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1 Introduction

Imagine working on a paper with your familiar word processor in your computer.
As you work, you decide to edit a word only to realize that the word cannot be
selected as intended, but only a part of it, few letters in no apparent order. You try
to edit another occurrence of the same word in the text, and you realize that this
time your selection included some fragments of other words adjacent to the one you
started with. Frustrated you erase the complete selected mess determined to retype
the correct version of the text, only to realize that there are other letters and fragments
of letters underneath the text you deleted! In the end, you decide that the only way
to modify the text is to retype everything.

Clearly, this scenario is imaginative, but it is used here as a prompt to illustrate the
everyday frustration of designers, engineers, scientists, and all users working with
lines in 2D and 3D geometric models. Every designer, engineer, and scientist who
works with geometry models knows how difficult is to work with existing files—
especially if they are done by others—and how difficult or often impossible, simple
operations with lines like the Find and Replace command discussed above, can be.

This odd situation has of course not been unnoticed. As early as the early seven-
ties, Stiny and Gips called out the need for a uniform representation of shape and
over the years Stiny and a growing number of scholars, educators, designers, and
scientists relentlessly built a school of thought starting at the Open University and
the Royal College of Art at UK, later at UCLA and CMU, and since the mid-nineties
at MIT, put together the formidable theoretical formalism of shape grammars with
the promise of revolutionizing computer-aided design (CAD) (see, e.g., Stiny 1980,
2006; Krishnamurti 1981; Knight 1994; Earl 1997). Shape grammars’ foregrounding
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of shape rules drawn in a 2D or 3D modeling system over instructions defined in some
programming language have provided a robust theory for designers to believe in but
nevertheless a formidable challenge to implement. In fact, up-to-date, there are more
than 50 shape grammar interpreters that have been designed since the mid-seventies
all claiming they can address a particular aspect of shape mapping replacement, the
paramount characteristic of this technology (Eloy et al. 2018)—and still none of them
has solved conclusively the problem of Find and Replace, casting thus a shadow of
doubt on whether this task is feasible.

The work here takes on this specific problem and proposes a new computational
technology, the Shape Machine, a new software built for scratch that fundamentally
redefines the way shapes are represented, indexed, queried, and operated upon (Hong
and Economou, forthcoming). Its foregrounding of visual rules (shape rules drawn
in a 2D or 3D modeling system) over symbolic rules (instructions defined in some
programming language) provides a robust and disruptive technology for engineers,
computer scientists, designers, students, and educators and in general academics and
professionals who use drawings and visual models to develop and communicate their
ideas.

2 Identity Rules

Seeing in design can be modeled by identity rules—rules that pick-up parts without
necessarily doing anything to them (Stiny 1996). The identity rules have identical
left-hand sides (LHS) and right-hand sides (RHS) and apply under any given transfor-
mation to pick-up parts in a shape seamlessly reorganizing the underlying structure
of the shape. The application of a rule follows the general format of a shape produc-
tion outlined in Stiny (1980). Technically, for shapes A and B, the shape rule A —
A can apply to a shape B whenever there is a transformation 7" that makes the shape
T(A) part of the shape B. If the shape T'(A) is part of the shape B, the rule subtracts
the shape T (A) from the shape B and replaces it with the very same shape T'(A). The
resulting shape B’ and the corresponding computation are given in (1).

B'=[B-T(A]+T(4) (D

The computation in (1) captures the notion of a visual query: It restructures a shape
in terms of what is the element (shape) that is queried. A series of visual queries are
outlined below structured around three conditions: (a) The types of lines that make
up a shape, limited here to straight lines, arcs and their combinations; (b) the types
of transformations 7" under which a rule applies, namely isometries and similarities;
and (c) the determinacy or indeterminacy of a rule application. Useful overviews of
the types of shapes used in shape grammar interpreters are given in Chau et al. (2004)
and McKay et al. (2012). A recent discussion on the algebraic language of the group
of transformations and its applications in spatial design is given in Pottman et al.
(2013). A preliminary discussion on the determinate or indeterminate application of
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a rule and its relation on the types of intersections between pairs of lines is given
in Stiny (2006) and Hong and Economou (forthcoming). A definitive account of the
types of shapes based on the possible types of intersections between pairs of lines
or arcs is given in Economou and Yu (forthcoming) and a catalogue of n-line shapes
for n < 4 in Economou and Park (forthcoming). Clearly, the examples given below
do not exhaust all possible permutations of queries but are selected to give a sense of
the expressive power of the search engine of the Shape Machine. For brevity—and
to foreground the intuitive aspects of the visual search, these queries are given here
in a single shape representation foregrounding the shape that is searched.

2.1 Find Shapes Consisting of Lines Under Isometric
Transformations

The first examples of visual queries in Shape Machine are constructed around shapes
that consist of straight lines and are searched under isometric transformations in a
determinate way. Any shape consisting of straight lines with more or equal than two
registration points would do and here the computations shown are based on existing
ones in the literature to make the transition from the theory to the application as
clear as possible (see, e.g., Stiny 2006). All examples of searches here are based on
isometric transformations, that is, transformations that keep the shape and size of
a shape but alter its position and/or handedness. Here, this search means that it is
confined to congruent instances of the shape that is searched.

The most straightforward shapes consisting of lines to search for are the closed
polygons, regular or not. These shapes have typically a name, i.e., triangles, squares,
rectangles, thombi, quadrilaterals, pentagons, hexagons, and so forth, and because
of their straightforward geometric structure consisting of well-defined circuits of
vertices and edges, they are the very first shapes that have been used to demonstrate
the desired ability of a shape grammar interpreter to identify different shapes from
the ones used in a two-dimensional model in a visual search (Grasl and Economou
2013). In these cases, the shape grammar interpreter is able to query a specific
design in terms of any well-defined polygons. Shape Machine is able to find any
closed polygons in a shape even though these polygons may have not been explicitly
registered in the database of a CAD system. The example in Fig. 1 showcases one of
the possible ways that an initial design consisting of two squares can be queried to
reveal possible embedded triangles, squares, pentagons, hexagons, and so forth. The
process is straightforward: A pictorial query of a triangle drawn on top of the initial
model identifies three more triangles in the model for a total of four. A pictorial query
of a square drawn on top of the initial model identifies no more isometric instances
of the square in the model. A pictorial query of a pentagon drawn on top of the initial
model identifies three additional isometric pentagons in the model for a total of four.
The example below shows that a pictorial query of a hexagon in Fig. 1a, in the design
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(a) (b) (c)

Fig. 1 A query of a closed polyline in Shape Machine under isometric transformations

consisting of two squares in Fig. 1b, identifies two embedded isometric hexagons,
one of them shown in Fig. 1c.

