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Preface

Stable coronary artery disease (CAD) is mainly 
caused by the various combinations of the 
three mechanisms, including epicardial organic 
coronary stenosis, epicardial coronary artery 
spasm, and coronary microvascular dysfunc-
tion (CMD). The representative manifestations 
of those three mechanisms are effort angina, 
vasospastic angina (VSA), and microvascular 
angina (MVA), respectively. Among them, 
VSA and MVA represent typical manifesta-
tions of coronary functional abnormalities. To 
date, much attention has been paid to the first 
mechanism, epicardial organic coronary steno-
sis, leading to the successful developments of 

percutaneous coronary intervention (PCI) and coronary artery bypass grafting 
(CABG). However, it is also widely known that approximately 40% of patients with 
obstructive CAD still suffer from persistent/recurrent angina even after complete 
revascularization with PCI and/or CABG. Also, the prevalence of angina with non-
obstructive CAD has been rapidly increasing worldwide, approximately 70% in 
women and 50% in men. Furthermore, to the surprise of the world, recently, the 
ISCHEMIA Trial has convincingly demonstrated that revascularization strategy 
with PCI or CABG has no prognostic benefit in patients with stable CAD with 
proven moderate to severe myocardial ischemia (NEJM, 2020). These lines of evi-
dence indicate the importance of coronary artery vasomotion abnormalities in the 
pathogenesis of stable CAD.

In 1983, I succeeded in developing the first animal model of coronary artery 
spasm in pigs (Science, 1983) and have been performing a series of experimental 
and clinical studies since then for almost 40 years. My research group has demon-
strated that coronary spasm is caused mainly by vascular smooth muscle hypercon-
traction mediated by Rho-kinase activation, that chronic adventitial inflammation is 
a central pathophysiology of the spasm, and that Rho-kinase inhibitor, fasudil, is 
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very effective for the spasm. We have also performed domestic and international 
collaboration registry studies on coronary artery spasm, demonstrating the ethnic 
differences in clinical characteristics, treatments, and long-term prognosis of VSA 
patients.

We have also performed a series of experimental and clinical studies on CMD, in 
which we demonstrated that Rho-kinase activation also plays an important role in 
the pathogenesis of CMD and that epicardial spasm and CMD frequently co-exist. 
As a member of the Coronary Vasomotion Disorders International Study Group 
(COVADIS), I have also been performing an international prospective registry study 
on MVA, which demonstrated the ethnic differences in clinical patient characteris-
tics, treatments, and long-term prognosis of MVA patients.

After almost 40  years of research, I have retired from Tohoku University in 
March 2020 and planned to publish a book that summarizes research works mainly 
from my laboratory to memorize my research on coronary vasomotion abnormali-
ties. In Part I, we will focus on epicardial coronary artery spasm, including epide-
miology of VSA, and pathophysiology, molecular mechanisms, diagnosis, and 
treatment of coronary artery spasm. In Part II, we will focus on CMD, including its 
epidemiology, pathophysiology, diagnosis, and treatment.

I hope that this book will help readers better understand the progress and current 
knowledge on coronary vasomotion abnormalities.

Sendai, Miyagi, Japan Hiroaki Shimokawa  

Preface
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Chapter 1
Epidemiology of Vasospastic Angina

Jun Takahashi and Hiroaki Shimokawa

Abstract Vasospastic angina (VSA) is one of the important functional cardiac dis-
orders characterized by transient myocardial ischemia due to epicardial coronary 
artery spasm. The term of VSA is basically synonymous with the terms Prinzmetal’s 
angina and variant angina, and is known to be associated with a wide variety of 
cardiac ischemic conditions, including stable angina, acute coronary syndrome, and 
life-threatening arrhythmic events. A number of studies have elucidated patient 
characteristics, outcomes, and prognostic factors of VSA, which led to a better 
understanding and management for this disorder. However, there remains to be 
insufficient data on the prevalence of VSA in both Eastern and Western countries, 
probably because it is difficult and cumbersome to examine coronary spasm during 
coronary angiography. On the other hand, it has been well known that age, smoking, 
high-sensitivity C-reactive protein, and remnant lipoprotein are significant risk fac-
tors for coronary spasm. Recently, the Japanese Coronary Spasm Association 
(JCSA) demonstrated that, in the temporary VSA patients, overall 5-year survival 
rate free from all-cause death or major adverse cardiac events was 98% and 91%, 
indicating the clinical outcome appears to be further improved as compared with the 
1980s. Furthermore, the JCSA also developed a risk scoring system consisting of 7 
predictive factors including history of out-of-hospital cardiac arrest and smoking, of 
which the average prediction rate was approximately 90%. In this chapter, we will 
briefly review the epidemiological data regarding VSA from a broad set of perspec-
tives, including demographic characteristics, incidence and prognosis, risk and pre-
cipitating factors, and other recent clinical topics.

Keywords Prevalence · Prognosis · Risk factors · Predictive factors · Sudden 
cardiac death · Racial difference
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1.1  Coronary Artery Spasm and Coronary 
Ischemic Syndromes

Angina pectoris is a clinical syndrome caused by transient myocardial ischemia due 
to an imbalance between myocardial oxygen demand and supply [1]. For more than 
200 years since the description by Heberdenk, its pathogenesis has been explained 
by increased myocardial oxygen demand in the presence of fixed organic stenosis of 
the epicardial coronary arteries. Angina caused by spasm of epicardial coronary 
arteries has been known as variant angina. By most strict definition, variant angina 
is a diagnosis given to patients having rest angina associated with reversible 
ST-segment elevation on electrocardiogram (ECG) but no evidence of myocardial 
necrosis as determined by serial ECGs and enzymatic analysis. This peculiar form 
of angina pectoris was systematically described for the first time by Myron 
Prinzmetal and colleagues in 1959, based on the observations of 32 patients with 
rest angina associated with transient ST elevation [2]. All characteristic clinical fea-
tures that are at present well recognized were mostly reported in the Prinzmetal 
report. Namely, chest pain typically occurs at midnight or in the early hours of the 
morning and tends to be clustered. Night awakening with chest pain is also com-
mon. As compared with classical angina, chest pain in variant angina is usually 
longer in duration and severe in intensity, and frequently associated with autonomic 
symptoms such as nausea and cold sweating. In general, the patients do not develop 
angina on exertion unless obstructive coronary atherosclerosis is concomitantly 
present and exercise tolerance during daytime is usually preserved. Shortly after the 
Prinzmetal report, coronary artery spasm was angiographically documented by 
Gensini et al. in a patient with rest and effort angina [3]. Furthermore, in the 1970s, 
Yasue et al. demonstrated spasm of an epicardial coronary artery during an attack of 
variant angina systematically induced by methacholine or exercise in the early 
morning [4, 5]. Endo et al. also reported similar findings almost simultaneously [6]. 
Coronary angiography during anginal attacks in patients suffering from recurrent 
angina at rest revealed a wide range of coronary artery disease from normal coronar-
ies to severe three-vessel disease. ST-segment elevation was caused by a transient 
occlusion of the major coronary artery, whereas ST depression was caused by 
incomplete occlusion of coronary branches and invariably associated with the 
extensive coronary artery disease and rich collateral networks. Coronary collaterals 
develop with or without coronary artery disease and can modify the extent and 
severity of myocardial ischemia [7, 8]. Spasm of large epicardial coronary arteries 
causes angina at rest associated with ST elevation [3] or depression [7, 9]. Then, 
variant angina is now regarded as one aspect of the wide spectrum of myocardial 
ischemic syndromes caused by coronary spasm, and angina pectoris caused by cor-
onary spasm is generally called vasospastic angina (VSA).

