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Abstract. Semi-supervised feature selection is an active topic in machine
learning and data mining. Laplacian support vector machine (LapSVM)
has been successfully applied to semi-supervised learning. However,
LapSVM cannot be directly applied to feature selection. To remedy it,
we propose a sparse Laplacian support vector machine (SLapSVM) and
apply it to semi-supervised feature selection. On the basis of LapSVM,
SLapSVM introduces the �1-norm regularization, which means the solu-
tion of SLapSVM has sparsity. In addition, the training procedure of
SLapSVM can be formulated as solving a quadratic programming prob-
lem, which indicates that the solution of SLapSVM is unique and global.
SLapSVM can perform feature selection and classification at the same
time. Experimental results on semi-supervised classification problems
show the feasibility and effectiveness of the proposed semi-supervised
learning algorithms.

Keywords: Support vector machine · Semi-supervised learning ·
Feature selection · �1-norm regularization · Quadratic programming

1 Introduction

Recently, semi-supervised feature selection has attracted substantial attention in
machine learning and data mining [23,24]. There are two reasons. One reason is
that data collected from real-world applications would have a lot of features. In
this case, it is necessary to reduce dimension to achieve better learning perfor-
mance. As a technique for dimension reduction, feature selection has always been
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of concern. The other reason is that labeling examples is expensive and time-
consuming while there are large numbers of unlabeled examples available in many
practical problems, which results in semi-supervised learning methods. In semi-
supervised learning, algorithms construct their models from a few labeled exam-
ples together with a large collection of unlabeled data, including graph-based
methods [1,4,11,13,30,31], methods based on support vector machine (SVM)
[2,3,6,8], and others [5,14,16,19,20,25,26]. This paper focuses on SVM-based
methods and discusses the issue of semi-supervised feature selection.

Famous semi-supervised methods based on SVM include transductive sup-
port vector machine (TSVM) [8], semi-supervised support vector machine
(S3VM) [3], and Laplacian support vector machine (LapSVM) [2]. Bennett et al.
proposed S3VM to construct an SVM using both the labeled and unlabeled data
[3]. S3VM is iteratively tagging unlabeled data in the training procedure and is
usually time consuming. Due to its way to utilize the unlabeled data, S3VM
cannot directly classify unseen instances. To implement feature selection using
S3VM, Hoai et al. proposed sparse semi-supervised SVM (S4VM) replacing �2-
norm by �0-norm in S3VM. The objective of S4VM is solved by applying DC
(difference of convex) programming [12]. Moreover, Lu et al. cast semi-supervised
learning into an �1-norm linear reconstruction problem and presented an �1-norm
semi-supervised learning method [14]. However, these methods cannot classify
new instances directly due to their “closed” nature. LapSVM, an extension of
SVM to the semi-supervised field, introduces an additional regularization term
on the geometry of both labeled and unlabeled samples by using a graph Lapla-
cian [2]. LapSVM follows a non-iterative optimization procedure and can be
taken as a kind of graph-based methods. Gasso et al. proposed an �1-norm con-
straint Laplacian SVM (�1-NC LapSVM) by adding an extra �1-norm constraint
to the optimization problem of LapSVM [9]. The sparseness of the solution to
�1-NC LapSVM is determined by the size of regularization parameter. However,
experimental results show that the sparseness of �1-NC LapSVM is limited for
feature selection.

In fact, real data often contains noise, including redundant features, which
would have a negative effect on the model performance. In order to eliminate
the effect of noise or redundancy on data, it is necessary to generate a sparse
decision model to implement feature selection. To implement it, this paper pro-
poses a sparse Laplacian support vector machine (SLapSVM) to perform feature
selection. To get a sparse decision model, we adopt the hinge loss and �1-norm
regularization simultaneously. It is known that the hinge loss can lead to a sparse
model representation for SVM [15,18]. In addition, the �1-norm regularization
penalty as a substitution of the �2-norm regularization penalty can also induce a
sparse solution [10,21,27,32]. Through the sparse decision model, of SLapSVM,
we achieve feature selection. Similar to LapSVM, SLapSVM can be formulated
as a quadratic programming problem, which indicates that its solution is unique
and global.
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The rest of the paper is outlined as follows. Section 2 presents SLapSVM.
Section 3 shows experimental results on real-world datasets. Section 4 concludes
and discusses further work.

