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Abstract. Clustering is one of the most fundamental techniques in
statistic and machine learning. Due to the simplicity and efficiency, the
most frequently used clustering method is the k-means algorithm. In the
past decades, k-means and its various extensions have been proposed
and successfully applied in data mining practical problems. However,
previous clustering methods are typically designed in a single layer for-
mulation. Thus the mapping between the low-dimensional representation
obtained by these methods and the original data may contain rather com-
plex hierarchical information. In this paper, a novel deep k-means model
is proposed to learn such hidden representations with respect to differ-
ent implicit lower-level characteristics. By utilizing the deep structure
to conduct k-means hierarchically, the hierarchical semantics of data is
learned in a layerwise way. The data points from same class are gath-
ered closer layer by layer, which is beneficial for the subsequent learning
task. Experiments on benchmark data sets are performed to illustrate
the effectiveness of our method.
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1 Introduction

The goal of clustering is to divide a given dataset into different groups such
that similar instances are allocated into one group [22,33,34]. Clustering is one
of the most classical techniques that has been found to perform surprisingly
well [15,19,21]. Clustering has been successfully utilized in various application
areas, text mining [16,36], voice recognition [1], image segmentation [38], to
name a few. Up to now, myriads of clustering methods have been designed
under the framework of different methodologies and statistical theories [30,31],
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like k-means clustering [26], spectral clustering [29], information theoretic clus-
tering [9], energy clustering [37], discriminative embedded clustering [11], multi-
view clustering [12,20,23,32], etc. Among them, k-means, as one of the most
popular clustering algorithms, has received considerable attention due to its effi-
ciency and effectiveness since it was introduced in 1967 [26]. Furthermore, it has
been categorized as one of the top ten data mining algorithms in term of usage
and clustering performance [39]. There is no doubt that k-means is the most
popularly used clustering method in various practical problems [13].

Recently, the Nonnegative Matrix Factorization (NMF) draws much atten-
tion in data clustering and achieves promising performance [2,14,18]. Previ-
ous work indicated that NMF is identical to k-means clustering with a relaxed
condition [8]. Until now several variants of k-means have been presented to
improve the clustering accuracy. Inspired by the principal component analy-
sis (PCA), [6] shown that principal components actually provide continuous
solutions, which can be treated as the discrete class indicators for k-means
clustering. Moreover, the subspace separated by the cluster centroids can be
obtained by spectral expansion. [5] designed a spherical k-means for text cluster-
ing with good performance in terms of both solution quality and computational
efficiency by employing cosine dissimilarities to perform prototype-based parti-
tioning of weight representations. [10] extended a kernel k-means clustering to
handle multi-view datasets with the help of multiple kernel learning. To explore
the sample-specific attributes of data, the authors focused on combining kernels
in a localized way. [27] proposed a fast accelerated exact k-means, which can be
considered as a general improvement of existing k-means algorithms with better
estimates of the distance bounds. [28] assumed that incorporates distance bounds
into the mini-batch algorithm, data should be preferentially reused. That is, data
in a mini-batch at current iteration is reused at next iteration automatically by
utilizing the nested mini-batches.

Although the aforementioned k-means methods have shown their effective-
ness in many applications, they are typically designed in a single layer formu-
lation. As a result, the mapping between the low-dimensional representation
obtained by these methods and the original data may still contain complex
hierarchical information. Motivated by the development of deep learning that
employs multiple processing layers to explore the hierarchical information hid-
den in data [3], in this paper, we propose a novel deep k-means model to learn
the hidden information with respect to multiple level characteristics. By utiliz-
ing the deep structure to conduct k-means hierarchically, the data hierarchical
semantics is learned in a layerwise way. Through the deep k-means structure,
instances from same class are pushed closer layer by layer, which is beneficial for
the subsequent learning task. Furthermore, we introduce an alternative updat-
ing algorithm to address the corresponding optimization problem. Experiments
are conducted on benchmark data sets and show promising results of our model
compared to several state-of-the-art algorithms.
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2 Preliminaries

