0;
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B(n, n); consists of all odd matrices X of the form (22) such that
X5TB — BX =0.

Herein X7 is the ordinary transpose of X and X357 is the supertranspose of X [13,
16]. For homogeneous elements of type (22), the Lie superalgebra bracket is

[X,Y]=XY — (_1)deg(X)deg(Y)YX’

with ordinary matrix multiplication in the right hand side.

Denote, as usual, by e;; the matrix with zeros everywhere except a 1 on position
(i, j), where the row and column indices run from —2n to 2n. A basis of the Cartan
subalgebra ) of B (n, n) consists of the elements h; = ey;—12i—1 — €22 (i € [1, n])
and h; = ey — e2it12i+1 (0 € [7, 1]). The corresponding dual basis of h* will be
denoted by €; (i € [n, n]*). The following elements are even root vectors with roots
€_; and —e_; respectively (i € [1, n]):

o= =V2(e 20 — e0—2ip1),

¢ = f5 = V2(eo0 -2 — e—2it1.0)s (23)
and odd root vectors with roots €; and —e¢; respectively (i € [1, n]) are given by:

¢f=b = V2(ep2i + e2i-1.0),
¢ =b; =2(epi-1 — e20)- (24)

The remaining root vectors of 8 (n, n) are given by elements of the form [[ciE , c'} 1. The
matrices (23)—(24) satisfy the triple relations (11), hence they realize the parastatistics
operators.

In our development, it is also important to note that the 4n? elements

[cf,e;1 G, J €, nl*) (25)
are a basis of the subalgebra gl(n|n). Observe also that
[cf.c;1=2h; (ieln, 1), {cf.c;}=2h; (i€ll, n]). (26)

Hence h = span{h;, i € [n, n]*}, the Cartan subalgebra of B (n, n), is also the Cartan
subalgebra of gl(n|n).
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4 The Fock Representations V (p) of 25 (n, n)

The Fock representation V (p) of 28 (n, n) was already introduced in the first section.
Note that the condition [[c; , c,:r]] |0) = pdjx |0) implies that we are dealing with alow-

est weight representation of B(n, n), with lowest weight (=%, ..., =£|5, ... £)
in the basis {e_,,...,€_1; €1, ..., €,}. These representations have been analyzed

in [12]. The main result is the decomposition with respect to the subalgebra chain
B(n, n) D gl(n|n), because then the Gelfand-Zetlin basis of the gl(n|n) representa-
tions can be used to label the vectors of V (p). In the decomposition of V (p) with
respect to B(n, n) D gl(n|n), all covariant representations of gl(n|n) labelled by a
partition A = (A1, A2, ...) appear with multiplicity 1, subjecttor; < pand A, < n.
For each gl(n|n) covariant representation labelled by A, the highest weight can be
determined [17], and is given by an array of 2n integers denoted by

2 .
[m] n— [mﬁ,Zns ey migny mLan mM12n, M2 205+« s mn,2n] (27)

satisfying certain conditions. Next, one can follow the chain (17), leading in each
step to the highest weight of the subalgebra, and thus yielding a labelling with 2n
rows for the corresponding vectors. This is the actual odd GZ-basis for the Fock
representation V (p) of ‘B(n, n).

Explicitly, it is described as follows. For any positive integer p, a basis of the
Fock representation V (p) of B(n, n) is given by the set of vectors of the following

form: )
n
2n 2n [m]
lpym)™ = Im)™ = = (28)
’ 2n—1
lm)
My 2n My, MG o M1 2n ;’”1,2)1 m32.2n T Mp—22n Mp—1,2n Mp 2n
0 T BRI
Mg 2n—1 My} op—1 """ M3 2n—1 ™1,2n—1 Imy op—1 M3 2p—1 -+ Mp_22p—1 Mp—12n—1
N3 { el 1
My om—2 " M3 0p—2 M, 2n—21M1,2n=2 M22n—2 "' Mp—22n—-2 Mp—1,2n-2
T e )
m—

|
n—1,2n—-3 = M2,00-3 ™{,2n—3,"1.20=3 M2,2n=3 " Mn—22n-3

A : |: :
ms, miy Im|4 moy

! |
ms5 my m
23 1 13
3 i
mia 1mi2
1 I

where all m;; € Z., satisfying m; », < p and the GZ-conditions
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l.mjoy —mjs100 € Zyy j €1[i,2]U[1,n] and
m_y0, = #i :mi, >0, i €[1,n]};
Moy =M a1 =02 1€{0,1}, 1<i=<s=<n;
smigg — Mgy =00, €{0,1}, 1<i<s<n-1;
L.M_j 5 = #{l Mmoo > 0, i€ [1,S]}, s € [1,71];
.m_yo_1 = #{i imi_1 >0,i€e[l,s—1]}, s € [2,n];
Mg — Mg 1 € Ly and mypg 1 — miy125 € Ly,
l<i<s—1<n-1,
T.om_jy 2541 —M_jos € Ly and m_; o5 —m_jog1) € Ly,
l1<i<s<n-—1.

(29)

AN AW

Conditions 2 and 3 are referred to as “6-conditions”. Conditions 6 and 7 are often
referred to as “betweenness conditions.” Conditions 1, 4 and 5 assure that each row
of (28) corresponds to the highest weight of a covariant representation of gl(z|z)
or gl(t|t — 1) in the chain (17). Note that the arrows in this pattern have no real
function, and can be omitted. We find it useful to include them, just in order to
visualize the 6-conditions. When there is an arrow a — b between labels a and b,
it means that either b = a or else b = a + 1 (a 8-condition). We will also refer to
“rows” and “columns” of the GZ-pattern. Rows are counted from the bottom: row 1
is the bottom row in (28), and row 2n is the top row in (28). In an obvious way,
columns 1, 2, 3, ... refer to the columns to the right of the dashed line in (28), and
columns —1, =2, =3, ... (or 1, 2, 3, ...) to the columns to the left of this dashed
line. For two consecutive rows in the GZ-pattern (28), about half of the labels involve
6-conditions, and the other half involves betweenness conditions.

It should already be clear from this construction that the GZ-patterns of gl(n|n)
consist of those of gl(n — 1|n — 1) to which two rows are added at the top. Hence it
will be possible to gradually increase n, and we are in a setting for which the limit
n — oo can be examined.

One of the main computational results of [13] is the determination of the action of
the parastatistics operators cii on the GZ basis vectors |n)>". For this, it is necessary
to note that the 2n elements ci+ themselves form a standard gl(n|n) tensor. Thus
every element of (cn+ , cfn, e, c; , ci’z, cf’, ci’]) corresponds, in this order, to a GZ-
pattern of type (28) consisting of k top rows of the form 10- - - 0 and 2n — k bottom
rows of the form 0---0 for k =1, 2, ..., 2n. It will be convenient to introduce a
notation for the order in which these 2n elements appear:

N 2i fori € [1, n]
p(’)_{—zi—lforie[ﬁ, - (30)
Then the pattern corresponding to ¢;” has rows of the form 10---0 for each row
index j € [p(i), 2n] and zero rows for each row index j € [1, p(i) — 1].
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Following standard methods [9, 18], and knowing the tensor product rule in
gl(n|n) for covariant representations, the matrix elements of c;’ in V(p) can be
written as follows:

[m]Zn

2n
2n At 2n __ +(k) + [m]
(m |Ci |m) - (|m/)2n1 i |m)2nl>
10---00
10---0 w o ) : :
- S |[m,])+2;"_>1) < (P lle lm™). (1)

Herein, the GZ-pattern with 0’s and 1’s is the one corresponding to c;', as described
earlier, and [m]i”(k) is the pattern obtained from [m]* by the replacement of m 5, by
my 2, £ 1. The first factor in the right hand side of (31) is a gl(n|n) Clebsch-Gordan
coefficient (CGC), where all patterns are of the form (28). These CGC’s have been
determined in the Appendix of [13], and will not be repeated here. The second factor
in (31) is a reduced matrix element for the standard gl(n|n) tensor. The possible
values of the patterns |m’)?" are determined by the gl(n|n) tensor product rule and
the first line of [m’)>" is of the form [m]i"( o The reduced matrix elements themselves
depend only upon the gl(n|n) highest weights [m]*" and [m]i"k (and not on the type
of GZ basis that is being used.) These reduced matrix elements have actually been
determined in [12, Proposition 4].
Note furthermore that by the Hermiticity requirement one has

('l Im)* = 2" (m]c;f Im")*". (32)
So in this way, one obtains a complete action of all parastatistics operators:
C;‘r|m)2n — Zc+ [l, |m)2n’ |m/)2n] |m/)2n’ (33)
o

¢ lm)™ =Y " C [i Im)™, [m)™] 1m')*", (34)

m

where C* [i , lm)?", |m’)2”] is just a shorthand notation for the element > (m’ |cl.+ [m)?"
computed in (31), and similarly for C~ [i, [m)®", |m’)*"].

Examining the action of the creation operators cf in detail, one deduces the
following property [13]: the action of ¢;"” on |m)>" yields vectors |m’)*" such that rows
1,2, ..., p(i) — 1 of [m’)?" are the same as those of [m)?". And in rows p (i), ..., 2n
there is a change by one unit for just one particular column index s: [m']/ = [m]/ +
[0,...,0,1,0,...,0]forj € [p(i), 2n]. The increase can be in any possible column,
as long as the remaining pattern is still valid, i.e. as long as (29) is satisfied.

Animportant observation is a certain stability property. For this, one introduces the
following definition: the pattern, or equivalently the associated basis vector, |m)>"
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is row-stable with respect to row s if there exists a partition v such that all rows
s,s+1,...,2n are of the form

[vi, v2,...,0;0,0,...].

In that case, s is called a stability index of |m)".
The following properties were proven in [13]:

e The action of a consecutive number of ¢;’s on the vacuum vector produces row-
stable patterns if n is sufficiently large. More precisely, if k < n, then all basis
vectors appearing in

¢ cifeh |0y (eachi, € [a,n]%) (35)
are row-stable with respect to some row index s.

e Row-stable patterns remain row-stable under the action of ¢;"’s (but the stability
index might increase). Specifically, let [m)?" be row-stable with respect to row s,
where s < 2n — 1. Then the vectors |m’)*" appearing in c;"|m)*" are row-stable
with respect to row max{s + 2, p(i) + 1}.

e Row-stable patterns remain row-stable under the action of ¢; ’s for the same sta-
bility index.

Also the matrix elements (33)—(34) satisfy a stability property. To specify this,
one defines a map from GZ-patterns with 2n rows to GZ-patterns with 2n + 2 rows.
For this, suppose that the top row of |n2)?" has the zero partition as second part, i.e.
it is of the form

[m)** =[vi,va,...:0,...,0]

with v a partition. Define the map ¢,, 1, from the set of GZ-patterns |n)>"* with zero
second part to the set of GZ-patterns |m)*'+? with stability index 27 by:

Im)**** = ¢, 42 (Im)*") , where (36)

[m]**! = [v,12,...,0,0;0,...,0], [m]*"* =[v,v,...,0,0;0,...,0,0].

In other words, the top row of |m)>" is just repeated twice, with the extra addition
of zeros in order to have sufficient entries for the pattern |m)2**+2, Clearly, the action
of ¢2,, 42 can also be extended by linearity, on a linear combination of vectors [m)?"
with zero second part.

The final important stability property can now be formulated: let |)>" be row-
stable with respect to row 2n, and |m)*™* = ¢y, 4 (Im)*") Then for all i with
p (i) < 2n (or equivalently, i € [—n, n]*):

+po 2042 +po32
¢ Im)*"*2 = ¢y 12 (¢ Im)*™") .
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5 The Fock Representations V (p) of 25 (oo, 00)

Due to the stability properties just described, we can extend both the parastatistics
algebra B (n, n) and its Fock representations V ( p) to the infinite rank case 28 (co, 00).

The infinite rank Lie superalgebra B (oo, oo) consists of infinite matrices X of the
form (22) with n — oo but with a finite number of non-zero elements, see [13] for
a more precise definition. The indices of the matrices X now belong to Z instead of
[—n, n]. The matrices e;; consist of zeros everywhere except a 1 on position (i, j),
where the row and column indices belong to Z. A basis of a Cartan subalgebra
b of B (0o, 00) consists of the elements h; = ez _1,2i—1 — €20 (i € Z}) and h; =
€2 2i — €2i+1.2i+1 (i € Z*). The corresponding dual basis of h* is denoted by ¢;
(i € Z*). As in the finite rank case, we can identify the following even root vectors
with roots €_; and —e_; respectively (i € Z):

ch=rh= \/5(6—21‘,0 — €0,-2i+1)s
¢ =[5 = V2(eo0, -2 — e-2i41.0)s 37)

and odd root vectors with roots €; and —e¢; respectively (i € Z):

cl?L = b;r = \/5(60,21‘ + e2-1,0),
¢, =b; = «/5(60,21'71 — e 0). (38)

The operators cf
vectors.

The operators introduced here satisfy the triple relations of parastatistics. But
now we are dealing with an infinite number of parafermions and an infinite number
of parabosons, satisfying the mutual relative parafermion relations. In other words,
the triple relations (11) are satisfied, but now with j, k, [ € Z*. We also have: as a
Lie superalgebra defined by generators and relations, B (co, 0o) is generated by the
elements cl.i (i € Z*) subject to the relations (11).

The parastatistics Fock space of order p, with p a positive integer, can be defined
as before, and will correspond to a lowest weight representation V (p) of the algebra
B (00, 00). V(p) is the Hilbert space generated by a vacuum vector |0) and the
parastatistics creation and annihilation operators, i.e. subject to (0|0) = 1,¢7 |0) = 0,

()" =cF,

can be chosen as positive root vectors, and the ¢;” as negative root

[c;, el M0y = pdjx10) (j, k € Z*) (39)

and which is irreducible under the action of the algebra 2B(o0, 00). Clearly |0) is
a lowest weight vector of V(p) with weight (..., =%, =55, £,...) in the basis
{...,€0,€_1;€1,6,...}.

The basis vectors of V(p) will consist of infinite GZ-patterns. Not all possible
infinite GZ-patterns will appear, but only row-stable ones. Such row-stable infinite
GZ-patterns consist of an infinite number of rows, of the type introduced in (28),
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but such that from a certain row index s all rows s, s + 1, s + 2, ... are of the same
form. As an example,

4310000 0
4310000
43100 0
Im)> = 431,00 (40)
33110
321
212
1I

where the row (4, 3, 1, 0, .. .) is repeated up to infinity.
The basis of V(p) is described as follows.

Proposition 1 A basis of V (p) is given by all infinite row-stable GZ-patterns |m)>
of the form (28) with n — 0o where for each |m)* there should exist a row index s
(depending on \m)>°) such that row s is of the form

[m]S=[])l,l)2,...,0;0,07~~']

with v a partition, all rows above s are of the same form (up to extra zeros), and
vy < p. Furthermore all m;; € Z.. and the usual GZ-conditions should be satisfied:

Mgy —m_j 1 =60_3_1€{0,1}, 1<i=<r;

Mo — Mg =00, €{0,1), 1<i=<r;

.m0 = #{i LMy > 0,iell,r]}, reZ:;

m_y e 2 #i tmioe >0, 0 €[1,r]}, r e ZE;

S M orq0 — Miep1 € Ly and Mgy — Mig1 2042 € Ly, 1 <0 <3
M qorpl — Mo €Ly andm o —m_ 41 €Ly, 1 <0<

AN B W

The process of adding an infinite number of identical rows (up to additional
zeros) at the top of a finite GZ-pattern can now be formalized by means of a map,
just as we did by adding two identical rows in the previous section. Let |m)?" be
a finite GZ-pattern of type (28) with 2n rows, such that row 2n is of the form
[vi, v2,...30,0,...,0]. Then ¢, o (Im)?") is the infinite GZ-pattern consisting of
the rows of |m)2” to which an infinite number of rows [v;, v5,...;0,0,...,0] are
added at the top (all identical, up to additional zeros). Conversely, if an infinite GZ-
pattern |m) is given, which is stable with respect to row 2s, then one can restrict
the infinite pattern to a finite GZ-pattern, and

Im)* = ¢35, (Im)™).
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Both maps can be extended by linearity. Then one can define the action of cijE on
vectors |m)°°:

Definition 1 Given a vector |m)> of V (p) with stability index 2s, and a generator
cl.i. Let 2n be such that 2n > max{2s, p(i)}. Then

¢ Im)™® = $ono0 (¢ Im)*") , where [m)™ = ¢! (1m)>). (41)

The main theorem, proved in [13] is then

Theorem 1 The vector space V (p), with basis vectors all infinite row-stable GZ-
patterns for which v < p, on which the action of the B(c0, 00) generators cl.jE
(i € Z*)isdefined by (41), is anirreducible unitary Fock representation of B (00, 00).

To conclude, we have managed to give a description of parastatistics Fock spaces
with an infinite number of parafermions and parabosons. Our developments in previ-
ous years had already led to such a description for m parafermions and n parabosons
by means of representations of osp(2m + 1]2n). The GZ basis for these represen-
tations, determined in [12], is however not appropriate for the limit to an infinite
number of parastatistics operators. We therefore constructed a new GZ basis for
B(n, n) = osp(2n + 1|2n) representations. In this new basis, there is a natural limit
for n — oo, and the corresponding infinite row-stable GZ-patterns label the basis
vectors of the corresponding Fock space V (p) of B (oo, 00).

Acknowledgements N. I. Stoilova was supported by the Bulgarian National Science Fund, grant
DN 18/1, and J. Van der Jeugt was partially supported by KP-06-N28/6 and by the EOS Research
Project 30889451.

Appendix

Although a low-rank example is not very instructive for the case n — o0, it is still
useful to the reader to visualize the basic structure of the basis vectors (28) and the
action (31) with matrix elements (33). This is why we include the basis of V (p) for

n=1,ie. forB(n,n). Let
m) = "””'m”)

where
1. mi; € Z+, mi, < p;
2.mip, €{0,1,2,---}Yif mp=0; mj, €{1,2,---}if mp #0;. 42)

3. mij; € {miz,miz — 1}.

The action of the Cartan algebra elements is:
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hilm) = (=2 +mi, ) Im).

b

> +mi, +mp — mh) |m). 43)

m) = (

The action of the parastatistics creation operators reads

lmpme L my, + 1imo
+ [ M2 imi _ mi +mi G+(m- mi, + Limyy
ci =1 = L 1 1(myy, my2) B |
mi , mi, +mipy + 1 mi, !
1 miymp + 1
— | —————— G (my,, m 1217012 ),
mip +mpp + 1 1(mi, mi2) mi,!
miyim 1 mi, + 1ym
oF 12: 12> = [———————Gi(miy, mp) 2 : 12)
miz, mi, +miz + 1 mp
+ MGl(m- M) miyimy + 1)
mi, +mp+1 122 mizf ’
miy - imi) _ - mi;  mip+1
€ mi — 11 ) = —Gi(miy, mp) BT ) (44)

Herein, G; and G are shorthand notations for the reduced matrix elements in (31):
Gi(miy, mia) = (miy + 1, mp||c*||miy, mi2) and Gy (miy, miz) = (miy, mia + 1
llct [Imi,, mi2), explicitly given by

_ _ 1 o
Gi(miy, my2) :\/m]Z(m12+m12+ Ko mlz)’ if my,is even,

mip +mi

Gi(miy, mp) = /mij,(p —mi,), if myyis odd,
Gi(miy, mp) = /mij, +mpp+1, if myyis even,

1 1
Grimpy, myp) = (L2t D@ Fmat D e e odd. (45)
mi, +mp2
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Recent Progress on Yang-Baxter )
Deformation and Generalized e
Supergravity

Kentaroh Yoshida

Abstract In recent years, great progress has been made on a systematic method to
perform an integrable deformation of a two-dimensional relativistic non-linear sigma
model. The deformations are labeled by classical r-matrices satisfying the classical
Yang-Baxter equation, and this method is called the Yang-Baxter deformation. It was
generalized to type IIB superstring theory defined on the AdSs x S° background and
gave rise to a lot of integrable backgrounds including well-known backgrounds such
as the Lunin-Maldacena background, a gravity dual for a non-commutative gauge
theory, and a Schrodinger spacetime. In addition, the study of Yang-Baxter deforma-
tion led to the discovery of a generalized type IIB supergravity. In this proceeding,
I will give a short summary of the recent progress on the Yang-Baxter deformation
and the generalized supergravity.

1 Introduction

A conjectured duality between a string theory on a (d + 1)-dimensional anti de Sitter
(AdS) space and a conformal field theory (CFT) in d dimensions, which is called the
AdS/CFT correspondence (or simply AdS/CFT) [1], is one of the fascinating topics
in String Theory. A typical example of this correspondence is a duality between type
IIB string theory defined on AdSs x S° and the four-dimensional N' =4 SU(N)
super Yang-Mills (SYM) theory in the large N limit.

One of the great achievements is the discovery of the integrable structure that
exists behind AdS/CFT (For a comprehensive review, see [2]). As a tip of the iceberg
of this integrable structure, type IIB superstring theory on AdSs x S° [3], which is
often abbreviated as the AdSs x S3 superstring, is classically integrable [4]. In the
following, we will be concerned with this classical integrability.
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An intriguing direction is to study an integrable deformation of the AdSs x S°
superstring. There are some possible ways in the context of integrable models, hence
by employing one of them, one can perform an integrable deformation of the system
as a two-dimensional (2D) non-linear sigma model. Accordingly, the target-space
geometry is also deformed. The resulting background can be seen as a deformed
AdSs x S’ geometry. Then, one may ask the following question:

Does the deformation give a solution to type IIB supergravity or not?

If not, is the deformed background a solution to some new theory?

The main issue of this proceeding is to answer these questions for a specific class of
integrable deformation called the Yang-Baxter deformation [5, 6].

2 Yang-Baxter Deformation

The Yang-Baxter (YB) deformation is a systematic method to perform an integrable
deformation of 2D non-linear sigma model. It was originally invented by Klimcik
for 2D principal chiral model [5, 6]. Then it was generalized to the symmetric coset
case [7, 8] and further to the AdSs x S° superstring [9-11].

We will first introduce the YB deformation of 2D principal chiral model. Then
we present YB deformation of the AdSs x S’ superstring and explain the scheme of
the supercoset construction. Finally, some examples of classical »-matrices and the
associated deformed backgrounds are presented.

2.1 YB Deformation of 2D Principal Chiral Model

We consider a 2D non-linear sigma model whose target space is a Lie group G,
which is called 2D G-principal chiral model (PCM).
The classical action is given by

S = fdzx e (J,0y) . (1)

Here n,,, = diag(—1, +1) is 2D Minkowski metric and J,, is the left-invariant one-
form defined as

J,U. = gilaug , 2)

where g is a group element of G. It is well-known that 2D PCM is classically
integrable in the sense of kinematical integrability.
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Next, let us consider YB deformation of the action (1) by following [5, 6, 8]. The
deformed action is given by

1
s — /dzx e (JM - J.,) ) 3)

The deformation is characterized by the insertion of the factor 1/(1 — nR). Here n
is a constant parameter which measures the deformation. When n = 0, the original
action of 2D PCM (1) is reproduced. Then R is a linear map from g to g (where g is
the Lie algebra associated with G) and satisfies the (modified) classical Yang-Baxter
equation ((m)CYBE),

[R(X), R(Y)] = R(IR(X), Y]+ [X, R(Y)]) = =c’[X, Y]. “4)

Here c is a constant parameter. The right-hand side of (4) is a modification to the
homogeneous CYBE (i.e., the case with ¢ = 0).

In summary, an integrable deformation is specified by a linear R-operator satis-
fying the (m)CYBE. Hence this deformation is called the YB deformation.

