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Abstract. This paper presents an improved deep reinforcement learning
(DRL) algorithm, namely Advanced Actor Critic (AAC), which is based
on Actor Critic (AC) algorithm, to the video game Artificial intelligence
(AI) training. The advantage distribution estimator, Normal Constraint
(NC) function and exploration based on confidence are introduced to
improve the AC algorithm, in order to achieve accurate value estimate,
select continuous spatial action correctly, and explorate effectively. The
aim is to improve the performance of conventional AC algorithm in a
complex environment. A case study of video game StarCraft II mini-game
AI training is employed. The results verify that the improved algorithm
effectively improves the performance in terms of the convergence rate,
maximum reward, average reward in every 100 episode, and time to reach
a specific reward, etc. The analysis on how these modifications improve
the performance is also given through interpretation of the feature layers
in the mini-games.

Keywords: Deep reinforcement learning · Video game AI · Advanced
Actor Critic · Advantage distribution estimator · Normal constraint

1 Introduction

In 2016, Alpha Go [1], the computer program developed by Google’s DeepMind
team, defeated the 18-time world champion Lee Sedol in a five-game Go match
and manifested the power of the artificial intelligence (AI). In 2017, Alpha Go
Zero [2], which adopted the deep reinforcement learning algorithm (DRL) and
defeated the previous generation of Go in a short time, dominated the Go match
and revealed the power of the DRL. Nowadays, DRL has been widely applied
to industries in different fields, e.g., manufacture, natural language processing,
medical image processing, intelligent drive and video game AI design, etc. Among
these areas, AI design of video games is of particular interest to researchers, as it
provides a convenient test platform for investigating machine learning algorithm
performance in complex environments.
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With the development of DRL, the end-to-end feature extraction method
breaks the conventional manual feature extraction method, so that AI can
complete the game task without intervention of humans. In 2013, Mnih et al.
employed DRL to play video games. The DRL based AI even surpassed top
human players in some Atari games [3]. However, these Atari games are gen-
erally too simple compared with practical applications in real life. Before long,
Deep Mind team opened the StarCraft II learning environment (SC2LE) [4] as a
new test platform for DRL studies. The SC2LE involves dynamic perception and
estimation, incomplete information game and multi-agent cooperation problems,
resulting in a more practical test environment, where decision making becomes
much closer to the real-life situations.

Although the latest StarCraft II AI has been able to beat top human players
in certain circumstances [5], the AI training required a vast number of episodes
to achieve satisfying performance, due to the limits of the employed conven-
tional Actor Critic (AC) algorithm ([6–8]). For example, the advantage estima-
tor returns single value that results in limited accuracy, and the random action
selection lacks effectiveness, etc. In this paper, an improved design of Actor Critic
(AC) algorithm, namely Advanced Actor Critic (AAC), is proposed for better
convergence of AI training. A distributional advantage estimator is employed
to estimate the distribution of advantage in a certain state. In addition, a nor-
mal constraint, which means the loss function of spatial selection based on the
normal distribution, as well as an exploration method based on confidence are
introduced. As to the neural networks framework, the fully-convolution with long
short-term memory networks (CNN LSTM) [9] is selected according to the Deep
Mind approach [4]. Additionally, the sparse reward [10] is addressed by reward
shaping. Finally, a combined model based on Rainbow [11] (a combination of
Double Q Learning [12], dueling DQN [13], Priori-tized Experience Replay [14],
distributional reward [15], noisy net [16]) is adopted, where the proposed algo-
rithm is embedded. Such an approach is applied to the SC2LE mini-games to
verify that AI can learn faster, play better and have stronger robustness with
the ACC based training program. The main contribution of this paper is to
improve the conventional AC algorithm, which leads to better performance in
complex environments, and to propose a regional updating action mode instead
of independent point updating for intelligent control in high-dimensional space.

2 Background

The SC2LE is integrated by Deep Mind [4]. In DRL, state, action and reward
are the most important elements. In StarCraft II mini-games, these elements are
represented by map features and mini-map features.

2.1 Environment

Reward. The reward and penalty in each mini-game are shown in detail in
Table 1.
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Table 1. Reward and Penalty in mini-games.

Mini-map name Reward Penalty

Move to beacon +1 when the marine reaches
a beacon

None

Collect mineral shards +1 when the marine collects
the mineral shards

None

Find and defeat Zerglings +5 when the marine kills the
Zergling

−1 when the marine is killed

Defeat Zerglings and Banelings +5 when the marine kills the
Zergling or Baneling

−1 when the marine is killed

State. In StarCraft II games, the environment has been processed by the inter-
face, outputting several feature layers about the current state (see Fig. 1).

