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Preface

This volume contains the top papers from the PAKDD 2020 Alibaba AI Ops Com-
petition on Large-Scale Disk Failure Prediction. The competition was conducted
between February 7 to May 15, 2020, on the Alibaba Cloud Tianchi Platform (https://
tianchi.aliyun.com/competition/entrance/231775/introduction).

The competition aims to develop machine learning models to accurately predict disk
failures in the large-scale data centers. Nowadays, the number of hard disk drive
(HDD) and solid-state drive (SSD) has reached millions in large data centers, where
disk failures account for the largest proportion of all failures. The frequent occurrence
of disk failures will affect the stability and reliability of the server and even the entire IT
infrastructure. Therefore, it is desirable for large-scale data centers to have an effective
tool to predict disk failures to allow early prevention and timely maintenance. How-
ever, solving this problem is not a trivial task owing to a number of data-related
challenges, such as high level of noises in the data, extremely imbalanced class dis-
tribution, and time-varying feature characteristics.

The Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
is one of the longest established and leading international conferences in the areas of
data mining and knowledge discovery. The event was co-organized by both the
PAKDD 2020 committee and the Alibaba Cloud team. It provides an international
forum for researchers and industry practitioners to share their new ideas, original
research results, and practical development experiences from all KDD related areas,
including data mining, data warehousing, machine learning, artificial intelligence,
databases, statistics, knowledge engineering, visualization, decision-making systems,
and the emerging applications. Alibaba Cloud, also known as Aliyun, is a Chinese
cloud computing company, a subsidiary of Alibaba Group. Alibaba Cloud provides
cloud computing services to online businesses and Alibaba’s own e-commerce
ecosystem. Alibaba Cloud’s international operations are registered and headquartered
in Singapore. Tianchi is a platform hosted on Alibaba Cloud to support data compe-
titions around the world. During PAKDD 2020, we organized a dedicated workshop to
feature the best performing teams of the competition. Due to the COVID-19 pandemic,
the workshop was hosted online.

We attracted 1,176 teams in total for the competition, and we selected the winners in
three phases. For the qualification phase, we selected the top 150 teams; for the
semi-finals phase, we selected the top 50 teams; and 12 teams with top 10 best scores
(due to some ties) entered the final. All teams who entered the semi-finals were invited
to submit their manuscript. In the end, 11 papers were published in this proceeding. All
the accepted papers were peer reviewed by two qualified reviewers chosen from our
Scientific Committee based on their qualifications and experience in a single-blind
manner.

The proceedings editors wish to thank the dedicated Scientific Committee members
and all the other reviewers for their contributions. We also thank Springer for their trust
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and for publishing the proceedings for the PAKDD 2020 Alibaba AI Ops Competition
on Large-Scale Disk Failure Prediction.
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Patrick. P. C. Lee

Pinghui Wang
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An Introduction to PAKDD CUP 2020
Dataset

Yi Liu'®) | Shujie Han?, Cheng He!, Jiongzhou Liu!, Fan Xu', Tao Huang!,
and Patrick P. C. Lee?

1 Alibaba Group, Hangzhou, China
978355734@qq. com
2 The Chinese University of Hong Kong, Shatin, Hong Kong

Abstract. With the rapid development of cloud services, disk storage
has played an important role in large-scale production cloud systems.
Predicting imminent disk failures is critical for maintaining data relia-
bility. Our vision is that it is important for researchers to contribute to
the development of new techniques for accurate and robust disk failure
prediction. If researchers can discover any reasonable approaches for disk
failure prediction in large-scale cloud systems, all IT and big data compa-
nies can benefit from such approaches to further enhance the robustness
of the production cloud systems. With this vision in mind, we have pub-
lished an open labeled dataset that spans a period of 18 months with a
total of 220,000 hard drives collected from Alibaba Cloud. Our dataset
is among the largest released in the community in terms of its scale and
duration. To better understand our dataset, we present our dataset gen-
eration process and conduct a preliminary analysis on the characteristics
of our dataset. Our open dataset has been adopted in the PAKDD2020
Alibaba AI Ops Competition, in which contestants proposed new disk
failure prediction algorithms through the analysis and evaluation of the
dataset.

Keywords: Hard disk drive - PAKDD2020 - Alibaba Cloud

1 Introduction

The rapid development of cloud services motivates the need of big data storage
infrastructures for managing an ever-increasing amount of data. Today’s cloud
providers often deploy production data centers that are equipped with millions of
hard disk drives spanning across the globe [26]. With such large-scale deployment
of data centers, disk failures are commonplace. Field studies show that disk
failures account for the largest proportion of hardware failures in cloud data
centers, and the annual failure rate of hard disk drives is in the range of 2-4% and
even up to 13% in some observed systems [22]. This implies that administrators
need to handle hundreds of disk failures/replacements in production data centers

Jointly organized by PAKDD 2020, Alibaba Cloud and Alibaba Tianchi Platform.
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on a daily basis. The frequent occurrences of disk failures challenge both data
availability and durability. If such disk failures cannot be properly resolved, this
will pose a negative impact on business service-level agreements.

