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Abstract. In modern datacenter, hard disk drive has the highest failure rate.
Current storage system has data protection feature to avoid data loss caused by
disk failure. However, data reconstruction process always slows down or even
suspends system services. If disk failures can be predicted accurately, data
protection mechanism can be performed before disk failures really happen. Disk
failure prediction dramatically improve the reliability and availability of storage
system. This paper analyzes disk SMART data features in detail. According the
analysis results, we design an effective feature extraction and preprocessing
method. And we have optimized the XGBoost’s hyperparameters. Finally,
ensemble learning is applied to further improve the accuracy of prediction. The
experimental results of Alibaba data set show that our system predict disk
failures within 30 days. And the F-score achieves 39.98.

Keywords: XGBoost � Feature engineering � Hyperparameter tuning �
Ensemble learning

1 Introduction

Large-scale data center usually has millions of hard disks. Disk failure will decrease the
stability and reliability of the storage system. And it may even endanger the entire IT
infrastructure, and affect the business SLA. If disk failures were predicted in advance,
data can be backed up or migrated during the spare time. Disk failure prediction can
greatly reduce data loss and effectively improve the reliability of the data center.

SMART (Self-Monitoring, Analysis and Reporting Technology) [1] is a monitoring
data supplied by HDD, solid-state drives (SSDs), and eMMC drives. All modern HDD
manufacturers support the SMART specification. Currently, it’s common to predict
disk failures using on SMART data and AI technology. A SMART datasets [2] was
provided to contestants by PAKDD2020 Alibaba AI Ops Competition [3]. Our disk
prediction model was verified on it.
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There are a large amount of related work on predicting disk failures. For example,
Hongzhang [4] proposed an active fault-tolerant technology based on the “acquisition-
prediction-migration-feedback” mechanism. Sidi [5] proposed a method of combining
disk IO, host IO and location information for fault prediction. Based on CNN and
LSTM neural network algorithm, this method can extract features and train model
automatically. Yong [6] proposed an online disk failures prediction method named
CDEF. CDEF combine disk-level SMART signals and system-level signals. CDEF use
a cost-aware rank model to select the top r disks that are most likely to have errors.
Yanwen [7] proposed a disk failures prediction and interpretation method DFPE. By
extracting relevant features, DFPE derives the prediction rules of the model. DFPE
evaluates the importance of the features, then improves the interpretability of complex
models. Ganguly [8] utilized SMART and hardware-level features such as node per-
formance counter to predict disk failure. Ma [9] investigate the impact of disk failures
on RAID storage systems and designed RAIDShield to predict RAID-level disk fail-
ures. Nicolas [10] uses SVM, RF and GBT to predict disk failures. And it reaches 67%
recall. Tan [11] proposed an online anomaly prediction method to foresee impending
system anomalies. They applied discrete-time Markov chains to model the evolving
patterns of system features, then used tree augmented naive Bayesian to train anomaly
classifier. Dean [12] proposed an Unsupervised Behavior Learning system, which
leverages an unsupervised method self organizing map to predict performance
anomalies. Wang [13] also proposed an unsupervised method to predict disk anomaly
based on mahalanobis distance. Ceph [14] has disk fault prediction features. It needs to
train SMART raw data for 12 days and use SVM [15] to predict disk failures.

However, due to the complexity of the actual production environment, noisy data,
and other uncertainties, developing a disk failure prediction system that can be used in
large-scale data centers is very challenging:

• The positive and negative samples are extremely imbalanced. The reason is system
downtime caused by disk failure occurred infrequently. Actually, for small-scale or
short-load disk storage systems, the number of failed disks is very small.

• The change of S.M.A.R.T. values is difficult to predict. According to our obser-
vation, S.M.A.R.T. values will change only when the disk is near failure, and
sometimes change suddenly. In addition, when the disk is healthy, its S.M.A.R.T.
value could be large and stable. Therefore, it cannot rely only on the absolute value
of S.M.A.R.T.

• The generalization ability of prediction model is insufficient. There are a large
number of disks of different models or even different manufacturers in the same data
center. If the generalization ability of the prediction model is not strong, it is
difficult to obtain high-performance prediction results.

The contributions of this article are as follows:

• Through data exploration, SMART range analysis, changepoint analysis and other
methods, we found several SMART attributes that are strongly correlate to disk
failure. We determine time series feature extraction method and sliding window
size. We establish the principle of labeling positive and negative samples.
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• In order to eliminate the differences in feature data distribution of different models,
feature scaling is performed during data preprocessing. As a result, a unified model
can simplify the deployment process, and improve the model generalization ability.

• During model training stage, firstly, we choose XGBoost [16] algorithm as base
model, which is simple and efficient. Then we fine-tune model parameters. Finally,
soft voting method is used to ensemble each sub-model, and further improving the
prediction performance of the model.

The rest of this paper is organized as follows: In Sect. 2, we describes the proposed
approach and details. The evaluation of our approach and experiment results are
described in Sect. 3. Section 4 presents conclusion.