R-operator and Classical r-matrix

It is useful to see the relation between the linear R-operator and a classical r-matrix
in the tensorial notation, » € g ® g. Given a non-degenerate inner product ( , ) for
the Lie algebra generators, one can see the one-to-one correspondence between a
linear R-operator and a skew-symmetric r-matrix by taking the inner product on the
second site of the tensor product like

ROX) = (i 18 X) = ) (b, X) —bilai, X)) for Xeg. ()

1

where the skew-symmetric r-matrix is expressed as

rp=) (ai®b —b®a;) with a, b €g. (6)

Thus YB deformation may also be labeled by a skew-symmetric classical r-matrix
in the tensorial notation, in which the physical meaning of the Lie algebra generators
is clear and often useful.

Example: G=SU(2) case

Let us see an example of linear R-operator and the associated geometry.
The simplest case is G = SU (2) . The Lie algebra su(2) is given by

[T3, T% = £27*, [TH, T 1=T3, (7)
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where the generators are represented by the following matrices:

T+=<8 é) T—=((1) 8), T3=<(1) _01). (8)

In the SU (2) case, the unique (non-trivial) solution to mCYBE is given by a classical
r-matrix of Drinfeld-Jimbo (DJ) type [12, 13],

my=—i[TTQT -T~®T"]. 9)
Then, the relation (5) leads to the associated linear R-operator,
R(TYH=—iTY, RT)=+iT", R(T*=0. (10)
Finally, by using the R-operator (10), the resulting action is given by

1
1492

2
/dzx yP [Tr(JaJﬁ) + %Tr(T3Ja)Tr(T3J,3)] : (11

Just a single piece has been added and this describes a deformation from the round
S to a squashed S3.

Derivation of (11)

It would be instructive to see the derivation of (11). In addition to J , let us introduce
a new quantity, projected current A defined as

1

J=gldg, A= 1_77RJ (12)
Both J and A take values in the Lie algebra su(2) and can be expanded as
J=J"T "+ I T+ 7T, (13)
A=ATT 4+ AT+ AT, (14)
By multiplying 1 — nR to A and using (14) and (10), J can be expressed as
J=(0-3nR)A
= (1 —inATT + (A +inA T+ AT, (15)
Then, by comparing (15) with (13), the following relations are obtained,
At Al A” = I ., AP=J0. (16)

=1—i77’ 1 +in
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As aresult, A is expressed in terms of J and 7.
Finally, by putting (16) into (3), the action is evaluated as

2 2 ap [ g+ - 2\ 13 13
S=1+n2/dxy V07 + A+ 0203
- /dzx v | Tr(J, J)+n—2Tr(T3J)Tr(T3J)
1+ 72 «BIT « A
This is nothing but (11).

It should be remarked that this is the simplest example but the essence in com-
putation is common even for higher dimensional and supersymmetric cases, though
the computation becomes messy and intricate technically.

Coset Construction of Metric

The deformed action (11) is written in terms of group element. Hence the target-space
metric is not manifest. To see the metric explicitly, let us introduce a parametrization
of group element g like

0
g =exp [—i (@) T1:| - exp |:i (%) Tz] - exp |:i (@) T3] .17

Here ¢ (x), 6(x) and ¥ (x) are the angle variables for S*.
Now J is expressed in terms of the angle variables. By expanding J like

J=g ldg=J'T\+ J’T» + J°T;,
the target-space metric is given by
ds* = —=[(JD* + (ID? + A+ 1))
1 2 2 2 2 . 2
4[d9 +cos’ 0 d¢” + (1 +n°)(dy +sinbdg)” | . (18)

This is the metric of squashed S*. When 5 = 0, it is reduced to the metric of the
round S?. This metric describes S as a U (1)-fibration over S2. In this metric, the
left SU(2) symmetry is manifest as expected from the construction based on the
left-invariant one-form J .

2.2 YB Deformation of the AdSs x S° Superstring

Let us introduce YB deformation of the AdSs x S3 superstring [9-11]. To be ped-
agogical, we start from the explanation about the classical integrability of the
AdSs x S’ superstring [4]. Then we introduce YB deformed action and outline the
supercoset construction. Finally, some examples are presented.
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Classical Integrability of the AdSs xS® Superstring

The classical action of the AdSs x S superstring is constructed based on the follow-
ing supercoset [3]:

PSU(2,2|4) (19)
SO(1,4) x SO(5)
The bosonic part of this coset describes the AdSs x S° geometry,
S02,4 So(6
2.9) ()=Ad85x55. (20)

X
SO(5) SO(5)

The fermionic part of (19) corresponds to the spacetime fermions, whose dynamics
is described in the Green-Schwarz (GS) formulation of superstring [3].

The bosonic part is nothing but a symmetric coset, hence the classical integrability
of the system is ensured automatically. This symmetric coset structure is equivalent
to the Z,-grading property. Remarkably, the supercoset (19) exhibits the Z,-grading
as a supersymmetric generalization of the symmetric coset. This grading property
ensures the classical integrability for the supersymmetric case, as elucidated by Bena,
Polchinski and Roiban [4].

YB Deformed Action and Supercoset Construction

The YB deformation can also be applied to the AdSs x S° superstring [9-11]. The
deformed action is given by

l o) 2T b 1
S = —-/ dr/ do PStr |:Jado—(J )} . 1)
N I —n[Rl,od "

When n = 0, the original Metsaev-Tseytlin action [3] is reproduced. For the detail
of this action, see [9-11].

Since the deformed action (21) is written in terms of the group element, the target-
space geometry is not clear. In addition, since the spacetime fermions are included,
the dilaton and Ramond-Ramond (R-R) field strengths also appear as well as the met-
ric and the Neveu-Schwarz—Neveu-Schwarz (NS-NS) two-form. In order to see the
deformed background explicitly, one needs to perform supercoset construction by tak-
ing a parametrization of the group element [ 14—16]. Then, by expanding the action in
terms of the spacetime fermion 6 , the second-order action can be compared with the
following canonical form of the GS superstring on an arbitrary background [17],

A 00 2w
“T’/ dt/ do [y Gund. X3 X" — €’ Byynd, X" 3, X"]
—00 0

S=—

e . -
- “/2_ i0(y?s" —eal’yem I, DI Ok +OBY). (22)
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This expression contains the metric G sy and the NS—NS two-form B,y manifestly.
The covariant derivative D for the spacetime fermion 6 is

1 1
Dl =s" <aa - ng’"rmn> + ga;fe;"Hm,,pF"/’

6IJ I—qurst F

1 (] 1J 1 1J
X [ PPFy+ 3o T Foar % 575, ’

m
qrst] €, Fm

and it contains the dilaton @ , and the R-R-field strengths F, , F,, and Fp,s . Thus,
one can read off all of the (bosonic) components of type IIB supergravity from (22).

Here we should go back to the original questions made in Introduction. In prin-
ciple, a new deformed background can be obtained by performing the supercoset
construction with a classical r-matrix. Then the question can be rephrased as fol-
lows:

Are the resulting backgrounds solutions of type IIB supergravity?

The answer depends on classical r-matrices utilized as the initial input. Now we
know the significant condition for this issue, which is called the unimodularity
condition [18].

The unimodularity condition [18] is given by

rilbi,b;1=0 (r=r"b;Abjcg®g). (23)

When the classical r-matrix satisfies this condition, the resulting background is a
solution to type IIB supergravity. If not, the background does not satisfy the on-shell
condition of the supergravity and becomes a solution to a generalized supergravity.
In the next section, we will explain what the generalized supergravity is. Before
concluding this section, we will present some unimodular examples, which are well-
known examples in different contexts (For short reviews, see [19, 20]).

Unimodular Examples
(1) Gamma-deformation of S°

A simple unimodular r-matrix is given by [21]

1
r=g(mhlAh2+u1h2/\h3+ﬂzh3Ah1), (24)

where h; (i = 1,2,3) are the Cartan generators of su(4) and u; (i =1, 2, 3) are
constant parameters.
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Then, the supercoset construction [16] leads to the following background:

3 3
ds® = dspys, + »_(dp} + Gpide}) + n*Gpip3p3 (Z Wi dzbi) :

i=1
By =0 G (3 pips dgy Ades + i p3p3 dds Ades + o p3pt des Adey)

1
F5=4[a)Adss+Gwss], @:EIOgG,

3
F3 = —4nsin® « cosa sinf cosd (Z Wi d¢i> Nda Ndb . 25)
i=1

Here the scalar function G is given by

3
G =140+ w3pips + uipios + w3mipt). Y =1,  (26)

where p;’s are parametrized as
pr=sinacosf, py=sinasinf, p3=cosa. 27

This is the gamma-deformation of Sd presented in [22, 23]. Indeed, the classical
r-matrix corresponds to three TsT transformations.

(2) Gravity dual for non-commutative gauge theory

Next, let us consider the following classical r-matrix [24],

1

r=5P2APs (28)

Here the generators are represented by

Pu = ZVu —Mys, mys = —[yu, 51, (29)

N —
N

where y,,’s are matrices of su(2,2).
Then the supercoset construction [16] gives rise to the background:

2_l_ 2 2 dz? 2
ds —Zz( dx0+dx)+ (dx2+dx3)+ —l—d.Q ,

B, = 7 dx? A dx? 45—110 (L>
2_Z4+772 ’ =5 1) A1)

4
Fy=22dx" ndx' ndz,  Fs =4[ ons + o] (30)
Z
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This is nothing but a gravity dual of a noncommutative gauge theory' constructed in
[26, 27]. The classical r-matrix (28) also correspond to a TsT transformation.

(3) Schrodinger spacetime

The last one is composed of the generators of both su(2, 2) and su(4) [28]:

r=—§p7A<h4+h5+h6>, G1)

where the above generators have already appeared.
By the supercoset construction [16], the resulting background is given by

—2dxTdx~ + (dx")? + (dx?)? +d? dxt)?
dS2: )C )C +( XZ) +( X) +d _772( x4) +dS§5
Z Z

B, = %dx*’ Adx +w), @ =const.,
z

Fs = 4[e*waus; + s3] (32)
where the S°-coordinates are taken as

dsgs = (dx + w)* +dsgp . (33)
dsépz =dp® +sin’ p (2‘12 + X7 +cos® u 232) . (34)

This is the 5D Schrodinger spacetime embedded in type IIB supergravity [29-31].
The classical »-matrix (31) corresponds to a null Melvin twist.

In fact, the three examples presented so far belong to the class of abelian classical
r-matrix. All of the Yang-Baxter deformations in this class can be expressed as TsT
transformations [32]. For more general cases, see [33].

3 Generalized Supergravity

In this section, let us introduce an extension of the type IIB supergravity, called the
generalized supergravity. The bosonic part was discovered originally by Arutunov,
Frolov, Hoare, Roiban and Tseytlin [34] in the study of YB-deformation of the
AdSs x S superstring. After that, Tseytlin and Wulff succeeded in reproducing the
generalized supergravity including the fermionic sector (dilatino and gravitino) by
solving the kappa-symmetry constraints of the GS formulation of type IIB superstring
on an arbitrary background [35].

The equations of motion in (the bosonic sector of) the generalized supergravity
are given by

I'This means a gauge theory defined on a noncommutative spacetime [25].
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1

Ryn — ZHMKLHNKL —Tyy +DyXny+ DyXy =0, (35)

1 1 1

EDKHKMN + EFKFKMN + EFMNKLPFKLP (36)
= X®Hgyn + DyuXy — DyXu (37)

1
R — EH2 +4Dy XM —4x, XM =0, (38)
1
DMFy — ZMFy — 6HMNKJ-‘MNK =0, IMFy,=0, (39)

1
DX Fxmun — Z5 Fxmn — EHKPQ]:KPQMN —UANF)un =0, (40)
D¥ Fxunro — Z5 Fxmunro

+%€MNPQRSTUVWHRST}-UVW — (U NF)unpo =0. (41)

The energy-momentum tensor T,y in (35) is given by

PORS

Tyy = ~ FauFy +  Fuxr Py +
MN—2MN 4.MI(LN 4 % 4!

1 1
—ZGMN(foK + gprRfPQR) ) (42)

FuporsFn

The modified parts are three vector fields Xy, , Iy and Zy, . But Xy = Iy + Zy .
So two of them, say I, and Z,, are independent fields. Note that Z,, was originally
the derivative of dilaton but now has undergone some modification.

Now the Bianchi identities are also modified as

dF1 —ZANF)un — " Funk =0,
dF3—ZANF3+Hy AF)unro — I Funroxk =0, (43)

1 T CUVW
dFs —ZANFs+ H3s ANF3)unpors + EEMNPQRSTUVWI F =0.

Furthermore, we need to explain more constraints,

DylIy + Dyly =0, (44)
DyZy — DyZy + IXHgyn =0, (45)
MZy=0. (46)

In particular, the first condition (44) is nothing but the Killing condition for /.
Namely, I should be taken as a Killing vector. This condition may sound a bit
stronger but this condition is necessary in solving the kappa-symmetry constraints
[35]. Furthermore, this Killing condition is necessary to consider the embedding of
the generalized supergravity into the Double Field Theory [36-38].
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The Lie derivative of NS-NS two form along the Killing direction
(LiB)yn = I1¥0x Byn + BxnouI® — ByonI®

should vanish. Then, by solving the second condition (45), one can obtain the fol-
lowing expression:
Zy = du® — BynI" .

From this expression, one can understand that Z,; is a modification of the dilaton
derivative with non-vanishing / and that Z is not independent of /. In this sense,
only the Killing vector I characterizes the generalized supergravity. When I = 0,
the original type IIB supergravity is reproduced.

Non-unimodular Example

As denoted previously, a non-unimodular classical r-matrix leads to a solution to the
generalized supergravity with I # 0.
Let consider here the following non-unimodular example [39, 40]:

r = EuA(1En —cEy)

) .
= (po— p3) A |:611 (Eys - noz) —a (Vllz - %h)} , 47

where this is a two-parameter family and the deformation parameters (cy, c;) are
related (a;, ay) each other through the relation

a = % =Re(c)), a= % = Im(cy). (48)

Then, by performing the supercoset construction [ 16], one can obtain the following
background:

2dxtdx— +d 2 2d 2 d 2
ds* = xodx + ,02 +p7dg” +dz +ds§5
Z

2 2 2/’2 “% 2
—4n (al+az)z—6+z—4 (dx™)?,

alxl + arx 1x2—a2x1

2
B> =8n[ T dx+/\dxl+a o dxt A dx?

z
Loy
+a1—zdx Adz |,
e

2 1 2
aix’ +axx
dxt ndx' Adz + ¥dx+/\dx2/\dz

F3
z bl

1
ax' —aix
8n [75

a
+Tl‘dx+ Adx! /\dxz] s
z

Fs5 = undeformed, @ = const. 49)
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This background is not a solution to type IIB supergravity. It is easy to check this
statement by taking an exterior derivative of F3,

_ ar o+ 1 2
dF; =16n —<dx™ Adx Ndx" ANdz #0. (50)
4

This does not vanish and the equation of motion for B is also not satisfied.
However, by taking the extra vector field I as

2na,
Z

]: dx+, ZZO,

the background (49) becomes a solution to the generalized supergravity [16]. For
other non-unimodular solutions, for example, see [41, 42].

Hoare-Tseytlin Conjecture

What of the generalized supergravity is so interesting? In the long history that String
Theory has been studied, a number of so-called “pathological backgrounds,” which
are not solutions to supergravities, have been discovered. For example, it is well-
known that non-abelian T-dualities generate such pathological backgrounds. It may
be a good idea to check whether these backgrounds may be solutions to the general-
ized supergravity.

In fact, Hoare and Tseytlin advocated a interesting conjecture, the homogeneous
YB deformations are equivalent to (a certain class of) non-abelian T-dualities [43].
Then this conjecture was proven by Borsato and Wulff [44]. The YB deformed
backgrounds are solutions to the generalized supergravity, hence the accompanying
non-abelian T-dualized backgrounds are also solutions as well.

Non-YB Solution

As we have seen so far, the YB deformation can be regarded as a solution generation
technique in the generalized supergravity. However, as a matter of course, it does not
give all of the solutions. That is, there exist a number of solutions which cannot be
obtained as YB deformations.

Such an example is the Gasperini-Ricci-Veneziano background [45]:

(t* +y?) dx* = 2x ydxdy + (t* + x*) dy* 4 1*dz*

2 _ 2 2
ds® = —dt” + 20 a1 D) +dsze ,
(xdx +ydy)Andz 1 1
B, = , P=-In|5—F—F5——|. 51
2 4 x2 42 5 2%+ x2 + y2) Gh

This is not a solution of the usual supergravity. However, by taking the vector field
I like
I"=-2,
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the background (51) becomes a solution to the generalized supergravity [46]. Note
here that this background can be obtained through a non-abelian T-duality, but can-
not be expressed as a YB deformation. Hence this background is not included in
the Hoare-Tseytlin conjecture. The background (51) is just an example, but further
confirmation was made in [47], in which a number of similar solutions were listed.

4 Other Topics

Due to the page limit, a number of other issues could not be covered here. The list
of them includes

e Open string picture, non-commutativity and Killing spinor formula [24, 48-56].

e Embedding of the generalized supergravity into Double Field Theory and the DFT
perspective [36-38, 57-59].

e Non-geometric backgrounds obtained as YB deformations [46].

e Arguments on Weyl invariance of string theory on a generalized supergravity
background [38, 60].

e Relation between Costello-Yamazaki [61] and YB deformation [62].

and more. I apologize for not being able to make a complete list, and hope that I have
the opportunity to write a more comprehensive review.
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Gauge Theories on Fuzzy Spaces m
and Gravity e

G. Manolakos, P. Manousselis, and G. Zoupanos

Abstract We start by briefly reviewing the description of gravity theories as gauge
theories in four dimensions. More specifically we recall the procedure leading to the
results of General Relativity and Weyl Gravity in a gauge-theoretic manner. Then,
after a brief reminder of the formulation of gauge theories on noncommutative spaces,
we review our recent work, where gravity is constructed as a gauge theory on the
fuzzy dSs.

1 Introduction

One of the main research areas addressing the problem of the lack of knowledge of
the spacetime quantum structure is based on the idea that at extremely small distances
(Planck length) the coordinates exhibit a noncommutative structure. Then it is natural
to wonder which are the implications for gravity of such an idea. On the other hand
at more ordinary (say LHC) distances the Strong, Weak and Electromagnetic inter-
actions are successfully formulated using gauge theories, while at much smaller dis-
tances the Grand Unified Gauge Theories provide a very attractive unification scheme
of the three interactions. The gravitational interaction is not part of this picture, admit-
ting a geometric formulation, the Theory of Relativity. However there exists a gauge-
theoretic approach to gravity besides the geometric one [1-12]. This approach started
with the pioneer work of Utiyama [1] and was refined by other authors [2—-12] as
a gauge theory of the de Sitter SO (1, 4) group, spontaneously broken by a scalar
field to the Lorentz SO (1, 3) group. Similarly using the gauge-theoretic approach the
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Weyl gravity has been constructed as a gauge theory of the 4-d conformal group [7,
8]. Returning to the noncommutative framework and taking into account the gauge-
theoretic description of gravity, the well-established formulation of gauge theories
on noncommutative spaces leads to the construction of models of noncommutative
gravity [13-21]. In these treatments the authors use the constant noncommutativity
(Moyal-Weyl), the formulation of the x-product and the Seiberg-Witten map [22]. In
addition to these treatments noncommutative gravitational models can be constructed
using the noncommutative realization of matrix geometries [23-35], while it should
also be noted that there exist alternative approaches [36—38] (see also [39]), which will
not be considered here. It should also be noted that the formulation of noncommutative
gravity implies, in general, noncommutative deformations which break the Lorentz
invariance. However, “covariant noncommutative spaces” have been constructed too
[41, 42] which preserve the Lorentz invariance. Consequently noncommutative defor-
mations of field theories have been constructed [43-52] (see also [53—-57]. The main
point of this article is to present the various features of a 4-d gravity that we have
constructed recently [50] as a gauge theory on a fuzzy dS4. Motivated by Heckman-
Verlinde [42], who were based on Yang’s early work [41], we have considered a 4-
d covariant fuzzy d S space which preserves Lorentz invariance. The requirement of
covariance led us to an enlargement of the isometries of the fuzzy dSs, specifically
from SO(1, 4) to SO(1, 5). Then the construction of a gauge theory on this noncom-
mutative space by gauging a subgroup of the full isometry, led us to an enlargement of
the gauge group and in fixing its representation. In addition the covariance of the field
strength tensor required the inclusion of a 2-form gauge field. Eventually we have pro-
posed an action of Yang-Mills type, including the kinetic term of the 2-form.

2 Gravity as a Gauge Theory

In this section we recall the interpretation of the four-dimensional Einstein and Weyl
gravities as gauge theories in order to be used later in the framework of noncommu-
tative fuzzy spaces.

2.1 4-D Einstein’s Gravity as a Gauge Theory

Gravitational interaction in four dimensions is described by General Relativity, a solid
and successful theory which has been well-tested over decades since its early days. Itis
formulated geometrically in contrast to the rest of the interactions, which are described
as gauge theories. Targeting to a unified description of gravity with the other interac-
tions, a gauge-theoretic approach to gravity has been developed [1-6]. Lets us recall
the main features of this approach to describe the 4-d Einstein’s gravity. To achieve a
gauge-theoretic approach of 4-d gravity, as a first step the vierbein formulation of Gen-
eral Relativity has to be employed. Then depending on the presence and sign of the
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cosmological constant gauge theories have been constructed on the Minkowski M*,
de Sitter d S4 and anti-de-Sitter Ad S, spacetimes based on the gauge groups Poincare,
de Sitter and Anti-de Sitter, respectively. The choice of these groups as the symmetry
gauge groups being that they are the isometry groups of the corresponding spacetimes.
Let us start with the case in which there is no cosmological constant included, i.e., the
case of the Poincaré group. In this case the generators of the corresponding algebra
satisfy the following commutation relations:

[Maba Mcd] = 477[a[chJb]7 [Paa Mbc] = 2nﬂ[bPCJ7 [Paa Pb] = Ov (1)

where 1., = diag(—1, 1, 1, 1) is the metric tensor of the 4-d Minkowski spacetime,
M,,;, are the generators of the Lorentz group (the Lorentz transformations) and P, are
the generators of the local translations. Then according to the standard gauging pro-
cedure, the gauge potential, A, is introduced and it is expressed as a decomposition
on the generators of the Poincare algebra, as follows:

1
Au(x) = e, " (x) Py + Ew/ﬂ"(x)Mab. (2)

The functions attached to the generators are the gauge fields of the theory and, in this
case, they are identified as the vierbein, e,“, and the spin connection, w,ﬂb , which
correspond to the translations, P,, and the Lorentz generators, M,,;, respectively. In
this way, i.e. considering the vierbein as gauge field, it is achieved a mixing among the
internal and spacetime symmetries and that is what makes this kind of construction
special, as compared to the gauge theories describing other interactions. The gauge
connection A, transforms according to the following rule:

8A, =0, + Ay, €l, 3)

where € = €(x) is the gauge transformation parameter which is also expanded on
the generators of the algebra:

€(x) = E“(x)P, + %A“%x)Mab. 4

Combining Egs. (2) and (4) with (3) result to the following expressions of the trans-
formations of the gauge fields:

e, = 3,E" + w, 8, — 1 pe,’, (5)
8w, = 8,24 — 2219 ., P (6)

According to the standard procedure followed in gauge theories, the corresponding
field strength tensor of the gauge theory is defined as:

R/LU(A) = 28[[4AU] + [A;u Av] (7)
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and since it is valued in the algebra of generators is also expanded on them as:
a 1 ab
R;w(A) = R/w (e) P, + ERMV (w)M,p, (8)

where R, and R,,,%® are the curvatures associated to the component gauge fields,
identified as the torsion and curvature, respectively. Replacing Eqs. (2) and (8) in the
(7) results to the following explicit expressions:

R;wa (e) = Za[uev]u - 2w[/tabev]b’ 9
R™ (w) = 20[,0," — 201, @, (10)

Concerning the dynamics of the theory, the obvious choice is an action of Yang-
Mills type, invariant under the gauge Poincaré group ISO(1,3). However, the aim is
to result with the Einstein-Hilbert action, which is Lorentz invariant and, therefore,
the gauge Poincaré group ISO(1,3) of the initial action has to be broken to the
gauge Lorentz group SO(1,3). This can be achieved by gauging the SO(1,4) group,
instead of the Poincaré group ISO(1,3), and employing its spontaneous symmetry
breaking, induced by a scalar field that belongs to its fundamental representation
[3, 5]. The choice of the 4-d de Sitter group is an alternative and preferred choice
to that of the Poincare group, since all generators of the algebra can be considered
on equal footing. The spontaneous symmetry breaking leads to the breaking of the
translational generators, resulting to a constrained theory with vanishing torsion
involving the Ricci scalar (and a topological Gauss-Bonnet term), respecting only
the Lorentz symmetry, that is the Einstein-Hilbert action!