Fig. 1. Feature layers of the current state, which includes all simplified information of
the mini-games.

During training, the size is the resolution of these feature images. Generally,
the height and width are set to N , i.e., the spatial pixel observed and operated
is N × N . Deep Mind pointed out that N ≥ 64 [4] is required when performing
any micro operation in the game. However, for mini-games, N = 32 is proved
sufficient.

Among these N ×N pixels, each feature layer represents specific feature, such
as player ID, unit ID, war fog, unit attribute, etc. Some belong to scale, while
others belong to catalog.

In addition, the difference between the mini-map and the screen is that the
screen is only a part of the mini-map camera, but the analysis of the unit is
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clearer. After processing, the mini-map is transformed into Fminimap × N ×
N , and the screen is transformed into Fscreen × N × N . Fminimap and Fscreen

represent the quantity of features that mini-map or screen has.

Action. The instruction set of StarCraft II is very large. Through the
interface, each action is divided into two parts (Spatial Action and Non-
Spatial Action) and output to the environment. The whole action is: A =
(Anon−spatial, [Aadd, Aspatial]). Among them, Spatial Action represents that AI
clicks on a position in the screen, and its value range belongs to the pixel size
of the environment, that is, Aspatial = (x, y) ∈ N × N . Non-Spatial Action rep-
resents operation instructions, such as select, move, attack, build, view, etc. Its
value range is the game instruction set of the whole StarCraft II pairs, and at
the same time, it is subject to the actions available in the current environment,
that is, Anon−spatial ∈ Aavailable ∩ Aall. Aavailable involves actions that can be
performed in a certain state and Aall contains all action instructions in Star-
Craft II. Especially, non-spatial actions are necessary while spatial actions are
optional. For example, if an unit is selected by AI, only the non-spatial action
is output, which means the spatial action becomes needless. Aadd is the type of
Anon−spatial operation. When Anon−spatial and Aspatial are determined, Aadd is
generated automatically.

2.2 Actor Critic and Fully-Convolution with LSTM

Actor Critic. The policy adopted by the agent is the distribution of all state
and action trajectories interacting with the environment. How this distribution
takes the trajectory depends on the parameter θ. One of the trajectories is
τ = (s1, a1, s2, a2, ......, at, st).The probability of getting the trajectory is pθ(τ) =
∏T

t=1 pθ(at | st). The relationship between the generation of environment and
the parameter θ of trajectory can be ignored.

In order to get the best performance of an agent, the optimal goal is: θ =
arg max

θ
Eτ∼pθ

(Rθ(τ)). Rθ(τ) is the cumulative reward of τ , and the gradient is:

�Rθ(τ) =
1
N

N∑

n=1

Tn∑

t=1

(
Tn∑

s=t

At�log(pθ(an
t | sn

t ))) (1)

In this paper, spatial policy net and non-spatial policy net are independent
(πθ represents the non-spatial policy net while π′

θ represents spatial policy net,
and ρ indicates whether spatial action is valid or not), therefore the loss function
in each episode is:

Lossπθ
=

n∑

t=1

At[log(πθ(at | st)) + ρlog(π′
θ(at | st))] (2)

Combine Actor Critic with CNN LSTM. The following figure shows the
framework of interaction between the intelligent algorithm and StarCraft II Envi-
ronment(see Fig. 2).
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Fig. 2. Interaction between DRL based AI and StarCraft II environment. The inputs of
the network are (1) available action (2) screen features (3) mini-map features. Outputs
are (1) X and Y of the spatial action (2) non-spatial action (3) estimate of advantage.
These outputs are all distributions.

3 Reprocessing of Environment Feature

Several feature layers have been extracted from the environment of the StarCraft
II games. However, some of these layers are scale, while some are catalog, which
means the distribution of values is very uneven. In addition, some feature layers
are almost useless in mini-games. In order to train neural network better and
faster, it is necessary and significant to reprocess these feature layers.

These layers can be simply divided into catalog value layers and scalar value
layers. The catalog value layers include player ID, friend, visibility, creep, etc.
Generally, these values are small. The scalar value layers include unit type, unit
health, terrain level, and armor value. The prior knowledge of a StarCraft II
player can be exploited to choose more helpful map feature layers and discard
useless ones. Among these layers, the feature layers of mini-map are chosen as:
visibility, camera, player ID, player relative, selected and the screen feature layers
are: visibility, player ID, player relative, selected, HP, energy.