To maintain data availability and durability guarantees, it is critical for
administrators to proactively predict imminent disk failures before they actu-
ally happen. Disk failure prediction has been an important topic for IT or big
data company. In the past 15 years, a variety of valuable studies propose various
data-driven techniques (e.g., machine learning models) on boosting the accuracy
of disk failure prediction [5,7,9,10,13,16,18,24]. Such studies build on various
types of available datasets for their designs. The most commonly used data
type is based on SMART (Self-Monitoring, Analysis and Reporting Technology)
[4], which is widely used for monitoring the healthy status of hard disk drives.
However, SMART is not completely standardized. Indeed, the collected set of
SMART attributes and the SMART implementation details vary across different
hard drive vendors [6]. Thus, some other types of data are also adopted, such
as system-level signals (e.g., windows events, file system operation error, unex-
pected telemetry loss, etc.) [26], as well as performance data (at both disk and
server levels) and location attributes (site, room, rack, and server) [17].

1.1 Challenges of Disk Failure Prediction

The accuracy of a disk failure prediction algorithm heavily depends on the input
dataset, yet designing a highly accurate disk failure prediction is often subject to
the following challenges due to the inherent characteristics of the input dataset
itself:

— Data noise. The data noise is mainly attributed to the labeling noise and
the sampling noise. Typically, expert rules are used to label the disk failures
according to the prior experience. Thus, expert rules are not able to cover
the unknown failure types, thereby leading to false negatives. Also, expert
rules are simple by nature, and hence they are not capable of dealing with
complex failure types, thereby leading to false positives. Furthermore, unex-
pected accidents may interrupt in the data collection, thereby introducing
the missing values or sampling noise. Han et al. [13] propose a robust data
preprocessing method to deal with the data noise issue for the disk failure
prediction problem under the imperfect data quality.

— Data imbalance. In disk failure prediction, the proportion of healthy disks
is always much larger than that of failed disks, leading to data imbalance. To
mitigate the impact of data imbalance problem, prior studies often utilize the
down-sampling method to balance the ratio between the positives and nega-
tives [6,7,18]. As mentioned in [26], rebalancing methods help raise the recall,
but introduce a large number of false positives at the same time, thereby dra-
matically decreasing the precision. Meanwhile, Xu et al. [26] indicate that the
ranking method can mitigate the data imbalance problem because it is insen-
sitive to the class imbalance. Furthermore, Lu et al. [17] use the F-measure
[14] and MCC [8] as their evaluation metrics to cope with the data imbalance
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problem. Han et al. [13] propose to mark the pre-failure samples of failed
disks as positive by automated pre-failure backtracking.

— Time-varying features. Due to the aging of disks and the addi-
tions/removals of disks in production, the statistical patterns of disk logs
are varying over time [12]. Han et al. [12] use the two-sample Kolmogorov-
Smirnov (KS) test [19] to measure the change of the distributions of SMART
attributes and present a general stream mining framework for disk failure
prediction with concept-drift adaptation.

1.2 Existing Open Datasets

Prior studies on disk failure prediction are based on either proprietary datasets
or open datasets. Examples of existing open datasets for disk failure prediction
include the following.

— CMRR [21]. The SMART dataset was published by the Center for Memory
and Recording Research (CMRR). It covers 369 hard disks of a single drive
model. Each disk is labeled as either good or failed, with 178 good disks and
191 failed disks.

— Baidu [2]. The SMART dataset was collected from an enterprise-class disk
model of Seagate ST31000524NS at Baidu. It covers 23,395 disks. Each disk is
labeled as either good or failed, with only 433 failed disks and 22,962 healthy
disks. The dataset also reports 14 SMART attributes, which were collected
on hourly basis and normalized to the interval from —1 to 1 (inclusively).

— Backblaze [1]. The SMART dataset was collected by Backblaze and have
been extensively used for the evaluation in the literature [7,12,18,24]. As of
September 30, 2019, the dataset covers 112,864 disks among 13 disk models
from three vendors, spanning a period from April 2013 to September 2019.

— WSU [17]. The dataset was collected at an anonymized enterprise by the
research team at Wayne State University (WSU). It covers 380,000 hard disks
over a period of two months across 64 sites. The dataset reports not only the
SMART attributes, but also the performance (disk-level and server-level) data
and location attributes of disks (site, room, rack, and server).

The maximum number of disks from a single disk model in the Backblaze,
Baidu, and CMRR is less than 50,000, which is generally smaller than that
of large-scale production systems. The WSU dataset, while covering more than
380,000 disks, only contains two months of data. We believe that an open dataset
with a larger scale of disks and a long duration of operations will be beneficial
for the research community to develop disk failure prediction methods.

1.3 Owur Contributions

In this work, we introduce an open SMART dataset collected at Alibaba Cloud. It
covers a total of 220,000 hard disks that are deployed at data centers, spanning a
period of 18 months. Our dataset is among the largest released in the community,
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in terms of its scale (compared to CMRR, Baidu, and Backblaze) and duration
(compared to WSU [17]). It was also adopted in the PAKDD2020 Alibaba AT Ops
Competition for contestants to design new disk failure prediction algorithms. We
hope that more researchers can benefit from our open dataset in enhancing the
work of disk failure prediction. Our dataset is available at: https://github.com/
alibaba-edu/dcbrain.