The search for polygons can be extended for arrangements of polygons even
though these arrangements are not registered in the database of a CAD system.
The example in Fig. 2 shows a pictorial query of a spatial relation between two
isosceles right triangles reflected along the leading diagonal of an underlying square
upon which the triangles are embedded in. Note that this very specific spatial rela-
tion can be described in a number of alternative and equivalent ways (Economou
and Kotsopoulos 2014). Even more, this spatial relation is just one of several other
examples of spatial relations between closed polygons that may be observed in this
design, including arrangements of triangles, squares, pentagons, hexagons, and so
forth, all sharing a vertex or edge or just floating one to another. In all cases, the
Shape Machine can calculate the symmetries of the matches and give the correct
number of non-equivalent instances. Here the query shape x consisting of the two
right triangles is shown in Fig. 2a, the design that is queried is given in Fig. 2b and
one of the two isometric matches of the identity rule is given in Fig. 2c.

Shapes consisting of straight lines need not be well-defined closed polygons or
arrangements of polygons. The pictorial query can be extended for continuous lines
composed by one or more line segments evoking recognizable symbols such as the
letters of the alphabet, for example, A, M, X or K, or other symbols from other
notational systems. The example in Fig. 3 continues with a query of a three-line
shape in the form of the lower-case letter k whose longer edge matches the edge

(a) (b) (©)

Fig. 2 A query of an arrangement of two polygons in Shape Machine under isometric transforma-
tions
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Fig. 3 A query of an arrangement of open polylines in Shape Machine under isometric
transformations

of the square, one of its legs matches the edge of the smaller rotated square in the
design and the third upright edge has an endpoint (boundary) that is embedded in the
edge of the smaller rotated square. Note that the three of the endpoints of the shape
k as well as its middle 3-valent intersection of its three legs are all registered in the
database of the CAD system within the intersections of the lines making up the two
underlying squares but the endpoint of the upper leg of the shape & in not. The query
in Shape Machine yields, respectively, eight instances for each search because the
symmetry of the lower-case k is equal to 1 and the symmetry of the overall design is
8, and by definition, there are no interactions between the symmetry elements of the
symmetry groups of the two shapes—the k-shape and the overall design (Stiny 1986).
As above, the Shape Machine can calculate the symmetries of the matches and give
the correct number of non-equivalent instances. The query x of the lower-case k is
shown in Fig. 3a, the design that is queried in Fig. 3b and one of the eight isometric
matches of the identity rule is given in Fig. 3c.

2.2 Find Shapes Under Similarity Transformations

Visual queries need not confine to identical copies. Often designers want to search
for similar copies of a shape in smaller or larger versions and in any location and/or
possible enantiomorphic or handed versions in a model or series of models. The
new unique transformation introduced in the visual query is the scale transformation
that varies the size of the shape. Scale transformations combine with the isometric
transformations to produce the similarity transformations that keep the shape of a
shape but alter its size, position, and/or handedness. The next series of visual queries
in Shape Machine are constructed around shapes that consist of straight lines and
are searched under similarity transformations in a determinate way. Here, this search
means that it is confined to similar instances of the shape that is searched. Note that
when these searches are defined for shapes that have some conventional name, say
squares, quadrilaterals, and so forth, they retain their semantics; i.e., the search for
a particular shape, say a square, is extended for all possible squares in the design.



70 A. Economou et al.

A

\ /
\*
(@) (b) ©)

Fig. 4 A query of a polygon in Shape Machine under similarity transformations

The operations of visual queries can be extended for all sorts of shapes consisting of
lines. All examples below are structured around the target shape of the 5-star polygon
to start from the initial inquiry in Stiny (2006) and continue in a rising complexity
from polygons and arrangements of polygons to arrangements of lines.

The most straightforward shapes consisting of lines to search for under similarities
are the closed polygons, regular or not. An example of a visual query of a polygon
under similarity transformations is given in Fig. 4. Here, the query is an isosceles
triangle in with three angles 108°, 36°, and 36° respectively, and the shape that is
queried is a regular 5-star polygon. Clearly, several more types of polygons could
be searched in this design, for example, convex and concave quadrilaterals, regular
pentagons, concave hexagons, concave heptagons, and several more. In all cases,
the Shape Machine calculates the exact number of matches without any duplicates
and the search here identifies five similar triangles in five different orientations. The
query x of the isosceles triangle with angles 108°, 36°, and 36° is shown in Fig. 4a, the
5-star regular polygon design that is queried in Fig. 3b and one of the five similarity
matches 7'(x) of the identity rule is given in Fig. 4c.

The search for similar polygons can be extended for similar arrangements of
polygons in any spatial relation without having them registered in the database of a
CAD system. An example of a visual query of three polygons in a spatial relation
is shown in Fig. 5. The specificity of this spatial relation is quite involved: All three
polygons in the spatial relation are isosceles triangles having angles 36°, 72°, and
72°, respectively; two of them pivot around a shared vertex in an angle of 144° so
that the endpoint of the short side of one triangle coincides with the endpoint of the
long side of the other triangle and both lines forming one continuous line, while a
third triangle lies on the middle reflection axis bisecting the angle 144° with its apex
at a specific distance /. The discursive description of all this information is indifferent
to the Shape Machine that is able to query the shape x in Fig. 5a, in the design in
Fig. 5b and give the possible five matches 7T'(x), one of which is shown in Fig. 5c.
In all cases, the Shape Machine calculates the exact number of matches without any
duplicates: The symmetry of the arrangement of the three triangles is given by the
dihedral symmetry group of order 1 and is equal to 2, and the symmetry of the star
design is given by the dihedral symmetry group of order 5 and is equal to 10; the
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Fig. 5 A query of an arrangement of polygons in Shape Machine under similarity transformations
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two shapes share one symmetry element—a mirror refection and the complete non-
equivalent matches 7T'(x) are equal to the division of the orders of their symmetry
groups equal to 5.

