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Preface

This volume contains the top papers from the PAKDD 2020 Alibaba AI Ops Com-
petition on Large-Scale Disk Failure Prediction. The competition was conducted
between February 7 to May 15, 2020, on the Alibaba Cloud Tianchi Platform (https://
tianchi.aliyun.com/competition/entrance/231775/introduction).

The competition aims to develop machine learning models to accurately predict disk
failures in the large-scale data centers. Nowadays, the number of hard disk drive
(HDD) and solid-state drive (SSD) has reached millions in large data centers, where
disk failures account for the largest proportion of all failures. The frequent occurrence
of disk failures will affect the stability and reliability of the server and even the entire IT
infrastructure. Therefore, it is desirable for large-scale data centers to have an effective
tool to predict disk failures to allow early prevention and timely maintenance. How-
ever, solving this problem is not a trivial task owing to a number of data-related
challenges, such as high level of noises in the data, extremely imbalanced class dis-
tribution, and time-varying feature characteristics.

The Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
is one of the longest established and leading international conferences in the areas of
data mining and knowledge discovery. The event was co-organized by both the
PAKDD 2020 committee and the Alibaba Cloud team. It provides an international
forum for researchers and industry practitioners to share their new ideas, original
research results, and practical development experiences from all KDD related areas,
including data mining, data warehousing, machine learning, artificial intelligence,
databases, statistics, knowledge engineering, visualization, decision-making systems,
and the emerging applications. Alibaba Cloud, also known as Aliyun, is a Chinese
cloud computing company, a subsidiary of Alibaba Group. Alibaba Cloud provides
cloud computing services to online businesses and Alibaba’s own e-commerce
ecosystem. Alibaba Cloud’s international operations are registered and headquartered
in Singapore. Tianchi is a platform hosted on Alibaba Cloud to support data compe-
titions around the world. During PAKDD 2020, we organized a dedicated workshop to
feature the best performing teams of the competition. Due to the COVID-19 pandemic,
the workshop was hosted online.

We attracted 1,176 teams in total for the competition, and we selected the winners in
three phases. For the qualification phase, we selected the top 150 teams; for the
semi-finals phase, we selected the top 50 teams; and 12 teams with top 10 best scores
(due to some ties) entered the final. All teams who entered the semi-finals were invited
to submit their manuscript. In the end, 11 papers were published in this proceeding. All
the accepted papers were peer reviewed by two qualified reviewers chosen from our
Scientific Committee based on their qualifications and experience in a single-blind
manner.

The proceedings editors wish to thank the dedicated Scientific Committee members
and all the other reviewers for their contributions. We also thank Springer for their trust

https://tianchi.aliyun.com/competition/entrance/231775/introduction
https://tianchi.aliyun.com/competition/entrance/231775/introduction


and for publishing the proceedings for the PAKDD 2020 Alibaba AI Ops Competition
on Large-Scale Disk Failure Prediction.

June 2020 Cheng He
Mengling Feng

Patrick. P. C. Lee
Pinghui Wang

Yi Liu

vi Preface
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An Introduction to PAKDD CUP 2020
Dataset

Yi Liu1(B), Shujie Han2, Cheng He1, Jiongzhou Liu1, Fan Xu1, Tao Huang1,
and Patrick P. C. Lee2

1 Alibaba Group, Hangzhou, China
978355734@qq.com

2 The Chinese University of Hong Kong, Shatin, Hong Kong

Abstract. With the rapid development of cloud services, disk storage
has played an important role in large-scale production cloud systems.
Predicting imminent disk failures is critical for maintaining data relia-
bility. Our vision is that it is important for researchers to contribute to
the development of new techniques for accurate and robust disk failure
prediction. If researchers can discover any reasonable approaches for disk
failure prediction in large-scale cloud systems, all IT and big data compa-
nies can benefit from such approaches to further enhance the robustness
of the production cloud systems. With this vision in mind, we have pub-
lished an open labeled dataset that spans a period of 18 months with a
total of 220,000 hard drives collected from Alibaba Cloud. Our dataset
is among the largest released in the community in terms of its scale and
duration. To better understand our dataset, we present our dataset gen-
eration process and conduct a preliminary analysis on the characteristics
of our dataset. Our open dataset has been adopted in the PAKDD2020
Alibaba AI Ops Competition, in which contestants proposed new disk
failure prediction algorithms through the analysis and evaluation of the
dataset.

Keywords: Hard disk drive · PAKDD2020 · Alibaba Cloud

1 Introduction

The rapid development of cloud services motivates the need of big data storage
infrastructures for managing an ever-increasing amount of data. Today’s cloud
providers often deploy production data centers that are equipped with millions of
hard disk drives spanning across the globe [26]. With such large-scale deployment
of data centers, disk failures are commonplace. Field studies show that disk
failures account for the largest proportion of hardware failures in cloud data
centers, and the annual failure rate of hard disk drives is in the range of 2–4% and
even up to 13% in some observed systems [22]. This implies that administrators
need to handle hundreds of disk failures/replacements in production data centers

Jointly organized by PAKDD 2020, Alibaba Cloud and Alibaba Tianchi Platform.

c© Springer Nature Singapore Pte Ltd. 2020
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on a daily basis. The frequent occurrences of disk failures challenge both data
availability and durability. If such disk failures cannot be properly resolved, this
will pose a negative impact on business service-level agreements.

To maintain data availability and durability guarantees, it is critical for
administrators to proactively predict imminent disk failures before they actu-
ally happen. Disk failure prediction has been an important topic for IT or big
data company. In the past 15 years, a variety of valuable studies propose various
data-driven techniques (e.g., machine learning models) on boosting the accuracy
of disk failure prediction [5,7,9,10,13,16,18,24]. Such studies build on various
types of available datasets for their designs. The most commonly used data
type is based on SMART (Self-Monitoring, Analysis and Reporting Technology)
[4], which is widely used for monitoring the healthy status of hard disk drives.
However, SMART is not completely standardized. Indeed, the collected set of
SMART attributes and the SMART implementation details vary across different
hard drive vendors [6]. Thus, some other types of data are also adopted, such
as system-level signals (e.g., windows events, file system operation error, unex-
pected telemetry loss, etc.) [26], as well as performance data (at both disk and
server levels) and location attributes (site, room, rack, and server) [17].

1.1 Challenges of Disk Failure Prediction

The accuracy of a disk failure prediction algorithm heavily depends on the input
dataset, yet designing a highly accurate disk failure prediction is often subject to
the following challenges due to the inherent characteristics of the input dataset
itself:

– Data noise. The data noise is mainly attributed to the labeling noise and
the sampling noise. Typically, expert rules are used to label the disk failures
according to the prior experience. Thus, expert rules are not able to cover
the unknown failure types, thereby leading to false negatives. Also, expert
rules are simple by nature, and hence they are not capable of dealing with
complex failure types, thereby leading to false positives. Furthermore, unex-
pected accidents may interrupt in the data collection, thereby introducing
the missing values or sampling noise. Han et al. [13] propose a robust data
preprocessing method to deal with the data noise issue for the disk failure
prediction problem under the imperfect data quality.

– Data imbalance. In disk failure prediction, the proportion of healthy disks
is always much larger than that of failed disks, leading to data imbalance. To
mitigate the impact of data imbalance problem, prior studies often utilize the
down-sampling method to balance the ratio between the positives and nega-
tives [6,7,18]. As mentioned in [26], rebalancing methods help raise the recall,
but introduce a large number of false positives at the same time, thereby dra-
matically decreasing the precision. Meanwhile, Xu et al. [26] indicate that the
ranking method can mitigate the data imbalance problem because it is insen-
sitive to the class imbalance. Furthermore, Lu et al. [17] use the F-measure
[14] and MCC [8] as their evaluation metrics to cope with the data imbalance
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problem. Han et al. [13] propose to mark the pre-failure samples of failed
disks as positive by automated pre-failure backtracking.

– Time-varying features. Due to the aging of disks and the addi-
tions/removals of disks in production, the statistical patterns of disk logs
are varying over time [12]. Han et al. [12] use the two-sample Kolmogorov-
Smirnov (KS) test [19] to measure the change of the distributions of SMART
attributes and present a general stream mining framework for disk failure
prediction with concept-drift adaptation.

1.2 Existing Open Datasets

Prior studies on disk failure prediction are based on either proprietary datasets
or open datasets. Examples of existing open datasets for disk failure prediction
include the following.

– CMRR [21]. The SMART dataset was published by the Center for Memory
and Recording Research (CMRR). It covers 369 hard disks of a single drive
model. Each disk is labeled as either good or failed, with 178 good disks and
191 failed disks.

– Baidu [2]. The SMART dataset was collected from an enterprise-class disk
model of Seagate ST31000524NS at Baidu. It covers 23,395 disks. Each disk is
labeled as either good or failed, with only 433 failed disks and 22,962 healthy
disks. The dataset also reports 14 SMART attributes, which were collected
on hourly basis and normalized to the interval from −1 to 1 (inclusively).

– Backblaze [1]. The SMART dataset was collected by Backblaze and have
been extensively used for the evaluation in the literature [7,12,18,24]. As of
September 30, 2019, the dataset covers 112,864 disks among 13 disk models
from three vendors, spanning a period from April 2013 to September 2019.

– WSU [17]. The dataset was collected at an anonymized enterprise by the
research team at Wayne State University (WSU). It covers 380,000 hard disks
over a period of two months across 64 sites. The dataset reports not only the
SMART attributes, but also the performance (disk-level and server-level) data
and location attributes of disks (site, room, rack, and server).

The maximum number of disks from a single disk model in the Backblaze,
Baidu, and CMRR is less than 50,000, which is generally smaller than that
of large-scale production systems. The WSU dataset, while covering more than
380,000 disks, only contains two months of data. We believe that an open dataset
with a larger scale of disks and a long duration of operations will be beneficial
for the research community to develop disk failure prediction methods.

1.3 Our Contributions

In this work, we introduce an open SMART dataset collected at Alibaba Cloud. It
covers a total of 220,000 hard disks that are deployed at data centers, spanning a
period of 18 months. Our dataset is among the largest released in the community,
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in terms of its scale (compared to CMRR, Baidu, and Backblaze) and duration
(compared to WSU [17]). It was also adopted in the PAKDD2020 Alibaba AI Ops
Competition for contestants to design new disk failure prediction algorithms. We
hope that more researchers can benefit from our open dataset in enhancing the
work of disk failure prediction. Our dataset is available at: https://github.com/
alibaba-edu/dcbrain.

In the following, we first describe the generation process of our open dataset
(Sect. 2). We next present a preliminary analysis on the characteristics of the
dataset, including annualized failure rates (AFR) statistics, data missing, and
the SMART statistics (Sect. 3). Finally, we review the related work (Sect. 4) and
conclude the paper (Sect. 5).

2 Dataset Generation

In this section, we introduce the generation process of our open dataset, including
sampling and data anonymization.

2.1 Sampling

We formulate the sampling process as an optimization problem whose objec-
tive is to minimize the distribution differences between the original dataset and
the sampled dataset. Each disk has its unique identifier and emits the SMART
attributes over a time series. We denote the sets of identifiers for healthy and
failed disks by Oh and Of , respectively. We denote the SMART attributes of
the original dataset by a vector xO. Note that xO is a subset of the whole col-
lection of disks. Specifically, xO consists of the time-series samples of the last 30
days with the six most important SMART attributes (i.e., SMART-5, SMART-
187, SMART-188, SMART-193, SMART-197, and SMART-198). Note that there
exists data missing of the SMART attributes on some days (see Sect. 3.2). We
use the forward filling method to fill the missing values.

We adopt stratified sampling for healthy and failed disks to keep the ratio
of healthy to failed disks. We select the healthy and failed disks randomly from
Oh and Of , respectively, with the sampling ratio r. The sets of sampled disks
are denoted by Sh for healthy disks and Sf for failed disks. The distributions of
sampled dataset xS consist of the time-series samples of the last 30 days healthy
disks Sh and the last 30 days before failure occurrences for failed disks Sf .

We use the maximum mean discrepancy (MMD) [10] to measure the distri-
bution differences of the SMART attributes between xO and xS . We denote the
MMD by ε. If ε is closer to zero, it means that the two distributions are more
similar.

Algorithm 1 shows the pseudo-code of the whole workflow for sampling. The
Main procedure takes the inputs of Oh, Of , xO, and r. It performs initialization
(Lines 2–5) and executes over a number of iterations n, where n is a tunable
parameter. In each iteration, it randomly samples the identifiers for healthy
and failed disks from Oh and Of , and keeps them into Sh and Sf , respectively

https://github.com/alibaba-edu/dcbrain
https://github.com/alibaba-edu/dcbrain
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Algorithm 1. Framework of data sampling.
1: procedure Main(Oh, Of , xO, r)
2: Initialize εmin = Infinite
3: Initialize Smin = empty set
4: Initialize Sh = empty set
5: Initialize Sf = empty set
6: for i = 1 to n do
7: Sh = Choose disk identifiers randomly from Oh with r
8: Sf = Choose disk identifiers randomly from Of with r
9: Update xS with the time-series samples of the last 30 days for Sh and Sf

10: Compute ε between xO and xS

11: if ε < εmin then
12: Smin = Sh + Sf

13: end if
14: end for
15: return All time-series samples of Smin

16: end procedure

(Lines 7–8). It updates xS with the time-series samples of the last 30 days for
Sh and Sf (Line 9). Then it computes the MMD between xO and xS (Line 10).
If the current ε is less than εmin, it updates the set Smin with the union set of
Sh and Sf (Lines 11–13). It returns the time-series samples of Smin (Line 15).

2.2 Data Anonymization

Due to privacy concerns, we anonymize the sensitive fields in the dataset. More
concretely, we use “manufacturer” “k” to represent each disk model, where “man-
ufacturer” corresponds to a letter (“A”), and “k” (1 to 2) corresponds to the k-th
numerous model; for example, “A1” represents the most numerous disk model
of vendor A. Also, we sort the disks by the serial numbers and reset the disk
identifiers as the order of disks.

3 Dataset Analysis

We generate the open dataset over a time period from July, 2017 to Decem-
ber, 2018. Table 1 shows the overview of the two disk models, both of which
are SATA hard disk drives (HDDs). The total counts of both A1 and A2 are
over 100,000 each, which is larger than any single disk model reported in the
Backblaze dataset. Compared to the dataset in [17], the time span of our open
dataset is over a period of 18 months, which is more beneficial for researchers to
study the temporal change of failure patterns in disk failure prediction issues.
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Table 1. Overview of disk models A1 and A2 in our open dataset.

Type Model Disk count # failures

HDD SATA A1 106,453 1,243

HDD SATA A2 102,779 1,162

3.1 Failure Rates

We first estimate the annualized failure rates (AFRs) of both disk models A1
and A2. Specifically, we define the AFR as the ratio between the number of failed
disks reported in our trouble tickets during the one-year span of our dataset and
the total number of disks. Table 2 shows that the AFRs of A1 and A2 are 0.90%
and 1.01%, respectively.

Table 2. AFRs for disk models A1 and A2.

Type Model AFR (%)

HDD SATA A1 0.90

HDD SATA A2 1.01

To study the failure rates in a more fine-grained manner, we further compute
the monthly failure rates (MFRs) of disks in our dataset from July, 2017 to
December, 2018. Similarly, we define the MFR as the ratio between the number
of failed disks reported in our trouble tickets during a one-month span of our
dataset and the total number of disks. Figure 1 shows that the MFRs of both
A1 and A2 have increasing trends.

Fig. 1. MFRs for disk models A1 and A2.
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We try to explain the phenomenon of the increasing trends of the MFRs
by the workload of HDDs. We define the workload as the total number of 512-
byte sectors written and read on a daily basis, which is computed from the two
SMART attributes, i.e., SMART-241 (“Total LBAs Written”) and SMART-242
(“Total LBAs Read”). Figure 2 shows the average workload in each month for
both disk models A1 and A2. The figure suggests that the increasing trends of
the MFRs of both A1 and A2 may be attributed to the increasing workload.

We finally study the failure rates across different days of a week. Figure 3
shows that the failure rates of both A1 and A2 on weekends are lower than those
on weekdays. We explain this phenomenon by computing the average workloads
over all weekdays and weekends. Table 3 shows that for both A1 and A2, the
average workload on weekdays is heavier than that on weekends, which implies
that the heavier workload of disks may cause the higher failure rates.

3.2 Data Missing

Due to the complexity of large-scale production systems, some unexpected acci-
dents may interrupt the data collection and lead to data missing. In our dataset,
data missing exists in both failed and healthy disks. To better describe the
severity of data missing in the competition dataset, we introduce the data miss-
ing ratio (DMR), defined by the ratio between the actual missing days and
the expected occurrence days if no data missing occurs. For healthy disks, the
expected occurrence days are from when the disks first appear in the dataset
until the end day of the collection time; for failed disks, the expected occurrence
days are from when the disks first appear in the dataset until the reported date
of the trouble ticket.

Fig. 2. Average workload in each month for disk models A1 and A2.
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Fig. 3. Failure rates in different days of a week for disk models A1 and A2.

Table 3. Average workload over all weekdays and weekends.

Model Average workload (# sectors)

Weekdays Weekends

A1 3.5e + 08 3.1e + 08

A2 1.34e + 09 1.31e + 09

Table 4. DMRs for disk models A1 and A2 for failed and healthy disks.

Model DMR of failed disks DMR of healthy disks

A1 11.9% 6.6%

A2 6.9% 5.6%

Table 5. Overview of the collected SMART attributes.

ID SMART attribute name A1 A2 ID SMART attribute name A1 A2

1 Raw read error rate ✓ ✓ 191 G-sense error rate ✓ ✓

3 Spin up time ✓ ✓ 192 Power-off retract count ✓ ✓

4 Start stop count ✓ ✓ 193 Load cycle count ✓ ✓

5 Reallocated sector count ✓ ✓ 194 Temperature celsius ✓ ✓

7 Seek error rate ✓ ✓ 195 Hardware ECC recovered ✓ ✓

9 Power on hours ✓ ✓ 196 Reallocated event count ✓

10 Spin retry count ✓ ✓ 197 Current pending sector ✓ ✓

12 Power cycle count ✓ ✓ 198 Offline uncorrectable error ✓ ✓

184 End-to-end error ✓ ✓ 199 UDMA CRC error count ✓ ✓

187 Reported uncorrectable error ✓ ✓ 240 Head flying hours ✓ ✓

188 Command timeout ✓ ✓ 241 Total LBAs written ✓ ✓

189 High fly writes ✓ ✓ 242 Total LBAs read ✓ ✓

190 Airflow temperature celsius ✓ ✓
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Table 4 shows that the DMRs for failed disks are 8.1% for A1 and 7.5% for
A2, while the DMRs of healthy disks are 6.6% for A1 and 5.6% for A2. The data
missing issue in failed disks is be more severe than in healthy disks.

3.3 Statistics of the SMART Attributes

Finally, we analyze the SMART attributes in our dataset. Table 5 shows the
collected SMART attributes in our dataset for A1 and A2. A1 has 25 SMART
attributes, while A2 has 24 SMART attributes. Each SMART attribute has both
the raw and normalized values.

We next analyze the correlation between the SMART attributes and the
failures in our dataset. We compute Spearman’s Rank Correlation Coefficient
(SRCC) between each of the SMART attributes and disk failures. SRCC ranges
from −1 to +1 and its absolute value is closer to 1 implies that the two variables
are more correlated, while 0 means no correlation.

Table 6 shows the three most failure-correlated SMART attributes for disk
model A1 and A2 with the largest absolute SRCC values. We can see that “real-
located sector count”, “current pending sector”, and “reported uncorrectable
error” are the three most failure-correlated SMART attributes of A1 and A2.

Table 6. Spearman’s Rank Correlation Coefficients between the SMART attributes
and disk failures for disk models A1 and A2.

Model Rank 1 Rank 2 Rank 3

A1 SMART-197: 0.37 SMART-187: 0.23 SMART-5: 0.21

A2 SMART-5: 0.29 SMART-197: 0.26 SMART-187: 0.24

4 Related Work

Most of previous work with disk failure prediction focus on the HDDs, which
show that highly accurate disk failure prediction can be achievable using classi-
cal statistical techniques and machine learning models, such as rank-sum tests
[15], Bayesian classifiers [11], rule-based learning [5], back-propagation neural
networks [27], regularized greedy forests [7], random forests [18], online ran-
dom forests [24], and stream-based data mining [12]. Most of the studies (e.g.,
[7,12,18,24] use the Backblaze dataset for their evaluation.

There are some research studies from industry, such as Alibaba Cloud [25],
Facebook [20], Google [23], focusing on the solid-state drives (SSDs). However,
they do not release the datasets for their SSD failure prediction.

From the algorithm competition, Huawei [3] holds a hackathon contest about
HDDs failure prediction. In this competition, it covers 550,000 samples of HDDs,
including total 16,348 healthy disks and 1,160 failed disks. Contestants can
acquire the datasets in Huawei’s NAIVE platform during the competition.
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5 Conclusion

In this paper, we present an open dataset covering a period of 18 months with a
total of 220,000 hard drives, collecting from Alibaba Cloud. Our open dataset is
applied into the PAKDD2020 Alibaba AI Ops Competition. We hope that more
researchers can participate in solving the disk failure prediction problem based
on our published dataset. In future work, we plan to update our open dataset
every half a year, and evaluate the feasibility of publishing more data types in
addition to SMART attributes.
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Abstract. This paper describes our submission to the PAKDD 2020
Alibaba AIOps Competition: Large-scale Disk Failure Prediction. Our
approach is based on LightGBM classifier with focal loss objective func-
tion. The method ranks third with a F1-score of 0.4047 in the final com-
petition season, while the winning F1-score is 0.4903.

Keywords: Binary-classification · Disk failure prediction · Focal loss
function

1 Problem Description

The goal of Large-scale Disk Failure Prediction Competition is to predict whether
a disk will suffer from a imminent failure within the next 30 days. This task is of
critical importance to mitigate the risk of data loss, recovery cost and lower relia-
bility in modern data centers. We interpreted this problem as a supervised binary-
classification problem, where the label is 1 if a disk is going to crash within the
following 30 days and 0 in other cases. SMART (Self-Monitoring, Analysis and
Reporting Technology) features were opted as train dataset, as they were supposed
to reveal the defect information and gradual degradation of the underlying disks.

The complexities and challenges in the competition can be summarized as:
(1) The amount of data was far larger than those used in most of the previ-
ous researches, including 50,000,000+ records collected from more than 100,000
drives; (2) The ratio of positive and negative samples was highly imbalanced,
which was roughly estimated as 1:1000; (3) The signal to noise ratio(SNR) in
the SMART data was relatively low, i.e., missing values and measurement errors
were widely observed.

Our approach consists of four main steps:

1. Data preprocessing.
2. Feature engineering.
3. LightGBM classification model trained with custom-built focal loss objective

function.
4. Failure prediction with a two-step detection rules.
c© Springer Nature Singapore Pte Ltd. 2020
C. He et al. (Eds.): AI Ops 2020, CCIS 1261, pp. 12–17, 2020.
https://doi.org/10.1007/978-981-15-7749-9_2
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The LightGBM algorithm was chosen due to the huge size of provided
datasets and the algorithm’s advantages in terms of computational speed and
memory consumption. We could define our custom-build training objective func-
tion and evaluation metric in LightGBM.

2 Related Work

Existing SMART-based disk failure prediction algorithms can be mainly classi-
fied into the following categories: threshold-based methods, statistical monitor-
ing, binary-classification, and failure time prediction.

The threshold-based algorithms can diagnosis the disk failure with a false
alarm rate of 0.1% and fault detection rate 3–10% [1]. The basic idea is that
a warning is sent if the normalized value exceeds the threshold. Although the
thresholds follow the operator’s intuition, they are conventionally tuned to keep
a low false alarm rate. In the statistical monitoring, the statistical behaviour
of healthy disks is modelled first. Then the deterioration process of disks are
estimated by testing whether the data conform to the normal model, examples
can be found in [2]. The binary-classification methods such as Bayesian tech-
niques, SVM, linear logistic regression [3–5] use the information from the labels
to enhance the accuracy of disk failure prediction based on the SMART-based
features. The failure time prediction algorithms make good use of the gradual
change in SMART data. They estimate the lead time and examine the health
degree [6].

The above works cannot handle the problem of imbalanced dataset very
well. Thus, we adopted the LightGBM binary-classifier with focal loss objective
function in the competition.

3 The Proposed Approach

3.1 Data Processing

The disk failure date was provided in the train data by the organizers, which can
be utilized to label the training samples [7]. As pointed out by [8], disk errors or
failure symptoms occur 15.8 days earlier than complete disk failure. That is, the
disk samples within a certain amount of days before the disk fault time should
be labeled as positive, and the rest samples can be regarded as negative samples.
This time interval parameter must be tuned carefully. If the samples far from the
fault date are labeled as faulty, or the samples carrying the disk error information
are labeled as healthy, additional noise will be introduced artificially.

In our approach, several time intervals were tested based on corresponding
prediction accuracy. The days of 30, 15, 10, 7, 5 were evaluated separately, in
which 7 was chosen in the end. It should be noted that this evaluation process
could be only executed when the whole classification framework was established.
This procedure can be illustrated in Table 1.
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Table 1. The labeling process.

Disk serial number code Sampling time Label

disk 103876 2018-08-22 0

disk 103876 2018-08-22 0

disk 103876 2018-08-23 1

disk 103876 2018-08-24 1

disk 103876 2018-08-25 1

disk 103876 2018-08-26 1

disk 103876 2018-08-27 1

disk 103876 2018-08-28 1

disk 103876 2018-08-29 (fault time of disk) 1

3.2 Feature Engineering

The original SMART data contained 510 attributes, half of them were raw
SMART data and the rest were normalized SMART data. An exploratory data
analysis showed that only 42 of attributes were non-empty, thus the rest were
abandoned.

Then we selected the most relevant SMART attributes from the remaining
42 attributes. This step aimed to discover the attribute set that were most
informative predictors of disk failure. The selection was achieved by (1) the
change point detection of the attribute data gathered over the time dimension;
(2) the application of expert experience in eliminating some irrelevant attributes.
This step resulted in a set of attributes with SMART ID of 1, 5, 7, 12, 187, 188,
191, 192, 193, 197, 198, which are listed in Table 2.

Table 2. The SMART attributes used in this paper.

SMART ID Attribute name

1 Raw read error rate

5 Relocated sector count

7 Seek error rate

12 Power cycle count

187 Reported uncorrectable errors

188 Command timeout

191 G-sense error rate

192 Power-off retract count

193 Load/Unload cycle count

197 Current pending sector count

198 Offline uncorrectable sector count
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Instead of adopting the raw feature value, the absolute difference between the
current value and its corresponding previous value was utilized. On one hand,
many SMART attributes varies along with the runtime, the absolute difference
can eliminate this effects to some extend. On the other hand, the absolute dif-
ference of SMART attribute time series measures the change of the disk state,
which is supposed to characterizes some disk failure symptoms.

Since the sampling time in the train data was one day, one observation on
its own was not enough. We aggregated each of the attribute time series to a
single value by an exponential moving averaging over a specific time window.
Such a feature transformation aimed to improving the numerical stability of the
SMART data and assigning more weights to the recent samples.

The above feature engineering processes leaded to 22-dimensional features.
We further dropped all the normalized SMART data, resulting in a more compact
feature set with only 11-dimensional features. This operation was proved to be
effective in improving the final predict results. Here are some explanations. The
normalized SMART data are transformed from the raw SMART data, which
loses some precision inevitably in the transformation. Besides, some normalized
SMART data are highly linearly correlated with the raw SMART data and
introduction of the raw data is sufficient enough.

3.3 Objective Function Design

The train data in the scenario of disk failure prediction were highly imbalanced,
as only a very small proportion of disks were labeled as faulty. This brought a
major challenge to the classification algorithms, as they were typically designed
to maximize the overall accuracy. Trained on the imbalanced dataset, the result-
ing classification algorithms cannot achieve satisfactory performance.

