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Abstract. Ultrasound visual imaging is currently one of three main-
stream image diagnosis technologies in the medical industry, but due to
the limitations of sensors, transmission media and ultrasound character-
istics, the quality of ultrasound imaging may be poor, especially its low
spatial resolution. We incorporate, in this paper, a new multi-scale deep
encoder-decoder structure into a PatchGAN (patch generative adversar-
ial network) based framework for fast perceptual ultrasound image super-
resolution (SR). Specifically, the entire algorithm is carried out in two
stages: ultrasound SR image generation and image refinement. In the first
stage, a multi-scale deep encoder-decoder generator is employed to accu-
rately super-resolve the LR ultrasound images. In the second stage, we
advocate the confrontational characteristics of the discriminator to impel
the generator such that more realistic high-resolution (HR) ultrasound
images can be produced. The assessments in terms of PSNR/IFC/SSIM,
inference efficiency and visual effects demonstrate its effectiveness and
superiority, when compared to the most state-of-the-art methods.

Keywords: Ultrasound image super-resolution · Deep
encoder-decoder · Multi-scale · PatchGAN

1 Introduction

Ultrasonograph [6] is an effective visual diagnosis technology in medical imaging
industry and has unique advantages over modalities, such as magnetic resonance
imaging (MRI), X-ray, and computed tomography (CT). In the actual diagnosis
through ultrasound imaging, doctors usually judge pathological changes by visu-
ally perceiving the region of interest (ROI) in the ultrasound image, such as the
shape contour or edge smoothness. This means that the higher the resolution
of ultrasound image, the more conducive to visual perception for better medical
diagnosis. However, due to the acoustic diffraction limit of the medical industry,
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it is difficult to acquire HR ultrasound data. Therefore, for enhancing the res-
olution of ultrasound data, image SR may become a potential solution, which
is of great significance for medical clinical diagnosis based on visual perception
[7,16].

Over the past few years, the methods based on deep learning have emerged
in various fields of natural image processing, ranging from image de-noising [2]
to image SR [5,10], and video segmentation [21]. Recently, they have also been
applied into diverse medical image processing tasks, ranging from CT image
segmentation [24] to ultrasound image SR [3,14]. Umehara et al. [26] firstly apply
SR convolutional neural network (SRCNN [5]) to enhance the image resolution
of chest CT images. A recent work [9] demonstrates that the deeper and wider
network can result in preferable image SR results and seems to have no problem
of poor generalization performance. Actually, this experience may not always
applicable to SR of medical data (including ultrasound images), because there
may not be abundant medical image samples for training in practice. Thus, how
to design an appropriate deep network structure becomes one key to improve
the efficiency of medical image SR.

Other deep supervised models, especially ‘U-net’ convolutional networks
[20,25], are proposed and explored recently for bio-medical image segmentation
as well as ultrasound image SR. With no fully connected layers, U-net consists
of only convolution and deconvolution operations, where the former is named
as encoder and the latter is called decoder. However, in such a U-net, the pool-
ing layers and the single-scale convolutional layers may fail to take advantage
of various image details and multi-range context of SR. Note that the terms of
encoder and decoder in the following sections mean the convolution operation
and deconvolution operations respectively.

At the same time, Ledig et al. [10] presented a new deep structure, namely SR
generative adversarial network (SRGAN), producing photo-realistic SR images.
Instead of using CNNs, Choi et al. [3] have applied the SRGAN model for high-
speed ultrasound SR imaging. Such GANs based works claimed to obtain better
image reconstruction effect with good visual quality. Unfortunately, Yochai et
al. in their recent work [1] analyze that the visual perception quality and the
distortion decreasing of an image restoration algorithm are contradictory with
each other.

Actually, almost all the above-mentioned deep methods are from the per-
spective of single-scale spatial domain reconstruction, without a consideration
of multi-scale or even frequency domain behavioral analysis of network feature
learning. Motivated by the frequency analysis of neural network learning [19,28]
and the structure simulation of multi-resolution wavelet analysis [13], in this
work, we present a novel deep multi-scale encoder-decoder based approach to
super-resolve the LR ultrasound images. Moreover, inspired by the analysis of
[1], our model integrates the PatchGAN [8] way to better tradeoff the recon-
struction accuracy and the visual similarity to real ultrasound data. We perform
extensive experiments on different ultrasonic data sets and the results demon-
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strate our approach not only achieves high objective quality evaluation value,
but also holds rather good subjective visual effect.