The visual query of shapes consisting of arrangements of lines open can quickly
become complex engaging open-ended arrangements of lines that at any desired
spatial relation without necessarily specifying some gestalt or conventionalized
spatial arrangement. An example of such an arrangement of an L-shape consisting of
two lines versus a simple line is shown in Fig. 6. The two lines, the composite one and
the straight one, comprise a shape that consists of three lines that require an extensive
discursive description to be precise: The three lines lie upon an underlying network
of grid-lines forming an isosceles triangle whose inner three angles are 36°, 36°, and
108°, respectively; the projection of the single straight line meets the endpoint of the
longest leg of the composite line; and the projection of the short leg of the composite
shape meets the straight line in its body. Clearly, these spatial relations between the
two lines—the composite and the simple—or the three lines, depending on how one
sees it—need more features and parameters to be fully captured, including the lengths
of the various parts of the lines in the relations. The structuring of all this information
is indifferent though to the Shape Machine that is able to query the shape x in Fig. 6a
in the design in Fig. 6b and give the possible ten matches 7'(x), one of which is shown

\/ NV

(a) (b) (c)

Fig. 6 A query of an arrangement of lines in Shape Machine under similarity transformations
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in Fig. 6¢. In all cases, the Shape Machine calculates the exact number of matches
without any duplicates.

2.3 Find Shapes Consisting of Arcs Under Isometric
Transformations

The second family of examples of visual queries in Shape Machine is constructed
around shapes that consist of arcs that can be searched under isometric transforma-
tions. Any shape consisting of arcs would do, and here as before the computations
shown are based on existing ones in the literature to make the transition from the
theory to application as clear as possible (see, e.g., Jowers and Earl 2011).

A straightforward class of shapes consisting of arcs to search for under isometries
is the closed lens shapes, constructed upon regular or irregular polygons substituting
their straight edges with arcs of various lengths. An example of a visual query of
a lens or vesica piscis shape, a classic figure in Euclid (Fletcher 2004)—and Carlo
Scarpa’s work for that matter—under isometric transformations is given in Fig. 7.
The shape that is queried is a trefoil-like shape consisting of three identical arcs
drawn from the vertices of an underlying regular triangle. The radii of the arcs of
these shapes are typically equal to the length of the sides of the underlying regular
triangle but here are equal to the two-thirds of the edge of the triangle. The symmetry
of the vesica piscis shape is given by the dihedral symmetry group of order 1 and is
equal to 2, and the symmetry of the trefoil design is given by the dihedral symmetry
group of order 3 and is equal to 6. The two shapes share one symmetry element—
a mirror refection, and the complete non-equivalent matches 7'(x) are equal to the
division of the orders of the two symmetry groups equal to 3. The query x of the
vesica piscis shape is shown in Fig. 7a, the trefoil design that is queried in Fig. 7b
and one of the three isometric matches 7'(x) of the identity rule is given in Fig. 7c.

Shapes consisting of arcs need not be well-defined closed arrangements of sectors
of circles or unions or intersections of sectors of circles. The pictorial query can be
extended for continuous arcs composed by one or more arcs. The example in Fig. 8

(a) (b) (c)

Fig. 7 A query of a closed arc shape in Shape Machine under isometric transformations
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Fig. 8 A query of an arrangement of arcs in Shape Machine under isometric transformations

continues with a query of a three-arc shape in the style of the Mac logo. As before,
the description of this shape can be formidable: Here, a chain of three arcs that
share two endpoints with alternate convexities and concavities and specific radii and
centers upon a regular triangle. Still, the query in Shape Machine is straightforward
by simply pointing to the shape that will be queried. The query here yields six results
calculating the threefold dihedral symmetry of the three-lens polygon of order 6 by
the order of symmetry of the compound arc equal to 1. The query x of the compound
arc is shown in Fig. 8a, the trefoil design that is queried in Fig. 8b and one of the six
isometric matches 7'(x) of the identity rule is given in Fig. 8c.

The previous example showed the query of a compound arc whose structural
features, including centers of arcs and intersections of arcs, could be potentially
retrieved from the database of CAD system. The next example in Fig. 9 showcases
the search of a shape consisting of a rotational arrangement of three arcs such that
each arc has only one endpoint registered in the database of a shape to be queried.
Clearly, this query can be extended for a variety of shapes consisting of three or
more arcs or combinations of arcs and straight lines without caring about whether
their boundaries, endpoints, and intersections are registered in the database of the
CAD system to be searched. The query here yields two results because the threefold
dihedral symmetry of the three-lens polygon of order 6 is divided by the order of
symmetry of the rotational symmetry of order 3 as long as both shapes share three
symmetry elements, namely the rotations of order 0°, 120°, and 240° around their

RS
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Fig. 9 A query of an arrangement of arcs in Shape Machine under isometric transformations
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centers. The query x of the rotational arrangement of the three arcs is shown in Fig. 9a,
the trefoil design that is queried in Fig. 9b and one of the two isometric matches 7 (x)
of the identity rule is given in Fig. 9c.

2.4 Find Shapes Consisting of Arcs Under Similarity
Transformations

Visual queries of arcs need not confine to identical copies. As before, often designers
search for similar copies of a shape in smaller or larger versions and in any location
and/or possible enantiomorphic or handed versions in a model or series of models.
Interestingly, scale transformations overall appear to affect the queries of shapes in
similar ways with the queries of shapes consisting of straight lines but there are
significant differences too—that will become apparent in the next section on the
determinate and indeterminate application of recognition of identity rules.

The first family of examples of visual queries in Shape Machine of shapes that
consist of arcs that can be searched under similarity transformations are again queries
of the boundaries of well-defined unions, intersections, or symmetric differences of
circles and/or closed polygons. One straightforward example of an intricate Boolean
intersection of three circles constructed around an underlying equilateral triangle
is shown in Fig. 10. The number of the three similar matches 7'(x) of this shape
is calculated by checking whether the symmetry elements of the query the queried
shape intersect, and if yes, by dividing the order of symmetry of the queried shape
by the order of symmetry of the query. The query x of the Boolean intersection is
shown in Fig. 10a, the trefoil design that is queried in Fig. 10b and one of the three
similarity matches 7'(x) of the identity rule is given in a highlighted form in Fig. 10c.

