
XcalableMP Programming Model
and Language

Hitoshi Murai, Masahiro Nakao, and Mitsuhisa Sato

Abstract XcalableMP (XMP) is a directive-based language extension of Fortran
and C for distributed-memory parallel computers, and can be classified as a parti-
tioned global address space (PGAS) language. One of the remarkable characteristics
of XMP is that it supports both global-view and local-view parallel programming.
This chapter describes the programming model and language specification of XMP.

1 Introduction

Distributed-memory systems are generally used for large-scale simulations. To pro-
gram such systems, Message Passing Interface (MPI) is widely adopted. However,
programming with MPI is difficult because programmers must describe inter-
process communicationswith consideration of the execution flow of their programs,
which might cause deadlocks or wrong results.

To address this issue, a parallel language namedHigh Performance Fortran (HPF)
was proposed in 1991. With HPF, programmers can execute their serial programs in
parallel by inserting minimal directives into them. If the programmers specify data
distribution with HPF directives, the compilers do all other tasks for parallelization
(e.g. communication generation and work distribution). However, HPF was not
widely accepted eventually because the compilers’ automatic processing prevents
the programmers from performance tuning, and the performance depends heavily
on the environment (e.g. compiler and hardware)

Note For more details, please refer: Ken Kennedy, Charles Koelbel and Hans Zima:
The Rise and Fall of High Performance Fortran: An Historical Object Lesson, Proc.
3rd ACM SIGPLAN History of Programming Languages Conf. (HOPL-III), pp. 7-
1–7-22 (2007).

H. Murai (�) · M. Nakao · M. Sato
RIKEN Center for Computational Science, Kobe, Hyogo, Japan
e-mail: h-murai@riken.jp; masahiro.nakao@riken.jp; msato@riken.jp

© The Author(s) 2021
M. Sato (ed.), XcalableMP PGAS Programming Language,
https://doi.org/10.1007/978-981-15-7683-6_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7683-6_1&domain=pdf
mailto:h-murai@riken.jp
mailto:masahiro.nakao@riken.jp
mailto:msato@riken.jp
https://doi.org/10.1007/978-981-15-7683-6_1

2 H. Murai et al.

In such circumstance, to develop a new parallel programmingmodel that enables
easy parallelization of existing serial programs and design a new language based on
it, “the XMP Specification Working Group” was established in 2008. This group
utilized the lessons from the experience of HPF to define a new parallel language
XcalableMP (XMP). The group was reorganized to one of the working groups of PC
Cluster Consortium in 2011.

It is learned from the lessons of HPF that more automatic processing of compilers
increases the gap between a program and its execution, and, as a result, decreases the
usability of the language. In XMP, the programmers specify explicitly the details of
parallel programs on the basis of compiler directives to make their execution easy to
understand. In particular, they can specify explicitly communication, synchroniza-
tion, data mapping, and work mapping to facilitate performance tuning. In addition,
XMP supports features for one-sided communication on each process, which was
not available in HPF. This feature might enable programmers to implement parallel
algorithms more easily.

In this chapter, an overview of the programming model and language specifica-
tion of XMP is shown. You can find the latest and complete language specification
of XMP in: XcalableMP Specification Working Group, XcalableMP Specification
Version 1.4, http://xcalablemp.org/download/spec/xmp-spec-1.4.pdf (2018).

1.1 Target Hardware

The target of XcalableMP is distributed-memory multicomputers (Fig. 1). Each
compute node, which may contain several cores, has its own local memory (shared
by the cores, if any), and is connected with the others via an interconnection
network. Each node can access its local memory directly and remote memory (the
memory of another node) indirectly (i.e. via inter-node communication). However,

Fig. 1 Target hardware of XMP

http://xcalablemp.org/download/spec/xmp-spec-1.4.pdf

XcalableMP Programming Model and Language 3

it is assumed that accessing remote memory may be much slower than accessing
local memory.

1.2 Execution Model

The execution entities in an XMP program are referred to as XMP nodes or, more
simply, nodes, which has its own memory and can communicate with each other.

An XcalableMP program execution is based on the Single Program Multiple
Data (SPMD) model, where each node starts execution from the same main routine,
and continues to execute the same code independently (i.e. asynchronously) until it
encounters an XcalableMP construct (Fig. 2).

A set of nodes that executes a procedure, statement, loop, a block, etc. is referred
to as its executing node set, and is determined by the innermost task, loop, or
array directive surrounding it dynamically, or at runtime. The current executing
node set is an executing node set of the current context, which is managed by the
XcalableMP runtime system on each node.

The current executing node set at the beginning of the program execution, or
entire node set, is a node set that contains all the available nodes, which can be
specified in an implementation-defined way (e.g. through a command-line option).

When a node encounters at runtime either a loop, array, or task construct,
and is contained by the node set specified (explicitly or implicitly) by the on clause

Fig. 2 Execution model of
XMP

4 H. Murai et al.

of the directive, it updates the current executing node set with the specified one
and executes the body of the construct, after which it resumes the last executing
node set and proceeds to execute the subsequent statements.

In particular, when a node in the current executing node set encounters a loop
or an array construct, it executes the loop or the array assignment in parallel with
the other nodes, so that each iteration of the loop or element of the assignment is
independently executed by the node in which the specified data element resides.

When a node encounters a synchronization or a communication directive,
synchronization or communication occurs between it and the other nodes. That is,
such global constructs are performed collectively by the current executing nodes.
Note that neither synchronization nor communication occurs unless these constructs
are specified.

1.3 Data Model

There are two classes of data in XcalableMP: global data and local data. Data
declared in an XcalableMP program are local by default.

Global data are distributed onto a node set by the align directive (see
Sect. 2.4). Each fragment of distributed global data is allocated in the local memory
of a node in the node set.

Local data comprises all data that are not global. They are replicated within the
local memory of each of the executing nodes.

A node can access directly only local data and sections of global data that reside
in its local memory. To access data in remote memory, explicit communication
must be specified in such ways as global communication constructs and coarray
assignments (Fig. 3).

Fig. 3 Data model of XMP

XcalableMP Programming Model and Language 5

1.4 Programming Models

1.4.1 Partitioned Global Address Space

XMP can be classified as a partitioned global address space (PGAS) language, such
as Co-Array Fortran [1], Unified Parallel C [2], and Chapel [3].

In such PGAS languages, multiple executing entities (i.e. threads, processes, or
nodes in XMP) share a part of their address space, which is, however, partitioned
and a portion of which is local to each executing entity.

The two programming models, global-view and local-view, that XMP supports
to achieve high performance and productivity on PGAS are explained below.

1.4.2 Global-View Programming Model

The global-view programming model is useful when, starting from a serial version
of a program, the programmer parallelizes it in a data-parallel style by adding
directives with minimum modification. Based on this model, the programmer
specifies the distribution of data among nodes using the data distribution directives.
The loop construct assigns each iteration of a loop to the node at which the
computed data is located. The global-view communication directives are used to
synchronize nodes, maintain the consistency of shadow areas of distributed data,
and move sections of distributed data globally. Note that the programmer must
specify explicitly communication to make all data references in their program local
using appropriate directives.

In many cases, the XcalableMP program following the global-view programming
model is based on a serial program, and it can produce the same result, regardless
of the number of nodes (Fig. 4).

There are three groups of directives for this model:

• Data mapping, which specifies the data distribution and mapping to nodes
• Work mapping (parallelization), which specifies the work distribution and

mapping to nodes.
• Communication and synchronization, which specify how a node communicates

and synchronizes with the other nodes.

Because these directives are ignored as a comment by the compilers of base
languages (Fortran and C), an XcalableMP program can usually be compiled by
them to ensure that they run properly.

1.4.3 Local-View Programming Model

The local-view programming model is suitable for programs that implement an
algorithm and a remote data reference that are to be executed by each node (Fig. 5).

6 H. Murai et al.

Fig. 4 Parallelization based on the global-view programming model

Fig. 5 Local-view programming model

For this model, some language extensions and directives are provided. The
coarray notation, which is imported from Fortran 2008, is one such extension,
and can be used to explicitly specify data on which node is to be accessed. For
example, the expression of A(i)[N] in XcalableMP Fortran is used to access an

XcalableMP Programming Model and Language 7

array element of A(i) located on the node N. If the access is a reference, then
a one-sided communication to read the value from the remote memory (i.e. the
get operation) is issued by the executing node. If the access is a definition, then
a one-sided communication to write the value to the remote memory (i.e. the put
operation) is issued by the executing node.

1.4.4 Mixture of Global View and Local View

In the global-view model, nodes are used to distribute data and works. In the local-
view model, nodes are used to address remote data in the coarray notation. In
application programs, the programmers should choose an appropriate data model
according to the characteristics of their program. Figure 6 illustrates the global view
and the local view of data.

Data can have both a global view and a local view, and can be accessed in both of
the views. XcalableMP provides a directive to give the local name (alias) to global
data declared in the global-view programming model to enable them to also be
accessed in the local-view programming model. This feature is useful to optimize
a certain part of a program by using explicit remote data access in the local-view
programming model.

1.5 Base Languages

The XcalableMP language specification is defined on the basis of Fortran and C as
the base languages. More specifically, the base language of XcalableMP Fortran is
Fortran 90 or later, and that of XcalableMP C is ISO C90 (ANSI C89) or later with
some extensions (see below).

1.5.1 Array Section in XcalableMP C

In XcalableMP C, the base language C is extended so that a part of an array, that is,
an array section or subarray, can be put in an array assignment statement, which
is described in Sect. 1.5.2, and some XcalableMP constructs. An array section is
built from a subset of the elements of an array, which is specified by a sequence of
square-bracketed integer expressions or triplets, which are in the form of:

[base] : [length] [: step]
When step is positive, the triplet specifies a set of subscripts that is a regularly

spaced integer sequence of length length beginning with base and proceeding in
increments of step up to the largest. The same applies to negative step too.

When base is omitted, it is assumed to be 0.When length is omitted, it is assumed
to be the number of remainder elements of the dimension of the array. When step is
omitted, it is assumed to be 1.

