
Summary of PAKDD CUP 2020: From
Organizers’ Perspective

Cheng He1(B), Yi Liu1, Tao Huang1, Fan Xu1, Jiongzhou Liu1, Shujie Han2,
Patrick P. C. Lee2, and Pinghui Wang3

1 Alibaba Group, Hangzhou, China
hecheng.hc@alibaba-inc.com

2 The Chinese University of Hong Kong, Hong Kong, China
3 Xi’an Jiaotong University, Xi’an, China

Abstract. PAKDD2020 Alibaba AI Ops Competition is jointly orga-
nized by PAKDD2020, Alibaba Cloud, and Alibaba Tianchi platform.
The task of the competition is to predict disk failures in large-scale
cloud computing environments. We provide SMART (Self-Monitoring,
Analysis and Reporting Technology) logs on a daily basis in the produc-
tion environments without any preprocessing except anonymization. The
SMART logs pose great challenges for analysis and disk failure predic-
tion in real production environments, such as data noises and the extreme
data imbalance property. In this paper, we first describe the competition
task, practical challenges, and evaluation metrics. We then present the
statistical results of the competition and summarize the key techniques
adopted in the submitted solutions. Finally, we discuss the open issues
and the choices of techniques regarding the online deployment.
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1 Introduction

In large-scale cloud computing environments, millions of hard disk drives are
deployed to store and manage massive data [2]. With such large-scale modern
data centers, disk failures are prevalent and account for the largest proportion
among the hardware failures in cloud data centers [20]. Disk failures may lead to
service performance degradation, service unavailability, or even data loss [5]. In
order to provide cloud services with high availability and reliability, cloud service
providers explore proactive fault tolerance approaches to predict disk failures in
advance.

For more than a decade, researchers from academia and industry have made
great progress in disk failure predictions. Recent studies [6,9,11,12,15–17,19,21,
22,24] conduct comprehensive analysis on SMART (Self-Monitoring, Analysis,
and Reporting Technology) logs [4], and they also make use of machine learning
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algorithms to achieve accurate prediction results. However, as the public datasets
are limited at scale in the whole community, it is difficult to apply state-of-the-
art solutions directly into production environments due to the following more
strict requirements for online deployment.

– Prediction on a daily basis. In the production environment, the monitor-
ing system usually collects SMART logs on a daily basis. Thus, disk failure
prediction is supposed to output prediction results at the same granularity.
This requirement leads to more severe data imbalance problem.

– Data noise. Data noise is commonplace and attributed to labeling and sam-
pling in the complicated production environments. Specifically, administra-
tors often detect disk failures by using the self-defined expert rules, yet these
rules may change over time and cannot cover the unknown disk failures,
thereby leading to noise in labeling. Also, the data collection process may be
interrupted by some incidents in production, which causes missing of data
during data collection.

In this paper, we first describe the competition task and related challenges
in Sect. 2. We then describe the details of our proposed evaluation metrics for
disk failure prediction under requirements in production environments in Sect. 3.
In Sect. 4, we highlight the mainstream and novel techniques adopted in the
submitted solutions. We analyze the overall statistics of submitted results in
Sect. 5. Finally, we discuss the open issues in practical deployment in Sect. 6.

2 Task Description

The task of PAKDD2020 Alibaba AI Ops Competition is about reliability
and availability improvement in cloud computing environments, in particular,
through the predictive maintenance of disk failures. The participants of the
competition are required to predict disk failures in the future 30 days based
on the historical SMART logs and failure tags. We provide the SMART logs of
two hard disk models from the same manufacturer over the duration for more
than one year. Each disk model contains more than 100 K independent hard disk
drives. To the best of our knowledge, this is the largest public dataset by size for
a single disk model for disk failure prediction. As this is a supervised learning
task, in addition to SMART logs, we also provide labels contained in the failure
tag file collected from our trouble tickets system. All the dataset and related
descriptions are available at PAKDD Cup 2020 and Tianchi website: https://
tianchi.aliyun.com/competition/entrance/231775/information?lang=en-us.