In the following, we first describe the generation process of our open dataset
(Sect.2). We next present a preliminary analysis on the characteristics of the
dataset, including annualized failure rates (AFR) statistics, data missing, and
the SMART statistics (Sect. 3). Finally, we review the related work (Sect.4) and
conclude the paper (Sect. 5).

2 Dataset Generation

In this section, we introduce the generation process of our open dataset, including
sampling and data anonymization.

2.1 Sampling

We formulate the sampling process as an optimization problem whose objec-
tive is to minimize the distribution differences between the original dataset and
the sampled dataset. FEach disk has its unique identifier and emits the SMART
attributes over a time series. We denote the sets of identifiers for healthy and
failed disks by O and Oy, respectively. We denote the SMART attributes of
the original dataset by a vector xo. Note that xo is a subset of the whole col-
lection of disks. Specifically, xo consists of the time-series samples of the last 30
days with the six most important SMART attributes (i.e., SMART-5, SMART-
187, SMART-188, SMART-193, SMART-197, and SMART-198). Note that there
exists data missing of the SMART attributes on some days (see Sect.3.2). We
use the forward filling method to fill the missing values.

We adopt stratified sampling for healthy and failed disks to keep the ratio
of healthy to failed disks. We select the healthy and failed disks randomly from
Oy and Oy, respectively, with the sampling ratio 7. The sets of sampled disks
are denoted by Sy, for healthy disks and Sy for failed disks. The distributions of
sampled dataset xg consist of the time-series samples of the last 30 days healthy
disks &p, and the last 30 days before failure occurrences for failed disks Sy¢.

We use the maximum mean discrepancy (MMD) [10] to measure the distri-
bution differences of the SMART attributes between xo and xg. We denote the
MMD by e. If € is closer to zero, it means that the two distributions are more
similar.

Algorithm 1 shows the pseudo-code of the whole workflow for sampling. The
MAIN procedure takes the inputs of Oy, Oy, x0, and r. It performs initialization
(Lines 2-5) and executes over a number of iterations n, where n is a tunable
parameter. In each iteration, it randomly samples the identifiers for healthy
and failed disks from O), and Oy, and keeps them into S;, and Sy, respectively
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Algorithm 1. Framework of data sampling.

1: procedure MAIN(Ox, O¢, x0, T)
2: Initialize €,,;» = Infinite

3: Initialize Spmin = empty set

4: Initialize S;, = empty set

5: Initialize Sy = empty set

6: for i =1 ton do

T S, = Choose disk identifiers randomly from O, with r
8: Sy = Choose disk identifiers randomly from Oy with r
9: Update x5 with the time-series samples of the last 30 days for Sp, and Sy
10: Compute € between xo and xg

11: if € < €nin then

12: Smin = Sn + Sy

13: end if

14: end for

15: return All time-series samples of Sy,in

16: end procedure

(Lines 7-8). It updates xg with the time-series samples of the last 30 days for
Sy, and Sy (Line 9). Then it computes the MMD between xo and xg (Line 10).
If the current € is less than €,,;,, it updates the set S,,;, with the union set of
Sy and Sy (Lines 11-13). It returns the time-series samples of S, (Line 15).

2.2 Data Anonymization

Due to privacy concerns, we anonymize the sensitive fields in the dataset. More
concretely, we use “manufacturer” “k” to represent each disk model, where “man-
ufacturer” corresponds to a letter (“A”), and “k” (1 to 2) corresponds to the k-th
numerous model; for example, “A1” represents the most numerous disk model
of vendor A. Also, we sort the disks by the serial numbers and reset the disk
identifiers as the order of disks.

3 Dataset Analysis

We generate the open dataset over a time period from July, 2017 to Decem-
ber, 2018. Table1 shows the overview of the two disk models, both of which
are SATA hard disk drives (HDDs). The total counts of both Al and A2 are
over 100,000 each, which is larger than any single disk model reported in the
Backblaze dataset. Compared to the dataset in [17], the time span of our open
dataset is over a period of 18 months, which is more beneficial for researchers to
study the temporal change of failure patterns in disk failure prediction issues.
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Table 1. Overview of disk models A1l and A2 in our open dataset.

Type Model | Disk count | # failures
HDD_SATA | A1 106,453 1,243
HDD_SATA A2 102,779 1,162

3.1 Failure Rates

We first estimate the annualized failure rates (AFRs) of both disk models Al
and A2. Specifically, we define the AFR as the ratio between the number of failed
disks reported in our trouble tickets during the one-year span of our dataset and
the total number of disks. Table 2 shows that the AFRs of A1 and A2 are 0.90%
and 1.01%, respectively.

Table 2. AFRs for disk models A1l and A2.

Type Model | AFR (%)
HDD_SATA | Al 0.90
HDD_SATA | A2 1.01

To study the failure rates in a more fine-grained manner, we further compute
the monthly failure rates (MFRs) of disks in our dataset from July, 2017 to
December, 2018. Similarly, we define the MFR as the ratio between the number
of failed disks reported in our trouble tickets during a one-month span of our
dataset and the total number of disks. Figure1 shows that the MFRs of both
Al and A2 have increasing trends.