As mentioned before, NMF is essentially identical to relaxed k-means algo-
rithm [8]. Before introducing our deep k-means, first we briefly review NMF [25].
Denote a nonnegative data matrix as X = [x1, x2, · · · , xn] ∈ R

m×n, where n is
the number of instances and m is the feature dimension. NMF tries to search
two nonnegative matrices U ∈ R

m×c and V ∈ R
n×c such that

JNMF =
n∑

i=1

m∑

j=1

(
Xij − (UVT )ij

)2

= ‖X − UVT ‖2F

s.t.U ≥ 0,V ≥ 0,

(1)

where ‖·‖F indicates a Frobenius norm and Xij is the (i, j)-th element of X. [25]
proved that Eq. (1) is not jointly convex in U and V (i.e., convex in U or V
only), and proposed the following alternative updating rules to search the local
minimum:

Uij ← Uij
(XV)ij

(UVTV)ij
,

Vij ← Vij
(XTU)ij

(VUTU)ij
,

where V denotes the class indicator matrix in unsupervised setting [17], U
denotes the centroid matrix, and c is cluster number. Since c � n and c � m,
NMF actually tries to obtain a low-dimensional representation V of the original
input X.

Real-world data sets are rather complex that contain multiple hierarchical
modalities (i.e., factors). For instance, face data set typically consists several
common modalities like pose, scene, expression, etc. Traditional NMF with single
layer formulation is obviously unable to fully uncover the hidden structures of
the corresponding factors. Therefore, [35] proposed a multi-layer deep model
based on semi-NMF to exploit hierarchical information with respect to different
modalities. And models a multi-layer decomposition of an input data X as

X ≈ U1VT
1 ,

X ≈ U1U2VT
2 ,

...

X ≈ U1U2 · · ·UrVT
r ,

(2)

where r means the number of layers, Ui and Vi respectively denote the i-th
layer basis matrix and representation matrix. It can be seen that deep semi-
NMF model also focuses on searching a low-dimensional embedding representa-
tion that targets to a similar interpretation at the last layer, i.e., Vr. The deep
model in Eq. (2) is able to automatically search the latent hierarchy by further
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factorizing Vi(i < r). Furthermore, this model is able to discover representa-
tions suitable for clustering with respect to different modalities (e.g., for face
data set, U3 corresponds to the attributes of expressions, U2U3 corresponds
to the attributes of poses, and U = U1U2U3 finally corresponds to identities
mapping of face images). Compared to traditional single layer NMF, deep semi-
NMF provides a better ability to exploit the hidden hierarchical information,
as different modalities can be fully identified by the obtained representations of
each layer.

3 The Proposed Method

In this section, we introduce a novel deep k-means model for data clustering,
followed with its optimization algorithm.

3.1 Deep K-Means

Traditional k-means methods are typically designed in a single layer formulation.
Thus the mapping between the obtained low-dimensional representation and the
original data may contain complex hierarchical information corresponding to
the implicit modalities. To exploit such hidden representations with respect to
different modalities, we propose a novel deep k-means model by utilizing the
deep structure to conduct k-means hierarchically. The hierarchical semantics of
the original data in our model is comprehensively learned in a layerwise way.
To improve the robustness of our model, the sparsity-inducing norm, l2,1-norm,
is used in the objective. Since l2,1-norm based residue calculation adopts the
l2-norm within a data point and the l1-norm among data points, the influence
of outliers is reduced by the l1-norm [24]. Moreover, the non-negative constraint
on Ui is removed such that the input data can consist of mixed signs, thus
the applicable range of the proposed model is obviously enlarged. Since the
non-negativity constraints on Vi make them more difficult to be optimized, we
introduce new variables V +

i to which the non-negativity constraints are applied,
with the constraints Vi = V +

i . In this paper, we utilize the alternating direction
method of multipliers (ADMM) [4] to handle the constraint with an elegant way,
while maintain the separability of the objective. As a result, the non-negativity
constraints are effectively incorporated to our deep k-means model. Our deep
k-means model (DKM) is stated as

JDKM = ‖X − Y‖2,1

s.t.Y = U1U2 · · ·UrVT
r , (Vr).c = {0, 1},

C∑

c=1

(Vr).c = 1,

Vi = V+
i ,V+

i ≥ 0, i ∈ [1, . . . , r − 1].

