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Abstract. With the wide applications of cross-view data, cross-view
Classification tasks draw much attention in recent years. Nevertheless,
an intrinsic imperfection existed in cross-view data is that the data of
the different views from the same semantic space are further than that
within the same view but from different semantic spaces. To solve this
special phenomenon, we design a novel discriminative subspace learn-
ing model via low-rank representation. The model maps cross-view data
into a low-dimensional subspace. The main contributions of the proposed
model include three points. 1) A self-representation model based on dual
low-rank models is adopted, which can capture the class and view struc-
tures, respectively. 2) Two local graphs are designed to enforce the view-
specific discriminative constraint for instances in a pair-wise way. 3) The
global constraint on the mean vector of different classes is developed for
further cross-view alignment. Experimental results on classification tasks
with several public datasets prove that our proposed method outperforms
other feature learning methods.

Keywords: Cross-view classification · Subspace learning ·
Discriminative analysis · Low-rank constraint.

1 Introduction

Cross-view classification is a noteworthy technology in the area of pattern recog-
nition due to the large distribution discrepancy of data from different views. So,
a well designed cross-view feature extraction plays a significant role in improving
the classification performance. Nevertheless, it is worth noting that the samples
in same view space are closer than that in different view spaces but from the
same class space. Therefore, how to deal with the large view-variance between
data from two views is a meaningful topic for subspace learning.

The aim of subspace learning is to find a feature space that can represent the
high-dimensional data more effectively, which has been studied in many litera-
tures [4–13]. Principal component analysis (PCA) [1], as a typical method, seeks
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a projection subspace by maximizing variance. In order to make the learned
subspace discriminative, linear discriminant analysis (LDA) was proposed with
the Fisher criterion [2]. The feature subspace learned by LDA makes the intra-
class samples more similar, and the inter-class samples less similar. Unfortu-
nately, LDA may lead to overfitting for corrupted data. Recently, low-rank mod-
els to solve overfitting problems are very popular. Robust PCA (RPCA) [3]
was designed to recover noisy data through the rank-minimization technique.
Inspired by RPCA, low-rank representation (LRR) was designed to explore the
intrinsic latent manifold structures of data from multiple subspaces. Liu et al.
proposed the latent LRR (LatLRR) by considering the latent feature of the
data [4]. After that, the supervised regularization-based robust subspace (SRRS)
framework built in [5] provides a discriminative feature learning method that
unifies the low-rank constraint and discriminant to learning low-dimensional
subspace. In [6], an unsupervised robust linear feature extraction method was
designed, namely low-rank embedding (LRE). LRE can reduce the negative
impact of samples being occluded and corrupted. Ren et al. extended the LRE
by introducing the l2,1-norm term to make it more robust and effective [7].

Recently, a large number of cross-view feature learning algorithms also
have achieved satisfied achievement [14–17]. However, some of methods ignore
that samples from same view also have valuable discriminative information. To
address this problem, Kan et al. designed a multi-view discriminant analysis
(MvDA) [14]. MvDA can learn a multi-view feature subspace by optimizing
multiple linear transforms from different views. Next, a most recent method was
proposed, namely robust cross-view learning (RCVL) [15], which aims to learn
an effective discriminative subspace by two discriminative graphs. Nevertheless,
the global discriminative information is lost in RCVL.

Inspired by the above mentioned subspace learning methods, we propose a
novel feature subspace learning model by exploring the local and global dis-
criminative constraints simultaneously to realize the cross-view alignment. The
main values of our methods are presented as follows: (1) The dual low-rank con-
straints framework is built to describe the two latent structures in cross-view
data, namely the view structure and the class structure. Our method reveals
the potential manifold of cross-view data so that the learned subspace contains
more valuable feature information. (2) A local alignment mechanism based on
two local graph constraints is adopted to constrain the neighbor relationships of
the samples in the feature subspace. This mechanism can make the two structures
in (1) to be separated effectively. (3) We set up a global alignment constraint
as a complement to further reduce the effect of view-variance within the classes
between views. The illustration of our framework is shown in Fig. 1, which learns
a invariant subspace by maximizing the distance of the inter-class within each
view and minimizing intra-class between views from both of class and view per-
spective.