045
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We try to explain the phenomenon of the increasing trends of the MFRs
by the workload of HDDs. We define the workload as the total number of 512-
byte sectors written and read on a daily basis, which is computed from the two
SMART attributes, i.e., SMART-241 (“Total LBAs Written”) and SMART-242
(“Total LBAs Read”). Figure 2 shows the average workload in each month for
both disk models Al and A2. The figure suggests that the increasing trends of
the MFRs of both Al and A2 may be attributed to the increasing workload.

We finally study the failure rates across different days of a week. Figure 3
shows that the failure rates of both A1 and A2 on weekends are lower than those
on weekdays. We explain this phenomenon by computing the average workloads
over all weekdays and weekends. Table 3 shows that for both Al and A2, the
average workload on weekdays is heavier than that on weekends, which implies
that the heavier workload of disks may cause the higher failure rates.

3.2 Data Missing

Due to the complexity of large-scale production systems, some unexpected acci-
dents may interrupt the data collection and lead to data missing. In our dataset,
data missing exists in both failed and healthy disks. To better describe the
severity of data missing in the competition dataset, we introduce the data miss-
ing ratio (DMR), defined by the ratio between the actual missing days and
the expected occurrence days if no data missing occurs. For healthy disks, the
expected occurrence days are from when the disks first appear in the dataset
until the end day of the collection time; for failed disks, the expected occurrence
days are from when the disks first appear in the dataset until the reported date
of the trouble ticket.
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Fig. 3. Failure rates in different days of a week for disk models A1l and A2.

Table 3. Average workload over all weekdays and weekends.

Model | Average workload (# sectors)
Weekdays | Weekends

Al 3.5e 408 | 3.le + 08

A2 1.34e 409 | 1.31e + 09

Table 4. DMRs for disk models A1 and A2 for failed and healthy disks.

Model | DMR of failed disks | DMR of healthy disks
Al 11.9% 6.6%
A2 6.9% 5.6%

Table 5. Overview of the collected SMART attributes.

ID | SMART attribute name Al| A2 |ID | SMART attribute name Al | A2
1 | Raw read error rate v |/ | 191 | G-sense error rate v |/
3 | Spin up time v |V | 192 | Power-off retract count v |/
4 | Start stop count v | v | 193 | Load cycle count v |/
5 | Reallocated sector count v |/ | 194 | Temperature celsius v |/
7 | Seek error rate v | v/ | 195 | Hardware ECC recovered |v |V
9 | Power on hours v |/ | 196 | Reallocated event count v
10 | Spin retry count v |V | 197 | Current pending sector v |/
12 | Power cycle count v |/ | 198 | Offline uncorrectable error | v |V
184 | End-to-end error v |V 199 | UDMA CRC error count |v |V
187 | Reported uncorrectable error | v | v | 240 | Head flying hours v |/
188 | Command timeout v |/ | 241 | Total LBAs written v |/
189 | High fly writes v |V | 242 | Total LBAs read v |/
190 | Airflow temperature celsius |v |V
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Table 4 shows that the DMRs for failed disks are 8.1% for Al and 7.5% for
A2, while the DMRs of healthy disks are 6.6% for Al and 5.6% for A2. The data
missing issue in failed disks is be more severe than in healthy disks.

3.3 Statistics of the SMART Attributes

Finally, we analyze the SMART attributes in our dataset. Table5 shows the
collected SMART attributes in our dataset for A1 and A2. Al has 25 SMART
attributes, while A2 has 24 SMART attributes. Each SMART attribute has both
the raw and normalized values.

We next analyze the correlation between the SMART attributes and the
failures in our dataset. We compute Spearman’s Rank Correlation Coefficient
(SRCC) between each of the SMART attributes and disk failures. SRCC ranges
from —1 to +1 and its absolute value is closer to 1 implies that the two variables
are more correlated, while 0 means no correlation.

Table 6 shows the three most failure-correlated SMART attributes for disk
model Al and A2 with the largest absolute SRCC values. We can see that “real-
located sector count”, “current pending sector”, and “reported uncorrectable
error” are the three most failure-correlated SMART attributes of A1 and A2.

Table 6. Spearman’s Rank Correlation Coefficients between the SMART attributes
and disk failures for disk models A1l and A2.

Model | Rank 1 Rank 2 Rank 3
Al SMART-197: 0.37 | SMART-187: 0.23 | SMART-5: 0.21
A2 SMART-5: 0.29 SMART-197: 0.26 | SMART-187: 0.24

4 Related Work

Most of previous work with disk failure prediction focus on the HDDs, which
show that highly accurate disk failure prediction can be achievable using classi-
cal statistical techniques and machine learning models, such as rank-sum tests
[15], Bayesian classifiers [11], rule-based learning [5], back-propagation neural
networks [27], regularized greedy forests [7], random forests [18], online ran-
dom forests [24], and stream-based data mining [12]. Most of the studies (e.g.,
[7,12,18,24] use the Backblaze dataset for their evaluation.

There are some research studies from industry, such as Alibaba Cloud [25],
Facebook [20], Google [23], focusing on the solid-state drives (SSDs). However,
they do not release the datasets for their SSD failure prediction.