As far as we know, the methods that deal with the resolution enhancement
of a single ultrasound image are few, let alone a thorough exploration of multi-
scale and adversarial learning to achieve accurate reconstruction with perception
trade-off. The contributions of the work are generalized as follows:

– By simulating the structure of multi-resolution wavelet analysis, we propose
a new end-to-end deep multi-scale encoder-decoder framework that can gen-
erate a HR ultrasound image, given a LR input for 4× up-scaling.

– We integrate the PatchGAN adversarial learning with the VGG feature loss
and the �1 pixel-wise loss to jointly supervise the image SR process at different
levels during training. The experimental results turn out that the integrated
loss is good at recovering multiple levels of details of ultrasound images.

– We evaluate the proposed approach on several public ultrasound datasets.
We also compare the variants of our model and analyze the performance and
the differences to others, which might be useful for future ultrasound image
SR research.

The rest of the paper is organized as follows. Related works are outlined
in Sect. 2. Section 3 describes our proposed approach and its feasibility analy-
sis. Lots of experimental results and analysis are shown in Sect. 4. Finally, the
conclusion of this paper is summarized in Sect. 5.

2 Related Work

2.1 Natural Image SR

Given the powerful non-linear mapping, CNN based image SR methods can
acquire better performance than the traditional methods. The pioneering
SRCNN, proposed by Dong et al. [5], only utilized three convolutional layers
to learn the mapping function between the LR images and the corresponding
HR ones from numerous LR-HR pairs. However, the fact that SRCNN has only
three convolutional layers indicates the model actually is not good at capturing
image features. Considering that the prior knowledge may be helpful for the con-
vergence, Liang et al. [11] used Sobel edge operator to extract gradient features
to promote the training convergence. In spite of speeding up the training proce-
dure, the improvement for reconstruction performance is very limited. Recently,
based upon the structure simulation of multi-resolution wavelet analysis, Liu
et al. [13] proposed a multi-scale deep network with phase congruency edge map
guidance model (MSDEPC) to super-resolve single LR images.

Aiming to improve the reconstruction quality, Ledig et al. [10] applied such
adversarial learning strategy to form a novel image SR model - SRGAN, of
which the generator network is used to super-resolved the LR input efficiently
while the discriminator network determines whether the super-resolved images
approximate the real HR ones.
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Recognizing that batch normalization may make the extracted features lose
diversity and flexibility, Lim et al. [12] proposed an enhanced deep residual SR
model (named as EDSR) by removing the batch normalization operation. In
order to hold the flexibility of the path, they also adjusted the residual structure
so that the sum of different paths will no longer pass through the ReLU layer.

Different from SRGAN [10] that only distinguishing the generated image
itself, Park et al. [18] presented to add additional discrimination network which
acts on the feature domain (called as SRFeat), so that the generator can generate
high-frequency features related to the image structure. Moreover, long range
jump connections were used in the generator to make information flow more
easily in layers far away from each other.

2.2 Ultrasound Image SR

Compared with the flourishing situation of natural images, little attention has
been paid to SR of medical images overall. Recently, Zhao et al. [29] explored
the properties of the decimation matrix in the Fourier domain and managed
to acquire an analytical solution with �2 norm regularizer for the problem of
ultrasound image SR. Unlike many studies focusing on ultrasound lateral reso-
lution enhancement, Diamantis et al. [4] pay their attention to axial imaging.
Being conscious of the accuracy of ultrasound axial imaging mainly depends on
image-based localization of single scatter, they use a sharpness based localization
approach to identify the unique position of the scatter, and successfully translate
SR axial imaging from optical microscopy into ultrasound imaging.