Concluding, Einstein’s four-dimensional gravity can be formulated as a gauge
theory of the Poincare group, as far as the kinematic part is concerned, i.e. the
transformation of the fields and the expressions of the curvature tensors. Going to
the dynamics though, instead of the Poincare group, it is the de Sitter symmetry which
the initial Yang-Mills action has to respect. In turn, the inclusion of a scalar field and
the addition of an appropriate kinetic term in the Lagrangian leads to a spontaneous
symmetry breaking to the Lorentz gauge symmetry, i.e. to the Einstein-Hilbert action.

An alternative way to obtain an action with Lorentz symmetry, is to impose that the
action is invariant only under the Lorentz symmetry and not under the total Poincare
symmetry with which one starts. This means that the curvature tensor related to the
translations has to vanish. In other words the torsionless condition is imposed in
this way as a constraint that is necessary in order to result with an action respecting
only the Lorentz symmetry. Solution of this constraint leads to a relation of the spin
connection with the vielbein:

1 va 1 V. a a
o= 3¢ (el — Bve/f)ze P(0ue," — dye,)

11

1
- ze"“e"h(apew — Baepc)elf.
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However, straightforward consideration of an action of Yang-Mills type with
Lorentz symmetry, would lead to an action involving the R(M)? term, which is
not the correct one, since the aim is to obtain the Einstein-Hilbert action. Also,
such an action would imply the wrong dimensionality (zero) of the coupling con-
stant of gravity. In order to result with the Einstein-Hilbert action, which includes
a dimensionful coupling constant, the action has to be considered in an alternative,
non-straightforward way, that is the construction of Lorentz invariants out of the
quantities (curvature tensor) of the theory. The one that is built by certain contrac-
tions of the curvature tensor is the correct one, ensuring the correct dimensionality
of the coupling constant, and is identified as the Ricci scalar and the corresponding
action is eventually the Einstein-Hilbert action.

2.2 4-D Weyl Gravity as a Gauge Theory

Besides Einstein’s gravity, also Weyl’s gravity has been successfully described as a
gauge theory of the 4-d conformal group, SO(2,4). In this case, too, the transformations
of the fields and the expressions of the curvature tensors are determined in a straight-
forward way. The initial action that is considered is an SO(2,4) gauge invariant action
of Yang-Mills type which is broken by imposition of specific conditions (constraints)
on the curvature tensors. After taking into account the constraints, the resulting action
of the theory is the scale invariant Weyl action [7-9] (see also [10, 11]).

The generators of the conformal algebra of SO(2,4) are the local translations (P,),
the Lorentz transformations (M, ), the conformal boosts (K, ) and the dilatations (D).
Their algebra is determined by their commutation relations:

[Map, M) = AMY55) [Mup, P = 2Padpie,  [Map, Kel = 2K 283

(12)
[Pe, D1 = Py, [Kq, D1 = —Kq, [Pa, Kpl =2(8apD — Map),

where a, b, ¢, d = 1...4. Then, according to the gauging procedure, the gauge poten-

tial, A, of the theory is in turn determined and is given as an expansion on the

generators of the gauge group, i.e.:

1
{Pi+ 0" May + by D + f,'Kq, (13)

Ap=e, 7%

where a gauge field has been associated with each generator. In this case, too, the
vierbein and the spin connection are identified as gauge fields of the theory. The

transformation rule of the gauge potential, (13), is given by:

0¢A, = Dye =0, +[A, €], (14)
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where € is a gauge transformation parameter valued in the Lie algebra of the SO(2,4)
group and therefore it can be written as:

1
€ :eﬁPa+§eM“bMab+eDD+e,§’Ka. (15)

Combining the Egs. (14), (13) and (15) result to the following expressions of the
transformations of the gauge fields of the theory:

a a : ab - ab a a
Se, = Ouep +2ieu€y —iw, €pp —byeg + [ €p,

n
a l a . a l ac . a
Ba)ubzzaueMb+4zeue,f’+Zwu eMbC+sz €L, (16)
(Sbﬂ = BMGD — 6;61(,1 + f’uaEPa,
8, = 0ueg +4ielep —iwPexy, — Aibuef +ifleN,.
Accordingly the field strength tensor is defined by the relation:
R,y =201, A0 —i[Ay, Ayl 17
and is expanded on the generators as:
p a 1 a a
Ry =R,\P, + EwaMub + Ry + R, 0K, (18)

Then combining the Eq. (17) and (18) result in the following expressions of the
component curvature tensors:

R, “(P) = 20ye,/' + £, bu + €L, Bpe,

R, (M) = 00, + oy 0,8 + ele) + f fy"
Ruv(D) = 201uby) + f;, €, Sab,
R,(K) =20, f,," + e, bu) + [,/ 0, .

19)

Concerning the action, it is taken to be a gauge SO(2,4) invariant of Yang-Mills type.
Then the initial SO(2,4) gauge symmetry can be broken by the imposition of certain
constraints [7-9], namely the torsionless condition, R(P) = 0 and an additional
constraint on R(M). The two constraints admit an algebraic solution leading to
expressions of the fields a)ﬂab and f,“ in terms of the independent fields ¢, and
b, In addition, b,, can be gauged fixed to b,, = 0 and, imposing all the constraints in
the initial action lead to the well-known Weyl action, which is diffeomorphism and
scale invariant.

Besides the above breaking of the conformal symmetry which led to the Weyl
action, another breaking pattern via constraints has been suggested [51], leading to
an action with Lorentz symmetry, i.e. explicitly the Einstein-Hilbert action. From
our perspective, the latter can be achieved through an alternative symmetry breaking
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mechanism, specifically with the inclusion of two scalar fields in the fundamental
representation of the conformal group [52]. Then the spontaneous symmetry breaking
could be triggered just as a generalization of the case of the breaking of the 4-d de
Sitter group down to the Lorentz group by the inclusion of a scalar in the fundamental
representation of SO(1,4), as discussed in Sect.2.1. Calculations and details on this
issue will be included in a future work.

Moreover, the argument used in the previous section in the 4-d Poincaré gravity
case as an alternative way to break the initial symmetry to the Lorentz, can be
generalized in the case of conformal gravity too. Since it is desired to result with
the Lorentz symmetry starting from the initial gauge SO(2,4) symmetry, the vacuum
of the theory is considered to be directly SO(4) invariant, which means that every
other tensor, except for the R(M), has to vanish. Setting these tensors to zero will
produce the constraints of the theory leading to expressions that relate the gauge
fields. In particular, in [51], it is argued that if both tensors R(P) and R(K) are
simultaneously set to zero, then from the constraints of the theory it is understood
that the corresponding gauge fields, f, “, e, “ are equal—up to arescaling factor—and
b, =0.

3 Gauge Theories on Noncommutative Spaces

Let us now briefly recall the main concepts of the formulation of gauge theories
on noncommutative spaces, in order to use them later in the construction of the
noncommutative gravity models.

Gauge fields arise in noncommutative geometry and in particular on fuzzy spaces
very naturally; they are linked to the notion of covariant coordinate [58]. Consider a
field ¢ (X,) on a fuzzy space described by the non-commuting coordinates X, and
transforming according to a gauge group G. An infinitesimal gauge transformation
3¢ of the field ¢ with gauge transformation parameter A(X,) is defined by:

5¢(X) = A(X)p(X). (20)

If A(X) is a function of the coordinates, X,, then it is an infinitesimal Abelian
transformation and G = U (1), while if A(X) is valued in the Lie algebra of hermitian
P x P matrices, then the transformation is non-Abelian and the gauge group is
G = U(P). The coordinates are invariant under an infinitesimal transformation of
the gauge group, G, i.e. §X, = 0. In turn the gauge transformation of the product of
a coordinate and the field is not covariant:

§(Xa9) = XaA(X)9, 2L

since, in general, it holds:
XA (X)p # AM(X)X,0. (22)
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Following the ideas of the construction of ordinary gauge theories, where a covariant
derivative is defined, in the noncommutative case, the covariant coordinate, ¢,, is
introduced by its transformation property:

8(9ap) = Aba, (23)

which is satisfied if:

8(¢a) = [A, Pal. (24
Eventually, the covariant coordinate is defined as:

¢a = Xa+ Ag, (25
where A, is identified as the gauge connection of the noncommutative gauge the-
ory. Combining Egs. (24), (25), the gauge transformation of the connection, A, is
obtained:

8A, = —[ X4, Al + [A, Agl. (26)

justifying the interpretation of A, as a gauge field.! Correspondingly the field strength
tensor, F,p, is defined as:

Fab = [Xu’ Ab] - [sz Aa] + [Auv Ab] - Cf,bAc = [d)a’ (bb] - CZbd)L" (27)
which is covariant under a gauge transformation,
§Fap = [A, Fapl. (28)

In the following sections, the above methodology will be applied in the construction
of gravity models as gauge theories on fuzzy spaces.

4 A 4-D Noncommutative Gravity Model

Let us now proceed with the presentation of a 4-d gravity model as a gauge theory
on a fuzzy space. We start with the construction of an appropriate 4-d fuzzy space
and then we build a gravity theory as a gauge theory on this noncommutative space.

4.1 Fuzzy de Sitter Space

Letus construct first the fuzzy 4-d de Sitter space, d S4, which will be used as the back-
ground space on which we will define the gauge theory that we propose to describe
gravity. The continuous d S, is defined as a submanifold of the 5-d Minkowski

IFor more details see [39].
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spacetime and can be viewed as the Lorentzian analogue of the definition of the
four-sphere as an embedding in the 5-d Euclidean space. The defining embedding
equation of d Sy is:

MY xyxy = R?, 29)

M,N =0,...,4 and n™" is the metric tensor of the 5-d Minkowski spacetime,
nMN = diag(—1, +1, 41, 4+1, +1). In order to obtain the fuzzy analogue of this
space, one has to consider its coordinates, X,,, to be operators that do not commute
with each other:

(X, Xu] = i0n, (30)

where the spacetime indicesarem, n = 1, ..., 4. In analogy to the fuzzy sphere case,
where the corresponding coordinates are identified as the rescaled three generators
of SU(2) in a high N-dimensional representation, we expect that the right hand
side in Eq. (30), should be identified with a generator of the underlying algebra,
ensuring covariance, i.€ 6,,, = C,,,/ X, where C,,,, is arescaled Levi-Civita symbol.
Otherwise, if the right hand side in Eq. (30) is a fixed antisymmetric tensor the
Lorentz invariance will be violated. However, in the present fuzzy de Sitter case,
such an identification cannot be achieved, since the algebra is not closing [42].” To
achieve covariance, the suggestion [41, 42] is to use a group with a larger symmetry,
in which we will be able to incorporate all generators and the noncommutativity in
it. The minimal extension of the symmetry leads us to adopt the SO(1, 5) group.
Therefore, a fuzzy d S4 space, with its coordinates being operators represented by N-
dimensional matrices, respecting covariance, too, is obtained after the enlargement
of the symmetry to the SO(1, 5) [50]. To facilitate the construction we make use of
the Euclidean signature, therefore, instead of the SO (1, 5), the resulting symmetry
group is considered to be that of SO (6).

In order to formulate explicitly the above 4-d fuzzy space, let us consider the
SO(6) generators, denoted as J4p = —Jpa, with A, B =1, ..., 6, satisfying the
following commutation relation:

[Jag, Jcpl = i(8acIBp + 8spJac — SpcJap — SapJIBc). (31)

These generators can be written as a decomposition in an SO (4) notation, with the

component generators identified as various operators, including the coordinates, i.e.:
1 ) 1

Jon = ﬁ@mnv Jps = 3 X, e = ﬁpms Js6 = fhv (32)

where m,n = 1, ..., 4. For dimensional reasons, an elementary length, A, has been

introduced in the above identifications, in which the coordinates, momenta and non-

commutativity tensor are denoted as X,,, P, and ,,,, respectively. Then the coor-
dinate and momentum operators satisfy the following commutation relations:

2For more details on this issue, see [54, 55], where the same problem emerges in the construction
of the fuzzy four-sphere.



228 G. Manolakos et al.

2

A
(X, Xo] = i7=Opn, [P, Pal = 4i L0, (33)
(X, Pl = ili8ah, (X, h] =i% P, (34)
[Py, h] =4ilLX,, 35)

while the algebra of spacetime transformations is given by:

[Xpn, Onpl =1h(mpXn — SunXp) (36)

[P, Onpl = 1h(8mp Pu — Smn Pp) 37

[Onns Opgl = iR(EnpOny +81gOmp — 81npOmg — g Onp) (38)
[h, Ol =0. (39)

It is very interesting to note that the above algebra in contrast to the Heisenberg
algebra (see [59]) admits finite-dimensional matrices to represent the operators X,
P,, and ©,,, and therefore the spacetime obtained above is a finite quantum system.
Then clearly the above fuzzy d S, falls into the general class of the fuzzy covariant
spaces [42, 56, 60].

4.2 Gravity as Gauge Theory on the Fuzzy d S4

In the previous section, the fuzzy d S, space was constructed and the appropriate
symmetry group to be used was found to be the SO (6). Following the recipe of the
construction of Einstein gravity as gauge theory in Sect. 2.1, in which the isometry
group (the Poincaré group) was chosen to be gauged, in this case the gauge group
would be given by the isometry group of the fuzzy dS4 space, namely the SO (5),
viewed as a subgroup of the SO (6) group.

However, it is known that in noncommutative gauge theories, the use of the anti-
commutators of the generators of the algebra is inevitable, as we have explained in
detail in our previous works [43, 44] (see also [16]). Specifically, the anticommuta-
tion relations of the generators of the gauge group, SO(5), produce operators that,
in general, do not belong to the algebra. The indicated treatment is to fix the repre-
sentation of the generators and all operators produced by the anticommutators of the
generators to be included into the algebra, identifying them as generators, too. This
procedure led us to an extension of the SO(5) to SO(6) x U(1) (~ U(4)) group
with the generators being represented by 4 x 4 matrices in the spinor representation
of SO(6) (or the fundamental of SU (4)), 4.

In order to obtain the specific expressions of the matrices representing the gen-
erators, the four Euclidean I"-matrices are employed, satisfying the following anti-
commutation relation:

3Most probably the extension of the gauge group from SO (5) to SO (6) is not a coincidence, while
the inclusion of a U (1) is quite intrinsic property of noncommutative theories.



Gauge Theories on Fuzzy Spaces and Gravity 229
{Fa’ Fb} = 238451, (40)

wherea, b =1, ..., 4. Also the I'5 matrix is defined as 5 = I'1 > 131y. Therefore,
the generators of the SO(6)xU(1) gauge group are identified as:

(a) Six generators of the Lorentz transformations: My, = — %[, ] = —4 T,
I; b, ad < b,

(b) four generators of the conformal boosts: K, = %Fa,

(c) four generators of the local translations: P, = —3 1T,

(d) one generator for special conformal transformations: D = —%13 and

e) one U(1) generator: 1.

The I'-matrices are determined as tensor products of the Pauli matrices, specifically:
I'=01®o0, In=01Q®0, I3=0Q®0;3
Ii=0,®1, I5=03®1

Therefore, the generators of the algebra are represented by the following 4 x4 matri-
ces:

i 1
Mij=—§17fi=§“®0k’ (41)
where i, j,k = 1,2, 3 and:
i 1
M4k:—§F4Fk :—503®ak. (42)

Straightforward calculations lead to the following commutation relations, which the
operators satisfy:

(Ka» Kpl = iMup, [Pa, Pl = iMgyp
[Xa, Pl = i8up D, [Xu, D1 =iP,
[Ps, D1 =iK,, [Ka, Pl =1i8upD, [Ks, D]=—iP,
[Ka, Mpe]l = i(BucKp — 8ap Kc) (43)
[Pa, Mpe] = i(8ac Py — Bap Pre)
(Mup, Mgl = i(8ucMpa + SpaMac — SpeMaq — SaaMp,)
[D,M,;,] =0.

Having determined the commutation relations of the generators of the algebra,
the noncommutative gauging procedure can be done in a rather straightforward way.
To start with, the covariant coordinate is defined as:

A

Xn=Xn® 1+ A,(X). (44)
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The coordinate X,, is covariant by construction and this property is expressed as:
8X, = ile, X, (45)

where €(X) is the gauge transformation parameter, which is a function of the coor-
dinates (N x N matrices), X,,, but also is valued in the SO(6) x U (1) algebra.
Therefore, it can be decomposed on the sixteen generators of the algebra:

e=¢e(X)® 1+ E9(X) ® Ky + E(X) ® D+ Aap(X) @ T +E(X) ® P,.

(46)
Taking into account that a gauge transformation acts trivially on the coordinate X,,,
namely 6X,, = 0, the transformation property of the A,, is obtained by combining
the Egs. (44), (45) and (46). According to the corresponding procedure in the com-
mutative case, the A,, transforms in such a way that admits the interpretation of the
connection of the gauge theory. Also similarly to the case of the gauge transformation
parameter, €, the A,,, is a function of the coordinates X,, of the fuzzy space d Sy, but
also takes values in the SO (6) x U (1) algebra, which means that it can be expanded
on its sixteen generators as follows:

An(X) = €,/ (X) ® P+ 0,"(X) @ Zap(X) + b, (X) @ Ko(X)

- (47)
+an(X) ® D + a,(X) ® 1,
where it is clear that the various gauge fields have been corresponded to the generators
of the SO(6) x U(1). The component gauge fields are functions of the coordinates
of the space, X,,, therefore they have the form of N x N matrices, where N is the
dimension of the representation in which the coordinates are accommodated. Thus,
instead of the ordinary product, between the gauge fields and their corresponding
generators, the tensor product is used, since the factors are matrices of different
dimensions, given that the generators are represented by 4 x 4 matrices. Then, each
term in the expression of the gauge connection is a 4N x 4N matrix.
After the introduction of the gauge fields, the covariant coordinate is written as:

Xpn=Xn @14+ X)QPy+0"X)® Zup + b @ Ko+ @ D+a, @ 1.

(48)
Then the next step in the theory that we are developing is to calculate its field strength
tensor. We found that for the fuzzy de Sitter space, the field strength tensor has to be

defined as: -

~ ~ A A
7zmn = [Xn, Xu] — 17@171717 (49)

where (:)mn = Opn @ 1+ B,,,,. The B,,, is a 2-form gauge field, which takes values
in the SO(6)x U(1) algebra. The 15, field was introduced in order to make the field
strength tensor covariant, since in its absence it does not transform covariantly.*

“Details on this generic issue on such spaces are given in Appendix A of the first paper of [50].
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The B,,, field will contribute in the total action of the theory with a kinetic term of
the following form: . .
Sp = Trtr Hypppy ™. (50)

The ﬂmnp field strength tensor transforms covariantly under a gauge transformation,
therefore the above action is gauge invariant.

The field strength tensor of the gauge connection, (49), can be expanded in terms
of the component curvature tensors, since it is valued in the algebra:

Roun(X) = R,,**(X) ® Zup + R,4(X) ® Ps + R,4(X) ® K,

mn

~ ShH

+ Rﬂll‘l(X) ® D + Rmn(X) ® ]1'
All necessary information for the determination of the transformations of the gauge
fields and the expressions of the component curvature tensors is obtained. The explicit
expressions and calculations can be found in the first paper of ref.[50].

4.3 The Action and the Constraints for the Symmetry
Breaking

Concerning the action of the theory, it is natural to consider one of Yang-Mills type’:
S= Trtr{Rmn s R }Emnrs s (52)

where Tr denotes the trace over the coordinates-N x N matrices (it replaces the
integration of the continuous case) and tr denotes the trace over the generators of the
algebra.

However the gauge symmetry of the resulting theory, with which we would like
to end up, is the one described by the Lorentz group, in the Euclidean signature, the
SO (4). In this direction, one could consider directly a constrained theory in which
the only component curvature tensors that would not be imposed to vanish would
be the ones that correspond to the Lorentz and the U (1) generators of the algebra,
achieving a breaking of the initial SO (6) x U (1) symmetry to the SO (4) x U(1).
However, counting the degrees of freedom, adopting the above breaking would lead
to an overconstrained theory. Therefore, it is more efficient to follow a different
procedure and perform the symmetry breaking in a less straightforward way [50].
Accordingly, the first constraint is the torsionless condition:

RS (P) =0, (53)

mn

SA Yang-Mills action trF? defined on the fuzzy dS4 space is gauge invariant, for details see
Appendix A of the first paper of [50].
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which is also imposed in the cases in which the Einstein and conformal gravity
theories are described as gauge theories. The presence of the gauge field b, would
admit an interpretation of a second vielbein of the theory, that would lead to a bimetric
theory, which is not what we are after in the present case. Here it would be preferable
to have the relation e,/ = b,/ in the solution of the constraint. This choice leads also
in expressing of the spin connection »,%® in terms of the rest of the independent
fields, e,¢, a,,, a,. To obtain the explicit expression of the spin connection in terms

m?

of the other fields, the following two identities are employed:

. . 1 . .
57{;‘}1 = EadeGfghd and ;(Sl}};hafgh = Cl[‘fgh]. (54)

Solving the constraint ﬁ(P) = 0, it follows that:

e ey, 0, = i{w,”, e} = —[Dins e, 1= ie,s, dn), (55)
where D,, = X,, + a,, being the covariant coordinate of an Abelian noncommutative
gauge theory. Then the above equation leads to the following two:

el 0 =—~[Dy, el and {0, e} ={ef, dn). (56)

Taking into account also the identities, (54), the above equations lead to the desired
expression for the spin connection in terms of the rest fields:

3 . ~
9 — —ze"},(—eab‘d[Dm, end] + 87 (e, G ). (57

According to [61], the vanishing of the field strength tensor in a gauge theory could
lead to the vanishing of the associated gauge field. However, the vanishing of the
torsion component tensor, ﬁ(P) = 0, does not imply e,f = 0, because such a choice
would lead to degeneracy of the metric tensor of the space [12]. The field that can be
gauge-fixed to zero is the a,,. Then this fixing, a,, = 0, will modify the expression

of the spin connection, (57), leading to a further simplified expression of the spin
connection in terms of the vielbein:

W, = f—le"}',e”de[Dm, endl- (58)
We note that the U (1) field strength tensor, R,,, (1), signaling the noncommutativity
of the space, is not considered to be vanishing. The U (1) remains unbroken in the
resulting theory after the breaking, since we still have a theory on a noncommuta-
tive space. However, the corresponding field, a,,, would vanish if we consider the
commutative limit of the broken theory, in which noncommutativity is lifted and a,,
decouples being super heavy. In this limit, the gauge theory would be just SO (4).
Alternatively, another way to break the S O (6) gauge symmetry to the desired SO (4)
is to induce a spontaneous symmetry breaking by including two scalar fields in the 6
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representation of SO (6) [52], extending the argument developed for the case of the
conformal gravity to the noncommutative framework. It is expected that the sponta-
neous symmetry breaking induced by the scalars would lead to a constrained theory
as the one that was obtained above by the imposition of the constraints (53). After the
symmetry breaking, i.e. including the constraints, the surviving terms of the action

will be: i
S = 2Tr(R ab RrSCdéabcdemnm + 4R, Rrsémn”

mn
1 4 (59
+-H ahHmandeabcd + gHmnp Hmnp)‘

3 mnp

Finally replacing with the explicit expressions of the component tensors and writ-
ing the w gauge field in terms of the surviving gauge fields, (58) and then varying
with respect to the independent gauge fields would lead to the equations of motion.