The structure for the remainder of this paper is as follows. Section 2 simply
introduces some of the related methods. Section 3 presents the proposed model
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Fig. 1. Conceptual illustration of the proposed discriminative subspace learning frame-
work

and its solution process. Section 4 shows the results of the comparison experiment
and parameter experiment. At last, Section 5 summarizes this paper.

2 Related Works

There are two related methods involved in our framework: 1) low-rank represen-
tation, 2) linear discriminant analysis. Then, we discuss the role of two related
works as follows.

2.1 Low-Rank Representation

Low-rank representation can cope well with data from multiple subspaces.
Assuming X = [X1, X2, ...,Xk] is a matrix of natural data from k categories.
LRR can be expressed by

min
Z,E

rank(Z) + λ ‖E‖1 , s.t.X = XZ + E (1)

in which Z is a low-rank linear combination coefficient matrix of data X. Gen-
erally, the samples data contains a lot of random noise. In function (1), matrix
E denotes the noisy data, and we use l1-norm to get randomness. In this way,
XZ can recover the true data from noise. λ > 0 is the balanced parameter. LRR
can dig and utilize the self-similar information hidden in data. Therefore, LRR
can not only learn the original subspace of the data in noisy environments, but
also have the ability to uncover the latent manifold structure of data, which is
belief to be feasible and potential for representing the cross-view data.
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2.2 Linear Discriminant Analysis

The principle of LDA is to find a discriminative subspace with the largest inter-
class variance and the smallest intra-class variance. Assuming training data
{X, y} = {(x1, y1), ..., (xn, yn)} is from m classes, where X denotes samples and
y means label. In addition, x̂ represents the center of all samples, and x̂i repre-
sents the center of the ith class samples. Hence, between-class and within-class
scatter matrices are expressed by:

Sb =
m∑

i=1

ni(x̂i − x̂)(x̂i − x̂)T

Sw =
m∑

i=1

∑

x∈Xi

(x − x̂i)(x − x̂i)T
(2)

where ni is the number of samples from the ith class, and Xi is the ith class
samples set. Therefore, LDA finds a projection by maximizing the generalized
Rayleigh quotient as follows:

max
w

Tr(wTSbw)
Tr(wTSww)

(3)

where Tr(·) denotes the trace operator and w is the projection matrix. In addi-
tion, the trace-ratio problem is not conducive to the solution of subsequent prob-
lems, so we transform function (3) into the trace-difference problem as follows:

max
w

Tr(wTSbw) − Tr(wTSww) (4)

LDA can reflect differences between samples based on a supervised discriminative
constraint. However, its performance is not satisfied for cross-view analysis due
to the large discrepancy of data distribution from different views.

3 The Proposed Algorithm

This section gives detailed discussions on our framework and develops a numer-
ical scheme to obtain the approximate solutions iteratively.

3.1 Notations

Assuming X = [X1,X2] ∈ Rd×n is a set of cross-view samples with two views
from c classes, where n means the number of the training samples and d denotes
the dimensionality of natural data. We design two local graph-based constraints
to seek two latent view-invariant structures, which are composed of class struc-
ture matrix Zc ∈ Rn×n and view structure matrix Zv ∈ Rn×n, respectively.
E ∈ Rd×n is a matrix of error data designed to obtain a robust subspace from
noise. P ∈ Rd×p is the low-dimensional projection matrix. In addition, V1, V2, V̂1

and V̂2 ∈ Rn×c are constant coefficient matrices used to construct the discrimi-
native global alignment constraint.