Some practical techniques have been proposed to cope with this issue. First,
one can balance the training dataset by downsampling the negative samples
or upsampling the positive samples. Common downsampling algorithms can be
categorized into generation type and selection type. The former reduce number
of samples by generating a new sample set in the targeted class, e.g., representing
the original samples with the centroids of K-means method. On the contrary, the
latter select samples from the original samples, e.g., randomly selecting s subset
for the targeted class. Common upsampling algorithms include naive random
over-sampling, Synthetic Minority Oversampling Technique (SMOTE) [9], the
Adaptive Synthetic (ADASYN) [10], Generative Adversarial Networks (GAN)
[11] and so on. They take advantages of duplication and interpolation to extend
the sample number and diversity of the minority class.

In our approach, a new objective function called α-balanced variant of the
focal loss was adopted to tackle the problem of imbalanced dataset. This loss
function is firstly proposed by [12], which adds a modulating term to the stan-
dard cross entropy loss. Such a modification is designed to focus learning on a
sparse set of hard examples and prevent the vast amount of easy negatives from
overwhelming the classifier during training.
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As one can note in Eq. 1, the α-balanced focal loss is modulated with two
extra terms: α (or (1−α)) and (1− p)γ (or pγ) when compared to the standard
cross entropy loss. By setting α close to 1 (0–1 in practice), the weight of positive
samples can be significantly enlarged. Moreover, by setting γ larger than 0 (0.5–5
in practice), the weight of easy samples can be further reduced.

FL (p) =
{ −α(1 − p)γ log (p) , if y = 1
− (1 − α) pγ log (1 − p) , if y = 0 (1)

The application of α-balanced focal loss in the competition was simple and highly
effective. Compared with other downsampling and upsampling techniques, we
found that replacing the traditional cross entropy loss with focal loss improves
F1-score more than 0.05 during many experiments.

3.4 Model

Theoretical analysis and experiments result show that LightGBM can signif-
icantly outperform XGBoost and SGB in terms of computational speed and
memory consumption. Taking the huge size of train data in this competition
into consideration, we decided to use LightGBM as our main algorithm. Read-
ers can refer to [13] and [14] for detailed description. The set of parameters
were chosen by grid searching in the parameter space. Our experiments showed
that the prediction results are fairly robust to the parameters, e.g., num-leaves,
subsample, colsample-bytree, and so on.

3.5 Prediction Logic

A two-step detection logic was proposed to locate the positive samples. In the
first step, a probability threshold was estimated from the train set. To be more
specific, 0.9997-quantile of predicted probabilities of negatives in the train data
was chosen as the threshold value. Thus, in the testing process, the samples will
be labeled as positive (i.e., faulty) if their probabilities fall above the threshold.
In the second step, only the samples with the TOP N probabilities of each day
can be further chosen from the candidates. Note that the number of candidates
of each day produced in the first step may be less than the N defined in the
second step.

3.6 Conclusion

In our approach, exponentially weighted moving-average of the absolute differ-
ences of the 11 raw SMART attribute time series was chosen as the final fea-
tures. LightGBM model with the focal loss objective function were trained as the
underlying classifier. Two-step prediction logic was utilized to obtain the final
candidate disks that are predicted to fail within the next 30 days. The final F1-
score is 0.4043, while the winning submission score 0.4907. Further research can
be focused on collecting different levels of monitoring data except the SMART
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data, e.g., the logs and monitoring time series from file system, operating system,
and the applications that frequently interacting with the disk. If the diversity
and heterogeneity of the data are enhanced, more accurate prediction results
can be expected.
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Abstract. The hard drive failure prediction is a vital part of operating
and maintainance issues. With the fast growth of the data-driven arti-
ficial intelligence algorithms, more and more recent researches focus on
its application on the current topic. Its effectiveness and powerfulness
can be observed through a large number of data experiments. Neverthe-
less, the prediction accuracy is still a challenging task for dealing with
extreme imbalance samples, particularly in big data cases. Rather than
merely applying one well-defined LGB model, this study develops a novel
ensemble learning strategy, i.e. a voting-based model, for improving the
prediction accuracy and the reliance. The experiment results show a
progress in scores by employing this voting-based model in comparison
to the single LGB model. Additionally, a new type of feature, namely the
day distance to important dates, was proven to be efficient for improving
overall accuracy.

Keywords: Voting-based strategy · SMART · LGB model · Hard
drive failure prediction

1 Introduction

With the fast development of modern cloud datacenters, the number of the
hard disk drives deployed has grown dramatically, alongside with the absolute
number of disk failures. Since these failures have unneglectable influences on
the cloud service quality, the demands of the disk failure detection is increasing
as well. Traditional methods mainly follow the rule-based logic by employing
SMART (Self-Monitoring, Analysis and Reporting Technology) logs while recent
researches show that artificial intelligence algorithm can be a competitive tool to
enhance the prediction accuracy and hence gradually becomes a major solution in
reality projects. Thereby, for the aim of improving application of AI algorithms,
this study builds up a well-defined LGB model and subsequently attempts to
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develop a voting-based strategy. The experiment data source of this project is
from 2020 Alibaba AI Ops Competition on Tianchi Platform, i.e. from [1].

For this specific project, comparing to the SMART data collected from
other previous applications, it faces to following challenges during the modeling
process:

a. Extensive data;
b. Missing records on a daily basis, probably due to hardware or network issues;
c. Difficult to capture the failure status before the failure occurs;
d. Extreme imbalance samples between the healthy and fault disks;
e. Efficient feature construction.

Multiple recent studies have attempted to address aforementioned problems.
To facilitate and simplify computation and modeling, extensive data can be
splitted into several segments of time series and the most relevant time segment is
then chosen for the modeling. Missing records problems are widely distributed in
the projects and a natural possible way is to apply filling techniques, e.g. forward
and backward filling, liner and nonlinear interpolation methods, etc. Former
studies have found that cubic spline interpolation ensures a “smooth” change
and achieves a higher TPR (True positive rate) comparing to the spline filling
and other methods [2]. Notice that, not many researches specifically emphasized
the solution of an imbalanced dataset. For the extreme imbalance cases, naive
upsampling and downsampling are potential source of over-fitting [3]. [3] utilized
SMOTE (Synthetic Minority Oversampling Technique) for oversampling, yet the
precision and recall of the model were decreased.

Except from straightforwardly utilizing given SMART attributes, new fea-
tures construction greatly influences the prediction accuracy. As a time series
problem, statistical sliding window features can be generated to illustrate the
distribution of SMART attributes. [4] applied a gradient-based strategy to mea-
sure value transitions before disk failures, and its efficiency is validated through
the data experiments. A feature combination idea was also brought up in [4],
i.e. to take different fault types into account. Nevertheless, it was not clearly
presented in [4] how original SMART attributes were combined with new fea-
tures. Counting the number of attributes that are above zero is another potential
approach to combined features [5]. Data from Backblaze shows that when there
are more attributes that are above zero (in a certain group), it is more likely to
indicate a disk failure.

In general, the mainly contributions of this paper can be concluded as fol-
lows: 1) strongly correlated features are extracted based on the data analysis and
experiments, i.e. distance to important date, disk usage life, time series slope fea-
tures and division features; 2) the correlation analysis, which relies on Pearson
and Spearman correlation coefficient, is employed for the feature selection, and
latter is proved to be more effective in this specific case; 3) a voting-based strat-
egy is developed to ensemble several LGB models with different hyperparameters
to improve the accuracy of the disk failure prediction.
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2 Feature Engineering

As the basis of a robust prediction model, feature engineering has its irreplace-
able place throughout every machine learning process. In this section, various
feature processing methods will be illustrated, and their impact on predicting
the result will be further discussed in Sect. 4.

2.1 Data Analysis

Dataset provided by 2020 Alibaba AI Ops Competition includes daily SMART
logs ranging from July 2017 to July 2018, where all disks belong to a single
manufacturer “A” but with different models (model 1 and model 2). The goal
of the competition was to predict failure time of disks, and results are evaluated
by F1 scores in next 30 days. Thus, for the aim of simplification, the disk would
fail or not in next 30 days, denoted as 0 and 1, respectively. Directly afterwards,
data exploration was conducted to gain an overall impression on the data.

First of all, Fig. 1 demonstrates failed samples only occupies round 0.08%
within the entire train set. It indicates the fact that the train data fed into the
model are extremely imbalanced. Undersampling approach, i.e. bagging, was
tested on Alibaba’s dataset with some modification. Different from other imbal-
anced problems such as financial fraud where samples are mostly independent
from each other, predicting disk failures is more difficult because each model
contains continuous data points. To prevent information leak by simply doing
bagging on SMART daily logs, bagging on disk serial numbers was applied.

Second, not all original features given are useful for this task. 510 original
features were provided by the organizer, i.e. from smart 1 to smart 255. Each
attribute possesses both a raw and a normalized value, where the former is
measured by the sensors, and relied on the former, the latter is normalized by
the manufacturer. For the case with a large number of attributes, attributes
selection is full of challenges and arts. Consider the usefulness and completeness
of the SMART attributes, we remove features that contains only Nan values and
that does not change for all training and testing data samples. Therefore, the
dimension of the original attributes is truncated from 510 to 45.

Third, some SMART attribute pairs are highly correlated. As mentioned,
normalized attributes are generated by the corresponding raw attributes. It can
be inferred that, there could be a strong linear correlation between each pair.
Furthermore, some SMART attributes share similar physical meanings and could
be non-linearly correlated. This influences might further reach to model train-
ing, sometimes negative to some extend, and could lead to potential over-fitting
problem. Since they could provide duplicate information. From this perspective,
the original feature collection should be restrained by removing strong-correlated
features. During the testing, both Pearson and Spearman methods are applied
to evaluate the correlation between SMART attributes and labels.
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Fig. 1. Samples imbalance situation of the dataset

Fourth, the raw SMART attributes are skewed and needed to be properly
transformed. Most machine learning methods are based on the gradient descent
algorithm and as known that their performances can be significantly influenced
by the given data distribution. Previous data experiments show a distribution,
which is close to the Gaussian distribution, usually can provide high stability
and good accuracy in comparison to non-Gaussian distributions. To this end,
the log-normal transformation was employed for these raw attributes:

f
′
= log(f + 1) (1)

in which f
′

is the feature after log-normal transformation; f is the original
feature.

2.2 Feature Generation and Selection

Distance to Important Dates. During the data exploration phase, the distri-
bution of the failed disks was pictured to investigate the trend of disk failures.
It was found that more disks would fail on days when important activities were
closeby. Understanding the application of the hard disks can shed some light on
the feature generation. By summarizing the number of failed disks on certain
days (shown in Fig. 2), following conclusions could be drawn: (a) disks were more
likely to fail just 1 or 2 days before the starts of the next month (or the ends of
the current month); (b) disks were more likely to fail at a few days before impor-
tant holidays; (c) some peaks can be found after certain holidays. The highest
peak observed occurred on Jan 23, 2018, which was about two weeks before the
Chinese Lunar New Year. These trends brought a thought that a great portion
of the disks were utilized for railway ticket reservation or accounting-related
application.
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Fig. 2. Trend of failed disks

In Fig. 2, Holiday 1–4 refers to Chinese National Day, Chinese Lunar New
Year’s Day, QingMing, and Labor’s day separately. Among those holidays, the
National Day is the longest holiday (7 days). The trend around the National
Day shows that peaks appeared before and after the holiday, while maintaining
a low level in between. This indicates the fact that whether the day is holiday
or not does not matter in this task, but the location relative to the holiday
matters. Here a set of new features were proposed: days to next important date,
and days to last important date. Important dates were defined based on Chinese
holidays and the start of the month in this study. It is worth noting here that
researchers should gain some understanding of what disks are used for, since
different industries and countries have their own important dates. For instance,
it is reasonable for a ticket booking system to observe increased disk failures
before holidays but this is not reasonable for a manufacturer quality system due
to their different business patterns.

Disk Usage Life. With the disk’s usage life increases, the probability of the
disk failure becomes higher. Common life span of a hard disk could be in a range
of 3–5 years. Although the accumulated training data of Alibaba’s disks only last
around 1 year and haven’t reached normal life end, the disk usage life could still
be likely to provide some useful information in failure prediction.

Combined SMART Feature. As discussed in the Introduction section, multi-
ple SMART attributes reaching above zero might indicate a potential disk failure.
To validate whether the same trend exists in Alibaba’s dataset, the whole data
set, i.e. dating from June 2018, was used for exploration. In this study, follow-
ing group of SMART attributes were selected based on their physical impor-
tance: smart 5raw, smart 187raw, smart 188raw, smart 189raw, smart 197raw,
and smart 198raw. The result is displayed below in Fig. 3, where x-axis refers
to the number of attributes that are above zero. When none of the selected
six attributes reaches above zero, 99.95% of those samples are healthy. As the
number of larger-than-zero attributes grows, the possibility of failure also rises.
Figure 3 indicates a similar trend described in [5], thus can be a potential strong
feature in this problem.
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Fig. 3. Trend of sample distribution using combined SMART feature

Fig. 4. Smart 189raw change before disk failed

Time Series Slope Features. According to the physical meaning of each
SMART attribute [6], many attributes are not real-time but accumulated
throughout the running time, such as smart 9 (represents for Power-On Hours).
For those attributes, the specific value gives less information than the value
changes. Besides, even for attributes that indicate real-time situation, the value
changes along the time series could also indicate a status change which relates
to disk health. Here one example is shown in Fig. 4: disk 20073 of model 1. The
fail date for the disk is June 10, 2018, so based on the label strategy described in
Sect. 2.1, all samples after May 11, 2018 (shown as the red dashed line) is labeled
as 1. The y axis is the raw smart 189 after the log-normal transformation (see
Eq.(1)). The two steps up after May 11, 2018 could be a signal that the disk was
close to its life end.

Here in this study, the labeling period was kept as 30 days because of the
competition requirement. However, this selection may not apply for all disks.

Division Features. There was another Huawei competition about disk failure
prediction which took place the same time as Alibaba’s AI Ops Competition,
and the champion solution [7] was published online. It was noticed that a new
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type of feature was showed a pretty significant impact. Here these features would
be also taken into consideration to validate their capability in a different disk
dataset. The division features are constructed as below:

d =
fraw

fnormalized + 0.1
(2)

in which d is the feature after the division transformation; fraw is the raw feature;
fnormalized is the corresponding raw feature after the normalization.

It was not clear enough about the physical meaning of this type of feature,
but it does provide some trending information on how linearly the raw and
normalized attributes are.

3 Voting Strategy for the Probabilistic Approach

3.1 Basic Model

Consider many of the features involved include Nan values and are not ideally
continuous, tree-based models are more likely to provide a robust prediction
than other type of models such as SVM. Therefore, Microsoft’s LightGBM was
selected for its high training performance and efficient memory usage [8]. Because
of the extreme imbalanced rate, it was seen that high learning rate and more
iterations could potentially lead to over-fitting to the specific training data used.
Thus, after a few experiments the parameters were kept with low learning rate
and less iterations.

Several down-sampling approach were tested but none of them showed bet-
ter result. As a result, LightGBM’s embedded setting was used to mitigate the
imbalance issue. In LightGBM, the parameter “is unbalanced” provides an app-
roach to deal the imbalance problem with an adjusted loss function [9]:

L(y) = − I+
n+

logP+ − I−
n−

logP− (3)

in which denote the modeled conditional probabilities by P+ := P (y = 1|x) and
P− := P (y = 0|x), and define indicators I+(xi) = 1 if yi = 1, and I−(xi) = 1 if
yi = 0, vice versa. n+ and n− are the number of postive and negative samples,
respectively.

Even though the loss function was adjusted for treating imbalanced problem,
it was still a logistic approach, and traditional logistic binary classification chooses
0.5 as the threshold to separate negative and positive samples. Nevertheless, with
extreme imbalanced dataset used in this task, sticking to 0.5 would categorize
almost all samples as healthy. Therefore, a self-defined threshold was put on the
calculated probability to better filtering the most-likely failed samples.

3.2 Voting Strategy Framework

Although single LGB model could provide accurate prediction for a group of disk
failures, it can also provide completely different result when the combination of



A Voting-Based Robust Model for Disk Failure Prediction 25

training parameters were slighted changed or a different month of data was used
for training. There is a possibility that not all LGB models are equally good at
predicting all samples, and thus some measures are needed to combine multiple
models.

Traditional model ensemble approaches are mostly depended on model blend-
ing or stacking, but when investigating the predicted probability for disk samples,
totally different probability distribution can be seen for a same set of validation
data. This phenomenon implied that predicted probability for failure could be so
different that an outlier result can dominate the final result in simple blending or
stacking operation. Therefore, we propose a more robust voting strategy to mini-
mize the influences of calculated probability and reliance on a single threshold.

4 Case Study

In order to quantify the effect of features proposed in Sect. 2 and the voting
strategy in Sect. 3, multiple cases were tested on Alibaba’s docker platform. The
models were tested without knowing the specific test data, providing a fairly
close-to-real-world environment. Furthermore, we limited the number of disks
submitted to 140–160, so that results can be compared without the effect of
submissions.

4.1 Attributes Filtering

In Sect. 2.1, it was found that many SMART attributes are highly correlated,
therefore, filtering out those high-correlated attributes might bring potential

Table 1. Pseudocode for the voting-based robust model.

Algorithm: The voting-based strategy via a series of LGB models
Step 1: Build up a well-defined LGB model for the binary classification.
i) set the objective function as ”binary”;
ii) define the metric function as ”binary logloss”.
Step 2: Select a series of hyperparameters for LGB models.
i) choose a series of values for hyperparameters, i.e. ”learning rate”, ”n estimators”
and ”subsample”;
ii) define combinations of those parameters;
Step 3: Make probability predictions.
For each model, obtain the disks failure probability, i.e.
Pri[y = 1|x], i = 1, 2, ..., m
in which m is number of models;
Step 4: Define the appropriate threshold.
i) strategy 1: constant threshold θ, e.g. θ =0.005, 0.006, etc.;
ii) strategy 2: adaptive threshold θ, e.g. θ = pencentile(Pri[y = 1|x], 10).;
Step 5: Output disk failure time via a voting-based strategy.
if Pri[y = 1|x] >= θ: count += 1
if count >m/2: failure disk;
else: healthy disk.



26 M. Li et al.

benefit to the prediction. Table 2 lists the related tests and the corresponding
results (Table 1).

Table 2. Result comparison for attribute selection

No. Method applied Online score

1a Single LGB model with non-Nan features 20.57%

1b Single LGB model using Pearson correlation to filter attributes 19.65%

1c Single LGB model using Spearman correlation to filter attributes 22.21%

2 Compared to 1a, add distance to important dates feature 21.79%

3 Compared to 1b, add distance to important dates feature 21.88%

11 Compared to 1b, add all generated features and apply voting strategy 22.48%

13 Compared to 1c, add all generated features and apply voting strategy 21.53%

Before additional features were introduced, high-correlated attributes filtered
by Pearson correlation slightly reduced the online scores (see 1a and 1b). How-
ever, both 1a and 1b indicated the low prediction accuracy and were needed
to be improved. This circumstance did not change until the distance to impor-
tant dates were defined and added as features (compare 1a and 2, 1b and 3).
Notice that, with filtering out high-correlated attributes by Pearson correlation
presented a little better result than with original attributes (see 2 and 3). This
unexpected phenonmenon reveals that the features addition might be nonlin-
ear. Compare to Pearson correlation, Spearman correlation is more suitable for
evaluating the statistical dependence between the rankings of two variables and
has wider applications. Hence, Spearman correlation test 1c was carried out and
a significant improvement can be seen (compare 1b and 1c). Nevertheless, the
benefit of the Spearman correlation filtering is not always improving the predic-
tion accuracy (see 11 and 13), it can boost the model under certain conditions
but not always the case.

4.2 Features Addition

In Sect. 2.2, five types of features were proposed. To better understand the effect
of each feature, 7 tests were conducted step by step in Fig. 5.

The number of features involved were added one by one from No. 1b to No. 8.
From the result, it was seen that following constructed features did show a signif-
icant contribution: distance to important dates, division features. The influences
caused by time series slope features were not clear enough because it lowered the
score when comparing No. 5 and No. 6 but improved the score when comparing
No. 7 and No. 8.
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Fig. 5. Result comparison for generated features

No Method applied Online score

1b Single LGB model with only select low-correlated attributes 19.65%

3 Compared to 1b, add distance to important dates feature 21.88%

4 Compared to 3, add hard disk usage life feature 20.94%

5 Compared to 4, add combined SMART feature 20.08%

6 Compared to 5, add time series slope features 17.10%

7 Compared to 5, add corresponding division features 21.68%

8a Compared to 5, add time series slope features and corresponding
division features

22.16%

4.3 Sample Imbalance

As explained in Sect. 2.1, the hard disk dataset is extremely imbalanced. Tra-
ditional approach for dealing with imbalance problem includes down-sampling
and up-sampling, however, with time-series data as the SMART log data, sim-
ple up-sampling and down-sampling approach would result in information leak.
Therefore, the approach here was to do bagging or duplication on disk serial
numbers instead of simply up-sampling or down-sampling daily records. Result
Comparison can be found in Table 3.

Due to the memory limits, a full up-sampling test was not able to be pro-
cessed. Hence a middle approach was utilized, where down-sampling and up-
sampling were combined. It was observed that although these processing method
decreased the imbalance extent of the dataset, the model was easily gaining high
precision and recall score on the validation set even with low learning rate and
less iterations.
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Table 3. Result comparison for data up-sampling and down-sampling

No. Method applied Online score

8a Single LGB model with all generated features, using May–June
2018 data

22.16%

8b Compared to 8, down-sampling negative samples only 17.76%

8c Compared to 8, up-sampling positive samples and
down-sampling negative samples

16.98%

4.4 Training Data

Since the imbalance issue unpreventably brought over-fitting, the selection of the
training data becomes essential. Three tests were conducted where only training
dataset were varied. The results verifies the hypothesis that training data affects
the prediction result to a great extent. This phenomenon raises a concern that
there may not exist a set of perfect training data that generates the best result
for all testing conditions, meaning it would be hard to know which data should
be used for training. However, it was still reasonable to utilize more recent data
than data long ago.

4.5 Voting Strategy

As described in Sect. 3, single LGB model does not provide robust results, thus
using voting strategy does not only improve the accuracy, but also reduce model’s
reliance on the probabilistic threshold. In Table 5, it is seen that voting strategy
is able to increase the prediction accuracy to some degree, but a bad set of
sub-models can also greatly harm the result (Table 4).

Table 4. Result comparison for different training data

No. Method applied Online score

8a Single LGB model with all generated features, using
May–June 2018 data

22.16%

9 Compared to 8, use June-July 2018 as training data 14.53%

10 Compared to 8, use July 2018 as training data 17.15%

Table 5. Result comparison for voting strategy

No. Method applied Online score

8a Single LGB model with all generated features 22.16%

11 Compared to 8, use voting strategy instead of a single LGB
model: train 7 sub-models with May-June 2018 data

22.48%

12 Compared to 11, add 7 more sub-models trained by June-July
2018 data

17.59%
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5 Conclusion

This study investigated various feature construction and filtering methods and
proposed a new type of feature, i.e. day distance to important dates. Moreover,
a developed voting-based strategy algorithm was applied rather than one well-
defined LGB model. During the competition, it was seen that day distance fea-
tures contributed significant improvement and the voting-based strategy ensured
a better result. Noted that, although the tests were designed to gradually add
optimized sub-approaches, the benefit of these sub-approaches was not seen to
be added linearly. It would be of great worth to investigate the impact of feature
combination and interaction. Additionally, this study is worthwhile for further
analysis on voting-based approach and can be expanded to include other models,
e.g. XGBoost, CatBoost etc.
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Abstract. In this paper, we will describe our solution to the PAKDD
Cup 2020 Alibaba intelligent operation and maintenance algorithm com-
petition. The biggest challenge of this competition is how to model this
problem. In order to maximize the use of data and make model train
faster, we turn this problem into a regression problem. By combining
GBDT [5] related algorithms like XGBoost [1], LightGBM [2], CatBoost
[3,4] and deep feature engineering and utilizing greedy methods for post-
processing the models’ predictions, our method ranks first in the final
standings with F1-Score 49.0683. The corresponding precision and recall
are 62.2047 and 40.5128 respectively.

Keywords: Intelligent operation and maintenance · First place ·
Regression labelling · Greedy postprocessing

1 Introduction

In large-scale data center, the scale of hard disk usage has reached millions.
Frequent disk failures will lead to the decline of the stability and reliability of
the server and even the whole IT infrastructure, and ultimately have a negative
impact on the business SLA. In the recent decade, industry and academia have
carried out a lot of work related to hard disk fault prediction, but there is
only a little research on hard disk fault prediction in industrial scale production
environment. Large scale production environment has complex business, large
data noise and many uncertain factors. Therefore, it has become one of the most
important problems that need to be studied and solved in the large-scale data
center and the industry in the cloud computing era whether to accurately predict
the hard disk failure in advance.

In this competition, we are given a segment of continuously collected (day
granularity) hard disk status monitoring data (self monitoring, analysis, and
reporting technology; often written as smart) and fault tag data, participants
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need to judge whether each hard disk will fail within the next 30 days according
to the day granularity. The evaluation indicator of this competition is F1 score,
which is usually seen in unbalanced problems.

There are two major challenges for this problem. The first challenge of this
problem is how to model. For example,

* The problem of predicting failure can be transformed into a traditional
binary classification problem, then we need to predict will the hard disks be
damaged or not in the latter 30 days.
* The problem can be transformed into a sorting problem, then we need to
predict severity of hard disk damage by learning to rank.
* The problem can be transformed into a regression problem, how many days
after will the hard disks be damaged since now.

The second largest challenge of this problem is data noise, imbalance of pos-
itive and negative samples, etc.

In next sections, we will explain our methods for solving above prob-
lems, experimental results and corresponding feature importance analysis. At
method’s part, we will show our whole method’s details, it contains four steps,

1. Labelling/Modelling strategy, at this part, we will describe the reason why
we model this problem as a regression problem and the advantage of this
strategy.

2. Feature engineering, since we use GBDT related algorithm as our main mod-
els. Feature engineering is core parts for success. At this part, we will describe
our feature engineering framework.

3. Models, at this part, we will introduce our selected models, including the
reason we choose them and each model’s corresponding parameters.

4. Prediction postprocessing strategy, here, we will explain our postprocessing
algorithms and its intuition.

After method’s part. We will show our method’s prediction results and model’s
feature importance. Finally, we will give a summary of this competition.

2 Method

2.1 Strategy for Labelling

The biggest challenge in this competition is how to model this problem. There are
many ways for modelling. The simplest idea is that we can transfer this problem
into an binary classification problem. We calculate the difference between the
fault time and the current time.
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* If the difference between the hard disk failure time and current time is less
than or equal to 30 days, we set the label equal to 1.
* If the difference between the hard disk failure time and current time is
larger than 30 days. we set the label equal to 0.

The advantage of binary classification labelling strategy is that it is simple
and easy to be understood. However, the disadvantage is also obvious: we treat
all differences less than 31 days as 1, which makes it harder to distinguish. We
know that the difference equals to 30 days may be hard to judge at current time
because it is still good and may have no evidence at now, but the difference equals
to 1 day may be easy to find some strange indicators. So binary classification
labelling strategy makes us lose a lot of important information.

The second strategy is transferring this problem into a multiclass problem.
Since the time range is within 31 days. Thus, we can transfer this problem into
a 33-class classification problems.

* If the difference between the hard disk failure time and current time is
between 0 days and 30 days. We set the label equal to failure time - current
time, which is within [0, 30].
* If the difference between the hard disk failure time and current time is
larger than 30 days. We set the label equal to 31.
* If the difference between the hard disk failure time and current time is less
than 0 days. We set the label equal to −1.