Having seen the power of deep learning in natural image processing, Umehara
et al. [26] firstly applied the SRCNN to enhance the resolution of some chest CT
images and the results demonstrated the CNN based SR model is also suitable
for medical images. Moreover, in order to ease the problem of lacking numerous
training samples in common medical datasets, Lu et al. [14] utilized dilated
CNNs and presented a new unsupervised SR framework for medical ultrasound
images. However, this is not a real unsupervised method in the sense that their
model still needs LR patches as well as their corresponding HR labels.

Very recently, Van Sloun et al. [25] applied U-Net [20] deep model to improve
upon standard ultrasound localization microscopy (Deep-ULM), and obtained
SR vascular images from high-density contrast-enhanced ultrasound data. Their
deep-ULM model is observed to be suitable for real time applications, resolving
about 1250 HR patches per second. Aiming to improve the texture reconstruction
of ultrasound image SR, Choi et al. [3] slightly modified the architecture of
SRGAN [10] to improve the lateral resolution of ultrasound images. Despite its
surprisingly good performance, some evidence [17] (including our corresponding
observations in Fig. 3 and Fig. 4) showed that the produced super-resolution
image is easy to contain some linear aliasing artifacts.
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Fig. 1. The proposed ultrasound image SR model: multi-scale ultrasound super-
resolved image generator (left) and patches discriminator based on four levels losses
(right).

3 Methodology

According to the wavelet and multi-resolution analysis (MRA) [15], an image
f(x) is expressed as

f(x) =
N∑

k∈Z

aj0
k φj0

k (x) +
J∑

j=j0

∑

k

bjkψ
j
k(x), (1)

in which j varies from j0 to J , k indexes the basis function, and {aj0
k }, {bjk} act

as weighting parameters to associate to the scale function φ(x) and the wavelet
function ψ(x), respectively. Concretely, the image f(x) consists of two compo-
nents (see Eq. (1)), which are the approximation (the first item, low frequency
component) and the details (the second item, high frequency components). From
the point of view of deep learning, Eq. (1) may be looked on as a combination
reconstruction of different scales branches and each scale reconstruction can
be realized by network deconvolution (decoder). Moreover, in Eq. (1), the low
frequency (approximation) coefficients aj

k and the high frequency (detail) coeffi-
cients bjk can be calculated as:

aj
k = 〈f(x), φj

k(x)〉 =
∑

i

pjikfi

bjk = 〈f(x), ψj
k(x)〉 =

∑

i

qjikfi
(2)

Here, the image f(x) can be represented as f = {f1, f2, · · · , fi, · · · }, the scale
function φj

k is relaxed to {pj1k, p
j
2k, · · · , pjik, · · · }, and the detail function ψj

k can
be loosened to {qj1k, q

j
2k, · · · , qjik, · · · }. Obviously, if regarding the weights pjik

and qjik as the convolution kernels at scale j and using the inner projection as
the feature encoding, Eq. (2) can be easily implemented by one scale convolution
(encoder) on the image f(x). Thus, based on such structure simulation analysis,
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Fig. 2. The pipeline of multi-scale deep encoder-decoder SR network.

obviously we can construct a multi-scale deep encoder and decoder network to
renew some lost high-frequency details for image SR.

The pipeline of our proposed ultrasound image SR approach is shown in
Fig. 1. Our overall model can be seen as a GAN framework, which consists of two
parts: one is a multi-scale encoder-decoder based SR generator to enhance the
resolution of the ultrasound images with four levels losses; the other is patches
discriminator, which is used to further recover the ultrasound images.

3.1 Multi-scale Encoder-Decoder SR

Inspired by above multi-resolution analysis and the structure simulation, in this
work, we specially construct a multi-scale encoder-decoder deep network for
the task of the ultrasound image SR and treat it as a generator. The detailed
architecture of the proposed multi-scale encoder-decoder SR network is shown in
Fig. 2. The specific configurations of the network can be found in Table 1. Here,
according to Eq. (1), if regarding the LR image as the approximation component
of the HR one, The optimization goal of multi-scale encoder-decoder learning can
be treated as:

f̃ = arg min
f

(||(y +
∑

j

Fj(y,Θj)) − f ||1), (3)

where y and f represent the LR image and the corresponding HR image, and
F (·) indicates the reconstruction function. Θ is the learned parameter of the
network and the symbol j denotes a specific scale.