A second family of examples of visual queries in Shape Machine of shapes
that consist of arcs that can be searched under similarity transformations can be
constructed by taking any arrangements of arcs irrelevant of whether they specify
closed shapes or connected arcs in continuous circuits. Even more, this inquiry can
be extended by asking that the boundaries of the arcs (endpoints) are not necessarily

<]

(a) (b) (c)

Fig. 10 A query of an arrangement of arcs in Shape Machine under similarity transformations
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Fig. 11 A query of an arrangement of arcs in Shape Machine under similarity transformations

registered in the database of the CAD system that underlies the specification of a
shape that will be searched. An example of a query of such a shape is given in Fig. 11.
Here a shape consisting of six arcs is queried with three points defined as the inter-
sections of three pairs of arcs while the other six endpoints are indefinitely defined
upon the circumference of the arc. The lengths of the arcs are all the same, and they
are identically disposed around a center giving to the shape a dihedral symmetry of
order 3; that is, a total symmetry of order 6 equal to the order of symmetry of the
trefoil shape that is queried. The query x of the six arcs is shown in Fig. 11a, the
trefoil design that is queried in Fig. 11b and the single similarity match 7'(x) of the
identity rule is given in a highlighted form in Fig. 11c.

A last example of a visual query in Shape Machine of shapes that consist of arcs
and that can be searched under similarity transformations is considered here by taking
any arrangement of arcs irrelevant of specificities of spatial relations between them
and to an underlying shape. Here this query shape x is constructed by eliminating
parts of a trefoil shape yielding a highly expressive shape that defies a discursive
description. Clearly, the symmetry of the emergent shape is trivial and equal to 1
and there are six 7'(x) matches of this shape in the trefoil shape. The query x of the
fragmented shape (arrangements of arcs) is shown in Fig. 12a, the trefoil design that
is queried in Fig. 12b and one of the six similarity matches 7'(x) of the identity rule
is given in a highlighted form in Fig. 12c.
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(a) (b) (c)

Fig. 12 A query of an arrangement of arcs in Shape Machine under similarity transformations
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2.5 Exceptions Noted: Indeterminate Applications of Rules

The results of the queries of the shapes have been so far very successful for a good
reason: Most rules apply in a determinate way, and the results can be enumerated and
visually inspected. Still, in some cases, the application of the rules is not straightfor-
ward and some additional information may be needed to make the exact matches. In
these cases, the queries rather than producing a set of instances of shapes 7'(x) that
match the query x, they produce families of sets of instances of shapes T'(x). A set of
conditions specifying the determinacy or indeterminacy of a rule application is given
in Stiny (2006). Any shape rule with a LHS shape consisting of lines in the plane with
zero registration points cannot apply in a determinate way under any Euclidean, affine
or linear transformation; and any such shape rule with one registration point cannot
apply in a determinate way under any similarity, affine or linear transformation—or
otherwise, it can apply in a determinate way only under isometric transformations;
in either case, additional information is needed to determine the match of the rule.

An example of an indeterminate query can be given in the query of a lower-case
k-shape under similarity transformations in Fig. 12. All three lines of the k-shape
intersect in a singular point and match the condition above when the lines of the
shape intersect in one registration point. The shape k can be matched (found) in
eight different kinds of ways in a shape consisting of two squares because of the
spatial relations of the elements of the symmetry groups of the two squares and the
k-shape. Still, for any of these eight matchings there is an indefinite number of scale
transformations that match the k-shape in the shape of the two squares having as a
maximal extreme case the matching of the long line of the k-shape with the edge
of the large square and as a minimum extreme the arbitrary screen resolution of the
k-shape. The query x of the lower-case k-shape is shown in Fig. 13a, the nested
square design that is queried in Fig. 13b and one instance 7'(x) of the eight families
of similarity matches with a scalar transformation of 1.5 of the identity rule is given
in a highlighted form in Fig. 13c.

These two-step visual queries in Shape Machine need not be confined to the
queries of well-structured shapes like the lower-case k-shape under similarity trans-
formations. The queries x can be extended to any shapes consisting of arrangements

\

(a) (b) (c)

Fig. 13 A two-step query of an arrangement of lines in Shape Machine under similarity
transformations
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of lines drawn upon construction lines intersecting on a singular registration point.
An example of a query of y-shape with an additional floating line emanating from its
intersection point is given in Fig. 14. The query x of the y-shape is shown in Fig. 14a,
the nested square design that is queried in Fig. 14b and one instance 7'(x) of the eight
families of similarity matches with a scalar transformation of 1.5 of the identity rule
is given in a highlighted form in Fig. 14c.

Finally, these two-step visual queries in Shape Machine can be combined with
symmetry calculations to provide the answers to queries that entail symmetrical
matches and elimination of similar results. An example of such computation is given
in Fig. 15. Here, the query is given in the form of a shape consisting of three separate
lines, resembling a three-stroke symbol in some symbolic language, with a mirror
symmetry of order 2. The query x of the symmetrical shape is shown in Fig. 15a,
the nested square design that is queried in Fig. 15b and one instance 7'(x) of the four
families of similarity matches with a scalar transformation of 1.5 of the identity rule
is given in a highlighted form in Fig. 15c.