In addition to rest angina, coronary artery spasm plays a pivotal role in a broad 
spectrum of coronary ischemic syndrome, including exercise-induced angina, silent 
myocardial ischemia, pre-infarction (unstable) angina, acute myocardial infarction, 
postinfarction angina, syncope, and sudden cardiac death (Fig. 1.1) [10]. Especially, 

J. Takahashi and H. Shimokawa
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coronary artery spasm can also be the cause of effort angina. It was generally 
believed that exercise-induced angina was caused by increased myocardial oxygen 
demand in the presence of flow-limiting organic stenosis and that ST elevation dur-
ing exercise testing indicated the presence of severe organic stenosis. Coronary 
angiograms taken during exercise in the cardiac catheterization laboratory clearly 
demonstrated that exercise provoked coronary artery spasm, leading to total obstruc-
tion of major coronary artery at the site of no significant organic stenosis at baseline 
[11, 12]. The elevation or depression of ST-segment during exercise may be deter-
mined by the severity and extent of coronary artery spasm, the underlying coronary 
artery disease, or both [7, 13, 14].

It should be noted that patients with VSA often exhibit a marked variability of 
exercise capacity even in the same day. The circadian variation in angina threshold is 
an important diagnostic clue to suspect the involvement of coronary spasm in isch-
emic manifestations. It was shown that epicardial coronary artery tone as well as the 
sensitivity of coronary arteries to vasoconstrictor stimuli (e.g. ergonovine) varied 
substantially in the morning and in the afternoon [11, 15]. The underlying mecha-
nism of the circadian variation is not fully understood, but may be related, at least 
partly, to the changes in the activity of autonomic nervous system [16, 17], endothe-
lial function [18], and Rho-kinase activity [19]. The results based on the 24-h ambu-
latory ECG monitoring have shown that silent myocardial ischemia is frequently 
observed in patients with variant angina and approximately 80% of ischemia with 
transient ST elevation was asymptomatic [20]. Silent ischemia was associated with 
malignant ventricular tachyarrhythmias and may cause sudden cardiac death [21, 22].

In a subset of patients, coronary artery spasm is responsible for acute coronary 
thrombosis, resulting in pre-infarction unstable angina and acute myocardial infarc-
tion. It was previously reported that intracoronary nitroglycerin was effective to 
recanalize occluded vessel by relieving spasm in 6 out of 15 patients with acute 
myocardial infarction within 12 h after the onset [23]. In all the 6 patients, spasm was 
superimposed on the high-grade atherosclerotic stenosis. This result suggests that 
coronary spasm might be the primary cause of acute coronary occlusion or, at least, 
the secondary event to sustain flow impairment. Not rarely, myocardial infarction 
develops in the absence of significant organic stenosis [24, 25]. It was also shown that 
coronary spasm could be provoked at 4 weeks after the onset in 75% of patients with 

Coronary spasm

Variant angina

Rest angina

Rest & effort
angina

Effort angina

AMI

Post-MI angina

Coronary atherosclerosis

Unstable angina
Sudden death

Fig. 1.1 Coronary artery 
spasm has been shown to 
play a key role in the 
pathogenesis of not only 
variant angina but also a 
number of related 
conditions in ischemic 
heart disease. (Reproduced 
from Takagi et al. [36])
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acute myocardial infarction (AMI) and no significant organic stenosis in Japan [25]. 
These patients were characterized by the presence of pre-infarction and/or postin-
farction angina at rest, the occurrence of multivessel spasm, and smaller infarct size. 
According to a recent study from Germany, in which the frequency of coronary 
spasm in patients with acute coronary syndrome (ACS) and unobstructed coronary 
arteries was examined by the intracoronary acetylcholine provocation test, every 
forth patients with ACS had no culprit lesion and almost 50% of the patients who 
underwent a provocation testing had proof of coronary spasm [26]. In general, postin-
farction angina is a predictor of adverse outcomes after AMI [27]. However, coronary 
spasm is the cause of postinfarction angina in a subset of patients with cyclic ST 
elevation and they may have no critical stenosis on angiography [28, 29]. In almost 
of them, calcium channel blockers (e.g. diltiazem) are effective and the prognosis is 
generally favorable. Provocation testing frequently provokes coronary spasms in 
patients with AMI. When the relationship between provoked coronary spasm and 
clinical course in AMI patients was examined, the frequency of major adverse car-
diac event-free survival was significantly higher in the positive group than in the 
negative group [30]. These results indicate that provoked coronary spasm is a signifi-
cant independent predictor of poor prognosis in AMI patients.

1.2  Prevalence of Vasospastic Angina

There are insufficient data on the prevalence of VSA in both Eastern and Western 
countries, probably because it is difficult and cumbersome to examine coronary 
spasm during coronary angiography. To determine the prevalence of VSA, a survey 
was conducted on 2251 consecutive patients with angina (average age of 65.2 years) 
hospitalized in 15 major cardiovascular medical institutions in Japan in 1998 [31]. 
The survey showed that about 40% of patients with angina in Japan had 
VSA. Furthermore, analysis of the age group distribution of VSA revealed that the 
prevalence tended to be higher in relatively young patients than in elderly one. 
Recently, however, increase in use rate of calcium channel blockers (CCBs) for 
hypertension as well as decreasing rates of smoking might result in decreased mor-
bidity of VSA in Japan [32]. It has been long believed that the prevalence of VSA 
patients is higher in Japanese than in Caucasian populations [33, 34]. This concept 
is consistent with a head-to-head controlled comparison of patients with acute ST 
elevation AMI (without a history of VSA) where Japanese patients were twice as 
likely to have inducible spasm than their Caucasian counterparts [35]. Furthermore, 
in Western studies, the diagnosis of VSA is primarily made on the basis of spontane-
ous episodes (i.e. anginal symptoms with ischemic ECG changes), whereas in 
Japan, it is more often based upon spasm provocation testing [36]. However, it has 
been recently demonstrated that the prevalence of coronary artery spasm in 
Caucasians may be higher than previously thought [37, 38]. Indeed, while previous 
Asian studies of patients without obstructive coronary artery disease have shown 
that the prevalence of coronary spasm was ~50% in patients with stable angina and 

J. Takahashi and H. Shimokawa
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57% in patients with acute coronary syndrome [39, 40]; similar findings were dem-
onstrated in Germany studies [26, 37]. Furthermore, Ong et al. demonstrated that, 
among 921 consecutive white patients with angina and nonobstructive coronary 
arteries, the overall frequency of epicardial spasm was 33.4%, and that of microvas-
cular spasm was 24.2%, indicating that the morbidity of coronary functional disor-
der including VSA may be higher than we thought [41].

1.3  Risk Factors and Precipitating Factors for Coronary 
Artery Spasm

Age, smoking, high-sensitivity C-reactive protein (hsCRP), and remnant lipopro-
tein are significant risk factors for coronary spasm [42–45]. Generally, VSA is a 
disease of middle- and elderly aged men and postmenopausal women [42, 46]. 
Meanwhile, cigarette smoking, which has been identified as a risk factor for coro-
nary artery spasm in various groups of patients including premenopausal women 
[47–49], has a strong effect on VSA development in younger than in their old coun-
terparts [50, 51]. Nicotine potently upregulates Rho-kinase, which has been identi-
fied as one of the effectors of the small GTP-binding protein Rho and plays a key 
role in the molecular mechanisms of VSA, in human coronary artery smooth muscle 
cells, while estrogens potently downregulate it [52, 53]. Smoking is a controllable 
factor in preventing the development of coronary spasm and cessation of smoking 
is associated with spontaneous remission of angina [54]. High LDL cholesterol and 
insulin resistance were suggested to be a risk factor for VSA in selected patients 
[48, 55], but were not confirmed by others. Furthermore, it also has been suggested 
that oxidative stress may be associated with abnormalities of triglyceride metabolism 
and HDL cholesterol level reduction [20, 56]. However, the role of dyslipidemia as a 
risk factor for coronary spasm remains to be less clear. Thus, except for smoking, 
many conventional risk factors for atherosclerosis appear to be insignificant for 
VSA. On the other hand, it was reported that serum levels of hsCRP were elevated in 
VSA patients than in non-VSA patients [57] and that 6-month treatment with a statin 
could significantly reduce the disease activity of VSA along with the decrease in 
hsCRP levels [58]. These results suggest that low-grade inflammation caused by risk 
factors including smoking and hyperlipidemia is involved in the pathogenesis of 
VSA and that hsCRP is useful for disease activity assessment of VSA.