Multiclass classification labelling strategy is much better compared with
binary classification. We are able to keep more information compared with
binary classification labelling method. The disadvantage of multiclass classifica-
tion labelling strategy is that it is quite time-consuming if we utilize LightGBM
or XGBoost or Catboost for training. Multiclass classification may take several
times time compared with binary classification. Besides, it may also lose some
information because we set the label of 31 days, 32 days, 33 days ... equal to 31.

The third method is transferring this problem into a regression problem.
The method of constructing label is similar to multiclass problems. We use the
difference between the fault time and the current time as our label.

* We set the difference between the hard disk failure time and current time
as our label.

Regression methods can utilize information better than multiclass classifi-
cation. We can utilize more information than multiclass when the difference is
larger than 30 days. At the same time, we also relieve the problem of time-
consuming. Training a regression model is much faster than training a multi-
class model in this problem. For this reason, our team decided to use regression
labelling strategy as our final strategy.

Note, there exists some differences in our final labelling strategy. During our
experiments, we see that if we treat the difference between the hard disk failure
time and current time that is larger than 30 days as 31, we can get a little better
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result. At the same time, we find that if we delete the samples with difference
less than −1, we can save some training time while the F1 score does not drop.
Concrete labelling strategy can be seen in Table 1. To reduce the influence of
noise, we utilize sliding window’s methods to construct more training samples,
which often gives us better predictions.

Table 1. Regression strategies for labelling

Days to failure −1 0 1 2 . . . 30 31 32 33 . . .

Regression label −1 0 1 2 . . . 30 31 31 31 . . .

After we transferred this problem into a traditional problem, the next step
is to make our model do regression better.

In this competition, our team combines deep feature engineering with Light-
GBM, XGboost and CatBoost models to solve this regression problem. In the
following parts, we will explain concrete details.

2.2 Feature Engineering

Feature engineering is the key to success in many data competitions. Better
feature engineering can help our model learn much easier and get better results.
At this part, we will explain the details of our feature engineering framework.

Preprocessing. The data set is quite large if we load all data into our machine,
which may take more than 100 GB. This may be hard for us to extract other
features. Therefore before we do other feature engineering, we need to do some
preprocessing first. Here, we do two main operations.

1. Delete feature columns with only null value. Null feature column brings no
information, so we can delete them without losing any information.

2. Delete feature columns with only one unique value. Feature column with only
one value can not help our model train better. Since the feature in all samples
is the same, we can delete them safely.

We can delete 463 features by above operations. To save more memory, we
use Memory Reduction Function 1 to do feature types transformation. We save
more than 91% memory by doing this, which makes the data size acceptable
for us.

Features. At preprocessing part, we make data size acceptable. At this part,
we will explain our features. For better explanation, we use Vnow to represent
the feature value of today, and use Vnow−N to represent the value N days ago.

We split our team’s feature framework into five parts, different parts try to
capture different information from different aspects.
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Algorithm 1. Memory Reduction Function
for each feature in all features do

if the type of feature belongs to int then
if min (feature) > min(int8) & max(feature) < max(int8) then

Transfer the type of feature into int8
else if min (feature) > min(int16) & max(feature) < max(int16) then

Transfer the type of feature into int16
else if min (feature) > min(int32) & max(feature) < max(int32) then

Transfer the type of feature into int32
else if min (feature) > min(int64) & max(feature) < max(int64) then

Transfer the type of feature into int64
end if

end if
if the type of feature belongs to float then

if min (feature) > min(float16) & max(feature) < max(float16) then
Transfer the type of feature into float16

else if min (feature) > min(float32) & max(feature) < max(float32) then
Transfer the type of feature into float32

end if
end if

end for

1. Meta features: meta features (smart n raw and smart n normalized) are
choosen from original features directly. These features contain disk’s origi-
nal information.

2. Shift features: we do shift operation on original smart n raw features, we set
the shift days equal to 1, 5, 10, 20 at beginning, which are defined by our
experience. Shift features can bring historical information and help our model
see further. But to our surprise, we can get better result by only keeping shift
day equal to 1 through our experiments.

3. Relative comparison features: we calculate the difference between smart n raw
and its corresponding shift features, these features can reflect relative change
in the last N day.

Vnow − Vnow−N (1)

4. Absolute comparison features: we calculate the sum between smart n raw
and its corresponding shift features, these features can relect absolute size.
For example, we use A and B to represent today’s value and last N day’s
value, A + B may be quite different though A − B is the same. So, absolute
comparison features are complementary to relative comparison features.

Vnow + Vnow−N (2)

5. Speical Features: we calculate the number of null features of each sample.
There are many missing values in our data, which may contain some special
informatins. For example, in many loan problems, missing values may tell
us that this person does not want to tell us his information. Hence, we use
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number of missing values of each sample to represent some special situations
here. This helps our model improve around 0.5 to 1 F1-score online.

Concretely, the smart n raw features include: 1, 3, 4, 5, 7, 9, 10, 12, 184,
187, 188, 189, 190, 191, 192, 193, 194, 195, 197, 198, 199, 240, 241, 242. and the
smart n normalized features include: 1, 3, 4, 5, 7, 9, 10, 12, 184, 187, 188, 189,
190, 191, 192, 193, 194, 195, 197, 198, 199, 240, 241, 242. Other features are
removed at preprocessing part.

Besides, our team also tried many other features. For example, sliding win-
dow’s statistical features, we calculate statistical values like mean, median, stan-
dard deviation, skewness in the past time windows.

Opt(Vnow−M−N , Vnow−M−N−1, ..., Vnow−M ) (3)

where

* now −M : where to start, can be set by yourself;
* N : window size;
* Opt: operations like mean, median, etc.

Ratio features by calculating the ratio between today’s value and the value
N days ago,

Vnow

Vnow−N + eps
(4)

where

* eps: we set 1e−6 here, to prevent the situation when Vnow−N = 0.

Linear coefficient of some feature in the last N days, etc. These features help
a lot in many other competitions, especially in time series related problems, but
they only bring little gains here, so finally we do not add them into our final
models.

2.3 Models

In this competition, we choose LightGBM, XGBoost and CatBoost for training
and testing. There are two main reasons we choose these models. The first reason
is that there are many null values in our dataset, LightGBM, XGBoost and
CatBoost models have nice performance for dealing with these kind of features.
The second reason is their outstanding performance in many data competitions.
Detailed description of these models can be found in paper [1–4]. The parameter
of each model is shown below.

* XGBoost: learning rate = 0.01, n estimators = 1000, max depth = 5,
subsample = 0.9, colsample bytree = 0.7, tree method = ‘gpu hist’,
*LightGBM: learning rate = 0.01, n estimators = 1000, max depth = 5, sub-
sample = 0.9, colsample bytree = 0.7, objective = ‘mse’, random state = 3,
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* CatBoost: learning rate = 0.01, iterations = 1000, max depth = 5, ver-
bose = 100, early stopping rounds = 200, task type = ‘GPU’, eval metric =
‘RMSE’.

After many experiments, we find all three models can achieve 44.0+ F1 score
online. We take different ensemble strategies, including simple mean operation,
weighted mean operation and stacking. To our surprise, we find ensemble with
all models can only bring little improvements online. This may be caused by
high correlation of prediction results. In the end, our team chooses prediction of
XGBoost as our final results.

2.4 Prediction Strategy

Model’s prediction can give us a value indicating how many days after will fault
happen. There may be many prediction values within 30 days, so we need some
strategy for postprocessing and making our final submission. Here, we use greedy
strategy to postprocess our model’s predictions. The algorithm is shown below 2.
Main intuition of our algorithm is that we only consider making prediction today,
hence, we need to select the predictions with highest confidence. As we know,
if disk’s fault day to now is much closer, then the evidence will be much more
obvious. Hence, we need to choose samples with highest confidence to submit.

Algorithm 2. Greedy Selection Strategy
for model in [1,2] do

Calculate 31 - pred as our confidence value.
Get count of model at date dt(CountofDt).
Calculate the rank of confidence value(RankofConf) of corresponding model at
date dt.
If RankofConf ≥ p * CountofDt, we set label equal to 1, otherwise, we set label
equal to 0, where p is calculated underline.

end for
Submit the date with label equal to 1.

The p value in our algorithm is 0.9983 for model 1 and 0.9985 for model 2.
The main disadvantage of our model is that we only choose those samples with
highest confidence, so many samples will be ignored. For example, if our model
predicts that some disk will fault at 10 days later, but this value may not rank
at top, so we will ignore this prediction. But the advantage of greedy selection
strategy is also obvious, it is a conservative strategy and in line with our intuitive
feelings, we do get high precision and high recall during online testing.

3 Results and Analysis

In the above section, we have explained our method’s details, including strategy
for labelling, feature engineering, models and greedy selection strategy. In this
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section, we will show the results of different models we tried and model’s feature
importance.

3.1 Results

Table 2. Results of different models

Problem transformation Models F1 Score Precision Recall

Regression CatBoost 44.3666 52.4138 38.4615

Regression LightGBM 44.1810 50.9934 38.9744

Regression XGBoost 49.0683 62.2047 40.5128

As can be seen from Table 2, XGBoost get the highest score in this com-
petition, LightGBM and CatBoost get a little worse results. The main reason
is that we tune XGBoost more than the other two models, so there is a little
overfitting. We also do binary classification experiments here, but the best F1
score of binary classification is only 41.7943 with precision 57.5221 and recall
32.8205, which again verifies regression labelling strategy’s advantage.

3.2 Feature Importance

The gain and split feature importance of XGBoost model are shown in Fig. 1
and Fig. 2 respectively. Here we only show the top 20 most important features.
As can be seen from Fig. 1, the top 10 important features include 7 diff features:
diff smart 9raw 1, diff smart 187raw 1, diff smart 7raw 1, diff smart 242raw 1,
diff smart 5raw 1, diff smart 193raw 1, diff smart 241raw 1; Two meta fea-
tures: smart 198raw, smart 199raw; One sum features: sum smart 198raw 1.
This is similar to our understanding, change of recent value is quite an impor-
tant indicator for predicting disk failure. Absolute features and meta features are
complementary to relative features. This is similar to split feature importance,
see Fig. 2.

To test the importance of top features, we try to delete top features one by
one and see how the score changes. After many experiments, we see that the
F1-score may drop from 49 to 43 if we drop the most important feature, here
is diff smart 9raw 1. If we drop any one of the top 10 features, the F1-score
all becomes worse. We search for some documents and wiki pages to find these
features’ physical meanings. We find that smart 9 raw is called power-on time
count (POH). Hence, the difference of this feature means the change of power-on
time in recent days, which is quite meaningful because we can not say that if
POH is large, then the disk will have high probability for failing in the next few
days. However, if the power-on time seems unsual in recent one day or two days,
then it may be a good indicator that the disk may fail in the next few days.
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Fig. 1. Feature gain importance of XGBoost Model

Fig. 2. Feature split importance of XGBoost Model

4 Conclusion

In this paper, we describe our solution to the PAKDD Cup 2020 Alibaba intel-
ligent operation and maintenance algorithm competition. By analyzing three
strategies for labelling, our team decided to transfer this problem into a regres-
sion problem so that we can maximize the utilization of data information and
reduce computation time a lot compared with multiclass classification.

We use feature engineering and XGBoost model as our final training and
prediction framework. Our feature engineering framework consists of meta fea-
tures, relative features, absolute features and special features which helps a lot
for model’s prediction. Finally, we use greedy selection methods to do postpro-
cessing of our predictions. Our method ranks first in the final standings with
F1-Score of 49.0683, with precision 62.2047 and recall 40.5128.

Acknowledgement. Thanks to Tianchi, Alibaba and PAKDD for hosting, creating
and supporting this competition.
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Abstract. Hard disk drives (HDDs) as a cheap and relatively stable
storage tool are widely used by enterprises. However, there is also a
risk of fault to the hard disk. Early warning of the HDDs can avoid
the data loss caused by the hard disk damage. This paper describes
our submission to the PAKDD2020 Alibaba AI Ops Competition, we
proposed an anomaly detection method of HDDs based on multi-scale
feature. In our method, the original data are classified according to the
characteristics of different attributes and proposed a multi-scale feature
extraction framework. In order to solve the problem of different data
distribution and sample imbalance, the health samples were sampled in
time. Finally, we use Lightgbm model to regress and predict the hard
disk that will break in the next 30 days. On the real dataset get the
0.5155 precision and 0.2564 recall. Final rank is 24.

Keywords: Anomaly detection · Muti-scale features · Lightgbm

1 Introduction

1.1 Background

With the large-scale increase of data, more and more storage space is needed in
the future. Because the HDDs are relatively cheap and stable, many enterprises
use the HDDs to store data. However, with the passage of time, the HDDs also
have the risk of damage. In case of fault occurred, a large amount of data will be
lost. This will lead to irreversible risks. Therefore, it is very necessary to give an
early warning to the hard disk which will be damaged soon. The Self-Monitoring
Analysis and Reporting Technology (SMART) can monitor the performance of
hard disk in real time. Although SMART is widely used, its failure detection
rate is low, typically ranging from of 3% to 10% [1].
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1.2 Related Work

The first time, in 2002–2003, [2,3] use the statistical model based on nonpara-
metric estimation for hard disk fault detection. This method can only be used
on hundreds of hard disk samples, which can’t be deployed in today’s large-
scale hard disk anomaly detection scenarios. In [4], the Support Vector Machine
(SVM) model is applied to detect the hard disk anomaly, and the prediction accu-
racy has been further improved. In recent years, more researchers use machine
learning and deep learning to solve the problem of hard disk fault warning.
Recurrent Neural Network (RNN) is used in [5] for the first time. In [6], they
test the various deep learning models in hard disk anomaly detection. Whether
it is deep learning or traditional machine learning, these paper do not fully mine
the attribute features in SMART. Traditional machine learning uses snapshot
features, while deep learning directly uses sequence features. In the actual scene,
the extreme imbalance of samples and large number of missing values will also
lead to the poor effect of these methods.

1.3 Contribution

With this paper we make the following contributions:

– We analyze the data of SMART in detail, and divide the reasons of the fault
hard disk into abnormal value and abnormal trend. Meanwhile, the SMART
attributes are filtered by data exploration.

– Not only the snapshot features are used for feature modeling, but also the win-
dow features are extracted according to the kind of each SMART attribute. In
the experiment, the multi-scale feature improves the prediction effect greatly.

– Under sampling the healthy hard disk samples closest to the prediction date
can alleviate the imbalance of samples and greatly reduce the training time.
Using regression modeling to make full use of data supervision information.

The remaining of the work is organized as follows: In this paper, firstly, the origi-
nal data is analyzed in detail and some characteristics of attributes are obtained.
In the second section, the specific method of sample selection is proposed. In the
third section, we proposed the method of extracting multi-scale features for hard
disk anomaly detection. The fourth part and the fifth part respectively intro-
duced the model architecture and experimental details. Finally, the advantages
and the future work of this paper are summarized.

2 Data Exploration

2.1 SMART Attribute Exploration

The SMART generates a huge amount of data everyday. In fact, the attributes
closely related to the health of the hard disk are limited. Referring to [7,8], 25
attributes are selected as the spare attributes for feature extraction. Further-
more, some attributes with missing value greater than 98% and all value are
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Table 1. Some SMART attributes used to extract features.

SMARTID Meaning SMARTID Meaning

4 Start or stop count 5 Reallocated sector count

7 Seek error rate 9 Power-on hours

12 Power cycle count 184 End-to-end error

187 Reported uncorrectable errors 188 Command timeout

189 High fly writes 191 G-sense Error rate

192 Power-off retract count 193 Load cycle count

194 Temperature 195 Hardware ECC

197 Current pending sector count 198 Uncorrectable sector count

199 UltraDMA CRC error 240 Transfer error rate

241 Total LBAs written 242 Total LBAs read

same are eliminated. Finally, we get 20 selected attributes in Table 1. Figure 1
shows the visualization of power on hours, seek error rate and load cycle count
(SMART7,9,193). From the visualization of these three attributes, we can see
that the value of attributes increases almost linearly with time. If these three
attributes are used to extract features, the distribution of training set and test
set will be very different. So, it is not advisable to extract the corresponding
value as a feature directly for such attribute, which needs to be converted into
the relative change amount within a period of time or measured by threshold
truncation. In order to find the time distribution of abnormal samples in history,
we visualized the number of abnormal samples per month (Fig. 2). According
to Fig. 2, it can be found that the number of abnormal samples in each month
before 2018 is unstable and there is a large fluctuation. However, the number
of abnormal samples close to September 2018 is relatively poor. The number
of abnormal samples in 2018 is basically on the rise. The number of abnormal
samples in July and August is almost the same. Therefore, training and offline

Fig. 1. Monthly sum after normalization Fig. 2. Total number of bad disks per
month
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validation should be selected from the data close to September as much as possi-
ble. Because the number of abnormal samples is very small, it is easy to get some
information for the analysis of abnormal samples. The SMART5 and SMART184
were selected for analysis. Figure 3 shows the change of the attribute value one
month before a hard disk is damaged. It can be found that the attribute value
began to show an upward trend 30 days before the exception. Therefore, it is nec-
essary to analyze the time series several days before a hard disk failure through
multi-scale window. Figure 4 shows the change of SMART184 attribute value
30 days before a hard disk failure. It can be seen that the attribute value of this
sample increased abruptly on the day of failure. The occurrence of such outliers
needs to be measured by the time snapshot feature.

Fig. 3. Change status of the attribute SMART5 before the failure date.

Fig. 4. Change status of the attribute SMART184 before the failure date.
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2.2 Build Training Data

The task of this hard disk anomaly detection is to predict whether the hard
disk will fail in the next 30 days. The data from July 2017 to August 2018 is
used to predict the hard disk data in September 2018. There are two states
of hard disk: health or failure. Intuitively, this is a typical binary classification
problem. As a binary classification task, it is necessary to provide 0 or 1 label
for historical data used for model training. Set the sample label within 30 days
from the failure date to 1 (failure) and the rest to 0 (health). However, binary
classification will cause a lot of information loss. Each hard disk with a record
of fault has the same label for each sample within 30 days or more than 30 days
from the date of fault. However, in fact, some SMART attributes have changed
on different dates before the hard disk is faulted, and the closer to the damage
date, the more obvious the abnormal value may be. Based on this, the problem
can be transformed into a regression problem to predict the remaining life of
the HDDs. The remaining life of the hard disk can be obtained by calculating
the time difference between the current date and the fault date. But, there are
a large number of hard disks in the data set which are always in a healthy state,
so it is impossible to directly define their remaining life. The piece-wise function
can solve this problem, the function is implemented as

RUL =

{
tw, t ≥ tw

t, t<tw

where tw means upper limit of remaining life, t means represents the difference
between the date of hard disk failure and the current date. When the t more
than tw or hard drives are always keep health, the label set to tw. Otherwise,
using t itself as label. In this way, all data can be fully utilized.

2.3 Undersampling of Health Samples

The original data size is very large and has a serious sample imbalance problem.
Only 0.79% of the total hard disks have failure records. In addition, according
to the data visualization in Fig. 1, we have analyzed some characteristics of
SMART attributes that grow with time. This also leads to great differences in
the distribution of data in different time periods. The attributes of power-on
hours, seek error rate and load cycle count grew continuously from 2017 to 2018.
The data close to August 2018 is closer to the distribution of real online test
sets. Therefore, the solution truncates the data from May 2018 and uses the data
after this date as the training set. However, there is still a problem of extremely
unbalanced data labels. In our approach, we use the undersampling method for
health samples. Directly sample the health samples in July 2018, select 2 million
health samples merge to the abnormal samples after May 2018 to get the final
training set. In this way, not only the imbalance of samples is alleviated, but
also the distribution of samples in the whole month is ensured to be consistent.
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3 Feature Engineering

3.1 Feature Classification

Features are divided into two categories: snapshot features and window features.
Because different SMART attributes have different characteristics, multi-scale
features are needed to measure. According to the first part of data exploration,
we can find that the trend of some data will bring the signal of hard disk failure.
The other part of the data can reflect the health status of the hard disk from the
specific value. Figure 5 shows the overall idea of feature engineering. The time
snapshot feature is used for the attribute whose value can reflect the health of the
hard disk. The time snapshot feature reflect some specific numerical information.
When some attribute values are higher than a certain threshold, the hard disk
will be abnormal. But some properties are not sensitive to specific values, and
the rising trend may reflect the abnormality of the hard disk. Extracting the
statistics feature of a period of time before a certain day can better reflect this
trend of change. Of course, some attributes are not only trendy, but also have
values that directly affect the health of the hard disk. Then we need to extract
window features and time snapshot features respectively.

Fig. 5. Feature classification framework.

3.2 Feature Extraction

Snapshot Features. According to the prediction of a certain hard disk one
day, its corresponding time snapshot features are divided into two categories.
One is the specific value of the SMART attribute corresponding to the target
day. The other is the value corresponding to the previous N days. Because some
hard disks has no specific value of some SMART attribute at the date of fault
time. In this paper, we extract the record values of the previous days. Fig. 6
shows the framework of snapshot feature extraction. Select the days before the
date to be predicted to extract the corresponding attribute value. In particular,
the missing value is filled with −1.
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Fig. 6. Time snapshot feature extraction method.

Window Features. The window feature mainly extracts the information within
K days before the date to be predicted. The K days before the date to be
predicted are regarded as a time series, and the corresponding sequence features
are extracted to describe the change of specific attribute values. Many hard disk
attribute exceptions can be reflected by time series anomaly. Thus, the problem
is transformed into anomaly detection of time series. In the scenario of hard disk
anomaly detection, the time series anomaly is mainly manifested as outliers and
continuous growth. Some SMART attributes are in a stable state for a long time
under normal state. When there is a pulse on the stable sequence, it indicates
that there is an abnormality. This anomaly can be reflected by maximum and
range. Secondly, the abnormal fluctuation and continuous growth are also typical
phenomena reflecting the abnormal of time series. This anomaly can be reflected
by variance and sequence mean. Figure 7 shows the window feature extraction
framework. In particular, the length of the window can be multiple sizes. This
can have a multi-scale effect. The short window can capture the information
close to the date to be predicted, while the long window can extract the global
information on the long time series.

Fig. 7. Window feature extraction method.
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4 Model

Lightgbm [9] model is adopted. Lightgbm is the engineering implementation of
gradient boosting decision tree (GBDT) algorithm. It adopts the split strategy
of leaf wise and histogram difference to optimize. Lightgbm runs much faster
than GBDT and is easier to deploy. The data from April 2018 to June 2018
is used as training offline, and the data from August is used for validation.
The reason why offline valid data are selected every other month is that when
online and September data are predicted, many of the samples in August cannot
judge whether they are fault or not. Therefore, the online test data can only be
trained with the data from May to July. The number of iteration rounds and
offline validation score of the model can be determined by this offline verification
method. The method of 5-cross validation is used for online prediction. In this
way, the data can be fully trained and relatively stable. Figure 8 shows the
overall model architecture. In the cross validation, the model does not converge
and needs to rely on the number of training rounds obtained from the time
window validation for reference. The average value predicted by five models is
used as the final prediction. Select a threshold value for truncation, when the
predicted value is less than this threshold output 1, otherwise output 0.

5 Experiment

5.1 Dataset and Evaluation

This paper uses the data provided by Alibaba [10], which comes from the real
production. The data includes HDDs data from September 2017 to August 2018.
In the test part, the official truncated the test data. The competitors do not
know the specific truncation method, which further simulates the uncertainty
of the test data on the real production scene. It can better verify the stability
of the algorithm. Because HDDs anomaly detection pays more attention to the
accuracy of fault samples, the online evaluation function is defined as

F1score = 2 × Precision × Recall

Precision + Recall

the precision is defined as ntpp

npp
, the npp means the number of hard disks that

are predicted to be damaged in the next 30 days, and ntpp represents the number
of hard disks that actually fault in the next 30 days (end September 30) in our
predict. The Recall is defined as ntpr

npr
, thentpr means the number of hard disks

actually fault in the next 30 days (no month limit). npr represents the number
of hard disks fault in the next 30 days in real environment.
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Fig. 8. Modeling and prediction methods.

5.2 Parameter Selection

In order to ensure the speed of extracting window features, we limit the window
length to within 30. The window features are extracted by window length of
10, 20 and 30 respectively. Through offline verification, it is found that the
verification result is the best when the window length is 20. Refer to [11], we
set the piece-wise maximum RUL to be 100. Using the training from March to
May and July as the verification, the number of training rounds can be obtained
when the model iteration converges is 300. The learning rate of Lightgbm model
is 0.03, and the feature fraction is 0.9. The online test data thresholds for the
two models are 260 and 285.

5.3 Result

The local model training machine uses 64 g memory and 16 core CPU, and the
online prediction environment is 16 g memory CPU. Table 2 shows the online
test results under various methods. It can be seen that multi-scale features have
obvious advantages over single time snapshot features. Under the same charac-
teristics, the prediction effect of using regression method to model is better than
the binary classification method. Through the method of undersampling the
health samples, the online prediction performance has been further improved.
The winning submission get the 0.5155 precision and 0.2564 recall. Final rank
is 24. What’s more, it only takes one minute to train the cross validation model
offline.
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Table 2. Online scores for each method.

Method Online F1 score

Binary lightgbm with Snapshot features 25.29

Regression lightgbm with Snapshot features (tw = 100) 26.66

Regression lightgbm with multi-scale feature 32.27

Regression with multi-scale feature and undersampling 34.25

6 Conclusion

This paper proposes an anomaly detection method based on multi-scale features
for hard disk anomaly detection task. Through multi-scale features, the mining of
abnormal patterns is more comprehensive. Under sampling of healthy samples
can alleviate the imbalance of samples and improve the training speed of the
model. The regression method makes full use of the original data and further
improves the online score. The Lightgbm model ensures the training speed of the
model and is easy to deploy. However, we only extract interval statistical features
by sampling time series, we can try to use LSTM to extract time series features
in the future work. To solve the problem of sample imbalance, this paper only
uses undersampling of healthy samples. In the future, we can try to expand the
abnormal samples with GAN, so that the data information can be used more
fully.

Acknowledgements. Thanks to Alibaba and PAKDD for hosting, creating and sup-
porting this competition.
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Abstract. Disk failures are a constant challenge for data centers, which
could lead to data loss or even financial losses. Recently, researchers
have proposed predictive models based on SMART attributes. However,
most previous studies were often conducted with small-scaled data and
usually aimed to predict disk failures just a few hours in advance. This
paper aimed at predict if a disk will fail within the next 30 days based
on a large scale real world data. The dataset used was from the PAKDD
2020 Alibaba AI Ops Competition, which contains real-world logs from
around 170 thousand disks during July 2017 to July 2018. We inves-
tigated 3 different kinds of solutions in depth for this task, including
time-series prediction, anomaly detection and binary classification. We
studied the reasons behind the differences in performance among models,
and we proposed a series of data processing methods based on our elab-
orate feature analysis in order to predict disk failures. Both the offline
validation and online testing showed that our observation and proposed
methods are promising.

Keywords: Disk failure prediction · Deep learning · LightGBM

1 Introduction

With the rapid growth of information technology (IT), data storage has become
increasingly important. This has led to the operation of large-scale data centers
that house millions of hard disk drives (HDDs) and solid-state drives (SSDs).
Disk failures are a common failure in data centers that could lead to data loss
as well as unstable and unreliable servers [8]. They may even affect the entire
IT infrastructure, which poses a huge threat to IT companies. Thus, predicting
disk failures in advance is crucial for big-data industries.

Self-Monitoring, Analysis, and Reporting Technology (SMART) is a monitor-
ing system in disk drives that reports attributes used to monitor the risk of disk
drive failure. A wide range of disk failure prediction methods based on SMART
data have been studied [4,6,7,9,10]. The previous studies were often conducted
c© Springer Nature Singapore Pte Ltd. 2020
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with small-scaled datasets, and the lead time used to predict disk failures were
just a few hours. In this study, we built models that output daily predictions of
whether a disk will fail within the next 30 days in the context of large-scale data.
The dataset used was from the PAKDD 2020 Alibaba AI Ops Competition and
contained real-world data from around 170 thousand disks during 2017-07-31 to
2018-07-31. A more detailed description of the dataset can be found in [1].