(3)

While ‖X − Y‖2,1 is simple to minimize with respect to Y, ‖X −
U1U2 · · ·UrVT

r ‖2,1 is not simple to minimize with respect to Ui or Vi. Multi-
plicative updates implicitly address the problem such that Ui and Vi decouple.
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In ADMM context, a natural formulation would be to minimize ‖X − Y‖2,1
with the constraint Y = U1U2 · · ·UrVT

r . This is the core reason why we choose
to solve such a problem like Eq. (3). In addition, each row of Vr in Eq. (3) is
enforced to satisfy the 1-of-C coding scheme. Its primary goal is to ensure the
uniqueness of the final solution Vr.

The augmented Lagrangian of Eq. (3) is

L(Y,Ui,Vi,V+
i ,μ,λi) = ‖X − Y‖2,1 + <μ,Y − U1U2 · · ·UrVT

r >

+
ρ

2
‖Y − U1U2 · · ·UrVT

r ‖2F +
r−1∑

i=1

<λi,Vi − V+
i > +

ρ

2

r−1∑

i=1

‖Vi − V+
i ‖2F ,

(4)

where μ and λi are Lagrangian multipliers, ρ is the penalty parameter, and
<·, ·> represents the inner product operation.

The alternating direction method for Eq. (4) is derived by minimizing L with
respect to Y,Ui,Vi,V+

i , one at a time while fixing others, which will be dis-
cussed below.

3.2 Optimization

In the following, we propose an alternative updating algorithm to solve the
optimization problem of the proposed objective. We update the objective with
respect to one variable while fixing the other variables. This procedure repeats
until convergence.

Before the minimization, first we perform a pre-training by decomposing the
data matrix X ≈ U1VT

1 , where V1 ∈ R
n×k1 and U1 ∈ R

m×k1 . The obtained
representation matrix V1 is then further decomposed as V1 ≈ U2VT

2 , where
V2 ∈ R

n×k2 and U2 ∈ R
k1×k2 . We respectively denote k1 and k2 as the dimen-

sionalities of the first layer and the second layer1. Continue to do this, finally
all layers are pre-trained, which would greatly improve the training time as well
as the effectiveness of our model. This trick has been applied favourably in deep
autoencoder networks [4].

Optimizing Eq. (4) is identical to minimizing the formulation as follows

L(Y,Ui,Vi,V+
i ,μ,λi) = Tr

(
(X − Y)D (X − Y)T

)

+
ρ

2
Tr

((
Y − U1U2 · · ·UrVT

r

) (
Y − U1U2 · · ·UrVT

r

)T)

+ <μ,Y − U1U2 · · ·UrVT
r > +

r∑

i=1

<λi,Vi − V+
i >

+
ρ

2

r∑

i=1

Tr
((

Vi − V+
i

) (
Vi − V+

i

)T)
,

(5)

1 For simplicity, the layer size (dimensionalities) of layer 1 to layer r is denoted as
[k1 · · · kr] in the experiments.
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where D is a diagonal matrix and its j-th diagonal element is

dj =
1

2‖ej‖2 . (6)

and ej is the j-th column of the following matrix

E = X − Y. (7)

Updating Ui Minimizing Eq. (4) w.r.t. Ui is identical to solving

LU = <μ,Y − U1U2 · · ·UrVT
r >

+
ρ

2
Tr

((
Y − U1U2 · · ·UrVT

r

) (
Y − U1U2 · · ·UrVT

r

)T)
.

(8)

Calculating the derivative of LU w.r.t. Ui and setting it to zero, then we have

Ui =
(
ΦTΦ

)−1

(
ΦTYṼi +

ΦTμṼi

ρ

)(
Ṽi

T
Ṽi

)−1

, (9)

where Φ = U1U2 · · ·Ui−1 and Ṽi denotes the reconstruction of the i-th layer’s
centroid matrix.
Updating Vi (i < r) Minimizing Eq. (4) w.r.t. V is identical to solving

LV =< μ,Y − U1U2 · · ·UrVT
r >

+
ρ

2
Tr

((
Y − U1U2 · · ·UrVT

r

) (
Y − U1U2 · · ·UrVT

r

)T)

+
r∑

i=1

<λi,Vi − V+
i > +

ρ

2

r∑

i=1

Tr
((

Vi − V+
i

) (
Vi − V+

i

)T)
.