172 A. Li et al.

3.2 Objective Function

To address the discriminative cross-view analysis, we proposed a novel subspace
learning with simultaneous local and global alignments, of which the objective
function is as follows:

min
Zc,Zv,E,P

D(Zc,Zv,E)
︷ ︸︸ ︷
‖Zc‖∗ + ‖Zv‖∗ + λ1 ‖E‖2,1

+

U(P,Zc,Zv)︷ ︸︸ ︷
α(Tr(PTXZcLc(PTXZc)T ) − Tr(PTXZvLv(PTXZv)T ))

+

G(P,Z)
︷ ︸︸ ︷
λ2(Tr(SW (PTXZ)) − Tr(SB1(PTXZ)) − Tr(SB2(PTXZ)))

s.t.X = X(Zc + Zv) + E,PTP = I

(5)

where D(Zc, Zv, E) represents class and view structures of the cross-view space
by dual low-rank representations. U(P,Zc, Zv) enforces the view-specific dis-
criminative local neighbor relationship among instances. G(P,Z)(Z = Zc + Zv)
presents the global discriminative constraint by the mean instance of each class
cross different views. In short, we combine the local alignment constraint and the
global alignment constraint on a dual low-rank framework to learn cross-view
subspaces. In the following, the above terms are illustrated in detail.

Dual Low-Rank Representations: In general, we adopt a single rank min-
imum constraint to learn the latent information of data. But cross-view data
contains class information and view information simultaneously. Even data from
the same class have a large divergence. Hence, we use two structure matrices Zc

and Zv to solve the specific problem that is the between-view samples from the
same class are far away and the within-view samples from the different classes
are closer. Thus, we define the first term with dual low-rank representations to
strip down the class and view structures as follows:

D(Zc, Zv, E) = ‖Zc‖∗ + ‖Zv‖∗ + λ1 ‖E‖2,1 , s.t.X = X(Zc + Zv) + E (6)

where ‖·‖∗ is the symbol of the nuclear norm, which is an approximate repre-
sentation of the rank minimum problem, and its solution relatively convenient.
We adopt the l2,1-norm to make matrix E have the sparsity as the noisy data.
λ1 is a positive balance parameter, which can be tuned in experiments.

Graph-Based Discriminative Local Alignment: To introduce the local dis-
criminative constraint, two graph-based constraints are constructed on the each
pair of synthetic samples with Zc and Zv from class and view subspaces respec-
tively as follows, which can better cluster intra-class samples and decentralize
inter-class ones.

Uc =
∑

i,j
(Yc,i − Yc,j)2W c

i,j

Uv =
∑

i,j
(Yv,i − Yv,j)2W v

i,j

(7)
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where Yc,i, Yv,i denote the ith projected sample of cross-view data in the class
space Yc = PTXZc and view space Yv = PTXZv, respectively. Correspondingly,
Yc,j , Yv,j denote the jth projected sample. W c

i,j and W v
i,j denote graph weight

matrices that are defined as follows:

W c
i,j =

{
1, if xi ∈ N c

k1
(xj), and li = lj ,

0, otherwise

W v
i,j =

{
1, if xi ∈ Nv

k2
(xj),but li �= lj ,

0, otherwise

(8)

where li and lj are the labels of sample xi, xj , respectively. xi ∈ N c
k1

(xj) denotes
that xi belongs to the k1 adjacent data sets of the same sample xj . xi ∈ Nv

k2
(xj)

means that xi belongs to the k2 adjacent data sets of the same view sample
xj . With the help of trace operator, the pair-wise local discriminative constraint
U(P,Zc, Zv) can be rewritten with Uc and Uv based on Fisher criterion as follows.

U(P,Zc, Zv) = α(Tr(PTXZcLc(PTXZc)T ) − Tr(PTXZvLv(PTXZv)T )) (9)

where Lc and Lv mean the Laplacian operators of W c and W v. α is a balance
parameter, which can be tuned in experiments.

Discriminative Global Alignment: It is noteworthy that the U(P,Zc, Zv)
preserves the discriminant in a local way by focusing on each pair of sam-
ples, which is not powerful enough. So, to further improve the proposed our
model, we design a global discriminative constraint for cross-view analysis as
the third term G(P,Z), which is denoted as G(P,Z) = Tr(SW (PTXZ)) −
Tr(SB1(PTXZ)) − Tr(SB2(PTXZ)). In G(P,Z), SW (PTXZ) is within-class
scatter matrix of two views, defined by SW (PTXZ) =

∑c
j=1(μ

1
j −μ2

j )(μ
1
j −μ2

j )
T .