From the algorithm competition, Huawei [3] holds a hackathon contest about
HDDs failure prediction. In this competition, it covers 550,000 samples of HDDs,
including total 16,348 healthy disks and 1,160 failed disks. Contestants can
acquire the datasets in Huawei’s NAIVE platform during the competition.
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Conclusion

In this paper, we present an open dataset covering a period of 18 months with a
total of 220,000 hard drives, collecting from Alibaba Cloud. Our open dataset is
applied into the PAKDD2020 Alibaba Al Ops Competition. We hope that more
researchers can participate in solving the disk failure prediction problem based
on our published dataset. In future work, we plan to update our open dataset
every half a year, and evaluate the feasibility of publishing more data types in
addition to SMART attributes.
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Abstract. This paper describes our submission to the PAKDD 2020
Alibaba AIOps Competition: Large-scale Disk Failure Prediction. Our
approach is based on Light GBM classifier with focal loss objective func-
tion. The method ranks third with a Fl-score of 0.4047 in the final com-
petition season, while the winning F'1-score is 0.4903.

Keywords: Binary-classification - Disk failure prediction - Focal loss
function

1 Problem Description

The goal of Large-scale Disk Failure Prediction Competition is to predict whether
a disk will suffer from a imminent failure within the next 30 days. This task is of
critical importance to mitigate the risk of data loss, recovery cost and lower relia-
bility in modern data centers. We interpreted this problem as a supervised binary-
classification problem, where the label is 1 if a disk is going to crash within the
following 30 days and 0 in other cases. SMART (Self-Monitoring, Analysis and
Reporting Technology) features were opted as train dataset, as they were supposed
to reveal the defect information and gradual degradation of the underlying disks.

The complexities and challenges in the competition can be summarized as:
(1) The amount of data was far larger than those used in most of the previ-
ous researches, including 50,000,000+ records collected from more than 100,000
drives; (2) The ratio of positive and negative samples was highly imbalanced,
which was roughly estimated as 1:1000; (3) The signal to noise ratio(SNR) in
the SMART data was relatively low, i.e., missing values and measurement errors
were widely observed.

Our approach consists of four main steps:

1. Data preprocessing.

Feature engineering.

3. Light GBM classification model trained with custom-built focal loss objective
function.

4. Failure prediction with a two-step detection rules.

o
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The LightGBM algorithm was chosen due to the huge size of provided
datasets and the algorithm’s advantages in terms of computational speed and
memory consumption. We could define our custom-build training objective func-
tion and evaluation metric in Light GBM.

2 Related Work

Existing SMART-based disk failure prediction algorithms can be mainly classi-
fied into the following categories: threshold-based methods, statistical monitor-
ing, binary-classification, and failure time prediction.

The threshold-based algorithms can diagnosis the disk failure with a false
alarm rate of 0.1% and fault detection rate 3-10% [1]. The basic idea is that
a warning is sent if the normalized value exceeds the threshold. Although the
thresholds follow the operator’s intuition, they are conventionally tuned to keep
a low false alarm rate. In the statistical monitoring, the statistical behaviour
of healthy disks is modelled first. Then the deterioration process of disks are
estimated by testing whether the data conform to the normal model, examples
can be found in [2]. The binary-classification methods such as Bayesian tech-
niques, SVM, linear logistic regression [3-5] use the information from the labels
to enhance the accuracy of disk failure prediction based on the SMART-based
features. The failure time prediction algorithms make good use of the gradual
change in SMART data. They estimate the lead time and examine the health
degree [6].

The above works cannot handle the problem of imbalanced dataset very
well. Thus, we adopted the Light GBM binary-classifier with focal loss objective
function in the competition.

3 The Proposed Approach

3.1 Data Processing

The disk failure date was provided in the train data by the organizers, which can
be utilized to label the training samples [7]. As pointed out by [8], disk errors or
failure symptoms occur 15.8 days earlier than complete disk failure. That is, the
disk samples within a certain amount of days before the disk fault time should
be labeled as positive, and the rest samples can be regarded as negative samples.
This time interval parameter must be tuned carefully. If the samples far from the
fault date are labeled as faulty, or the samples carrying the disk error information
are labeled as healthy, additional noise will be introduced artificially.

In our approach, several time intervals were tested based on corresponding
prediction accuracy. The days of 30, 15, 10, 7, 5 were evaluated separately, in
which 7 was chosen in the end. It should be noted that this evaluation process
could be only executed when the whole classification framework was established.
This procedure can be illustrated in Table 1.
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Table 1. The labeling process.

Disk serial number code | Sampling time Label
disk_103876 2018-08-22 0
disk_103876 2018-08-22 0
disk_103876 2018-08-23 1
disk_103876 2018-08-24 1
disk_103876 2018-08-25 1
disk_103876 2018-08-26 1
disk_103876 2018-08-27 1
disk_103876 2018-08-28 1
disk_103876 2018-08-29 (fault time of disk) | 1

3.2 Feature Engineering

The original SMART data contained 510 attributes, half of them were raw
SMART data and the rest were normalized SMART data. An exploratory data
analysis showed that only 42 of attributes were non-empty, thus the rest were

abandoned.