(10)

Similarly, calculating the derivative of LV w.r.t. Vi, and setting it to zero, we
obtain

Vi =
(
YTΦUi + V+

i +
μTΦUi

ρ
− λi

ρ

) (
I + UT

i ΦTΦUi

)−1
, (11)

where I represents an identity matrix.
Updating Vr

(
i.e.,Vi , (i = r)

)
We update Vr by solving

JVr
= min

Vr

‖Y − U1U2 · · ·UrVT
r ‖2,1 = min

v

n∑

j=1

dj‖xj − U1U2 · · ·Urvj‖22

s.t. (Vr).c = {0, 1},

C∑

c=1

(Vr).c = 1,

(12)

where xj denotes the j-th data sample of X, and vj denotes the j-th column of
VT

r . Taking a closer look at Eq. (12), we can see that it is independent between
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different j. Thus we can independently solve it one by one:

min
v

(
d‖x − U1U2 · · ·Urv‖22

)

s.t.vc = {0, 1},
C∑

c=1

vc = 1.
(13)

Since v is coded by 1-of-C scheme, there exists C candidates that could be the
solution of Eq. (13). And each individual solution is exactly the c-th column of
identity matrix IC = [f1, f2, · · · , fC ]. Thus the optimal solution can be obtained
by performing an exhaustive search, i.e.,

v∗ = fc, (14)

where c is given by

c = arg min
c

(
d‖x − U1U2 · · ·Urfc‖22

)
. (15)

Updating Y Minimizing Eq. (4) w.r.t. Y is identical to solving

LY = Tr
(
(X − Y)D (X − Y)T

)

+
ρ

2
Tr

((
Y − U1U2 · · ·UrVT

r

) (
Y − U1U2 · · ·UrVT

r

)T)

+ <μ,Y − U1U2 · · ·UrVT
r >.

(16)

Calculating the derivative of LY w.r.t. Y and setting it to 0, we have

Y =
(
2XD + ρU1U2 · · ·UrVT

r − μ
)
(2D + ρI)−1

. (17)

Updating V+
i Minimizing Eq. (4) w.r.t. V+

i is identical to solving

LV + =
r∑

i=1

<λi,Vi − V+
i > +

ρ

2

r∑

i=1

Tr
((

Vi − V+
i

) (
Vi − V+

i

)T)
. (18)

Calculating the derivative of LV + w.r.t. V+
i and setting it to 0, we get

V+
i = Vi +

λi

ρ
. (19)

In summary, we optimize the proposed model by orderly performing the
above steps. This procedure repeats until convergence.
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Fig. 1. COIL dataset.

4 Experiments

To validate the effectiveness of our method. We compare it with the classical
k-means [26], NMF [25], Orthogonal NMF (ONMF) [8], Semi-NMF (SNMF) [7],
l2,1-NMF [24] and the deep Semi-NMF (DeepSNMF) [35].

4.1 Data Sets

We empirically evaluate the proposed method on six benchmark data sets2.
As a demonstration, Fig. 1 shows the dataset COIL. Table 1 shows the specific
characteristics of all datasets. The number of instances is ranged from 400 to
4663, and feature number is ranged from 256 to 7511.

Table 1. Characteristics of experimental data sets.

Data sets # samples # features # classes

ORL32 400 1024 40

COIL 1440 1024 20

Semeion 1593 256 10

Text 1946 7511 2

Cranmed 2431 462 2

Cacmcisi 4663 348 2

2 https://archive.ics.uci.edu/ml/datasets.html.

https://archive.ics.uci.edu/ml/datasets.html
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4.2 Parameter Setting

For k-means algorithm, we perform k-means on each data set until it conver-
gence. And the corresponding results are treated as the final result of k-means.
We also use this result as the initialization of all other compared methods for
fairness. For each compared method, the optimal value is solved based on the
parameter setting range recommended by the relevant literature, and then the
result under this condition is regarded as the final result output. For the pro-
posed deep method, the layer sizes (as described in Sect. 3.2) are set as [100 c],
[50 c] and [100 50 c] for simplicity. As for parameter ρ, we search it from {1e−5,
1e−4, 1e−3, 0.01, 0.1, 1, 10, 100}.