To solve the problem of disk failure prediction, we investigated 3 kinds of
solutions: Time-series prediction with temporal convolutional networks (TCNs),
Anormaly detection with autoencoders and binary classification with gradient
boosting decision trees(LightGBM). We comprehensively studied and compared
the performance of the models for disk failure prediction task, we also investigate
the reasons behind that may lead to the differences in performance among the
models.

The main contributions of this paper are: 1) We compared two deep neural
network models with gradient boosting decision trees in depth for disk predic-
tion in large-scale data, and analysis the reasons that result in the difference in
performance. 2) We proposed a series of data analysis and processing methods
based on our elaborate feature analysis for the disk failure prediction task, and
the results of the online test showed that our proposed methods are promising.

2 Methods

In this section, we describe our methods including feature analysis, feature
engineering, the models we investigated, data preprocessing and the evaluation
metrics.

Table 1. Types of variables collected in the raw data.

Name Type Description

serial number String Disk serial number code

Manufacturer String Disk manufacturer code

Model String Disk model code

smart n normalized Integer Normalized SMART data of SMART ID= n

smart nraw Integer Raw SMART data of SMART ID= n

dt String Sampling time

2.1 Feature Analysis

The raw data included 514 columns containing the 6 types of information shown
in Table 1. First, we discarded the SMART attributes that were either all missing
or were all the same value in the training set. 52 features remained, including 24
smart raw attributes and 24 smart normalized attributes. Note that the meth-
ods for calculating smart normalized attributes are generally vendor-specific and
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not standardized across different vendors. We visualized the correlation of the
remaining features, shown in Fig. 1. The correlation can help in predicting when
some attributes are missing. From the correlation matrix we were able to find
out some correlated features that could help us to build our model.

Fig. 1. Correlation Matrix of features shows the correlation coefficients between fea-
tures, from which we are able to discover features that are correlated to build new
features.

The data was labeled as follows: each data point, which corresponds to the
status of a disk on a day, was labeled 1 if the disk faulted on the day itself or
during the subsequent 30 days. Otherwise the data point would be labeled 0. The
data points labeled 1 constitute the positive class, while the data points labeled
0 make up the negative class.

There were two disk model types present in the dataset: disk model 1 and
disk model 2. We investigated the difference in the distributions of the features
for disk model 1 and disk model 2, as well as for the positive class and negative
class. Some examples of the features with different distributions between disk
model 1 and disk model 2 and between the positive and negative classes are
shown in Fig. 2 and 3 respectively.
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Fig. 2. Distributions of smart 9raw (power-on hours) of disk model 1 and disk model
2. We observed that the distributions of this feature for the different disk models are
different, suggesting the heterogeneity between the two disk models.

Fig. 3. Distributions of smart 195 normalized (hardware ECC recovered) of disk model
2 disks. It demonstrates that the distributions of the feature are different between
normal and abnormal disks, suggesting that we may use this feature to discriminate
abnormal disk from normal ones.

The difference in distributions of some SMART attributes between the posi-
tive class and the negative class suggests that those features can be used as indi-
cators for a prediction model. However, from our observation, most attribute
distributions of disks with the same disk model type are similar between the
positive class and the negative class, making it difficult to predict directly from
the SMART attributes.

By analysing the feature correlations and testing features on the validation
set, we selected 2 sets of features to train our models on.

Feature set 1 consists of the disk model type and the 48 SMART features
that were selected by discarding features that are all missing values or all the
same value. This set was used as our baseline features.

Feature set 2 is an improved and optimized set of features derived from
feature set 1 by first removing the features with a feature importance of 0
according to the LightGBM split gain, this step excluded smart 10 normalized,
smart 10raw, smart 12 normalized, smart 188 normalized, smart 191 normal-
ized, smart 191raw, smart 192 normalized, smart 195raw, smart 199 normali-
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zed, smart 1 normalized, smart 240 normalized, smart 241 normalized, smart
242 normalized, smart 3raw and smart 4 normalized. Engineered features were
then added to the set.

2.2 Feature Engineering

Vertical Feature Engineering: Figure 4 shows the graphs of the smart 5raw
(reallocated sectors count) values of 6 different disk before they fault. We can
see that the smart 5raw values of the disks tend to increase as they approach
their fault dates, but a disk’s elevated values may still be lower than another’s
low values. This suggests that the change in a SMART attribute may be more
indicative of a disks probability of fault than the attribute value itself. To make
use of this observation, we added features that were the 7-day difference of
selected SMART attributes.

Fig. 4. Graph of smart 5raw (reallocated sectors count) values of 6 different disks in
the 50 days leading up to the fault. Although the values vary widely between disks,
most of the curves show an upward trend as they approach the fault date, suggesting
that the change in value over time may be more important than the attribute value
itself.

Horizontal Feature Engineering: One engineered feature we added was the
number of days since the disks first log in the dataset. For each disk, we found
the date of the earliest log for the disk in the dataset and use the difference
between the sampling date and the first date as a feature. It was used as a
measure of the usage time of a disk. Meanwhile, from the feature analysis, we
found that smart 9raw was a strong feature, and the feature pairs smart 5raw
and smart 197raw, smart 7raw and smart 188raw, and smart 3 normalized and
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smart 191 normalized had correlations that are potential for building new fea-
tures. For smart 7raw and smart 188raw, smart 5raw and smart 197raw, we cal-
culated the differences between the pairs of features and used the differences as
new features.

2.3 Models

Autoencoder: Autoencoding is a data compression and denoising algorithm
where the compression and decompression functions are usually implemented by
neural networks. The key goal of an autoencoder is to learn a latent representa-
tion of the input data from which it can reconstruct the input as accurately as
possible. This leads to the autoencoder learning important underlying features.

By using an autoencoder, the task was framed as an anomaly detection task.
We trained the autoencoder only on the normal (negative class) data so that the
reconstruction loss should be small when the input is normal. Ideally, we would
be able to use the loss to classify normal and anormal data points.

We used the same structure for all autoencoders. The structure is simple and
composed of three layers: (I) an input layer with size of the number of features,
(II) an dense hidden layer of n neurons (n is one third of the input features)
with ReLU activation function and L1 norm regularization, and (III) a final dense
linear output layer that reconstructs the input. We referred to the autoencoder
structure in [3], the autoencoder was trained by using an Adam optimizer to
minimize the mean square loss between the input and the reconstruction.

We validated on both normal disks and anomaly disks as we wanted to simul-
taneously minimize the reconstruction error for normal data points and maxi-
mize it for anormal data points. It was important to find a balance. After some
experiments, we chose to train the model for 3 epochs using a batch size of 256.
This setting prevented the model from over-fitting.

Temporal Convolutional Network: Temporal convolutional networks
(TCNs) [2] are a family of convolutional neural networks that handle sequences.
TCNs output sequences of the same length as the input sequence, with the nth

term of the output sequence calculated from at most the first n terms of the
input sequence. TCNs are thus causal; they do not use future data to make
the current prediction. The number of previous terms used in each prediction is
determined by the size and the dilation factors of the kernels, and the number
of layers.

For the experiments, we used the residual blocks described in [2], with the
modification of removing the weight normalization. The network used consisted
of two residual blocks followed by a convolutional layer. The residual blocks had
64 output channels per layer and kernel size of 4. The dilation factors for the
first and second residual blocks were 1 and 2 respectively. The final layer used
a kernel size of 1, had 1 output channel and a sigmoid activation function. This
results in 19 days of data used for each day’s prediction.

The model was trained using the Adam optimization algorithm, using a learn-
ing rate of 0.001 and a batch size of 128. Dropout and max-norm constraint was
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added to all hidden layers. A dropout rate of 0.1 and a max-norm constraint of
2 were used.

LightGBM: LightGBM [5] is a fast, distributed, high performance gradient
boosting framework based on decision trees. Unlike other gradient boosting deci-
sion tree algorithms, LightGBM uses an enhanced histogram algorithm to divide
the continuous eigenvalue to improve the training speed and memory efficiency
while maintaining the prediction accuracy. LightGBM uses a leaf-wise genera-
tion strategy to reduce the training data which contribute to reduce more losses.
An important advantage of LightGBM is its compatibility with large datasets.

For the LightGBM models, the task was framed as a binary classification
task. The LightGBM framework we use was the LightGBM 2.3.1 Scikit-learn
API. The main parameters of LightGBM are shown in Table 2. In general, the
hyper-parameters have a significant influence on prediction accuracy. Hence we
used K-folds cross-validation to find the optimal parameters. For training, we
used early stopping with the patience set to 50 rounds, using the AUC on the
validation set as the metric.

From the cross-validation experiments we determined the num leaves to 80
or 127 depending on the feature set we used. A higher num leaves may improve
the accuracy but can result in overfitting. The subsample and cosample bytree
hyper-parameters were set to 0.5 to prevent overfitting; learning rate was set to
0.001, and n estimators around 100–200 that depended on feature set we used.

Table 2. Main Parameters of the LightGBM model.

Parameters Interpretation

num leaves Maximum tree leaves for weak learners

Subsample Subsample ratio of the training data

colsample bytree Subsample ratio of features that randomly selected
when constructing each tree

n estimators Number of boosted trees to fit

learning rate Learning rate for boosting

max depth Maximum tree depth for base learners

2.4 Preprocessing

The disk model and all 48 SMART features that contained values were used
to create the inputs to the model. Five features (smart 3raw, smart 10raw,
smart 240 normalised, smart 241 normalised and smart 242 normalised) had
constant values when not missing. As such, they were converted into features
that took a value of 1 when present. The rest of the smart features were nor-
malised such that each had a mean of 0 and a variance of 1.
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For the inputs for the autoencoder and TCN models, missing values were
filled as follows: the missing values of the five features that had constant values
were set to 0 so that they became binary features. The rest of the features’
missing values were set to their respective means, which after normalization were
all 0. The input into the TCN model needed to be sequences of equal length.
Hence, for every disk-date with no data, data was added with all the features
except the disk model set to 0. A missing indicator feature for disk-dates was
also added.

2.5 Metrics

The precision, recall, and F1-score for the task were defined as follows. For a
k-day observation window,

Precision =
ntpp

npp
, (1)

where npp is the number of disks that are predicted to fault in the next 30 days
during the observation window and ntpp is the number of disks that fault no
more than 30 days after the first predicting day in the observation window.

Recall =
ntpr

npr
, (2)

where npr is the number of disk faults that occur during the observation window
and ntpr is the number of disk faults that occur during the observation window
and are successfully predicted no more than 30 days before.

F1-score = 100 × 2 × Precision × Recall
Precision + Recall

. (3)

The k-day observation window for online test was set as 2018-09-01 to 2018-
09-30.

Note that the F1-score defined above inherently places a greater importance
on the correct prediction of some dates more than others. For example, if a model
only predicted that the disk would fault in the next 30 days on the fault-date
itself, the model would still obtain a perfect F1-score. On the other hand, if a
model only predicted disks to fault in the next 30 days on the day 30 days before
the fault, the recall and the F1-score would be 0 on the test set because the
observation window is only 30 days long.

3 Results and Discussion

In this section, we analyzed the performance of the different models we used.
In particular, we investigated how robust these models are against the distri-
bution shift over time, and we also studied how their performance may vary
with different sets of features. We further investigated the reasons of the dif-
ference in performance among models, and we use online test to validate these
observations.
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3.1 Offline Validation Results

For offline validation, we used data from 2018-02-01 to 2018-05-31 (containing
17,748,848 disk logs) for training and data from 2018-07-01 to 2018-07-31 (con-
taining 4,855,732 disk logs) for validation. Note that data from 2018-06-01 to
2018-06-30 was not included in the training set. This is because using labeled
data from June 2018 may cause data leakage; both labeling the data in June
2018 and the validation set use the information of the disk faults that occur in
July 2018. This replicates the online test setting, where we have to predict for
September 2018, for which we have no disk fault information. The validation
results are displayed in Table 3.

Table 3. Maximum F1-scores of the models on the validation set

Model Baseline Feature Set 2

TCN 17.31 19.08

LightGBM 19.95 24.25

Autoencoder 6.10 9.80

From the validation results we can see that the performance of all mod-
els improved after feature engineering, and that the LightGBM was the most
feature sensitive. The autoencoder performed much poorer than the TCN and
LightGBM models who had comparable performances. Despite the fact that the
LightGBM model only used one day of data while the TCN model used 19 days
of data, the LightGBM model outperformed the TCN model on both feature
sets on the validation data.

(a) Precision against recall curves. (b) F1-score against recall curves.

Fig. 5. The precision-recall and F1-recall curves of the different models. The TCN
models have the higher precision than the other models at low recall scores, while the
LightGBM models have higher precision scores at higher recall scores. Because the
models achieve maximal F1-scores at recall scores where the LightGBM models have
higher precision, the LightGBM models have higher maximal F1-scores.



60 X. Lan et al.

To explore the differences in the models, we plotted the precision-recall and
the F1-recall curves for the models on the validation set, shown in Fig. 5. The
graphs show that the precision of the TCN models is higher than that of the
LightGBM models at lower recall scores (Fig. 5(b)) but lower at higher recall
scores. Because the high F1-scores occur at the recall values where the TCN
models have lower precision scores, the TCN models have lower maximum F1-
scores.

Another observation we made was that the thresholds used to achieve the
maximum F1-score were very low. The best thresholds for the TCN models
were in the range 0.076–0.109, while the thresholds for the LightGBM models
were in the range 0.001–0.007. This suggests that the cross-entropy loss function
may not be a very suitable loss for optimizing the F1-score. If the cross-entropy
loss function was well-suited for optimizing the F1-score, we would expect the
optimal thresholds to be nearer to 0.5.

A possible reason for the poor match between cross-entropy loss and the F1-
score is that the cross-entropy loss gives equal weight to the loss of each data
point. However, as previously mentioned, the F1-score defined above rewards
the correct prediction of some days more than others. A possible remedy to this
problem would then be to use a weighted cross-entropy loss, where the weight of
a data point depended on how many days it was away from the fault date. Data
points of a disk on the day of its failure would be given a high weight while day
data points far from the fault date would be given lower weights.

Meanwhile, an interesting observation is the comparison between the two
neural networks models; the TCN outperformed the autoencoder. One major
difference between the two models is that TCN used convolutional layers to
extract features, while the autoencoder was composed of dense layers, in which
each neuron is fully connected. The dense layer is learning a representation of
all features. This process may produce some useful latent features but may also
produce many unrelated latent features that confuse the model for prediction.
This is reflected in the overall performance and the improvement after adding
new features. We also explored different autoencoder structures by adding hid-
den layers to make it deeper and change the size of hidden layers, and most
structures shows an similar performance with the baseline autoencoder. Also,
the autoencoder is unable to learn features that occur over time, while the TCN
models uses of 19 days of data.

We tried using an customized oversampling algorithm to counter the impact
of data imbalance. We oversampled the positive class, with data points closer to
the fault date sampled a greater number of times than those further away. This
reflected how the F1-score placed a greater importance on predicting dates close
to the fault date. However, oversampling did not improve the performance of
the models in our experiments, so we did not use it further. More sophisticated
oversampling algorithms for this task are promising to be studied in the future.

To investigate other potential reasons, we visualized the latent representa-
tion from the hidden layer of the autoencoder in 2-dimensional space using t-
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(a) latent representation on training data (b) latent representation on validation data

Fig. 6. Latent representation from autoencoder. (a) shows the latent representation
from hidden layers on training data, It’s clear that the latent representation in the
training set is partly separable with data points overlapping mostly in the left portion
of the plot. (b) shows the latent representation from hidden layers on validation data
that most of the data points overlap. For observations above, they imply that the
autoencoder model only learned to fit the training data.

distributed stochastic neighbor embedding (t-SNE) of the autoencoder, shown
in Fig. 6.

3.2 Online Test Results

The online test is to prove our observation and conclusion from the experiments
results in validation set, we select our models with feature set 2 for online test,
we controlled the features and data processing methods are the same for each
model, and the threshold is selected from validation, the date range of training
data from 2018-04-01 to 2018-07-31, the organizer did not provide the fault tag
for 201809, so we skip 201808 for training, and date range of the online test from
2018-09-01 to 2018-09-30. The results shown in Table 4.

Table 4. Online test results. The LGBM shows a close performance to our validation,
supporting our conclusion for these three models from validation and showing our
proposed methods are promising. However, TCN shows a significant difference from
the performance on the validation set. A reason is that we did not adjust the threshold
for the online test. The threshold is from the best observation in validation. This
observation implies that deep neural network model are more sensitive to the change
of distribution of data, while gradient boosting decision trees are more stable and
robust.

Model Precision Recall F-Score

TCN 66.67 1.02 2.02

LGBM 23.79 30.77 26.83

Autoencoder 19.70 6.67 9.96



62 X. Lan et al.

4 Conclusion

In this paper, we investigated three different solutions for the task of predicting
disk failures that occur within the next 30 days under the setting of the PAKDD
2020 Alibaba AI Ops Competition. We comprehensively compared deep neural
networks models to gradient boosting decision tree based model and studied the
potential reasons behind that lead to the difference in performance. We found
that a gradient boosting tree-based model (LightGBM) was more suitable and
robuster for this task than the other two deep neural network models. For this
task, the deep neural models were more sensitive to the changes in the data
distribution and may resulting in poor performance. Meanwhile, we proposed
a series of data analysis and processing methods for the disk failure prediction
task, and the results of the online test showed that our proposed methods are
promising.
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Abstract. The failure prediction for storage systems plays more and
more important role given the explosive growth of data in various data
centers in recent years. In this paper, the existing technologies have been
employed in the prediction have been reviewed. In particular, the tech-
niques such as imbalance data alleviation and temporal feature construc-
tion, which are also adopted in our solution, are reviewed in more detail.
Our solution to the prediction problem which is mainly built upon Light-
GBM is then presented. The solution ranks 38 with F1-score of 34.28%
on PAKDD2020 Alibaba AI Ops Competition.

1 Introduction

With the explosive growth of data, the security of the storage center responsi-
ble for data storage has gradually received more and more attention in recent
years. Once the storage system fails suddenly, a lot of resources will be con-
sumed in system maintenance, data migration and data recovery. Therefore, the
failure prediction of disks is a critical and fundamental task. Most disk failures
are a slow deterioration such as mechanical wear due to their physical structure.
These failures are believed predictable according to some indications, which may
include the number of damaged disk sectors, heat output and so on. Predicting
these failures in advance allows operation engineers sufficient time for mainte-
nance and replacement, and greatly reduces the resources for data recovery.

In the literature, the related work explores each procedure of the task, such as
data collection [1,13,21], feature selection [2,9,11,12,18,21,22], temporal feature
construction [2,20–24], feature preprocessing [11,18,19,22,24], data imbalance
alleviation [2,16,17,24], model for classification/regression [2,6,7,9,12,13,15,17,
18,22–24], model update [9,19,22] and evaluation metrics [10,11]. Although the
above explorations seem to show good performance on some datasets, it may be
not applicable in large-scale datasets. This is because there are large data noise
and many uncertain factors in large-scale datasets. In this paper, analysis and
discussion about some explorations are made, combined with our practice in the
PAKDD Alibaba AI Ops Competition [4].

c© Springer Nature Singapore Pte Ltd. 2020
C. He et al. (Eds.): AI Ops 2020, CCIS 1261, pp. 64–73, 2020.
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2 Related Work

SMART which stands for Self-Monitoring, Analysis, and Reporting Technology
is a monitoring system installed with the computer disk drives. There are 255
monitoring attributes/statuses are provided by SMART. These statuses includ-
ing temperature, power-on hours, write error rate, etc. Each status is given both
as a raw value and a normalized value. SMART is used to detect and report
various statuses, based on which failure prediction is made. However, simple
thresholding on these statuses only results in very poor prediction precision.
Usually, only 3–10% failure detection rate (FDR) is achieved when we control
the low false alarm rate on the order of 0.1% [14].

Feature Selection. With the raw data from SMART, it is important to select
features for the prediction model as not all of the attributes are relevant to disk
failure. Pruning the redundant features also leads to the better generalization of
the prediction model. Failure modes, mechanisms, and effects analysis (FMMEA)
are introduced to identify which attributes are the most relevant to each type of
failure [18]. Moreover, three non-parametric statistical methods (reverse arrange-
ment test, rank-sum test and z-scores) are adopted in [9,11,12]. Compared with
statistical methods, the relevant attributes are selected directly by the detection
of permanent changepoints [2]. To select attributes with long-term predictability,
online learning is adopted in [21] instead of cross-validation.

Temporal Feature Construction. In order to incorporate the other informa-
tion such as the trend of a period into the prediction model, efforts have been
also taken in the construction of temporal features. For instance, Hidden Markov
models (HMM) and Hidden semi-Markov models (HSMM) are adopted to cap-
ture status trends and temporal dependencies [23]. Furthermore, some statisti-
cal features such as difference and variance are calculated for failure prediction
in [21,22,24]. In order to capture the long-term dependencies in the sequence,
recurrent neural network (RNN) [20] and exponentially weighted moving average
model (EWM) [2] are used in disk failure prediction.

Data Imbalance Alleviation. In the real-world situation, the failed disks in
rare occurrences result in data imbalance, which greatly damages the perfor-
mance of the model. To address this issue, different sample rates are used for
healthy disks and failed disks [17,24]. To choose the more representative subset
from healthy disks, k -means is adopted to cluster healthy disks and select the
data points closest to the respective cluster centroid [2]. Moreover, to get a more
balanced subset of category distribution, one-sided selection is used to remove
the redundant samples and the noise samples [16].
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Model. In the literature, disk failure prediction is addressed as binary classifi-
cation between healthy and failed disks or regression of a gradual deterioration
from healthy to failed. The advantage of regression-based approach is that the
health degree of the disk instead of the status of healthy or failed is given. The
basic models are adopted in the early work, such as Mahalanobis distance [18],
support vector machine (SVM) [23], logistic regression [22], decision tree [9],
and neural network [24]. Due to the superior performance of ensemble learning,
combined Bayesian network (CBN) is adopted to combine four base classifiers to
get better prediction in [15]. In addition, tree-based ensemble learning such as
gradient boosted regression tree (GBRT) [10,12], random forest (RF) [7,13,17],
and regularized greedy forest (RGF) [2] is adopted, since it has excellent inter-
pretability with good performance.

3 Our Approach

For each disk, the participants are provided the manufacturer code, the model
code, the serial number code, and a period of time of daily SMART data and
the fault label. The disks with the same serial number code and the different
model codes are different. The disks are therefore assigned with identity code as
“the model code+the serial number code”. The task is to predict daily whether
one disk will fail within the next 30 days. In our solution, it is modeled as a
binary classification. In the training, the data of 30 days before the disk failure
happens are treated as positive, while the rest are labeled as negative data.

According to the related work [2], SMART data from different manufacturers
and different models demonstrate different distributions. The prediction perfor-
mance will be degraded if it is based on simple information integration over them
due to the big distribution difference. In this competition, all the manufacturer
codes are ‘1 ’, which indicates that all the disks are from one manufacturer. The
model codes are ‘1 ’ or ‘2 ’, which indicates that there are two models in the
dataset. The disks of these two models are combined in the training, since the
distributions of the two models are similar according to observation.

The supplied data from the competition committee are noisy. The three typ-
ical cases that the data are polluted are listed as follows.

– There are a lot of missing attributes, such as soft read error rate, erase fail
count.

– Some attributes have only one or two values, whose information for prediction
is small.

– The normalized value of some attributes is the same as the raw value, which
is redundant for prediction.

To address these issues, the attributes with more than 60% of missing data and
the attributes with few unique values are removed. Moreover, the normalized
values that are equal to the raw values are removed. The data attributes after
the removal of noisy data are summarized in Table 1.

In order to incorporate the temporal features as much as possible, fea-
ture selection is adopted only after all the temporal features are produced.
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Table 1. The attributes supplied by SMART

ID# Attribute name Raw Norm

1 Read error rate � �
3 Spin-up time �
4 Start/Stop count � �
5 Reallocated sectors count � �
7 Seek error rate � �
9 Power-on hours � �

10 Spin retry count �
12 Power cycle count � �

184 End-to-end error � �
187 Reported uncorrectable errors � �
188 Command timeout � �
189 High fly writes � �
190 Temperature difference � �
191 G-sense error rate � �
192 Power-off retract count � �
193 Load cycle count � �
194 Temperature �
195 Hardware ECC recovered � �
197 Current pending sector count � �
198 Uncorrectable sector count � �
199 UltraDMA CRC error count � �

According to [21], given a time window w, difference and variance are calcu-
lated with Eq. 1 and Eq. 2.

Diff(x, t, w) = x(t) − x(t− w), (1)

Sigma(x, t, w) = E[(X − µ)2], (2)

where X = (xt−w, xt−w−1, . . . , xt) and µ =
∑

(X)
w . Different sizes of the time

window are adopted for calculating difference and variance in our approach.
Due to the large dataset and the few failed disks, other temporal features are
not constructed. On the one hand, the computational complexity of RNN, HMM
and least squares is high, resulting in the long construction time. On the other
hand, EWM over-compacts the temporal representations, resulting in a smaller
amount of trainset.

Since tree-based LightGBM [8] is adopted for binary classification, the nor-
malization is unnecessary. It is also unnecessary to perform discretization due to
the histogram optimization of LightGBM.

In order to alleviate the data imbalance, the following schemes are tested.

– To undersample the healthy disks, k -means is adopted to cluster the healthy
disks and the several nearest disks from each cluster centroid are chosen as
the subset.

– To synthesize the failed disks, Synthetic Minority Oversampling Technique
(SMOTE) is adopted to select a sample b from the nearest neighbors of a
sample a, and then randomly choose a point on the line between a and b as
the synthesized sample.



68 R.-Q. Chen

Unfortunately, the above schemes are found not helpful. The performance from
the model with the above schemes is presented and analyzed in Sect. 4.

In this scenario, the model is trained with the samples of the current time
period, and then tested in the samples of the next time period. According to [5],
there are some features available in the current time period, but not helpful in
the next time period due to the concept drift of time series. To address this issue,
a feature pruning based on [21] is tested, which simulates this scenario in the
trainset. In order to save time and memory, the feature is selected according to
their importance of LightGBM. The trainset is split by time into two parts for
training and validating. If the performance in the validation set is better after
the removal of the features with the least importance, the features are removed
until the performance is no longer better. And the result is in Sect. 4.

After feature pruning, LightGBM [8] is trained as a binary classifier. Com-
pared with XGBoost [3], LightGBM is fast in training due to the histogram
optimization and leaf-wise technology. The hyper-parameters are determined by
performing a simple grid search in the parameter space.

4 Experiments

In this section, different configurations of our solution are studied on the dataset
released by the organization committee of the competition. The trainset is col-
lected from July 2017 to August 2018, and the brief information is summarized
in Table 2. To prevent the model from degrading in the testset, the data in June
2018, July 2018, and August 2018 are chosen as our trainset. And about 200
prediction results with the highest probability of failure after deduplication are
submitted. In the evaluation, only the earliest predicted date of failure for each
disk is considered if there are multiple prediction results for a single disk. Accord-
ing to the purpose of failure prediction that predicting whether each disk will
fail or not within next 30 days, the precision, recall and F1-score are redefined
as Eq. 3, Eq. 4 and Eq. 5 for the evaluation.

precision =
ntpp

npp
, (3)

recall =
ntpr

npr
, (4)

F1-score = 2 × precision × recall
precision + recall

, (5)

where ntpp is the number of all the disks those truly fail among 30 days after the
first predicting day in the observation window, and npp is the number of disks
that are predicted to be faulty in the following 30 days. ntpr is the number of truly
faulty disks that are successfully predicted no more than 30 days in advance, and
npr is the number of all the disk failures occurring in the observation window.
The observation window in the semi-final is from 20180901 to 20180930.
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Table 2. Summary over the trainset

Period # Samples # Disks # Failed Disks

201707 1,610,007 102,732 107/0.10%

201708 3,140,857 124,624 155/0.12%

201709 3,146,965 119,106 129/0.11%

201710 3,536,616 134,252 142/0.11%

201711 3,639,220 140,757 99/0.07%

201712 4,105,046 143,397 121/0.08%

201801 4,428,248 148,149 230/0.16%

201802 4,083,439 149,388 208/0.14%

201803 4,566,413 151,178 218/0.14%

201804 4,463,347 152,204 204/0.13%

201805 4,647,989 153,960 229/0.15%

201806 4,647,434 163,106 279/0.17%

201807 4,855,732 167,184 294/0.18%

201808 5,161,737 176,369 161/0.09%

4.1 Results

LightGBM without any modification is treated as the comparison baseline in
the evaluation. The runs that are additionally integrated with imbalance data
alleviation and temporal features are evaluated. By this way, we try to investigate
the contribution of each component to the prediction accuracy.