5 Summary and Conclusions

In the present review we presented a 4-d gravity model as a gauge theory on a fuzzy
version of the 4-d de Sitter space. It should be stressed that the constructed fuzzy d S,
consists a 4-d covariant noncommutative space, respecting Lorentz invariance, which
is of major importance in our case. Next, although we started by gauging the isometry
group of d S, SO (5), we were led to enlarge it to SO (6) x U (1) in order to include
the anticommutators of its generators that appear naturally in the noncommutative
framework and in fixing the representation. Then, following the standard procedure
we calculated the transformations of the fields and the expressions of the component
curvature tensors. Since our aim was to result with a theory respecting the Lorentz
symmetry, we imposed certain constraints in order to break the initial symmetry. After
the symmetry breaking, the action takes its final form and its variation will lead to
the equations of motion. The latter will be part of our future work. It should be noted
that, before the symmetry breaking, the results of the above construction reduce to
the ones of the conformal gravity in the commutative limit. Finally, it should be also
emphasized that the above is a matrix model giving insight into the gravitational
interaction in the high-energy regime and also giving promises for improved UV
properties as compared to ordinary gravity. Clearly, the latter, as well the inclusion
of matter fields is going to be a subject of further study.
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Abstract We present a concise description of the basic features of gravity-matter
models based on the formalism of non-canonical spacetime volume-forms in its
two versions: (a) the method of non-Riemannian volume-forms (metric-independent
covariant volume elements) and (b) the dynamical spacetime formalism. Among
the principal outcomes we briefly discuss: (i) quintessential universe evolution with
a gravity-“inflaton”-assisted suppression in the “early” universe and, respectively,
dynamical generation in the “late” universe of Higgs spontaneous electroweak gauge
symmetry breaking; (ii) unified description of dark energy and dark matter as mani-
festations of a single material entity—a second scalar field “darkon”; (iii) unification
of dark energy and dark matter with diffusive interaction among them; (iv) explicit
derivation of a stable “emergent universe” solution, i.e., a creation without Big Bang;
(v) mechanism for suppression of 5-th force without fine-tuning.
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1 Introduction—Non-Riemannian Volume-Form
Formalism

Extended (modified) gravity theories as alternatives/generalizations of the standard
Einstein General Relativity (for detailed accounts, see Refs. [1-4]) are being widely
studied in the last decade or so due to pressing motivation from cosmology (problems
of dark energy and dark matter), quantum field theory in curved spacetime (renor-
malization in higher loops) and string theory (low-energy effective field theories).

A broad class of actively developed modified/extended gravitational theories is
based on employing alternative non-Riemannian spacetime volume-forms (metric-
independent generally covariant volume elements) in the pertinent Lagrangian
actions instead of the canonical Riemannian one given by the square-root of the
determinant of the Riemannian metric (originally proposed in [5, 6], for a con-
cise geometric formulation, see [7, 8]). A characteristic feature of these extended
gravitational theories is that when starting in the first-order (Palatini) formalism the
non-Riemannian volume-forms are almost pure-gauge degrees of freedom, i.e. they
do not introduce any additional propagating gravitational degrees of freedom except
for few discrete degrees of freedom appearing as arbitrary integration constants (for
a canonical Hamiltonian treatment, see Appendices A in Refs. [8, 9]).

Let us recall that volume-forms in integrals over differentiable manifolds (not nec-
essarily Riemannian one, so no metric is needed) are given by nonsingular maximal

rank differential forms w:
/ of..) =/ dx” 2(...).
M M

w= D'w’“ wp@XM AN AX @ = —Euyup 2, (D
(our conventions for the alternating symbols g*1+*> and ¢, _,, are: "1-P~1 =1
and go;._p—1 = —1). The volume element density (integration measure density) £2

transforms as scalar density under general coordinate reparametrizations.

In standard generally-covariant theories (with action S = [ d”x,/=gL) the Rie-
mannian spacetime volume-form is defined through the “D-bein” (frame-bundle)
canonical one-forms e* = ejldx" (A =0,..., D — 1)

w=eN...N€EP —det||e ldx*' A ... Adx??

— Q2 =det|e, ]| d’x =/—det]gud"x. )

Instead of ./—gdPx we can employ another alternative non-Riemannian volume
element as in (1) given by a non-singular exact D-form w = d B where:
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1

B = WBI‘-I---MD—IdxMI Ao Adxt

— 1 MHi---AD
— 2 = ¢(B) = ms E)MBMZWMD. (3)

In other words, the non-Riemannian volume element density is defined in terms of
the dual field-strength scalar density of an auxiliary rank D — 1 tensor gauge field
B K. -p—1"*

The plan of exposition is as follows. In Sect. 2 we describe in some detail the con-
struction and the main properties of extended gravity models, based on the formalism
of non-Riemannian volume elements, coupled to a scalar “inflaton” field driving the
cosmological evolution and a second scalar “darkon” field responsible for the unifi-
cation of dark energy and dark matter, as well as coupled to the bosonic sector of the
standard electroweak particle model, thus exhibiting a gravity-assisted dynamical
generation of the Higgs electroweak spontaneous symmetry breaking in the post-
inflationary universe. In particular, we find an “emergent-universe” cosmological
solution without Big-Bang singularity (on classical level).

Further, in Sect.3 we briefly present an alternative mechanism of dark energy -
dark matter unification with diffusive interaction among them based on the formalism
of “dynamical spacetime” [10, 11]. Section4 provides a short discussion of the
principal new features which arise upon inclusion of fermionic fields in modified
gravity models based on the formalism of non-canonical spacetime volume elements
as well as on the requirement of global scale invariance, first of all—a plausible
solution of the problem of “fifth force” without fine-tuning [12, 13]. The last Section
contains our conclusions.

2 Modified Gravity-Matter Models with Non-Riemannian
Volume-Forms—Cosmological Implications

To illustrate the main interesting properties of the new class of extended gravity-
matter models based on the non-Riemannian volume-form formalism we will con-
sider modified gravity in the Palatini formalism coupled in a non-standard way via
non-Riemannian volume elements to [9, 14, 15]: (i) scalar “inflaton” field ¢; (ii) a
second scalar “darkon” field u; (iii) the bosonic fields of the standard electroweak
particle model — o = (0,) being a complex SU(2) x U(1) iso-doublet Higgs-like
scalar, and the SU (2) x U (1) gauge fields A, 5,,.

The “inflaton” ¢ apart from driving the cosmological evolution triggers sup-
pression, respectively, generation of the electroweak (Higgs) spontaneous symmetry
breaking in the “early”, respectively, in the “late” universe. The “darkon” u is respon-
sible for the unified description of dark energy and dark matter in the “late” universe.

The corresponding action reads (for simplicity we use units with the Newton
constant Gy = 1/167):
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S = /d4x @,(A)[R + 10, o)]
@4(1‘1)]
V-8
—/d4x (vV—g+ ¢3(C))%g“vaﬂuavu. 4)

+ / d*x 02(B)[ L% 9, A, B) +

Here the following notations are used:

(1) @1(A), D2(B), ®3(C) are three independent non-Riemannian volume elements
asin (3) for D = 4; @4(H) is again of the form (3) for D = 4 and it is needed
for consistency of (4).
(ii) Thescalar curvature R in Palatini formalismis R = g"" R, (I"), where the Ricci
tensor is a function of the affine connection I'j, a priori independent of g,,,,.
(iii) The matter field Lagrangians are:

1 —o
LD (p,0) = —58"0up0up — fre™

* A * 2
—g" (Vuo)Viou — 7 (o) — 11*)°, (5)

b 1 1
L(2) , i B) = —Ze gV av —2ap __ F2 _ F2 B , 6
(9. A, B) = —2e™ 8" updvp + fre ryel (A) 107 (B), (6)

where «, f, f> are dimensionful positive parameters, whereas b is a dimensionless
one (b is needed to obtain a stable “emergent” universe solution, see below (25).
F?(A) and F?(B) in (6) are the squares of the field-strengths of the electroweak
gauge fields, and the last term in (5) is of the same form as the standard Higgs
potential.

Let us note that the form of the “inflaton” part of the action (4) is fixed by the
requirement of invariance under global Weyl-scale transformations:

1
8uv = Mguvs Ty = I ¢ =~ ¢+ —Ini,

A;Lw( - )"A;me B/w/( - AzB;wxa H/LUK - H/WK- (7N

Scale invariance played an important role in the original papers on the non-canonical
volume-form formalism where also fermions were included [6] (see also Sect.3
below).

The equations of motion of the initial action (4) w.r.t. auxiliary tensor gauge fields
Ao Buvi, Cuuy and Hy,,y, yield the following algebraic constraints:

D4(H
R+ LY =M, = const, L? + Pl _ —M; = const,
V=8



Modified Gravity Theories from Non-canonical Volume-Form 243

P, (B)
NET

where My, M, M, are arbitrary dimensionful and x, an arbitrary dimensionless
integration constants.
The equations of motion of (4) w.r.t. affine connection I'’} yield a solution for I'/;

as a Levi-Civita connection I\, = I'’; (g) = % M (8,83 + 028k — 0 8vy) W.ILL tO
P1(A)

1
— Eg’“’auuauu = My = const, X2 = const, )

the a Weyl-rescaled metric g,, = X18uv, X1 =

The passage to the “Einstein-frame” (EF) is accomplished by a Weyl-conformal
transformation to g, upon using relations (8), so that the EF action with a canonical
Hilbert-Einstein gravity part w.r.t. g,, and with the canonical Riemannian volume

element density ,/det || — g, || reads:
S = [ d*x/=F[R@) + Lur]. ©)

and where the EF matter Lagrangian turns out to be of a quadratic “k-essence” type
[16—19] w.r.t. both the “inflaton” ¢ and “darkon” u fields:

_ _ A _
Ler = X = 7| fie™™ + 7 (000, — 12) + M1 — xabe ™ X |

+72[ (272 + M) + My | + Lio, A, Bl (10)

with L[o, A, Bl = =" (V,04)*V,0, — £ F2(A) — 7 F*(8). In (10) all quan-

4g/2
tities defined in terms of the EF metric g,, are indicated by an upper bar, and the
following short-hand notations are used: X = —%g“”au<p3U<p, = —%gwa,tuavu.

From (10) we deduce the following full effective scalar potential:

5 2
(fleiaq) + % ((aa)*aa - Mz) + Ml)
4 x2(fre72%% + My) + Mo ]

Uett(p, 0) = (11)

As discussed in Refs.[14, 15] Ue (¢, o) (11) has few remarkable properties. First,
U (@, o) possesses two infinitely large flat regions as function of ¢ when o is fixed:

(a) (—) flat “inflaton” region for large negative values of ¢ corresponding to the
evolution of the “early” universe;

(b) (+)flat “inflaton” region for large positive values of ¢ with o fixed corresponding
to the evolution of the “late” universe”.

This is graphically depicted on Fig.1.
In the (—) flat “inflaton” region, i.e., in the “early” universe the effective scalar
field potential (11) reduces to (an approximately) constant value
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1 . . . . 1 . . . . . . . . 1 . . . . 1 ¢
-10 -5 5 10

Fig. 1 Qualitative shape of the effective scalar potential U (11) as function of the “inflaton” ¢
for My > 0 and fixed Higgs-like o

2
Uet(p, 0) ~ Uy = 4XJ:lf2 (12)

Thus, there is no o -field potential and, therefore, no electroweak spontaneous break-
down in the “early” universe.

On the other hand, in the (+) flat “inflaton” region, i.e., in the “late” universe the
effective scalar field potential becomes:

(% ((0a) 00 — 112)° + M1)2

Uenlp, 0) = Ut (@) = 4(xaMs + Mo)

) 13)

which obviously yields nontrivial vacuum for the Higgs-like field |oy,c| = . There-
fore, in the “late” universe we have the standard spontaneous breakdown of elec-
troweak SU (2) x U (1) gauge symmetry. Moreover, at the Higgs vacuum we obtain
from (13) a dynamically generated cosmological constant A, of the “late”
Universe:

M}

_ . 14
4(x2M2 + My) (1

Up () =24 =

If we identify the integration constants with the fundamental scales in Nature as
My ~ M}y, and My ~ M3, where Mp is the Planck mass scale and Mgy ~
1071 Mp, is the electroweak mass scale, then Ay ~ My, /M3, ~ 107120M7,,
which is the right order of magnitude for the present epoch’s vacuum energy density
as already realized in [20].
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On the other hand, if we take the order of magnitude of the coupling constants in
the effective potential (11) f; ~ fo ~ (1072Mp;)*, then the order of magnitude of
the vacuum energy density of the “early” universe (12) becomes:

Uy ~ fE1f ~1078M3,, (15)

which conforms to the Planck Collaboration data [21, 22] implying the energy scale
of inflation of order 1072 Mp;.

Now, let us perform FLRW reduction of the EF action (9). i.e., restricting the metric
Z,v to the FLRW form ds? = g,,dx"*dx" = —dt* + a*(t)dx*. Thus we obtain in
the “late” universe, i.e., for large positive “inflaton” ¢ values the following results
for the density, pressure, the Friedmann scale factor (the solution for a(¢) below first
appeared in [23]) and the “inflaton” velocity:

M? T M 3 w2
po Mmoo
4(xoM> + Mo)  a’ LyoMr + My a
M3 :

p= (%), (17)

4(aM, + My)

GNP 3
a(r) ~ (2A(+)) sinh (,/ZAH) t), (18)
. 3
~ Lp-2f 2
2~ const sinh ( 4A(+) t), 19)

where 7, is the conserved “darkon” canonical momentum, Ay, is as in (14) and
Co = muy/ My (xaMa + My) .

Relations (16)—(17) straightforwardly show that in the “late” universe we have
explicit unification of dark energy (given by the dynamically generated cosmological
constant (14) — first constant terms on the r.h.sides in (16) and (17), and dark matter
given as a “dust” fluid contribution — second term O(a~3) on the r.h.s. of (16).

A further interesting property under consideration is the existence of a stable
“emergent” universe solution — a creation without Big Bang (cf. Refs. [25, 26]). It
is characterized by the condition on the Hubble parameter H:

H=0 — a()=ayp=const, p+3p=0,

K_| ( t) (20)
— = —p (=const),
a% 6 P

and the “inflaton” is on the (—) flat region (large negative values of ¢). Then relations

(20) together with the “inflaton” and “darkon” equations of motion imply that also
“inflaton” velocity ¢ = const and the constant density and pressure read:
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po 20 gt 1 g (1+ 25+ i 1)
T 16hH 2 2 Axaf
b2 41 .2 b 2
p~ =22 " g (1+i)—f—1. (22)
16f, 2 2f dx2 />

The truncated Friedmann Eqgs. (20) yield exact solutions for the constant “inflaton”
velocity ¢ and Friedmann factor ay:

2 8f bf bfiya 302 f}
%= gl 3 - \/ (+27) - 16f22]’ @)

and a? = 6K /po where:

fi 1 bf
2X21f2_2 2( 1)

1+ ——
2f2

Studying perturbation a — a + da(t) of the “emergent” universe condition (20) we

obtain a harmonic oscillator equation for §a(¢) (here ¢(2) asin (23), and pg as in (24)):
8 d +w*sa =0,

.2
Wi T3 .%2(1 +bh/21)— ¢y b8 1] Y
6L oy 3x2b2/8 12 — 1A +bf1/2f)

(25)

for —8(1 — lf)fz <b< —%

The non- Rlemanman volume-form formalism was also successfully applied to
propose an qualitatively new mechanism for a dynamical spontaneous breaking of
supersymmetry in supergravity by constructing modified formulation of standard
minimal N = 1 supergravity as well as of anti-de Sitter supergravity in terms of
non-Riemannian volume elements [7, 24]. This naturally triggers the appearance
of a dynamically generated cosmological constant as an arbitrary integration con-
stant which signifies dynamical spontaneous supersymmetry breakdown. The same
formalism applied to anti-de Sitter supergravity allows us to appropriately choose
the above mentioned arbitrary integration constant so as to obtain simultaneously
a very small effective observable cosmological constant as well as a large physical
gravitino mass as required by modern cosmological scenarios for slowly expanding
universe of the present epoch [27-29].
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3 Dynamical Spacetime Formulation

Let us now observe that the non-Riemannian volume element density 2 = @ (B)
(3) on a Riemannian manifold can be rewritten using Hodge duality (here D = 4)
1

in terms of a vector field x* = iﬁsﬂ””*Bvu so that £2 becomes £2(x) =

3. (v/—gx"), i.e. it is a non-canonical volume element density different from /=g,
butinvolving the metric. It can be represented alternatively through a Lagrangian mul-
tiplier action term yielding covariant conservation of a specific energy-momentum
tensor of the form 7+" = g"V[L:

Seo = /d4xv —8 Xun T = /d4x3M(V _gXM)(_[')’ (26)

where x,., = 8, x, — If, X0

The vector field x,, is called “dynamical space time vector”, because the energy
density of 7% is a canonically conjugated momentum w.r.t. xo, which is what we
expected from a dynamical time.

In what follows we will briefly consider a new class of gravity-matter theories
based on the ordinary Riemannian volume element density ./—g but involving action
terms of the form (26) where now 7" is of more general form than 7" = gV L.
This new formalism is called “dynamical spacetime formalism” [10, 11] due to the
above remark on yj.

Ref. [30] describes a unification between dark energy and dark matter by intro-
ducing a quintessential scalar field in addition to the dynamical time action. The total
Lagrangian reads:

1 1
L=SR+ X T" = 58" ¢utp = V@), 27)
with energy-momentum tensor 7+" = —%¢*“¢*“. From the variation of the Lagra-

ngian term x,.,7 *" with respect to the vector field x,, the covariant conservation
of the energy-momentum tensor V,7*" = 0 is implemented. The latter within the
FLRW framework forces the kinetic term of the scalar field to behave as a dark matter

component:
2820

VT =0 = ¢ ="3".

(28)
a

where £2,,0 is an integration constant. The variation with respect to the scalar field ¢
yields a current:

1 . .
- V@) =V, j", = 5%(}(“’” +x") + o (29)

For constant potential V (¢) = £24 = const the current is covariantly conserved.



248 D. Benisty et al.

In the FLRW setting, where the dynamical time ansatz introduces only a time
component x, = (xo, 0, 0, 0), the variation (29) gives:

Xo—1=¢&a7" (30)

where £ is an integration constant. Accordingly, the FLRW energy density and pres-
sure read:

. 1 ., 1., .
p=(xO—§ " +V, p=§¢>(Xo—1)—V. (31)

Plugging the relations (28,30) into the density and the pressure terms (31) yields the
following simple form of the latter:

Lo P
p=s2A+§9—/2°+—3°, p= -yt 2m
a a

(32)
In (32) there are 3 components for the “dark fluid”: dark energy with w4 = —1,
dark matter with w,, = 0 and an additional equation of state wz = 1/2. For non-
vanishing and negative £ the additional part introduces a minimal scale parameter,
which avoids singularities. If the dynamical time is equivalent to the cosmic time
Xo = t,weobtain £ = 0 from Eq. (30), whereupon the density and the pressure terms
(32) coincide with those from the ACDM model precisely. The additional part (for
& # 0) fits more to the late time accelerated expansion data, as observed in Ref. [31].

Ref. [32] shows that with higher dimensions, the solution derived from the
Lagrangian (27) describes inflation, where the total volume oscillates and the original
scale parameter exponentially grows.

The dynamical spacetime Lagrangian can be generalized to yield a diffusive
energy-momentum tensor. Ref. [33] shows that the diffusion equation has the form:

vV, T = 30", j;l; =0, (33)
where o is the diffusion coefficient and j* is a current source. The covariant conser-

vation of the current source indicates the conservation of the number of the particles.
By introducing the vector field x,, in a different part of the Lagrangian:

o
Loay = X T + 5 (0t + 3. A, (34)

the energy-momentum tensor 7*" gets a diffusive source. From a variation with
respect to the dynamical space time vector field x, we obtain:

V,T" = o ()" + 0" A) = f*, (35)
a current source f* = o(x" + 9" A) for the energy-momentum tensor. From the

variation with respect to the new scalar A, a covariant conservation of the current
emerges f,’; = 0. The latter relations correspond to the diffusion equation (33).



Modified Gravity Theories from Non-canonical Volume-Form 249

Refs. [35-38] study the cosmological solution using the energy-momentum tensor
TH = —1g"¢*¢;. The total Lagrangian reads:

1 1 o
L=SR=58"0ubp = V@) + 1T + 00 +0,4°  (36)
The FLRW solution unifies the dark energy and the dark matter originating from one
scalar field with possible diffusion interaction. Ref. [34] investigates more general
energy-momentum tensor combinations and shows that asymptotically all of the
combinations yield ACDM model as a stable fixed point.

4 Scale Invariance, Fifth Force and Fermionic Matter

The originally proposed theory with two volume element densities (integration mea-
sure densities) [5, 6], where at least one of them was a non-canonical one and
short-termed “two-measure theory” (TMT), has a number of remarkable properties
if fermions are included in a self-consistent way [6]. In this case, the constraint that
arises in the TMT models in the Palatini formalism can be represented as an equation
for x = @/./—g,in which the left side has an order of the vacuum energy density, and
the right side (in the case of non-relativistic fermions) is proportional to the fermion
density. Moreover, it turns out that even cold fermions have a (non-canonical) pres-
sure P77 and the corresponding contribution to the energy-momentum tensor has
the structure of a cosmological constant term which is proportional to the fermion
density. The remarkable fact is that the right hand side of the constraint coincide with
P_;*””C“”. This allows us to construct a cosmological model [39] of the late universe
in which dark energy is generated by a gas of non-relativistic neutrinos without the
need to introduce into the model a specially designed scalar field.

In models with a scalar field, the requirement of scale invariance of the initial
action [5] plays a very constructive role. It allows to construct a model [40] where
without fine tuning we have realized: absence of initial singularity of the curvature;
k-essence; inflation with graceful exit to zero cosmological constant.

Of particular interest are scale invariant models in which both fermions and a dila-
ton scalar field ¢ are present. Then it turns out that the Yukawa coupling of fermions to
¢ is proportional to P}”’”““”. As aresult, it follows from the constraint, that in all cases
when fermions are in states which constitute a regular barionic matter, the Yukawa
coupling of fermions to dilaton has an order of ratio of the vacuum energy density
to the fermion energy density [12]. Thus, the theory provides a solution of the 5-th
force problem without any fine tuning or a special design of the model. Besides, in
the described states, the regular Einstein’s equations are reproduced. In the opposite
case, when fermions are very diluted, e.g. in the model of the late Universe filled with
a cold neutrino gas, the neutrino dark energy appears in such a way that the dilaton ¢
dynamics is closely correlated with that of the neutrino gas [12].
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A scale invariant model containing a dilaton ¢ and dust (as a model of matter)
[13] possesses similar features. The dilaton to matter coupling “constant” f appears
to be dependent of the matter density. In normal conditions, i.e. when the matter
energy density is many orders of magnitude larger than the dilaton contribution to
the dark energy density, f becomes less than the ratio of the “mass of the vacuum”
in the volume occupied by the matter to the Planck mass. The model yields this kind
of “Archimedes law” without any special (intended for this) choice of the underlying
action and without fine tuning of the parameters. The model not only explains why all
attempts to discover a scalar force correction to Newtonian gravity were unsuccessful
so far but also predicts that in the near future there is no chance to detect such
corrections in the astronomical measurements as well as in the specially designed
fifth force experiments on intermediate, short (like millimeter) and even ultrashort (a
few nanometer) ranges. This prediction is alternative to predictions of other known
models.