Table 1 shows the metadata of training and testing SMART logs of the disk
models A1 and A2. The SMART logs contain 514 columns in total, includ-
ing the disk serial number, manufacturer, disk model, data collecting time, and
510 columns of the SMART attributes. We denote the SMART attributes by
“smart n”, where n is the ID of the SMART attribute. Each SMART attribute
has a raw value and a normalized value, which are denoted by “smart n raw” and
“smart n normalized”, respectively. The SMART attributes are vendor-specific,
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while many of these attributes have a normalized value that ranges from 1 to 253
(with higher values representing better status). The initial default normalized
value of the SMART attributes is 100 but can vary across manufacturers.

Table 2 shows the metadata of failure tags. It contains five columns including
the disk serial number, manufacturer, disk model, failure time, and sub-failure
type. In particular, the trouble ticket system in Alibaba Cloud detects disk
failures using expert rules and reports the failure time (denoted by “fault time”)
and sub-failure type (denoted by “tag”) when failures occur. For the sub-failure
types, we anonymize the names and map them into the numbers ranging from
one to five, while we set the sub-failure type as zero by default for healthy disks.

Table 1. Metadata of training and testing sets.

Column name Type Description

serial number string disk serial number code

manufacturer string disk manufacturer code

model string disk model code

smart n normalized integer normalized value of SMART-n

smart n raw integer raw value of SMART-n

dt string data collecting time

Table 2. Metadata of failure tags.

Column name Type Description

serial number string disk serial number code

manufacturer string disk manufacturer code

model string disk model code

fault time string time of failure reported in the trouble ticket system

tag integer ID of sub-failure type, ranging from 0 to 5

The competition has three rounds: preliminaries, semi-finals, and finals. In
preliminaries, we provide the dataset of two disk models from the same manu-
facturer including the SMART logs and failure tags. We set the training period
from July 31, 2017 to July 31, 2018 and the testing period from August 1, 2018
to August 31, 2018. During preliminaries, we first open the training and testing
sets of disk model A1 for the participants. The participants can leverage the
dataset to select features, construct machine learning model, and optimize their
machine learning models. We then open the training and testing sets of disk
model A2 for participants five days before the preliminaries deadline, so as to
test the generalization of their methodology designed for disk model A1 on the
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new testing set (disk model A2). We select the top 150 teams with the higher
prediction accuracy on disk model A2 into semi-finals.

In semi-finals, participants have the same training sets of disk model A1 and
A2 with those in preliminaries, but the testing dataset is not available offline.
Instead, we merge the testing data of disk models A1 and A2 together from
September 1, 2018 to September 30, 2018 and put the resulting dataset into
online testing environments. We require participants to submit their prediction
solutions packed in docker files to online testing environments for predicting disk
failures in the testing dataset (including both disk models A1 and A2). We select
the top 12 teams with higher prediction accuracy into finals.

In finals, we require the 12 teams to present their solutions, including the
main idea, design of machine learning models, and workflow details (e.g., feature
selection and construction as well as optimization methods). We invite experts
from industry and academia as our committee to score their presentations in
terms of reasonability, novelty, and completeness. The final scores are comprised
of two parts, i.e., 70% for prediction results and 30% for presentation.

In this competition, we summarize the following challenges in our dataset for
disk failure prediction:

– Extremely imbalanced data. The data imbalance problem is a well-known
challenge in the machine learning community [13], meaning that classifiers
tend to be more biased towards the majority class. In production, when we
predict disk failure on a daily basis, the data imbalance becomes more severe
and the imbalance ratio of failed disks to healthy disks is less than 0.003%
in our dataset. Therefore, data imbalance is a critical issue that needs to be
addressed in both the competition as well as production environments.

– Data noise. Data noise is commonplace and attributed to many reasons, such
as network failures, software malfunction/upgrades, system or server crashes,
data missing, or anomaly collected data events in monitoring systems. All
these events bring noise into the dataset and compromise the expected pat-
terns of the dataset. Data noise cannot be ignored in disk failure prediction,
as it can impair the prediction accuracy. How to design and apply proper
techniques in dealing with the data noise problem is also a key to improving
the accuracy of disk failure prediction solutions.