2z |
(a) (b) (c)

Fig. 14 A two-step query of an arrangement of lines in Shape Machine under similarity
transformations
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Fig. 15 A two-step query of an arrangement of lines in Shape Machine under similarity
transformations
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3 Replacement Rules

Doing in design can be modeled by replacement rules—rules that pick-up parts and
replacing them with other parts. The replacement rules have different LHS shapes
and RHS shapes and apply under any given transformation to pick-up parts in a shape
reorganizing the underlying structure of the shape. The application of a replacement
of production rule follows the general format of a shape production outlined in Stiny
(1980). Technically, for shapes A and B, the shape rule A — B can apply to a shape
C whenever there is a transformation 7' that makes the shape T'(A) part of the shape
B. If the shape T(A) is part of the shape C, the rule subtracts the shape T'(A) away
from the shape B and replaces it by the shape 7(B). The resulting shape C’ and the
corresponding computation are given then as:

C'=[C-T(A)]+T(B) (@)

The replacement rules (doing rules) in (2) are essentially rules in the replacement
schema x — y (Stiny 2006; Economou and Grasl 2018). As before, the series of
replacements outlined below exemplify the three conditions outlined in the seeing
rules: the types of shapes involved in the computation (straight lines and arcs), the
transformation under which the rules apply, and the types of rules involved in the
computation—determinate or indeterminate—and as a consequence, the number of
steps required to execute the rule (so far, one-step rules or two-step rules). After all,
for a rule x — y to apply to a shape A the identity rule x — x has to apply under
some transformation 7 and then the resulting shape 7'(x) can be subtracted from the
shape A and replaced by the corresponding transformation of 7'(y) to produce the
shape A — T(x) + T(y).

Significantly, this series of rule applications (visual replacements) may be struc-
tured around one extra condition: the recursive definition of the schema y in terms
of the schema x, so that the two parts of the rule are related in some way captured
in distinct schemata rules (Stiny 2006; Economou and Kotsopoulos 2014). Here, a
very brief discussion of these design actions (rule schemata) is given and the focus
is given instead in summations of design actions to foreground the visual impact of
the rule. Such fractal designs (Mandelbrot 1982) often provide the initial discourse
for recursive geometric modeling because of the nature of the ordered repetition of
given rules. All examples in this section are extracted from actual computations with
the Shape Machine and are not edited in any way: The rules are represented in the
classical shape grammar format with the two sides of the production system, LHS
and RHS, the arrow (— ) in-between and the two registration marks (+) on either side
of the middle arrow (—) to fix the spatial relation between them. The shape rules in
Shape Machine can be imported, or they can be defined from scratch.
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3.1 Substitute Shapes Consisting of Lines Under Isometry
and Similarity Transformations

An initial set of examples of replacement rules in Shape Machine is constructed
within the rule schema x — x 4 #(x). These computations are samples of computations
of shapes consisting of straight lines and searched under isometry and similarity
transformations in a determinate or indeterminate way. The rule in Fig. 16 specifies
that a right isosceles triangle should be substituted by the same triangle x plus a
half size right isosceles triangle #(x). Note that this specific action can be described
equally well in a different of other schemata, for example, x — #1(x) + #2(x), for
t; and #, similarity transformations of the original right isosceles triangle; or in
terms of different operators, for example divisions and boundaries that may divide
an initial shape into two different ones or even identical copies of itself as in rep-tile
constructions (Gardner 2001). The series of parallel applications of the rule in the
initial design comprised of four triangles produces a series of fractal-like designs
comprised by 4 + 8 = 12 triangles, 4 + 8 + 16 = 28 triangles, 4 + 8 4+ 16 + 32 =
60 triangles, and 4 + 8 + 16 4 32 4 64 = 124 triangles, respectively. The shapes
x in the LHS and x + #(x) in the RHS of the rule are shown in Fig. 16a; one of the
four possible matches of the shape 7'(x) under a similarity transformation 7 and its
corresponding replacement of the shape T'(x 4 #(x)) is given in Fig. 16b; and a design
after the execution of a series of rules in Fig. 16c¢.

Both parts of a shape rule, LHS and RHS are editable in Shape Machine. The
example in Fig. 17 demonstrates the design of the RHS of a rule in the schema x
— y or perhaps and more specifically, x — x — prt(x) + y, for x an isosceles right
triangle, prt(x) the part of the hypotenuse of the right isosceles triangle that is erased,
and y a new set of lines in some spatial arrangement with the leftover part of the right
isosceles triangle. Clearly, this last action can be described in a number of alternative
ways (Economou and Kotsopoulos 2014). A single application of the rule in the
schema x — »_ T'(y) in the initial design ends the computation providing a design
with a dihedral symmetry of order 8. The shapes x in the LHS and y in the RHS of
the rule are shown in Fig. 17a; one of the four possible matches of the shape 7T(x)
under a similarity transformation 7" and its corresponding replacement of the shape
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Fig. 16 A construction in Shape Machine using a single shape rule in the schema x —

DT (x +t(x))
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Fig. 17 A construction in Shape Machine using a single shape rule in the schema x —>_ T'(y) in
a determinate way

T(y) is given in Fig. 17b; and a final design after the execution of a series of rules in
Fig. 17c.

New shape rules can be defined from scratch in the Shape Machine and are editable
right away. The construction of a design in Fig. 18 showcases the power of radical
redescription Shape Machine can offer in design inquiry. The rule used here to
illustrate exemplify this generative redescription is polemically built upon the k-
shape, an otherwise rather esoteric illustration of the notion of a radical change of
vocabularies in visual composition. Here, the rule specifies that the k-shape in the
LHS should be replaced by a completely new shape in the RHS of the rule that is
formed by connecting the endpoints of the k-shape with a set of two disjoint lines.
Note that the application of the rule under isometry or similarity transformations
provides a sense of surprise to the designer because of the emergent connections
of previously disjointed lines to facilitate a reading of the overall design into one
continuous folding line. The shapes x in the LHS and y in the RHS of the rule are
shown in Fig. 18a; one of the eight possible matches of the shape T(x) under a
similarity transformation 7" and its corresponding replacement of the shape 7'(y) is
given in Fig. 18b; a final design after the execution of a series of rules is shown in
Fig. 18c.
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Fig. 18 A construction in Shape Machine using a single shape rule in the schema x —>_ T'(y) in
an indeterminate (two-step) way



Shape Machine: A Primer for Visual Computation 81

3.2 Substitute Shapes Consisting of Lines and Arcs Under
Isometries and Similarities

A second set of examples of replacement rules in Shape Machine may be constructed
around shapes that consist of arcs and straight lines and searched under isometry and
similarity transformations in a determinate or indeterminate way. The examples are
built upon one of the studies of the original ice-ray grammars (Stiny 1977; Economou
and Grasl 2018). The conventions of that analog grammar, including the specification
of the initial labeled shape and the labeled rules, are exactly the same with the ones
used in this digital grammar. However, the examples are extended here with the
additional intent to generalize the design workflow from configuration to ornament
demonstrating a seamless process in design. In this first example, the rule is cast
in the general schema x — y or more specifically x — prt x + y. In this example,
the shape x in the LHS is a square with a circular label on the top left corner and
the shape y in the RHS is an elongated hexagon with an internal set of diagonals to
create two triangles and two quadrilaterals (and many more shapes as well)—all with
a dihedral symmetry of order 4. The shape to be searched in terms of this rule is a 4
X 4 square grid with alternating labels ensuring a diagonal reflectional pattern. The
shapes x in the LHS and y in the RHS of the rule are shown in Fig. 19a; one of the
sixteen possible matches of the shape 7'(x) under a similarity transformation 7" and
its corresponding replacement of the shape T'(y) is given in Fig. 19b; a final design
after the execution of a series of rules is shown in Fig. 19c.