More recently other authors have rediscovered the important role of scale invari-
ance in the avoidance of a 5-th force [44]. We should point out that our original work
[12, 13] on avoidance of the 5-th force through scale invariance symmetry precedes
that of Ref. [44] by a substantial number of years.

5 Conclusions

In the present paper we describe in some details the principal physically interest-
ing features of a specific class on extended (modified) gravitational theories beyond
the standard Einstein’s general relativity. They are constructed in terms of non-
Riemannian spacetime volume forms (metric-independent non-canonical volume
elements). An important role is also being played by the requirement of global scale
invariance. We present a modified gravity-matter model where gravity is coupled
in a non-canonical way to two scalar fields (“inflaton” and “darkon”) as well as to
the bosonic sector of the standard electroweak model of elementary particle physics.
The “inflaton” scalar field triggers a quintessential inflationary evolution of the Uni-
verse where all energy scales are determined dynamically through free integration
constants arising due to the modified gravitational dynamics because of the non-
Riemannian volume elements. The “darkon” scalar field on its part creates through its
dynamics a unified description of dark energy and dark matter. A particularly notable
feature is the gravity-“inflaton”-assisted dynamical generation of Higgs electroweak
spontaneous symmetry breaking in the post-inflationary epoch and its suppression in
the early-universe stage. Under special initial condition on the Hubble parameter we
find (on classical level) an “emergent universe” solution describing early universe
evolution without spacetime singularities (no “Big Bang”).

Furthermore, we have briefly discussed a parallel alternative non-canonical space-
time volume element approach based on the concept of “dynamical spacetime” and
have demonstrated the appearance of unified description of dark energy and dark
matter with a diffusive interaction among them. Finally we briefly outlined, based on
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our original work [12, 13], how the formalism of non-canonical volume elements in
modified gravity-matter models with fermions provides a resolution of the problem
of “fifth force” without any fine tunings.

In the above constructions we have employed the first-order (Palatini) formal-
ism in the initial gravity actions. Further physically interesting features are obtained
when combining the non-Riemannian spacetime volume element formalism with
the second order (metric) gravity formalism. In particular, in the latter case it was
recently shown [41] that starting with a pure modified gravity in terms of several
non-Riemannian volume elements and without any initial matter fields one creates
dynamically (in the “Einstein frame”) a canonical scalar field with a non-trivial infla-
tionary potential generalizing the classical Starobinsky potential [42] and yielding
results for the cosmological observables (scalar power spectral index and the tensor-
to-scalar ratio) fitting very well to the available observational data [43].
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Non-linear Symmetries in m
Maxwell-Einstein Gravity: From e
Freudenthal Duality to Pre-homogeneous
Vector Spaces

Alessio Marrani

Abstract We review the relation between Freudenthal duality and U-duality Lie
groups of type E7 in extended supergravity theories, as well as the relation between
the Hessian of the black hole entropy and the pseudo-Euclidean, rigid special
(pseudo)Kihler metric of the pre-homogeneous spaces associated to the U-orbits.

1 Freudenthal Duality

We start and consider the following Lagrangian density in four dimensions,

(cf., e.g., [1]):

R 1 o
L= 4385 @) 9990’ + 1 L1z (9) FAF> (1)

+

: j__GRA,s () "7 FA FZ,

describing Einstein gravity coupled to Maxwell (Abelian) vector fields and to a non-
linear sigma model of scalar fields (with no potential); note that £ may -but does
not necessarily need to - be conceived as the bosonic sector of D = 4 (ungauged)
supergravity theory. Out of the Abelian two-form field strengths F4’s, one can define
their duals G 4, and construct a symplectic vector:

. A T * . (SL:
H:=(F"G,) ., "G = 2W' ()
We then consider the simplest solution of the equations of motion deriving from
L, namely a static, spherically symmetric, asymptotically flat, dyonic extremal black
hole with metric [2]
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dtr? 1
ds* = —?VVdr* 4 ¢V [—4 + — (d6? +sin 9d1//2):| : 3)
T T
where T := —1/r. Thus, the two-form field strengths and their duals can be fluxed on

the two-sphere at infinity S2, in such a background, respectively yielding the electric
and magnetic charges of the black hole itself, which can be arranged in a symplectic
vector Q:

1 1
4. FA, = — G4, 4
p e 44 = - 5 A €]
T
Q:=(pt.qa) . (5)

Then, by exploiting the symmetries of the background (3), the Lagrangian (6) can
be dimensionally reduced from D = 4 to D = 1, obtaining a 1-dimensional effective
Lagrangian (' :== d/d7) [3]:

Lpoi = (U) + gij () 07 + ¢V Vg (0, Q) 6)

along with the Hamiltonian constraint [3]

(U/)Z g @) "9 — Vg (9, Q) =0, o

The so-called “effective black hole potential” Vi appearing in (6) and (7) is defined
as [3]

1
Ver (¢, Q) = —EQTM (p) Q, ®)

in terms of the symplectic and symmetric matrix [1]

-1 _pr-1
M'_(I—R><I O)(I 0)_ I+ RIT'R RI o
-— —1 _ - ’

o1 J\or R1I R I

M = M; MM = 2, (10)

where I denotes the identity, and R (¢) and I (¢) are the scalar-dependent matrices
occurring in (6); moreover, §2 stands for the symplectic metric (£2? = —I). Note that,
regardless of the invertibility of R (¢) and as a consequence of the physical consis-
tence of the kinetic vector matrix  (¢), M is negative-definite; thus, the effective
black hole potential (8) is positive-definite.

By virtue of the matrix M, one can introduce a (scalar-dependent) anti-involution
S in any Maxwell-Einstein-scalar theory described by (6) with a symplectic structure
£2, as follows:

S(p) == 2M(p). 11
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Indeed, by (10),
S*(9) = QM (9) 2M (p) = 2° = -L (12)

In turn, this allows to define an anti-involution on the dyonic charge vector Q, which
has been called (scalar-dependent) Freudenthal duality [4-6]:

F(Q¢) :=-S(p) (13)
F2 = -1, (¥ {¢)). (14)

By recalling (8) and (11), the action of F on Q, defining the so-called (¢-dependent)
Freudenthal dual of Q itself, can be related to the symplectic gradient of the effective
black hole potential Vgy:

_ QaVBH (o, Q).

F(Q;¢) 50

5)

Through the attractor mechanism [7], all this enjoys an interesting physical inter-
pretation when evaluated at the (unique) event horizon of the extremal black hole (3)
(denoted below by the subscript “H"); indeed

0,Ven =0 ¢ lim_¢' (1) = ¢} (Q); (16)
A
Son (Q) = Z1 =7 Vanla,vym0 = =32 Mu (@) Q (17)

where Spy and Ay respectively denote the Bekenstein-Hawking entropy [8] and the
area of the horizon of the extremal black hole, and the matrix horizon value My is
defined as

My (@)= lim M (¢ (7). (18)

Correspondingly, one can define the (scalar-independent) horizon Freudenthal dual-
ity Fy as the horizon limit of (13):

0 1 _3S
Q=F;(Q:= lim F(Q¢ (1) =-2My(Q Q= ;Q_BaHQ(Q)_

(19)
Remarkably, the (horizon) Freudenthal dual of Q is nothing but (1/7 times) the
symplectic gradient of the Bekenstein-Hawking black hole entropy Sgy; this latter,
from dimensional considerations, is only constrained to be an homogeneous function
of degree two in Q. As aresult, @ = Q (Q) is generally a complicated (non-linear)
function, homogeneous of degree one in Q.

It can be proved that the entropy Spy itself is invariant along the flow in the
charge space Q defined by the symplectic gradient (or, equivalently, by the horizon
Freudenthal dual) of Q itself:
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1 _9Spu (Q)

Spu (Q) = Spu (Fy (Q)) = Spu <EQT) =Sz (Q).  (20)

It is here worth pointing out that this invariance is pretty remarkable: the (semi-
classical) Bekenstein-Hawking entropy of an extremal black hole turns out to be
invariant under a generally non-linear map acting on the black hole charges them-
selves, and corresponding to a symplectic gradient flow in their corresponding vector
space.

For other applications and instances of Freudenthal duality, see [9-14].

2  Groups of Type E7

The concept of Lie groups of type E; was introduced in the 60s by Brown [15], and
then later developed e.g. by [16-20].

Starting from a pair (G, R) made of a Lie group G and its faithful representation
R, the three axioms defining (G, R) as a group of type E; read as follows:

1. Existence of a unique symplectic invariant structure §2 in R:
312 =1 R x, R, (21)

which then allows to define a symplectic product (-, -) among two vectors in the
representation space R itself:

(Q1, Qy) = MOV Q2un = — (D, Q1) (22)
2. Existence of a unique rank-4 completely symmetric invariant tensor (K -tensor)
in R:
JIK =1 (R xR xR xR), (23)
which then allows to define a degree-4 invariant polynomial /4 in R itself:
I := Kunpo QM 0OV Q" Q0. (24)

3. Defining a triple map 7 in R as

T :RxRxR—R; (25)
(T(Q1, 92, Q3), Qu) = KunroQ¥OYOraog, (26)

it holds that

(T (91, Q1,22), T (D2, D2, D2)) = (91, Q2) KMNPQQ{MQQ,Q;QQQ- (27)
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This property makes a group of type E7 amenable to a description as an automor-
phism group of a Freudenthal triple system (or, equivalently, as the conformal
groups of an underlying Jordan triple system).

All electric-magnetic duality (U-duality') groups of A > 2-extended D = 4
supergravity theories with symmetric scalar manifolds are of type E7. Among these,
degenerate groups of type E7 are those in which the K -tensor is actually reducible,
and thus I4 is the square of a quadratic invariant polynomial I,. In fact, in general,
in theories with electric-magnetic duality groups of type E; holds that

Sar = 7v/11: (Q)] = 7/ |[Kuuwro Q¥ Q¥ QP Q0. (28)

whereas in the case of degenerate groups of type E7 it holds that I, (Q) = (I, (Q))Z,
and therefore the latter formula simplifies to

Sgn =7/ 14 (D] =7 [L(Q)]. (29)

Simple, non-degenerate groups of type E; relevant to A > 2-extended D = 4
supergravity theories with symmetric scalar manifolds are reported in Table 1.

Semi-simple, non-degenerate groups of type E7 of the same kind are given
byG = SL(2,R) x SO2,n)and G = SL(2, R) x SO(6,n), withR = (2,2 4+ n)
and R = (2, 6 + n), respectively relevant for A' = 2 and N = 4 supergravity.

Moreover, degenerate (simple) groups of type E; relevant to the same class
of theories are G = U(1,n) and G = U(3, n), with complex fundamental repre-
sentations R = n + 1 and R = 3 + n, respectively relevant for ' =2 and N = 3
supergravity [19].

The classification of groups of type E7 is still an open problem, even if some
progress have been recently made e.g. in [31] (in particular, cf. Table D therein).

In all the aforementioned cases, the scalar manifold is a symmetric cosets % , where
H is the maximal compact subgroup (with symmetric embedding) of G. Moreover,
the K -tensor can generally be expressed as [20]

n2n+1) d
Kuynpg = ——7— |:

1 vty - 2 , 30
6d mlalpo = 2o oy M Q)N:| (30)

where dim R = 2n and dim G = d, and t};,, denotes the symplectic representation
of the generators of G itself. Thus, the horizon Freudenthal duality can be expressed
in terms of the K-tensor as follows [4]:

~ 0+/|1 2
P (@ = Bu =G4 = = KinroQ"Q"Q% ()

"Here U-duality is referred to as the “continuous” symmetries of [21]. Their discrete versions are
the U-duality non-perturbative string theory symmetries introduced by Hull and Townsend [22].
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Table 1 Simple, non-degenerate groups G related to Freudenthal triple systems M (J3) on simple
rank-3 Jordan algebras J3. In general, G = Conf (J3) = Aut (M (J3)) (seee.g. [23-25] for arecent
introduction, and a list of Refs.). O, H, C and R respectively denote the four division algebras of
octonions, quaternions, complex and real numbers, and Oy, H, Cs are the corresponding split
forms. Note that the G related to split forms O, Hs, Cs is the maximally non-compact (split)
real form of the corresponding compact Lie group. M > (O) is the Jordan triple system generated
by 2 x 1 vectors over O [26]. Note that the ST U model, based on J3 = R @ R @ R, has a semi-
simple G4, but its triality symmetry [27] renders it “effectively simple”. The D = 5 uplift of the
T3 model based on J3 = R is the pure N' = 2, D = 5 supergravity. J3H is related to both 8 and 24
supersymmetries, because the corresponding supergravity theories are “twin”, namely they share
the very same bosonic sector [26, 28-30].

J3 Gy R N
E7(-25) 56 2
JP
B E7(7) 56 8
‘I3
. SO*(12) 32 2,6
JS
S SO (6, 6) 32 0
3
c SU (3,3) 20 2
J3
e SL (6, R) 20 0
3
SU (1,5) 20 5
M, (0)
x Sp (6, R) 14 2
‘I3
R®R®R SL (2, R)®? 2,2,2) 2
(STU)
R SL (2, R) 4 2
(T%)
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where € := I/ |14]; note that the horizon Freudenthal dual of a given symplectic
dyonic charge vector Q is well defined only when Q is such that /4 (Q) # 0. Conse-
quently, the invariance (20) of the black hole entropy under the horizon Freudenthal
duality can be recast as the invariance of I, itself:

an/lh(Q)l).

50 (32)

I,(Q) =14 (é) = 14<

In absence of “flat directions” at the attractor points (namely, of unstabilized scalar
fields at the horizon of the black hole), and for I, > 0, the expression of the matrix
My (Q) at the horizon can be computed to read

1 ~ o~
Myun(Q) = __\/I_ (2QuOn — 6Kunpo Q" Q% + QuQv)., (33)
4

and it is invariant under horizon Freudenthal duality:

Fy Mu)yy = MH\MN(@) = Muun(Q). 34

3 Duality Orbits, Rigid Special Kihler Geometry and
Pre-homogeneous Vector Spaces

For I, > 0, My (Q) given by (33) is one of the two possible solutions to the set of
equations [32]
M"(Q) 2M (Q) = e2;

M"(Q) =M (Q); (35)
Q"M (Q) Q= -2 (9],

which describes symmetric, purely Q-dependent structures at the horizon; they are
symplectic or anti-symplectic, depending on whether I, > 0 or I; < 0, respectively.
Since in the class of (super)gravity D = 4 theories we are discussing the sign of 14
separates the G-orbits (usually named duality orbits) of the representation space R of
charges into distinct classes, the symplectic or anti-symplectic nature of the solutions
to the system (35) is G-invariant, and supported by the various duality orbits of G
(in particular, by the so-called “large” orbits, for which 14 is non-vanishing).
One of the two possible solutions to the system (35) reads [32]

M (Q) = - (2@M§N —66KunpoQ" Q% +€QuQv),

[14]
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whose corresponding Fy (M.),,y reads
By (M1)yy = Man (Q) = €My (Q).
Fore = +1 < I, > 0, it thus follows that
M (Q) =My (Q), (36)

as anticipated.
On the other hand, the other solution to system (35) reads [32]

1 ~ ~
M_(Q) = T (QmQn — 66K ynppQ" Q9),

whose corresponding Fg (M_),,y reads

Fru (M) yy = M_jyn(Q) = eM_jyyn(Q).

By recalling the definition of 1, (24), it is then immediate to realize that M_ (Q) is
the (opposite of the) Hessian matrix of (1/ times) the black hole entropy Spy:

1
M_jyn (Q) = —0mony 14| = _;aMaNSBH- (37)

The matrix M_ (Q) is the (opposite of the) pseudo-Euclidean metric of a non-
compact, rigid special pseudo-Ké hler manifold related to the duality orbit of the
black hole electromagnetic charges (to which Q belongs), which is an example of
pre-homogeneous vector space (PVS) [33]. In turn, the nature of the rigid special
manifold may be Kihler or pseudo-Kihler, depending on the existence of a U (1) or
SO(1, 1) connection.?

In order to clarify this statement, let us make two examples within maximal A = 8,
D = 4 supergravity. In this theory, the electric-magnetic duality groupis G = E7(7),
and the representation in which the e.m. charges sit is its fundamental R = 56. The
scalar manifold has rank-7 and it is the real symmetric coset’ G/H = E7(7,/SU (8),
with dimension 70.

1. The unique duality orbit determined by the G-invariant constraint /; > 0 is the
55-dimensional non-symmetric coset

Ol,>0 = . (38)

2For a thorough introduction to special Kéhler geometry, see e.g. [34].

3To be more precise, it is worth mentioning that the actual relevant coset manifold is
E7(7)/ISU(8)/Z], because spinors transform according to the double cover of the stabilizer of
the scalar manifold (see e.g. [35, 36], and Refs. therein).
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Table 2 Non-generic, nor irregular PVS with simple G, of type 2 (in the complex ground field). To
avoid discussing the finite groups appearing, the list presents the Lie algebra of the isotropy group
rather than the isotropy group itself [37]. The interpretation (of suitable real, non-compact slices) in
D = 4 theories of Einstein gravity is added; remaining cases will be investigated in a forthcoming
publication

G Vv n Isotropy alg. Degree Interpr. D = 4
SL(2,C) s3¢c? 1 0 4 N =2,R(T3)
N=2f
SL(6,C) A3t 1 si(3, C)®2 4 N =0, J3CS
N =5,M1,(0)
SL(7,C) A3C7 1 5 7
SL(8,C) A3c? 1 s1(3,C) 16
SL(3,C) s2¢3 2 0 6
SLES, C) A2¢S 3 512, € 5
4 0 10
SL(6,C) A2t 2 512, C)®3 6
SL@3, C)®2 c3gcs 2 gl(1,0)®2 6
5p(6. ) 43¢t 1 513, C) 4 N=2JF
1 s 2
Spin(1, C) c8 2 sI(3,C) ®502,C) | 2
3 512, C) ®so(3,C) | 2
Spin(9, C) clo 1 spin(7, C) 2
Spin(10,c) | c'6 2 8 @100 2
3 512, C) ®s0(3,C)| 4
Spin(11, C) c32 1 sI(5,C) 4
Spin(12, C) c3? 1 51(6,C) 4 N=2 6’,,]?H
N =037
Spin(14, C) ct4 1 5 @S 8
6¢ o7 1 s13,0) 2
2 gl(2,0) 2
EC 2 ; w 3
so(8,C) 6
ES ¢ 1 € 4 N=2 ]32_
N =8,J3"

By customarily assigning positive (negative) signature to non-compact (com-
pact) generators, the pseudo-Euclidean signature of Oy, - is (n4, n_) = (30, 25).
In this case, M_ (Q) given by (37) is the 56 -dimensional metric of the non-
compact, rigid special pseudo-Ké& hler non-symmetric manifold

x R*, (39)
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with signature (ny,n_) = (30, 26), thus with character x :=n, —n_ = 4.
Through a conification procedure (amounting to modding out* C = SO(2) x
SO(1,1) = U(1) x RT), one can obtain the corresponding 54-dimensional non-
compact, special pseudo-Kéhler symmetric manifold

E77

Oy, c=0 0= .
n 0/ 14>0 Ef,(z)XU(l)

(40)

2. The unique duality orbit determined by the G-invariant constraint I; < 0 is the
55-dimensional non-symmetric coset

Ou<o= ; (41)

with pseudo-Euclidean signature given by (n4, n_) = (28, 27), thus with char-
acter x = 0. In this case, M_ (Q) given by (37) is the 56-dimensional metric of
the non-compact, rigid special pseudo-Kéhler non-symmetric manifold

E
M R, (42)

Op<0 =
6(6)

with signature (ny, n_) = (28, 28). Through a “pseudo-conification” procedure
(amounting to modding out C; = SO(1,1) x SO(1,1) = RT x R™), one can
obtain the corresponding 54-dimensional non-compact, special pseudo-Kéhler
symmetric manifold

E77)

0Oy, - szﬁ QHi=——.
Iy 0/ I4<0 E6(6)XSO(1,1)

(43)

(39) and (42) are non-compact, real forms of g—z x GL(1), which is the type 29
in the classification of regular, pre-homogeneous vector spaces (PVS) worked out
by Sato and Kimura in [37]. From its definition, a PVS is a finite-dimensional vector
space V together with a subgroup G of GL(V), such that G has a Zariski open
dense orbit in V (thus open and dense in V also in the standard topology). PVS are
subdivided into two types (type 1 and type 2), according to whether there exists an
homogeneous polynomial on V which is invariant under the semi-simple (reductive)
part of G itself. For more details, see e.g. [33, 38, 39].

In the case of % £ % GL(1), V is provided by the fundamental representation space
R =560fG = E7, and there exists a quartic E7-invariant polynomial /4 (24) in the
56; H = Eg is the isotropy (stabilizer) group.

Amazingly, simple, non-degenerate groups of type E; (relevant to D = 4 Ein-
stein (super)gravities with symmetric scalar manifolds) almost saturate the list of
irreducible PVS with unique G-invariant polynomial of degree 4 (cf. Table2); in

“The signature along the R*-direction is negative [32].
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particular, the parameter n characterizing each PVS can be interpreted as the number
of centers of the regular solution in the (super)gravity theory with electric-magnetic
duality (U-duality) group given by G. This topic will be considered in detail in a
forthcoming publication.
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Phase Transitions at High m
Supersymmetry Breaking Scale in String | @
Theory

Hervé Partouche and Balthazar de Vaulchier

Abstract When supersymmetry is spontaneously broken at tree level, the spectrum
of the heterotic string compactified on orbifolds of tori contains an infinite number
of potentially tachyonic modes. We show that this implies instabilities of Minkowski
spacetime, when the scale of supersymmetry breaking is of the order of the string
scale. We derive the phase space structure of vacua in the case where the tachyonic
spectrum contains a mode with trivial momenta and winding numbers along the
internal directions not involved in the supersymmetry breaking.

1 Introduction

Phase transitions occur in various contexts in high energy physics. The most common
setup describing such effects is the Brout-Englert-Higgs mechanism, which occurs
when a scalar field ¢ becomes tachyonic. When the squared mass is negative, ¢ sits at
a maximum of the scalar potential and therefore condenses. The new vacuum expec-
tation value (vev) of ¢ minimizes (locally) the potential, and the theory has switched
from a “wrong” to a “true” vacuum. What we review in the present note is that a
similar condensation occurs in string theory, when the scale Mg, of spontaneous
supersymmetry breaking is of the order of the string scale Ming [1].

To be specific, we consider classical string models in Minkowski spacetime, where
supersymmetry is spontaneously broken. Because there is only one true constant
scale in the theory, which is My, the scale Mgy is a field the tree level potential
V depends on. Our assumption on flatness of the classical background amounts to
saying that minima of V lie at V = 0. It turns out that local supersymmetry implies
the latter to be degenerate, and that one of the flat directions is parameterized by the
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field My itself. For this reason, the supergravity models describing the spontaneous
breaking of supersymmetry in flat space are referred as “no-scale models” [2], since
there is no preferred value for the vev (M) at tree level. In the framework of string
theory, this statement is actually valid up to a critical value M. of (M), which is of
the order of Mjing. Above this bound, the condensation of a tachyonic scalar triggers a
second order phase transition from the no-scale phase to a new phase, which is argued
to be associated with a non-critical string theory. Even though this phenomenon is
physically very different from the Hagedorn phase transition encountered in string
theory at finite temperature 7', when the latter is of the order of Mying [3], it turns
out to be similar from a technical point of view [4, 5].