Tr(SBi(PTXZ))(i = 1, 2) is between-class scatter matrices of the ith view,
defined by Tr(SBi(PTXZ)) =

∑c
j=1(μ

i
j − μi)(μi

j − μi)T , where μi
j denotes the

mean projected sample of the jth class from the ith view, and μi denotes the
overall mean projected sample from the ith view. To be computed efficiently, the
third term can be designed as:

G(P,Z) = λ2(Tr(SW (PTXZ)) − Tr(SB1(PTXZ)) − Tr(SB2(PTXZ)))

= λ2(
∥∥PTXZ(V1 − V2)

∥∥2

F
−

∥∥∥PTXZ(V1 − V̂1)
∥∥∥
2

F
−

∥∥∥PTXZ(V2 − V̂2)
∥∥∥
2

F
)

(10)
where Z = Zc+Zv denotes the global representation. λ2 is a balance parameter,
which can be tuned in experiments. Vi and V̂i(i = 1, 2) are the coefficient matrices
of the within-class mean sample of each view and the global mean sample of each
view, respectively. In detail, Vi(k,m) = (1/nm

i ) only if xk belongs to the mth
class from the ith view, where nm

i means the number of samples of the mth
class from the ith view; otherwise, Vi(k,m) = 0. V̂i(k,m) = (1/ni) only if xk

belongs to the ith view, where ni denotes the number of samples from the ith
view; otherwise, V̂i(k,m) = 0. Equation (10) achieves global alignment by the
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mean vectors of joint synthetic samples from global representation and further
enforces the view-invariant constraint on the same class.

3.3 Optimization Scheme

To facilitate the solution of Zc and Zv in Eq. (5), we add two auxiliary variables
Jc and Jv. Then, Eq. (5) can be transformed into the following form:

min
Zc,Zv,E,P

‖Jc‖∗ + ‖Jv‖∗ + λ1 ‖E‖2,1 + U(P,Zc, Zv) + G(P,Z)

s.t.X = X(Zc + Zv) + E,PTP = I, Jc = Zc, Jv = Zv

(11)

Then, we transform the function (11) to the Augmented Lagrangian form, and
the result is as follows:

min
Zc,Zv,E,P

‖Jc‖∗ + ‖Jv‖∗ + λ1 ‖E‖2,1 + U(P,Zc, Zv) + G(P,Z)

+ Tr(Y T
1 (X − X(Zc + Zv) − E)) + Tr(Y T

2 (Jc − Zc)) + Tr(Y T
3 (Jv − Zv))

+
η

2
(‖X − X(Zc + Zv) − E‖2F + ‖Jc − Zc‖2F + ‖Jv − Zv‖2F )

s.t.PTP = I
(12)

where Y1, Y2, Y3 are the Lagrange multipliers and η > 0 is the penalty parameter.
We use an alternating solution to iteratively optimize all variables. We define
the left-bottom of the variable plus t as the t-th solution.

First, we solve the projection matrix Pt one by one, because Pt is an orthog-
onal matrix. Hence, enforcing the derived function to be zero, the objective
function with respect to P is:

(XZt((V1 − V̂1)(V1 − V̂1)T + (V2 − V̂2)(V2 − V̂2)T − (V1 − V2)(V1 − V2)T )ZT
t XT

− α(X(Zc,tLcZc,t − Zv,tLvZv,t)XT ))Pi,t = εi,tPi,t

(13)
Updating Jc and Jc:

Jc,t+1 = min
Jc,t

1
ηt

‖Jc,t‖∗ +
1
2

‖Jc,t − (Zc,t + (Y2,t/ηt))‖2F (14)

Jv,t+1 = min
Jv,t

1
ηt

‖Jv,t‖∗ +
1
2

‖Jv,t − (Zv,t + (Y3,t/ηt))‖2F (15)

The singular value thresholding is an approximate method to solve the above
two kernel norm minimization equations[18].

Then, we ignore the other variables except Zc or Zv and make the function
to be zero.