8 H. Murai et al.

Fig. 6 Global view and local view

Assuming that an array A is declared by the following statement,
int A[100];

some array sections can be specified as follows:

A[10:10] array section of 10 elements from A[10] to A[19]
A[10:] array section of 90 elements from A[10] to A[99]
A[:10] array section of 10 elements from A[0] to A[9]
A[10:5:2] array section of 5 elements from A[10] to A[18] by step 2
A[:] array section of the whole of A

XcalableMP Programming Model and Language 9

1.5.2 Array Assignment Statement in XcalableMP C

In XcalableMP C, the base language C is also extended so that it supports array
assignment statements just as Fortran does.

With such statement, the value of each element of the result of the right-hand side
expression is assigned to the corresponding element of the array section on the left-
hand side. When an operator or an elemental function is applied to array sections in
the right-hand side expression, it is evaluated to an array section that has the same
shape as that of the operands or arguments, and each element of which is the result
of the operator or function applied to the corresponding element of the operands or
arguments. A scalar object is assumed to be an array section that has the same shape
as that of the other array section(s) in the expression or on the left-hand side, and
where each element has its value.

Note that an array assignment is a statement, and therefore cannot appear as an
expression in any other statements.

In the example below, an array assignment statement in the fourth line copies the
five elements from B[0] to B[4] into the elements from A[5] to A[9].

XcalableMP C
int A[10];
int B[5];

...
A[5:5] = B[0:5];

1.6 Interoperability

Most of the existing parallel applications are written with MPI. It is not realistic to
port them over to XMP because each of them consists of millions of lines.

Because XMP is interoperable with MPI, users can develop an XMP application
by modifying a part of an existing one instead of rewriting it totally. Besides, when
developing a parallel application from scratch, it is possible to use XMP to write a
complicated part of, for example, domain decompositionwhile they use MPI, which
could be faster than XMP, to write a hot-spot part that need to be tuned carefully. In
addition, XMP is interoperable with OpenMP and Python (see Chap. 5).

It might be difficult to develop an application with just one programming
language or framework since it generally has its own strong and weak points. Thus,
an XMP program is interoperable with those in other languages to provide both high
productivity and performance.

10 H. Murai et al.

2 Data Mapping

2.1 nodes Directive

The nodes directive declares a node array, which is an array-like arrangement of
nodes in a node set. A node array can be multi-dimensional.

XcalableMP C
#pragma xmp nodes p[4]

XcalableMP Fortran
!$xmp nodes p(4)

The nodes directive declares a one-dimensionalnode array p that includes four
nodes. In XMP/C, it is zero-based and consists of p[0], p[1], p[2], and p[3].
In XMP/Fortran, it is one-based and consists of p(1), p(2), p(3), and p(4).

XcalableMP C
#pragma xmp nodes p[2][3]

XcalableMP Fortran
!$xmp nodes p(3,2)

The nodes directive declares two-dimensional node array p that includes six
nodes. In XMP/C, it consists of p[0][0], p[0][1], p[0][2], p[1][0],
p[1][1], and p[1][2]. In XMP/Fortran, it consists of p(1,1), p(2,1),
p(3,1), p(1,2), p(2,2), and p(3,2).

Note The ordering of the elements in a node array follows that of a normal array
in the base language, C or Fortran.

XcalableMP C
#pragma xmp nodes p[*]

XcalableMP Fortran
!$xmp nodes p(*)

An asterisk can be specified as the size in the nodes directive to declare a
dynamic node array. In the above code, one-dimensional dynamic node array p
is declared with an asterisk as the size. The actual size of a dynamic node array is
determined at runtime to fit the size of the current executing node set. For example,
when the programmer runs the sample code with three nodes, the node array p
includes three nodes.

The programmer can also declare multi-dimensional dynamic node arrays with
an asterisk.

XcalableMP C
#pragma xmp nodes p[*][3]

XcalableMP Programming Model and Language 11

XcalableMP Fortran
!$xmp nodes p(3,*)

When the programmer runs the sample code with 12 nodes, the node array p
has a shape of 4 × 3, in C, or 3 × 4, in Fortran.

Note The programmer can put an asterisk only in the last dimension, in XMP/For-
tran, or the first dimension, in XMP/C, of the node array.

Hint The dynamic node array may interfere with compiler optimizations. In
general, programs with static ones achieve better performance.

The programmer can declare a node subarray derived from an existing node array.
Node subarrays can be used, for example, to optimize inter-node communication by
reducing the number of nodes participating in the communication.

XcalableMP C
#pragma xmp nodes p[16]
#pragma xmp nodes q[8]=p[0:8]
#pragma xmp nodes r[4][2]=p[8:8]

XcalableMP Fortran
!$xmp nodes p(16)
!$xmp nodes q(8)=p(1:8)
!$xmp nodes r(2,4)=p(9:16)

In line 1, a node array p including 16 nodes is declared. In line 2, a node
subarray q corresponding to the first half of p is declared. In line 3, a two-
dimensional node subarray r corresponding to the latter half of p is declared.

The programmer can declare an n-dimensional node subarray derived from an
m-dimensional one (Fig. 7).

XcalableMP C
#pragma xmp nodes p[4][2]
#pragma xmp nodes row[4]=p[:][*]
#pragma xmp nodes col[2]=p[*][:]

XcalableMP Fortran
!$xmp nodes p(2,4)
!$xmp nodes row(4)=p(*,:)
!$xmp nodes col(2)=p(:,*)

In line 1, a two-dimensional node array p including 4 × 2 nodes is declared. In
line 2, a node subarray row derived from a single row of p is declared. In line 3, a
node subarray col derived from a single column of p is declared.

12 H. Murai et al.

Fig. 7 Node subarrays

A colon represents a triplet which indicates all possible indices in the dimension.
An asterisk indicates the index of the current executing node in the dimension.
For example, col[2] corresponds to p[0][0:2] on nodes p[0][0] and
p[0][1], and to p[1][0:2] on nodes p[1][0] and p[1][1] in XMP/C.
Similarly, col(2) corresponds to p(1:2,1) on nodes p(1,1) and p(2,1),
and to p(1:2,2) on nodes p(1,2) p(2,2) in XMP/Fortran.

In XMP/C, row[0] corresponds to p[0][0] and p[0][1] on p[:][0]
and p[:][1], respectively; col[0] corresponds to p[0][0], p[1][0],
p[2][0], and p[3][0] on p[0][:], p[1][:], p[2][:], p[3][:],
respectively. In XMP/Fortran, row(1) corresponds to p(1,1) and p(2,1) on
p(1,:) and p(2,:), respectively; col(1) corresponds to p(1,1), p(1,2),
p(1,3), and p(1,4) on p(:,1), p(:,2), p(:,3), p(:,4), respectively.

Note The semantics of an asterisk in a node reference is different from that in a
declaration.

XcalableMP Programming Model and Language 13

2.2 template Directive

The template directive declares a template, which is a virtual array that is used
as a “template” of parallelization in the programs and to be distributed onto a node
array.

XcalableMP C
#pragma xmp template t[10]

XcalableMP Fortran
!$xmp template t(10)

This template directive declares a one-dimensional template t having ten
elements. Templates are indexed in the similar manner to arrays in the base
languages. For the above examples, the template t is indexed from zero to nine (i.e.
t[0] · · · t[9]), in XMP/C, or one to ten (i.e. t(1) · · · t(10)), in XMP/Fortran.

Hint In many cases, a template should be declared to have the same shape as your
target array.

XcalableMP C
#pragma xmp template t[10][20]

XcalableMP Fortran
!$xmp template t(20,10)

The template directive declares a two-dimensional template t that has 10 ×
20 elements. In XMP/C, t is indexed from t[0][0] to t[9][19], and, in XMP/Fortran,
from t(1,1) to t(20,10).

XcalableMP C
#pragma xmp template t[:]

XcalableMP Fortran
!$xmp template t(:)

In the above examples, a colon instead of an integer is specified as the size to
declare a one-dimensional dynamic template t. The colon indicates that the size
of the template is not fixed and to be fixed at runtime by the template_fix
construct (Sect. 2.6).

2.3 distribute Directive

The distribute directive specifies a distribution of the target template. Either of
block, cyclic, block-cyclic, or gblock (i.e. uneven block) can be specified to distribute
a dimension of a template.

14 H. Murai et al.

2.3.1 Block Distribution
XcalableMP C

#pragma xmp distribute t[block] onto p

XcalableMP Fortran
!$xmp distribute t(block) onto p

The target template t is divided into contiguous blocks and distributed among
nodes in the node array p (Fig. 8). Let’s suppose that the size of the template is
N and the number of nodes is K . If N is divisible by K , a block of size N/K is
assigned to each node; otherwise, a block of size ceil(N/K) is assigned to each of
N/ceil(N/K) nodes, a block of sizemod(N,K) to one node, and no block to (K−
N/ceil(N/K)−1) nodes. The block distribution is useful for regular computations
such as a stencil one.

Note The function ceil(x) returns a minimum integer value greater than or equal to
x, and mod(x, y) returns x modulo y.

XcalableMP C
#pragma xmp nodes p[3]
#pragma xmp template t[22]
#pragma xmp distribute t[block] onto p

XcalableMP Fortran
!$xmp nodes p(3)
!$xmp template t(22)
!$xmp distribute t(block) onto p

Since ceil(22/3) is 8, eight elements are allocated on each of p[0] and p[1],
and the remaining six elements are allocated on p[2].

XMP/C

XMP/Fortran

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

p[0], p(1)

p[1], p(2)

p[2], p(3)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 8 Block distribution

XcalableMP Programming Model and Language 15

XMP/C

XMP/Fortran

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

p[0], p(1)

p[1], p(2)

p[2], p(3)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 9 Cyclic distribution

2.3.2 Cyclic Distribution

XcalableMP C
#pragma xmp distribute t[cyclic] onto p

XcalableMP Fortran
!$xmp distribute t(cyclic) onto p

The target template t is divided into chunks of size one and distributed among
nodes in the node array p in a round-robin manner (Fig. 9). The cyclic distribution
is useful for the case where the load on each element of the template is not balanced.