In its usual formulation, string theory is defined in first quantized formalism.
This means that what is known (at least in principle) is the massless and massive
spectrum that is allowed to populate a consistent vacuum described by a conformal
field theory on the worldsheet. In order to find the shape of the potential far from the
vacuum under consideration, one should in principle evaluate an infinite number of
correlation functions, and resum them in order to reconstruct the full expression of
the off-shell tree level potential. Alternatively, we may consider in principle a second
quantized formulation of string theory, i.e. string fields theory, in order to derive the
potential. However, given the fact that we are only interested in the vacuum structure
of the tree level potential, we will analyze the problem at low energy, in the effective
supergravity.

In Sect. 2, we introduce a class of string theory no-scale models in four dimensions
thatrealize the N' = 4 — N = 0 spontaneous breaking of supersymmetry. In Sect. 3,
we implement an orbifold action that reduces the initial AV = 4 supersymmetry to
N =1, and we present the necessary ingredients to derive the tree level potential
V in presence of super-Higgs mechanism. The final expression of V is presented in
Sect. 4, where the different phases of the theory are derived. Our conclusions can be
found in Sect. 5.

2 N =4 — N = 0 Heterotic No-Scale Models

Our starting point is the heterotic string compactified on a 6-dimensional torus,
where supersymmetry is spontaneously broken by a stringy version [6] of the Scherk-
Schwarz mechanism [7, 8]. In field theory, the latter is a refined version of the Kaluza-
Klein reduction we first present in its simplest possible realization. Let us consider
a field theory in 4 + 1 dimensions, where the extra coordinate is compactified on a
circle of radius R4. Assuming the existence of a symmetry with conserved charge Q
in 4 + 1 dimensions, we may impose Q-dependent boundary conditions for every
field ¢, which translate into Kaluza-Klein masses M for its Fourier modes m4 € Z,

1 imateQ 4 mg+eQ 2
oy = —— e R M=———). (
otx) = e M = ( - ) M
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In the above formulas, u € {0, ..., 3} and we have included a parameter ¢ = 1 or
0 in order to describe both Scherk-Schwarz and Kaluza-Klein cases, respectively.
When the higher dimensional theory is supersymmetric and we choose Q = g +
QOsusy» Where F is the fermionic number and Qgy is a constant charge within each
supermultiplet, the boson/fermion degeneracy in four dimensions is lifted and the
theory describes a super-Higgs mechanism, with scale Mgy = €/(2R4).

Inthe Eg x Ejg heterotic string compactified on a factorized torus T = S'(Ry) x
T, the previous mass formula in string units (Mying = 1) is generalized to [6]

ny 2 2
= (M5 i) a0t 4 03+ 01+ 011,
2)
where n4 € Z is the winding number of the string along S'(R;), and Q = (Q, 0,,
03, Q4) is a quadruple of charges arising from the fact that for ¢ = O the theory is
N = 4 supersymmetric. The above equation applies to the lightest modes, which in
the bosonic sector have (Q, Q», O3, Q4) = (£1, 0, 0, 0) or permutations. Notice the
presence of the —1 contribution in the squared brackets, which is the zero point energy
arising from the quantization of the fields on the worldsheet. In the supersymmetric
case (e = 0), we have M? > 0 for all modes, while in the spontaneously broken case
(e = 1), the dangerous contribution —1 is not canceled when Q = n4 = £1. Looking
at this fact more closely, one finds that the pair of scalar states my = —ny = —Q =€,
where € = %1, are tachyonic when

V2 -1 1 V2 +1

<Ry <R. =

/2 2R N

Therefore, an instability arises in the theory when the supersymmetry breaking scale
M,y reaches the critical value M. = 1/(2R.).

Moreover, taking into account the fact that the tachyonic modes may also have
non-trivial momentum ms € Z or winding number n5 € Z (but not both, due to the
left/right-level matching) along one more internal direction X, their mass formula
becomes

3)

1

M? = —
4R?

2
+R§—3+(%j) or M*= ﬁ+Ri—3+(HSR5)2, (4)
where we have assumed for simplicity the internal space to be factorized as 7° =
S'(R4) x S'(Rs) x T*. Therefore, the larger (smaller) Rs is, the larger the number
of tachyonic momentum (winding) states along S'(Rs) is, as shown in Fig. 1. One
of our goal is then to see whether the infinity of potentially tachyonic modes yield a
multiphase diagram or not, beside the no-scale-phase we started with. Of course, even
if we will not do so, this question may be considered in the most general case, where
the momenta and winding numbers along the remaining internal radii directions of
T* are taken into account.
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Rs
R ‘m5| =1
""" \m5| —2
-------- |ms| =3
N1
ns| =1
1k
1
A \| s =
R, T Ins| =

Fig.1 Boundary curves of the regions of the plan (R4, Rs), where Kaluza-Klein or winding modes
along S'(Rs) are tachyonic

Before concluding this section, let us specify what conserved charges O may be
used to implement the N' = 4 — 0 Scherk-Schwarz breaking of supersymmetry. On
the left-moving supersymmetric side of the heterotic string, we can rotate any pair
of worldsheet fermions ¢, 1//b, where a, b € {2, ..., 9} in light cone gauge. The
charges Q are then the eigenvalues of the generator associated with one of the O(2)
affine algebra currents : ¥“v*:. Because all /“’s have identical boundary conditions
on the worldsheet, all pairs (a, b) yield equivalent non-supersymmetric models when
e=1.

3 Gauged N = 4 Supergravity Truncated to N = 1

Gauged N = 4 supergravity contains a gravity multiplet coupled to an arbitrary
number 6 + k of vector multiplets [9—13]. The scalar content is a complex field
@ and 6 x (6 + k) real scalars Zg, aef4,...,9}, Se{4,..., 154k}, defining a
non-linear o-model with target space

SU(, 1) y SO(6,6+k) )

U SO6) x SO6+k)
The coordinates of the second coset satisfy ngng ZbT = —84, Where n =
diag(—1,...,—1,1,...) with 6 entries —1. To diminish the number of degrees

of freedom and simplify the analysis, we implement from now on a Z, x Z, orb-
ifold action on the parent supersymmetric heterotic model, which reduces N = 4 to
N = 1. The generators G, G, act respectively as twists X4 — —X“ on the direc-
tions X, X7, X8, X° and X*, X°, X8, X°, thus reducing 7% to S'(R;) x S'(Rs) x
T? x T?. In that case, the choice of charge Q must be compatible with the orbifold
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action. A consistent choice amounts to taking the O (2) current with a = 6,b = 8
(i.e. in distinct T? tori). To convince ourselves, let us note that the tachyonic modes,
say with pure momenta along 72 x T2, transform consistently into each other under
G1 and Gzli

VO +ieyd .
V2

6 . 8
N _(_1)§ % eieXﬁ eiPSLXS efl' Z?:@ PILX'|O>NS ® |6>
¢6 _ iewS
_ ¢
V2

On the contrary, with (a, b) = (6,7) or (8,9), the generator G; would inconsis-
tently send the tachyons into massive superpartners. In the above formula, we have
introduced a discrete torsion & = 1 or O that yields two drastically different patterns
of tachyonic modes surviving the G-orbifold action.? In the following, we restrict
ourselves to the analysis of the case £ = 1. Notice that since the O(2) generator
used to implement the Scherk-Schwarz breaking of AV = 1 supersymmetry rotates
directions of distinct 7%’s, some of the tori deformation moduli are projected out.

Our goal is to derive the A = 1 supergravity potential V that depends on the
scalar fields whose masses are given in Eq. (4), and on the radii R4, Rs and the
dilaton field. This amounts to freezing (artificially) all remaining moduli, which are
associated with (i) the internal T2 x T? x T? (ii) or Eg x Eg Wilson lines, (iii) or
which arise from the twisted sectors. Moreover, as said before, we do not include
the potentially tachyonic modes with non-trivial momentum or winding numbers
along X%, X7, X%, X°, which we expect would not change the final phase diagram
for the choice of discrete torsion £ = 1 considered in this work. In that case, we find
convenient to derive the result by truncating suitably the N = 4 gauged supergravity
associated with the parent N' =4 — A = 0 heterotic no-scale model. The non-
linear o-model reduces to

ieXy eil’sl_X5 é Yo PiLX! |0)ns @ |6>

—ieXy e*iPSLXS ei(psLX(‘+P7LX7*PxLXS*Ik)LXQ) |0)ns ® |6) (6)

SU,1) y 50(2,2) y SOQ2,ky) y SOQ2,k-)
Uu() SO022) x SOQ2) ~ SOQ) x SO(ky)  SOQ2) x SO(k-)’

)

whose complex dimension is 1+ 2 + k. + k_. In these cosets, k. = +o00 is the
number of real scalars my = —ny = —Q = +1 with ms or ns arbitrary. Similarly,
k_ = 400 is the number of “anti-tachyons” my = —ny = —Q = —1 with —ms or
—ns. Due to the Z; x Z, orbifold action (see Eq.6), we know that tachyons and
anti-tachyons are identified. Among the coordinates Z3, those which do not survive

. i X! +ipre XL = ~ .
'In our notations, e/PLXL+PIRXR |0)ns ® |0) stands for | pr)ns ® | pr). where the coordinates and
the generalized momenta are divided into their left- and right-moving contributions, X! = X I{ +

X{z, p1 = PIL + PIr, and where we have set Ry = l/ﬁ for convenience.
2See the revised version of arXiv:1903.09116 [1].
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the truncation are set to zero. For instance, the third coset is parameterized by Z3,
a € {6, 7}, where the superscriptis restrictedto S € {12, ..., 11 + k;} = Z, and that
satisfy Y ¢ rer ns7Z5 Z) = —8ap-

Once we know the supermultiplet content of the A" = 4 supergravity, we need to
specify the gauging, i.e. the non-Abelian interactions between the gauge bosons
belonging to the vector multiplets as well as the 6 graviphotons. This amounts
to determining the structure constants frgsr, totally antisymmetric in their indices
R, S, T ef4,...,94+ (24 ki + k_)}. By supersymmetry, a potential is generated,
which is [9-14]

@2 2
V= %ZRUZSV(nTW‘i‘EZTW)fRSTfUVW, (8

where ZRY = ZR 7V To understand how the structure constants can be determined,
it is instructive to consider as an example the supersymmetric case (e = 0), for which
the left- and right-moving generalized momenta and squared mass for my = —ny4 =
€, ms = ns = 0, Q> = 1 take the following form:

€ /1 ) 1 2
p4ﬁ_ﬁ(R4:FR4>’ M —( R4> . )]
When R, = 1, two vectors multiplets become massless and satisfy py, = 0, psr =
€+/2. Recognizing pag to be the non-Cartan charges of SU (2), one concludes that the
massless vector multiplet enhance the U(1)p, x U(1)gr gauge symmetry generated
by the dimensionally reduced metric and antisymmetric tensor, (G + B),4, (G —
B) 4, to U(1)L x SU(2)r. As aresult, in a supersymmetric string theory model at
some given point in moduli space, the structure constants in a Weyl-Cartan basis
are nothing but the generalized momenta evaluated in the associated background,
(prL), (prr) [14].

The generalization of this result when supersymmetry is spontaneously broken
(e = 1) is not known. The main difficulty in that within a vector multiplet, the values
of the generalized momenta depend on Q. However, because in our case of interest
all scalar superpartners of the possible tachyons have masses of order Myying, they
can be safely set to zero and the potential V can be expressed only in terms of the
structure constants associated with the generalized momenta of the tachyonic modes.
Labelling the latter by an index A or A,

A=(my=-n=-0=+1, ms,0)or(my=-ny=-0=+1,0, ns),

A=my=-n=—-0=-1,-ms,0)or (myg =—ny =—-0 =-1,0, —ns),

the non-trivial structure constants involving vector multiplets are, up to antisymme-
try,
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fuai = pan) = = (57 — (R0 Fuons = (par) = —= (570 + (Ra))

4AA 4L \/z 2<R4) 47 ) J10AA 4R ﬁ 2<R4> 4

Ssaz = (psL) = % or % (Rs),

Juai={(psr) = #SR) or — % (Rs). (10)
5

Moreover, the non-Abelian structure of the 6 graviphotons of N = 4 supergravity
must be specified. For this purpose, we consider an ansatz consistent with the Z, x Z,
orbifold action,

fass =eL,  fioes =er, fao=-¢eL,  fi0,79 = €Rr, (11)

where the right hand sides will be determined by imposing the no-scale supergravity
phase to reproduce data of the heterotic model.

4 Tree Level Potential

We are ready to derive the potential of the Z, x Z, truncated N = 4 supergravity,
by using all ingredients introduced in the previous sections. In Eq. (7), the last
three cosets can be reparameterized in terms of “constrained” variables ¢ satisfying
Z5T = 4(¢5¢" + ¢5¢7). In particular, for the second manifold, we define

s_1-TU o THU _1+TU , T-U
¢ 5 ¢ i ¢ 5 ¢ 7
y=—(T—-T)U-TU) >0, (12)

where T', U are “unconstrained” complex coordinates. Similarly, for the third coset,
we take

¢6=ﬁ(1+ZA:wA), ¢7=ﬁ(1—2m>, o=

A

2
Y51_22|wA|2+‘2w§‘ -0, (13)
A A

in terms of unconstrained Calabi-Vesentini complex coordinates wy4. Finally, ¢8 s ¢9,
¢* can be expressed in terms of unconstrained coordinates w ; of the fourth manifold.

In order to identify tachyons and anti-tachyons, and to set to zero their massive
superpartners (the tachyons belong to chiral multiplets), we impose w = w; € R.
Moreover, because we restrict our analysis to the case where the compact directions
X*, X3 are factorized circles S'(Rs) x S'(Rs), we take the supergravity variables
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T,U tobeofthe form T = iR4Rs, U = i’R4/Rs. In these conditions, the truncated
gauged N = 4 supergravity potential takes the following form [1]

D
V= |2| (C(0)+C(2)92+C(4)92 ) 24 = ﬂ, (14)

VY

where C©, Ci\z) , C(4) are explicitly given in terms of the moduli R4, Rs and the
structure constants of Egs. (10), (11). The dictionary between the supergravity vari-
ables and the string theory moduli may not be trivial. Therefore, we introduce real
coefficients yqi1, ¥4, Y5 such that

D = ya e,  Ru=ypsRy, Rs=ysRs, (15)
where @y;) is the string theory dilaton field. Imposing that in the no-scale supergrav-

ity phase, where all £24’s vanish, the cosmological constant is zero, and the mass
spectrum matches Eq. (4), we find two solutions (¢ = %1)

eL = (pa+0v3pr), er = (pw+0N3pa), —& +é& =2,
1 2403 1

Vil ==, V=——", V5= -—". (16)
2 (R4) > 7 (Rs)

In the end, written in terms of the heterotic string theory moduli fields, the potential
takes the final form,

V=e2¢du4{(4 e )ZQA Y m i Ry 2
5 ms ns
+( +4R>(Z.Q>
2
+R—§(;m59§) +4R§(;n59§) } 17)

Some remarks are in order. First, we note that the duality transformations
Ry — 1/(2R4) and R4 — 1/Rs, which are satisfied by the 1-loop heterotic string
partition function, remain valid off-shell, at least at the low energy level, since they are
symmetries of V (as well as of the full effective action). Therefore, for the definition
of the supersymmetry breaking scale to be valid for arbitrary R4, we take

1

Mgy = ———n—.
MY /2 el In(V2Ry)|

(18)

Second, when the background value (Ry) sits outside the range given in Eq. (3),
because all mass terms in the first line of Eq. (17) are positive, it is clear that the
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no-scale phase of the heterotic model is recovered, with its degenerate vacua and flat
directions:

(V) =0, (24)=0,VA, (Muy) <M., (Rs), pa arbitrary.  (19)

Third, when (Ry) sits in the range of Eq. (3), one finds two degenerate branches of
extrema with respect to the £24°s and the radii:

1 1 .
(24) = %5 b00u0. (Ri) = 7 (Rs) arbitrary. (20)

Only one scalar condenses, which is the tachyon with trivial momentum and winding
numbers in all directions other than the Scherk-Schwarz circle S' (R,). Expanding the
condensing mode as £1/2 + 52y, and the radius as Ry = 1/ V2 4 8R4, the potential
becomes for small fluctuations of the fields

4
V= e2¢dﬂ(— L+ 8OR] 4163923 +-5 D m3 2}

5 ms

HAREY R+ ). @1)

ns

Therefore, § R4, 62y and all non-condensing £24’s are massive, while Rs is massless.
However, the dilaton field has a tadpole and cannot be stabilized. Actually, writing
the effective action in string frame, g, = 2%l &uwv» Where g, is the Einstein frame
metric, one obtains

R
Siree = / d*x/—g e 2 (5 +2(3¢pai)*> + 1 + O(8) + other ﬁelds), (22)

where R is the Ricci curvature. Notice that this expression matches the action of a
non-critical string theory with linear dilaton background ¢gii = k, X" + ¢, where
Kk, 1s a constant vector. As a result, it may be that the new phase arising from tachyon
condensation, and which is characterized by a negative potential, is associated with
a new fundamental heterotic string theory in non-critical dimension [1, 4, 5].

5 Conclusion

In this note, we have considered classical heterotic string backgrounds realizing the
spontaneous breaking of A = 1 supersymmetry in Minkowski spacetime, and we
have shown that the scale M,s, cannot exceed some critical value M. = O(Mying).
We have restricted our analysis to the case where the condensing tachyon has van-
ishing momentum and winding numbers along the internal directions not involved
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in the Scherk-Schwarz breaking of supersymmetry. However, as can be seen from
Eq. 6, another choice of discrete torsion in the model imply all potentially tachyonic
states surviving the orbifold action to have non-trivial momentum or winding in these
directions. It would be very interesting to apply our approach to this case, in order to
find all different regions in moduli space corresponding to new string theory phases.

Another interesting generalization of our work would be to take into account
all metric and antisymmetric tensor moduli-dependence of the torus of coordinates
X*, X°. In that case, the region in moduli space where the tachyon condensation
takes place is much more involved.

As a conclusion, let us mention that because in the very early universe the super-
symmetry breaking scale is naturally of the order of the string scale, the phenomenon
described in the present work may yield an alternative paradigm to inflation or bounc-
ing cosmologies.

References
1. Partouche, H., de Vaulchier, B.: JHEP 1908, 155 (2019). arXiv:1903.09116 [hep-th]
2. Cremmer, E., Ferrara, S., Kounnas, C., Nanopoulos, D.V.: Phys. Lett. B 133, 61 (1983)
3. Atick, J.J., Witten, E.: Nucl. Phys. B 310, 291 (1988)
4. Antoniadis, I., Kounnas, C.: Phys. Lett. B 261, 369 (1991)
5. Antoniadis, 1., Derendinger, J.P., Kounnas, C.: Nucl. Phys. B 551, 41 (1999). [hep-th/9902032]
6. Ferrara, S., Kounnas, C., Porrati, M., Zwirner, F.: Nucl. Phys. B 318, 75 (1989)
7. Scherk, J., Schwarz, J.H.: Nucl. Phys. B 153, 61 (1979)
8. Porrati, M., Zwirner, F.: Supersymmetry breaking in string derived supergravities. Nucl. Phys.

B 326, 162 (1989)
9. de Roo, M.: Phys. Lett. B 156, 331 (1985)
10. Bergshoeff, E., Koh, I.G., Sezgin, E.: Phys. Lett. B 155, 71 (1985)
11. de Roo, M., Wagemans, P.: Nucl. Phys. B 262, 644 (1985)
12. Wagemans, P.: Phys. Lett. B 206, 241 (1988)
13. Schon, J., Weidner, M.: JHEP 0605, 034 (2006). [hep-th/0602024]
14. Giveon, A., Porrati, M.: Nucl. Phys. B 355, 422 (1991)


http://arxiv.org/abs/1903.09116

Exotic Branes and Exotic Dualities )
in Supergravity e

Fabio Riccioni

Abstract We show how T-duality in string theory implies the presence of exotic
branes, that is branes of the lower-dimensional theory that do not have a geometric
higher-dimensional origin. We then move to discuss the potentials under which these
branes are electrically charged. We show that these are mixed-symmetry potentials,
and we discuss the duality relations among these potentials and the standard potentials
of ten-dimensional supergravity. Finally, we discuss how such duality relations can
be naturally described within the framework of double field theory, and we show one
particular physical consequence of this description.

1 Introduction

Duality symmetries play a crucial role in our understanding of various aspects of
string theory. In particular, S and U dualities relate BPS branes with tensions scaling
with different powers of the string dilaton, and therefore allow us to gain information
on non-perturbative aspects of the theory. In general, these duality symmetries act as
discrete subgroups of the global symmetry groups of the low-energy supergravity the-
ory. In this talk we are interested in theories with maximal supersymmetry, that arise
as torus reductions of ITA/IIB string theories. The global symmetry group of the the-
oryin 10 — d dimensions is E4.1(4+1), and the non-perturbative U-duality symmetry
of the full quantum theory is conjectured to be its discrete subgroup Eg14+1)(Z)
[14].

The T-duality group O(d, d; Z), which is a subgroup of U-duality, is a sym-
metry of the perturbative string spectrum of the theory dimensionally reduced on
T?. Correspondingly, in the low energy supergravity one can consider the maximal
subgroup R* x O(d, d) of Eg41(a+1), where RT is a symmetry under shifts of the
d-dimensional string dilaton, while O (d, d) leaves the dilaton invariant and it is there-
fore a perturbative symmetry of the low-energy action. In four dimensions, the Rt
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symmetry is enhanced to SL(2, R), while in three dimensions the full R* x O(7, 7)
is enhanced to SO (8, 8).

We quickly review how the O(d, d) symmetry acts on the scalar fields of the
maximal supergravity theory in 10 — d dimensions. In particular we are interested in
the scalars coming from the metric and the B field, that parametrise the coset space
0(d,d)/[0(d) x O(d)] by forming the O (d, d) matrix

gmn _gmp Bpn
Muyn = . (D
Bmpgpn 8mn — Bmpgpq Bqn

Under an O (d, d) transformation O, this matrix transforms as
M — 0T MO. 2

T-duality is the discrete subgroup O(d, d; Z). That is, given background values for
the G and B scalars, every O (d, d; Z) transformation, that acts on these background
fields as in (2), leaves the string spectrum invariant. One defines the O (d, d) invariant

tensor
0l

which identifies the “lightlike” O(d, d) coordinates X and X. The coordinates X
are precisely the coordinates of the d-dimensional torus, and one can ask what is
the physical meaning of the coordinates X. To answer this question, one writes X in
terms of the string coordinates X (o, 7) and Xg (o, 7) which describe the left and
the right modes respectively, as

X =X, + Xx. €]

The factorised T-duality transformation that maps IIA to IIB inverting the compact-
ification radius corresponds to

X{ - X X% — —X%, 5

where a is the direction one is T-dualising. On the other hand, such transformation
is the O(d, d) matrix that maps X to X“. This means that the coordinates X are the
“winding” coordinates

X =X, — Xg. (6)

The fact that T-duality transformations exchange the metric and the B field implies
that in string theory one has to generalise the concept of geometry. In particular one
can consider compactifications on generalised manifolds such that the transition func-
tions are T-duality transformations [13]. As a simple occurrence of non-geometry, we
can consider the IIB theory compactified to six dimensions on the orbifold 7%/Z,.
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The six-dimensional low-energy theory is N' = (2, 0) supergravity coupled to 21
tensor multiplets. Can we interpret this as arising from IIA? We can, but from the
point of view of IIA the Z, involution will act non-geometrically.