2 Solution

In this section, we present our disk failure prediction approach. Figure 1 shows the
overview of the approach.

Firstly, we analyze the internal distribution law of SMART data through data
exploration, select representative healthy and faulty disks to construct positive and
negative samples, identify fault-related SMART features and extract time series fea-
tures. Feature scaling is performed during data preprocessing, and the impact of dif-
ferent ranges between different disk models and different SMART features can be
eliminated. Secondly, based on the scaled dataset, we construct binary classification
model and tune its hyperparameters. Finally, we integrate sub-models, verify integrated
model using validation dataset, and take the threshold at the maximum F-score on the
verification dataset as the optimal threshold.

We then import the trained model, preprocessing parameters and prediction
threshold, and make online prediction on the test dataset and output the final prediction
result.

Fig. 1. Disk failure prediction overview.
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2.1 Feature Selection

Through statistical analysis, we found that there are a large number of empty columns
in the SMART dataset, and only 48 of the total 510 columns are non-empty. Then, the
SMART probability density distribution and KL divergence were calculated for healthy
and faulty disks, and SMART 5,187,192,193,197,198 and 199 were selected, which are
related to disk failure and have big KL divergence. The KL divergence of all these
selected features is positive infinity. As shown in Fig. 2, the KL divergence of SMART
198 is positive infinity, and the distribution of SMART 198 is mainly concentrated near
zero for both healthy and faulty disks, and the main difference exists in the long tail on
the right side. This part of data is useful for distinguishing between faulty disks and
healthy disks. However, the distribution of SMART 194 has a high degree of coin-
cidence, and the KL divergence is only 0.015, this means that it is difficult to distin-
guish between healthy and faulty disks through SMART 194.

2.2 Feature Analysis

For the key smart features selected by the feature selection above, further analysis is
made from the following three dimensions.

The first is range analysis. Statistics show that only around 5000 of the healthy
disks exist non-zero value. Compared with all-zero disks, these disks contain more
useful information. We should focus on these high-value healthy disk data when
constructing model.

Secondly, changepoint analysis was performed on the SMART of faulty disks. It
was found that even in the last 7 days of the faulty disks, the values of 50%–75% of
these features such as SMART 5, SMART 187 are zero. And the faulty disk will not
change significantly until the last 1–15 days of the life. As shown in Fig. 3, the
SMART 5 of this disk did not change until the last 10 days, and did not increase
significantly until the last 4 days, and SMART 187 did not change until the last 1 day.
This phenomenon commonly occurs on faulty disks, that is, the closer to the end of life,
the more likely sudden change will occur. Therefore, when constructing a positive
sample, it is best to choose the last 0–7 days of the faulty disks, and the sliding window
for extracting time series features is most suitably set between 3 and 7.

Fig. 2. SMART 198 and 194 probability density distribution.
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Finally, by horizontal comparison and analysis of different disk models model1 and
model2, it is found that the difference in the value range of each SMART feature
between model 1 and model 2 is significant (As shown in Fig. 4). By scaling the
SMART features of different models in the preprocessing stage, the SMART features
of each model are firstly scaled to the same range, and then data is scaled again by
standard scaler for training to eliminate smart distribution difference of each model. In
this way, we obtain a unified model, optimize the prediction effect and improve model
generalization ability successfully.

2.3 Preprocessing

We use the dataset provided by Alibaba to complete our approach. The data from July
2017 to July 2018 is used for training, and the data of August 2018 is used for offline
validation. Tianchi Alibaba uses data of September 2018 for online testing.

In the training dataset, there are a total of 184,305 disks, including 1,272 faulty
disks and 183,033 healthy disks. Among all the disks, only 5,953 are not-all-empty.
The judgment rule about not-all-empty is that the values of the main features (smar-
t_5raw, smart_187raw, smart_197raw, smart_198raw, smart_199raw) are not all 0 or
empty during the entire life cycle of the disk. For the training dataset, healthy and faulty
disks are down-sampled at 10: 1, and around 5,000 not-all-empty healthy disks were
added as supplements.

Fig. 3. SMART 5 (left) and 187 (right) trend graph.

Fig. 4. SMART maximum comparison between model1 and model2.
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The missing values of the original data are filled with forward padding method to
ensure the continuity of the time series.

To solve the problem of sample imbalance, we only select data samples for training
from the last 7 days, and the last 30th, 40th, 50th, and 60th days of each disk. Then
mark the last 7 days of the faulty disks as positive and other data samples as negative.

Time series feature extraction is performed on key SMART features on every day
sampled. The sliding window is 3 days, 5 days, and 7 days. The extraction method is
shown in the following Table 1.

Scale the SMART data of model2 to the range of the minimum and maximum of
model1. Taking the feature Fn of model2 that is scaled to model1 as an example, first
calculate the scaling factor, then scale the feature Fn of model2 to Fnscaled.

scale ¼ maxðmodel1 FnÞ � minðmode1 FnÞ
maxðmodel2 FnÞ � minðmodel2 FnÞ ð1Þ

Fnscaled ¼ scale� Fn�min model2 Fnð Þð Þþminðmodel1 FnÞ ð2Þ

Finally, a standard method is used to scale the dataset.