In the multi-scale structure, the LR image ILR is firstly sent to three scales
encoder-decoder branches to obtain the image details of different scales. Then,
these detail maps are directly added to LR image input to get three reconstruc-
tion images at different scale thanks to that the LR image can be regarded as the
approximation (low frequency) component of the HR one. Finally, we concate-
nate three reconstruction images and warp them to acquire the super-resolved
ultrasound image ISR.



Multi-scale Deep Encoder-Decoder and PatchGAN for Ultrasound Image SR 53

Table 1. The configuration of three scales encoder-decoder streams

Scale1 (conv3-32)a × 2

(deconv3-32)× 2

Scale2 (conv3-32)× 2

(conv3-32)× 2

(deconv3-32)× 4

Sclae3 (conv3-32)× 2

(conv3-32)× 2

(conv3-64)× 2

(deconv3-64)× 2

(deconv3-32)× 4
aThe convolution and deconvolution layers are
denoted as conv/deconv (kernel size)-(number of
filters)

3.2 Patches Discrimination and Loss Function

Recent works [8,10] show that only using MSE pixel wise loss to supervise SR
generation tends to produce over-smooth results. Therefore, in our proposed
model, we incorporate four levels loss functions (one pixels loss and three details
loss) to supervise the generated SR images to approach the ground-truth HR
ones at all levels of details. Moreover, to encourage high-frequency structure, our
model takes the similar structure of PatchGAN [8] to discriminate the patches
between the generated SR images and the true HR ones.

The MSE loss (�2 loss) between the generated version G(y) and the real HR
one f can be calculated and treated as an objective function for minimization
during training. However, due to the energy average characteristics, MSE loss will
lead to over-smooth phenomenon. Thus, we replace MSE (�2) loss with �1 loss.
Here the �1 loss becomes a measure of the proximity of all the corresponding
pixels between such two images. Actually, the �1 loss is used in the proposed
multi-scale encoder and decoder structure (see Eq. (3)).

Given a set of LR and HR image pairs {fi, yi}Ni=1 and assuming the compo-
nents of network reconstruction at multiple scales can be obtained, then the �1
pixel-wise loss function for the proposed network can be denoted as:

�pixel =
N∑

i=1

||(yi +
∑

j

λjFj(yi, Θj)) − fi||1, (4)

where λ is regulation coefficient for different details reconstruction term (usually
can be set as the reciprocal of the number of scales). Here and in the following,
G(yi) = yi +

∑
j λjFj(yi, Θj).
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We also use the feature loss to guarantee edge features when acquiring super-
resolved ultrasound images. Different from the pixel-wise loss, we firstly trans-
form yi and fi into certain common feature space or manifold with a mapping
function φ(·). Then we can calculate the distance between them in such feature
space. Usually, the feature loss can be described as:

�feature =
N∑

i=1

||φ(G(yi)) − φ(fi)||2, (5)

For the mapping function φ(·) in our proposed model, in practice we use
the combination of the output of the 12th and the 13th convolution layers of
the VGG [23] network to realize it. By this way, we can recover the clear edge
feature details in super-resolved ultrasound images.

Since SSIM [27] measures the structure similarity in a neighborhood of certain
pixel between the generated image and the ground truth one, we may directly
apply this measure as one kind of loss:

�ssim =
N∑

i=1

||SSIM(G(yi)) − SSIM(fi)||2, (6)

Based on the adversarial mechanism of PatchGAN [8], the adversarial loss of
our multi-scale SR generator can be defined as:

�adv =
N∑

i=1

−log(D(G(yi))) (7)

where D(·) is the discriminator of PatchGAN.
The loss of the patches discriminator can be described as the following:

Ldis =
N∑

i=1

log(D(fi)) +
N∑

i=1

log(1 − D(G(yi))), (8)

Finally, the total generator loss utilized to supervise the training of the net-
work can be expressed as:

Lgen = α�pixel + β�feature + γ�ssim + η�adv, (9)

where the α, β, γ, η are the weighting coefficients, which in our experiments are
set with 0.16, 2e−6, 0.84 and 1e−4, respectively.