A simple reworking of the same schema rule with a substitution of a shape made
of straight lines in the LHS with a shape made up for arcs in the RHS can produce a
radical redescription in a design. The substitution of the square shape x with a circular
label on its top left corner in the LHS of a shape rule with a vesica piscis shape
composed by two arcs with centers the two diagonal vertices of the square and radii
the edges of the square in the RHS produces a rule that when it is applied in all sixteen
parts of a 4 x 4 alternating square grid as described above, makes a completely new
design that features the same underlying symmetry but with very different expres-
sive qualities. Significantly, none of the underlying straight lies survive the parallel
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Fig. 19 A construction in Shape Machine using a single shape rule in the schema x — > 7T'(y) in
a determinate way
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Fig. 20 A construction in Shape Machine using a single shape rule in the schemax — Y 7'(y) in
a determinate way

replacement of all the rule applications and the new design acquires a very different
feel and look. The shapes x in the LHS and y in the RHS of the rule are shown in
Fig. 20a; one of the 16 possible matches of the shape 7'(x) under a similarity transfor-
mation 7" and its corresponding replacement of the shape 7'(y) is given in Fig. 20b;
a final design after the execution of a series of rules is shown in Fig. 20c.

These replacement rules need not confine to well-structured or conventionalized
geometries as in the 4 x 4 alternating square grid discussed above. Shapes made
of arcs can be transformed to straight lines on the spot and the other way around
too if a shape rule that does so apply to them. Both translations are typical with the
schema rule x — y and/or x — > T'(y) if the rules are applied in a fractal way.
An example illustrating this translation between geometries is given in Fig. 21. In
this example, the part of an arc of a circle in the LHS of a rule is substituted by
a three-line bracketed shape. When this rule applies in the design generated in the
previous example, it generates a radically different lattice that keeps the topology of
the previous pattern. The shapes x in the LHS and y in the RHS of the rule are shown
in Fig. 21a; one of the 32 possible matches of the shape 7'(x) under a similarity
transformation 7 and its corresponding replacement of the shape 7'(y) is given in
Fig. 21b; a final design after the execution of all possible rule applications is shown
in Fig. 21c.
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Fig. 21 A construction in Shape Machine using a single shape rule in the schema x — Y_ 7'(y) in
a determinate way
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4 Applications

A very different discussion of rule replacements—and design actions—may be
considered when the focus is directed instead in the calculation of specific exam-
ples in design domains such as ornamental design, product design, CAD drafting,
architectural design, mechanical design, electrical design, and so forth. Few selected
examples are given below to showcase the versatility and expressiveness of the Shape
Machine in distinct design flows in an interactive mode as well as in a fully automated
mode suggesting the promise of a complete visual programming language and/or a
new paradigm in computing machinery.

4.1 Product Design: Celtic Knots

A product design application to generate a Celtic knot weave is presented in the
form of a shape grammar implemented in the Shape Machine. Celtic knots and
their spirals, step patterns, and key patterns are some of the most enduring stylized
graphical representations of knots in ornamental art (Bain 1975). A shape grammar
for Celtic knots has been proposed by Jowers and Earl (2011) and provides the
blueprint for its implementation in Shape Machine. The grammar is modeled in
three stages: the first stage fixes the central horizontal and vertical growth of the
pattern. The second takes care of the corner conditions retaining the motion of the
alternating loop throughout the pattern. The last stage modifies the intersections of
the loops to disentangle the knot and begin to show how spirals, step patterns, and
key patterns may be treated in the composition. The shape rules consist of shapes
composed of arcs and straight lines and apply to the working model (design) under
similarity transformations. Interestingly, the rules appear that work within the schema
x — x + t(x), for x a loop and x + #(x) a double loop, but the details are rendered
somewhat differently to account for the alternating motion of the loop.

The first stage of Celtic knot grammar captures the underlying central horizontal
and vertical growth of the pattern and consists of two shape rules that fix the hori-
zontal and vertical growth of the pattern. Clearly, the rules can be applied several
times to generate large cruciform configurations of weaves. Both shape rules have
been designed directly in Shape Machine using an initial shape of the two loops as a
construction shape, and they apply to the evolving design under similarity transfor-
mations. The open-loop shape x in the LHS and the open double-loop shape y in the
RHS of the rule are shown in Fig. 22a; one of the two possible matches of the shape
T'(x) under a similarity transformation 7" and its corresponding replacement of the
shape T'(y) is given in Fig. 22b; a final design after the execution of two possible rule
applications is shown in Fig. 22c.

The second stage of the Celtic knot grammar captures the field growth of the
pattern from its central horizontal and vertical axes to its boundary extents. Two
additional rules are introduced to capture the growth of the pattern along its minor
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Fig. 22 Celtic knot grammar: Configuration stage

horizontal and vertical axes and resolve the corner conditions keeping throughout
the alternating loops of the pattern. Note that the derivation of the pattern could
terminate at the will of the designer to give a rotational symmetry to the overall
design—in addition to the rotational symmetry of the inner pattern—or as above,
to complete the boundaries and produce a composite symmetry: a square symmetry
for the underlying configuration, a vertical symmetry for the loops and a rotational
symmetry for the joints. As before, the shape rules apply to shapes composed of arcs
and straight lines under similarity transformations. The two new rules are shown
in Fig. 23a, a matching of one of the two rules in the evolving design is shown in
Fig. 23b, and a design after the execution of four rules is shown in Fig. 23c.