In the following we will first discuss how T-duality implies that in string theory
one has to consider, together with “standard” branes, that are the branes of the 10-
dimensional IIA or IIB theory, also “exotic” branes, that are branes that arise in the
lower-dimensional theory but do not have a clear higher-dimensional origin. We will
then move to study the potentials under which these branes are electrically charged,
and show that these are in general mixed-symmetry potentials related by “exotic”
duality relations to the potentials of the ten-dimensional theories. Finally, we will
show how these duality relations are unified in the framework of double field theory
(DFT), and we will discuss what information can be gained from the DFT picture.

2 Exotic Branes

We start by considering the ITA or IIB theory compactified on a 2-torus to eight
dimensions. In this case the perturbative global symmetry of the supergravity theory
is SO(2, 2), which is isomorphic to SL(2, R) x SL(2, R). This means that the G
and B scalars parametrise the coset manifold (SL(2, R)/SO(2))%. The scalars can
be grouped in two complex scalars t and p each transforming under one of the two
SL(2,R)’s in a linear fractional way. While the scalar 7 is made purely in terms of
the metric, the scalar p is

o = Bgg +i+/detG (7
and therefore a transformation
ap +b
- (3
cp+d

mixes the B field and the determinant of the internal metric.
The NS5-brane solution in the string frame is

ds® = Nwdx"dx” + H(r)dy"dy", )

where the NS-NS 3-form field strength and the dilaton are related to the harmonic
function H (r) as
Hmnp = Emnpqaql-l(r) €¢ = Hl/z(r)~ (10)

We want to T-dualise along the transverse directions 8 and 9. So we first have to smear
the NS5 along these directions. After smearing, the harmonic function becomes
logarithmic. The equation for Bgg becomes }89 Bgy = —0, H(r). Hence Bgg depends
linearly on 6, that is

0
Bgg = —, (11)
2
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and if one rotates around the brane Bgg — Bgyg + 1. That is, the monodromy is the
T-duality transformation
p—p+1, (12)

which is a symmetry of the eight-dimensional theory.
One can ask what happens to this solution after a generic T-duality transformation.
In particular, one can consider the transformation corresponding to two factorised
T-dualities in the directions 8 and 9. The action of such transformation on the scalar
p is
p—> —1/p. (13)

Hence, one ends up with a solution with monodromy
pY — B¥ +1 (14)

where
B* =Re(—1/p) = —Bgo/(Bgy + detG). (15)

Because of the monodromy, the explicit solution [8] is such that the internal metric
is not well-defined. This means that the resulting 5-brane is globally non-geometric,
i.e. itis “exotic”. It is called 5% in the literature, where the top number denotes the
number of isometries (in this case directions 8 and 9), while the bottom number
denotes the scaling of the tension with respect to the dilaton (in this case ggz).
Models constructed introducing these branes had already appeared in the literature
[10] well before the work of [8]. In particular, the model of [10] describes IIA 5-
branes localised on a 2-sphere S?, with monodromy SL(2, Z) o X SL(2,7Z);.If the
monodromy is non-trivial only with respect to SL(2, Z)., the model has N' = (1, 1)
supersymmetry and it is geometric, that is it is IIA on K3 where the K3 is elliptically
fibered. If the monodromy is non-trivial only with respect to the other SL(2, Z), the
model has A/ = (2, 0) supersymmetry and it is in general non-geometric. Finally, if
the monodromy is non-trivial with respect to both groups, supersymmetry is broken
to N = (1, 0).

In general, using chains of S and T dualities one finds all the non-geometric
solutions of the type of the 5%—brane [16]. Moreover, using the same dualities one
derives also the expression for the tension of all such branes as functions of the
string coupling and the compactification radii [9, 17, 18]. Following [17], one can
consider instead of the tension the mass that arises when one compactifies the brane
to a particle in three dimensions. So for instance for the D7-brane one gets mp7 ~
g;l R;3...R9, while for its S-dual we have mgp7 ~ g;3R3...R9. The NS5 gives a mass
272 R;...R; and the 53 gives g% R;...R7R3 RZ. The fact that the exotic brane gives a
mass proportional to a power of the radius higher than one is completely general and
implies that the tension of the exotic brane diverges in the decompactification limit.

We want to associate to each brane the potential under which the brane is elec-
trically charged. We use the following notation: if tension scales like g™, with
n=1,2,3,4..., we denote the potentials with letters C, D, E, F, .... That is, n is
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associated to the order in the alphabet. The indices of these potentials correspond
to the directions contributing to that mass formulae for the three-dimensional parti-
cles above (plus the time direction). This means that the wrapped D7-brane above is
charged with respect to the component Cysase7g9 of the RR 8-form Cg, its S-dual is
charged with respect to Eg34s6789, Which is a component of the 8-from Eg, and the
NS5 gives Dyz4s67 (potential Dg). The square dependence on the radii Rg and Ry for
the 5% give a potential Dy3a56730,89, Which is a component of the mixed-symmetry
potential Dg 5 (that is a field in a hook Young Tableau representation made of two
columns, one with 8 boxes and one with 2). This gives a precise mapping between
exotic branes and mixed-symmetry potentials [5]. What we want to analyse in the
following is what are these mixed-symmetry potentials and how can they be related
to the standard potentials of supergravity.

3 Exotic Dualities

We start by considering the NS5-brane. This brane is electrically charged under the
potential Dg, which is the electromagnetic dual of the NS-NS 2-form B,. We know
how to dualise the NS-NS 2-form potential B,,. We start from the kinetic term of
the 2-form,

S[B] = /dlox(— 1—12HabCH“b”), (16)

where H3 = d B;, and we write the parent action

1 1
SIDHY = [ V(= 5 Ha ™ = e D, oy th) (T

where now the 3-form Hj is treated as an independent field. The equation for Dg
gives the Bianchi identity d H3 = 0, which implies H; = d B, and plugging this back
into the action (17) gives back Eq. (16). On the other hand, the equation for H3 gives
the duality relation

1
Hal...a7 = 78[a1Da2...a7] = Eeal...ambcHabc’ (18)

and solving this for Hj in terms of Dg in Eq. (17) gives the dual action for Dg.

In the full supergravity theory, this potential turns out not only to transform with
respect to its own gauge transformations, but also with respect to the gauge trans-
formations of the RR potentials. As a result, the NS5 brane effective action contains
couplings to the RR potentials which give information on which type of brane can
end on the NS5. In particular, in the IIA theory the NS5 Wess-Zumino term has the
form

/[D6+Q1C5+Q3C3+95C1], (19)
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where G and Gs are the field strengths of a world-volume scalar and its dual, while
G; is the field strength of a world-volume self-dual 2-form. The NS5 in IIA is
the end-point of DO, D2 and D4 branes. Similar considerations apply to the 1IB
NSS5-brane.

We want to repeat the same analysis in eight dimensions. We want 6-form poten-
tials that couple to the NS5, the KK monopole and the 5%. These potentials are
in the (3,1) & (1,3) of SL(2,R) x SL(2,R), which is as we already mentioned
the perturbative symmetry of the eight-dimensional theory, and they come from the
10-dimensional mixed-symmetry potentials

D¢ D71 Dsp. (20)

We want to identify the last two potentials as dual to the standard fields of the ten-

dimensional theory. As we will show, the D7 ; is the dual of the graviton, while the
Dy 5 is the exotic dual of B;.

We first consider the dual graviton. We dualise linearised gravity in the frame

formulation, i.e. we dualise the linearised vielbein e, = §,% + h,“ [22]. One starts
with the linearised EH action written as

Senlh] = / A [fur? £ — L Fune = fupe f ), @1

where
fabc = aahbc - 8bhac- (22)

In terms of f, the linearised Einstein equations are
O fetaby + da fore" — Nap 8 fea® = 0, (23)
where f satisfies the Bianchi identity
Otafi” = 0. (24)

One then moves to a first order formulation and considers the parent action adding
the lagrange multiplier D,_3 ; that imposes the Bianchi identity,

/ dx €M USUD, oD fed® (25)
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Observe that now you cannot impose that the (d — 3, 1) potential is irreducible:
there is also a completely antisymmetric part. The equation for D gives the Bianchi
identity, while the equation for f gives the duality relation, and using the latter to
solve for f interms of D,_3; and plugging this back in the action gives the linearised
action for the dual graviton. In ten dimensions the potential is D7 ;.

‘We now move on to discuss the potential Dg 5, and show that it is related to B, by
an exotic duality relation. By suitably integrating by parts, we write the B, kinetic
action as

1 . .
181 = —5 [ dx(Qun 0" ~ 20, 0"), 26)

where O, . = 9, By (only antisymmetric in bc). We then introduce the parent action

1 d a,bc ab nc aj...ag_ab cd

S10. D1 = =5 [ (@7 Qune =20, Q'+ €40 D, it 01°)

27
where the D;_, » potential imposes the Bianchi identity dj, Opc.s = 0, and as before
itis in areducible representation. The equation for D gives the Bianchi identity, while
the equation for Q gives the duality relation, and plugging this back into the action
one then recovers the second order equation for the dual field [6]. In ten dimensions
the exotic dual potential is precisely Dg 5.

4 Exotic Dualities in DFT

The duality relations described in the previous section have a natural unified descrip-
tion in the framework of double field theory (DFT) [15, 20, 21]. In DFT the coordi-
nates X and X discussed in the introduction are treated on the same footing, and are
grouped together in XM = (X", X,,), where M is an SO (10, 10) index. The fields
can depend in principle on both sets of coordinates, provided that they satisfy the
section condition, that is on any pair of fields on the doubled space one must impose

n™MNay ® ay = 0. (28)
We are only interested in linearised field equations, and we employ the formulation

of [1, 2], which is the DFT extension of the vierbein formulation of gravity. One
introduces the generalised fluxes

Fapc = 30ahpcr, Fa = 3%hpa +20a0, (29)

where A, B, ...are SO(1,9) x SO(1,9) indices, h 4 p is the generalised vierbein and
¢ is the dilaton. The linearised action is
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- 1
Sprr = /dZdX e (SAB}—A}-B + 3 SABCDEF}-ABC-;EDEF)a (30)

where $48 and SABCPEF are invariant tensors of SO(1,9) x SO(1,9).

The fluxes obey Bianchi identities, which in a first order formulation we want to
obtain as equations for the dual fields. We thus consider a parent action with Lagrange
multipliers Dagcp and Dag,

/dMX [DABCP 3, Fpep + DY (3 Feap +204F5) + D 0* Fal, 31

whose field equations are the linearised Bianchi identities

0aFpcp) = 0
0 Feap +23aFp = 0 (32)
A F, = 0.

The equations for the fluxes give the duality relations, and plugging this back in the
parent action gives the linearised action for the dual fields. The potentials D, D7
and Dy » of the previous section are the components D¢, D¢ ; and D’ .4 of the
DFT potential D4pcp, and this analysis reproduces exactly the duality relations of
Dg, D71 and Ds  [3]. In particular, the standard dualisation and the exotic dualisation
of B, are unified in DFT.

To go back to the brane effective actions, we want to write down a DFT equivalent
of the WZ term in Eq. (19). To do this, one needs a DFT formulation of the RR
potentials. This formulation was given in [12], and it consists in collecting the RR
potentials in a chiral spinor of SO (10, 10)

10
1 -
X = E Ecml...mp r 710), (33)
p=0

with the Clifford vacuum |0) annihilated by all the gamma matrices I,. The field
strengths of the world-volume potentials describing D-branes ending on the NS5-
brane and their T-duals is also a chiral spinor G, and the DFT expression for the WZ
term is [4]

Swz = / % Qi polDYNPC 4 GIYNPO . (34)

where GI'MNPCy is an SO(10, 10) spinor bilinear. The charge Qunpo selects
the type of brane one is considering. In particular, Q,,,pq corresponds to the NS5,
O mnp? to the KK monopole and Q,,,”¢ to the 5§-brane, while the remaining charges
correspond to branes whose solutions are not even locally geometric.

As anice application of this framework, we can consider the form of this effective
action when the ITA Romans mass [19] is turned on. It is known [7] that massive
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couplings in WZ terms give anomalous creation of branes. For instance, for the
DO-brane, one has in the WZ term:

Sinassive DO—brane ™~ / m by (35)

which implies that when a DO crosses a D8, a fundamental string is created:

DO: xX|-————————
DE8: X[X XXX X X X X —
F1: x|-——————— X

Similarly, for the NS5-brane, one has

Smassive NS5—brane ™ /m Co (36)

giving rise to the creation of a D6 brane when a D8 crosses an NS5:

NS5 : XX X X X X —— — —
D8: X|X XXX XXX X —
D6: X|XXXXX———X

What our WZ term shows is that one can similarly consider the T-dual picture, in
which a 53 crosses a D8 giving rise to a D6 [4]:

5%: XX XXXX——QQ
D8: X|X X X XXX X — X
D6: X|[XXXXX——X—

To conclude, we have shown that at least at the linearised level one can introduce
mixed-symmetry potentials which couple to exotic branes and are related to the
standard potentials by exotic duality relations. We have also shown how DFT provides
a unified framework in which standard dualities and exotic dualities are treated on
the same footing. One can then write down unified effective actions. It would be
extremely interesting both from a conceptual point of view and from the point of
view of model building to understand whether this descriptions could be extended at
the interacting level.
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Thermodynamic Information Geometry )
and Applications in Holography e

H. Dimov, R. C. Rashkov, and T. Vetsov

Abstract In this report we investigate the space of equilibrium states for the three
dimensional warped anti-de Sitter black hole solution (WAdS3) of Topological mas-
sive gravity (TMG). Our considerations include the proper thermodynamic Rieman-
nian metrics on the statistical manifold, spanned by the intensive quantities of the
black hole, namely its temperature and angular velocity. Analyzing the conditions for
thermodynamic stability of the system we identify possible phase transition points
and impose several restrictions on the left and right central charges from the dual
gauge theory. Finally, by considering the thermodynamic length of geodesic paths
we find the optimal paths for quasi-static protocols on the equilibrium statistical
manifold of the warped black hole solution.

1 Introduction

The celebrated AdS/CFT correspondence revealed many important and unexpected
phenomena in various classical and quantum systems. One of its important feature is
that it relates a higher dimensional classical gravitational theory in the bulk of space-
time to a quantum field theory without gravity on a lower-dimensional boundary, and
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vice versa. On the other hand, the correspondence is also a duality between weak and
strong coupling regimes of both theories, allowing one to do perturbative calculations
in one of the theories and consequently translate the results to the non-perturbative
strong coupling part of the other theory. The latter feature lifts the correspondence
to an extraordinary powerful framework.

When one considers a gauge theory in a finite temperature its holographically
dual gravitational theory contains a black hole as a natural thermal source. In this
case, the thermodynamic features of the black hole in the bulk theory can be used to
impose various restrictions on the parameter space of the dual gauge theory. Besides
referring only to the standard Bekenstein-Hawking entropy and related quantities one
can resort to more intrinsically geometric methods of Thermodynamic information
geometry (TIG), where one defines a proper Riemannian metrics on the statistical
manifold of the bulk theory. In Sect. 2 we briefly introduce the basic concepts in TIG.

As an example in this report, we will consider the warped three dimensional anti-
de Sitter black hole solution, which is a stable vacuum solution of the 3d Topological
massive gravity (TMG), described by the action [1]!

1 2 1
Irug = —— | d’x=g (R+ 75 )+ —Ics. (1
167 M L M

In the last expression, the term Iy is the gravitational Chern-Simons action given
by
1

ICSZ_/ dx /=g (a F"+%F" It )
32 M Ao “Erv 3 nT ©ovr ’

and the coupling w is the mass of the graviton, e**’ = e**/ /=g, €12 = +1.
Although there are classical AdS; solutions for every value of the coupling i, the
only stable case is defined by the condition u L = 1, which leads to a non-negative
energy of the gravitons. However, other stable TMG vacua, namely warped back-
grounds, can be constructed, if one considers non-chiral values of x L. The latter are
discrete quotients by elements of SL(2, R) x U(1) of warped AdS; space. In this
case, the group elements of the quotient define the left and the right temperatures in
the dual gauge theory. With a certain choice for the central charges the density of
states in the gauge theory exactly matches the entropy of the corresponding black
hole solution, thus a duality between both theories can be conjectured.

The structure of the paper is as follows. In Sect.2 we briefly introduce the basic
concepts of Thermodynamic information geometry. In Sect. 3 we present the relevant
features of the WAdSj; black hole solution and its dual warped gauge theory. In Sect. 4
we investigate the thermodynamic stability of the WAdS5 solution in the space of
intensive thermodynamic parameters (7', §2), which enables us to identify any phase
transition points of the model. Consequently, we analyze several metric approaches to
the equilibrium of the system and determine the admissible thermodynamic metrics,

1Although it is not relevant for our considerations, one should also note that a certain boundary
term was introduced in [2] in order to make the variational principle well-defined.
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which can be used to describe the statistical manifold of the black hole solution. In
Sect. 5 the thermodynamic length of geodesic paths and the corresponding optimal
quasi static processes on the statistical manifold are considered. Finally, in Sect. 6
we make a brief discussion on our results.

2 Basics of Thermodynamic Information Geometry

The first geometric approaches to thermodynamics of a given system were introduced
by Weinhold [3] and Ruppeiner [4]. Weinhold showed that the empirical laws of
equilibrium thermodynamics can be related to the axioms of an abstract metric space.
In his approach the Hessian of the internal energy U with respect to the extensive
parameters of the system plays a central role in defining the proper Riemannian
metric on the space of macro states,

g = 0,0,U(E). 3)

Here E = (E!, E?, ..., E") are the other extensive parameters of the system besides
U. On the other hand, Ruppeiner developed his Thermodynamic geometry within
fluctuation theory, where the Hessian of the entropy S is used to define the proper
thermodynamic metric:

gy = —0a0,S(E). &)

Of course, due to the relation between the intensive and the extensive parameters for
systems with well defined first law, one can equivalently use the intensive thermo-
dynamic parameters as coordinates on the equilibrium manifold. Sometimes this is
considered even more natural. As it turns out, both Hessian metrics (3) and (4) are
conformally related to each other with the temperature 7' of the system being the
conformal factor, ds(zR) = ds(ZW) /T.

In order to understand why Hessian geometry plays an important role in Ther-
modynamic geometry, let us consider an open finite volume system A enclosed by a
larger thermal reservoir. The system A exchanges energy through fluctuations. The
microcanonical ensemble requires all microstates of A to be selected with equal
probabilities. Therefore, the probability of finding the internal energy u = U/ V per
volume of A between u and u + du is proportional to the number of microstates of
A corresponding to this range

P, V)du =C82(u, V)du, (®))
where 2 is the density of states, and C is a normalization factor. On the other hand,
one has Boltzmann’s expression for the entropy S = kg In £2, which yields Einstein’s

relation for the probability (kg = 1)

P(u, V)du = Ce*“Vdu. (6)
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This formula can be easily generalized in the presence of more fluctuating variables
E=(E',E% ...,E"):
P(E)d"E = CSPd"E. (7)

The next step is to expand the entropy S up to quadratic terms in E“:

328

— " _AE“AE" + ...
2 JEQED +

SE) — S =
where Sy = S((E“)) and AEY = E¢ — (E“). Atequilibrium 9,5 = 0 and S is max-
imized, thus 9,0, S < 0. Now, one can define the quantity

RN

—W = —HCSS(S(E)), (8)

8ab =

which is the Ruppeiner thermodynamic information metric (4). Therefore, one arrives
at the Gaussian approximation for the probability

1 1%
P(E)d"E = o €Xp (—3gif)AE“AEb> JVIgld"E, )
T

which is useful in calculating the average values of any given quantity. A breakdown
of the Gaussian approximation occurs when

V <|R|, R~&4, (10)

where V is the volume of the system, R is the thermodynamic scalar curvature, &
is the correlation length of the system, and d is the dimension of the system. In this
case, the singularities of the scalar curvature R correspond to the possible spinodal
curves and phase transition points of the model.

Although Weinhold and Ruppeiner metrics have been successfully applied to
describe the phase structure of condensed matter systems, when utilized for black
holes they do not often agree with each other. One of the reasons is due to the fact that
Hessian metrics are not Legendre invariant, thus they do not preserve the geometric
structure under a change of the thermodynamic potential. For this reason, in Ref.
[5] H. Quevedo considered the (2n + 1)-dimensional thermodynamic phase space,
spanned by the thermodynamic potential @, the set of extensive variables E, and the
set of intensive variables I, to find the general Legendre invariant form of the metric
on the space of equilibrium states:

32
D =0, ®E) x"———— dE*dE 11
g » P(E) x, SED g B . (11)

where x,” = x.r 6/ is a constant diagonal matrix and 25 € R is the degree of
generalized homogeneity, ® (A% E', ... APV EN) =% @(E', ..., EV), B, € R.
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In this case, the Euler identity for homogeneous functions should hold

Bas E° 2P _ ¢ D (12)
ab 9Eb = 8o ’

where B,, = diag(B, B2, ..., Bn). From the first law d® = I, d E“, one notes that
1, =0®/0E*. When B,, = S4», One recovers the standard Euler identity. If we
choose B, = 845, for complicated systems this may lead to some non-trivial confor-
mal factor, which is no longer proportional to the potential @. On the other hand, the
choice x,» = n4p = diag(—1, 1, ..., 1) applies to systems with second-order phase
transitions, while the choice x,, = 8, is suitable for the description of systems with
at least a first order phase transition.

Although the Legendre invariant proposal of Quevedo is very general, it allows one
to choose from various conformal factors, which can be used to reduce the number of
any redundant singularities in the thermodynamic curvature, coming from working
in non-physical reference frames. A specific proposal in this line, which seems to
work well in many cases, was given in [6], where the authors introduce a special
metric, known as the HPEM metric.

Finally, a recent approach to Thermodynamic geometry was considered by Mirza
and Mansoori in [7-9], which is based on conjugate thermodynamic potentials,
specifically chosen to reflect the relevant thermodynamic properties of system under
consideration.

Some applications of these approaches to different gravitational systems can be
found for example in [10-12]. In order to identify the admissible thermodynamic
metrics for a given black hole solution, a case by case study is required.

3 The WAdS3/WCFT; Correspondence

The warped AdS; black hole solution is given by [1]
ds* = L* (dt* + D(r)dr® + N(r)d9*> + 2F (r)dtdo) , (13)

where r € [0, 00], t € [—00, 00],0 ~ 6 + 27, and

F(r) =vr — %\/r+r_(v2 +3), D(r) = ! (14)

W23 —rp)r—r)’
NG = 2 <3r(v2 D)+ (P43 1) —do S (2 + 3)) . (15)

The horizons are located at 7, and _, where g’" vanishes. Here, we also introduced
the parameter v = u L /3. Notice that (13) reduces to the BTZ black hole in a rotating
frame, when v> = 1. The physical black hole solutions exist only for v> > 1, as long
as r, and r_ stay positive. For v> < 1, we always encounter closed time-like curves
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and such geometries posses no interest. Therefore, without loss of generality it is
natural to choose L > 0 and 1 < v? < oo for the non-chiral case.