4 Experimental Results and Analysis

4.1 Datasets and Training Details

The reconstruction experiments and the performance comparisons are performed
on two ultrasound image datasets: CCA-US1 and US-CASE2. The CCA-US
1 http://splab.cz/en/download/databaze/ultrasound.
2 http://www.ultrasoundcases.info/Cases-Home.aspx.

http://splab.cz/en/download/databaze/ultrasound
http://www.ultrasoundcases.info/Cases-Home.aspx
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dataset contains 84 B-mode ultrasound images of common carotid artery (CCA)
of ten volunteers (mean age 27.5 ± 3.5 years) with different body weight (mean
weight 76.5 ± 9.7 kg). The US-CASE dataset contains 115 ultrasound images
of liver, heart and mediastinum, etc. For the objective quality measurement on
the super-resolved images, the well-known PSNR [dB], IFC [22], and SSIM [27]
metrics are used. The running code of our work is publicly available at https://
github.com/hengliusky/UltraSound Image Super Resolution.

For all ultrasound images in CCA-US and US-CASE, by flipping and rotat-
ing, each one is enhanced to 32 images, resulting in a training set of 5760 images
and a test set of 640 images. Training images are cropped into small overlapped
patches with a size of 64×64 pixels and a stride of 14. The cropped ground truth
patches are treated as the HR patches. The corresponding LR ones are obtained
by two bi-cubic interpolation of the ground truth.

Table 2. Performance comparisons for 4× SR on two ultrasound datasets. The best
results are indicated in Bold.

DataSets Bicubic SRCNN [5] SRGAN [10] Our variant (w/o
PatchGAN)

Our proposed

PSNR/IFC PSNR/IFC PSNR/IFC PSNR/IFC PSNR/IFC

CCA-US 20.913/1.213 20.673/0.972 25.331/1.127 22.035/1.226 25.711/2.290

US-CASE 26.299/1.055 25.636/1.009 29.069/1.102 26.373/1.080 29.038/2.127

Table 3. Performance comparisons on average PSNR and SSIM for 4× SR. The best
results are indicated in Bold.

DataSets EDSR [12] SRFeat [18] Our variant (w/o
PatchGAN)

Our proposed

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CCA-US 25.290/0.740 25.602/0.721 24.755/0.834 25.714/0.814

US-CASE 27.432/0.804 28.864/0.808 28.922/0.840 29.038/0.881

The comparative experiments are to perform different ultrasound image SR
methods for fulfilling 4× SR task. In Table 2 and Table 3, we provide the quanti-
tative evaluation comparisons, and in Fig. 3 and Fig. 4, some visual comparison
examples with PSNR/IFC or PSNR/SSIM measures are also provided. In addi-
tion, to compare the efficiency of our approach with other methods, we also show
the inference speed, the model capacity and the throughput of data processing
of all methods in Table 4.

https://github.com/hengliusky/UltraSound_Image_Super_Resolution
https://github.com/hengliusky/UltraSound_Image_Super_Resolution
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4.2 Experimental Comparisons and Analysis

From Table 2 and Table 3, we can see that our proposed model can achieve the
best or the second best PSNR measure on different ultrasound image datasets.
As for IFC and SSIM measures, our approach will always get the best evaluation
value even both on such two ultrasound datasets. Moreover, even without the
help of PatchGAN, the multi-scale deep encoder-decoder also demonstrates quite
good SR performance (see Table 2), which indicates that it does recover multiple
scales image details. While according to Table 3, we see that the feature loss
makes sense in enhancing the SR performance of ultrasound data.