XcalableMP C
#pragma xmp nodes p[3]
#pragma xmp template t[22]
#pragma xmp distribute t[cyclic] onto p

XcalableMP Fortran
!$xmp nodes p(3)
!$xmp template t(22)
!$xmp distribute t(cyclic) onto p

2.3.3 Block-Cyclic Distribution

XcalableMP C
#pragma xmp distribute t[cyclic(w)] onto p

XcalableMP Fortran
!$xmp distribute t(cyclic(w)) onto p

The target template t is divided into chunks of size w and distributed among
nodes in the node array p in a round-robin manner (Fig. 10). The block-cyclic
distribution is useful for the case where the load on each element of the template is
not balanced but the locality of the elements is required.

16 H. Murai et al.

XMP/C

XMP/Fortran

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

p[0], p(1)

p[1], p(2)

p[2], p(3)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 10 Block-cyclic distribution

XcalableMP C
#pragma xmp nodes p[3]
#pragma xmp template t[22]
#pragma xmp distribute t[cyclic(3)] onto p

XcalableMP Fortran
!$xmp nodes p(3)
!$xmp template t(22)
!$xmp distribute t(cyclic(3)) onto p

2.3.4 Gblock Distribution
XcalableMP C

#pragma xmp distribute t[gblock(W)] onto p

XcalableMP Fortran
!$xmp distribute t(gblock(W)) onto p

The target template t is divided into contiguous blocks of size W[0], W[1], · · · ,
in XMP/C, or W(1), W(2), · · · , in XMP/Fortran, and distributed among nodes in
the node array p (Fig. 11). The array W is called a mapping array. The programmer
can specify irregular (uneven) block distribution with the gblock format.

XcalableMP C
#pragma xmp nodes p[3]
#pragma xmp template t[22]
int W[3] = {6, 11, 5};
#pragma xmp distribute t[gblock(W)] onto p

XcalableMP Fortran
!$xmp nodes p(3)
!$xmp template t(22)
integer, parameter :: W(3) = (/6,11,5/)
!$xmp distribute t(gblock(W)) onto p

XcalableMP Programming Model and Language 17

XMP/C

XMP/Fortran

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

p[0], p(1)

p[1], p(2)

p[2], p(3)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fig. 11 Gblock distribution

The programmer can specify an asterisk instead of a mapping array in the
gblock distribution to defer fixing the actual distribution. In such a case, the actual
distribution will be fixed at runtime by using the template_fix construct.

2.3.5 Distribution of Multi-Dimensional Templates

The programmer can distribute a multi-dimensional template onto a node array.
XcalableMP C

#pragma xmp nodes p[2][2]
#pragma xmp template t[10][10]
#pragma xmp distribute t[block][block] onto p

XcalableMP Fortran
!$xmp nodes p(2,2)
!$xmp template t(10,10)
!$xmp distribute t(block,block) onto p

The distribute directive declares the distribution of a two-dimensional
template t onto a two-dimensional node array p. Each dimension of the template
is divided in a block manner and each of the rectangular region is assigned to a node
(Fig. 12).

The programmer can specify a different distribution format in each of the
dimension of a template (Fig. 13).

XcalableMP C
#pragma xmp nodes p[2][2]
#pragma xmp template t[10][10]
#pragma xmp distribute t[block][cyclic] onto p

XcalableMP Fortran
!$xmp nodes p(2,2)
!$xmp template t(10,10)
!$xmp distribute t(cyclic,block) onto p

18 H. Murai et al.

XMP/C XMP/Fortran

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

p[0][0], p(1,1)

p[0][1], p(2,1)

p[1][0], p(1,2)

p[1][1], p(2,2)

Fig. 12 Example of multi-dimensional distribution (1)

XMP/C XMP/Fortran

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8

p[0][0], p(1,1)

p[0][1], p(2,1)

p[1][0], p(1,2)

p[1][1], p(2,2)

Fig. 13 Example of multi-dimensional distribution (2)

XMP/C XMP/Fortran

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

p[0], p(1)

p[1], p(2)

p[2], p(3)

p[3], p(4)

Fig. 14 Example of multi-dimensional distribution (3)

When an asterisk is specified in a distribute directive as a distribution
format, the target dimension is “non-distributed.” In the following example, the
first dimension is distributed in a block manner and the second dimension is non-
distributed (Fig. 14).

XcalableMP Programming Model and Language 19

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[10][10]
#pragma xmp distribute t[block][*] onto p

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(10,10)
!$xmp distribute t(*,block) onto p

2.4 align Directive

The align directive specifies that an array is to be mapped in the same way as a
specified template. In other words, an align directive defines the correspondence
of elements between an array and a template, and each of the array element is
allocated on the node where the corresponding template element is assigned.

p[0], p(1)

a[i] / a(i) t[i] / t(i)

p[1], p(2)

p[2], p(3)

p[3], p(4)

Fig. 15 Example of array alignment (1)

p[0][0], p(1,1)

p[0][1], p(2,1)

p[1][0], p(1,2)

p[1][1], p(2,2)

a[i][j] / a(j,i) t[i][j] / t(j,i)

Fig. 16 Example of array alignment (2)

20 H. Murai et al.

a[i][*] / a(*,i) t[i] / t(i)

p[0], p(1)

p[1], p(2)

p[2], p(3)

p[3], p(4)

Fig. 17 Example of array alignment (3)

p[0], p(1)

p[1], p(2)

p[2], p(3)

p[3], p(4)

a[i] / a(i) t[i][*] / t(*,i)

Fig. 18 Example of array alignment (4)

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[8]
#pragma xmp distribute t[block] onto p
int a[8];

5 #pragma xmp align a[i] with t[i]

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(8)
!$xmp distribute t(block) onto p
integer :: a(8)

5 !$xmp align a(i) with t(i)

The array a is decomposed and laid out so that each element a(i) is colocated
with the corresponding template element t(i) (Fig. 15).

The align directive can also be used for multi-dimensional arrays (Fig. 16).
XcalableMP C

#pragma xmp nodes p[2][2]
#pragma xmp template t[8][8]
#pragma xmp distribute t[block][block] onto p

XcalableMP Programming Model and Language 21

int a[8][8];
5 #pragma xmp align a[i][j] with t[i][j]

XcalableMP Fortran
!$xmp nodes p(2,2)
!$xmp template t(8,8)
!$xmp distribute t(block,block) onto p
integer :: a(8,8)

5 !$xmp align a(j,i) with t(j,i)

The programmer can align an n-dimensional array with an m-dimensional
template for n > m (Fig. 17).

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[8]
#pragma xmp distribute t[block] onto p
int a[8][8];

5 #pragma xmp align a[i][*] with t[i]

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(8)
!$xmp distribute t(block) onto p
integer :: a(8,8)

5 !$xmp align a(*,i) with t(i)

When an asterisk is specified as a subscript in a dimension of the target array
in the align directive, the dimension is “collapsed” (i.e. not distributed). In the
sample program above, the first dimension of the array a is distributed onto the
node array p while the second dimension is collapsed.

In XMP/C, a[0:2][:] will be allocated on p[0] while, in XMP/Fortran,
a(:,1:2) will be allocated on p(1).

The programmer also can align an n-dimensional array with an m-dimensional
template for n < m (Fig. 18).

XcalableMP C
#pragma xmp nodes p[2][2]
#pragma xmp template t[8][8]
#pragma xmp distribute t[block][block] onto p
int a[8];

5 #pragma xmp align a[i] with t[i][*]

XcalableMP Fortran
!$xmp nodes p(2,2)
!$xmp template t(8,8)
!$xmp distribute t(block,block) onto p
integer :: a(8)

5 !$xmp align a(i) with t(*,i)

22 H. Murai et al.

When an asterisk is specified as a subscript in a dimension of the target template
in the align directive, the array will be “replicated” along the axis of the
dimension.

In XMP/C, a[0:4] will be replicated and allocated on p[0][0] and p[0][1]
while, in XMP/Fortran, a(1:4) will be allocated on p(1,1) and p(2,1).

2.5 Dynamic Allocation of Distributed Array

This section explains how distributed (i.e. global) arrays are allocated at runtime.
The basic procedure is common in XMP/C and XMP/Fortran with a few specific
difference.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[N]
#pragma xmp distribute t[block] onto p
float *a;

5 #pragma xmp align a[i] with t[i]
:

a = xmp_malloc(xmp_desc_of(a), N);

In XMP/C, first, declare a pointer of the type of the target array; second, align it
as if it were an array; finally, allocate memory for it with the xmp_malloc() func-
tion. xmp_desc_of() is an intrinsic/built-in function that returns the descriptor of
the XMP object (i.e. nodes, templates, or global arrays) specified by the argument.

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(N)
!$xmp distribute t(block) onto p
real, allocatable :: a(:)

5 !$xmp align a(i) with t(i)

allocate(a(N))

In XMP/Fortran, first, declare an allocatable array; second, align it; finally,
allocate memory for it with the allocate statement.

For multi-dimensional arrays, the procedure is the same as that for one-
dimensional ones, as follows:

XcalableMP C
#pragma xmp nodes p[2][2]
#pragma xmp template t[N1][N2]
#pragma xmp distribute t[block][block] onto p
float (*a)[N2];

5 #pragma xmp align a[i][j] with t[i][j]

XcalableMP Programming Model and Language 23

:
a = (float (*)[N2])xmp_malloc(xmp_desc_of(a), N1, N2);

XcalableMP Fortran
!$xmp nodes p(2,2)
!$xmp template t(N2,N1)
!$xmp distribute t(block,block) onto p
real, allocatable :: a(:,:)

5 !$xmp align a(j,i) with t(j,i)
:

allocate(a(N2,N1))

Note If the size of the template is not fixed until runtime, the programmer has to
fix it at runtime with the template_fix construct.

2.6 template_fix Construct

The template_fix construct fixes the shape and/or the distribution of an unfixed
template.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[:]
#pragma xmp distribute t[block] onto p
double *a;

5 #pragma xmp align a[i] with t[i]

int n = 100;
#pragma xmp template_fix t[n]
a = xmp_malloc(xmp_desc_of(a), n);

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(:)
!$xmp distribute t(block) onto p
real, allocatable :: a(:)

5 integer :: n
!$xmp align a(i) with t(i)

n = 100
!$xmp template_fix t(n)

10 allocate(a(n))

24 H. Murai et al.

In the above sample code, first, a template t whose size is unfixed (“:”) is
declared; second, a pointer a, in XMP/C, or an allocatable array a, in XMP/Fortran,
is aligned with the template; third, the size of the template is fixed with a
template_fix construct; finally, the pointer or the allocatable array is allocated
with the xmp_malloc() built-in function in XMP/C or the allocate statement
in XMP/Fortran, respectively.