After the layer selection, the layers are numerically processed. In the catalog
value layers, the values are standardized between [0, 1] to facilitate the training
efficiency of neural networks. In the scalar value layers, the threshold is set to
half of its maximum value. A sigmoid function is adopted to change the value
classification into a state value. For example, if a unit has more than 50% of
its maximum hit point (HP), it is considered to be healthy, otherwise be weak.
After this reprocessing, the ranges of all layer values are compressed to be [0, 1].
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4 Advanced Actor Critic (AAC)

The AC algorithm is improved from several perspectives: the updated data can
break the correlation of time; the strategy network is more robust; the evaluation
network is more accurate. The improvements are explained as follows.

4.1 Distributional Advantage

In AC algorithm, critic network is responsible for outputting the advantage esti-
mate based on a certain policy. The accuracy of the estimate determines the
update efficiency of policy net. As a result, a distributional network is designed
to get more information. In this network, the maximum and minimum values
are determined by the background conditions, and the probability of the advan-
tage is handled by the last layer of convolution network plus softmax function.
When updating, the sample R̂ obtained from Monte Carlo difference (MD) or
temporal difference (TD) is transformed into a pulse function D(R̂) (avoiding
None by using Clamp function) and then KL divergence is used to evaluate the
loss of advantage estimates (see Fig. 3).

In this case, the advantage At and the value loss function LossVθ
can be

formulated as follows:

At = Ep(Vt)∼Vθ
(Vθ(st)) (3)

LossVθ
= DKL[D(R̂) ‖ Vθ(st)] (4)

4.2 Exploration Based on Confidence

One of the important problems in DRL is exploration. In mini-games, the explo-
ration ability of agent in the early stage significantly influences its performance.
Without exploration, the agent keeps taking the same action if the reward is
always positive. Thus, it might be trapped by the local optimal solution and
ignore other actions that may result in huge potential reward. Therefore, a good
agent needs to have proper exploration ability. In contrast to the conventional
AC algorithm exploration method, the maximum probability of the non-spatial
policy, namely the confidence, is adopted to explore the environment. ω repre-
sents the lowest level of confidence in the conduct of random exploration and
AI still explores based on ε − greedy to prevent falling into the local optimal
solution. The less confidence the AI has, the more exploration is encouraged,
and vice versa.

Anon−spatial =

{
arg max

θ
πθ(at | st), else

randomchoice,max(πθ(at | st)) < ω or ε < 0.1
(5)
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Fig. 3. The process of converting sample ̂R into pulse function and computing KL
divergence with advantage estimate distribution.

4.3 Normal Constraint

In the environment of StarCraft II games, the most difficult problem is the huge
continuous action space. In AAC algorithm, the policy net of AAC consists of
three parts: spatial policy net X, spatial policy net Y and non-spatial policy net.
The update mode of non-spatial policy net is introduced in Sect. 2.2. Given the
particularity of action space in StarCraft II games, the update of spatial policy
net X and spatial policy net Y introduce an additional function for the sake of
convergence speed, namely the Normal Constraint. To enhance the exploration
ability, loss entropy is usually adopted as the loss function in AC network. In the
case of large continuous action space and sparse reward, if the loss entropy weight
is not well designed, it is easy to enter policy net with the same output proba-
bility. In order to solve this problem, a Normal Constraint is hereby designed. In
StarCraft II games, the actions are selected in a continuous space, and the selec-
tion probability around a specific point should be considered similar. Therefore,
when updating an action, the nearby actions should be updated accordingly.
In this case, AI can understand the high-dimensional action space regionally.
Finally, when converging, the output of spatial policy is a stable distribution
that approximately satisfies the Normal Distribution (see Fig. 4, Fig. 5).

The probability of the selected spatial action, i.e., the coordinate in the envi-
ronment, is used as the weight of the NC loss. The greater probability implies
more centralized policy, and the probability of its surrounding will be further
enhanced or reduced when updated. Combined with formula (3), the NC loss
function is:
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Fig. 4. How NC works.

LossNC =
n∑

t=1

Atmax(π′
θ)DKL[NC(at) ‖ π′

θ(st)] (6)

Finally, the whole network is updated according to formula (2) (4) (6).

4.4 Reward Shaping

The reward of StarCraft II is very sparse, which requires the agent to have a
stronger exploration ability. During the implemented trainings, a negative reward
is added to every moment to motivate AI to take actions. Besides, the reward
values are standardized to be within the range [0, 1]. Such a reward shaping is
very effective in a sparse environment.