1.4  Prognosis and Predictive Factors for Vasospastic Angina

The prevalence of major adverse cardiac events (MACE) in VSA is difficult to 
define because of the variation in defining the disorder. Several important prognos-
tic studies with a few hundreds of patients were performed in the 1980s. Shimokawa 
et al. reported that overall survival rates at 1, 3, and 5 years among consecutive 158 
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Japanese patients with variant angina were 99, 96, and 93%, respectively, and sur-
vival rates without AMI at 1, 3, and 5 years were 94, 92, and 87%, respectively [59]. 
Yasue et al. also reported that 5-year survival rate free from death or myocardial 
infarction was 97% and 83% in 245 patients [60]. On the other hand, the prognosis 
of Caucasian population of the day was much worse, demonstrating that 5-year 
survival rate free from death or myocardial infarction was 89% and 69%, respec-
tively [61]. In association with the epidemics of obesity and metabolic syndrome, 
the general population has been rapidly growing older and the Westernization of 
lifestyle has been progressing, especially in Japan [62]. Thus, we conducted the 
nationwide multicenter retrospective registry study by the Japanese Coronary 
Spasm Association (JCSA), which focused on the clinical characteristics and out-
comes of VSA patients in the 2000s (Fig. 1.2) [36]. During the median follow-up 
period of 32 months, among 1429 patients with VSA, 19 (1.3%) died, in which 6 
had cardiac death. MACE occurred in 85 patients (5.9%), including AMI (n = 9), 
hospitalization for unstable angina (n = 68) and heart failure (n = 4), and appropriate 
ICD shocks (n = 2). Overall 5-year survival rate free from all cause death or MACE 
was 98% and 91%, respectively (Fig. 1.3) [36]. Especially, 5-year survival rate free 
from nonfatal AMI was high (99%). Moreover, Ong et al. reported that ACS patients 
without culprit lesion and proven coronary spasm have an excellent prognosis for 
survival and coronary events after 3 years compared with those with obstructive 

Japanese Coronary Spasm Association

Founded : 2006
Participating hospitals : 85
Office : Tohoku University

Prof. Hisao Ogawa
Kumamoto University

Prof. Hiroaki Shimokawa
Tohoku University

Fig. 1.2 The Japanese Coronary Spasm Association (JCSA) was established in 2006 by Prof. 
Shimokawa and Ogawa to elucidate the clinical characteristics and outcomes of patients with VSA 
in the current era and conducted the nationwide multicenter registry study of VSA
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ACS [63]. Taken together, in the current era, the clinical outcome of VSA patients 
appears to be further improved as compared with the 1980s. It is important to con-
tinue medical treatments with CCB for VSA, since silent myocardial ischemia with 
fatal arrhythmia and a rebound phenomenon of the spasm could occur after with-
drawal of CCB [21, 64].

Several prognostic factors for VSA, such as smoking, organic coronary stenosis, 
and multivessel spasm, have been established since the 1980s [59–61, 65–67]. 
Recently, in addition to the aforementioned prognostic factors, we newly identified 
the prognostic impact of history of out-of-hospital cardiac arrest (OHCA) [36] and 
specific angiographic findings during the diagnostic provocation tests [68]. However, 
in order to apply such prognostic findings to clinical practice, the accumulation of 
various prognostic factors in individual patients should be taken into consideration. 
Additionally, it is conceivable that potential interactions among those prognostic 
factors exist, making it difficult to assess individual prognosis. Thus, we developed 
the JCSA risk scoring system as a comprehensive assessment tool that provides the 
valid risk prediction in individual patients [69]. This JCSA risk score, which con-
sists of 7 predictive factors, including history of OHCA, smoking, angina at rest 
alone, significant organic stenosis, multivessel spasm, ST-segment elevation during 
angina, and β-blocker use, showed a significant correlation with the prognosis of 
VSA patients (see Chap. 4, Fig. 4.3a, b). The average prediction rate of the scoring 
system was approximately 90%, suggesting that the risk scoring system could accu-
rately estimate future adverse cardiac events in individual VSA patient. Since the 
clinical information required for the scoring system is readily available from routine 
practice, it should help clinicians predict patient outcomes easily. The information 
on the prognostic stratification may lead to personalized management, including the 
judgment of necessity for intensive medical treatment and close follow-up. In 

MACE, major adverse cardiac events;  MI, myocardial infarction;
ICD, implantable cardioverter defibrillator.

No. of events (%)

All cause death 19 (1.3)

MACE 85 (5.9)

Cardiac death 6 (0.5)

Non-fatal MI 9 (0.6)

Unstable angina 68 (4.9)

Heart failure 4 (0.3)

Appropriate ICD shock 2 (0.1)
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Fig. 1.3 Clinical outcomes of 1429 VSA patients enrolled into the nationwide multicenter retro-
spective registry study by the Japanese Coronary Spasm Association. During the median follow-up 
period of 32 months, 19 patients (1.3%) died and MACE occurred in 85 patients. Overall 5-year 
survival rate free from all cause death or MACE was 98% and 91%, respectively. (Reproduced 
from Takagi et al. [36])
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addition, because the outcomes of VSA patients could be aggravated by a rebound 
phenomenon after careless discontinuation of medications [36, 64], it is of clinical 
significance that the adherence in high-risk patients should be improved through the 
awareness with this risk score.

1.5  Sudden Cardiac Death in Vasospastic Angina

Syncope is an important manifestation of VSA and is caused by ventricular tachyar-
rhythmias or bradycardia due to transient conduction disturbances. It is commonly 
preceded by anginal pain, although not in all cases [70]. The development of 
arrhythmias is not related to the frequency of angina and concurs with symptomatic 
as well as asymptomatic myocardial ischemia [20, 21]. More importantly, sudden 
cardiac death can ensue as a result of coronary artery spasm [71, 72], even in patients 
with silent myocardial ischemia [21, 22]. In a subgroup of survivors of OHCA, 
coronary spasm and silent myocardial ischemia were identified as a likely cause of 
their fatal arrhythmias [21, 22]. Additionally, in the current era, a substantial portion 
of patients with OHCA survived without neurological deficits by the contribution of 
increasing use of bystander cardiopulmonary resuscitation, implantable cardioverter- 
defibrillator (ICD), and hypothermia therapy and a certain number of them have 
coronary spasm [73]. VSA patients who survived OHCA are particularly high-risk 
population even in the current era with long-acting CCBs [36]. Implantation of an 
ICD with medication for VSA might be appropriate for this high-risk population 
[74]. Recently, we examined the long-term prognosis of patients with OHCA clas-
sified based on the results of the dual induction tests for coronary artery spasm and 
lethal ventricular arrhythmias and evaluated the necessity of ICD by the underlying 
mechanisms involved (Fig. 1.4) [75]. We found that among OHCA survivors with-
out structural heart disease, provokable coronary spasm and ventricular arrhythmias 
are common and can be seen in Brugada syndrome (Fig.  1.5a). Then, coronary 
spasm alone without Brugada syndrome who are treated by CCBs may be a low-risk 
group (Fig. 1.5b), indicating that ICD may not be essential for OHCA survivors in 
this low-risk group [75].