Note The template_fix constructs can be applied to a template only once.

This construct can also be used to fix a mapping array of a template that is
distributed in “gblock(*)” at declaration.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[:]
#pragma xmp distribute t[gblock(*)] onto p
double *a;

5 #pragma xmp align a[i] with t[i]

int n = 100;
int m[] = {40,30,20,10};

10 #pragma xmp template_fix[gblock(m)] t[n]
a = xmp_malloc(xmp_desc_of(a), n);

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(:)
!$xmp distribute t(gblock) onto p
real, allocatable :: a(:)

5 integer :: n, m(4)
!$xmp align a(i) with t(i)

n = 100
m(:) = (/40,30,20,10/)

10 !$xmp template_fix(gblock(m)) t(n)
allocate(a(n))

XcalableMP Programming Model and Language 25

3 Work Mapping

3.1 task and tasks Construct

The task construct defines a task that is executed by a specified node set. The
tasks construct asserts that the task constructs it surrounds can be executed in
parallel.

3.1.1 task Construct

When a node encounters a task construct at runtime, it executes the associated block
(called a task) if it is included by the node set specified by the on clause; otherwise,
it skips the execution of the block (Fig. 19).

XcalableMP C
#include <stdio.h>
#pragma xmp nodes p[4]

int main(){
5 int num = xmpc_node_num();
#pragma xmp task on p[1:3]
{

printf("%d: Hello\n", num);
}

10

return 0;
}

XcalableMP Fortran
program main
!$xmp nodes p(4)

integer :: num

5 num = xmp_node_num()
!$xmp task on p(2:4)

write(*,*) num, ": Hello"
!$xmp end task

10 end program main

In the above example, nodes p[1], p[2], and p[3] invoke the printf()
function, and p[1] outputs “1: Hello” in XMP/C; p(2), p(3), and p(4) execute
the write statement, and p(2) outputs “2: Hello” in XMP/Fortran.

Note that a new node set is generated by each task construct. Let’s consider
inserting a bcast construct into the task.

26 H. Murai et al.

Fig. 19 Example of task construct (1)

XcalableMP C
#pragma xmp task on p[1:3]
{
#pragma xmp bcast (num)
}

XcalableMP Fortran
!$xmp task on p(2:4)
!$xmp bcast (num)
!$xmp end task

This bcast construct is executed by the node set specified by the on clause of
the task construct. Thus, the node p[1] broadcasts the value of num to p[2]
and p[3] in XMP/C, and p(2) to p(3) and p(4) in XMP/Fortran.

The bcast construct in the above code is equivalent to that in the following
code, where it is executed by a new node set q that is explicitly declared.

XcalableMP C
#pragma xmp nodes q[3] = p[1:3]
#pragma xmp bcast (num) on q

XcalableMP Fortran
!$xmp nodes q(3) = p(2:4)
!$xmp bcast (num) on q

XcalableMP Programming Model and Language 27

Note that the task is executed by the node set specified by the on clause.
Therefore,xmpc_node_num() and xmp_node_num() return the id in the node
set.

For example, consider inserting xmpc_node_num() or xmp_node_num()
into the task in the first program.

XcalableMP C
#include <stdio.h>
#pragma xmp nodes p[4]

int main(){
5 #pragma xmp task on p[1:3]
{

printf("%d: Hello\n", xmpc_node_num());
}

10 return 0;
}

XcalableMP Fortran
program main
!$xmp nodes p(4)

!$xmp task on p(2:4)
5 write(*,*) xmp_node_num(), ": Hello"
!$xmp end task

end program main

The node p[1] outputs “0: Hello” in XMP/C, and p(2) “1: Hello” in XMP/For-
tran.

Note A new node set should be collectively generated by all of the executing nodes
at the point of a task construct unless it is surrounded by a tasks construct.
Therefore, in the above example, p[0] in XMP/C and p(1) in XMP/Fortran must
process the task construct.

3.1.2 tasks Construct

Let’s consider that each of two tasks invokes a function.
XcalableMP C

#pragma xmp nodes p[4]

#pragma xmp task on p[0:2]

28 H. Murai et al.

{
5 func_a();
}
#pragma xmp task on p[2:2]
{

func_b();
10 }

XcalableMP Fortran
!$xmp nodes p(4)

!$xmp task on p(1:2)
call func_a()

5 !$xmp end task
!$xmp task on p(3:4)

call func_b()
!$xmp end task

In the above example, the two tasks cannot be executed in parallel because the
on clauses must be evaluated by all of the executing nodes (Fig. 20).

Fig. 20 Example of task construct (2)

XcalableMP Programming Model and Language 29

Fig. 21 Example of tasks construct

In such a case, the programmer must specify a tasks construct surrounding the
tasks to execute them in parallel (Fig. 21).

XcalableMP C
#pragma xmp nodes p[4]

#pragma xmp tasks
{

5 #pragma xmp task on p[0:2]
{

func_a();
}
#pragma xmp task on p[2:2]

10 {
func_b();

}
}

30 H. Murai et al.

XcalableMP Fortran
!$xmp nodes p(4)

!$xmp tasks
!$xmp task on p(1:2)

5 call func_a()
!$xmp end task
!$xmp task on p(3:4)

call func_b()
!$xmp end task

10 !$xmp end tasks

Because the node sets specified by the on clauses of the task constructs
surrounded by a tasks construct are disjoint, they can be executed in parallel.

3.2 loop Construct

The loop construct is used to parallelize a loop.
XcalableMP C

#pragma xmp loop on t[i]
for (int i = 0; i < 10; i++)

a[i] = i;

XcalableMP Fortran
!$xmp loop on t(i)

do i = 1, 10
a(i) = i

end do

The loop directive above specifies that the iteration i of the following loop is
executed by the node that owns the template element t[i] or t(i), which is
specified in the on clause.

Such a loop must satisfy the following two conditions:

1. There is no data/control dependence among the iterations. In other words, the
iterations of the loop can be executed in any order to produce the same result.

2. Elements of distributed arrays, if any, are accessed only by the node(s) that
own(s) the elements.

The programs below are examples of a right loop directive and a loop statement.
Condition 1 is satisfied because i is the only one index of the distributed array a
that is accessed within the loop, and condition 2 is also satisfied because the indices
of the template in the on clause of the loop directive are identical to that of the
distributed array (Fig. 22).

XcalableMP Programming Model and Language 31

Fig. 22 Example of loop construct (1)

Fig. 23 Example of loop construct (2)

Fig. 24 Example of loop construct (3)

XcalableMP C
#pragma xmp nodes p[2]
#pragma xmp template t[10]
#pragma xmp distribute t[block] onto p

5 int main(){
int a[10];

#pragma xmp align a[i] with t[i]

32 H. Murai et al.

#pragma xmp loop on t[i]
10 for(int i=0;i<10;i++)

a[i] = i;

return 0;
}

XcalableMP Fortran
program main
!$xmp nodes p(2)
!$xmp template t(10)
!$xmp distribute t(block) onto p

5 integer a(10)
!$xmp align a(i) with t(i)

!$xmp loop on t(i)
do i=1, 10

10 a(i) = i
enddo

end program main

Then, is it possible to parallelize the loops in the example below where the loop
bounds are shrunk from the above?

XcalableMP C
#pragma xmp loop on t[i]

for(int i=1;i<9;i++)
a[i] = i;

XcalableMP Fortran
!$xmp loop on t(i)

do i=2, 9
a(i) = i

enddo

In this case, conditions 1 and 2 are satisfied and therefore it is possible to
parallelize them. In XMP/C, p[0] processes the indices from one to four and p[1]
from five to eight. In XMP/Fortran, p(1) processes the indices from two to five and
p(2) from six to nine (Fig. 23).

Next, is it possible to parallelize the below loops in which the index of the
distributed array is different?

XcalableMP C
#pragma xmp loop on t[i]

for(int i=1;i<9;i++)
a[i+1] = i;

XcalableMP Programming Model and Language 33

XcalableMP Fortran
!$xmp loop on t(i)

do i=2, 9
a(i+1) = i

enddo

In this case, condition 1 is satisfied but 2 is not, and therefore it is not possible
to parallelize them. In XMP/C, p[0] tries to access a[5] but does not own it. In
XMP/Fortran, p(1) tries to access a(6) but does not own it (Fig. 24).

3.2.1 Reduction Computation

The serial programs below are examples of a reduction computation.
C

#include <stdio.h>

int main(){
int a[10], sum = 0;

5

for(int i=0;i<10;i++){
a[i] = i+1;
sum += a[i];

}
10

printf("%d\n", sum);

return 0;
}

Fortran
program main

integer :: a(10), sum = 0

do i=1, 10
5 a(i) = i

sum = sum + a(i)
enddo

write(*,*) sum
10

end program main

34 H. Murai et al.

Fig. 25 Example of reduction computation (1)

Fig. 26 Example of reduction computation (2)

If the above loops are parallelized just by adding a loop directive, the value of
the variable sum varies from node to node because it is calculated separately on
each node (Fig. 25). The value should be reduced to produce the right result.

XcalableMP C
#pragma xmp loop on t[i]

for(int i=0;i<10;i++){
a[i] = i+1;
sum += a[i];

5 }

XcalableMP Fortran
!$xmp loop on t(i)

do i=1, 10
a(i) = i
sum = sum + a(i)

5 enddo

Then, to correct the error in the above code, add a reduction clause to the
loop directive as follows (Fig. 26).

XcalableMP C
#include <stdio.h>
#pragma xmp nodes p[2]
#pragma xmp template t[10]
#pragma xmp distribute t[block] onto p

XcalableMP Programming Model and Language 35

5

int main(){
int a[10], sum = 0;

#pragma xmp align a[i] with t[i]

10 #pragma xmp loop on t[i] reduction(+:sum)
for(int i=0;i<10;i++){

a[i] = i+1;
sum += a[i];

}
15

printf("%d\n", sum);

return 0;
}

XcalableMP Fortran
program main
!$xmp nodes p(2)
!$xmp template t(10)
!$xmp distribute t(block) onto p

5 integer :: a(10), sum = 0
!$xmp align a(i) with t(i)

!$xmp loop on t(i) reduction(+:sum)
do i=1, 10

10 a(i) = i
sum = sum + a(i)

enddo

write(*,*) sum
15

end program main

An operator and target variables for reduction computation are specified in a
reduction clause. In the above examples, a “+” operator and a target variable
sum are specified for the reduction computation to produce a total sum among
nodes.