5 Result

The agent based on AAC network or A3C network1 is applied to 4 mini-games,
and then the average score in every 100 episode as well as maximum score in 20K
steps are compared. In the initial stage of training, i.e., observation episodes, the
update of policy net is stopped. Since the training of policy net depends on critic
net, critic net must be trained first in this observation.

A part of hyper parameters are shown in Table 2, and the Adam optimizer
is adopted [17].
1 The adopted A3C network refers to the project at https://github.com/xhujoy/pysc2-

agents.

https://github.com/xhujoy/pysc2-agents
https://github.com/xhujoy/pysc2-agents
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Fig. 5. Comparison of policy net with and without Normal Constraint (the figure above
uses NC, while the figure below does not).

Table 2. Hyper parameters.

Hyper-parameter Value Notes

Observation episodes 200 Stop updating policy net

Learning rate 10−5

γ 0.99 Discount of reward

N 32 Resolution of mini-map and screen

Step 60 Steps in each iteration

Distributional advantage [−1, 24] Max value and Min value (different in each mini-game)

Distributional atoms 51 Numbers in advantage distribution

Adam epsilon 10−8

σ 2 Sigma of normal constraint

Addition reward −0.0001
step

Reward shaping

ω 0.1 Base of confidence

6 Discussion

Mini-games in StarCraft II are divided into two categories based on their charac-
teristics to test the performance of AAC and A3C. One category mainly focuses
on spatial action and another is small scale combat game(see Fig. 6, Fig. 7). After
20K episodes, the average and max score achieved by agent based on AAC are
both higher than agent based on A3C across the four mini games (see Table 3).

The key to get a better score depends on the performance of critic in Actor
Critic algorithm, namely the accuracy of the advantage estimator. In a certain
state (see Fig. 8), the Critic net in AAC estimates the reward by the expected
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Fig. 6. Performance across 2 mini-games which mainly focus on spatial action for AAC
and A3C.

Fig. 7. Performance across 2 small scale combat games for AAC and A3C.

value 16.4 and the true value is 25. On the contrary, the Critic net in A3C
estimates the reward by 6.1 and the true value is 24. Thus, the distributional
estimator in critic net collects and computes the recent expected reward of a
state, which contains more information and is closer to true reward than the
estimate of single-valued estimator in A3C. During the experiment, it is proved
that the more atoms distribution has, the more accurate the estimate is, because
the distribution is more elaborate. However, more atoms need more neurons in
the critic net and more time in training. In this paper, 256 feature neurons with
51 atoms are chosen [15].

The convergence speed of AAC and A3C is shown as the episode that the
agent achieves scores around the best. It reveals like that the convergence speed
of AAC is faster than that of A3C except in the Move to Beacon game at first
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Table 3. Best score in each mini-game.

Agent Metric Move to beacon Collect mineral

shards

Find and

defeat

Zerglings

Defeat Zerglings

and Banelings

AAC BEST MEAN 26 68 29 59

MAX 33 94 49 159

Std of last 1k episodes 1.8 7.3 6.9 21.5

A3C BEST MEAN 24 45 25 43

MAX 31 76 45 118

Std of last 1k episodes 2.4 13.6 8.6 24.5

glance. However, it should be noticed that the agent based on A3C achieved
extremely bad score throughout the middle of the experiment (from episode 5k
to 6k), and the reason is that the relatively small probability of spatial action
leads to the hesitation but not confidence of agent (see Fig. 8).

Fig. 8. Performance of AAC and A3C on Move to Beacon in episode 5k, (a) (b) (c)
(d) is generated by AAC while (d) (e) (f) is generated by A3C.

In conclusion, around episode 5k, the agent based on A3C indecisively chose
the right target due to the max but not dominant probability, and it indicates
that the policy net has not converged. As a result, the convergence speed depends
not only on when the agent performs a stable and good score, but also on the
distribution of policy net which represents the confidence of the agent. In AAC,
Normal Constraint encourages and guides the agent in the right direction. Addi-
tionally, this positive feedback allows the agent to explore in a certain area of
huge action space with more confidence, so as to speed up the convergence. As a
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result, agent based on AAC converges faster than A3C across all games. Besides,
probability distribution of policy net has not converged in two small scale combat
games because training episodes are not enough.

In future work, more episodes and distribution atoms in advantage estimator
will be applied in more difficult mini-games, full games and other fields. In
addition, whether AAC can perform even better than other AC algorithm in
more complex environments will also be tested.
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