Table 3. Performance of difference feature (Diff) with different window sizes

Approach F1-score Precision Recall

Without diff 24.82 24.52 25.13

With diff3 34.28 34.72 33.85

With diff7 32.95 34.81 31.28

With diff15 29.59 31.76 27.69

Temporal Feature Construction. The temporal features are derived from
the difference and variance of a time window. The performance from difference
features produced with different window sizes is presented in Tab. 3. As shown
in the table, the performance of the difference features with a window size of 3
is better than other window sizes and the baseline. Specifically, more than 9%
improvement is observed on the performance with a window size of 3, compared
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with the baseline. Therefore, the difference feature with a window size of 3 is used
in the following experiments. In addition, the performance of variance feature
with different window sizes is summarized in Tab. 4. As shown in the table, the
variance feature brings no improvement than that without variance. As a result,
the variance feature is not used in the following experiments.

Table 4. Performance of variance feature (Sigma) with different window sizes

Approach F1-score Precision Recall

Without sigma 34.28 34.72 33.85

With sigma3 34.09 33.82 34.36

With sigma7 34.17 34.50 33.84

With sigma15 31.54 31.79 31.28

Data Imbalance Alleviation. To alleviate the data imbalance, k -means is
adopted to undersample the healthy disks. k is set to 112 and 100 disks closest
to each cluster centroid are chosen as the subset. In addition, another attempt,
SMOTE is adopted to synthesize the failed disks until the number of healthy
disks and failed disks are equal. The performance of these two attempts is sum-
marized in Table 5. As shown in the table, there is a large performance gap
between the baseline and these two attempts. The performance of k -means is not
improved but reduced. This is because the information of the unselected samples
is totally removed, although the selected subset contains the most representative
samples. Moreover, there is no performance improvement in the attempt with
SMOTE. And the probability threshold of failed disks is found to be increased.
The reason may be that the information of the synthesized disks overlaps with
that of the original failed disks, which even degrades the model in the training.
Therefore, these two attempts are not used in the following experiments.

Table 5. Performance from imbalance data alleviation

Approach F1-score Precision Recall

Without allevation 34.28 34.72 33.85

With k -means 1.45 1.37 1.54

With SMOTE 18.30 17.26 19.49

Feature Selection. To prune the feature without long-term effectiveness, an
approach bases on [21] is attempted to prune the unimportant features first. The
performance of feature selection is summarized in Table 6. As shown in the table,
there is also no improvement in this attempt, although it demonstrates better
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performance in the offline validation set. This may be because the distribution
difference between the offline validation set and the online testset is large. As a
result, the attempt is not used in the final approach.

Table 6. Performance of feature selection

Approach F1-score Precision Recall

Without selection 34.28 34.72 33.85

With selection 33.17 33.00 33.33

Comparison with Other Solutions. The performance of our solutions and
top solutions of the leaderboard on the dataset from the competition is summa-
rized in Table 7. As shown in the table, there is a large performance gap between
the solution of rank 1 and other solutions. And the performance of our solution
ranking 38 is not far from that of the top solutions of the leaderboard. As far
as we know, the solutions of rank 1 and rank 2 are based on regression, which
will be our attempts in the future.

Table 7. The comparison with other solutions

Approach F1-score Precision Recall

Rank 1 49.07 62.20 40.51

Rank 2 42.51 53.24 35.38

Rank 3 40.47 52.76 32.82

Rank 4 39.98 52.42 32.31

Rank 5 39.71 43.68 36.41

Our solution 34.28 34.72 33.85

5 Conclusion

In this paper, we have experimented and analyzed some explorations such as tem-
poral feature construction and data imbalance alleviation, in combination with
our attempts in PAKDD2020 Alibaba AI Ops Competition. In temporal feature
construction, the difference feature plays a key role and brings a great improve-
ment in performance, but the variance feature does not show a performance
improvement. In data imbalance alleviation, the under-sampling performed by
k -means greatly loses the information of the healthy disks, and the over-sampling
performed by SMOTE may synthesize failed disks with overlapping information,
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both of which impair the performance of the model. We believe that these anal-
yses are significant in some extent to the future work in large-scale disk failure
prediction.
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Abstract. With the fast expansion of online media and cloud-based
storage, hard disk drive failure prediction becomes an increasingly impor-
tant problem that has great industry impact. In the last 20 years, much
effort has been put into using machine learning method to enhance
the S.M.A.R.T monitoring system. Success has been achieved at vari-
ous degrees, but the state-of-the-art methods still have considerable dis-
tance from the level of performance required by industry operations. In
this paper, we demonstrated that with a strategic ensemble of models
that cover both short-range and long-range temporal dependencies of
S.M.A.R.T data, it is possible to achieve higher overall failure predic-
tion accuracy and robustness. Our proposed model, named SHARP, is
shown to achieve 56% F1 score in one of the holdout blind tests using an
industry-scale data set. In the online competition test set, the F1 score
was 38%.

Keywords: Hard disk drive · SMART · Failure prediction · Machine
learning · Model ensemble

1 Introduction

Nowadays, with the surge of online media and digital content, data centers
around the world are undergoing expansion at record speed. New hyper-scale
data centers give rise to unprecedented demand on hard disks (HDD) [1]. With
Petabytes of data being read and written at data centers on daily basis, the
annual failure rate of HDD is estimated to be around 15% [2]. Given the large
amount of HDD installed at data centers, which is in the range of hundreds of
thousands, it is common for a data center to see tens of HDD failures occurring
every single day [2]. HDD failures inevitably lead to data center’s performance
degradation, ranging from minor longer write time to serious catastrophic service
breakdown [3]. In fact, it is found that most of the data center service problems
are due to HDD failures [3].

Currently, most data centers manage HDD failures with the help of Self-
Monitoring, Analysis and Reporting Technology (S.M.A.R.T). S.M.A.R.T was
introduced in 1995 serving as standardized HDD failure warning system. By
monitoring various hardware-related measurements, S.M.A.R.T detects signs
that an HDD is likely to fail soon, typically within 24 h [4].
c© Springer Nature Singapore Pte Ltd. 2020
C. He et al. (Eds.): AI Ops 2020, CCIS 1261, pp. 74–84, 2020.
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It is highly beneficial to have more lead time with HDD failure warnings,
because it allows more time to replace the problematic HDD, or just to allow
more conservative failure prevention measures. To achieve this end, data anal-
ysis and machine learning methods have been widely developed to make use
of S.M.A.R.T data as well as other information relating to HDD operations to
perform more accurate HDD failure predictions [4–21].

In [5], the authors demonstrated using naive Bayesian methods to perform
anomaly detection and supervised learning. With expectation-maximization, a
number of Naive Bayesian sub-models were trained and used for detecting abnor-
mal HDD failures. To overcome noise in the data, binning method was used for
smoothing. The authors experimented on an industrial data set and improved
true positive rate from industry-standard 0.11 to 0.30. Although the improve-
ment was apparent, the achieved accuracy was still not satisfactory enough for
reliable prediction in industry setting.

In [15,20,21], the authors developed failure prediction models by formulating
the failure prediction problem as a binary classification problem and solved using
Classification and Regression Trees (CART) models [22]. The main advantage
of CART-based method lies in its straightforward set-up, in which models are
trained with isolated S.M.A.R.T data points and prediction can be made based
on as few as one single S.M.A.R.T data point. This is especially helpful in the
situation where only sporadic data are available during actual operation. In
addition, recent CART models, e.g., XGBoost [23], has been shown to achieve
good performance in HDD failure prediction problems. However, the CART-
based method have to rely on hand-crafted time-window features to characterize
any temporal data patterns, which are often not as effective as methods using
sequential models, especially for long-range temporal dependency modeling.

S.M.A.R.T data of HDDs are time series in essence. It was observed that
the HDD failures exhibited long-range temporal dependency with historical
S.M.A.R.T data [6]. In other words, the eventual HDD failures were found to
have higher correlation with a relatively long period of historical S.M.A.R.T
data, e.g., in 30 days before failures as reported in [6], whereas the correlation
between HDD failures and S.M.A.R.T data in only a day or two before failures
were found to be lower.

Various work in the literature looked into the time-series nature of the data
with the aim to further improve HDD failure prediction performance. In [7], the
authors proposed a Hidden Markov Model (HMM) and Hidden Semi-Markov
Model (HSMM)-based solution to predict HDD failures. The proposed solu-
tion was found to outperform benchmark methods, including Wilcoxon-Mann-
Whitney rand-sum test on single-attribute data and Support Vector Machine on
multi-attribute data. However, the proposed solution was susceptible to near-
range temporal data noise; in addition, while HMM and HSMM are effective
in modeling short-range dependencies, they are intrinsically not as efficient in
modeling long-range temporal dependency [24], which renders them sub-ideal
for HDD failure prediction applications. In [25], the authors employed Recur-
rent Neural Network (RNN) to model the long-range temporal dependency, and
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demonstrated improved HDD failure prediction performance. Instead of treat-
ing the health conditions of HDDs as either good or bad, the authors defined six
grades of health conditions depending on the time until eventual failure. Bet-
ter performance was obtained compared to Tree-based methods and multi-class
Neural Network methods. The main drawback of the proposed method is its high
requirement on training data. In order to train high quality RNN models, a large
amount of high-quality training data, especially data associated with HDD fail-
ures, spanning a relative long range of past history are required. In some cases,
such training data may not be available. In addition, HDDs may have gaps in
data recording during operation, e.g., missing S.M.A.R.T data for a short period
of time. The missing episodes of data may introduce noise to predictions made
using RNN models.

In the past 20 years, while much effort has been dedicated to improving
HDD failure prediction using various machine learning methods and models, it
is clear that no single method or model is able to fully solve the problem. Par-
tially due to the complex nature of HDD failure mechanisms that involve both
long-range temporal dependency degradation failures and short-range temporal
dependency catastrophic failures, which render it difficult for single model to
fully characterize. To specifically address this challenge, we proposed SHARP
(SMART HDD Anomaly Risk Prediction), an ensemble-based model that incor-
porate multiple classification models that target different HDD-failure-relevant
S.M.A.R.T data patterns, which may relate to different failure mechanisms. We
also explored the ensemble of CART models with sequential models to address
long-range temporal dependency challenge.

The remainder of this paper is arranged as follows: in Sect. 2, we elaborate
the methodology of SHARP; in Sect. 3, we demonstrate SHARP in experiments
based on a public industry-scale data set; in Sect. 4, we summarize the major
findings of our work and discuss future work.

2 Methodology

SHARP offers two modes to predict HDD failures. One is single-day-based pre-
diction mode, the other is sequenced-day-based prediction mode.

2.1 Single-Day-Based Prediction Mode

In this mode, SHARP evaluates the risk probability of HDD failures solely base
on each single day’s S.M.A.R.T data of each HDD. The risk probability is a real
number within the range of 0 and 1, with 0 or negative means HDD failure is
highly unlikely to happen in the next 30 days, and 1 or positive means HDD
failure is almost certain to happen in the next 30 days. XGBoost is our preferred
model for SHARP due to its robustness against highly imbalanced data. SHARP
uses a 2-layer ensemble classifier as illustrated in Fig. 1. For Layer-1 classifier,
SHARP takes as input of all S.M.A.R.T data, with NA excluded, and the rest
of raw data Logarithmic-transformed.
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The training data include two classes, namely positive class and negative
class, where positive class include S.M.A.R.T data of all available failing HDDs
on the day of failure, and negative class include S.M.A.R.T data of random
selected healthy HDDs on random days subject to the condition that the sampled
HDD would not fail in the next 90 days.

In the model training process, hyper-parameter tuning are performed in five-
fold cross validation on six XGBoost hyper-parameters as follows,

– learning rate
– n estimators
– max depth
– subsample
– reg alpha
– reg lambda

Subsequently, SHARP applies feature selection to achieve optimal accuracy
in cross validation and retrain to obtains Layer-1 model. Layer-1 classifier is not
expected to correctly detect all HDD failures, SHARP uses Layer-2 classifier to
further improve its accuracy on HDD failures that escape Layer-1 classifier. The
first step to train Layer-2 classifier is to obtain the training data. SHARP selects
out-of-fold false negative HDD predictions in Layer-1 classifier’s cross validation
to be the positive class training data. The negative class is randomly re-sampled
similar to Layer-1 negative class.

In terms of features, SHARP uses different features between Layer-1 and
Layer-2 classifiers. While Layer-1 uses mostly Logarithmic-transformed features,
Layer-2 is forced to use original normalized S.M.A.R.T data to further differen-
tiate Layer-1 and Layer-2 classifiers. We need to force Layer-2 model to use only
normalized S.M.A.R.T data because Layer-1 model has been using Logarithmic-
transformed features, Layer-2 model should use different features to achieve dif-
ferent prediction results when using similar training instances.

For prediction process of a new HDD on a new day, which is illustrated in
Fig. 2, SHARP takes as input of current day’s S.M.A.R.T data of the HDD and
pass them through Layer-1 models. Base on the threshold settings of Layer-1,
SHARP predicts the HDD as positive or negative. If positive, the HDD will be
recorded to Layer-1 True Prediction List. Else, HDD will be passed to Layer-2
models for another round of prediction. If Layer-2 model’s prediction is positive,
the HDD will be recorded to Layer-2 True Prediction List. Eventually, SHARP
combines both Layer-1 True Prediction List and Layer-2 True Prediction List as
its final prediction result.

The key in this mode is the Layer-2 classifier, which targets on false negative
predictions from Layer-1 classifier and uses different features to construct the
model. Layer-2 model helps SHARP to successfully predict more HDD failures,
but the single-day-based prediction mode is still not sensitive enough to failures
of slow degradation nature, which we attempt to address using sequential models.
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Fig. 1. SHARP uses a two layer classifier ensemble to increase the sensitivity in pre-
dicting HDD failures of different data patterns

Fig. 2. SHARP makes prediction based on the combined prediction results of Layer-1
and Layer-2 classifiers

2.2 Sequenced-Day-Base Prediction Approach

The purpose of this approach is to pick-up those HDD failures with slow degra-
dation and to extend prediction lead time. The S.M.A.R.T measurement data
are time-series data recorded everyday. Both the daily performance and the per-
formance deviation from previous days may be important in correctly predicting
HDD failures. SHARP uses Gated Recurrent Unit (GRU) models to perform
sequential modeling for HDDs failure with long-range temporal dependency.
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Fig. 3. GRU models the long-range temporal dependency by the ensemble of daily
prediction probabilities of multiple XGBoost classifiers

As shown in Fig. 3, to perform GRU ensemble, SHARP uses four inde-
pendently trained XGBoost binary classifiers to encode daily S.M.A.R.T per-
formance. The performance rating is, similar to single-day-based prediction
mode, from 0 to 1. To ensure model diversity for ensemble performance, each
XGBoost model should be trained with different features, and XGBoost hyper-
parameters. GRU, which is then trained based on prediction probability of indi-
vidual XGBoost classifiers, essentially selects the useful encoded values for mod-
elling according to input data.

With encoded feature, we can easily visualize S.M.A.R.T performance by the
day (Fig. 4). By visualizing failure cases, we can identify the optimal number to
use as GRU monitoring window. GRU training data is generated from XGBoost
cross validation by first encoding test data in each fold, then combining all binary
auto-encoder output into one and re-organizing them by HDD series number.
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Fig. 4. GRU models enables easy visualization of HDD health condition by the day

GRU prediction is straightforward (see Fig. 5). GRU model prediction need
handle multiple days data at the same time. Compare to 2-Layer Stacking app-
roach, GRU model prediction require more computation power. Binary encoders
will encode these 7 days S.M.A.R.T measurement into 4 columns. We need
reshape those 4 columns data by number of HDDs × 7 × 4. If any of HDD
is missing data in these 7 days, the leading day point will be used for padding.
For GRU final decision, we use threshold control to further boost the accuracy.
The threshold can be learn from test data-set.

Fig. 5. GRU Model Prediction Process looks at past S.M.A.R.T of a few days to predict
HDD failures
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The key in this mode is encoder output as the input of GRU. The S.M.A.R.T
measurement is lack of connection between HDDs. This reason is limiting us to
use DNN and CNN for auto-encoding network. We indeed try to use 1D-CNN
for auto-encoding training, the result is not promising. In the end, we decided
to use binary auto-encoder which is not rely on the connection between HDDs.

3 Experiment

To evaluate the performance of SHARP under these two modes, we use
Alibaba S.M.A.R.T data set [26]. This data set consists of two types of files,
disk sample smart log *.csv and disk sample fault tag.csv.

The disk sample smart log *.csv is the daily S.M.A.R.T data of traditional
HDD which has 514 columns. Most data are empty, only 48 measurements are
usable for training model. Details as Table 1. The ‘disk sample fault tag.csv’ file
is the fault disk labels. The experiment uses data set range from 2017-07-31 to
2018-06-30 for training models in both approaches and uses data set range from
2018-07-01 to 2018-07-31 for evaluating their performance. For preparing this
evaluation data set, we use all failure HDDs and 10,000 good HDDs (random
selection) to consist this evaluation data set.

Table 1. S.M.A.R.T log data information.

Field Type Number of columns Description

serial number String 1 Disk serial number
code

manufacturer String 1 Disk manufacturer code

model String 1 Disk model code

smart n normalized Integer 24 Normalized SMART
data of SMART ID=n

smart nraw Integer 24 Raw SMART data of
SMART ID=n

dt String 1 Sampling time in
format (yyyy-mm-dd)

Experiment results can be seen in Fig. 6. Base on evaluation data set, Layer-1
of 2-Layer ensemble model is able to reach the highest F1 score 56% by using
threshold 0.95. With additional Layer-2, the overall F1 score is able to remain
the same value. But the recall is increased from 51.3% to 55.8%. This result is
tally with our design purpose in the second layer. The GRU F1 score 49% is lower
than 2-Layer Stacking Model when using threshold 0.9, but the overall F1 score
is much stable than 2-Layer ensemble model. The 2-Layer Stacking Model is
rely on threshold, and these thresholds may bias to certain data-sets. This result
indicates that GRU could be relatively more robust. In general, neural network
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requires much more data than machine learning model. In Alibaba data-set, the
quantity of failure records is about 1% of good records only. Due to the relatively
low quantity of training data, the GRU performance is limited.

Fig. 6. Experiment result

4 Conclusion

We presented SHARP, a machine learning based HDD failure prediction model.
In experiments on industry-scale data, SHARP is shown to achieve high and
stable performance over different data sets. In holdout blind test, it achieved
F1 score of 56% and 49% respectively in single-day-based prediction mode and
sequenced-day-based prediction mode. It is demonstrated by the ensemble of
multiple sufficiently-different models, it is possible to achieve higher prediction
performance. In addition, by the ensemble of a group of single-day-based models
with sequential models, e.g., GRU, it is demonstrated that a more robust pre-
diction accuracy over long-range dependency HDD failures could be achieved.

During our work, it is noted that input data of GRU models should be simple
and focused to achieve stable performance. Complex and high dimensional data
will request large quantity of high quality data in GRU training. Auto-encoder is
a useful technique to convert a complex and high dimensional data into simple
and focused features. As part of the future work, we plan to explore various
encoding method, e.g., Convolutional Neural Network-based auto-encoder for
feature engineering.
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Abstract. As the scale of data in data centers expands, the hard drives
are widely used in computer. However, hard disk failures occur frequently
in actual scenarios. With the increase of utilizing time, the stability and
accuracy of hard disk are continuously decreasing, and will result in
negative impact on normal operation of the system. However, there are no
researches on the estimation of hard disk quality in entire industry. In this
article, we utilize Generative Adversarial Networks (GAN) for realizing
data augmentation, and use the catboost model to model the prediction
of disk damage, which achieved tenth place in the PAKDD2020 Alibaba
intelligent operation and maintenance algorithm competition-large-scale
hard disk failure prediction competition [1].

Keywords: Failure prediction · Hard disk drives · Classification

1 Introduction

Hard disk drives (HDDs) are not only among the most frequently failing com-
ponents in computer today, but also the main reasons in server failures [2]. It
has been estimated that HDDs faults caused by lots of unprecedented storage
systems account for 78% of the hardware replacements in Internet data centers
(IDCs) [3]. The consequences of HDDs failures might be permanent and difficult
to be recovered, even unrecoverable, which lead to longer server downtime and
lower reliability of IDCs [4]. The forecasting of HDDs failure is difficult, which
aims at predicting the possible failures of HDDs in advance for making the stor-
age system more stable and reliable. The basic strategy of HDDs prediction is
that, if the impending disk failures have been detected or predicted, users can
be informed to take measures such as backup data in advance to decrease the
losses cased by HDDs accident.

c© Springer Nature Singapore Pte Ltd. 2020
C. He et al. (Eds.): AI Ops 2020, CCIS 1261, pp. 85–99, 2020.
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Nowadays, most of HDDs have been equipped with Self-Monitoring, Analy-
sis and Reporting Technology (SMART) [5], which are implemented to evaluate
drivers health status on the inner condition and environments data of HDDs pro-
vided by sensors and counter [6]. If the situation of HDDs failures was detected
by this technology, the administrator would be informed. However, the original
methodology might be not get a high prediction accuracy, which ranges from 3%
to 10%, And 0.1% of the failure alarms are misstatements [7]. It can’t be denied
that although the SMART performs not satisfactory, the data and attributes
collected by this technology could be useful to detect HDDs failures exceedingly.

There have been several feasible improvements to improve the accuracy
of HDDs failure prediction and decrease the error rate. Several methods are
based on machine learning, deep learning and other statistical approaches, which
regarded the SMART attributes as input [8–11]. We adopt machine learning
method CatBoost [30] proposed by Liudmila Prokhorenkova et al. To construct
the key model in the competition, which consist of catgorical and boost. This
model can solve the problem of gradient bias and prediction shift, which can sig-
nificantly improve the model’s classification accuracy and generalization ability.
In order to facilitate the training process, we extract 100-dimensional features by
utilizing the sampled data of July. Then, we use ROZ (remove-one-zero) method
to maintain model’s stability against mutation data. Despite there are various
existing methodology in this field, applying machine learning to predict HDDs
failure still faces two practical challenges:

1) One challenge is that the dataset collected by SMART is not complete. For
instance, previous researched reported that more than half of SMART failure sig-
nals are missing in failed disks [12]. HDDs failure prediction won’t be accurate if
the dataset is incomplete. HDDs monitoring systems may stop recording failure
signals due to network failures, software maintenance/upgrades, system crashes,
and human mistakes in production [13]. Some special commercial activities may
require the suspension of the disk monitoring systems for server offloading [14].
One solution is to interpolate the missing failure signals. We adopt the pre-
processing technique spline-based data filling, which fills the values of missing
samples via cubic spline interpolation [15] to account for any possible abrupt
changes in such missing samples.

2) The other challenge is that the training data is imbalanced. Although
some approaches [8,11,16] have performed well in HDDs failure prediction, they
suffer from the data imbalance issue heavily, i.e., the amount of healthy disks
is much larger than that of failed ones. Nevertheless, it is very important for
classifier training process to use balanced dataset [17]. So the data imbalance
issue may greatly decrease the accuracy of HDDs failure prediction. What is
worse, the training data is gradually gathered instead of being given in advance
[8]. As a result, the training data collected within the initial period may be
insufficient and could result in an inability of the predictor at the beginning
of its deployment, i.e., cold starting problem [5]. To overcome this challenge,
we consider using Generative Adversarial Networks (GANs), which is able to
capture the data distribution and deal with data imbalance.
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To sum up, the contributions of our method are summerized as follows:

– We select the CatBoost algorithm to model and extract 100-dimensional fea-
ture from the sampled data of July. The model performs really stable and
efficient no matter what kind of data are imported into the model.

– We use ROZ (remove-one-zero) method, which has very strong stability
against mutation data. The experimental results demonstrate the effective-
ness of our method.

– In order to solve the problem of data missing, we adopt spline-based data
filling method to fill the missing values, which are perfectly fit to the existing
data.

– We utilize GAN as the data augmentation method and the model becomes
extremely robust.

The rest of this paper is organized as follows: we first introduce the back-
ground of HDDs failure prediction and existing work in Sect. 2. Following it,
Sect. 3 presents introduced our prediction model and relevant algorithms and
technologies, including CatBoost, data preprocessing methodology, generative
adversarial networks, feature engineering, et al. and Sect. 4 introduces the exper-
iments. Finally, Sect. 5 concludes this paper.

2 Related Work

The methods of predicting disk failure based on SMART attributes are mainly
divided into statistical approaches and machine learning approaches.

Statistical Approaches. Statistical approaches mostly include rank-sum test
and Bayesian approaches. (1) Rank-sum test approaches: Hughes et al. [18] found
that many SMART attributes are non-parametrically distributed and applied
a multivariate rank-sum test and OR-ed single variate test to 3744 drives in
which 36 drives had failed. The result of the experiment achieved an FDR (fail-
ure detection rate) of 60% with an FAR (false alarm rate) of 0.5%. Murray
et al. [19] compared the performance of SVM, unsupervised clustering, rank-
sum, and reverse arrangements tests. The results showed that the rank-sum test
obtained the best performance: an FDR of 33.2% with an FAR of 0.5%. The
experimental dataset included 369 hard drives, 178 of which are good drives and
191 of which are failed drives.

(2) Bayesian approaches: Hamerly and Elkan [20] employed two Bayesian
approaches, naive-Bayes expectation-maximization (NBEM) and a semi-
supervised method, to predict drive failure. The experimental dataset includes
1927 good drives and 9 failed drives. These two approaches achieved FDRs of
35%–55% with FARs of approximately 1%. Then, Murray et al. [21] used the
same dataset and proposed an algorithm based on the multiple-instance learning
framework and the naive Bayesian classifier. They found that SVM using all 25
attributes achieved the best prediction performance, with an FDR of 50.6% and
an FAR of 0%; however, rank-sum test outperformed SVM for the small part of
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SMART attributes. Ma et al. [22] proposed RAIDShield to predict drive failures
on RAID storage systems. RAIDShield used the conditional possibility of RSC
and Bayes to predict the RAID failures. The experimental data were from data
backup systems at EMC Inc. RAIDShield eliminated 88% of triple disk errors.

Machine Learning Approaches. Machine learning approaches applied to fail-
ure prediction include SVM, BPNN,classification and regression tree (CART)
and so on. Zhu et al. [16] developed a BPNN model and an improved SVM model
on a SMART dataset, containing 22,962 good drives and 433 failed drives. The
SVM model achieves the lowest FAR (0.03%), and the BP neural network model
is far superior in detection rate which is more than 95% while keeping a rea-
sonable low FAR. Qian et al. [23] proposed a priority-based proactive prediction
(P3) algorithm and got evaluation results of 86.3% prediction rate and 0.52%
false alarm rate. However, the BPNN did not achieve satisfactory performance
stability and interpretability.