2 SLapSVM

In this section, we propose the model of SLapSVM for semi-supervised learning.
For a semi-supervised classification problem, suppose that we have a data set
which consists of � labeled and u unlabeled examples. Let X� = {(xi, yi)}�

i=1 be
the labeled set with xi ∈ R

d and yi ∈ {+1,−1}, and Xu = {xi}�+u
i=�+1 be the

unlabeled set with xi ∈ R
d, where d is the number of features. To integrate these

two sets, let X = {xi}�+u
i=1 be the instance set and Y = {yi}�

i=1 be the label set.
Without loss of generalization, the first � examples in the set X correspond to
the labeled ones.

The goal of SLapSVM is to find an optimal decision function (model) f from
a set of linear hypothesis functions

F = {f(x)|f(x) = αTx + b,α ∈ R
d, b ∈ R} (1)

where α = [α1, · · · , αd]T is the weight vector, and b is the bias.
To obtain the hypothesis function, we replace the �2-norm regularization in

LapSVM by the �1-norm regularization, and propose LapSVM, which solves the
following optimization problem:

min
α ,b,ξ

1
�

�∑

i=1

ξi + γA(‖α‖1 + σ‖b‖1) +
γI

2

�+u∑

i=1

�+u∑

j=1

(f(xi) − f(xj))2Wij

s.t. yi(αTxi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, · · · , � (2)

where ‖ · ‖1 is the �1-norm, ξ = [ξ1, · · · , ξ�] ∈ R
� is the slack vector for labeled

samples, Wij is the similarity between xi and xj , σ is a small positive constant to
ensure a unique solution, γA ≥ 0 and γI ≥ 0 are the regularization parameters.
The first term in Eq. (2) is the hinge loss function that is very popular in SVM-
like methods and can induce sparsity in theory. The second term ‖α‖1 is the
�1-norm regularization term that can also induce sparsity in the �1-norm SVM
[27,32] and sparse signal reconstruction methods [27]. The third term is the
Laplacian regularization.

Next, we rewrite the formula Eq. (2) to solve it easily. Since there is no
constrain on α, the absolute value sign would exist in the objective function
Eq. (2) when calculating ‖α‖1. In this case, it is not easy to solve Eq. (2). We
introduce two vectors α+ and α− with positive elements, and let

α = α+ − α− (3)

Similarly, we define

b = b+ − b− (4)
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where b+ > 0 and b− > 0. In addition, the third term in Eq. (2) can be expressed
as:

1
2

�+u∑

i,j=1

(f(xi) − f(xj))2Wij =

⎛

⎜⎝
f(x1)

...
f(x�+u)

⎞

⎟⎠

T

(D − W)

⎛

⎜⎝
f(x1)

...
f(x�+u)

⎞

⎟⎠

=

⎛

⎜⎝
f(x1)

...
f(x�+u)

⎞

⎟⎠

T

L

⎛

⎜⎝
f(x1)

...
f(x�+u)

⎞

⎟⎠

= fTLf

= αTXTLXα

(5)

where X ∈ R
(�+u)×d is the sample matrix in which xi is the i-th row, the graph

Laplacian matrix L = D − W, and D ∈ R
(�+u)×(�+u) is the diagonal matrix

given by Dii =
∑

j Wij . Substituting Eqs. (3) and (5) into Eq. (2), we have the
following programming:

min
α±,b±,ξ

1

�

�∑

i=1

ξi + γA

⎛

⎝
d∑

j=1

(
α+

j + α−
j

)
+ σ(b+ + b−)