1.6  Racial Difference in Vasospastic Angina

For decades, many researchers considered that there may be a racial difference in 
the prevalence of coronary artery spasm and VSA [76]. For example, variant angina 
appears to be relatively common in Japan [76]. However, there have been very few 
studies to systematically examine possible ethnic differences in clinical characteris-
tics and long-term prognosis of VSA patients [59]. Recently, the JCSA conducted 
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an international, prospective, and multicenter registry study, in which a total of 1457 
VSA patients (Japanese/Caucasians, 1339/118) were enrolled based on the same 
diagnostic criteria [77]. Compared with Caucasian patients, Japanese patients were 
characterized by higher proportions of males (68 vs. 51%) and smoking history (60 
vs. 49%). Japanese patients more often had angina especially during the night and 
early morning hours, compared with Caucasians. Ninety-five percent of Japanese 
and 84% of Caucasian patients underwent pharmacological provocation test. 

a b

c d

Fig. 1.4 A representative case in the group with both coronary spasm and idiopathic ventricular fibril-
lation by the dual induction tests. (a) Coronary angiogram before spasm provocation test. (b) Coronary 
artery spasm induced by intracoronary acetylcholine. (c) Ventricular fibrillation induced by electro-
physiological study. (d) Subsequent implantation of implantable cardioverter-defibrillator. 
(Reproduced from Komatsu et al. [75])
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Importantly, there were no significant differences in the patterns of coronary spasm, 
with diffuse spasm most frequently noted in both ethnicities. The prescription rate 
of CCBs was higher in Japanese (96 vs. 86%), whereas the uses of nitrates (46 vs. 
59%), statins (43 vs. 65%), renin-angiotensin-system inhibitors (27 vs. 51%), and 
β-blockers (10 vs. 24%) were more common in Caucasian patients. Survival rate 
free from MACE was slightly but significantly higher in Japanese than in Caucasians 
(86.7 vs. 76.6% at 5 years, P < 0.001), whereas that free from the hard MACE end-
point was similar (96.5 vs. 97.7%, P = 0.66) (Fig. 1.6). Notably, multivariable anal-
ysis revealed that the JCSA risk score well correlated with MACE rates not only in 
Japanese but also in Caucasian patients. These results indicate that there are ethnic 
differences in clinical profiles and long-term prognosis of contemporary VSA 
patients [77].
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Chapter 2
Pathophysiology and Molecular 
Mechanisms of Coronary Artery Spasm

Kimio Satoh and Hiroaki Shimokawa

Abstract Rho-kinase plays a central role in the pathogenesis of coronary artery 
spasm caused by vascular smooth muscle cell (VSMC) hypercontraction. Rho- 
kinase belongs to the family of serine/threonine kinases and is an important down-
stream effector of the small GTP-binding protein RhoA.  Two isoforms of 
Rho-kinase, ROCK1 and ROCK2, have different functions with ROCK1 for circu-
lating inflammatory cells and ROCK2 for vascular smooth muscle cells. The RhoA/
Rho-kinase pathway plays an important role in many cellular functions, including 
contraction, motility, proliferation, and apoptosis, leading to the development of 
cardiovascular diseases. In addition to vasospasm, important roles of Rho-kinase 
in vivo have been demonstrated in the pathogenesis of arteriosclerosis, ischemia/
reperfusion injury, hypertension, pulmonary hypertension, stroke, and heart failure. 
Furthermore, the beneficial effects of fasudil, a selective Rho-kinase inhibitor, have 
been demonstrated for the treatment of several cardiovascular diseases in animals 
and humans. Thus, the Rho-kinase pathway is an important new therapeutic target 
in vasospasm and other cardiovascular diseases.
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2.1  Development of Animal Models of Coronary Artery 
Spasm and Identification of Important Pathogenetic 
Roles of Rho-Kinase

Rho-kinase activation plays a central role in the pathogenesis of coronary artery 
spasm caused by vascular smooth muscle cell (VSMC) hypercontraction. In an ani-
mal model in pigs in vivo, we examined whether atherosclerotic coronary lesion, 
induced by a combination of balloon endothelium removal and high-cholesterol 
feeding, exhibits hyperresponsiveness to vasoconstrictor agents [1]. Importantly, 
intracoronary administration of serotonin induced coronary artery spasm at the ath-
erosclerotic lesion, and there was a close topological correlation between the spastic 
site and atherosclerotic lesion (Fig. 2.1a, b) [1]. This is the first experimental evi-
dence for the close relationship between coronary artery spasm and coronary ath-
erosclerosis [1]. Next, we further examined whether chronic adventitial inflammation 
could cause vasospastic activity of the coronary artery without endothelium removal 
in pigs. Two weeks after the adventitial application of interleukin-1β (IL-1β), coro-
nary angiography showed the development of mild stenotic lesion, where intracoro-
nary administration of serotonin repeatedly caused coronary spasm (Fig. 2.1c) [2]. 
Histological examination showed adventitial accumulation of inflammatory cells, 
mild neointimal formation, and a marked reduction in vascular cross-sectional area 
(Fig. 2.1d) [2]. These results provided the first experimental evidence for the role of 
adventitial inflammation in the pathogenesis of coronary artery spasm. Delayed 
cerebral ischemia due to cerebral vasospasm remains a major cause of morbidity in 
patients with subarachnoid hemorrhage (SAH). It has been demonstrated that Rho-
kinase is substantially involved in the pathogenesis of cerebral vasospasm after 
SAH [3]. Coronary artery spasm plays an important role in variant angina, myocar-
dial infarction, and sudden cardiac death [4]. It was demonstrated that elevated 
serum level of cortisol, one of the important stress hormones, causes coronary 
hyperreactivity through activation of Rho-kinase in pigs in vivo [5]. The activity and 
the expression of ROCKs are enhanced at the inflammatory/arteriosclerotic coro-
nary lesions [6]. Accumulating evidence indicates that Rho-kinase plays a crucial 
role in the pathogenesis of coronary artery spasm. Intracoronary administration of 
fasudil [7] and of hydroxyfasudil [8] inhibited coronary spasm in pigs in vivo [2]. 
We have demonstrated that fasudil is effective in preventing coronary spasm and 
resultant myocardial ischemia in patients with vasospastic angina [9]. Thus, fasudil 
is useful for the treatment of ischemic coronary syndromes caused by coronary 
artery spasm. Fasudil is also effective in treating patients with microvascular angina 
[10]. The clinical trials for the effects of fasudil in Japanese patients with stable-
effort angina demonstrated that the long-term oral treatment with the Rho-kinase 
inhibitor is effective in ameliorating exercise tolerance in those patients [11]. We 
also have recently demonstrated that Rho-kinase activity in circulating neutrophils 
is an useful biomarker for the diagnosis and disease activity assessment in patients 
with VSA [12].
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Fig. 2.1 Coronary artery spasm induced in two porcine models in vivo. (a, b) Coronary artery 
spasm was induced in atherosclerotic miniature pigs induced by balloon endothelial injury and 
high-cholesterol feeding (a), where topological correlation was noted between the spastic sites and 
the early atherosclerotic lesions (b). (c, d) Coronary artery spasm was induced in pigs with adven-
titial inflammation (c), where intimal thickening and negative remodeling were noted (d). 
(Reproduced from Shimokawa et al. [1, 2])
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2.2  The Rho/Rho-Kinase System in Vascular Contraction

Rho-kinase belongs to the family of serine/threonine kinases and is an important 
downstream effector of the small GTP-binding protein RhoA. The Rho family of 
small G proteins comprises 20 members of ubiquitously expressed proteins in mam-
mals, including RhoA, Rac1, and Cdc42 [13–15]. Among them, RhoA is the best- 
characterized protein that acts as a molecular switch that cycles between an inactive 
GDP-bound and an active GTP-bound conformation interacting with downstream 
targets to elicit a variety of cellular responses (Fig. 2.2) [16]. The activity of RhoA 
is controlled by the guanine nucleotide exchange factors (GEFs) that catalyze 
exchange of GDP for GTP [17]. In contrast, GTPase activating proteins (GAPs) 
stimulate the intrinsic GTPase activity and inactivate RhoA [18]. Additionally, it 
has been demonstrated that guanine nucleotide dissociation inhibitors (GDIs) block 
spontaneous RhoA activation (Fig. 2.2) [19].