The entropy S and the ADT conserved charges M and J of the warped AdS black
hole are given by

2
=T <r+ fro— é,/u (24 3)) , (16)

24
S = ;TTLV ((91)2 F3)r — P43 —4v /02 +3)r+r_> : 17)
2 2 2
s | | G e
(18)

One also has the Hawking temperature and the angular velocity

v243) (ry —r_ 2
I ( ) (re —12) oo ‘
471L(2vr+— (v2+3)r+r_) L(2vr+— (v2+3)r+r_)
(19)
In this case, the first law of thermodynamics holds
dM =TdS+ $2dJ . (20)

Let us comment on the admissible values of the thermodynamic quantities. Assuming
ry > r_ one can reach S = 0 only if —1 < v < 1, which is not our case. The same
condition holds for M = 0. Thus, we consider only positive S > 0, M > 0.FromEq.
(19), one notes that the angular velocity §2 never reaches zero, while the temperature
T is zero for coincident horizons, », = r_, which is the extremal case. On the other
hand, the laws of thermodynamics forbid us from ever reaching the absolute zero,
thus 7 > 0.

Instead of r; and r_, it is more useful to work with the left and right temperatures
from the dual gauge theory, namely

2 _ 2 :
T _ +3)(ry —r-) 7, =" +3 <r++r—@>» 21

R 8L T saL v

and the left and right central charges’

L(S v2+3) 4v L L
L L= ——— —Cp=——. 22
CR v(v2 3) cL CL —CR » (22)

2 Although we are going to consider only positive central charges throughout the paper, which lead
to unitary CFTs, one should keep in mind that negative charges can play vital role in anomaly
cancellations, when considering the total central charge.
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From Egs. (22), under the requirement of positive central charges and v> > 1, one can
restrict only to v > 1. Therefore, it immediately follows that ¢;, < L and cp < 2 L.
For large v — oo one has vanishing central charges, which is physically excluded
due to the divergence of the Kretschmann invariant of the metric

18— 1202 4 6v*

K 2

(23)

Furthermore, the third expression in Eq. (22) clearly forbids the case c; = cg, while
its negative sign suggests that cg > ¢ . Putting everything together one finds

O<cp <L, L<cp<?2L. 24)
On the other hand, from Eq. (22), one finds the ratio of the central charges

4 2

_ v (25)

crg 34512
It depends only on v and certain limits can be considered. For v — oo, the ratio
reaches a maximum value of 4/5. One has to exclude this value due to Eq. (23). When
v = 1, the ratio is 1/2, which is also excluded from our considerations. Therefore,

1 Cr, 4

—< — < —. (26)
2 CR 5
In terms of the dual CFT temperatures and charges the entropy takes the Cardy form

7L
3

S =

(cL T +cr Tr) - (27)
One can also define the following left and right moving energies,

7L ) 7L
CLT . ERZ

T2, 28
6 6 CR ( )

E, =

which allow us to write the mass M, the angular momentum J and the Hawking
temperature in the following way

- 3CL ’ - L Rk T_U2+3 TR ’

W have everything to proceed with finding the proper thermodynamic metrics on
the space of equilibrium states of the warped black hole solution.
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4 Thermodynamic Information Geometry of WAdS3;

In order to study the thermodynamic properties of the WAdS; black hole within
the formalism of Thermodynamic information geometry, we express all extensive
parameters (M, S, J) of the solution in terms of the intensive ones (7', §2) and the
left and right central charges (¢, , cg) from the dual gauge theory, i.e.

s =7 ,
3cr 2 30 6¢y 22

M= 1 —mcr T 1—nT(c —cR) J = 14+ mc, T(xT(cp, —cRr) —2)

(30)

One naturally requires S > 0, which is always satisfied due to Eq. (24), while impos-

ing M, J > 0 leads to

T < ; 3D

7 (60 + Veren)

The local thermodynamic stability of the WAdS3 black hole in (7, £2) space can
be determined by the explicit form of its heat capacities

2cxT 2T _
_ TCR i C, = w7 (32)
3(mwe T2 T (cp —cr) —2)+ £2)

C
e 30

where imposing Cg ; > 0 leads to condition (31). The Davies critical points are
given by the singularities of the heat capacities together with the points where they

change sign, namely

1
-1 (33)

7 (er + erer)

This is the same critical temperature found in [11], where the authors consider dif-
ferent equilibrium manifolds.

The simplest metric one can define on the equilibrium manifold is the Ruppeiner
metric given by the Hessian of the entropy with respect to the intensive parameters
(T, £2):

R 0 (GEALS
§" = —Hess(S(T, 2)) = (cr—cp)m? _277((CR3£2CL)7TT+1) : (34
3522 3023

Due to the probabilistic interpretation of the Hessian thermodynamic metrics we
additionally require their positive definiteness (Sylvetser’s criterion), where all prin-
cipal minors of the metric should be positive,

p=gR >0 pp=g® >0, p3=det@g®)>0. (35)

However, one immediately notes that this is not possible for (34) due to the fact that
its third principal minor is always negative, i.e.
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2_4
(L —cr)'m

= det(3®) =
p3 = det(g") 00

< 0. (36)
Therefore, one can suggest that Ruppeiner’s approach is not suitable for the descrip-
tion of the equilibrium space of the warped black hole.

On the other hand, Weinhold’s approach takes the Hessian of the internal energy
of the system instead of the entropy. In the case of black holes their internal energy
is equivalent to the conserved ADT mass M. Therefore

N 0 =
g(W) = Hess(M(T, §2)) = (L 2(13%,17) > . 37
302 3¢ 23

Once again, it is not possible to impose Sylvester’s criterion due to the fact p3 =
det(gM)) = —x? / (92*) < 0is negative. Therefore, Weinhold information metric
also fails to produce a viable thermodynamic metric.

One can find similar results for the Hessians of other thermodynamic potential,
thus the conclusion is that the Hessian approach is not powerful enough to describe
the equilibrium manifold of the warped black hole. The latter is also supported by
the fact that the corresponding Hessian thermodynamic curvatures do not account
for the relevant phase transition points of the system.

In order to overcome these issues one can consider Legendre invariant metrics.
For example, choosing x., = 1. = diag(—1, 1), the Quevedo metric (11) in (7, £2)
space becomes

(cr=c)m3T (e —cp)n T—1) 0
5(Q) 9122 (38)
8 - 0 aT((cp—cr)nT—1)(cpnT ((cp—cr)nT—2)+1) .
QCL 94

This metric cannot be positive definite for any values of 7' and 2, but in this case,
due to the unclear physical meaning of its components, the requirement of positive
definiteness is not necessary, although it would be preferable if a probabilistic inter-
pretation is found to be true. Nevertheless, the thermodynamic curvature accounts
for the relevant phase transition points. However, it also introduces additional ones,
as it is obvious from the denominator of the scalar thermodynamic curvature

den(RQ)Y «« T3 T(cp —cr) — D3 (e , T(xT(c, —cr) —2)+ 1%, (39)

where only one of the roots of the expression is positive and coincides with the
critical temperature (33).
On the other hand, the HPEM metric in (S, J) space is given by

asM
ds2y, = sa;—(—agMds2 +82MdJ?). (40)

3
J
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Transforming this metric to (7', £2) space, one finds

cR3m3T ((cgr—cp)mT+1) 0
s(H) _ 243¢3 (c—cg)* 21!
- 0 cRT (cr—cr)n T+ (e T (cr—cr)mT+2)—1)
243¢% (cp—cr)* 213

(41)

oo

In contrast to Quevedo’s case, the HPEM metric is be positive definite in the region of
local thermodynamic stability (below the critical temperature 7 < T.), which makes
it a better choice for a viable thermodynamic metric on the equilibrium manifold.
The denominator of its scalar curvature also accounts for all relevant critical points

den(R™) &« T3 T(cr — 1) + D (e, T(xT(cg —c) +2) — D2, (42)

where only one of the roots of the expression is positive and coincides with the
critical temperature (33).

Similar positive definite metric can be constructed via the conjugate potential
K = M — £2J. In this case, the coefficients of the MM metric can be calculated
easily in (S, £2) space via

ds?, = 1 adeserz 8K dsSd2 + a21<d92 (43)
Son =7\ " os2 95982 9022 '

The result in (7, §2) space is given by

w (cr—cp)m? ”((CL*CR);TT*I)
g = 2, TSy % , (44)
3722 3¢, T$23(c, —cr)

where the MM metric is positive definite when T < T,. A nice feature of this approach
is that by construction it admits only the relevant singularities of the system, as one
can see from its scalar curvature

3crR2BreT(RT(cr —cp) +1) — 1)

RM — .
72T (cr — cr)* (e, T (T (cr — cg) —2) + 1)*

(45)

Let us summarize the results in this section. We have considered Hessian thermo-
dynamic metrics, namely Ruppeiner and Weinhold metrics and established that they
are not suitable for the description of the equilibrium thermodynamic space of the
WAJS; black hole. On the other hand, considering two Legendre invariant metric
approaches, namely Quevedo and HPEM ones, we found that they correctly account
for the phase structure of the black hole solution. However, only HPEM metric can be
made positive definite in a subregion of the equilibrium manifold. Finally, using the
method of conjugate thermodynamic potentials, we were able to construct a positive
definite metric, which also correctly describes the thermodynamic features of the
system in equilibrium.
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5 Thermodynamic Length and Quasi-Static Processes

The viable thermodynamic metrics, found in the previous section, can be used to study
geodesics on the equilibrium manifold, spanned by the intensive parameters (7', £2).
This allows one to calculate the thermodynamic length (the shortest distance) between
two macro states, which can be used to optimize the implementation of quasi-static
protocols® within a given statistical ensemble. The action for the thermodynamic
geodesics is written by [13]

ﬁZ/ 8ab(X)
0

where ¢ is an affine parameter on the geodesics,* A%(t) = (T (¢), £2(1)) are the set of
intensive thermodynamic parameters. We can vary the action to obtain the system of
coupled geodesic equations

dre dib
I dr (46)

2(t) + TS (@A (DA (1) = 0, (47)

where the dot denotes a derivative with respect to ¢. By definition the solutions of
equations (47) extremizes the thermodynamic length £ between two equilibrium
states. The latter given by the on-shell value of the action (46) for the geodesic
curve, connecting those states. We can also define a related quantity, called the
thermodynamic divergence of the path,

a d)xb

J = r/ 8ab(X) dr, (48)

0 dt 7

which is a measure of the energy dissipation or entropy production for a transition
between two equilibrium points at particular rates of change of the control parameters.
In other words, J measures the efficiency of the quasi-static protocols and satisfies
the following bound

J > L (49)

The latter follows from the Cauchy-Schwarz inequality for integrals and provides
a formal definition of the degree of irreversibility of the process’ (see [14] and
references therein). In what follows, we are going to consider only cases, which can
be solved analytically.

3 A quasi-static protocol, or a quasi-static process, is a process applied to a given physical system,
which on every step awaits for equilibration of the parameters. Thus, the systems is never taken out
of equilibrium, when going from one macro state to a different one.

4In thermodynamics the parameter ¢ € [0, t], where (t = 0,7 = t) denote the initial and final states,
does not necessarily correspond to time. It can be any well-defined order parameter of the system.

SWith reversibility only for 7 = 0.
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The thermodynamic geodesics in (7', §2) parameter space for the Quevedo metric
(38) can be solved analytically if one considers a constant temperature profile 7'(¢) =
T = const. In this case, the system of coupled geodesic equations (47) reduces to
one second order ordinary differential equation for the function £2(¢):

L") —22'(t)* =0, (50)
and a cubic algebraic equation for the constant temperature 7 = const:
drdep (L — cr)*T? +97%cp(cp — e )T? + 2By —cp)T —1=0.  (51)

In the last algebraic equation, the only allowed solutions are real roots with 7 > 0,
which do not coincide with any critical points of the system. In this particular case,
one notes that the discriminant of the cubic equation (51)

A =478 cr(cL — cr)? (27ci +9crcp + 320%) >0 (52)

is positive, thus there are always three distinct real roots. The solution to the differ-
ential equation (50) is given by

2

__ 5% _ O —
Q(l)—m, £2200) = 29, £2°(0) =Wy, (53)

where £2(0) = 2y and £2'(0) = W), are the initial value and the initial rate of change
of the angular velocity, respectively. Substituting this solution and the metric coef-
ficients in Eqgs. (46) and (48) one can compute the geodesic length and the corre-
sponding geodesic divergence between a state at ¢ = 0 and a state at t = t, namely

_ MWIVAT (e —er) 7T — 1) (ernT (e —er) T —2) + D

L 2
390 CcrL

. G4

aTW3 ((cp —cr) T — 1) (conT ((cp —cr) T —2) + 1)T

\72 QCLQS

(55)

In this case, for the given geodesic path, one has J = L2, which saturates the bound
in Eq. (49). The latter means that in Quevedo’s case a quasi-static process, along a
constant temperature profile, is the optimal one with smallest energy cost.

Similar analysis can also be conducted in HPEM’s case. Here, the constant tem-
perature geodesic profile leads to the same cubic algebraic equation (51), while the
equation for the angular velocity now becomes

222" (1) — 132'(1)* = 0. (56)
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Its solution is given by

11W, -/
20) = 90( o 1) . 20) =2, 2©0)=W,. (57

The corresponding thermodynamic length and divergence are written by

_ WVolerv/ernT ((cr —c) a7 + 1) (ep T ((cg —cL) T +2) — D

C )
928¢2 (cr — c1)v/3820(cL — cr) 58)
7= aTeyWi ((cr —cr) T + 1) (o T ((cr — ) wT +2) — l)r. (59)

243ci (cp — CR)3.Q(§3

One notes that for the given geodesic path the bound in Eq. (49) is saturated, which
defines any quasi-static process along a constant temperature profile to be the optimal
one in HPEM’s case.

6 Conclusion

In this report, we have considered the thermodynamic stability over the space of the
intensive parameters for the WAdS3 black hole solution of 3d Topological massive
gravity. Restricting ourselves only to non-chiral values of the graviton’s mass param-
eter, we found several conditions (24) and (26) on the central charges from the dual
warped gauge theory. Consequently, considering positive values of the relevant ther-
modynamic quantities, such as the ADT mass and the Hawking-Beckenstein entropy
of the black hole, we constrained the possible values of the Hawking temperature
only to a subregion in (7', £2) parameter space, namely Eq. (31). The latter was also
shown to be the condition for local thermodynamic stability of the model.

We have extended our analysis of the WAdS solution by considering several
geometric approaches to its equilibrium thermodynamic space. In this case, we have
shown that the simpler Hessian approaches of Ruppeiner and Weinhold are not
suitable for the description of the equilibrium space of the WAdS3 black hole. On
the other hand, the Legendre invariant metric approaches of Quevedo and HPEM,
and the recent approach based on conjugate thermodynamic potentials (the MM
approach), correctly accounted for the relevant thermodynamic features of the black
hole solution. However, only HPEM and MM metrics can be made positive definite
in a subregion of the equilibrium manifold.

Finally, investigating geodesics on the equilibrium manifold, equipped with
Quevedo and HPEM metrics respectively, we have found analytic solutions (Egs.
(53) and (57)) to the system of coupled geodesic equations (47) in the case of con-
stant temperature profiles. By calculating the thermodynamic lengths (Egs. (54) and
(58)) and the corresponding thermodynamic divergences (Eqgs. (55) and (59)) in the
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cases mentioned above, we have also shown that the obtained solutions lead to the
implementation of optimal quasi-static protocols (requiring minimal energy cost) on
the space of equilibrium states of the warped black hole solution.
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The Role of the Slope in the )
Multi-measure Cosmological Model e

Denitsa Staicova

Abstract In this work, we report some results on the numerical exploration of the
model of Guendelman-Nissimov-Pacheva. This model has been previously applied to
cosmology, but there were open questions regarding its parameters. Here we demon-
strate the existence of families of solutions on the slope of the effective potential
which preserve the duration of the inflation and its power. For this solutions, one
can see the previously reported phenomenon of the inflaton scalar field climbing
up the slope, with the effect more pronounced when starting lower on the potential
slope. Finally we compare the dynamical and the potential slow-roll parameters for
the model and we find that the latter describe the numerically observed inflationary
period better.

1 Cosmology Today

Some of the most defining features of the Universe we live in are that it is isotropic,
homogeneous and flat. They have been confirmed to great precision by cosmolog-
ical probes (WMAP, Planck). Another important observation is that the universe is
currently expanding in an accelerated way (confirmed by the data from SNIa and the
Cepheids) which requires the introduction of dark energy. A model which describe
all of those fundamental properties is the A — C DM model, in which different com-
ponents of the energy density contribute to the evolution of the universe as different
powers of the scale factor.

Explicitly, in the Friedman-Lemaitre-Robertson-Walker (FLRW) metric g,, =
diag{—1, a(t)?, a(t)?, a(t)*}, we have for the first Friedman equation: H = j;’ =
Ho/2ma=3 + 2aqa= + 2,4.

Here H = a(t)/a is the Hubble parameter and a(t) is the scale factor parametriz-
ing the expansion of the Universe. Hj is the current Hubble constant, £2,,, is the critical
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matter density (dark matter and baryonic matter), £2,,4 is the critical radiation den-
sity, and §2, is the critical density of the cosmological constant (i.e. dark energy).
In our units (G = 1/167), peris = 6HZ, therefore 2, = py/peris = ,ox/(6H02) for
X ={m,rad, A}.

While the A — C DM model offers a rather simple explanation of the evolution
of the Universe (the minimal A — CDM has only 6 parameters), it still has its
problems. Some of the oldest ones—the horizon problem, the flatness problem, the
missing monopoles problem and the large-structures formation problem, require the
introduction of a new stage of the development of the Universe—the inflation. The
inflation is an exponential expansion of the Universe lasting between 107*¢s and
107325 after the Bing Bang, which however increases the volume of the Universe
107° times.

The simplest way to produce inflation [1] is to introduce a scalar field ¢ which
is moving in a potential V;,z;(¢). Inflation is generated by the exchange of potential
energy for kinetic energy. In this case, the evolution of the Universe will be described
by two differential equations:

2 8 14
H? = 5z V(@) + 599 (1)
$+3H$ + V), (¢) =0, @)

where the first one is the Friedman equation and the second is the inflaton equation.
Inflation occurs when é(r) > 0 which happens in this simple system when ¢> <
V(¢), i.e. when the potential energy dominates over the kinetic one. The pressure
and the energy density are:

Do = 0212 — Vins (@), ps = ¢*/2 + Vinsi(9).

One can consider different forms for the effective potential, but those simplistic
inflationary theories have the problem of not being able to reproduce the graceful
transition from inflation to the other observed epochs.

2 The Multimeasure Model

There are different ways to obtain a model with richer structure. Here we follow
the model developed by Guendelman, Nissimov and Pacheva [2-8]. The idea is to
couple two scalar fields (the inflaton ¢ and the darkon ) to both standard Riemannian
metric and to another non-Riemannian volume form, so that the model can describe
simultaneously early inflation, the smooth exit to modern times, and the existence of
dark matter and dark energy.
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The action of the model: S = Syurkon + Sinfiaton 18 (for more details [8-10]):

Sarion = f d*x(y=g + ()L, X,)

®(H)
Sinflaton = /d4x¢1(A)(R + LD +/d4xq§2(B) <L<2> + —)
e Ve

where @;(Z) = %e”"“i)uzm\ for Z = A, B, C, H, are the non-Riemannian mea-
sures, constructed with the help of 4 auxiliary completely antisymmetric rank-3
tensors and we have the following Lagrangians for the two scalar fields « and ¢:

Lu)=-X,— W)

LY =—Xy = V(). V(@) = fre™

L? = —bye Xy + U($), U(¢) = fre >

where X, = % ghv9,,co,c are the standard kinetic terms for ¢ = u, ¢.

Trough the use of variational principle, for this model, it has been found that there
exists a transformation

. D(A) 3)
8w = —F7/—8uv
nv H 143

ou 1

— = W(u) —2My) "2, “4)

ou
for which for the Weyl-rescaled metric g, the action becomes

S€D = [d“x V=8(R+ L“D), (5)

For the rescaled metric g and the derived effective Lagrangian, L.y, the Einstein
Field equations are satisfied.

The action in the FLRW metric becomes (v = u):

v .
o — — (V4 M — yabpe *¢*)2
a(t)2+ > 2( + My — x2boe *?¢$*/2)

o
+ ry U + M) — 2Mo))-

N ST
Serf) — /dt a(t)3( _6 a)~ ¢

from which one can obtain the equations of motion in the standard way.
Explicitly, the equations of motion are:

v} 4+3av+2b=0 (6)
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a(t) = \/ga(t), (N

d 3 X2 5 s @ v? V2
(@@ + Zoe™ ) ) + a ()@ xaboe™ + Vo = 2l 3) 5 =0
3)
1 V(@)+M— 1 xabe @0 $? _ —Pu
Herea = 3 — o P = m0s a0 @) i —2i) and
Li2t 4 2 gabeoou) + (v 4 ) 4 SB00
= — — e v R
o ) 2 %2 2 1 3a()?

is the energy density.

3 The Numerical Solutions

One can see that the parameters of this system are 12: 4 free parameters {«, by, fi, f2},
5 integration constants {My, M|, M3, x», p,} and 3 initial conditions {a(0),

$(0), $(0)}.

We use the following initial conditions:

a(0) = 107'2, ¢(0) = ¢y, $(0) = 0. )

To narrow down the parameter-space, we add also {a(1) = 1, @(0.71) = 0}. The
consequences of these choices are as follow:

1) The initial condition a(0) = O introduces a singularity at the beginning of the
evolution.

2) The normalization a(1) = 1 fixes the age of the Universe.

3) The condition ¢(0.71) = 0 sets the end of the matter-domination epoch.

Defined like this, we have an initial value problem (Eq.9), which we solve using
the shooting method, starting the integration from ¢ = 0.

It is possible to also start the integration backwards, from ¢ = 1, using as initial
conditions: a(1) = 1, ¢(1) = Pena, (1) = 0 and aim for a(0) = 0. Here ¢(1) =
0 guarantees that the evolution of the inflaton field has stopped and the universe
is expanding in an accelerated fashion. While both approaches work, integrating
forward has the benefit of dealing with the singularity at a(0) = 0O at the beginning
of the integration, rather than at its end. Moving our initial point of integration away
froma(0) = 0decreases the significance of the term p,, /a(t)?. This effectively means
putting p,, = 0, which we do not want, because p,, is the conserved Noether charge
of the “dust” dark matter current (see [8]).
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The initial velocity of the scalar field ¢ (0) is not a free parameter of the system,
because its value is quickly fixed by the inflaton equation, i.e the results do not depend
on ¢(0) in a very large interval.

An important feature of the model, is that the type of evolution one would obtain,
depends critically on the starting position on the effective potential. We consider as
physically “realistic” only the evolution with four epochs—short first deceleration
epoch (FD), early inflation (EI), second deceleration (SD) which we interpret as radi-
ation and matter dominated epochs together and finally—slowly accelerating expan-
sion (AE). In terms of the equation of state(EOS) parameter w(¢) = p/p, those are
solutions for which: 1) wpp — 1/3, corresponding to the EOS of ultra-relativistic
matter, 2) wg; — —1—EOS of dark energy, 3) wsp > —1/3—EOS of matter-radi-
ation domination, 4) w4 < —1/3—accelerating expansion period. One obtains this
type of solution only for specific choice of the parameters and when starting on the
slope of the effective potential. Starting anywhere else results in a non-physical solu-
tion (with less epochs). Here we will work only with the “realistic” solutions.

Numerically, the times of the different epochs are defined by the three points
in which second derivative of the scale factor becomes zero, i.e. d(t;) = 0 for t; =
tgr, tsp, tag. In the units we use, tsp ~ 1070 and 74 ~ 0.71. We have already
reported [11] a study on how the choice of the parameters affects fsp. Here we will
discuss some additional features of the model.

In [11] we used the parameter by to set g ~ 0.71 and parameter f; to ensure
a(l) = 1. Changing f; however changes the effective potential defined by:

1 (fie™® + M;)?
4 2 (fre 2% + My) —2M,

Uerr(9) = (10)

thus making it harder to study how the solutions depend on the starting position on
the slope.

In the current article, we will go a different route and we will use by to set
tag 