We encourage participants to leverage prior studies and state-of-the-art tech-
niques to obtain domain knowledge of the SMART logs and disks during com-
petition period in addition to our dataset and specifications. We also build a
testing environment for participants to evaluate and reproduce the submitted
solution, so as to guarantee the correctness of the prediction outputs.

3 Evaluation

We evaluate the prediction results of participants’ submitted solutions based
on three accuracy metrics, including precision, recall, and F1-score, as defined
below.
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– Precision for P-window. We define the precision as the fraction of actual
failed disks being predicted over all (correctly and falsely) predicted failed
disks. As our objective is to evaluate whether a failed disk being predicted
is an actual failure within 30 days, we define the P-window as a fixed-size
sliding window starting from the first time that a disk is predicted as failure,
and set the length of the P-window as 30 days. Let T denote the start date
and T + k − 1 denote the end date of the testing period (k as 30 days in our
competition). Note that the P-window may slide out of the testing period.
Figure 1 illustrates how we count true positive and false positive results. If
the actual failure happens within the P-window (e.g., the 1st and 4th rows),
we regard the failed disk as a correctly predicted one; otherwise (e.g., the 2nd
and 3rd rows), we regard the disk as a falsely predicted one.

– Recall for R-window. We next define the recall as the fraction of actual
failed disks being predicted over all actual failed disks. We define the R-
window as a fixed-size window (not sliding window) from the starting date
to the end date of the testing period with the length of 30 days in our case
(i.e., from T to T + k − 1, where k is 30 days). Figure 2 shows how we count
false positive, false negative, and true positive results. If a failed disk being
predicted is not failed within the R-window (the 1st and 2nd rows), we regard
the disk as a falsely predicted one; otherwise, we regard the failed disk as a
correctly predicted one (the 4th and 5th rows). If an actual failed disk within
the R-window is not predicted, we regard the failed disk as a missed one (i.e.,
false negative in the 3rd row).

– F1-score. We follow the classical definition of F1-score as 2×precision×recall
precision+recall .

For easy comparison, we use F1-score as the participants’ score in prelimi-
naries and semi-finals.

.....

T T+k-1 Date timeT+1 T+2 .....

.....

.....

True
Positive

False
Positive
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T+kT+k+1 

P-window: Precision observation window
Sliding window, start from first failure predicted date for Precision calculation

Normal disk

The first date a disk is predicted to be failed

Trouble tickets generation

Disk predicted to be failed

.....False
Positive

Fig. 1. Illustration of P-window.
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Fig. 2. Illustration of R-window.

In preliminaries, participants are required to submit prediction results in CSV
format with four deterministic columns, including the manufacturer, disk model,
disk serial number, and failure predicted date, based on our provided dataset.
If one disk is predicted to be failed multiple times, we only take the earliest
prediction date in the evaluation process and ignore the later ones. In semi-finals,
we put the testing dataset on the cloud testing environments, so participants
must submit their solutions packed with a docker image to predict disk failures
on a daily basis. Then the auto-evaluation process gives a final score based on
the aforementioned metrics. In finals, the top-ranking teams in the leaderboard
are asked to present the strengths and weaknesses of their solutions. The final
scores are comprised of two parts, 70% of prediction results in semi-finals and
30% of presentation results in finals.

2AledomksiD)b(1AledomksiD)a(

Fig. 3. F1-score distribution of prediction results of disk models A1 and A2 in
preliminaries.
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4 Statistics of Submissions

In this section, we analyze the statistics of submissions on the prediction accu-
racy distributions, team affiliation, and the time spent of participants on the
competition.