Table 4. The comparisons of model inference efficiency. Blue text indicates the best
performance and green text indicate the second best performance

SRCNN [5]SRGAN [10]SRFeat [18]EDSR [12] Our proposed

Platform MATLAB TensorFlow TensorFlowTensorFlowTensorFlow

Test image size 600 * 448 150 * 112 150 * 112 150 * 112 600 * 448

Inference time 188 ms 53 ms 136 ms 49 ms 176 ms

Throughout (Kb/ms)4.189 0.929 0.362 1.0 4.474

Model capacity 270 KB 9.1 MB 37.2 MB 9.1 MB 1.6 MB

(a) Bicubic:
28.58/0.762

(b) SRCNN:
27.85/0.737

(c) SRGAN:
28.75/0.618

(d) Our proposed:
29.33/0.785

(e) Bicubic:
28.70/0.76

(f) SRCNN:
28.01/1.281

(g) SRGAN:
27.46/1.101

(h) Our proposed:
29.31/1.384

Fig. 3. The Visual and PSNR/IFC comparisons of super-resolved (4×) ultrasound
images from CCA-US dataset by (a, e) Bicubic, (b, f) SRCNN, (c, g) SRGAN, and
(d, h) Our proposed.
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(a) SRCNN:
26.07/3.15

(b) SRGAN:
25.969/1.53

(c) Our proposed:
29.89/3.44

(d) Ground truth

(e) SRCNN:
31.19/2.43

(f) SRGAN:
26.02/0.90

(g) Our proposed:
30.64/2.22

(h) Ground truth

Fig. 4. The Visual and PSNR/IFC comparisons of super-resolved (4×) ultrasound
images from US-CASE dataset by (a, e) SRCNN, (b, f) SRGAN, (c, g) Our proposed,
and (d, h) Ground truth.

From Fig. 3 and Fig. 4, it is obvious that comparing with other approaches,
our presented method can not only acquire the clearer SR visual results but also
not to introduce the unwanted aliasing artifacts. In addition, if comparing the
structure of our model with that of SRGAN [10], we can see that integrating four
levels losses and adopting the local patches discrimination really play a crucial
role on accurately super-resolve the LR ultrasound images. Therefore, all the
quantitative comparisons and the visual results on different ultrasound image
datasets illustrate the excellent performance and the wide effectiveness.

Furthermore, according to Table 4, this demonstrates that our proposed app-
roach is most efficient and hereby to some extent is practically valuable for
ultrasonic imaging visual diagnosis in medical industry.

5 Conclusion

In this work, different from the previous approaches, we propose a novel multi-
scale deep encoder-decoder and PatchGAN based approach for ultrasound image
SR of medical industry. Firstly, an end-to-end multi-scale deep encoder-decoder
structure is employed to accurately super-resolve the LR ultrasound images with
a comprehensive imaging loss, including the pixel-wise loss, the feature loss, the
SSIM loss and the adversarial loss. And then we utilize the discriminator to



58 J. Liu et al.

urge the generator to get more realistic ultrasound images. Based on the evalua-
tions on two different ultrasound image datasets, our approach demonstrates the
best performance not only in objective qualitative measures and the inference
efficiency but also in visual effects.

It is noted that the SR of ultrasound image requires higher reconstruction
accuracy than that of natural image. Thus, our future work will focus on explor-
ing the relationship between the reconstruction accuracy and the perception
clearness for medical image SR.
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Science of Anhui Provincial Department of Education under Grant No. KJ2019A0083.
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29. Zhao, N., Wei, Q., Basarab, A., Kouamé, D., Tourneret, J.Y.: Single image super-
resolution of medical ultrasound images using a fast algorithm. In: Proceedings
of the IEEE 13th International Symposium on Biomedical Imaging, pp. 473–476.
IEEE (2016)

https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/s11042-017-5460-9
http://arxiv.org/abs/1409.1556
https://doi.org/10.1007/978-3-030-36708-4_22
https://doi.org/10.1007/978-3-030-36708-4_22

	Exploring Multi-scale Deep Encoder-Decoder and PatchGAN for Perceptual Ultrasound Image Super-Resolution
	1 Introduction
	2 Related Work
	2.1 Natural Image SR
	2.2 Ultrasound Image SR

	3 Methodology
	3.1 Multi-scale Encoder-Decoder SR
	3.2 Patches Discrimination and Loss Function

	4 Experimental Results and Analysis
	4.1 Datasets and Training Details
	4.2 Experimental Comparisons and Analysis

	5 Conclusion
	References