Under each parameter setting, we repeat the experiments 10 times for all
methods, and the average results are reported for fair comparison.

4.3 Results and Analysis

The clustering performance measured by clustering accuracy (ACC) and normal-
ized mutual information (NMI) of all methods are given in Tables 2-3. It is obvious
that our method has better results than other algorithms. The superiority of DKM
verifies that it could better explore cluster structure by uncovering the hierarchi-
cal semantics of data. That is, by utilizing the deep framework to conduct k-means
hierarchically, the hidden structure of data is learned in a layerwiseway, and finally,
a better high-level, final-layer representation can be obtained for clustering task.
By leveraging the deep framework and k-means model, the proposed DKM can
enhance the performance of data clustering in general cases.

Table 2. Clustering results of ACC on all data sets.

Datasets Kmeans NMF ONMF L21NMF SNMF DeepSNMF DKM

ORL32 50.30± 2.2 51.97± 2.8 49.90± 3.1 53.40± 4.1 51.78± 3.5 49.86± 2.0 54.50± 1.2

COIL 59.43± 6.8 62.24± 3.1 58.35± 6.0 63.49± 4.4 63.78± 5.9 66.36± 6.2 68.03± 3.8

Semeion 51.93± 2.8 42.46± 3.5 48.50± 2.8 42.47± 2.0 43.95± 2.8 44.77± 1.2 53.97± 3.3

Text 91.84± 2.1 93.85± 3.9 92.47± 2.9 90.21± 4.0 90.99± 2.0 90.67± 4.5 93.88± 5.7

Cranmed 74.58± 0.1 80.13± 8.8 77.31± 1.2 77.39± 2.5 76.49± 4.9 80.23± 3.1 82.31± 3.9

Cacmcisi 91.99± 0.2 89.75± 5.4 94.96± 0.6 95.37± 0.8 92.22± 0.3 92.80± 3.5 97.12± 7.7

Table 3. Clustering results of NMI of on all data sets.

Datasets Kmeans NMF ONMF L21NMF SNMF DeepSNMF DKM

ORL32 71.06± 1.3 72.10± 1.3 70.11± 1.7 72.70± 1.8 71.76± 1.9 68.83± 1.3 72.94± 1.5

COIL 74.53± 2.8 73.12± 1.7 72.84± 2.6 74.04± 2.3 74.91± 3.0 77.52± 7.4 78.99± 1.6

Semeion 57.34± 4.7 49.64± 5.6 53.87± 5.8 47.88± 2.7 49.72± 5.4 56.07± 2.0 62.07± 5.9

Text 61.31± 6.5 61.21± 1.5 60.88± 1.9 60.81± 3.0 57.85± 5.2 60.01± 4.2 61.55± 5.4

Cranmed 18.79± 0.3 31.67± 5.6 20.74± 0.3 20.84± 1.2 24.66± 5.4 25.05± 2.4 32.89± 2.3

Cacmcisi 58.47± 0.1 60.01± 2.5 70.42± 0.2 72.05± 0.4 70.52± 0.2 70.07± 3.3 73.06± 2.4
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Based on the theoretical analysis and empirical results presented in this
paper, it would be interesting to combine deep structure learning and classi-
cal machine learning models into a unified framework. By taking advantages of
the both learning paradigms, more promising results in various learning tasks
can be expected.

5 Conclusion

In this paper, we propose a novel deep k-means model to learn the hidden infor-
mation with respect to multiple level characteristics. By utilizing the deep struc-
ture to conduct k-means hierarchically, the data hierarchical semantics is learned
in a layerwise way. Through the deep k-means structure, instances from same
class are pushed closer layer by layer, which benefits the subsequent clustering
task. We also introduce an alternative updating algorithm to address the corre-
sponding optimization problem. Experiments are conducted on six benchmark
data sets and show promising results of our model against several state-of-the-art
algorithms.
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