In 1996, Rho-kinase (Rho-kinase α/ROCK 2/ROKα and Rho-kinase β/ROCK 1/
ROKβ) was identified as the effector of Rho (Fig. 2.2) [20–22]. Phosphorylation of 

c Nitroglycerin Serotonin

No treatmentControl beadsIL-1β beads

A

d

B C

Fig. 2.1 (continued)
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myosin light chain (MLC) is a key event in the regulation of VSMC contraction 
(Fig.  2.3). MLC is phosphorylated by Ca2+-calmodulin-activated MLC kinase 
(MLCK) and dephosphorylated by MLC phosphatase (MLCP) (Fig. 2.3). Agonists 
bind to G-protein-coupled receptors and induce contraction by increasing both cyto-
solic Ca2+ concentration and Rho-kinase activity through mediating GEF. The sub-
strates of Rho-kinase have been identified, including MLC, myosin-binding subunit 
(MBS) or myosin phosphatase target subunit (MYPT-1), ERM family, adducin, 
PTEN, and LIM-kinases (Figs. 2.2 and 2.3). Rho-kinase enhances MLC phosphory-
lation through inhibition of MBS of myosin phosphatase and mediate agonists- 
induced VSMC contraction (Fig. 2.3).

The interaction between endothelial cells (ECs) and VSMCs plays an important 
role in regulating vascular integrity and vascular homeostasis [23, 24]. ECs release 
vasoactive factors, such as prostacyclin, nitric oxide (NO) and endothelium-derived 
hyperpolarizing factor (EDHF), participating in the regulation of vascular tone and 
arterial resistance [1, 25–27]. It has been demonstrated that both endothelial NO 
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Fig. 2.2 The important roles of Rho/Rho-kinase pathway in the pathogenesis of cardiovascular 
diseases. The Rho/Rho-kinase pathway plays important roles in the pathogenesis of vasospastic 
disorders as well as atherosclerotic cardiovascular diseases in general. (Reproduced from 
Shimokawa et al. [27])
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production and NO-mediated signaling in VSMCs are targets and effectors of the 
RhoA/Rho-kinase pathway [23, 28]. In ECs, the RhoA/Rho-kinase pathway nega-
tively regulates NO production [29]. In contrast, VSMCs are among the most plastic 
of all cells in their ability to respond to different stimuli [30–32]. The initial works 
in our laboratory on the therapeutic importance of Rho-kinase were previously sum-
marized [23, 33]. Since then, a significant progress has been made in our knowledge 
on the therapeutic importance of Rho-kinase in cardiovascular medicine. In this 
article, we will briefly review the recent progress in the translational research on the 
therapeutic importance of the Rho-kinase pathway in cardiovascular medicine.

2.3  Substrates of Rho-Kinase

Rho-kinase is a serine/threonine kinase with a molecular weight of ~160 kDa. Two 
isoforms of Rho-kinase encoded by 2 different genes have been identified [34–36]. 
In humans, ROCK1 and ROCK2 genes are located separately on chromosome 18 
and chromosome 2, respectively. They are ubiquitously expressed in invertebrates 
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Fig. 2.3 Molecular mechanisms of vascular smooth muscle cells hypercontraction for coronary 
spasm. The central molecular mechanism of vascular smooth muscle cell hypercontraction for 
coronary spasm is Rho-kinase-mediated enhancement of myosin light chain phosphorylations 
through inhibition of myosin light chain phosphatase. (Reproduced from Shimokawa et al. [27])
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and vertebrates with ROCK1 especially in circulating inflammatory cells and 
ROCK2 in VSMCs. ROCKs consist of 3 major domains, including a kinase domain 
in its N-terminal domain, a coiled–coil domain that includes Rho-binding domain in 
its middle portion, and a putative pleckstrin homology (PH) domain in its C-terminal 
domain [13]. Rho-kinase activity is enhanced by binding of GTP-bound active form 
of RhoA [35] (Fig. 2.2). Rho-kinase inhibitors, fasudil [8] and Y-27632 [37], have 
been developed and they inhibit Rho-kinase activity in a competitive manner with 
ATP at the Rho-binding site [38]. It has been demonstrated that hydroxyfasudil, a 
major active metabolite of fasudil, exerts a more specific inhibitory effect on Rho- 
kinase [8, 39].

Although regulation of Rho-kinase expression has not been fully elucidated, 
some studies have reported changes in Rho-kinase expression. Functional differ-
ences between ROCK1 and ROCK2 have been reported; ROCK1 is specifically 
cleaved by caspase-3, whereas ROCK2 is cleaved by granzyme B [40, 41]. The 
small G-protein RhoE specially binds to the N-terminal region of ROCK1 at the 
kinase domain, whereas the MYPT1 binds specially ROCK2 [42, 43]. RhoE bind-
ing to ROCK1 inhibits its activity and prevents RhoA binding to the Rho-binding 
domain [44]. Both ROCK1 and ROCK2 mRNAs and proteins are upregulated by 
angiotensin II (AngII) via AT1 receptor stimulation and by interleukin-1β (IL-1β) 
[45]. A number of Rho-kinase substrates have been identified [46] (Fig. 2.2) and 
Rho-kinase-mediated substrate phosphorylation causes actin filament formation, 
organization, and cytoskeleton rearrangement (Fig.  2.2) [47]. The N-terminal 
regions, upstream of the kinase domains of Rho-kinase, may play a role in deter-
mining substrate specificity of the 2 isoforms [47].

The majority of Rho-kinase substrates have been identified in  vitro. Thus, 
ROCK1- and ROCK2-deficient mice have been generated to further elucidate the 
functions of the ROCK isoforms [48, 49]. Importantly, ROCK1-deficient mice 
showed the eyelids opened at birth [49], whereas ROCK2-deficient mice placental 
dysfunction and fetal death [48, 50–52]. Thus, the role of ROCK2, the main isoform 
in the cardiovascular system, remained to be fully elucidated in vivo. In order to 
address this point, we have recently developed VSMC-specific ROCK2-deficient 
mice and found the crucial role of ROCK2 in the development of hypoxia-induced 
pulmonary hypertension [30].

2.4  Rho-Kinase-Mediated Inflammation 
and Oxidative Stress

Rho-kinase augments inflammation by inducing pro-inflammatory molecules, 
including IL-6 [53], monocyte chemoattractant protein (MCP)-1 [54], macrophage 
migration inhibitory factor (MIF) [55, 56], and sphingosine-1-phosphate (S1P) 
[57]. In ECs, Rho-kinase downregulates eNOS [58] and substantially activates pro- 
inflammatory pathways including enhanced expression of adhesion molecules. The 
expression of Rho-kinase is accelerated by inflammatory stimuli, such as AngII and 
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IL-1β [45], and by remnant lipoproteins in human coronary VSMCs [59]. Rho- 
kinase also upregulates NAD(P)H oxidases and augments AngII-induced ROS pro-
duction [39]. Several growth factors are known to be secreted from VSMC in 
response to oxidative stress. Rho GTPases including RhoA are key regulators in 
signaling pathways linked to actin cytoskeletal rearrangement [60]. RhoA plays a 
central role in vesicular trafficking pathways by controlling organization of actin 
cytoskeleton. It has been reported that active participation of Rho GTPases is 
required for secretion. Myosin II is involved in secretory mechanisms as a motor 
 for vesicle transport [61]. Rho-kinase mediates myosin II activation via phosphory-
lation and inactivation of myosin II light chain phosphatase [20]. Thus, the Rho/
Rho- kinase is important for the secretion of inflammatory cytokines and growth 
factors (Fig. 2.2).