Wang et al. [24] developed an approach for HDD anomaly detection using
Mahalanobis distance (MD). Furthermore, Wang et al. [25] proposed a two-
step parametric (TSP) method to achieve an FDR of 68.4% with an FAR of
0%. TSP method detected anomalies first, then used a sliding-window-based
generalized likelihood ratio test to track the anomaly progression. They used
failure modes, mechanisms, and effects analysis (FMMEA) 18 to select features
and the minimum redundancy maximum relevance to remove the redundant
features. Queiroz et al. [26] proposed an HDD fault detection method based on
a combination of semi-parametric and nonparametric models to overcome the
limitation of distributions of the SMART attributes.

Xu et al. [27] proposed an RNN-based model for health status assessment and
failure prediction for HDDs. The RNN-based model achieved a high-prediction
performance, with FDRs of 87%–97.7% and FARs of 0.004%–0.59%. Jiang et
al. [5] presented SPA, a GAN-based anomaly detection approach, to predict
lifelong disk failure. The model is trained end-to-end by leveraging CNN’s fea-
ture extraction characteristic which captures the temporal locality contained in
constructed image-like 2D-SMART attributes.

Li et al. [9] proposed two prediction models based on CT and CART, respec-
tively, and utilized the health degree to describe the deterioration process. The
health degree model was determined by the size of deterioration window and
the number of hours before failure. The experimental dataset was from the
data center of Baidu, containing 25,792 drives of 3 models. They achieved a
high-prediction performance, with an FDR of 95% and an FAR of 0.1%. Shen
et al. [4] proposed a method based on the part-voting random forest to improve
the detection accuracy of soon-to-fail HDDs. The method differentiates predic-
tion of HDD failures in a coarse-grained manner by part-voting and similarity
between health samples, and achieved good performance: an FDR of 97.67%
with an FAR of 0.017% for family ‘B’; an FDR of 100% with an FAR of 1.764%
for family ‘S’; and an FDR of 94.89% with an FAR of 0.44% for family ‘T’.

Lu et al. [28] used a large-scale dataset, including SMART attributes, per-
formance metrics and location markers, to trained neural network models and
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the model predict disk failures with 0.95 F-measure and 0.95 MCC for 10 days
prediction horizon (Table 1).

Table 1. The table compares part of related work of disk failure prediction, which the
first half is statistical approaches and the second half is machine learning approaches.
Column ‘dataset’ represents: number of disk devices (number of failure disk devices).

Related work FDR FAR dataset

Hughes et al. (2002) 60% 0.5% 3,744 (36)

Murray et al. (2003) 33.2% 0.5% 369 (191)

Hamerly and Elkan (2001) 35%–55% 1% 1,936 (9)

Murray et al. (2005) 50.6% 0% 1,936 (9)

Zhu et al. (2013) 95%+ 0.03% 23,395 (433)

Qian et al. (2015) 86.3% 0.52% 7,148 (130)

Wang et al. (2014) 68.4% 0% 369 (191)

Li et al. (2014) 95% 0.1% 25,792

Xu et al. (2015) 87%–97.7% 0.004%–0.59% 25,792

Shen et al. (2018) 94.89%–100% 0.017%–0.44% 75,428

In this paper, we transform the disk failure prediction into an anomaly detec-
tion problem and propose a novel tree-based method. We use the ways of ROZ,
RDF and Smart-GAN to process data to make the model has stronger robustness
and higher accuracy in disk failure prediction. Our method got the 10th place
in the PAKDD2020 Alibaba intelligent operation and maintenance algorithm
competition-large-scalehard disk failure prediction competition, which proved
the method we proposed is effective.

3 Methodology

In this section, we will introduce our Methodology.

3.1 Data Preprocessing

We proposed a method of data preprocessing: ROZ (Remove-One-Zero). From
the reality, we know that the disks do not fail immediately. With a long time
small errors accumulating, the disks fail. However, when we use the binary classi-
fication, there would be inevitable mutations. If we directly use the history data
of disks which have failure and ignore the mutations between two consecutive
time points, the model will get confused with the positive data and negative
data. The Fig. 1 shows that when disks fail, there SMART attributes may not
change.
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Fig. 1. This figure shows that even when the disk get a failure, the value of the smart
do not change rapidly

Considering this, we have to remove the mutations which may hurt the model
performance. We use the Remove-One-Zero method, which means we only use
the history data which show the obvious failure. Firstly, we define the day of
failure as the positive label, and other disks which do not have failures as the
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negative label. We train a model to define the ‘failure’ and use our model to give
the unlabeled data a label near the day of failure, which contains positive label
and negative label. After doing this, we remove all the negative part whose disks
have failures. Finally, we train the online predict model with negative data whose
disk do not fail and the positive data whose disk fail. Algorithm 1 describes the
overall procedure for preprocessing and by using this procedure, we can get rid
of the mutations which may mislead the model.

3.2 T-Valid

Fig. 2. The distribution of the online data (left) and T-valid data (right)

We proposed a new way of validation: T-Valid. As we can see from the Fig. 2,
the distribution of the online data shows that as time pass by, the amount of data
slowly decreases. It can be explained that if the disks fail, the disks can not be able
to provide more data. Before the model goes online, we have to know whether the
model has a good performance by using the validation. When we train the model,
the validation can measure our model’s performance. However, if the validation
can not reflect the true improvement, we do not know whether our methods work.
A verification set that accurately reflects the true performance of the model is
particularly important.

According to this, we use the T-Valid method. The Fig. 3 shows the distribu-
tion of the T-Valid validation set. We truncate the original valid data to fit the
online distribution. First, we leave the last 30 days of data in the training set as
our original validation set. Then, according to the distribution online, we sample
the daily data. While sampling, we guarantee that future data will appear in the
current. By this procedure for preprocessing, our offline verification set matches
the online test set well.

3.3 Data Preprocessing-SDF

Ideally, the system will gather smart data of all disks every day. But in real life,
it is often unsatisfactory due to system failure or aging of disks. We found that
there are many missing values in the dataset, which have a serious impact on our
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model and features. Therefore, before feature engineering, we must first fill in
these missing values in every failed or healthy disk. We will first discuss several
different filling methods.

Data Filling Approaches. The most basic way is to use forward filling, which
means fill missing values with previous data (e.g., “100, 110, miss, 120, 130”.
The forward filling method will fill the missing value with 110). Another method
is linear interpolation. The linear interpolation is a method of curve fitting using
linear polynomials to construct new data points within the range of a discrete set
of known data points (e.g., for the series “100, 110, miss, 120, 130”). The linear
interpolation method will fill the missing value with 115). However, although
the above two methods are very easy to understand and easy to implement,
because the disk failure prediction problem is essentially an exception detection
problem, and smart attributes often change dramatically, and the above missing
value filling method can not capture this change very well.

Spline-Based Data Filling. In order to cope with the sharp changes caused
by abnormal values, we use Cubic Spline Interpolation method [15] to fill the
missing value. Spline interpolation is based on cubic spline, which is a spline
constructed of piecewise third-order polynomials which pass through a set of
m control points. Experimental results show that the cubic spline interpolation
guarantees the smooth filling of missing values and gives good results to our
model. However, cubic spline interpolation can not deal with the missing values
of the beginning and the end. So, We directly delete the missing values at the
beginning and end.

3.4 Smart-GAN

Generative Adversarial Networks [29] (GAN) is a deep learning model and one of
the most promising methods for unsupervised learning on complex distributions
in recent years. The model generates a fairly good output through the mutual
game learning of (at least) two modules in the framework: the generative model
and the discriminant model. In this work, in order to expand the sample size,
we use GAN to generate fake samples with similar features. The F1 score of the
model trained on the expanded data set can be increased by 5 thousandths.

When learning the distribution of a given data set, generative adversarial
networks (GAN) have shown strong versatility. The basic GAN optimization
process consists of two interacting networks. The first type is called a generator,
which uses random vectors as input and generates sample distributions that are
closer to the real data set as possible. The second one is called the discriminator
trying to distinguish the real data set from the generated samples. In conver-
gence, ideally, it is expected that the generator generates samples with the same
distribution as the real data set.

To be specific, in a conventional GAN, G is trained to map a random noise
vector z ∼ pz (which is the distribution of the random noise) to the data space,
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Fig. 3. Smart-GAN flow in our work

with the objective to maximize the probability that D classifies the samples from
G as “real” data:

Ez∼pz
[logD(G(Z))] (1)

In contrast, D is trained to maximize the probability of assigning correct labels
to the samples:

Ey∼pd
[logD(y)] + Ez∼pz

[log 1 − D(G(Z))] (2)

where pd is the distribution of the dataset. Detailed structure is shown in Fig. 4.

Fig. 4. Structure of smart-GAN

However, for our data augmentation problem, considering that the essence of
our problem is a binary classification problem with supervised learning, we first
divide the data into two categories according to the label, and the classification
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criterion is whether the hard disk damage will occur in the next 30 days. Then
GAN is applied to the positive sample and the negative sample respectively for
data expansion, the expansion ratio is 1:2 and 1:1 respectively. The process can
be seen in Fig. 3.

3.5 Feature Engineer

For each disk data, it contains many smart attributes, including a raw value and
a normalized value for each smart attribute. Normalized values are obtained
by mapping the related raw value to one byte using vendor-specific methods.
Because there is a certain correspondence between the raw values and the nor-
malized values, we only keep the raw value column in the smart attributes. Then,
we delete columns with all null values. We build a Lightgbm model to get the
feature importance. According to the feature importance and a manually set
threshold, the selected top 18 features are shown in Table 2.

Table 2. The 18 selected SMART attributes

Attribute ID Attribute name Attribute type

1 Read Error Rate Raw

4 Start/Stop Count Raw

5 Reallocated Sectors Count Raw

7 Seek Error Rate Raw

9 Power-On Hours Raw

12 Power Cycle Count Raw

184 End-to-End error Raw

187 Reported Uncorrectable Errors Raw

188 Command Timeout Raw

189 High Fly Writes Raw

190 Temperature Difference or Airflow Temperature Raw

192 Power-off Retract Count Raw

193 Load/Unload Cycle Count Raw

197 Current Pending Sector Count Raw

199 UltraDMA CRC Error Count Raw

240 Head Flying Hours Raw

241 Total LBAs Written Raw

242 Total LBAs Read Raw

In order to avoid the large number of features generated by feature engineer-
ing, We divide features into three groups.
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– 1. Count type columns: Count type columns include features such as
SM4, SM5, SM12, SM187 and SM197, we first calculate the difference val-
ues over two consecutive samples in the time-series. Then we calculate the
statistical characteristics of the difference feature according to the data of a
window: mean, median, max, min and ptp (the difference between the max-
imum value and the minimum value in the object). We use Three window
sizes,5,10 and 20 days.

– 2. Rate type columns: We use the window 5, 10 and 20 days to extract
statistical features from numerical features: standard deviation, median,
mean, max, min.

– 3. Other columns: For the other columns, we directly make a difference
with the average of the past 20 days.

In addition to the above statistical characteristics, we find that the continuous
growth, decline, or long-term constant of some SMART features may represent
that the disk is in different states. Therefore, we respectively count the contin-
uous growth days of SM5, SM197, the continuous decline days of SM1, SM7,
SM184 and the stable state days of SM5, SM7, SM184, SM197 and SM198.

3.6 Catboost

We use Catboost [30] as our model algorithm. Catboost is an open-source
machine learning library of Russian search giant yandex in 2017, which is a
kind of boosting family algorithm. Catboost, XGboost and LightGBM are all
improved implementations under the framework of GBDT algorithm. Catboost
is a GBDT framework based on symmetric decision tree, which has fewer param-
eters, supports category variables and high accuracy. The main problem is to
deal with category features efficiently and reasonably. Moreover, Catboost also
solves the problems of gradient bias and prediction shift, so as to reduce the
occurrence of over fitting and improve the accuracy and generalization ability
of the algorithm. Compared with XGboost and LightGBM, Catboost has the
following innovations:

– Using complete symmetric tree as base model.
– An innovative algorithm is embedded to automatically process the category

features into numerical ones. Firstly, the algorithm make some statistics on
the category features and calculate the frequency of a category feature, and
then add the super parameters to generate new numerical features.

– Catboost also uses combined category features, which can make use of the
relationship between features and enrich feature dimensions.

– In order to avoid the bias of gradient estimation and solve the problem of
prediction bias, the method of sequence lifting is used to combat the noise
points in the training set.
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3.7 Ensemble

For the ensemble we adopt the strategy of boosting so as to decrease bias. We
construct a strong learner by averaging the outcome of CatBoost meta-learner,
which are selected in random. The combination of the weak learner are shown
in Fig. 5.

Fig. 5. The ensemble process

4 Experimental Results

We randomly sampled 22723 hard disks from 183033 of the original dataset. With
only 442 hard disks failed and the rest of disks (22281) in the good class. To
evaluate the performance of all methods we use T-valid to compute two metrics:
the Area Under the ROC Curve (AUC) and the F1-score (showed in Table 3).

Table 3. Experimental results

Method AUC F1 score

Catboost 0.69742 0.2931

Catboost+ROZ 0.72165 0.3186

Catboost+SDF 0.72983 0.3257

Catboost+ROZ+SDF 0.73421 0.3214

Catboost+Smart-Gan 0.74865 0.3402

Catboost+ROZ+Smart-Gan 0.7492 0.3551

Catboost+SDF+Smart-Gan 0.7543 0.3570

Catboost+ROZ+SDF+Smart-Gan 0.76577 0.3818
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5 Conclusion and Future Work

We propose a novel tree-based anomaly detection approach for lifelong disk fail-
ure prediction. By the data preprocessing ways including ROZ and SDF, we
make our model more robust and higher accuracy in the disk failure predic-
tion. We also propose the data enhancement way named Smart-GAN which
adds more data during the training time, and kindly solves the unbalanced
problem. Furthermore, we do some divided group feature engineering, avoid-
ing the large number of features and accelerating the computing. We achieved
tenth place in the PAKDD2020 Alibaba intelligent operation and maintenance
algorithm competition-large-scalehard disk failure prediction competition. The
results confirm that the proposed approach is effective. We will have more work
on the reinforcement learning for the disk failure prediction and try to optimize
long-term rewards, which may work better on this prediction.
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China (2018YFC08 32103, 2018YFC0831000, 2018YFC0832101) and National Social
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Abstract. This paper describes our submission to the PAKDD2020
Alibaba AI Ops Competition. We regard the hard driver disk failure pre-
diction problem as a binary classification problem. Our approach is based
on self-paced ensemble (SPE) [9] and a light gradient boosting machine
(LightGBM) [8]. With three types of feature (raw feature, window-based
feature and combined raw feature) and our proposed training sample
selection strategy, our approach achieved rank 14 in the final standings
with F-score (defined in [1]) of 0.37. The code for our approach can be
found in https://github.com/fengyang95/Alibaba AI Ops Competition
Rank14.

Keywords: Feature engineering · Random under sampling ·
Self-paced ensemble · LightGBM

1 Introduction

The goal of the PAKDD2020 Alibaba AI Ops Competition was to determine
whether each hard disk drive (HDD) will fail within the next 30 days. The
datasets [2] consist of two parts, fault label data and a period of time of daily disk
status monitoring data (Self-Monitoring, Analysis, and Reporting Technology;
often written as SMART).

We transformed this failure prediction problem into a traditional binary clas-
sification task, and labeled the logs of the disk that will have a fault record within
30 days as 1, and the remaining logs as 0. There are several major difficulties in
this competition. The first is the extreme imbalance of logs. In the dataset from
July 2017 to August 2018, there are about 56,000,000 negative logs, but only
38551 positive logs and the ratio of positive and negative logs reached 1:1500.
Then there is the noise problem. The dataset comes from the actual data of the
industry, there is a lot of noise and it is easy to cause overfitting. Finally, there
is the problem of the amount of data. A total of 56,000,000 logs of about 42
gigabyte (GB) of data have also caused certain difficulties in data processing.
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Our approach contains 3 main steps:

– Feature engineering.
– Applying random down sampling on negative logs.
– Using self-paced ensemble (SPE) with LightGBM to train a binary classifier.

The remainder of this article is organized as follows. Section 2 will give a brief
description of the background and related work. The details of our approach and
experimental results will be described in Sect. 3. Section 4 summarizes the entire
article with some discussions.

2 Related Work

In 1995, the drive industry adopted SMART: a standardized specification for
HDDs failure warnings [7]. SMART is a built-in HDD function that works by
calculating attribute values and is used to evaluate the performance of HDDs
[12,15]. It reflects the health status of the disk by monitoring and reading the
operating data (such as temperature, raw reading error rate, start/stop count,
power on time count, etc.) of hard disk’s heads, platters, and circuits.

In recently, many machine learning methods have been applied to SMART-
based failure prediction task, including BPNN [17], priority-based proactive pre-
diction (P3) [13], RNN-based [16], Random-forest-based [14] etc. There are also
many statistical approaches, for example, multivariate rank-sum test and OR-ed
single variate test [17], Bayesian approaches [5], RAIDShield [10] etc. In general,
the method based on machine learning can achieve better results, and our SPE-
LightGBM approach is also one of them.

3 Method

3.1 Feature Engineering

We mainly use single log data to make predictions, which include three aspects
of features: raw features, window features and combined features.

Raw Features. After simple data analysis and removing some features with
many missing values, we used the following original features as shown in Table 1.

Window Features

– range smart 1 normalized, std smart 1 normalized
– range smart 5raw, std smart 5raw
– range smart 7 normalized, std smart 7 normalized
– range smart 190raw, std smart 190raw
– range smart 191raw, std smart 191raw
– range smart 193raw, std smart 193raw
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Table 1. Raw features

Feature Description

smart 1 normalized Raw read error rate

smart 3 normalized Spin up time

smart 4raw Start/Stop count

smart 5raw, smart 5 normalized Reallocated sector count/Retired block count

smart 7raw, smart 7 normalized Seek error rate

smart 9raw, smart 9 normalized Power-on time count (POH)

smart 12raw Power cycle count

smart 187raw, smart 187 normalized Reported uncorrectable erros

smart 188raw, smart 188 normalized Command timeout

smart 190raw, smart 190 normalized Airflow temperature

smart 191raw, smart 191 normalzied G-sense error rate

smart 192raw Power-off retract count

smart 193raw Load/Unload cycle count

smart 194raw, smart 194 normalized Temperature

smart 195raw, smart 195 normalized

smart 197raw, smart 197 normalized Current pending sector count

smart 198raw, smart 198 normalized Total count of read sectors

smart 199raw Total count of write sectors

– range smart 194raw, std smart 194raw
– range smart 195raw, std smart 195raw
– range smart 195 normalized, std smart 195 normalized
– range smart 199raw, std smart 199raw

For some smart attributes, when the value changes suddenly, it means that the
disk has meet some extreme conditions, which may have an impact on the life
of the disk. We have added some statistical window features on the basic of the
original features, including the numerical variation range and standard deviation
within a 7-days time window.

Where the features with ‘range’ prefix represent the difference between the
maximum and minimum values in the time window, and the ‘std’ prefix represent
the standard deviation of the data in the time window.

Combined Features. In addition to the raw features and window features, the
combination of raw features are also considered. We have selected 6 important
raw features according to the feature importance rank using random forests [3].
Then the two-by-two combinations of these 6 features (smart 4raw, smart 5raw,
smart 187raw, smart 191raw, smart 197raw, smart 198raw) are used to generate
15 new combined features.
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Algorithm 1. Generate Combined Features
Input: The set of selected raw features Fn, the number of selected raw features n.
Output: The set of combined features Cn

1: k = 1;
2: for i = 1; i < n; i + + do
3: for j = i + 1;j < n;j + + do
4: Cn[k] = log(Fn[i] + 1) + log(Fn[j] + 1);
5: k = k + 1;
6: end for
7: end for

Table 2. Comparison of different features

Features types Number of features AUC AUCPR

Raw features 29 0.739 0.041

Window features 20 0.673 0.049

Combine features 15 0.671 0.037

Raw + window features 49 0.725 0.065

Raw + combined features 44 0.735 0.044

Window + combined features 35 0.711 0.066

Raw + window + combined features 64 0.727 0.068

Experiments. The offline results of several features are compared to evaluate
the effectiveness of feature engineering. The model used in the experiment is
SPE with LightGBM as its base estimator, which will be introduced in detail
in Sect. 3.3. Training samples are selected according to sample1 described in
the following Sect. 3.2. The area under receiver operating characteristic curve
(AUC) and area under precision-recall curve (AUCPR) were used to evaluation.
From Table 2, it can be seen that our three-group feature (including raw features,
window features and combined features) approach achieved the best results (with
AUCPR 0.068). If only the raw features are used, the AUCPR is 0.041, indicating
the effectiveness of the feature engineering of our approach.

3.2 Training Sample Selection

According to our experiments, the selection of training samples has a great
influence on the performance of the model. Due to the limitations of machine
memory and efficiency considerations, we did not use all samples for training,
but did some preprocessing. We have tried several sample selection methods,
and finally decided to use the following strategy to construct the training set:
for negative samples, we randomly select 2 logs from dozens of logs per month
per disk, and then compose them together with all positive samples to form a
training set.
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We conducted offline comparison experiments to verify the effectiveness of
this method of selecting samples. We have used the logs data from August 1,
2017 to August 1, 2018 for offline experiments, among them the logs data after
July 1, 2018 was used as the validation set. Four methods for selecting training
samples were compared and the results are shown in the Table 3.

Table 3. Sampling strategy

Sampling Description Number of training samples

Sample1 Randomly select 2 logs per month per
disk for negative samples with all
positive samples from August 1, 2017 to
July 1, 2018

P:27907 N:2829070

Sample2 Only use negative samples from April 1
to June 1, 2018 with all positive samples
from August 1, 2017 to July 1, 2018

P:27907 N:9106168

Sample3 Only use the samples corresponding to
the disk with fault tag

P:27907 N:120752

Sample4 All positive and negative samples from
April 1 to June 1

P:6505 N:9106168

It can be seen from Fig. 1 that using sample1 can lead to the best results
which achieves area under ROC curve 0.733 and area under precision-recall curve
(AUCPR) 0.077.

3.3 Model

We use a computationally efficient model called self-paced ensemble (SPE) [9]
with LightGBM [8] as its base estimator.

SPE is a novel framework for imbalance classification that aims to generate
a strong ensemble by self-paced harmonizing data hardness via down-sampling.
It considers the distribution of classification hardness over the dataset and itera-
tively selects the most informative majority data samples according to the hard-
ness distribution. A self-paced procedure is used to control this down-sampling
strategy which enables the framework focuses on the harder data samples. The
SPE framework has been well applied in many unbalanced data scenarios. Light-
GBM [8] is a new gradient boosting decision tree (GBDT) implementation with
gradient-based one-side sampling (GOSS) and exclusive feature bundling (EFB)
strategy.

In our approach, training samples are selected according to sample1 described
in Sect. 3.2. We compared several baseline methods which are listed in Table 4.
It can be seen from Fig.2 that the SPE-LightGBM method is the best (with
AUCPR 0.068). Actually, the SPE-LightGBM here uses the same scheme as the
sample1 in Sect. 3.2, but due to the random seed, there is a slight difference
between the two results.
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(a) ROC curve

(b) precision-recall curve

Fig. 1. ROC curve and precision-recall curve using different training samples.

Table 4. Baselines

Model Description Main parameters setup

Logistic Regression (LR) [11] A classical linear classification
model

L2 regularization;
max iter = 100

AdaBoost [4] An ensemble method that
constructs a classifier in an
iterative fashion

max iter set to 50 with
decision tree as base
estimator

Random Forest (RF) [3] A bagging model the core idea
of which is to generate multiple
small decision trees from
random subsets of the data

max iter = 100

(contniued)
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Table 4. (contniued)

LightGBM – num leaves = 127,
learning rate set to
0.001

balanced-LightGBM LightGBM with weights
inversely adjustment
proportional to class
frequencies in the input data

num leaves = 127,
learning rate set to
0.001, is unbalance set
to true flag

SPE-LightGBM SPE with LightGBM as base
estimator

n estimators = 20

SPE-GBDTLR SPE with GBDT + LR [6] as
base estimator

n estimators = 20

(a) ROC Curve

(b) precision recall Curve

Fig. 2. ROC curve and precision-recall curve using different models.
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4 Conclusions

We use raw features, window features and combined features, then undersample
the negative samples, and finally use SPE-LightGBM to train a classifier. After
choosing an appropriate classification threshold, our model obtained an F-score
of 0.37 (with precision 0.424 and recall 0.328) on the online test set (disk logs
for September 2018).

We have constructed such a complete pipline that predicts disk failure, which
may bring some inspiration to AI Ops. Unfortunately, our approach does not
handle noise well. Perhaps adding more fine-grained labels, for example, turning
this problem into a regression task may achieve better prediction results.

Acknowledgements. Thanks to Alibaba and PAKDD for hosting, creating and sup-
porting this competition.
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Abstract. This paper describes our method to the PAKDD2020
Alibaba AI Ops Competition: Large-Scale Disk Failure Prediction. Our
approach is based on Gradient Boosting Machine and deep feature engi-
neering, and most important is the research on feature selection method.
In this competition, we proposed a new feature selection method based
on the existing Null Importance method. We named Noise Feature Selec-
tion short for NFS. To fitted to noise, NFS using target permutation tests
actual significance against the whole distribution of feature importance.
The effectiveness of NFS method has been proved in experiments. While
in the competition task, we got 0.2509 score in Qualification, 0.1946 score
in Semi-Finals.

Keywords: Disk Failure Prediction · Feature selection · Feature
engineering

1 Introduction

In the large-scale data centers, the number of hard disk drive (HDD) and solid-
state drive (SSD) has reached millions. According to statistics, disk failures
account for the largest proportion of all failures. The frequent occurrence of
disk failures will affect the stability and reliability of the server and even the
entire IT infrastructure, which have a negative impact on business Service-Level
Agreement. Thus, prediction of disk failures has been an important topic for IT
or big data company.

Hard drive manufacturers have been developing self-monitoring technology
in their products since 1994, in an effort to predict failures early enough to allow
users to do something worth of their data. This Self-Monitoring and Reporting

c© Springer Nature Singapore Pte Ltd. 2020
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Technology (SMART) system uses attributes collected during normal operation
to set a failure prediction flag. And this PAKDD2020 Alibaba AI Ops Com-
petition: Large-Scale Disk Failure Prediction is based on this type of SMART
datasets [1].

In terms of feature generation of structured data, On the one hand, it is mostly
based on the feature discovery of the business to which the data belongs. On the
other hand, new features can be generated by statistical methods or timing meth-
ods, etc. After generating many features, feature selection becomes an extremely
important task. If feature selection is not performed, the model will overfit and
learn some useless correlations of noise features [3]. If the feature selection is not
good, It may cause under fitting, and the algorithm cannot learned well.

Several methods have been proposed in the past decades to improve the accu-
racy of HDD failure prediction. Most algorithms apply statistical approaches,
machine learning, and deep learning technologies, including rank-sum test, naive
Bayesian classifiers [5], Hidden Markov Model and Hidden Semi-Markov Model
approaches [13], classification tree [9], and neural networks [12] etc.

However, the focus of these prediction methods is on the optimization of
the model, and very few focus on feature selection and feature engineering. In
this paper, we propose a new feature selection method based on the defects of
existing method. And the experiments on the hard disk detection task show that
our feature selection method has an improvement on performance.

In this paper, we first introduce the mathematical description of disk fail-
ure prediction problem, then briefly introduce the approach of our solution.
Then noise feature selection method are proposed in the article, and finally ver-
ify the validity of our model and feature selection method through extensive
experiments.

2 Problem Statement

The Disk Failure Prediction problem gives a dataset which is a period of time
of daily disk status monitoring data (SMART data) and fault label data. The
task is that we should daily determine whether each disk will fail within the
next 30 days. In this paper, what is different from this competition is that we
use full-scale data, without any truncation processing or sampling processing, so
that it can better reflect the real situation. We defined this problem by model
approach method. It can be defined as a classification problem.

Y = f(X, θ)
where θ is the parameter of our classification function, X is SMART data

record and Y is our prediction.