Then we selected the most relevant SMART attributes from the remaining
42 attributes. This step aimed to discover the attribute set that were most
informative predictors of disk failure. The selection was achieved by (1) the
change point detection of the attribute data gathered over the time dimension;
(2) the application of expert experience in eliminating some irrelevant attributes.
This step resulted in a set of attributes with SMART ID of 1, 5, 7, 12, 187, 188,

191, 192, 193, 197, 198, which are listed in Table 2.

Table 2. The SMART attributes used in this paper.

SMART ID

Attribute name

1

Raw read error rate

5

Relocated sector count

7

Seek error rate

12

Power cycle count

187

Reported uncorrectable errors

188

Command timeout

191

G-sense error rate

192

Power-off retract count

193

Load/Unload cycle count

197

Current pending sector count

198

Offline uncorrectable sector count
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Instead of adopting the raw feature value, the absolute difference between the
current value and its corresponding previous value was utilized. On one hand,
many SMART attributes varies along with the runtime, the absolute difference
can eliminate this effects to some extend. On the other hand, the absolute dif-
ference of SMART attribute time series measures the change of the disk state,
which is supposed to characterizes some disk failure symptoms.

Since the sampling time in the train data was one day, one observation on
its own was not enough. We aggregated each of the attribute time series to a
single value by an exponential moving averaging over a specific time window.
Such a feature transformation aimed to improving the numerical stability of the
SMART data and assigning more weights to the recent samples.

The above feature engineering processes leaded to 22-dimensional features.
We further dropped all the normalized SMART data, resulting in a more compact
feature set with only 11-dimensional features. This operation was proved to be
effective in improving the final predict results. Here are some explanations. The
normalized SMART data are transformed from the raw SMART data, which
loses some precision inevitably in the transformation. Besides, some normalized
SMART data are highly linearly correlated with the raw SMART data and
introduction of the raw data is sufficient enough.

3.3 Objective Function Design

The train data in the scenario of disk failure prediction were highly imbalanced,
as only a very small proportion of disks were labeled as faulty. This brought a
major challenge to the classification algorithms, as they were typically designed
to maximize the overall accuracy. Trained on the imbalanced dataset, the result-
ing classification algorithms cannot achieve satisfactory performance.

Some practical techniques have been proposed to cope with this issue. First,
one can balance the training dataset by downsampling the negative samples
or upsampling the positive samples. Common downsampling algorithms can be
categorized into generation type and selection type. The former reduce number
of samples by generating a new sample set in the targeted class, e.g., representing
the original samples with the centroids of K-means method. On the contrary, the
latter select samples from the original samples, e.g., randomly selecting s subset
for the targeted class. Common upsampling algorithms include naive random
over-sampling, Synthetic Minority Oversampling Technique (SMOTE) [9], the
Adaptive Synthetic (ADASYN) [10], Generative Adversarial Networks (GAN)
[11] and so on. They take advantages of duplication and interpolation to extend
the sample number and diversity of the minority class.

In our approach, a new objective function called a-balanced variant of the
focal loss was adopted to tackle the problem of imbalanced dataset. This loss
function is firstly proposed by [12], which adds a modulating term to the stan-
dard cross entropy loss. Such a modification is designed to focus learning on a
sparse set of hard examples and prevent the vast amount of easy negatives from
overwhelming the classifier during training.
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As one can note in Eq. 1, the a-balanced focal loss is modulated with two
extra terms: a (or (1 —a)) and (1 —p)” (or p) when compared to the standard
cross entropy loss. By setting « close to 1 (0-1 in practice), the weight of positive
samples can be significantly enlarged. Moreover, by setting «y larger than 0 (0.5-5
in practice), the weight of easy samples can be further reduced.

_f —al-p)log(p), ify=1
FL(p)_{_(l_a)pﬂog(l—p),ify—O (1)

The application of a-balanced focal loss in the competition was simple and highly
effective. Compared with other downsampling and upsampling techniques, we
found that replacing the traditional cross entropy loss with focal loss improves
F1-score more than 0.05 during many experiments.

3.4 Model

Theoretical analysis and experiments result show that LightGBM can signif-
icantly outperform XGBoost and SGB in terms of computational speed and
memory consumption. Taking the huge size of train data in this competition
into consideration, we decided to use Light GBM as our main algorithm. Read-
ers can refer to [13] and [14] for detailed description. The set of parameters
were chosen by grid searching in the parameter space. Our experiments showed
that the prediction results are fairly robust to the parameters, e.g., num-leaves,
subsample, colsample-bytree, and so on.

3.5 Prediction Logic

A two-step detection logic was proposed to locate the positive samples. In the
first step, a probability threshold was estimated from the train set. To be more
specific, 0.9997-quantile of predicted probabilities of negatives in the train data
was chosen as the threshold value. Thus, in the testing process, the samples will
be labeled as positive (i.e., faulty) if their probabilities fall above the threshold.
In the second step, only the samples with the TOP N probabilities of each day
can be further chosen from the candidates. Note that the number of candidates
of each day produced in the first step may be less than the N defined in the
second step.