The last stage of the Celtic knot grammar modifies the intersections of the loops
to produce shapes that begin to capture the spirals, step patterns, and key patterns
that are characteristic in the composition. Two additional rules are introduced here
to show this possible editing of the grammar and the disentanglement of the knot.
Both rules are symmetrical and reverse copies of each other each undoing what the
other is doing, i.e., the one untying the knot and the second tying it back reversing its
action. The lengths of the strings of the knots (the two pairs of parallel lines denoting
the ends of the two strands of the knot) at the LHS of the rules are specified by an
area selection action on the model itself to capture the area of intervention of the
designer. These subshapes, once captured in the design model, are literally carried
on the LHS of the rule space to be acted upon. The calculation, as before in this

(a) (b) (c)

Fig. 23 Celtic knot grammar: Fabric stage
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Fig. 24 A Celtic knot grammar: Modifying stage

series, is limited in matchings under similarity transformations. The two new rules
are shown in Fig. 24a, a matching of one of the two rules in the evolving design
is shown in Fig. 24b, and a design after the double execution of the untying rule is
shown in Fig. 24c.

4.2 Mechanical Design: The Gear Grammar

A mechanical design application to generate a gear is presented in the form of a
shape grammar implemented in the Shape Machine. The grammar consists of four
rules: The first shape rule draws an initial circle defining the outer radius of the gear.
The second shape rule offsets a 24-gon to define the inner radius of the gear. The
third shape rule subdivides the outer radius to specify twelve wedged parts. Finally,
the fourth shape rule specifies the design of a tooth at the outer boundary of the
wedge. The mechanical gear is generated by the serial application of shape rules 1-3
one at a time, and the parallel application of shape rule 4 to all twelve parts of the
design. Significantly, these rules are grouped and executed in the DrawScript mode
of Shape Machine, an automated setting that executes rules under specifications
given by the designer. The pictorial template allows for the visual specification of
the shape rules along with numerical specification for the number of loops and the
types of transformations under which the rules apply. When the visual program runs,
the rules are applied sequentially to: (1) draw an initial circle defining the outer
radius of the gear; (2) offset a second circle to define the inner radius of the gear;
(3) subdivide the outer radius to specify twelve parts; and (4) generate teeth at each
of the twelve parts. The fourth rule of the gear grammar is shown in the template of
the DrawScript mode of the Shape Machine in Fig. 25a. One of the matchings of the
fourth rule of the grammar that substitutes one of the twelve sectors of the circle with
the pentagonal polyline that outlines the tooth of the gear is shown in Fig. 25b. The
complete automated generation of the gear in Shape Machine is given in Fig. 25c.
Atany time during the design process, the designer can intervene in the DrawScript
mode to change a shape rule and create a variation of the design. Here, the last shape
rule that specifies the end of the gear is slightly edited to substitute its straight end
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Fig. 25 An automated specification of a mechanical gear in the DrawScript mode of the Shape
Machine

with an arc end to specify a second design variation. The editing of the profile takes
place in real time with the same visual modeling tools of the application. Once the
editing of the individual rules is done, the complete set of rules is selected and the
program reruns to produce the final design. The edited rule that changes the profile
of the tooth is shown in Fig. 26a. One of the twelve matches of the last rule of the
gear grammar is shown in Fig. 26b. The new generated variation of the gear is given
in Fig. 26c¢.

The variation on the design of the gear can be further expressed visually by adding
new rules, subtracting rules or modifying rules. Here, a structural variation is given
by editing the last rule of the template and the substitution of the pie-shaped part of
the circle with a polyline composed of seven lines to produce the profile of two teeth.
Note that these changes are all done visually, they do not require any programming
skills and provide a parametric design agency to the author or user of the grammar.
This edited rule is shown in Fig. 27a. One of the twelve matches of the last rule of
the gear grammar is shown in Fig. 27b. The new generated variation of the gear with
the double order of symmetry, a dihedral symmetry of order 24, is given in Fig. 27c.
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Fig. 26 Editing of the profile of the teeth of a gear in the DrawScript mode of the Shape Machine
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Fig. 27 Editing of the number of teeth of a gear in the DrawScript mode of the Shape Machine

4.3 Architectural Design: Portm-Ino

An architectural design application to generate the house plan of a unique private
residence is presented in the form of a shape grammar implemented in the Shape
Machine. The house, Entelechy I, designed by the architect John Portman back in the
sixties, holds a unique position in the oeuvre of his office because of the belief of the
architect that it encapsulated in some hybrid form the architectural elements of his
language that were popularized in his immensely successful commercial architecture
starting in the seventies and continued to this day (Portman and Barnett 1976). The
generation of the plan of the house is presented in the form of a shape grammar in
three stages that roughly correspond to three stages of design and the consolidation of
an abstract idea into an architectural plan (Ligler and Economou 2019). The grammar
is called Portm-Ino grammar to suggest how the house in Portman’s conception is
a systematic, residential configuration along the lines of Le Corbusier’s Dom-Ino
framework.

The first stage of the shape grammar, Framework, establishes a basic tartan grid
that enables the underlying division of the house in major and minor spaces and the
delineation of compositional enfilades to orchestrate the points of centrality within
the house. A variety of n x m grids may be generated in the style and all can be used
to be encoded with the layered tartan grid. One of the rules in this stage substituting
a module of the underlying grid to a stellated aggregation of five cells with a major
cell in the middle and four cells in the diagonals—the basic formation of the major—
minor space—is given in Fig. 28a. One of the nine matches of this rule is shown
in Fig. 28b. The new generated variation of the tartan grid plan with the nine major
spaces is given in Fig. 28c.

The second stage of the grammar, Configuration, establishes the major organiza-
tional scaffold of the house with its functional division in public and private zones,
entries, and its visual articulation in terms of the major and minor cells in terms in
the form of an underlying grid punctuated by circular spaces. One of the rules in this
stage substituting the boundary of a minor cell with a circular room—or in Portman’s
words, a hollow or exploded column—an architectural scaffold for lightwells, stair-
wells, closets, studies, libraries, bathrooms, and micro-galleries, is given in Fig. 29a.
One of the sixteen matches of this rule is shown in Fig. 29b. The new generated
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Fig. 28 Portm-Ino: Framework stage
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Fig. 29 Portm-Ino: Configuration stage

variation of the gridiron plan with its characteristic arrangement of an underlying
grid and circular spaces is given in Fig. 29c.