2.4 Model Training

Our approach finally chose XGBoost [17] algorithm for model training, because the
number of samples and the number of features in the data set are relatively small, and
there is no need for very complicated models. At the same time, the hyperparameters of
XGBoost are easy to adjust, and XGBoost is not easy to overfit. By comparing
experimental results, it is found that the prediction results of XGBoost are better than
Random Forest [18] and LSTM [18, 19].

We use 3-folder cross-validation for model training, and use AUC as the evaluation
function. Compared with the PRC evaluation function, AUC is not sensitive to the rate
of positive and negative samples. The AUC learning curve during training is shown in
the Fig. 5. When the AUC is no longer improved, the optimal number of iterations of
XGBoost can be determined.

Table 1. Time series feature extraction.

Number Feature extraction
method

Detail

1 Change time The number of attribute changes within a period
2 Change rate The slope of attribute values within a period
3 Std The standard variance of attribute values within a

period
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By using grid search to optimize XGBoost hyperparameters, such as max_depth,
scale_pos_weight and so on, it was found that the prediction results were not improved
significantly on validation dataset.

Finally, we use the validation dataset to obtain the prediction probability. As shown
in the Fig. 6, the best prediction threshold is the classification threshold with maximum
F-score.

2.5 Model Ensemble

The ensemble of sub-models can effectively improve the generalization ability of the
prediction model. We finally selected 6 sub-models that perform well on the validation
set. These sub-models use XGBoost as the basic algorithm. The difference between
them is mainly in the preprocessing, such as different SMART features, different
feature extraction methods and sliding windows. Detailed parameters of these six

Fig. 5. AUC learning curve during training.

Fig. 6. F-score, Recall and Precision change curve with prediction threshold.
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sub-models are shown in the Fig. 7. The final prediction probabilities of the integrated
models are obtained by averaging the prediction probabilities of these six models.

The positive samples and sampling positions in the Fig. 7 are related to the sam-
pling process in Sect. 2.3.

3 Evaluation

3.1 Evaluation Metric

According to the Alibaba’s requirement, prediction engine predicts the failure disks in
the next 30 days. We used the precision, recall and F-score evaluation metrics redefined
in the competition rules [3].

Recall reflects the proportion of positive samples correctly judged to the total
positive samples, and Precision reflects the proportion of true positive samples among
the positive samples decided by the classifier. The higher Recall and Precision, the
better. F1-Score is the weighted average of Recall and Precision. F-score takes into
account both Recall and Precision.

The metrics are defined as follows:

Precision ¼ ntpp
npp

ð3Þ

Recall ¼ ntpr
npr

ð4Þ

F � score ¼ 2 � Precision � Recall
Precision � Recall

ð5Þ

The following Table 2 explains ntpp, npp, ntpr and npr.

Fig. 7. Model ensemble method.
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3.2 Experimental Results

There are two steps in model verification stage. Firstly, we predict offline validation
dataset, then select the optimal F-score value and corresponding prediction threshold.
The prediction results of the offline validation dataset are shown in the Table 3. By
ensembling several good sub-models together, the overall prediction performance can
be improved. The best sub-model is Model_06, with F-score 34.21, while the inte-
grated model’s F-score reached 36.36, an increase of 2.15. Secondly, we predict online
test dataset for final testing. The prediction precision was 52.42, the Recall was 32.31,
and the F-score was 39.98.

4 Summary

In large-scale data centers, disk is the component with the highest failure rate. Disk
failure will seriously affect the stability and reliability of IT infrastructure. Based on the
SMART data set of Alibaba Data Center, this paper designs and implements an effi-
cient disk failure prediction system. The training process of the system consists of five
parts: feature extraction, preprocessing, model training, model ensemble, and model
verification. XGBoost algorithm is applied. After system-level optimization, the F-
score achieves 39.98. In the competition jointly held by Alibaba and PAKDD, the
effectiveness and versatility of our system was approved.

Table 2. Evaluation metric detail.

Number Metric Detail

1 npp The number of disks that are predicted to be faulty in the following 30
days

2 ntpp The number of all the disks those truly fail among 30 days after the first
predicting day

3 npr The number of all the disk failures occurring in the k-day observation
window

4 ntpr The number of truely faulty disks that are successfully predicted no
more than 30 days in advance

Table 3. Experimental results offline.

Model Precision Recall F1

Model01 37.6 29.7 33.21
Model02 40.6 27.2 32.58
Model03 47.4 23.4 31.36
Model04 36.4 30.4 33.10
Model05 36.3 31.0 33.45
Model06 35.6 32.9 34.21
ensemble 48.4 29.1 36.36
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There are many viable ways of extending this work, such as: Applying transfer
learning algorithm to solve the problem of insufficient samples of failed hard disks.
Using ranking algorithms to make further improvements. Analyzing disks that are not
reported in time or reported wrongly.
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