3.6 Conclusion

In our approach, exponentially weighted moving-average of the absolute differ-
ences of the 11 raw SMART attribute time series was chosen as the final fea-
tures. Light GBM model with the focal loss objective function were trained as the
underlying classifier. Two-step prediction logic was utilized to obtain the final
candidate disks that are predicted to fail within the next 30 days. The final F1-
score is 0.4043, while the winning submission score 0.4907. Further research can
be focused on collecting different levels of monitoring data except the SMART
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data, e.g., the logs and monitoring time series from file system, operating system,
and the applications that frequently interacting with the disk. If the diversity
and heterogeneity of the data are enhanced, more accurate prediction results
can be expected.
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Abstract. The hard drive failure prediction is a vital part of operating
and maintainance issues. With the fast growth of the data-driven arti-
ficial intelligence algorithms, more and more recent researches focus on
its application on the current topic. Its effectiveness and powerfulness
can be observed through a large number of data experiments. Neverthe-
less, the prediction accuracy is still a challenging task for dealing with
extreme imbalance samples, particularly in big data cases. Rather than
merely applying one well-defined LGB model, this study develops a novel
ensemble learning strategy, i.e. a voting-based model, for improving the
prediction accuracy and the reliance. The experiment results show a
progress in scores by employing this voting-based model in comparison
to the single LGB model. Additionally, a new type of feature, namely the
day distance to important dates, was proven to be efficient for improving
overall accuracy.

Keywords: Voting-based strategy - SMART - LGB model - Hard
drive failure prediction

1 Introduction

With the fast development of modern cloud datacenters, the number of the
hard disk drives deployed has grown dramatically, alongside with the absolute
number of disk failures. Since these failures have unneglectable influences on
the cloud service quality, the demands of the disk failure detection is increasing
as well. Traditional methods mainly follow the rule-based logic by employing
SMART (Self-Monitoring, Analysis and Reporting Technology) logs while recent
researches show that artificial intelligence algorithm can be a competitive tool to
enhance the prediction accuracy and hence gradually becomes a major solution in
reality projects. Thereby, for the aim of improving application of AI algorithms,
this study builds up a well-defined LGB model and subsequently attempts to
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develop a voting-based strategy. The experiment data source of this project is
from 2020 Alibaba AI Ops Competition on Tianchi Platform, i.e. from [1].

For this specific project, comparing to the SMART data collected from
other previous applications, it faces to following challenges during the modeling
process:

Extensive data;

Missing records on a daily basis, probably due to hardware or network issues;
Difficult to capture the failure status before the failure occurs;

Extreme imbalance samples between the healthy and fault disks;

Efficient feature construction.

o0 T

Multiple recent studies have attempted to address aforementioned problems.
To facilitate and simplify computation and modeling, extensive data can be
splitted into several segments of time series and the most relevant time segment is
then chosen for the modeling. Missing records problems are widely distributed in
the projects and a natural possible way is to apply filling techniques, e.g. forward
and backward filling, liner and nonlinear interpolation methods, etc. Former
studies have found that cubic spline interpolation ensures a “smooth” change
and achieves a higher TPR (True positive rate) comparing to the spline filling
and other methods [2]. Notice that, not many researches specifically emphasized
the solution of an imbalanced dataset. For the extreme imbalance cases, naive
upsampling and downsampling are potential source of over-fitting [3]. [3] utilized
SMOTE (Synthetic Minority Oversampling Technique) for oversampling, yet the
precision and recall of the model were decreased.

Except from straightforwardly utilizing given SMART attributes, new fea-
tures construction greatly influences the prediction accuracy. As a time series
problem, statistical sliding window features can be generated to illustrate the
distribution of SMART attributes. [4] applied a gradient-based strategy to mea-
sure value transitions before disk failures, and its efficiency is validated through
the data experiments. A feature combination idea was also brought up in [4],
i.e. to take different fault types into account. Nevertheless, it was not clearly
presented in [4] how original SMART attributes were combined with new fea-
tures. Counting the number of attributes that are above zero is another potential
approach to combined features [5]. Data from Backblaze shows that when there
are more attributes that are above zero (in a certain group), it is more likely to
indicate a disk failure.

In general, the mainly contributions of this paper can be concluded as fol-
lows: 1) strongly correlated features are extracted based on the data analysis and
experiments, i.e. distance to important date, disk usage life, time series slope fea-
tures and division features; 2) the correlation analysis, which relies on Pearson
and Spearman correlation coefficient, is employed for the feature selection, and
latter is proved to be more effective in this specific case; 3) a voting-based strat-
egy is developed to ensemble several LGB models with different hyperparameters
to improve the accuracy of the disk failure prediction.
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2 Feature Engineering

As the basis of a robust prediction model, feature engineering has its irreplace-
able place throughout every machine learning process. In this section, various
feature processing methods will be illustrated, and their impact on predicting
the result will be further discussed in Sect. 4.

2.1 Data Analysis

Dataset provided by 2020 Alibaba AT Ops Competition includes daily SMART
logs ranging from July 2017 to July 2018, where all disks belong to a single
manufacturer “A” but with different models (model 1 and model 2). The goal
of the competition was to predict failure time of disks, and results are evaluated
by F1 scores in next 30 days. Thus, for the aim of simplification, the disk would
fail or not in next 30 days, denoted as 0 and 1, respectively. Directly afterwards,
data exploration was conducted to gain an overall impression on the data.