Zc,t+1((λ2H + αLc)/ηt) + XN (I + XTX)Zc,t+1

=XN (XT (X − XZv,t − Et)) + Jc,t + ((XTY1,t − Y2,t)/ηt)) − λ2

ηt
Zv,tH

(16)
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Zv,t+1((λ2H − αLv)/ηt) + XN (I + XTX)Zv,t+1

=XN (XT (X − XZc,t − Et)) + Jv,t + ((XTY1,t − Y3,t)/ηt)) − λ2

ηt
Zc,tH

(17)

where H = V1V̂
T
1 + V2V̂

T
2 + V̂1V

T
1 + V̂2V

T
2 − V1V

T
2 − V2V

T
1 − V̂1V̂

T
1 − V̂2V̂

T
2 and

XN = (XTPtP
T
t X)−1. It is obvious that Eq. (16) and Eq. (17) are two standard

Sylvester equations, which can be easily solved.
Updating E:

Et+1 = min
Et

λ1

ηt
‖Et‖2,1 +

1
2

‖Et − (X − X(Zc,t + Zv,t) + Y1/ηt)‖2F (18)

The above equation is a l2,1-norm minimization problem whose solution is shown
in [19].

Algorithm 1
Input: data matrix X, parameters λ1,λ2,α
Initialize: ρ = 1.3, θ = 10−9, t = 0, tmax = 200, η0 = 0.1, ηmax = 1010;
while not converged or t ≤ tmax do
1. Calculate Pt+1 using Eq.(13);
2. Calculate Jc,t+1 using Eq.(14);
3. Calculate Jv,t+1 using Eq.(15);
4. Calculate Zc,t+1 using Eq.(16);
5. Calculate Zv,t+1 using Eq.(17);
6. Calculate Et+1 using Eq.(18);
7. Calculate Y1,t+1 by

Y1,t+1 = Y1,t + ηt(X − X(Zc,t+1 + Zv,t+1) − Et+1)
8. Calculate Y2,t+1 by Y2,t+1 = Y2,t + ηt(Jc,t+1 − Zc,t+1)
9. Calculate Y3,t+1 by Y3,t+1 = Y3,t + ηt(Jv,t+1 − Zv,t+1)
10. Calculate the parameter ηt+1 by ηt+1 = min(ηmax, ρηt);
11. Check convergence by

max(‖X − X(Zc,t+1 + Zv,t+1) − Et+1‖∞ ,
‖Jc,t+1 − Zc,t+1‖∞ , ‖Jv,t+1 − Zv,t+1‖∞) < θ;

12. t = t + 1.
end while
Output: Jc, Jv, Zc, Zv, E, P

The solution of all variables in objective function (12) is shown in Algorithm
1. Where these parameters ρ, θ, tmax, η, ηmax are set by experience. Moreover,
the trade-off parameters α, λ1, λ2 are tuned by the experiments and we initialize
these matrices Zc, Zv, E, Y1, Y2, Y3 as 0.

4 Experiments

In this section, we compare the proposed algorithm with excellent feature sub-
space learning algorithms. The data are mapped by the low-dimensional sub-
space as the features, on which the kNN classifier is implemented to valuate the
performance.
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4.1 Experimental Datasets

CMU-PIE Face dataset is composed of face pictures of 68 different people.
Everyone has 21 different illumination conditions and 9 different poses. We adopt
4 poses Pose05, Pose09, Pose27 and Pose29. We divide the dataset equally to
set different cross-view training and testing subsets. Wikipedia dataset is an
image-text bimodal data set, consisting of 2866 image-text samples from 10
classes. Due to the inconsistency of dimensionality of the two feature, we use
PCA to adjust the image dimensions for the next experiment. COIL-20 object
dataset is composed of 20 objects from a level 360-degree view. There are 5
degrees between every two adjacent images, so each category has 72 samples. We
divide the 72 images into two groups G1 and G2. In addition, G1 is composed of
samples from [0◦, 85◦] and V2 [185◦, 265◦]. Similarly, G2 is composed of samples
from [90◦, 175◦] and [270◦, 355◦]. COIL-100 object dataset is an extension of
the COIL-20. The only difference is that the COIL-100 is composed of 20 objects
from a level 360-degree view. Therefore, the set of the COIL-100 database is
similar to the COIL-20 dataset.