Operations that can be specified as an operator in a reduction clause are
limited to the following associative ones.

C
+

*
-
&

5 |

36 H. Murai et al.

^
&&
||
max

10 min
firstmax
firstmin
lastmax
lastmin

Fortran
+

*
-
.and.

5 .or.
.eqv.
.neqv.
max
min

10 iand
ior
ieor
firstmax
firstmin

15 lastmax
lastmin

Note The total result is calculated by combining the partial results on all nodes. The
ordering of the combination is unspecified. Hence, if the target variable is a type of
floating point (e.g. float in XMP/C or real in XMP/Fortran), the difference of
the order can make a little bit difference in the result value from that in the original
serial execution.

3.2.2 Parallelizing Nested Loop

Parallelization of nested loops can be specified similarly to a single one, as follows.
XcalableMP C

#pragma xmp nodes p[2][2]
#pragma xmp template t[10][10]
#pragma xmp distribute t[block][block] onto p

XcalableMP Programming Model and Language 37

5 int main(){
int a[10][10];

#pragma xmp align a[i][j] with t[i][j]

#pragma xmp loop on t[i][j]
10 for(int i=0;i<10;i++)

for(int j=0;j<10;j++)
a[i][j] = i*10+j;

return 0;
15 }

XcalableMP Fortran
program main
!$xmp nodes p(2,2)
!$xmp template t(10,10)
!$xmp distribute t(block,block) onto p

5 integer :: a(10,10)
!$xmp align a(j,i) with t(j,i)

!$xmp loop on t(j,i)
do i=1, 10

10 do j=1, 10
a(j,i) = i*10+j

enddo
enddo

15 end program main

3.3 array Construct

The array construct is for work mapping of array assignment statements.
XcalableMP C

#pragma xmp align a[i] with t[i]
:

#pragma xmp array on t[0:N]
a[0:N] = 1.0;

XcalableMP Fortran
!$xmp align a(i) with t(i)

:
!$xmp array on t(1:N)
a(1:N) = 1.0

38 H. Murai et al.

The above is equivalent to the below.
XcalableMP C

#pragma xmp align a[i] with t[i]
:

#pragma xmp loop on t[i]
for(int i=0;i<N;i++)

5 a[i] = 1.0;

XcalableMP Fortran
!$xmp align a(i) with t(i)

:
!$xmp loop on t(i)
do i=1, N

5 a(i) = 1.0
enddo

This construct can also be applied to multi-dimensional arrays.
XcalableMP C

#pragma xmp align a[i][j] with t[i][j]
:

#pragma xmp array on t[:][:]
a[:][:] = 1.0;

XcalableMP Fortran
!$xmp align a(j,i) with t(j,i)

:
!$xmp array on t(:,:)
a(:,:) = 1.0

Note The template appearing in the on clause must have the same shape as the
arrays in the following statement. The right-hand side value in this construct must be
identical among all nodes because the array construct is a global (i.e. collective)
operation.

4 Data Communication

4.1 shadow Directive and reflect Construct

Stencil computation frequently appears in scientific simulation programs, where, to
update an array element a[i], its neighboring elements a[i-1] and a[i+1] are
referenced. If a[i] is on the boundary region of a block-distributed array on a
node, a[i+1] may reside on another (neighboring) node.

XcalableMP Programming Model and Language 39

Since it involves large overhead to copy a[i+1] from the neighboring node
to update each a[i], a technique of copying collectively the elements on the
neighboringnode to the area added to the distributed array on each node is usually
adopted. In XMP, such additional area is called “shadow.”

4.1.1 Declaring Shadow

Shadow areas can be declared with the shadow directive. In the example below, an
array a has shadow areas of width one on both the lower and upper bounds.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[16]
#pragma xmp distribute t[block] onto p
double a[16];

5 #pragma xmp align a[i] with t[i]
#pragma xmp shadow a[1]

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(16)
!$xmp distribute t(block) onto p
real :: a(16)

5 !$xmp align a(i) with t(i)
!$xmp shadow a(1)

In the Fig. 27, shaded elements are those that each node owns and white ones are
shadow.

Note Arrays distributed in a cyclic manner cannot have shadow.

In some programs, it is natural that the widths of the shadow area on the lower
and upper bounds are different. There is also a case where the shadow area exists

Fig. 27 Example of shadow directive (1)

40 H. Murai et al.

Fig. 28 Example of shadow directive (2)

only on either of the bounds. In the example below, it is declared that a distributed
array a has a shadow area of width one only on the upper bound (Fig. 28).

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[16]
#pragma xmp distribute t(block) onto p
double a[16];

5 #pragma xmp align a[i] with t[i]
#pragma xmp shadow a[0:1]

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(16)
!$xmp distribute t(block) onto p
real :: a(16)

5 !$xmp align a(i) with t(i)
!$xmp shadow a(0:1)

The values on the left- and right-hand sides of a colon designate the widths on
the lower and upper bounds, respectively.

4.1.2 Updating Shadow

To copy data to shadow areas from neighboring nodes, use the reflect construct.
In the example below, the shadow areas of an array a that are of width one on both
the upper and lower bounds are updated (Fig. 29).

XcalableMP C
#pragma xmp reflect (a)

#pragma xmp loop on t[i]
for(int i=1;i<15;i++)

5 a[i] = (a[i-1] + a[i] + a[i+1])/3;

XcalableMP Programming Model and Language 41

Fig. 29 Example of reflect construct (1)

Fig. 30 Example of reflect construct (2)

Fig. 31 Example of periodic reflect construct

XcalableMP Fortran
!$xmp reflect (a)

!xmp loop on t(i)
do i=2, 15

5 a(i) = (a(i-1) + a(i) + a(i+1))/3
enddo

With this reflect directive, in XMP/C, node p[1] sends an element a[4] to
the shadow area on the upper bound on node p[0] and a[7] to the shadow area
on the lower bound on p[2]; p[0] sends an element a[3] to the shadow area on
the lower bound on p[1], and p[2] sends a[8] to the shadow area on the upper
bound on p[1].

42 H. Murai et al.

Similarly, in XMP/Fortran, node p(2) sends an element a(5) to the shadow
area on the upper bound on node p(1) and a(8) to the shadow area on the lower
bound on p(3); p(1) sends an element a(4) to the shadow area on the lower
bound on p(2), and p(3) sends a(9) to the shadow area on the upper bound on
p(2).

The default behavior of a reflect directive is to update the whole of
the shadow area declared by the shadow directive. However, there are some
cases where a specific part of the shadow area is to be updated to reduce the
communication cost at a point of the code.

To update only a specific part of the shadow area, add the width clause to the
reflect directive.

The values on the left- and right-hand sides of a colon in the width clause
designate the widths on the lower and upper bounds to be updated, respectively. In
the example below, only the shadow area on the upper bound is updated (Fig. 30).

XcalableMP C
#pragma xmp reflect (a) width(0:1)

XcalableMP Fortran
!$xmp reflect (a) width(0:1)

Note If the widths of the shadow areas to be updated on the upper and lower bounds
are equal, that is, for example, width(1:1), you can abbreviate it as width(1).

Note It is not possible to update the shadow area on a particular node because
reflect is a collective operation.

The reflect directive does not update either the shadow area on the lower
bound on the leading node or that on the upper bound on the last node. However,
the values in such areas are needed for stencil computation if periodic boundary
conditions are used in the computation.

To update such areas, add a periodic qualifier into the width clause. Let’s
look at the following example where an array a having shadow areas of width one
on both the lower and upper bounds appears (Fig. 31).

XcalableMP C
#pragma xmp reflect (a) width(/periodic/1:1)

XcalableMP Fortran
!$xmp reflect (a) width(/periodic/1:1)

The periodic qualifier has the following effects, in addition to that of a normal
reflect directive: in XMP/C, node p[0] sends an element a[0] to the shadow
area on the upper bound on node p[3], and p[3] sends a[15] to the shadow area

XcalableMP Programming Model and Language 43

on the lower bound on p[0]; in XMP/Fortran, node p(1) sends an element a(1)
to the shadow area on the upper bound on node p(4), and p(4) sends a(16) to
the shadow area on the lower bound on p(1).

The shadow directive and reflect construct can be applied to arrays
distributed in multiple dimensions. The following programs are the examples for
two-dimensional distribution.

XcalableMP C
#pragma xmp nodes p[3][3]
#pragma xmp template t[9][9]
#pragma xmp distribute t[block][block] onto p
double a[9][9];

5 #pragma xmp align a[i][j] with t[i][j]
#pragma xmp shadow a[1][1]

:
#pragma xmp reflect (a)

XcalableMP Fortran
!$xmp nodes p(3,3)
!$xmp template t(9,9)
!$xmp distribute t(block,block) onto p
real :: a(9,9)

5 !$xmp align a(j,i) with t(j,i)
!$xmp shadow a(1,1)

:
!$xmp reflect (a)

The central node receives data from the surrounding eight nodes to update its
shadow areas (Fig. 32). The shadow areas of the other nodes are also updated, which
is omitted in the figure.

For some applications, data from ordinal directions are not necessary. In such
a case, the data communication from/to the ordinal directions can be avoided by
adding the orthogonal clause to a reflect construct (Fig. 33).

XcalableMP C
#pragma xmp reflect (a) orthogonal

XcalableMP Fortran
!$xmp reflect (a) orthogonal

Note The orthogonal clause is effective only for arrays more than one dimen-
sion of which is distributed.