The third stage of the grammar, Architectonics, completes the generation of the
plan. This stage consists of shape rules that encode the conventions characterizing
the articulation of an architectural plan and includes rules for the delineation of
double-height living spaces (denoted by an x in the plans), walls, openings, staircases,
bridges, and so forth, to fully disambiguate the design in terms of room of public
rooms, living rooms, bedrooms, stairwells, closets, studies, libraries, half bathrooms,
and micro-galleries. One of the rules in this stage showing the substitution of a
hollowed column with a fully articulated staircase is shown in Fig. 30a. One of the
three possible matches of the rule is shown in Fig. 30b. The complete automated
production of a possible 3 x 3 gridiron plan in the language is shown in Fig. 30c.

5 Discussion

A brief survey of the expressive power of Shape Machine has been presented. The
work was presented in two parts: A brief presentation on the implementation of the
elusive shape computations that have been envisioned by the academic community
since the seventies—and still used as the testbed for the tasks a shape grammar
interpreter should be able to accomplish (Gips 1999; Stiny 2006). And a second
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Fig. 30 Portm-Ino: Architectonics stage

part on the exploration of applications in various design domains, namely product
modeling, mechanical and architectural design, to suggest possibilities for new design
workflows. Clearly, these applications were only given as samples of transforma-
tive possibilities rather than as actual design applications. A more generous plateau
of possible application domains including, and not limited to, origami structures,
archaeology reconstructions, protein folding, virus recognition and more, is currently
under development.

The future of the Shape Machine appears bright indeed: It has succeeded to provide
a coherent framework to do the elusive computations that no other technology has
been able to do so far; and it has managed to do so convincingly in run time promising
the possibility of a real application that can indeed revolutionize design thinking and
practice. The future steps are already within reach: three-dimensional geometry; b-rep
representation; solid modeling; larger datasets of geometry primitives; implemen-
tation of general transformations for both identity and replacement rules. Some of
these questions pertain to practical matters deploying the existing algorithms behind
the Shape Machine into new tasks, scales, and dimensions. Others point to the solu-
tion of still new theoretical aspects of rule recognition and replacement for all sort
of shapes under different transformations.

Current development in Shape Machine aims at the completion of shape rule
recognition and implementation algorithms for lines and arcs under the complete
Erlangen program, that is, under affine and projective transformations too. The unifi-
cation is very promising: Existing modules of the Shape Machine, not presented
here, suggest intuitive spatial searches in the Napkin Draw mode, whereas designers
are able to query shapes under compress, shear, and perspectivity transformations
inquiring and performing on shape type definitions according to essential character-
istics defined on spot (Mitchell 1992). Queries including quick sketches of polygons,
and/or arrangements of lines and arcs rather than precise constructions as outlined
in this paper are within reach and the line and arc shapes that are used as queries or
targets are expanded to include ellipses and conics at large. The work so far promises
to completely revolutionize the current work on the Shape Machine and its rule
implementations in the Euclidean space because shape computations under affine
and projective transformations produce shapes that do not share any more the same
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conventions with the ones that started the computation; after all, a square is a square
no matter if it is rotated, reflected, diminished, or enlarged. But drawing a quadri-
lateral in the Identity mode (seeing) and having the Shape Machine finding, say,
squares or thombi under affine or projective transformations, respectively, requires
some more reworking on behalf of the designer who works more with language
(symbolic descriptions) rather than shapes.

But more than those fronts, the work on the Shape Machine front so far has opened
two completely new trajectories not fully appreciated in the setting of the inquiry. The
one is the work on visual scripting and the DrawScript mode. The ability to learn to
script through drawing, the interface with loops, what-ifs, control structures and all,
suggest an unprecedented environment for teaching computing and interfacing with
computers. Sorting operations are important algorithmic constructs in programming,
and they can be done in a straightforward manner in Shape Machine: Instead of
writing code to sort binary digits, Shape Machine allows users to visually program
this logic by considering the symbols 0 and 1 as shapes drawn in the shape rules:
10 — 01 or 01 — 10. The first rule when applied multiple times over a string of
shapes made up of 0 s and 1 produces the so-called big-endian order consisting of
all O s to the left and 1 s to the right. The second rule when applied multiple times
over a string of shapes made up of O s and 1 s produces the so-called little-endian
order consisting of all 1 s to the left and all O s to the right. But more than that, these
shape rules can be used with additional shape rules to demonstrate that numerical
calculation can be done visually! Figure 31 shows an example of such a visual
calculation: In this example, a single-digit adder is implemented using 29 shape
rules accomplishing three different main operations: (a) translating the numerals (1,
2,3, ...,9) to numbers of 1 s (1, 11, 111, ..., 111111111); (b) moving all the 1 s
together; and (c) translating numbers of 1 s (1, 11, 111, ..., 111111111) to numbers
(1,2,3,...,9, 10). The concept of addition, moving all the 1 s together, is commonly
used in a digital environment. Shape Machine can process this operation visually
with the simple shape rule discussed above in the visual sorting to achieve an adder.
Two of the 29 rules are shown in Fig. 31a. The initial shape denoting an addition of
two numbers (7 + 9) is shown in Fig. 31b. Two of the several visual substitutions
of the operation and the final result are shown in Fig. 31c. Not that in all these
computations, the symbol 7 is treated a shape consisting of two lines, the symbol +
by two lines and the symbol 9 by a circle and a line.

"7*_ 1444444 -7':
: 74+0 Y01144444111
‘+O*‘O111111111 :
e
(a) (b) (c)

Fig. 31 A visual calculator: Toward a new Turing Machine
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This example is a demonstration that implementing a computer with a shape
grammar is very possible in theory. And with that, a much deeper and farfetched
question: Can we implement a visual computer and how different would it be?
Wittgenstein came close to an arithmetic of shape in his remarks to the Foundation of
Mathematics but in the end he discarded the possibility as an idle speculation (1956).
We strongly believe that the insight this technology can bring will be invaluable to
the things we do, but even more, to things we have not dreamed of yet.
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