2.1 Data Description

The dataset has two files: daily SMART data and tag file, which ranges from
2017-07-31 to 2018-08-311. The daily SMART data of disks that has 514 columns.
1 https://github.com/alibaba-edu/dcbrain/tree/master/diskdata

https://github.com/alibaba-edu/dcbrain/tree/master/diskdata
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Including disk serial number code, disk manufacturer code, disk model code, nor-
malized SMART data of SMART ID = n, raw SMART data of SMART ID = n,
sampling time, and Tag file also contains fault time of disk, IDs of fault subtype.
As Table 1, 2 shows,

Table 1. SMART data.

serial number manufacturer model smart n normalized smart nraw dt

disk 100056 A 1 81.0 (n=1) 151788225.0 (n=1) 2017-08-29

disk 143883 A 1 75 (n=1) 34831589.0 (n=1) 2017-08-29

... ... ... ... ... ...

Table 2. Fault data.

manufacturer model serial number fault time tag

A 1 disk 100102 2017-09-29 0

A 1 disk 119991 2017-09-30 1

... ... ... ... ...

2.2 Evaluation Metrics

According to our purpose of failure prediction that predicting whether each disk
will fail or not within next a few days, we redefine the precision, recall and
F-score metrics. The complete definition of metrics is as follows:

Precision for 30-day observation window

Precision =
ntpp

npp

Recall for 30-day observation window

Recall =
ntpr

npr

F-score for 30-day observation window

Fscore = 2 × Precision × Recall

Precision + Recall

where npp is the number of disks that are predicted to be faulty in the following
30 days in the observation window. ntpp is the number of all the disks those truly
fail among 30 days after the first predicting day in the observation window. npr is
the number of all the disk failures occurring in the k-day observation window.ntpr

is the number of truly faulty disks that are successfully predicted no more than
30 days in advance.
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3 Disk Failure Prediction Approach

We divide the entire process of hard disk failure prediction into four parts, data
preprocessing, feature engineering, feature selection, and model training. As we
propose a new feature selection method in the feature selection, which will be
described it separately in Sect. 4.

3.1 Data Process

In the data preprocessing part, we will perform preliminary feature selection on
the data.

We delete fields with NaN greater than 90%, Select Raw type features, At the
same time, according to the actual field meaning and considering the research
results of other scholars. BackBlaze analysis found that hard disk failure has
a great relationship with SMART’s 5, 187, 188, 197, 198 attributes, El-Shimi
analysis report pointed out that in the random forest model 9, 193, 194, 241 and
242 feature significant weight [4]. This prior knowledge and some of selection
rules such as deleting features with Nan greater than 90% are used to filter
original features. The preliminary feature selection process is shown in Fig. 1.

Fig. 1. Preliminary feature selection process

In summary, we use these preliminary features and some other features for
data preprocessing. The following list gives some examples,

– SMART 5,9,187,188,193,194,197,198,241,242 raw.

3.2 Feature Engineering

Through the features of the business and the SMART data features studied by
other scholars, we have deleted some useless features after data preprocessing.
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And the other features we called it basic features. In this part, it is mainly
divided into statistical features, cross features, and time series sliding window
features.

Cross Features. In terms of Cross feature construction. We cross-combine basic
features, so we can get higher-dimensional features of this data. The specific
description is as follows,

Featurecross1(x,y) = log(1 + Featurex × Featurey) (1)

Featurecross2(x,y) =
Featurex
Featurey

(2)

where Featurecross1(x,y), Featurecross2(x,y) is Feature x cross with Feature y
with two ways.

Time Series Features. We use sliding windows to count time series feature
of data. The sliding window is time dependent and the size is 10 days, user
‘key’ column to group data, and we make statistics of the time series feature
of the first 10 days, like sum, min, means, median, kurt, skew operation. These
indicators can express the distribution of slide window data.

3.3 Training Model

During many experiments we found that the tree method is suitable for this task.
In this paper, we use LightGBM as our main algorithm. The detailed descrip-
tion of this method can be found in [7]. LightGBM is a gradient boosting tree
framework, which is highly efficient and scalable. It can support many different
algorithms including GBDT, GBRT, GBM, and MART. We use GBDT as its
algorithms. Also, LightGBM is evidenced to be several times faster than existing
implementations of gradient boosting trees, due to its fully greedy tree-growth
method and histogram-based memory and computation optimization [2]. We use
LightGBM as our detail model.

4 Noise Feature Selection Method

The process of feature selection includes not only deciding which attributes to
use in the classifier, but also it is an important method to avoid overfiting. This
part is feature selection method. Based on null importance feature selection, We
made some improvements on null importance feature selection, and proposed
a new feature selection method which called it Noise Feature Selection Method
(NFS). In this paper, We conduct comparison experiments through variance fea-
ture selection, mutual information feature selection and null importance feature
selection.
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4.1 Variance Selection

Variance selection method (VS) is a simple baseline approach to feature selection.
It removes all features whose variance does not meet some threshold. It can be
write as,

Fvarselect = {var(f) > tvar|f ∈ Fall} (3)

Where Fvarselect is the features we selected by variance selection. var(f) is
the variance of feature f. tvar is the threshold.

4.2 Mutual Information Selection

Mutual information selection method (MI) calculate by estimate mutual informa-
tion for target variable and features [8]. And removes all features whose mutual
information does not meet some threshold with the target. It can be write as,

Fmulselect = {mul(f, target) > tmul|f ∈ Fall} (4)

Where Fmulselect is the features we selected by mutual information selection.
mul(f, target) is the mutual information between feature f and target. tmul is
the threshold.

4.3 Null Importance Feature Selection

Null importance feature selection (NI) process using target permutation tests
actual importance significance against the distribution of feature importance
when fitted to noise (shuffled target). and it uses the log actual feature impor-
tance divided by the some percentiles (usually 75 percentile) of null distribution.

Fniselect = {actual(f) > p(shuffle(f))|f ∈ Fall} (5)

Where Fniselect is the features we selected by null importance feature selec-
tion. actual(f) is the actual feature importance score which calculated by a
model (We use random forest here [10]). Shuffle(f) is feature importance when
fitted to noise. p function is the choice strategy. We use 75 percentile in this
paper.

4.4 Noise Feature Selection

Noise Feature Selection Method (NFS) is based on null importance feature selec-
tion, But the difference is that the NFS is the score under the real distribution
score, which is more than the some percentile of the overall random score dis-
tribution. Instead of comparing the true distribution score with the random
distribution score for each feature.
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For we think that in the large number of feature group spaces generated
after feature engineering, some features are invalid by themselves, regardless of
whether they have undergone random distribution training. These noise charac-
teristics should be excluded. Therefore, the viewpoint of NI should be combined
with the viewpoint of eliminating features with a small contribution degree,
that is, to delete features that do not meet the threshold value of the overall
contribution score as Eq. 6 shows,

Fnfsselect =
{
actual(f) > tallshuffle(f)|f ∈ Fall

}
(6)

Where Fnfsselect is the features we selected by noise feature selection.
actual(f) is the actual feature importance score as Eq. 5. allshuffle(f) is fea-
ture importance distribution when fitted to noise. tallshuffle(f) is the threshold
of our choice strategy.

5 Experiments

In the experimental part, we set up two sets of experiments. The first group of
experiments is a feature group comparison experiment, the purpose is to get the
performance of each feature group on the task. The second group of experiments
is a feature selection comparison experiment. We use different feature selection
methods on different feature groups to compare our proposed feature selection
methods.

5.1 Experiments Setting

We use LightGBM after tuning as a training model, And use different fea-
ture groups generated by feature engineering, basic feature groups, cross feature
groups, time-series feature groups for the feature space input of the model.

In terms of dataset, we use data from 2018-05 to 2018-06 SMART dataset
for training and 2018-07 data for testing and verification.

5.2 Feature Comparison Experiment

Table 3. Feature performance comparison without feature selection.

Feature group Recall Precision F score

Basic feature 0.1026 0.1338 0.1161

Cross 0.1124 0.1434 0.1260

Time series 0.1735 0.2037 0.1874

Cross and time series 0.1539 0.2239 0.1824

As Table 3 can be show, from a macroscopic observation, On these sub datasets,
time series feature group shows the best effect. And the basic feature without
any transform shows the worst effect. This shows in disk failure prediction task,
time series features are very effective.
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5.3 Comparison Experiment of Feature Selection

Table 4. Feature selection performance comparison.

Feature group VS MI

Recall Precision F score Recall Precision F score

Basic 0.1231 0.1592 0.1388 0.1331 0.1594 0.1451

Cross 0.1144 0.1572 0.1324 0.1241 0.1777 0.1461

Time series 0.1832 0.2131 0.1970 0.1861 0.2042 0.1947

Cross and time series 0.1742 0.2240 0.1960 0.1701 0.2253 0.1938

NI NFS

Recall Precision F score Recall Precision F score

Basic feature 0.1492 0.2131 0.1755 0.1440 0.2010 0.1678

Cross 0.1504 0.2107 0.1755 0.1924 0.2213 0.2058

Time series 0.1929 0.2440 0.2155 0.2021 0.2513 0.2240

Cross and time series 0.2146 0.2491 0.2306 0.2303 0.2657 0.2467

In order to compare the effectiveness of different feature selection method, we
verified it through a comparison experiment of changing the feature selection
method on the different feature groups. It can be seen from Table 4 that our
NFS method shows the best score at most cases, whether in basic features or
some other feature groups. As can be seen from the Table 4, NFS has not achieved
the best results in the basic feature group. As the number of features in the basic
feature group is small, NFS has a good selection effect among a large number of
features and features containing many noise. Indicating that the NFS method is
still active when the feature groups change.

Comparing the F1 score among different feature selection methods, as Fig. 2
shows, Null importance and NFS method has brought a significant improvement.
When the feature is basic group, the NFS method may not be as good as other
methods, but when the number of features is large like cross feature, NFS is
effective.

This part show our selection method have a high performance on different
feature groups. Saying that NFS method based on null importance can be useful.
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Fig. 2. F1 score between different feature selection method

6 Conclusion and Future Work

At this Large-Scale Disk Failure Prediction Competition. We proposed a new
feature selection method based on the existing null importance method. And
this method has proved effective in experiments. In disk failure prediction task,
disk fault feature mining, there is still a lot of research to do. Because of time
issues, there are many methods in the paper and some exploratory attempts that
were not used in the competition. Therefore, in the following experiments, the
experimental results on the full amount of data were better than the truncated
data in the competition.

In the follow-up research, There are many directions to be tried. As shown
in the following list,

– Applicability of model. We plan to use neural network series such as Long
short-term memory neural network (LSTM) [6] and other time series models
to increase the applicability of the model.

– Concept Drift. For the concept drift problem in the time dimension, con-
tinuous learning models such as state-of-the-art decision tree classification
method (CVFDT) and Efficient CVFDT (E-CVFDT) [11] can be considered.

– Feature Mining. On feature mining, feature bucketing can be embed to
improve the mining ability of SMART data.
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Abstract. In modern datacenter, hard disk drive has the highest failure rate.
Current storage system has data protection feature to avoid data loss caused by
disk failure. However, data reconstruction process always slows down or even
suspends system services. If disk failures can be predicted accurately, data
protection mechanism can be performed before disk failures really happen. Disk
failure prediction dramatically improve the reliability and availability of storage
system. This paper analyzes disk SMART data features in detail. According the
analysis results, we design an effective feature extraction and preprocessing
method. And we have optimized the XGBoost’s hyperparameters. Finally,
ensemble learning is applied to further improve the accuracy of prediction. The
experimental results of Alibaba data set show that our system predict disk
failures within 30 days. And the F-score achieves 39.98.

Keywords: XGBoost � Feature engineering � Hyperparameter tuning �
Ensemble learning

1 Introduction

Large-scale data center usually has millions of hard disks. Disk failure will decrease the
stability and reliability of the storage system. And it may even endanger the entire IT
infrastructure, and affect the business SLA. If disk failures were predicted in advance,
data can be backed up or migrated during the spare time. Disk failure prediction can
greatly reduce data loss and effectively improve the reliability of the data center.

SMART (Self-Monitoring, Analysis and Reporting Technology) [1] is a monitoring
data supplied by HDD, solid-state drives (SSDs), and eMMC drives. All modern HDD
manufacturers support the SMART specification. Currently, it’s common to predict
disk failures using on SMART data and AI technology. A SMART datasets [2] was
provided to contestants by PAKDD2020 Alibaba AI Ops Competition [3]. Our disk
prediction model was verified on it.
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There are a large amount of related work on predicting disk failures. For example,
Hongzhang [4] proposed an active fault-tolerant technology based on the “acquisition-
prediction-migration-feedback” mechanism. Sidi [5] proposed a method of combining
disk IO, host IO and location information for fault prediction. Based on CNN and
LSTM neural network algorithm, this method can extract features and train model
automatically. Yong [6] proposed an online disk failures prediction method named
CDEF. CDEF combine disk-level SMART signals and system-level signals. CDEF use
a cost-aware rank model to select the top r disks that are most likely to have errors.
Yanwen [7] proposed a disk failures prediction and interpretation method DFPE. By
extracting relevant features, DFPE derives the prediction rules of the model. DFPE
evaluates the importance of the features, then improves the interpretability of complex
models. Ganguly [8] utilized SMART and hardware-level features such as node per-
formance counter to predict disk failure. Ma [9] investigate the impact of disk failures
on RAID storage systems and designed RAIDShield to predict RAID-level disk fail-
ures. Nicolas [10] uses SVM, RF and GBT to predict disk failures. And it reaches 67%
recall. Tan [11] proposed an online anomaly prediction method to foresee impending
system anomalies. They applied discrete-time Markov chains to model the evolving
patterns of system features, then used tree augmented naive Bayesian to train anomaly
classifier. Dean [12] proposed an Unsupervised Behavior Learning system, which
leverages an unsupervised method self organizing map to predict performance
anomalies. Wang [13] also proposed an unsupervised method to predict disk anomaly
based on mahalanobis distance. Ceph [14] has disk fault prediction features. It needs to
train SMART raw data for 12 days and use SVM [15] to predict disk failures.

However, due to the complexity of the actual production environment, noisy data,
and other uncertainties, developing a disk failure prediction system that can be used in
large-scale data centers is very challenging:

• The positive and negative samples are extremely imbalanced. The reason is system
downtime caused by disk failure occurred infrequently. Actually, for small-scale or
short-load disk storage systems, the number of failed disks is very small.

• The change of S.M.A.R.T. values is difficult to predict. According to our obser-
vation, S.M.A.R.T. values will change only when the disk is near failure, and
sometimes change suddenly. In addition, when the disk is healthy, its S.M.A.R.T.
value could be large and stable. Therefore, it cannot rely only on the absolute value
of S.M.A.R.T.

• The generalization ability of prediction model is insufficient. There are a large
number of disks of different models or even different manufacturers in the same data
center. If the generalization ability of the prediction model is not strong, it is
difficult to obtain high-performance prediction results.

The contributions of this article are as follows:

• Through data exploration, SMART range analysis, changepoint analysis and other
methods, we found several SMART attributes that are strongly correlate to disk
failure. We determine time series feature extraction method and sliding window
size. We establish the principle of labeling positive and negative samples.
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• In order to eliminate the differences in feature data distribution of different models,
feature scaling is performed during data preprocessing. As a result, a unified model
can simplify the deployment process, and improve the model generalization ability.

• During model training stage, firstly, we choose XGBoost [16] algorithm as base
model, which is simple and efficient. Then we fine-tune model parameters. Finally,
soft voting method is used to ensemble each sub-model, and further improving the
prediction performance of the model.

The rest of this paper is organized as follows: In Sect. 2, we describes the proposed
approach and details. The evaluation of our approach and experiment results are
described in Sect. 3. Section 4 presents conclusion.

2 Solution

In this section, we present our disk failure prediction approach. Figure 1 shows the
overview of the approach.

Firstly, we analyze the internal distribution law of SMART data through data
exploration, select representative healthy and faulty disks to construct positive and
negative samples, identify fault-related SMART features and extract time series fea-
tures. Feature scaling is performed during data preprocessing, and the impact of dif-
ferent ranges between different disk models and different SMART features can be
eliminated. Secondly, based on the scaled dataset, we construct binary classification
model and tune its hyperparameters. Finally, we integrate sub-models, verify integrated
model using validation dataset, and take the threshold at the maximum F-score on the
verification dataset as the optimal threshold.

We then import the trained model, preprocessing parameters and prediction
threshold, and make online prediction on the test dataset and output the final prediction
result.

Fig. 1. Disk failure prediction overview.
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2.1 Feature Selection

Through statistical analysis, we found that there are a large number of empty columns
in the SMART dataset, and only 48 of the total 510 columns are non-empty. Then, the
SMART probability density distribution and KL divergence were calculated for healthy
and faulty disks, and SMART 5,187,192,193,197,198 and 199 were selected, which are
related to disk failure and have big KL divergence. The KL divergence of all these
selected features is positive infinity. As shown in Fig. 2, the KL divergence of SMART
198 is positive infinity, and the distribution of SMART 198 is mainly concentrated near
zero for both healthy and faulty disks, and the main difference exists in the long tail on
the right side. This part of data is useful for distinguishing between faulty disks and
healthy disks. However, the distribution of SMART 194 has a high degree of coin-
cidence, and the KL divergence is only 0.015, this means that it is difficult to distin-
guish between healthy and faulty disks through SMART 194.

2.2 Feature Analysis

For the key smart features selected by the feature selection above, further analysis is
made from the following three dimensions.

The first is range analysis. Statistics show that only around 5000 of the healthy
disks exist non-zero value. Compared with all-zero disks, these disks contain more
useful information. We should focus on these high-value healthy disk data when
constructing model.

Secondly, changepoint analysis was performed on the SMART of faulty disks. It
was found that even in the last 7 days of the faulty disks, the values of 50%–75% of
these features such as SMART 5, SMART 187 are zero. And the faulty disk will not
change significantly until the last 1–15 days of the life. As shown in Fig. 3, the
SMART 5 of this disk did not change until the last 10 days, and did not increase
significantly until the last 4 days, and SMART 187 did not change until the last 1 day.
This phenomenon commonly occurs on faulty disks, that is, the closer to the end of life,
the more likely sudden change will occur. Therefore, when constructing a positive
sample, it is best to choose the last 0–7 days of the faulty disks, and the sliding window
for extracting time series features is most suitably set between 3 and 7.

Fig. 2. SMART 198 and 194 probability density distribution.
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Finally, by horizontal comparison and analysis of different disk models model1 and
model2, it is found that the difference in the value range of each SMART feature
between model 1 and model 2 is significant (As shown in Fig. 4). By scaling the
SMART features of different models in the preprocessing stage, the SMART features
of each model are firstly scaled to the same range, and then data is scaled again by
standard scaler for training to eliminate smart distribution difference of each model. In
this way, we obtain a unified model, optimize the prediction effect and improve model
generalization ability successfully.

2.3 Preprocessing

We use the dataset provided by Alibaba to complete our approach. The data from July
2017 to July 2018 is used for training, and the data of August 2018 is used for offline
validation. Tianchi Alibaba uses data of September 2018 for online testing.

In the training dataset, there are a total of 184,305 disks, including 1,272 faulty
disks and 183,033 healthy disks. Among all the disks, only 5,953 are not-all-empty.
The judgment rule about not-all-empty is that the values of the main features (smar-
t_5raw, smart_187raw, smart_197raw, smart_198raw, smart_199raw) are not all 0 or
empty during the entire life cycle of the disk. For the training dataset, healthy and faulty
disks are down-sampled at 10: 1, and around 5,000 not-all-empty healthy disks were
added as supplements.

Fig. 3. SMART 5 (left) and 187 (right) trend graph.

Fig. 4. SMART maximum comparison between model1 and model2.
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The missing values of the original data are filled with forward padding method to
ensure the continuity of the time series.

To solve the problem of sample imbalance, we only select data samples for training
from the last 7 days, and the last 30th, 40th, 50th, and 60th days of each disk. Then
mark the last 7 days of the faulty disks as positive and other data samples as negative.

Time series feature extraction is performed on key SMART features on every day
sampled. The sliding window is 3 days, 5 days, and 7 days. The extraction method is
shown in the following Table 1.

Scale the SMART data of model2 to the range of the minimum and maximum of
model1. Taking the feature Fn of model2 that is scaled to model1 as an example, first
calculate the scaling factor, then scale the feature Fn of model2 to Fnscaled.

scale ¼ maxðmodel1 FnÞ � minðmode1 FnÞ
maxðmodel2 FnÞ � minðmodel2 FnÞ ð1Þ

Fnscaled ¼ scale� Fn�min model2 Fnð Þð Þþminðmodel1 FnÞ ð2Þ

Finally, a standard method is used to scale the dataset.

2.4 Model Training

Our approach finally chose XGBoost [17] algorithm for model training, because the
number of samples and the number of features in the data set are relatively small, and
there is no need for very complicated models. At the same time, the hyperparameters of
XGBoost are easy to adjust, and XGBoost is not easy to overfit. By comparing
experimental results, it is found that the prediction results of XGBoost are better than
Random Forest [18] and LSTM [18, 19].

We use 3-folder cross-validation for model training, and use AUC as the evaluation
function. Compared with the PRC evaluation function, AUC is not sensitive to the rate
of positive and negative samples. The AUC learning curve during training is shown in
the Fig. 5. When the AUC is no longer improved, the optimal number of iterations of
XGBoost can be determined.

Table 1. Time series feature extraction.

Number Feature extraction
method

Detail

1 Change time The number of attribute changes within a period
2 Change rate The slope of attribute values within a period
3 Std The standard variance of attribute values within a

period
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By using grid search to optimize XGBoost hyperparameters, such as max_depth,
scale_pos_weight and so on, it was found that the prediction results were not improved
significantly on validation dataset.

Finally, we use the validation dataset to obtain the prediction probability. As shown
in the Fig. 6, the best prediction threshold is the classification threshold with maximum
F-score.

2.5 Model Ensemble

The ensemble of sub-models can effectively improve the generalization ability of the
prediction model. We finally selected 6 sub-models that perform well on the validation
set. These sub-models use XGBoost as the basic algorithm. The difference between
them is mainly in the preprocessing, such as different SMART features, different
feature extraction methods and sliding windows. Detailed parameters of these six

Fig. 5. AUC learning curve during training.

Fig. 6. F-score, Recall and Precision change curve with prediction threshold.
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sub-models are shown in the Fig. 7. The final prediction probabilities of the integrated
models are obtained by averaging the prediction probabilities of these six models.

The positive samples and sampling positions in the Fig. 7 are related to the sam-
pling process in Sect. 2.3.

3 Evaluation

3.1 Evaluation Metric

According to the Alibaba’s requirement, prediction engine predicts the failure disks in
the next 30 days. We used the precision, recall and F-score evaluation metrics redefined
in the competition rules [3].

Recall reflects the proportion of positive samples correctly judged to the total
positive samples, and Precision reflects the proportion of true positive samples among
the positive samples decided by the classifier. The higher Recall and Precision, the
better. F1-Score is the weighted average of Recall and Precision. F-score takes into
account both Recall and Precision.

The metrics are defined as follows:

Precision ¼ ntpp
npp

ð3Þ

Recall ¼ ntpr
npr

ð4Þ

F � score ¼ 2 � Precision � Recall
Precision � Recall

ð5Þ

The following Table 2 explains ntpp, npp, ntpr and npr.

Fig. 7. Model ensemble method.
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3.2 Experimental Results

There are two steps in model verification stage. Firstly, we predict offline validation
dataset, then select the optimal F-score value and corresponding prediction threshold.
The prediction results of the offline validation dataset are shown in the Table 3. By
ensembling several good sub-models together, the overall prediction performance can
be improved. The best sub-model is Model_06, with F-score 34.21, while the inte-
grated model’s F-score reached 36.36, an increase of 2.15. Secondly, we predict online
test dataset for final testing. The prediction precision was 52.42, the Recall was 32.31,
and the F-score was 39.98.

4 Summary

In large-scale data centers, disk is the component with the highest failure rate. Disk
failure will seriously affect the stability and reliability of IT infrastructure. Based on the
SMART data set of Alibaba Data Center, this paper designs and implements an effi-
cient disk failure prediction system. The training process of the system consists of five
parts: feature extraction, preprocessing, model training, model ensemble, and model
verification. XGBoost algorithm is applied. After system-level optimization, the F-
score achieves 39.98. In the competition jointly held by Alibaba and PAKDD, the
effectiveness and versatility of our system was approved.

Table 2. Evaluation metric detail.

Number Metric Detail

1 npp The number of disks that are predicted to be faulty in the following 30
days

2 ntpp The number of all the disks those truly fail among 30 days after the first
predicting day

3 npr The number of all the disk failures occurring in the k-day observation
window

4 ntpr The number of truely faulty disks that are successfully predicted no
more than 30 days in advance

Table 3. Experimental results offline.

Model Precision Recall F1

Model01 37.6 29.7 33.21
Model02 40.6 27.2 32.58
Model03 47.4 23.4 31.36
Model04 36.4 30.4 33.10
Model05 36.3 31.0 33.45
Model06 35.6 32.9 34.21
ensemble 48.4 29.1 36.36
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There are many viable ways of extending this work, such as: Applying transfer
learning algorithm to solve the problem of insufficient samples of failed hard disks.
Using ranking algorithms to make further improvements. Analyzing disks that are not
reported in time or reported wrongly.
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Abstract. PAKDD2020 Alibaba AI Ops Competition is jointly orga-
nized by PAKDD2020, Alibaba Cloud, and Alibaba Tianchi platform.
The task of the competition is to predict disk failures in large-scale
cloud computing environments. We provide SMART (Self-Monitoring,
Analysis and Reporting Technology) logs on a daily basis in the produc-
tion environments without any preprocessing except anonymization. The
SMART logs pose great challenges for analysis and disk failure predic-
tion in real production environments, such as data noises and the extreme
data imbalance property. In this paper, we first describe the competition
task, practical challenges, and evaluation metrics. We then present the
statistical results of the competition and summarize the key techniques
adopted in the submitted solutions. Finally, we discuss the open issues
and the choices of techniques regarding the online deployment.

Keywords: Disk failure prediction · Cloud computing · AI Ops

1 Introduction

In large-scale cloud computing environments, millions of hard disk drives are
deployed to store and manage massive data [2]. With such large-scale modern
data centers, disk failures are prevalent and account for the largest proportion
among the hardware failures in cloud data centers [20]. Disk failures may lead to
service performance degradation, service unavailability, or even data loss [5]. In
order to provide cloud services with high availability and reliability, cloud service
providers explore proactive fault tolerance approaches to predict disk failures in
advance.

For more than a decade, researchers from academia and industry have made
great progress in disk failure predictions. Recent studies [6,9,11,12,15–17,19,21,
22,24] conduct comprehensive analysis on SMART (Self-Monitoring, Analysis,
and Reporting Technology) logs [4], and they also make use of machine learning
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algorithms to achieve accurate prediction results. However, as the public datasets
are limited at scale in the whole community, it is difficult to apply state-of-the-
art solutions directly into production environments due to the following more
strict requirements for online deployment.

– Prediction on a daily basis. In the production environment, the monitor-
ing system usually collects SMART logs on a daily basis. Thus, disk failure
prediction is supposed to output prediction results at the same granularity.
This requirement leads to more severe data imbalance problem.

– Data noise. Data noise is commonplace and attributed to labeling and sam-
pling in the complicated production environments. Specifically, administra-
tors often detect disk failures by using the self-defined expert rules, yet these
rules may change over time and cannot cover the unknown disk failures,
thereby leading to noise in labeling. Also, the data collection process may be
interrupted by some incidents in production, which causes missing of data
during data collection.

In this paper, we first describe the competition task and related challenges
in Sect. 2. We then describe the details of our proposed evaluation metrics for
disk failure prediction under requirements in production environments in Sect. 3.
In Sect. 4, we highlight the mainstream and novel techniques adopted in the
submitted solutions. We analyze the overall statistics of submitted results in
Sect. 5. Finally, we discuss the open issues in practical deployment in Sect. 6.