⎞

⎠ + γIαTXTLXα (6)

s.t yi

(
xT

i (α+ − α−) + (b+ − b−)
)

≥ 1 − ξi

b+, b− ≥ 0, α+
j , α−

j ≥ 0, j = 1, · · · , d

ξi ≥ 0, i = 1, · · · , �

The programming Eq. (6) can be rewritten in matrix form:

min
u

cTu +
1
2
uTQu

s.t. ATu ≥ 1

u ≥ 0

(7)

where u = [(α+)T , (α−)T , b+, b−, ξT ]T ∈ R
2d+�+2, 0 is the column vector of all

zeros, c = [γA1T , γA1T , σ, σ,1T /�]T , A = [YX�,−YX�,y,−y, I] ∈ R
�×(2d+�+2),

y = [y1, y2, · · · , y�]T , Y is the diagonal matrix with the diagonal line of y, 1 is
the column vector of all ones, I is the � × � identity matrix, X� is the sample
matrix of labeled examples, and

Q =

⎛

⎝
γIXTLX −γIXTLX 0

−γIXTLX γIXTLX 0
0 0 0

⎞

⎠ .

Obviously, Eq. (7) is a constrained quadratic program problem that has
(2d + � + 2) variables and � inequality constraints. Because the matrix Q is
symmetric and positive semi-definite, this optimization problem could be solved
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Algorithm 1: SLapSVM
Input: Instance set X = {xi}�+u

i=1 and label set Y = {yi}�
i=1, where the first �

examples in X have labels corresponding to ones in Y , regularization
parameters γA and γI .

Output: Sparse weight vector α and bias b.
1 begin
2 Construct the similarity matrix W:

Wij =

{
exp(−γ‖xi − xj‖2

2), if xi and xj are neighbors
0, otherwise

3 Represent matrices Q and A, and the vector c;
4 Solve the quadratic programming Eq. (7) to obtain the solution u;
5 Get α+, α−, b+ and b− from u;
6 Return α = α+ − α− and b = b+ − b−.

7 end

efficiently through some standard techniques, such as the active set. The algo-
rithm description of SLapSVM is given in Algorithm 1. Step 2 is to construct
the similarity matrix, where the parameter γ could be determined by applying
the median method used in [28,29].

Once we have α and b, we can obtain the classification hyperplane. For an
unseen sample x, SLapSVM predicts its label by

f̂(x) = sign
(
αTx + b

)
(8)

where sign(·) is the sign function, where f̂(x) is the estimated label for the
unseen sample x.

Let NZ = {αi|αi �= 0, i = 1, · · · , d} be the set of non-zero coefficients for
Eq. 8, where | · | is the number of elements in a set. Because both the hinge
loss and the �1-norm can induce sparsity, we could get a sparse vector α that
corresponds to weights of features. Thus, the inequality |NZ| < d holds true,
and we can perform the operation of feature selection. The set NZ can actually
reflect the selected feature subset and show the sparsity of the decision model.
The smaller |NZ| is, the more sparsity the decision model has.

3 Experimental Results

In this section, we validate the effectiveness of the proposed method in feature
selection on synthetic and UCI [7] datasets. To demonstrate the capabilities of
our algorithm, this paper compares SLapSVM with the state-of-art algorithms
for feature selection, including S3VM-PiE [12], S3VM-PoDC [12], S3VM-SCAD
[12], S3VM-Log [12], S3VM-�1 [12], and Lap-PPSVM [22]. All numerical exper-
iments are performed on a personal computer with an Inter Core I5 processor
with 4 GB RAM. This computer runs Windows 7, with Matlab R2013a.
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3.1 Data Description and Experimental Setting

Datasets used here include a toy and seven UCI ones, which are described as
follows:

– Gaussian data
In the Gaussian dataset, two-class synthetic samples are drawn from two
Gaussian distributions: N((0, 0)T , I) and N((3, 0)T , I), where I ∈ R

2×2 is the
identify matrix. There are 600 samples total and 300 samples for each class.
For each class, 80% of data are selected as the training samples and the rest
as the test ones.