2.5  Rho-Kinase in Vascular Function and Contraction

Rho-kinase has been implicated in the pathogenesis of cardiovascular disease, in 
part by promoting VSMC proliferation [62–64]. Changes in vascular redox state are 
a common pathway involved in the pathogenesis of vasospastic angina (VSA), ath-
erosclerosis, aortic aneurysms, and vascular stenosis. Vascular ROS formation can 
be stimulated by mechanical stretch, pressure overload, shear stress, environmental 
factors (e.g. hypoxia), and growth factors (e.g. AngII) [65]. Importantly, Rho-kinase 
is substantially involved in the vascular effects of various vasoactive factors, includ-
ing AngII [39, 54, 66, 67], thrombin [68, 69], platelet-derived growth factor [70], 
extracellular nucleotides [71], and urotensin [72] (Fig. 2.2). It has previously been 
shown that statins enhance eNOS mRNA by cholesterol-independent mechanisms 
involving inhibition of Rho geranylgeranylation [73]. Rho-kinase plays an impor-
tant role in mediating various cellular functions, not only VSMC contraction [74, 
75] but also actin cytoskeleton organization [76, 77], adhesion, and cytokinesis 
[33]. Thus, Rho-kinase plays a crucial role in the development of cardiovascular 
disease through ROS production, inflammation, EC damage, VSMC contraction 
and proliferation (Figs. 2.2 and 2.3).

2.6  Rho-Kinase in Arteriosclerosis

As mentioned above, Rho-kinase plays a crucial role in the ROS augmentation and 
vascular inflammation. ROS have been implicated in the pathogenesis of neointima 
formation in part by promoting VSMC growth [64, 78] and by stimulating pro- 
inflammatory events [79–81]. Accumulating evidence indicates that Rho-kinase 
inhibitors have broad pharmacological properties [33, 75, 82]. The beneficial effects 
of long-term inhibition of Rho-kinase for the treatment of cardiovascular disease 
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have been demonstrated in various animal models, such as coronary artery spasm, 
arteriosclerosis, restenosis, ischemia/reperfusion injury, hypertension, pulmonary 
hypertension, stroke, and cardiac hypertrophy/heart failure [33, 75, 82]. Gene trans-
fer of dominant-negative Rho-kinase reduced the neointimal formation in pigs [83]. 
Long-term treatment with a Rho-kinase inhibitor suppressed neointima formation 
after vascular injury in  vivo [84, 85], MCP-1-induced vascular lesion formation 
[86], constrictive remodeling [87], in-stent restenosis [88], and the development of 
cardiac allograft vasculopathy [56] (Fig. 2.2).

Arteriosclerosis is a slowly progressing inflammatory process of the arterial wall 
that involves the intima, media, and adventitia [33, 75]. Accumulating evidence 
indicates that Rho-kinase-mediated pathway is substantially involved in EC dys-
function [58, 69], VSMC contraction [89], VSMC proliferation and migration in the 
media [90], and accumulation of inflammatory cells in the adventitia [86]. Those 
Rho-kinase-mediated cellular responses lead to the development of vascular dis-
ease. In fact, mRNA expression of ROCKs is enhanced at the inflammatory and 
arteriosclerotic arterial lesions in animals [89] and humans [91]. In the context of 
atherosclerosis, Rho-kinase should be regarded as a pro-inflammatory and pro- 
atherogenic molecule. Thus, Rho-kinase is an important new therapeutic target for 
the treatment of atherosclerosis (Fig. 2.2).

2.7  Rho-Kinase in Myocardial Ischemia and Heart Failure

ROS production and Rho-kinase activation play a crucial role in myocardial damage 
after ischemia/reperfusion. Consistently, we have demonstrated that pretreatment 
with fasudil before reperfusion prevents endothelial dysfunction and reduces myo-
cardial infarction size in dogs in vivo [92]. The beneficial effect of fasudil has also 
been demonstrated in a rabbit model of myocardial ischemia induced by intravenous 
administration of endothelin-1 [93], a canine model of pacing-induced myocardial 
ischemia [94], and a rat model of vasopressin-induced chronic myocardial ischemia 
[95]. AngII plays a key role in many physiological and pathological processes in 
cardiac cells, including cardiac hypertrophy [96]. Understanding the molecular 
mechanisms for AngII-induced myocardial disorders is important to develop new 
therapies for cardiac dysfunction [97]. One important mechanism now recognized to 
be involved in AngII-induced cardiac hypertrophy is ROS production [98, 99], how-
ever, the precise mechanism by which ROS cause myocardial hypertrophy and dys-
function still remains to be fully elucidated [100]. It has been demonstrated that 
cardiac troponin is a substrate of Rho-kinase [101]. Rho-kinase phosphorylates tro-
ponin and inhibits tension generation in cardiomyocytes. We have demonstrated that 
Rho-kinase inhibition with fasudil suppresses the development of cardiac hypertro-
phy and diastolic heart failure in Dahl salt-sensitive rats [102]. In patients with heart 
failure, intra-arterial infusion of fasudil caused preferential increase in forearm 
blood flow as compared with control subjects, suggesting an involvement of 
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Rho-kinase in the increased peripheral vascular resistance in patients with heart fail-
ure [103].

2.8  Rho-Kinase in Hypertension 
and Pulmonary Hypertension

Short-term administration of Y-27632, another Rho-kinase inhibitor, preferentially 
reduces systemic blood pressure in a dose-dependent manner in rat models of sys-
temic hypertension, suggesting an involvement of Rho-kinase in the pathogenesis 
of hypertension [37]. The expression of Rho-kinase was significantly increased in 
spontaneously hypertensive rats (SHR) [104]. Local administration of a small 
amount of hydroxyfasudil into the nucleus tractus solitarii of the brain stem causes 
sustained decrease in heart rate and blood pressure in SHR but not in normotensive 
rats, suggesting that Rho-kinase is involved in the central mechanisms of sympa-
thetic nerve activity [105]. Inhibition of Rho-kinase in the brain stem also augments 
baroreflex control of heart rate in rats [106]. Pulmonary hypertension (PH) is asso-
ciated with hypoxic exposure, endothelial dysfunction, VSMC hypercontraction 
and proliferation, enhanced ROS production, and inflammatory cell migration, for 
which Rho-kinase may also be substantially involved. Indeed, long-term treatment 
with fasudil suppresses the development of monocrotaline-induced PH in rats [107] 
and of hypoxia-induced PH in mice [108]. Recently, we were able to obtain direct 
evidence for Rho-kinase activation in patients with pulmonary arterial hypertension 
(PAH) [109]. Furthermore, intravenous infusion of fasudil significantly reduced 
pulmonary vascular resistance in patients with PAH, indicating an involvement of 
Rho-kinase in the pathogenesis of PAH in humans [110].