2 Task Description

The task of PAKDD2020 Alibaba AI Ops Competition is about reliability
and availability improvement in cloud computing environments, in particular,
through the predictive maintenance of disk failures. The participants of the
competition are required to predict disk failures in the future 30 days based
on the historical SMART logs and failure tags. We provide the SMART logs of
two hard disk models from the same manufacturer over the duration for more
than one year. Each disk model contains more than 100 K independent hard disk
drives. To the best of our knowledge, this is the largest public dataset by size for
a single disk model for disk failure prediction. As this is a supervised learning
task, in addition to SMART logs, we also provide labels contained in the failure
tag file collected from our trouble tickets system. All the dataset and related
descriptions are available at PAKDD Cup 2020 and Tianchi website: https://
tianchi.aliyun.com/competition/entrance/231775/information?lang=en-us.

Table 1 shows the metadata of training and testing SMART logs of the disk
models A1 and A2. The SMART logs contain 514 columns in total, includ-
ing the disk serial number, manufacturer, disk model, data collecting time, and
510 columns of the SMART attributes. We denote the SMART attributes by
“smart n”, where n is the ID of the SMART attribute. Each SMART attribute
has a raw value and a normalized value, which are denoted by “smart n raw” and
“smart n normalized”, respectively. The SMART attributes are vendor-specific,

https://tianchi.aliyun.com/competition/entrance/231775/information?lang=en-us
https://tianchi.aliyun.com/competition/entrance/231775/information?lang=en-us
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while many of these attributes have a normalized value that ranges from 1 to 253
(with higher values representing better status). The initial default normalized
value of the SMART attributes is 100 but can vary across manufacturers.

Table 2 shows the metadata of failure tags. It contains five columns including
the disk serial number, manufacturer, disk model, failure time, and sub-failure
type. In particular, the trouble ticket system in Alibaba Cloud detects disk
failures using expert rules and reports the failure time (denoted by “fault time”)
and sub-failure type (denoted by “tag”) when failures occur. For the sub-failure
types, we anonymize the names and map them into the numbers ranging from
one to five, while we set the sub-failure type as zero by default for healthy disks.

Table 1. Metadata of training and testing sets.

Column name Type Description

serial number string disk serial number code

manufacturer string disk manufacturer code

model string disk model code

smart n normalized integer normalized value of SMART-n

smart n raw integer raw value of SMART-n

dt string data collecting time

Table 2. Metadata of failure tags.

Column name Type Description

serial number string disk serial number code

manufacturer string disk manufacturer code

model string disk model code

fault time string time of failure reported in the trouble ticket system

tag integer ID of sub-failure type, ranging from 0 to 5

The competition has three rounds: preliminaries, semi-finals, and finals. In
preliminaries, we provide the dataset of two disk models from the same manu-
facturer including the SMART logs and failure tags. We set the training period
from July 31, 2017 to July 31, 2018 and the testing period from August 1, 2018
to August 31, 2018. During preliminaries, we first open the training and testing
sets of disk model A1 for the participants. The participants can leverage the
dataset to select features, construct machine learning model, and optimize their
machine learning models. We then open the training and testing sets of disk
model A2 for participants five days before the preliminaries deadline, so as to
test the generalization of their methodology designed for disk model A1 on the
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new testing set (disk model A2). We select the top 150 teams with the higher
prediction accuracy on disk model A2 into semi-finals.

In semi-finals, participants have the same training sets of disk model A1 and
A2 with those in preliminaries, but the testing dataset is not available offline.
Instead, we merge the testing data of disk models A1 and A2 together from
September 1, 2018 to September 30, 2018 and put the resulting dataset into
online testing environments. We require participants to submit their prediction
solutions packed in docker files to online testing environments for predicting disk
failures in the testing dataset (including both disk models A1 and A2). We select
the top 12 teams with higher prediction accuracy into finals.

In finals, we require the 12 teams to present their solutions, including the
main idea, design of machine learning models, and workflow details (e.g., feature
selection and construction as well as optimization methods). We invite experts
from industry and academia as our committee to score their presentations in
terms of reasonability, novelty, and completeness. The final scores are comprised
of two parts, i.e., 70% for prediction results and 30% for presentation.

In this competition, we summarize the following challenges in our dataset for
disk failure prediction:

– Extremely imbalanced data. The data imbalance problem is a well-known
challenge in the machine learning community [13], meaning that classifiers
tend to be more biased towards the majority class. In production, when we
predict disk failure on a daily basis, the data imbalance becomes more severe
and the imbalance ratio of failed disks to healthy disks is less than 0.003%
in our dataset. Therefore, data imbalance is a critical issue that needs to be
addressed in both the competition as well as production environments.

– Data noise. Data noise is commonplace and attributed to many reasons, such
as network failures, software malfunction/upgrades, system or server crashes,
data missing, or anomaly collected data events in monitoring systems. All
these events bring noise into the dataset and compromise the expected pat-
terns of the dataset. Data noise cannot be ignored in disk failure prediction,
as it can impair the prediction accuracy. How to design and apply proper
techniques in dealing with the data noise problem is also a key to improving
the accuracy of disk failure prediction solutions.

We encourage participants to leverage prior studies and state-of-the-art tech-
niques to obtain domain knowledge of the SMART logs and disks during com-
petition period in addition to our dataset and specifications. We also build a
testing environment for participants to evaluate and reproduce the submitted
solution, so as to guarantee the correctness of the prediction outputs.

3 Evaluation

We evaluate the prediction results of participants’ submitted solutions based
on three accuracy metrics, including precision, recall, and F1-score, as defined
below.
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– Precision for P-window. We define the precision as the fraction of actual
failed disks being predicted over all (correctly and falsely) predicted failed
disks. As our objective is to evaluate whether a failed disk being predicted
is an actual failure within 30 days, we define the P-window as a fixed-size
sliding window starting from the first time that a disk is predicted as failure,
and set the length of the P-window as 30 days. Let T denote the start date
and T + k − 1 denote the end date of the testing period (k as 30 days in our
competition). Note that the P-window may slide out of the testing period.
Figure 1 illustrates how we count true positive and false positive results. If
the actual failure happens within the P-window (e.g., the 1st and 4th rows),
we regard the failed disk as a correctly predicted one; otherwise (e.g., the 2nd
and 3rd rows), we regard the disk as a falsely predicted one.

– Recall for R-window. We next define the recall as the fraction of actual
failed disks being predicted over all actual failed disks. We define the R-
window as a fixed-size window (not sliding window) from the starting date
to the end date of the testing period with the length of 30 days in our case
(i.e., from T to T + k − 1, where k is 30 days). Figure 2 shows how we count
false positive, false negative, and true positive results. If a failed disk being
predicted is not failed within the R-window (the 1st and 2nd rows), we regard
the disk as a falsely predicted one; otherwise, we regard the failed disk as a
correctly predicted one (the 4th and 5th rows). If an actual failed disk within
the R-window is not predicted, we regard the failed disk as a missed one (i.e.,
false negative in the 3rd row).

– F1-score. We follow the classical definition of F1-score as 2×precision×recall
precision+recall .

For easy comparison, we use F1-score as the participants’ score in prelimi-
naries and semi-finals.

.....

T T+k-1 Date timeT+1 T+2 .....

.....

.....

True
Positive

False
Positive

True
Positive

T+kT+k+1 

P-window: Precision observation window
Sliding window, start from first failure predicted date for Precision calculation

Normal disk

The first date a disk is predicted to be failed

Trouble tickets generation

Disk predicted to be failed

.....False
Positive

Fig. 1. Illustration of P-window.
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T T+k-1

R-window: Recall observation window
Fixed and start from testing date for Recall calculation

Date timeT+1 T+2 .....

.....
True

Positive

False
Negative

T+kT+k+1 

Normal disk

The first date a disk is predicted to be failed

Trouble tickets generation

Disk predicted to be failed

True
Positive

.....

.....False
Positive

.....
False

Positive

Fig. 2. Illustration of R-window.

In preliminaries, participants are required to submit prediction results in CSV
format with four deterministic columns, including the manufacturer, disk model,
disk serial number, and failure predicted date, based on our provided dataset.
If one disk is predicted to be failed multiple times, we only take the earliest
prediction date in the evaluation process and ignore the later ones. In semi-finals,
we put the testing dataset on the cloud testing environments, so participants
must submit their solutions packed with a docker image to predict disk failures
on a daily basis. Then the auto-evaluation process gives a final score based on
the aforementioned metrics. In finals, the top-ranking teams in the leaderboard
are asked to present the strengths and weaknesses of their solutions. The final
scores are comprised of two parts, 70% of prediction results in semi-finals and
30% of presentation results in finals.

2AledomksiD)b(1AledomksiD)a(

Fig. 3. F1-score distribution of prediction results of disk models A1 and A2 in
preliminaries.
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4 Statistics of Submissions

In this section, we analyze the statistics of submissions on the prediction accu-
racy distributions, team affiliation, and the time spent of participants on the
competition.

4.1 Prediction Accuracy Distributions

We first analyze the prediction accuracy distributions in preliminaries. There are
1,173 teams registered in the competition and we received 3,309 valid submissions
from 291 teams for failure prediction of disk model A1. Figure 3(a) shows the
distributions of F1-score for predicting failures in disk model A1. From the figure,
we can see that around 19.6% teams achieve the F1-scores higher than 30%, while
nearly half (47.4%) of the teams’ results fall into the interval between 20% and
30% F1-score. Figure 3(b) illustrates the distributions of F1-score for predicting
failures in disk model A2. The top 141 teams uploaded their solutions 405 times
in total. We notice that only 4.3% teams achieve the F1-scores higher than 30%,
which is much worse than that for disk model A1. The reason may be mainly on
the late opening of the training and testing data of disk model A2, so the teams
only have 5 days for in-depth analysis. Most teams had to quickly transfer their
knowledge, features, and even models learned from disk model A1 directly to
disk model A2. It may lead to the severe overfitting problems.

In semi-finals, 76 teams submitted 3,299 valid solutions to predict disk fail-
ures from the mixed disk models A1 and A2. Figure 4 shows that more than
61.8% teams obtain the F1-scores higher than 30%, which is much better than
the results in preliminaries (19.5% teams for disk model A1 and 4.3% teams for
disk model A2). It also indicates that after passing preliminaries, participants

Fig. 4. F1-score distribution of prediction results of mixed disk A1 and A2 in semi-
finals.
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Table 3. Presentation results and semi-final scores of top teams.

Final ranking Presentation score Semi-final score

1 25.125 49.068

2 26.250 42.513

3 25.875 40.466

4 25.000 39.977

5 25.375 38.177

6 24.250 38.575

7 22.250 38.792

8 22.125 37.002

9 21.500 37.215

10 19.875 38.251

11 19.125 37.116

can pay more attention to feature engineering, modeling, and optimizing their
solutions to improve their prediction results.

Finally, the top 12 teams entered the finals. Table 3 shows the presentation
results and the semi-final score. The final score consists of 30% of presenta-
tion results and 70% of semi-final score. The presentation results in finals are
evaluated in four major aspects, including novelty (10 points), reasonability (10
points), integrity (5 points), and presentation performance (5 points), by a com-
mittee of experts from academia and industry.

Fig. 5. Occupation analysis from registration information
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Fig. 6. Days spent to reach 85% of each team’s best prediction results

4.2 Team Affiliation and Time Spent

We next present the team affiliation. Figure 5 shows that more than 70% of teams
come from universities and companies. Most of them are familiar with machine
learning and data mining, while very few of them have a strong background in
storage reliability.

We also analyze the time spent of participants on the competition in order
to know how much time participants need to apply their knowledge into a new
field. Figure 6 shows the histogram results of days spent when reaching 85% of
the best prediction accuracy for a team. We choose the 85%-mark as it can
reflect that participants have completed the most part of their solutions. We
notice that more than 81.3% of the teams can complete the majority of the task
within 20 days, while around 29.3% of the teams spend less than 10 days on the
task. These results provide us very useful insights for our future promotion of
AI OPs to the community.

5 Mainstream Methodology and Highlighted Techniques

In this section, we summarize the techniques and methods applied in the com-
petition based on the reviewed submissions.

5.1 Mainstream Methodology

From the reviewed submissions, the workflow of most solutions is comprised
of four components, including data preprocessing, training sample generation,
feature engineering, and modeling.

– Data preprocessing. As we describe before, there exists data noise in the
SMART logs and failure labels. Thus, data preprocessing becomes an essen-
tial step that is applied by almost all teams. Most of the teams apply simple



Summary of PAKDD CUP 2020: From Organizers’ Perspective 139

methods to solve the problem. For example, they drop the samples with miss-
ing data directly or interpolate missing data by forward filling or backward
filling.

– Training sample generation. Re-sampling techniques [3] are popular
approaches for dealing with data imbalance. Existing methods include over-
sampling (e.g., SMOTE [7]), which directly duplicates positive samples, and
undersampling (e.g., cluster-based undersampling [23]), which selects a subset
of negative samples randomly with a predefined ratio.

– Feature engineering. Feature construction and feature selection are two
important steps for feature engineering. In the competition, almost all teams
exploit sliding-window-based statistical features with various window lengths,
such as difference, mean, variance, and exponentially weighted moving-
average values. Some teams also select important features based on correlation
analysis and remove the weakly correlated SMART attributes to failures.

– Modeling. Most teams formulate disk failure prediction as a binary classifi-
cation problem and use tree-based ensemble models, such as random forests
and the decision-tree variations. Among them, LightGBM [14] and Xgboost
[8] are applied the most because of their efficiency in execution time and
memory usage.

5.2 Highlighted Techniques and Novel Ideas

In addition to conventional approaches, we notice that participants also propose
and try many novel ways in the competition. We highlight some approaches and
categorize them into the aforementioned four components.

In data preprocessing, a team proposes the cubic spline interpolation method
to solve data missing problem, and their experiment results show that it can
improve the benchmark result of F1-score by more than 3%.

In training sample generation, two teams apply different methods from the
above resampling techniques, i.e., GAN [10] and self-paced ensemble model [18].
GAN augments positive samples, while self-paced ensemble model is an under-
sampling method for downsampling negative samples. From the experimental
results, these two methods become useful complements to the re-sampling tech-
niques for mitigating the data imbalance problem.

In feature engineering, some teams propose different feature construction
methods based on data analysis. They analyze the distance of failure occurrences,
distributions of disk lifetime, and data missing ratio. We find that each of the
methods, as well as the combinations of the methods, can improve the overall
prediction results.

In modeling, in addition to using binary classification models, several teams
formulate the problem as a multi-label classification or a regression problem,
which can result in a higher F1-score. Furthermore, a team designs a two-layer
stacking model, in which the second layer uses different features from the first
layer and aims to reduce the number of false positives. All the highlighted cre-
ative methods give us more inspirations and will be helpful for all of us in future
exploration.
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6 Discussion

From the competition perspective, we admit that some tricks are very useful for
improving prediction results. However, from an online deployment standpoint,
besides the balance of solution complexity and online performance, we pay more
attention to the interpretation of the model and results. Thus, some features and
methods applied in this competition are debatable for production deployment.
We list some of them for open discussion:

– Should we take SMART-9 (power-on hours) as one of the important features?
The raw value of SMART-9 is a cumulative value and indicates the lifetime
of a disk. This value should increase by 24 h for normal disks if we collect the
data on a daily basis. Also, we do not find any evidence in the production
environment that the statistical features based on SMART-9 have a significant
correlation with disk failures.

– Should we do bitwise decoding for the SMART attributes, such as SMART-1
(read error rate), SMART-7 (seek error rate), SMART-188 (command time-
out), and SMART-240 (head flying hours)? The raw values of these SMART
attributes are vendor-specific and are often meaningless as decimal num-
bers [4]. Some teams construct statistical features based on these SMART
attributes without bitwise decoding, but we are still unsure whether this
method is reasonable and effective.

– How should we interpret tree-based ensemble models? Tree-based ensemble
models, like random forest and GBDT, are popular and widely used in the
competitions. However, these models can only provide overall feature impor-
tances without clear information on the individual predicted output to sup-
port engineers for locating and solving disk failures.

Another interesting phenomenon is the limited usage of cutting-edge tech-
niques like deep learning. One possible reason is that deep learning is a kind of
data-hungry methodology. Even though we have opened the large-scale datasets,
the data size is still insufficient for teams to build sophisticated deep learning
neural networks.

Besides the techniques and methods mentioned and applied in this compe-
tition, we have published part of our progress in [11,12]. Although the results
cannot be directly comparable with this competition because of the differences of
datasets, techniques like data preprocessing (correlation analysis, spline interpo-
lation, automated pre-failure backtracking, denoising etc.), feature engineering,
and modeling are fully tested and applied in production environments.

In the future, we will keep pushing this area forward by gradually opening
more anonymized datasets from different disk models, manufacturers, perfor-
mance data, and system logs in addition to the SMART logs and failure tags.
All datasets will be made available on the official Github website [1]. Also, other
AI OPs tasks, such as memory error prediction, server downtime prediction,
server cluster auto-healing, application-level intelligent operations, will also be
taken into consideration. With more data and information, we encourage the
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community to find more interesting and challenging problems in this field for
further research and breakthrough.

Acknowledgement. We would like to express our gratitude to the PAKDD confer-
ence, especially Prof. Mengling Feng and Prof. Hady Wirawan Lauw for the great help
and coordination. We thank Jingyi Huang, Ting Wang and Lele Sheng from the Tianchi
platform for their hard work on test environment building, competition organization
and coordination.

References

1. Alibaba Cloud AIOPs open datasets. https://github.com/alibaba-edu/dcbrain/
tree/master/diskdata

2. Data Age 2025 - The Digitization of the World From Edge to Data. https://www.
seagate.com/our-story/data-age-2025/

3. Resampling: Oversampling and Undersampling. https://en.wikipedia.org/wiki/
Oversampling and undersampling in data analysis

4. Wiki on S.M.A.R.T. https://en.wikipedia.org/wiki/S.M.A.R.T
5. Alagappan, R., Ganesan, A., Patel, Y., Arpaci-Dusseau, A.C., Arpaci-Dusseau,

R.H.: Correlated crash vulnerabilities. In: Proceedings of USENIX OSDI (2016)
6. Botezatu, M.M., Giurgiu, I., Bogojeska, J., Wiesmann, D.: Predicting disk replace-

ment towards reliable data centers. In: Proceedings of ACM SIGKDD (2016)
7. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic

minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
8. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In Proceedings

of ACM SIGKDD (2016)
9. Eckart, B., Chen, X., He, X., Scott, S.L.: Failure prediction models for proactive

fault tolerance within storage systems. In: Proceedings of IEEE MASCOTS (2009)
10. Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of NIPS (2014)
11. Han, S., Lee, P.P.C., Shen, Z., He, C., Liu, Y., Huang, T.: Toward adaptive disk

failure prediction via stream mining. In: Proceedings of IEEE ICDCS (2020)
12. Han, S.: Robust data preprocessing for machine-learning-based disk failure predic-

tion in cloud production environments. arXiv preprint arXiv:1912.09722 (2019)
13. Japkowicz, N.: The class imbalance problem: significance and strategies. In: Pro-

ceedings of ICAI (2000)
14. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In:

Proceedings of NIPS (2017)
15. Li, J., et al.: Hard drive failure prediction using classification and regression trees.

In: Proceedings of IEEE/IFIP DSN (2014)
16. Li, J., Stones, R.J., Wang, G., Li, Z., Liu, X., Xiao, K.: Being accurate is not

enough: new metrics for disk failure prediction. In: Proceedings of IEEE SRDS
(2016)

17. Li, P., Li, J., Stones, R.J., Wang, G., Li, Z., Liu, X.: ProCode: a proactive erasure
coding scheme for cloud storage systems. In: Proceedings of IEEE SRDS (2016)

18. Liu, Z., et al.: Self-paced ensemble for highly imbalanced massive data classifica-
tion. arXiv preprint arXiv:1909.03500 (2019)

19. Lu, S.L., Luo, B., Patel, T., Yao, Y., Tiwari, D., Shi, W.: Making disk failure
predictions SMARTer! In: Proceedings of USENIX FAST (2020)

https://github.com/alibaba-edu/dcbrain/tree/master/diskdata
https://github.com/alibaba-edu/dcbrain/tree/master/diskdata
https://www.seagate.com/our-story/data-age-2025/
https://www.seagate.com/our-story/data-age-2025/
https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis
https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis
https://en.wikipedia.org/wiki/S.M.A.R.T
http://arxiv.org/abs/1912.09722
http://arxiv.org/abs/1909.03500


142 C. He et al.

20. Wang, G., Zhang, L., Xu, W.: What can we learn from four years of data center
hardware failures? In: Proceedings of IEEE/IFIP DSN (2017)

21. Xiao, J., Xiong, Z. , Wu, S. , Yi, Y., Jin, H., Hu, K.: Disk failure prediction in data
centers via online learning. In: Proceedings of ACM ICPP (2018)

22. Xu, Y., et al.: Improving service availability of cloud systems by predicting disk
error. In: Proceedings of USENIX ATC (2018)

23. Yen, S.-J., Lee, Y.-S.: Cluster-based under-sampling approaches for imbalanced
data distributions. Expert Syst. Appl. 36(3), 5718–5727 (2009)

24. Zhu, B., Wang, G., Liu, X., Hu, D., Lin, S., Ma, J.: Proactive drive failure prediction
for large scale storage systems. In: Proceedings of IEEE MSST (2013)



Author Index

Bao, Wei 85

Chen, Run-Qing 64
Chen, Weilong 85

Feng, Mengling 51

Han, Shujie 1, 130
He, Cheng 1, 130
Huang, Tao 1, 130

Jiao, Pengfei 85

Lan, Xiang 51
Lee, Patrick P. C. 1, 130
Li, Hui 119
Li, Jingjie 18
Li, Jipeng 85
Li, Manjie 18
Li, Qiang 119
Li, Yuanpeng 100
Liang, Xinhui 119
Liu, Jiongzhou 1, 130
Liu, Pan 74
Liu, Wei 74
Liu, Yi 1, 130
Lu, Jiahui 30

Pan, Peikai 85
Peng, Qiyao 85
Peng, Yifan 109

Ran, Xiandong 40

Su, Zhou 40
Sun, Yaoran 100
Sun, Zeyong 30

Tan, Pin Lin 51

Wang, Pinghui 130
Wang, Tuanjie 119
Wu, Qi 85

Xie, Quanquan 119
Xu, Fan 1, 130
Xu, Junfeng 109
Xue, Yang 74

Yuan, Ji 18

Zhang, Jie 30
Zhang, Kai 119
Zhao, Nan 109
Zhou, Bo 12


	Preface
	Organization
	Contents
	An Introduction to PAKDD CUP 2020 Dataset
	1 Introduction
	1.1 Challenges of Disk Failure Prediction
	1.2 Existing Open Datasets
	1.3 Our Contributions

	2 Dataset Generation
	2.1 Sampling
	2.2 Data Anonymization

	3 Dataset Analysis
	3.1 Failure Rates
	3.2 Data Missing
	3.3 Statistics of the SMART Attributes

	4 Related Work
	5 Conclusion
	References

	PAKDD 2020 Alibaba AIOps Competition - Large-Scale Disk Failure Prediction: Third Place Team
	1 Problem Description
	2 Related Work
	3 The Proposed Approach
	3.1 Data Processing
	3.2 Feature Engineering
	3.3 Objective Function Design
	3.4 Model
	3.5 Prediction Logic
	3.6 Conclusion

	References

	A Voting-Based Robust Model for Disk Failure Prediction
	1 Introduction
	2 Feature Engineering
	2.1 Data Analysis
	2.2 Feature Generation and Selection

	3 Voting Strategy for the Probabilistic Approach
	3.1 Basic Model
	3.2 Voting Strategy Framework

	4 Case Study
	4.1 Attributes Filtering
	4.2 Features Addition
	4.3 Sample Imbalance
	4.4 Training Data
	4.5 Voting Strategy

	5 Conclusion
	References

	First Place Solution of PAKDD Cup 2020
	1 Introduction
	2 Method
	2.1 Strategy for Labelling
	2.2 Feature Engineering
	2.3 Models
	2.4 Prediction Strategy

	3 Results and Analysis
	3.1 Results
	3.2 Feature Importance

	4 Conclusion
	References

	Anomaly Detection of Hard Disk Drives Based on Multi-scale Feature
	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Contribution

	2 Data Exploration
	2.1 SMART Attribute Exploration
	2.2 Build Training Data
	2.3 Undersampling of Health Samples

	3 Feature Engineering
	3.1 Feature Classification
	3.2 Feature Extraction

	4 Model
	5 Experiment
	5.1 Dataset and Evaluation
	5.2 Parameter Selection
	5.3 Result

	6 Conclusion
	References

	Disk Failure Prediction: An In-Depth Comparison Between Deep Neural Networks and Tree-Based Models
	1 Introduction
	2 Methods
	2.1 Feature Analysis
	2.2 Feature Engineering
	2.3 Models
	2.4 Preprocessing
	2.5 Metrics

	3 Results and Discussion
	3.1 Offline Validation Results
	3.2 Online Test Results

	4 Conclusion
	References

	PAKDD2020 Alibaba AI Ops Competition: Large-Scale Disk Failure Prediction
	1 Introduction
	2 Related Work
	3 Our Approach
	4 Experiments
	4.1 Results

	5 Conclusion
	References

	SHARP: SMART HDD Anomaly Risk Prediction
	1 Introduction
	2 Methodology
	2.1 Single-Day-Based Prediction Mode
	2.2 Sequenced-Day-Base Prediction Approach

	3 Experiment
	4 Conclusion
	References

	Tree-Based Model with Advanced Data Preprocessing for Large Scale Hard Disk Failure Prediction
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Preprocessing
	3.2 T-Valid
	3.3 Data Preprocessing-SDF
	3.4 Smart-GAN
	3.5 Feature Engineer
	3.6 Catboost
	3.7 Ensemble

	4 Experimental Results
	5 Conclusion and Future Work
	References

	PAKDD2020 Alibaba AI Ops Competition: An SPE-LightGBM Approach
	1 Introduction
	2 Related Work
	3 Method
	3.1 Feature Engineering
	3.2 Training Sample Selection
	3.3 Model

	4 Conclusions
	References

	Noise Feature Selection Method in PAKDD 2020 Alibaba AI Ops Competition: Large-Scale Disk Failure Prediction
	1 Introduction
	2 Problem Statement
	2.1 Data Description
	2.2 Evaluation Metrics

	3 Disk Failure Prediction Approach
	3.1 Data Process
	3.2 Feature Engineering
	3.3 Training Model

	4 Noise Feature Selection Method
	4.1 Variance Selection
	4.2 Mutual Information Selection
	4.3 Null Importance Feature Selection
	4.4 Noise Feature Selection

	5 Experiments
	5.1 Experiments Setting
	5.2 Feature Comparison Experiment
	5.3 Comparison Experiment of Feature Selection

	6 Conclusion and Future Work
	References

	Characterizing and Modeling for Proactive Disk Failure Prediction to Improve Reliability of Data Centers
	Abstract
	1 Introduction
	2 Solution
	2.1 Feature Selection
	2.2 Feature Analysis
	2.3 Preprocessing
	2.4 Model Training
	2.5 Model Ensemble

	3 Evaluation
	3.1 Evaluation Metric
	3.2 Experimental Results

	4 Summary
	Acknowledgements
	References

	Summary of PAKDD CUP 2020: From Organizers' Perspective
	1 Introduction
	2 Task Description
	3 Evaluation
	4 Statistics of Submissions
	4.1 Prediction Accuracy Distributions
	4.2 Team Affiliation and Time Spent

	5 Mainstream Methodology and Highlighted Techniques
	5.1 Mainstream Methodology
	5.2 Highlighted Techniques and Novel Ideas

	6 Discussion
	References

	Author Index