– UCI data
Seven UCI datasets are summarized in Table 1. These datasets represent a
wide range of fields (including pathology, vehicle engineering, biological infor-
mation, finance and so on), sizes (from 267 to 1473) and features (from 9 to
34). All datasets are normalized such that the features scale in the interval
[−1, 1] before training and test. Similar to [22], in our experiments, each UCI
dataset is divided into two subsets randomly: 70% for training and 30% for
test.

When we compare the different methods, some performance indexes would be
considered, such as accuracy, F1-measure, and sparsity. These three performance
indexes are described as follows.

– Accuracy is defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

where TP means the number of true positive samples, TN means the number
of true negative samples, FP means the number of false positive samples and
FN means the number of false negative samples.

– F1-measure can be defined as:

F1 − measure =
2P × R

P + R
(10)

where P = TP/(TP + FP ) is precision and R = TP/(TP + FN) is recall.
– Sparsity is measured by |NZ|.

All regularization parameters in compared methods are selected from the
set {10−6, · · · , 102} using two-fold cross-validation [17]. Once the parameters
are selected, they would be returned to the training subset to learn the final
decision function. Each experiment is repeated 10 times and the average results
on test subsets are reported.
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Table 1. Description of seven UCI datasets

Australian CMC German Ionosphere Hearts Spect WDBC

#Sample 700 1473 1000 351 270 267 569

#Attribute 14 9 24 34 13 22 14

#Class 2 2 2 2 3 2 2

3.2 Gaussian Data

Consider the random Gaussian dataset. In the training subset, we randomly take
10% as the labeled set and the rest as the unlabeled set. In order to verify the
ability to select features, we append m-dimensional noise to the training subset,
where m takes a value in the set {20, 40, 60, 80, 100}. The noise in each dimension
is the white Gaussian noise and has a signal-noise ratio (SNR) of 3 dB. Note that
the original features are the first two ones in the (m + 2)-dimensional dataset.
Consider the variation of m, we choose the accuracy and the sum of the first two
feature weights as the metrics to compare SLapSVM with other methods.

The average experimental results are given in Fig. 1. Basically, SLapSVM
always achieves the best average accuracy when m > 20, as shown in Fig. 1(a).
For visualization, we normalize the weight vector so that the sum of all weights
is equal to one. From Fig. 1(b), we can see the good performance of SLapSVM in
eliminating noise or the good ability to select useful features. Only can SLapSVM
pick up the first two useful features. In other words, SLapSVM can accurately
select those features that are helpful for classification.
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Fig. 1. Performance vs. dimension of noise on Gaussian dataset, (a) classification accu-
racy and (b) sum of first two feature weights.

Further, we list the best performance and the corresponding weights of all
methods in Table 2, where the best accuracy among these compared methods
is in bold type, and “First weight” and “Second weight” mean that weights
of the first and the second features, respectively. From Table 2, we can see that
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SLapSVM has the best accuracy. Also, weights of the first and the second feature
are evenly distributed. Note that the weight vector has been normalized, or the
sum of all weights is equal to one.

Table 2. Comparison of seven methods on the Gaussian dataset

Methods Accuracy(%) First weight Second weight

S3VM-�1 97.92 ± 2.26 0.3433 0.2519

S3VM-Log 96.71 ± 1.78 0.3643 0.2892

S3VM-PiE 95.00 ± 2.97 0.8175 0.0279

S3VM-PoDC 97.92 ± 3.77 0.2648 0.2721

S3VM-SCAD 97.71 ± 2.21 0.3342 0.4257

Lap-PPSVM 93.54 ± 1.67 0.1337 0.1461

SLapSVM 98.33 ± 2.03 0.5298 0.4702

3.3 UCI Datasets

Seven UCI datasets are considered here. In the training subset, we randomly take
40% as the labeled set and the rest as unlabeled set, which follows the setting
in [12]. We compare the effectiveness of seven algorithms and report the average
results in Fig. 2, where Figs. 2(a), 2(b) and 2(c) show the average accuracy, F1-
measure and the number of non-zero coefficients, respectively. Here, the number
of non-zero coefficients reflects the ability of feature selection.