4.1 Prediction Accuracy Distributions

We first analyze the prediction accuracy distributions in preliminaries. There are
1,173 teams registered in the competition and we received 3,309 valid submissions
from 291 teams for failure prediction of disk model A1. Figure 3(a) shows the
distributions of F1-score for predicting failures in disk model A1. From the figure,
we can see that around 19.6% teams achieve the F1-scores higher than 30%, while
nearly half (47.4%) of the teams’ results fall into the interval between 20% and
30% F1-score. Figure 3(b) illustrates the distributions of F1-score for predicting
failures in disk model A2. The top 141 teams uploaded their solutions 405 times
in total. We notice that only 4.3% teams achieve the F1-scores higher than 30%,
which is much worse than that for disk model A1. The reason may be mainly on
the late opening of the training and testing data of disk model A2, so the teams
only have 5 days for in-depth analysis. Most teams had to quickly transfer their
knowledge, features, and even models learned from disk model A1 directly to
disk model A2. It may lead to the severe overfitting problems.

In semi-finals, 76 teams submitted 3,299 valid solutions to predict disk fail-
ures from the mixed disk models A1 and A2. Figure 4 shows that more than
61.8% teams obtain the F1-scores higher than 30%, which is much better than
the results in preliminaries (19.5% teams for disk model A1 and 4.3% teams for
disk model A2). It also indicates that after passing preliminaries, participants

Fig. 4. F1-score distribution of prediction results of mixed disk A1 and A2 in semi-
finals.
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Table 3. Presentation results and semi-final scores of top teams.

Final ranking Presentation score Semi-final score

1 25.125 49.068

2 26.250 42.513

3 25.875 40.466

4 25.000 39.977

5 25.375 38.177

6 24.250 38.575

7 22.250 38.792

8 22.125 37.002

9 21.500 37.215

10 19.875 38.251

11 19.125 37.116

can pay more attention to feature engineering, modeling, and optimizing their
solutions to improve their prediction results.

Finally, the top 12 teams entered the finals. Table 3 shows the presentation
results and the semi-final score. The final score consists of 30% of presenta-
tion results and 70% of semi-final score. The presentation results in finals are
evaluated in four major aspects, including novelty (10 points), reasonability (10
points), integrity (5 points), and presentation performance (5 points), by a com-
mittee of experts from academia and industry.

Fig. 5. Occupation analysis from registration information
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Fig. 6. Days spent to reach 85% of each team’s best prediction results

4.2 Team Affiliation and Time Spent

We next present the team affiliation. Figure 5 shows that more than 70% of teams
come from universities and companies. Most of them are familiar with machine
learning and data mining, while very few of them have a strong background in
storage reliability.

We also analyze the time spent of participants on the competition in order
to know how much time participants need to apply their knowledge into a new
field. Figure 6 shows the histogram results of days spent when reaching 85% of
the best prediction accuracy for a team. We choose the 85%-mark as it can
reflect that participants have completed the most part of their solutions. We
notice that more than 81.3% of the teams can complete the majority of the task
within 20 days, while around 29.3% of the teams spend less than 10 days on the
task. These results provide us very useful insights for our future promotion of
AI OPs to the community.

5 Mainstream Methodology and Highlighted Techniques

In this section, we summarize the techniques and methods applied in the com-
petition based on the reviewed submissions.

5.1 Mainstream Methodology

From the reviewed submissions, the workflow of most solutions is comprised
of four components, including data preprocessing, training sample generation,
feature engineering, and modeling.

– Data preprocessing. As we describe before, there exists data noise in the
SMART logs and failure labels. Thus, data preprocessing becomes an essen-
tial step that is applied by almost all teams. Most of the teams apply simple
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methods to solve the problem. For example, they drop the samples with miss-
ing data directly or interpolate missing data by forward filling or backward
filling.

– Training sample generation. Re-sampling techniques [3] are popular
approaches for dealing with data imbalance. Existing methods include over-
sampling (e.g., SMOTE [7]), which directly duplicates positive samples, and
undersampling (e.g., cluster-based undersampling [23]), which selects a subset
of negative samples randomly with a predefined ratio.

– Feature engineering. Feature construction and feature selection are two
important steps for feature engineering. In the competition, almost all teams
exploit sliding-window-based statistical features with various window lengths,
such as difference, mean, variance, and exponentially weighted moving-
average values. Some teams also select important features based on correlation
analysis and remove the weakly correlated SMART attributes to failures.