2.9  Conclusions

Accumulating evidence has indicated that Rho-kinase plays important roles in the 
pathogenesis of a wide range of cardiovascular diseases in general and coronary 
vasomotion abnormalities in particular. Additionally, Rho-kinase inhibitors are use-
ful for the treatment of those cardiovascular diseases. In conclusion, accumulating 
experimental and clinical evidence indicates that Rho-kinase is an important new 
target for the treatment of VSA and cardiovascular diseases.
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Chapter 3
Diagnosis of Coronary Artery Spasm
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Abstract Seminal clinical studies have shown that percutaneous coronary inter-
vention (PCI) in patients with stable angina gives few benefits as compared with 
optimal medical therapy alone (Boden et al., N Engl J Med 356:1503–1516, 2007; 
Al-Lamee et al., Lancet 391:31–40, 2018). Therefore, making diagnosis of coro-
nary vasomotion abnormalities regardless of obstructive or nonobstructive arterial 
segments has dramatically increased its clinical significance. Coronary artery spasm 
plays a key role in a wide range of ischemic heart diseases not only in vasospastic 
angina (VSA) but also in acute coronary syndrome and sudden cardiac death. It is 
of importance to have the precise diagnostic criteria for coronary artery spasm based 
on the clinically available evaluation methods. Particularly, recent studies have 
made substantial contributions to the development of new approaches that can pre-
dict the risk of future cardiovascular events in patients with VSA. Ample clinical 
evidence has been accumulated for elucidating the detailed mechanisms of coronary 
artery spasm in vivo. In this chapter, we will summarize recent advances in diagnos-
tic methodology of coronary artery spasm.
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3.1  Clinical Definition and Diagnostic Criteria of Coronary 
Artery Spasm

Referring to the Japanese Circulation Society (JCS) guidelines for diagnosis and 
treatment of patients with VSA [1], definite VSA is diagnosed when ischemic 
changes on electrocardiogram (ECG), defined as a transient ST elevation of 
>0.1 mV, an ST depression of >0.1 mV, or new appearance of negative U waves in 
at least 2 contiguous leads, are documented during spontaneous angina attack. In 
case that ECG shows borderline ischemic change, definite VSA is angiographically 
diagnosed when transient, total, subtotal (>90% stenosis) of a coronary artery 
accompanied by angina pain and ischemic ECG change during the spasm provoca-
tion test with acetylcholine, ergonovine, or hyperventilation (Fig. 3.1). Following 
the JCS guidelines, a position paper from the Coronary Artery Vasomotion Disorders 

VSA
Diagnosis

VSA
Suspected

VSA 
Unlikely

VSA is suspected based on angina-like attacks at rest, during effort, or during rest
and effort, and the following findings are obtained by ECG, Holterrecording during
spontaneous attacks

Borderline for
Ischemic ECG change

Negative for
Ischemic ECG change
or ECG not performed

Positive for 
ischemic ECG change*1

A clear finding of myocardial ischemia
or coronary spasm in relation to symptoms
is obtained on examinations*2

At least one of the
Reference items

applies#

YES NO NO

YES

Fig. 3.1 Diagnosis of coronary artery spasm. Diagnostic algorithm of VSA (quoted from the JCS 
guidelines). *1Ischemic change is defined as a transient ST elevation of 0.1 mV or more, an ST 
depression of 0.1 mV or more, or new appearance of negative U waves, recorded in at least two 
contiguous leads on 12-lead ECG. *2Examinations include the drug-induced spasm provocation 
test during cardiac catheterization and hyperventilation test. A positive finding for coronary artery 
spasm on angiography in coronary artery spasm provocation test is defined as “transient, total, or 
subtotal occlusion (>90% stenosis) of a coronary artery with signs/symptoms of myocardial isch-
emia (anginal pain and ischemic ECG change)”. VSA vasospastic angina, ECG electrocardiogram. 
(Reproduced from JCS joint working group [1])
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International Study Group (COVAIDS) depicts regarding the physical assessment 
of VSA that (1) subjective symptoms often appear at rest, especially between night 
and early morning, (2) exercise tolerance is markedly reduced in morning, (3) 
hyperventilation relates to the symptoms, and (4) calcium-channel blockers sup-
press the symptoms [2].

3.2  Noninvasive Evaluation Methods

ECG and Holter ECG are useful for documentation of ECG changes regardless of 
the presence or the absence of symptoms (Class I) [1]. The criteria for positive ECG 
findings include ST-segment elevation/suppression of 0.1 mV or more in at least 2 
contiguous leads on 12-lead ECG. Exercise or hyperventilation test, often recom-
mended to perform in resting condition desirably in the morning, could be an option 
for noninvasive assessment for coronary artery spasm. Usefulness of noninvasive 
cardiovascular imaging tools, such as myocardial scintigraphy and multi detector- 
row computed tomography (CT), remains to be determined in future guidelines.

3.3  Pharmacological Spasm Provocative Tests

The JCS guidelines highly recommend spasm provocation tests with acetylcholine 
(Class I) when a patient is negative for noninvasive VSA evaluation but is still sus-
pected for coronary artery spasm clinically [1]. In 1986, Yasue et al. reported the 
usefulness of pharmacological spasm provocation test with intracoronary acetyl-
choline to induce coronary spasm [3]. Notably, a high diagnostic accuracy of acetyl-
choline provocation test for patients with variant angina (sensitivity, 90%; specificity, 
99%) was reported [4]. Recent papers from the Europe demonstrated that pharma-
cological spasm provocation tests with acetylcholine are safe and useful for making 
VSA diagnosis in white patients [5, 6]. Prior to the introduction of acetylcholine, 
intravenous ergonovine was originally reported in 1949 [7], and was used for the 
first spasm provocation testing in 1972 [8]. Ergonovine provocation test is recom-
mended if patients have a contraindication to acetylcholine due to comorbid bron-
chial asthma or severe atrioventricular conduction disorder [9].

In 2006, the Japanese Coronary Spasm Association (JCSA) was established, in 
which 85 Japanese institutes participated and registered VSA patients between 
September 1, 2007 and December 31, 2008 [10]. Since then, the JCSA registry has 
provided robust evidence, especially in the clinical presentation of coronary artery 
spasm. First, a study by Takagi et al. reported the safety of the spasm provocation 
tests and found the significant correlation between angiographic findings and long- 
term prognosis in 1244 VSA patients who were diagnosed with pharmacological 
provocation tests with either intracoronary acetylcholine or ergonovine [11]. In 
 this  study, overall incidence of arrhythmic complications, such as ventricular 
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tachycardia (VT) or ventricular fibrillation (VF) during the provocation tests, was 
6.8%, which was comparable with those who were documented spontaneous angina 
attack. Patients who underwent acetylcholine provocation test showed a significant 
higher rate of arrhythmic complications as compared with those with ergonovine 
provocation test (acetylcholine 9.3% vs. ergonovine 3.2%, P < 0.001), which was 
more prominent for VT/VF (acetylcholine 4.9% vs. ergonovine 0.8%, P < 0.001). 
VSA patients with induced VT/VF during provocation test were characterized by a 
higher dose of acetylcholine use during the test, female, diffuse spasm in the right 
coronary artery, multivessel spasm, and lower prevalence of organic stenosis. When 
applied the logistic regression analysis, acetylcholine use during the provocation 
tests and diffuse spasm in the right coronary artery were strong correlated factors 
for the occurrence of provocation-related VT/VF.  In contrast, the 5-year survival 
rate free from major adverse cardiac events (MACEs), including cardiac death, non-
fatal myocardial infarction, hospitalization due to unstable angina pectoris and heart 
failure, and appropriate implantable cardioverter-defibrillator (ICD) shocks during 
the follow-up period, was 92%, and that of all-cause death was 98%. Importantly, 
MACE-free survival rate was statistically comparable between VSA patients with 
provocation-related VT/VF and those without them (Fig.  3.2). The multivariable 
Cox proportional hazard analysis showed that a mixture of focal and diffuse spasm 
observed in multivessels and organic stenosis were strongly correlated with MACEs, 
whereas no correlation between provocation-related arrhythmias and MACEs dur-
ing the follow-up period was noted (Table 3.1). Thus, the JCSA study demonstrates 
an acceptable level of safety of the pharmacological spasm provocation test and its 
usefulness for the risk stratification of VSA patients [11].