44 H. Murai et al.

Fig. 32 Example of multi-dimensional shadow (1)

Besides, you can also add shadow areas to only specified dimension (Fig. 34).
XcalableMP C

#pragma xmp nodes p[3]
#pragma xmp template t[9]
#pragma xmp distribute t[block] onto p
double a[9][9];

5 #pragma xmp align a[i][*] with t[i]
#pragma xmp shadow a[1][0]

:
#pragma xmp reflect (a)

XcalableMP Programming Model and Language 45

Fig. 33 Example of multi-dimensional shadow (2)

XcalableMP Fortran
!$xmp nodes p[3]
!$xmp template t[9]
!$xmp distribute t[block] onto p
real :: a(9,9)

5 !$xmp align a(*,i) with t(i)
!$xmp shadow a(0,1)

:
!$xmp reflect (a)

For the array a, 0 is specified as the shadow width in non-distributed dimensions.

46 H. Murai et al.

Fig. 34 Example of multi-dimensional shadow (3)

4.2 gmove Construct

The programmers can specify a communication of distributed arrays in the form
of assignment statements by using the gmove construct. In other words, with
the gmove construct, any array assignment between two arrays (i.e. global data
movement) that may involve inter-node communication can be specified.

There are three modes of gmove; “collective mode,” “in mode,” and “out mode.”

4.2.1 Collective Mode

The global data movement involved by a collective gmove is performed collec-
tively, and results in implicit synchronization among the executing nodes.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[16]
#pragma xmp distribute t[block] onto p
int a[16], b[16];

5 #pragma xmp align a[i] with t[i]
#pragma xmp align b[i] with t[i]

:

XcalableMP Programming Model and Language 47

#pragma xmp gmove
a[9:5] = b[0:5];

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(16)
!$xmp distribute t(block) onto p
integer :: a(16), b(16)

5 !$xmp align a(i) with t(i)
!$xmp align b(i) with t(i)

:
!$xmp gmove

a(10:14) = b(1:5)

In XMP/C, p[0] sends b[0]-b[3] to p[2]-p[3], and p[1] sends b[4] to
p[3]. Similarly, in XMP/Fortran, p(1) sends b(1)-b(4) to p(3)-p(4), and
p(2) sends b(5) to p(4) (Fig. 35).

Fig. 35 Collective gmove (1)

Fig. 36 Collective gmove (2)

Fig. 37 Collective gmove (3)

48 H. Murai et al.

Fig. 38 Collective gmove (4)

Fig. 39 Collective gmove (4)

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t1[16]
#pragma xmp template t2[16]
#pragma xmp distribute t1[cyclic] onto p

5 #pragma xmp distribute t2[block] onto p
int a[16], b[16];
#pragma xmp align a[i] with t1[i]
#pragma xmp align b[i] with t2[i]

XcalableMP Programming Model and Language 49

:
10 #pragma xmp gmove

a[9:5] = b[0:5];

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t1(16)
!$xmp template t2(16)
!$xmp distribute t1(cyclic) onto p

5 !$xmp distribute t2(block) onto p
integer :: a(16), b(16)
!$xmp align a(i) with t1(i)
!$xmp align b(i) with t2(i)

:
10 !$xmp gmove

a(10:14) = b(1:5)

While array a is distributed in a cyclic manner, array b is distributed in a block
manner.

In XMP/C, p[0] sends b[0] and b[4] to p[2] and p[3]. p[1] sends b[1]
to p[2]. Each element of p[2] and p[3] will be copied locally. Similarly, in
XMP/Fortran, p(1) sends b(1) and b(5) to p(3) and p(4). p(2) sends b(2)
to p(3). Each element of p(3) and p(4) will be copied locally (Fig. 36).

By using this method, the distribution of an array can be “changed” during
computation.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t1[16]
#pragma xmp template t2[16]
int W[4] = {2,4,8,2};

5 #pragma xmp distribute t1[gblock(W)] onto p
#pragma xmp distribute t2[block] onto p
int a[16], b[16];
#pragma xmp align a[i] with t1[i]
#pragma xmp align b[i] with t2[i]

10 :
#pragma xmp gmove

a[:] = b[:];

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t1(16)
!$xmp template t2(16)
integer :: W(4) = (/2,4,7,3/)

5 !$xmp distribute t1(gblock(W)) onto p
!$xmp distribute t2(block) onto p

50 H. Murai et al.

integer :: a(16), b(16)
!$xmp align a(i) with t1(i)
!$xmp align b(i) with t2(i)

10 :
!$xmp gmove

a(:) = b(:)

In this example (Fig. 37), the elements of an array b that is distributed in a block
manner are copied to the corresponding elements of an array a that is distributed in
a generalized-block manner. For the arrays a and b, communication occurs if the
corresponding elements reside in different nodes (arrows illustrate communication
between nodes in the figures).

In the assignment statement, if a scalar (i.e. one element of an array or a variable)
is specified on the right-hand side and an array section is specified on the left-hand
side, a broadcast communication occurs for it.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[16]
#pragma xmp distribute t[block] onto p
int a[16], b[16];

5 #pragma xmp align a[i] with t[i]
#pragma xmp align b[i] with t[i]

:
#pragma xmp gmove

a[9:5] = b[0];

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(16)
!$xmp distribute t(block) onto p
integer :: a(16), b(16)

5 !$xmp align a(i) with t(i)
!$xmp align b(i) with t(i)

:
!$xmp gmove

a(10:14) = b(1)

In this example (Fig. 38), in XMP/C, an array element b[0] of node p[0] will
be broadcasted to the specified array section on node p[2] and p[3]. Similarly,
in XMP/Fortran, an array element b(1) of node p(1) will be broadcasted to the
specified array section on node p(3) and p(4).

Not only distributed arrays but also replicated arrays can be specified on the
right-hand side.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[16]

XcalableMP Programming Model and Language 51

#pragma xmp distribute t[block] onto p
int a[16], b[16], c;

5 #pragma xmp align a[i] with t[i]
:

#pragma xmp gmove
a[9:5] = b[0:5];

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(16)
!$xmp distribute t(block) onto p
integer :: a(16), b(16), c

5 !$xmp align a(i) with t(i)
:

!$xmp gmove
a(10:14) = b(1:5)

In this example, a replicated array b is locally copied to distributed array a
without communication.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t1[4]
#pragma xmp template t2[8]
#pragma xmp distribute t1[block] onto p

5 #pragma xmp distribute t2[block] onto p
int a[4][8], b[4][8];
#pragma xmp align a[i][*] with t1[i]
#pragma xmp align b[*][i] with t2[i]

:
10 #pragma xmp gmove

a[0][:] = b[0][:];

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t1(4)
!$xmp template t2(8)
!$xmp distribute t1(block) onto p

5 !$xmp distribute t2(block) onto p
integer :: a(4,8), b(4,8)
!$xmp align a(*,i) with t1(i)
!$xmp align b(i,*) with t2(i)

:
10 #pragma xmp gmove

a(:,1) = b(:,1)

In this example (Fig. 39), in XMP/C, b[0][0:2] on p[0], b[0][2:2] of
p[1], b[0][4:2] on p[2] and b[0][6:2] on p[3] are copied to a[0][:]

52 H. Murai et al.

on p[0]. Similarly, in XMP/Fortran, b(1:2,1) on p(1), b(3:4,1) of p(2),
b(5:6,1) on p(3) and b(7:8,1) on p(4) are copied to a(:,1) on p(1).

4.2.2 In Mode

The right-hand side data of the assignment, all or part of which may reside outside
the executing node set, can be transferred from its owner nodes to the executing
nodes with an in gmove.

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[4]
#pragma xmp distribute t[block] onto p
double a[4], b[4];

5 #pragma xmp align a[i] with t[i]
#pragma xmp align b[i] with t[i]

:
#pragma xmp task on p[0:2]
#pragma xmp gmove in

10 a[0:2] = b[2:2]
#pragma xmp end task

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(4)
!$xmp distribute t(block) onto p
real :: a(4), b(4)

5 !$xmp align a(i) with t(i)
!$xmp align b(i) with t(i)

:
!$xmp task on p(1:2)
!$xmp gmove in

10 a(1:2) = b(3:4)
!$xmp end task

In this example, the task directive divides four nodes into two sets, the first-half
and the second-half. A gmove construct that is in an in mode copies data using a
get operation from the second-half node to the first-half node (Fig. 40).

4.2.3 Out Mode

For the left-hand side data of the assignment, all or part of which may reside outside
the executing node set, the corresponding elements can be transferred from the
executing nodes to its owner nodes with an out gmove construct.

XcalableMP Programming Model and Language 53

Fig. 40 In gmove

XcalableMP C
#pragma xmp nodes p[4]
#pragma xmp template t[4]
#pragma xmp distribute t[block] onto p
double a[4], b[4];

5 #pragma xmp align a[i] with t[i]
#pragma xmp align b[i] with t[i]

:
#pragma xmp task on p[0:2]
#pragma xmp gmove out

10 b[2:2] = a[0:2]
#pragma xmp end task

XcalableMP Fortran
!$xmp nodes p(4)
!$xmp template t(4)
!$xmp distribute t(block) onto p
real :: a(4), b(4)

5 !$xmp align a(i) with t(i)
!$xmp align b(i) with t(i)

:
!$xmp task on p(1:2)
!$xmp gmove out

10 b(3:4) = a(1:2)
!$xmp end task

54 H. Murai et al.

Fig. 41 Out gmove

A gmove construct that is in out mode copies data using a put communication
from the first-half nodes to the second-half nodes (Fig. 41).

4.3 barrier Construct

The barrier construct executes a barrier synchronization.
XcalableMP C

#pragma xmp barrier

XcalableMP Fortran
!$xmp barrier

You can specify a node set on which the barrier synchronization is to be
performed by using the on clause. In the example below, a barrier synchronization
is performed among the first two nodes of p.

XcalableMP C
#pragma xmp barrier on p[0:2]

XcalableMP Fortran
!$xmp barrier on p(1:2)

XcalableMP Programming Model and Language 55

4.4 reduction Construct

This construct performs a reduction operation. It has the same meaning as the
reduction clause of the loop construct, but this construct can be specified
anywhere executable constructs can be located (Fig. 42).

XcalableMP C
#pragma xmp nodes p[4]

:
sum = xmpc_node_num() + 1;
#pragma xmp reduction (+:sum)

XcalableMP Fortran
!$xmp nodes p(4)

:
sum = xmp_node_num()
!$xmp reduction (+:sum)

You can specify the executing node set by using the on clause. In the example
below, only the values on the last two of the four nodes are targeted by the
reduction construct (Fig. 43).