– Modeling. Most teams formulate disk failure prediction as a binary classifi-
cation problem and use tree-based ensemble models, such as random forests
and the decision-tree variations. Among them, LightGBM [14] and Xgboost
[8] are applied the most because of their efficiency in execution time and
memory usage.

5.2 Highlighted Techniques and Novel Ideas

In addition to conventional approaches, we notice that participants also propose
and try many novel ways in the competition. We highlight some approaches and
categorize them into the aforementioned four components.

In data preprocessing, a team proposes the cubic spline interpolation method
to solve data missing problem, and their experiment results show that it can
improve the benchmark result of F1-score by more than 3%.

In training sample generation, two teams apply different methods from the
above resampling techniques, i.e., GAN [10] and self-paced ensemble model [18].
GAN augments positive samples, while self-paced ensemble model is an under-
sampling method for downsampling negative samples. From the experimental
results, these two methods become useful complements to the re-sampling tech-
niques for mitigating the data imbalance problem.

In feature engineering, some teams propose different feature construction
methods based on data analysis. They analyze the distance of failure occurrences,
distributions of disk lifetime, and data missing ratio. We find that each of the
methods, as well as the combinations of the methods, can improve the overall
prediction results.

In modeling, in addition to using binary classification models, several teams
formulate the problem as a multi-label classification or a regression problem,
which can result in a higher F1-score. Furthermore, a team designs a two-layer
stacking model, in which the second layer uses different features from the first
layer and aims to reduce the number of false positives. All the highlighted cre-
ative methods give us more inspirations and will be helpful for all of us in future
exploration.
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6 Discussion

From the competition perspective, we admit that some tricks are very useful for
improving prediction results. However, from an online deployment standpoint,
besides the balance of solution complexity and online performance, we pay more
attention to the interpretation of the model and results. Thus, some features and
methods applied in this competition are debatable for production deployment.
We list some of them for open discussion:

– Should we take SMART-9 (power-on hours) as one of the important features?
The raw value of SMART-9 is a cumulative value and indicates the lifetime
of a disk. This value should increase by 24 h for normal disks if we collect the
data on a daily basis. Also, we do not find any evidence in the production
environment that the statistical features based on SMART-9 have a significant
correlation with disk failures.

– Should we do bitwise decoding for the SMART attributes, such as SMART-1
(read error rate), SMART-7 (seek error rate), SMART-188 (command time-
out), and SMART-240 (head flying hours)? The raw values of these SMART
attributes are vendor-specific and are often meaningless as decimal num-
bers [4]. Some teams construct statistical features based on these SMART
attributes without bitwise decoding, but we are still unsure whether this
method is reasonable and effective.

– How should we interpret tree-based ensemble models? Tree-based ensemble
models, like random forest and GBDT, are popular and widely used in the
competitions. However, these models can only provide overall feature impor-
tances without clear information on the individual predicted output to sup-
port engineers for locating and solving disk failures.

Another interesting phenomenon is the limited usage of cutting-edge tech-
niques like deep learning. One possible reason is that deep learning is a kind of
data-hungry methodology. Even though we have opened the large-scale datasets,
the data size is still insufficient for teams to build sophisticated deep learning
neural networks.

Besides the techniques and methods mentioned and applied in this compe-
tition, we have published part of our progress in [11,12]. Although the results
cannot be directly comparable with this competition because of the differences of
datasets, techniques like data preprocessing (correlation analysis, spline interpo-
lation, automated pre-failure backtracking, denoising etc.), feature engineering,
and modeling are fully tested and applied in production environments.

In the future, we will keep pushing this area forward by gradually opening
more anonymized datasets from different disk models, manufacturers, perfor-
mance data, and system logs in addition to the SMART logs and failure tags.
All datasets will be made available on the official Github website [1]. Also, other
AI OPs tasks, such as memory error prediction, server downtime prediction,
server cluster auto-healing, application-level intelligent operations, will also be
taken into consideration. With more data and information, we encourage the
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community to find more interesting and challenging problems in this field for
further research and breakthrough.
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