4.2 Experimental Results and Analysis

In experiments, we select PCA, LDA, locality preserving projections (LPP)
[20], LatLRR, SRRS, and RCVL as several comparison methods. To CMU-PIE
dataset, we randomly select two poses to form a cross-view experiment set, where
C1:{ Pose05, Pose09}, C2:{Pose05, Pose27}, C3:{Pose05, Pose29}, C4:{Pose09,
Pose 27}, C5:{Pose09, Pose29}, C6: {Pose27, Pose29}. We show the classifica-
tion results of all experimental algorithms in Table 1. For COIL-20 and COIL-100
object databases, we select two sets of samples from G1 and G2 as a cross-view
training set, and the others set as a test set. Figure 2 displays the classifica-
tion results of four experimental groups from COIL-20 and COIL-100 datasets.
Moreover, Fig. 3 displays the results of comparison experiments on Wikipedia.

Table 1. Classification results (%) of all methods on CMU-PIE dataset.

Methods C1 C2 C3 C4 C5 C6

LDA 62.96 66.76 62.16 61.50 56.54 61.83

PCA 48.28 50.50 49.07 48.43 45.51 49.68

LatLRR 65.10 66.61 62.47 63.09 61.04 60.42

LPP 62.40 60.17 61.97 62.13 58.34 60.72

SRRS 95.35 91.66 95.82 90.22 96.04 87.16

RCVL 97.14 93.70 97.26 92.99 97.55 88.60

Ours 98.43 93.47 98.23 91.52 98.53 89.42

The results of experiments prove that our method achieves the persistent higher
classification results than other methods. Another result also can be found that
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the classification results of most methods based on LRR are better than that of
other comparisons. It is due to that low-rank constraint can retain more valid
latent structural information hidden in cross-view data. Nevertheless, among the
comparison methods on different datasets, our proposed method is prominent
and competitive consistently by considering more cross-view requirements on
both local and global alignments.
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Fig. 2. Recognition results of different experiments on COIL-20 and COIL-100.

0

10

20

30

40

50

60

Cl
as

sif
ica

tio
n 

ra
te

s 
(%

)

PCA LDA LPP LatLRR SRRS RCVL Ours

Fig. 3. Classification results of comparison experiments on Wikipedia dataset.

4.3 Performance Evaluations

In this section, we first point out how the parameters affect the classification
performance. Then, the convergence analysis of the numerical scheme is also
reported.

Our framework has three main parameters α, λ1, λ2. We select CMU-PIE C1
to test their influence. The classification accuracy with variational parameters
is shown in Fig. 4. When the parameters λ1 and λ2 changes within a certain
range, the performance fluctuation on classification is slight. For α, the best
performance happens at α = 102. The results show that the parameters are
not quite sensitive to the performance. More stable classification results can be
obtained with the learned feature subspace of our proposed algorithm. In addi-
tion, the maximum value of ‖X − X(Zc,t+1 + Zv,t+1) − Et+1‖∞, ‖Jc − Zc‖∞
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Fig. 4. Classification results with different values of (a) α,(b) λ1 and (c) λ2, where the
parameters α, λ1, λ2 value from −3 to 3 denotes

[
10−3, 10−2, 10−1, 1, 10, 102, 103,

]
. (d)

The convergence curve with increasing iterative step.

and ‖Jv − Zv‖∞ is taken as the criteria to evaluate the convergence in each iter-
ation. The convergence curve with increasing iterative step is shown in Fig. 4(d),
from which it is confirmed that our method converges fast within a few of iter-
ations.

5 Conclusion

In this paper, a discriminative subspace learning model based low-rank con-
straint is provided to apply the cross-view classification. The proposed method
learns a projection subspace by finding and separating two potential manifold
structures with dual low-rank representations. To further enhance the discrimi-
nant and adaptability, both of the local and global discriminants are utilized for
cross-view alignment, which is validated to be helpful for learning view-invariant
subspace. Moreover, to solve the proposed model, a reliable optimization scheme
is also designed to ensure convergence. Extensive results prove that our method
is superior to existing conventional methods.
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