XcalableMP C
#pragma xmp nodes p[4]

:
sum = xmpc_node_num() + 1;
#pragma xmp reduction (+:sum) on p[2:2]

Fig. 42 reduction construct (1)

56 H. Murai et al.

Fig. 43 reduction construct (2)

XcalableMP Fortran
!$xmp nodes p(4)

:
sum = xmp_node_num()
!$xmp reduction (+:sum) on p(3:4)

The operators you can use in the reduction construct are as follows:
XcalableMP C

+

*
-
&

5 |
^
&&
||
max

10 min

XcalableMP Fortran
+

*
-
.and.

5 .or.
.eqv.
.neqv.
max
min

XcalableMP Programming Model and Language 57

10 iand
ior
ieor

Note In contrast to the reduction clause of the loop construct, which pre-
cedes loops, the reduction construct does not accept operators of firstmax,
firstmin, lastmax, and lastmin.

Note Similar to the reduction clause, the reduction construct may generate
slightly different results in a parallel execution from those in a sequential execution,
because the results depend on the order of combining the value.

4.5 bcast Construct

The bcast construct broadcasts the values of the variables on the node specified
by the from clause, that is, the root node, to the node set specified by the on clause.
If there is no from clause, the first node of the executing node set is selected as the
root node. If there is no on clause, the current executing node set of the construct
is selected as the executing node set.

In the example below, the first node of the node set p, that is, p[0] or p(1), is
the root node (Fig. 44).

XcalableMP C
#pragma xmp nodes p[4]

:
num = xmpc_node_num() + 1;
#pragma xmp bcast (num)

XcalableMP Fortran
!$xmp nodes p(4)

:
num = xmp_node_num()
!$xmp bcast (num)

In the example below, the last node, that is, p[3] or p(4), is the root node
(Fig. 45).

XcalableMP C
#pragma xmp nodes p[4]

:

58 H. Murai et al.

Fig. 44 bcast construct (1)

Fig. 45 bcast construct (2)

num = xmpc_node_num() + 1;
#pragma xmp bcast (num) from p[3]

XcalableMP Fortran
!$xmp nodes p(4)

:
num = xmp_node_num()
!$xmp bcast (num) from p(4)

In the example below, only the last three of four nodes are included by the
executing node set of the bcast construct (Fig. 46).

XcalableMP C
#pragma xmp nodes p[4]

:
sum = xmpc_node_num() + 1;
#pragma xmp bcast (num) from p[3] on p[1:3]

XcalableMP Programming Model and Language 59

Fig. 46 bcast construct (3)

XcalableMP Fortran
!$xmp nodes p(4)

:
sum = xmp_node_num()
!$xmp bcast (num) from p(4) on p(2:4)

4.6 wait_async Construct

Communication directives (i.e. reflect, gmove, reduction, bcast, and
reduce_shadow) can perform asynchronous communication if the async
clause is added. The wait_async construct is used to guarantee the completion
of such an asynchronous communication.

XcalableMP C
#pragma xmp bcast (num) async(1)

:
#pragma xmp wait_async (1)

XcalableMP Fortran
!$xmp bcast (num) async(1)

:
!$xmp wait_async (1)

Since the bcast directive has an async clause, communication may not
be completed immediately after the bcast directive. The completion of that
communication is guaranteed with the wait_async construct having the same
value as that of the async clause. Therefore, between the bcast construct and the
wait_async constructs, you may not reference the target variable of the bcast
directive.

60 H. Murai et al.

Hint Asynchronous communication can be overlapped with the following compu-
tation to hide its overhead.

Note Expressions that can be specified as tags in the async clause are of type int,
in XMP/C, or integer, in XMP/Fortran.

4.7 reduce_shadow Construct

The reduce_shadow directive adds the value of a shadow object to the corre-
sponding data object of the array.

XcalableMP C
#pragma xmp nodes p[2]
#pragma xmp template t[8]
#pragma xmp distribute t[block] onto p
int a[8];

5 #pragma xmp align a[i] with t[i]
#pragma xmp shadow a[1]
:

#pragma xmp loop on t[i]
for(int i=0;i<8;i++)

10 a[i] = i+1;

#pragma xmp reflect (a)
#pragma xmp reduce_shadow (a)

XcalableMP Fortran
!$xmp nodes p(2)
!$xmp template t(8)
!$xmp distribute t(block) onto p

integer a(8)
5 !$xmp align a(i) with t(i)
!$xmp shadow a(1)

!$xmp loop on t(i)
do i=1, 8

10 a(i) = i
enddo

!$xmp reflect (a)
!$xmp reduce_shadow (a)

XcalableMP Programming Model and Language 61

0

XMP/C

a[16]

p[0]

p[1]

p[0]

p[1]

p[0]

p[1]

1 2 3 4

1 2 3 4

1 2 3 4 5

1 2 3 8 5

5 6 7

5 6 7 8

54 6 7 8

104 6 7 8

shadow a[1]

reflect (a)

reduce_shadow(a)

0

XMP/Fortran

a(16)

p(1)

p(2)

p(1)

p(2)

p(1)

p(2)

1 2 3 4

1 2 3 4

1 2 3 4 5

1 2 3 8 5

5 6 7

5 6 7 8

54 6 7 8

104 6 7 8

shadow a[1]

reflect (a)

reduce_shadow(a)

Fig. 47 reduce_shadow construct (1)

0

XMP/C

a[16]

p[0]

p[1]

p[0]

p[1]

p[0]

p[1]

1 2 3 4

1 2 3 4

18 2 3 4 5

8 2 2 3 8 5

5 6 7

5 6 7 8

54 6 7 8 1

104 6 7 16 1

shadow a[1]

reflect (a) width(..)

reduce_shadow(a) width(..)

0

XMP/Fortran

a(16)

p(1)

p(2)

p(1)

p(2)

p(1)

p(2)

1 2 3 4

1 2 3 4

18 2 3 4 5

8 2 2 3 8 5

5 6 7

5 6 7 8

54 6 7 8 1

104 6 7 16 1

shadow a(1)

reflect (a) width(..)

reduce_shadow(a) width(..)

Fig. 48 reduce_shadow construct (2)

For the above example, in XMP/C, a[3] on p[0] has a value of eight, and
a[4] on p[1] has a value of ten. Similarly, in XMP/Fortran, a(4) of p(1) has a
value of eight, and a(5) on p(2) has a value of ten (Fig. 47).

The programmers can add the periodic modifier to the width clause to
reduce shadow objects to the corresponding data object periodically.

XcalableMP C
#pragma xmp reflect (a) width(/periodic/1)
#pragma xmp reduce_shadow (a) width(/periodic/1)

XcalableMP Fortran
!$xmp reflect (a) width(/periodic/1)
!$xmp reduce_shadow (a) width(/periodic/1)

In addition to the first example, in XMP/C, a[0] on p[0] has a value of two,
and a[7] on p[1] has a value of 16. Similarly, in XMP/Fortran, a(1) in p(1)
has a value of two, and a(8) in p(2) has a value of 16 (Fig. 48).

62 H. Murai et al.

5 Local-View Programming

5.1 Introduction

The programmer can use coarrays to specify one-sided communication in the local-
view model.

Depending on the environment, such one-sided communication might achieve
better performance than global communication in the global-view model. However,
it is more difficult and complicated to write parallel programs in the local-view
model because the programmer must specify every detail of parallelization, such as
data mapping, work mapping, and communication.

The coarray feature in XMP/Fortran is upward-compatible with that in Fortran
2008; that in XMP/C is defined as an extension to the base language.

An execution entity in local-view XMP programs is referred to as an “image”
while a node in global-view ones. These two words have almost the same meaning
in XMP.

5.2 Coarray Declaration

XcalableMP C
int a[10]:[*];

XcalableMP Fortran
integer a(10)[*]

In XMP/C, the programmer declares a coarray by adding “:[*]” after the array
declaration. In XMP/Fortran, the programmer declares a coarray by adding “[*]”
after the array declaration.

Note Based on Fortran 2008, coarrays should have the same size among all images.

Coarrays can be accessed in expressions by remote images as well as the local
images.

5.3 Put Communication

When a coarray appears in the left-hand side of an assignment statement, it involves
put communication.

XcalableMP Programming Model and Language 63

Fig. 49 Remote write to a coarray

XcalableMP C
int a[10]:[*], b[10];

if (xmpc_this_image() == 0)
a[0:3]:[1] = b[3:3];

XcalableMP Fortran
integer a(10)[*]
integer b(10)

if (this_image() == 1) then
5 a(1:3)[2] = b(3:5)
end if

The integer in the square bracket specifies the target image index. The
image index is zero-based, in XMP/C, or one-based, in XMP/Fortran.
xmpc_this_image() in XMP/C and this_image() in XMP/Fortran return
the current image index.

In the above example, in XMP/C, an image zero puts b[3:3] to a[0:3] on
image one; in XMP/Fortran, an image one puts b(3:5) to a(1:3) on image two.
Figure 49 illustrates the put communication performed in the example.

5.4 Get Communication

When a coarray appears in the right-hand side of an assignment statement, it
involves get communication.

XcalableMP C
int a[10]:[*], b[10];

if (xmpc_this_image() == 0)
b[3:3] = a[0:3]:[1];

64 H. Murai et al.

Fig. 50 Remote read from a coarray

XcalableMP Fortran
integer a(10)[*]
integer b(10)

if (this_image() == 1) then
5 b(3:5) = a(1:3)[2]
end if

In the above example, in XMP/C, an image 0 gets a[0:3] from an image 1 and
copies it to b[3:3]; in XMP/Fortran, an image 1 gets a(1:3) from an image 2
and copies it to b(3:5) of an image 1. Figure 50 illustrates the get communication
performed in the example.

Hint As illustrated above, get communication involves an extra step to send a
request to the target node. Put communication achieves better performance than
get because there is no such extra step.

5.5 Synchronization

5.5.1 Sync All

XcalableMP C
void xmp_sync_all(int *status)

XcalableMP Fortran
sync all

At “sync all,” each image waits until all issued one-sided communication is
complete and then performs barrier synchronization among the all images.

XcalableMP Programming Model and Language 65

Fig. 51 sync all

In the above example, the left image puts data to the right image and both nodes
invoke sync all. When both nodes return from it, the execution continues to the
following statements (Fig. 51).