On the index of accuracy Fig. 2(a), SLapSVM performs the best among
all seven methods on six out of seven datasets. On the Ionoshpere dataset,
SLapSVM is slightly inferior to S3VM-Log. On both Australian and CMC
datasets, SLapSVM has a great improvement in classification performance. On
the other four datasets, SLapSVM is slightly superior to the compared methods.

On the index of F1-measure Fig. 2(b), SLapSVM also performs the best
among all seven methods on six out of seven datasets. On the Heart dataset,
SLapSVM is slightly inferior to Lap-PPSVM. On both Australian and CMC
datasets, �1-norm has also a great improvement. On the other four datasets,
SLapSVM is slightly superior to the compared methods.

From Figs. 2(a) and 2(b), we can conclude that SLapSVM performs very well
compared to other six methods on the performance indexes of accuracy and F1-
measure. Moreover, we focus on Fig. 2(c) that shows the ability to select features.
We can see that SLapSVM has a significantly higher feature sparsity than other
methods while maintaining the high classification performance. In other words,
SLapSVM can achieve a better performance using less features.
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Fig. 2. Different performance comparison on seven datasets, (a) accuracy, (b) F1-
measure, and (c) |NZ|.

3.4 Parameter Sensitivity Analysis

As we can see above, SLapSVM has two parameters γA and γI . We are interested
in the classification performance of our algorithm when the parameters γA and
γI are changed and the sparsity of our algorithm when γA varies. In order to
measure the sparsity of SLapSVM, we define the feature sparsity ratio (FSR) as
follows:

FSR = 1 − |NZ|
d

where d is the number of features and 0 ≤ FSR ≤ 1. FSR = 0 means that all
features are selected and there has no sparsity, and FSR = 1 means that none
of features are selected.

For this purpose, we choose the Ionosphere dataset. To observe the effect of
regularization parameters on the algorithm performance, we change both γA and
γI from 10−6 to 102. The resulted curve of accuracy vs. γA and γI obtained by
SLapSVM on the Ionosphere dataset is shown in Fig. 3(a). From this figure, we
can see that when γA is fixed, SLapSVM can achieve a better accuracy if γI is
small. For a fixed γI , the performance of SLapSVM varies largely with changing
γA. Thus, an appropriate γA would bring a good result.
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Further, we analyze the effect of γA on the performance of SLapSVM. The
curves of both accuracy and FSR vs. γA are shown in the left axes and the
right axes of Fig. 3(b), respectively. We can observe that as γA increases, FSR of
SLapSVM is getting greater. The variation of accuracy is slightly complexity. The
accuracy corresponding to 0 < FSR < 1 is greater than the one with FSR = 0
or FSR = 1. When FSR = 1, an arbitrary test sample would be assigned to
a positive label. Note that γA controls the sparsity of the weight vector, and
γI the Laplacian regularization term. Thus, the sparsity regularization has a
greater effect on the performance than the Laplacian regularization does.
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Fig. 3. Performance vs. regularization parameters on Ionoshpere, (a) accuracy, and (b)
accuracy and FSR.

4 Conclusions

In this paper, we propose a novel sparse LapSVM for semi-supervised learning
by replacing the �2-norm regularization with the �1-norm regularization, called
SLapSVM. Extensive experiments are conducted to validate the feasibility and
effectiveness of SLapSVM on feature selection. Among compared semi-supervised
methods based on SVM, SLapSVM has the best ability of feature selection, which
can be supported by experimental results on the Gaussian dataset. Furthermore,
experimental results on seven UCI datasets also indicate the superiority of the
SLapSVM in feature selection and classification.
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