First of all, Fig.1 demonstrates failed samples only occupies round 0.08%
within the entire train set. It indicates the fact that the train data fed into the
model are extremely imbalanced. Undersampling approach, i.e. bagging, was
tested on Alibaba’s dataset with some modification. Different from other imbal-
anced problems such as financial fraud where samples are mostly independent
from each other, predicting disk failures is more difficult because each model
contains continuous data points. To prevent information leak by simply doing
bagging on SMART daily logs, bagging on disk serial numbers was applied.

Second, not all original features given are useful for this task. 510 original
features were provided by the organizer, i.e. from smart_1 to smart_255. Each
attribute possesses both a raw and a normalized value, where the former is
measured by the sensors, and relied on the former, the latter is normalized by
the manufacturer. For the case with a large number of attributes, attributes
selection is full of challenges and arts. Consider the usefulness and completeness
of the SMART attributes, we remove features that contains only Nan values and
that does not change for all training and testing data samples. Therefore, the
dimension of the original attributes is truncated from 510 to 45.

Third, some SMART attribute pairs are highly correlated. As mentioned,
normalized attributes are generated by the corresponding raw attributes. It can
be inferred that, there could be a strong linear correlation between each pair.
Furthermore, some SMART attributes share similar physical meanings and could
be non-linearly correlated. This influences might further reach to model train-
ing, sometimes negative to some extend, and could lead to potential over-fitting
problem. Since they could provide duplicate information. From this perspective,
the original feature collection should be restrained by removing strong-correlated
features. During the testing, both Pearson and Spearman methods are applied
to evaluate the correlation between SMART attributes and labels.
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Fig. 1. Samples imbalance situation of the dataset
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Fourth, the raw SMART attributes are skewed and needed to be properly
transformed. Most machine learning methods are based on the gradient descent
algorithm and as known that their performances can be significantly influenced
by the given data distribution. Previous data experiments show a distribution,
which is close to the Gaussian distribution, usually can provide high stability
and good accuracy in comparison to non-Gaussian distributions. To this end,
the log-normal transformation was employed for these raw attributes:

f =log(f+1) (1)

in which f' is the feature after log-normal transformation; f is the original
feature.

2.2 Feature Generation and Selection

Distance to Important Dates. During the data exploration phase, the distri-
bution of the failed disks was pictured to investigate the trend of disk failures.
It was found that more disks would fail on days when important activities were
closeby. Understanding the application of the hard disks can shed some light on
the feature generation. By summarizing the number of failed disks on certain
days (shown in Fig. 2), following conclusions could be drawn: (a) disks were more
likely to fail just 1 or 2 days before the starts of the next month (or the ends of
the current month); (b) disks were more likely to fail at a few days before impor-
tant holidays; (c) some peaks can be found after certain holidays. The highest
peak observed occurred on Jan 23, 2018, which was about two weeks before the
Chinese Lunar New Year. These trends brought a thought that a great portion
of the disks were utilized for railway ticket reservation or accounting-related
application.
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Number of Fault Disks on Certain Days
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Fig. 2. Trend of failed disks

In Fig.2, Holiday 1-4 refers to Chinese National Day, Chinese Lunar New
Year’s Day, QingMing, and Labor’s day separately. Among those holidays, the
National Day is the longest holiday (7 days). The trend around the National
Day shows that peaks appeared before and after the holiday, while maintaining
a low level in between. This indicates the fact that whether the day is holiday
or not does not matter in this task, but the location relative to the holiday
matters. Here a set of new features were proposed: days to next important date,
and days to last important date. Important dates were defined based on Chinese
holidays and the start of the month in this study. It is worth noting here that
researchers should gain some understanding of what disks are used for, since
different industries and countries have their own important dates. For instance,
it is reasonable for a ticket booking system to observe increased disk failures
before holidays but this is not reasonable for a manufacturer quality system due
to their different business patterns.

Disk Usage Life. With the disk’s usage life increases, the probability of the
disk failure becomes higher. Common life span of a hard disk could be in a range
of 3-5 years. Although the accumulated training data of Alibaba’s disks only last
around 1 year and haven’t reached normal life end, the disk usage life could still
be likely to provide some useful information in failure prediction.

Combined SMART Feature. As discussed in the Introduction section, multi-
ple SMART attributes reaching above zero might indicate a potential disk failure.
To validate whether the same trend exists in Alibaba’s dataset, the whole data
set, i.e. dating from June 2018, was used for exploration. In this study, follow-
ing group of SMART attributes were selected based on their physical impor-
tance: smart_braw, smart_187raw, smart_188raw, smart_189raw, smart_197raw,
and smart_198raw. The result is displayed below in Fig. 3, where x-axis refers
to the number of attributes that are above zero. When none of the selected
six attributes reaches above zero, 99.95% of those samples are healthy. As the
number of larger-than-zero attributes grows, the possibility of failure also rises.
Figure 3 indicates a similar trend described in [5], thus can be a potential strong
feature in this problem.
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