5.5.2 Sync Images

XcalableMP C
void xmp_sync_images(int num, int *image-set, int *status)

XcalableMP Fortran
sync images (image-set)

Each image in the specified image set waits until all one-sided communication
issued is complete, and performs barrier synchronization among the images.

XcalableMP C
int image_set[3] = {0,1,2};
xmp_sync_images(3, image_set, NULL);

XcalableMP Fortran
integer :: image_set(3) = (/ 1, 2, 3/)
sync images (image_set)

66 H. Murai et al.

5.5.3 Sync Memory

XcalableMP C
void xmp_sync_memory(int *status)

XcalableMP Fortran
sync memory

Each image waits until all one-sided communication is complete. This func-
tion/statement does not imply barrier synchronization, unlike sync all and
sync images, and therefore can be locally executed.

6 Procedure Interface

Procedure calls in XMP are almost the same as those in the base language.
Procedure calls between other languages or to external libraries are also allowed
if the base language supports them.

In the example below, a function/subroutinesub1() calls another function/sub-
routine sub2() with a distributed array x as an argument.

XcalableMP C
void sub1(){
#pragma xmp nodes p[2]
#pragma xmp template t[10]
#pragma xmp distribute t[block] onto p

5 double x[10];
#pragma xmp align x[i] with t[i]

sub2(x);
}

10 void sub2(double a[10]){
#pragma xmp nodes p[2]
#pragma xmp template t[10]
#pragma xmp distribute t[block] onto p

double a[10];
15 #pragma xmp align a[i] with t[i]

:
}

XcalableMP Fortran
subroutine sub1()
!$xmp nodes p(2)
!$xmp template t(10)
!$xmp distribute t(block) onto p

5 real x(10)
!$xmp align x(i) with t(i)

XcalableMP Programming Model and Language 67

call sub2(x)
end subroutine

10 subroutine sub2(a)
!$xmp nodes p(2)
!$xmp template t(10)
!$xmp distribute t(block) onto p

real a(10)
15 !$xmp align a(i) with t(i)

:
end subroutine

To handle a parameter or dummy argument as a global data in the callee
procedure, the programmer need to explicitly distribute it with an align directive
(Fig. 52).

If no align directive is specified in the callee procedure for a parameter or
dummy argument that is declared as a global data in the caller procedure, it is
handled as if it were declared in the callee procedure as a local data on each node,
as follows (Fig. 53).

Fig. 52 Passing a global
argument to a global
parameter

68 H. Murai et al.

XcalableMP C
void sub1(){
#pragma xmp nodes p[2]
#pragma xmp template t[10]
#pragma xmp distribute t[block] onto p

5 double x[10];
#pragma xmp align x[i] with t[i]

sub2(x);
}

10 void sub2(double a[5]){
:

}

XcalableMP Fortran
subroutine sub1()
!$xmp nodes p(2)
!$xmp template t(10)
!$xmp distribute t(block) onto p

5 real x(10)
!$xmp align x(i) with t(i)

call sub2(x)
end subroutine

10 subroutine sub2(a)
real a(5)
:

end subroutine

7 XMPT Tool Interface

7.1 Overview

XMPT is the tool interface of XMP and inspired by OMPT, which is the tool
interface of OpenMP [4]. Hence, XMPT is designed as event-based and callback-
based as OMPT; that is, for each event at runtime, the corresponding callback is
invoked. One or more XMPT events are defined corresponding to each of XMP
constructs and coarray-related actions (e.g. remote write/read and synchronization).

XMPT is preliminarily implemented in the Omni XMP compiler chapter “Imple-
mentation and Performance Evaluation of Omni Compiler”, and used in MUST [5]
and experimentally in Extrae [6]. More details of the application of XMPT inMUST
are described in [7].

XcalableMP Programming Model and Language 69

Fig. 53 Passing a global argument to a local parameter

7.2 Specification

7.2.1 Initialization

Tool developers can provide the xmpt_initialize function in which they
register a callback for each of the XMPT events of interest, as follows.

C
void xmpt_initialize(...){
xmpt_set_callback(xmpt_event_bcast_begin, callback_bcast_begin);
xmpt_set_callback(xmpt_event_bcast_end, callback_bcast_end);
...

5 }

In the above example, the tool developer implements callbacks
callback_bcast_begin and callback_bcast_end that interact with
his/her tool.

When an XMP program starts execution, the XMP runtime implicitly invokes
xmpt_initialize, if provided, to set up the callbacks.

70 H. Murai et al.

7.2.2 Events

XMPT defines XMPT events each of which corresponds to an XMP construct or a
coarray-related action. Below is the list of XMPT events. For each of the events, the
function signature of the corresponding callback is specifically defined. Note that
the ones from xmpt_event_coarray_remote_write to
xmpt_event_sync_images_end are coarray-related.

xmpt_event_task_begin
xmpt_event_task_end
xmpt_event_tasks_begin
xmpt_event_tasks_end
xmpt_event_loop_begin
xmpt_event_loop_end
xmpt_event_array_begin
xmpt_event_array_end
xmpt_event_reflect_begin
xmpt_event_reflect_begin_async
xmpt_event_reflect_end
xmpt_event_gmove_begin
xmpt_event_gmove_begin_async
xmpt_event_gmove_end
xmpt_event_barrier_begin
xmpt_event_barrier_end
xmpt_event_reduction_begin
xmpt_event_reduction_begin_async
xmpt_event_reduction_end
xmpt_event_bcast_begin
xmpt_event_bcast_begin_async
xmpt_event_bcast_end
xmpt_event_wait_async_begin
xmpt_event_wait_async_end
xmpt_event_coarray_remote_write
xmpt_event_coarray_remote_read
xmpt_event_coarray_local_write
xmpt_event_coarray_local_read
xmpt_event_sync_memory_begin
xmpt_event_sync_memory_end
xmpt_event_sync_all_begin
xmpt_event_sync_all_end
xmpt_event_sync_image_begin
xmpt_event_sync_image_end
xmpt_event_sync_images_all_begin

XcalableMP Programming Model and Language 71

xmpt_event_sync_images_all_end
xmpt_event_sync_images_begin
xmpt_event_sync_images_end

When one of the XMPT events for which callbacks are registered occurs at
runtime, the corresponding callback is invoked by the XMP runtime. For example,
if callbacks are registered for events xmpt_event_bcast_begin and xmpt_
event_bcast_end as in the example in the previous section, the callbacks
callback_bcast_begin and callback_bcast_end are invoked immedi-
ately before and after each of bcast constructs, respectively.

The XMP runtime passes therein all the information about the construct, includ-
ing the mapping of the target global arrays, to the callback as its parameters. Thus,
the tool is able to extract necessary information from the arguments.

References

1. R.W. Numrich, J. Reid, Co-array Fortran for parallel programming, in ACM SIGPLAN Fortran
Forum, vol. 17, No. 2 (ACM, New York, 1998)

2. UPC Consortium, UPC Specifications, v1.2. Lawrence Berkeley National Lab (LBNL-59208)
(2005)

3. D. Callahan, B.L. Chamberlain, H.P. Zima, The cascade high productivity language, in
Proceedings of the 9th Int’l. Workshop on High-Level Parallel Programming Models and
Supportive Environments (HIPS 2004) (2004), pp. 52–60

4. OpenMP Architecture Review Board, OpenMP Application Programming Interface Version 5.0
(2018)

5. The MUST Project, https://www.itc.rwth-aachen.de/must
6. The Extrae Project, https://tools.bsc.es/extrae
7. J. Protze, C. Terboven, M.S. Müller, S. Petiton, N. Emad, H. Murai, T. Boku. Runtime

correctness checking for emerging programming paradigms, in Proceedings of the First Interna-
tional Workshop on Software Correctness for HPC Applications (Correctness’17). Association
for Computing Machinery (New York, NY, USA, 2017), pp. 21–27. https://doi.org/10.1145/
3145344.3145490

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.itc.rwth-aachen.de/must
https://tools.bsc.es/extrae
https://doi.org/10.1145/3145344.3145490
https://doi.org/10.1145/3145344.3145490
http://creativecommons.org/licenses/by/4.0/

	XcalableMP Programming Model and Language
	1 Introduction
	1.1 Target Hardware
	1.2 Execution Model
	1.3 Data Model
	1.4 Programming Models
	1.4.1 Partitioned Global Address Space
	1.4.2 Global-View Programming Model
	1.4.3 Local-View Programming Model
	1.4.4 Mixture of Global View and Local View

	1.5 Base Languages
	1.5.1 Array Section in XcalableMP C
	1.5.2 Array Assignment Statement in XcalableMP C

	1.6 Interoperability

	2 Data Mapping
	2.1 nodes Directive
	2.2 template Directive
	2.3 distribute Directive
	2.3.1 Block Distribution
	2.3.2 Cyclic Distribution
	2.3.3 Block-Cyclic Distribution
	2.3.4 Gblock Distribution
	2.3.5 Distribution of Multi-Dimensional Templates

	2.4 align Directive
	2.5 Dynamic Allocation of Distributed Array
	2.6 template_fix Construct

	3 Work Mapping
	3.1 task and tasks Construct
	3.1.1 task Construct
	3.1.2 tasks Construct

	3.2 loop Construct
	3.2.1 Reduction Computation
	3.2.2 Parallelizing Nested Loop

	3.3 array Construct

	4 Data Communication
	4.1 shadow Directive and reflect Construct
	4.1.1 Declaring Shadow
	4.1.2 Updating Shadow

	4.2 gmove Construct
	4.2.1 Collective Mode
	4.2.2 In Mode
	4.2.3 Out Mode

	4.3 barrier Construct
	4.4 reduction Construct
	4.5 bcast Construct
	4.6 wait_async Construct
	4.7 reduce_shadow Construct

	5 Local-View Programming
	5.1 Introduction
	5.2 Coarray Declaration
	5.3 Put Communication
	5.4 Get Communication
	5.5 Synchronization
	5.5.1 Sync All
	5.5.2 Sync Images
	5.5.3 Sync Memory

	6 Procedure Interface
	7 XMPT Tool Interface
	7.1 Overview
	7.2 Specification
	7.2.1 Initialization
	7.2.2 Events

	References