Another landmark study form the JCSA registry developed the JCSA risk score 
that can provide comprehensive risk assessment and prognostic stratification for 
VSA patients [12]. A total of 7 variables, history of out-of-hospital cardiac arrest (4 
points), smoking, rest angina alone, organic coronary stenosis, multivessel spasm 
during the spasm provocation tests (2 points each), ST-segment elevation during 
angina, and β-blocker use (1 point each) were chosen for the JCSA score. 
Intriguingly, MACE were incrementally documented in line with the low-risk, 
intermediate- risk, and high-risk (2.5%, 7.0%, and 13.0%, P < 0.001) (Fig. 3.3a). 
Among the 3 risk groups, clear prognostic utility of the JCSA scoring system for 
MACE was confirmed throughout the follow-up period (Fig. 3.3b). The study has 
thoroughly increased the importance of the spasm provocation test for the risk strat-
ification of future cardiovascular events in VSA patients [12].

Although it has been believed for long time that VSA is more common in Asian 
countries compared with Western countries, recent studies from Germany revealed 
that the prevalence of VSA in Caucasians may be higher than previously thought 
 [5, 6]. Heretofore, studies have suggested ethnic differences in the clinical manifes-
tation and long-term prognosis of VSA patients between Japanese and Caucasians 
[13]. The JCSA study group recently revisited the ethnic differences in the VSA 
patient prognosis by comparing 1339 Japanese and 118 Caucasians [14]. The study 
performed by Sato et  al. reported that spasm provocation tests were comparably 
performed in 95% of Japanese vs. 84% of Caucasians. Multivessel spasm was more 
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prevalent in Japanese, whereas provocation-related arrhythmias were more com-
mon in Caucasians. The survival rate free from MACE, as described above, was 
significantly lower in Caucasians as compared with Japanese. In the multivariable 
analysis, the JCSA risk score, including the number of vessels positive for spasm 
provocation tests, was found to show good correlations with MACE rates in both 
Japanese and Caucasian patients, indicating the clinical importance of spasm provo-
cation tests not only in Japan but also in Western countries.

In the context of the widespread utilization of drug-eluting stents (DES) in coro-
nary intervention, it is fundamentally important to perform spasm provocation tests 
for patients with unremitting angina symptoms even after resolving the organic ste-
nosis with DES implantation. An experimental study by Shiroto et al. demonstrated 
that a first-generation DES is likely to induce coronary hyperconstricting responses 
in response to intracoronary serotonin at the segments of proximal and distal edge 
of DES as compared with its platform bare-metal stents (BMS) in pigs in  vivo, 
 for which activated Rho-kinase plays an important role [15]. This finding was sub-
sequently confirmed by a clinical study by Aizawa et  al., demonstrating that 
 pretreatment with fasudil, a selective Rho-kinase inhibitor, markedly inhibits 
 acetylcholine-induced coronary hyperconstricting responses in patients implanted 
with DES in vivo [16]. More recently, a multicenter randomized control study by 
Tsuburaya et  al. revealed that even everolimus-eluting stents, most widely used 
DES, could also induce coronary hyperconstricting responses at 8–10 months after 
implantation [17] (Fig.  3.4a, c). Intriguingly, long-term oral administration of 

Table 3.1 Factors correlated with major adverse cardiac events

Multivariable analysis HR 95% CI P-value

LAD spasm 1.22 0.72–2.05 0.46
LCX spasm 0.95 0.55–1.64 0.85
RCA spasm 1.25 0.75–2.08 0.40
Multivessel spasm 1.47 0.89–2.41 0.13
Type of spasm
Focal single vessel 1.00 0.45–1.74
Diffuse single vessel 0.88 0.04–1.74 0.72
Focal multivessel 0.27 0.04–1.99 0.20
Diffuse multivessel 1.15 0.58–2.31 0.69
Mixed multivessel 2.84 1.34–6.03 0.006
Organic stenosis
Without stenosis 1.00
Nonorganic stenosis 1.75 1.01–3.04 0.048
Significant stenosis 2.27 1.23–4.20 0.009
Provocation-related VT/VF 0.84 0.20–3.43 0.84
Provocation-related bradyarrhythmia 0.00 0.00–8.22 0.96

Variables were individually adjusted for age, sex, smoking, previous history of myocardial infarc-
tion, and history of out-of-hospital cardiac arrest. LAD left anterior descending, LCX left circum-
flex, RCA right coronary artery, VT ventricular tachycardia, VF ventricular fibrillation. (Reproduced 
from Takagi et al. [11])
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nifedipine, a long-acting calcium channel blocker, inhibited DES-induced coronary 
hyperconstricting responses (Fig.  3.4b, d, e). Nishimiya et  al. also reported that 
improved biocompatibility of polymer coating may ameliorate such coronary vaso-
motion abnormalities after DES [18]. Given the high rate of patients (~40%) who 
suffer from chest pain even after coronary intervention, spasm provocation tests are 
strongly recommended for those with unremitting angina especially after DES 
implantation [19].

3.4  Biomarkers for Coronary Artery Spasm

Although the JCS guidelines state that it is useful for VSA and microvascular spasm 
diagnosis to detect inversion of lactic acid production by measuring lactate levels at 
a coronary artery vs. coronary sinus (Class IIIb) [1, 20], the measurement has been 
hampered by its inconvenience due to the requirement of catheter insertion into the 
coronary sinus. Thus, we also aimed to develop novel biomarkers for coronary 
artery spasm that can be easily used in the clinical setting. In order to clarify the 
existence of genetic linkage in the pathogenesis of coronary artery spasm, the fre-
quencies of human leukocyte antigen (HLA) were examined in 37 patients with 
variant angina and 236 healthy controls, and were found to show no significant dif-
ferences between the patients and the controls [21]. Hizume et  al. reported that 
sustained elevation of serum cortisol level sensitizes coronary smooth muscle to 
serotonin to cause coronary vasospastic responses in pigs in vivo, suggesting the 
cross-link between stress and coronary artery spasm [22].

We were able to demonstrate that Rho-kinase activity in circulating neutrophils, 
determined by the extent of phosphorylation of myosin-binding subunit (MBS, a 
substrate of Rho-kinase), is significantly enhanced in VSA patients as compared 
with controls, which is a useful noninvasive diagnostic biomarker to assess the 
vasospastic activity [23] (Fig. 3.5a). In this study, Rho-kinase activity in circulating 
neutrophils was expressed as the ratio of phosphorylated MBS (p-MBS) to total 
MBS (t-MBS) (Fig. 3.5a, b). A p-MBS ratio of 1.18 was identified as the best cutoff 
level to predict the diagnosis of VSA (Fig. 3.5b). We also demonstrated that the 
Rho-kinase activity is able to show the severity of angina symptoms, and the respon-
siveness to medical treatment [23]. We also subsequently demonstrated that Rho- 
kinase activity in circulating neutrophils in VSA patients was temporally enhanced 
after the Great East Japan Earthquake associated with disaster-related mental stress 
(Fig. 3.5c) [24] and that the Rho-kinase activity well corresponds to distinct circa-
dian variation in VSA patients (Fig. 3.5d) [25]. Moreover, when VSA patients were 
divided by a median value of Rho-kinase activity, VSA patients with higher Rho- 
kinase activity (≥1.20) had significantly worse prognosis (Fig. 3.6a) [26]. In this 
study, a p-MBS ratio of 1.24 was identified as the best cutoff level to predict future 
cardiac events in VSA patients (Fig.  3.6b). Of note, combination of Rho-kinase 
activity with the JCSA risk score dramatically enhanced the prognostic impact in 
VSA patients [26].
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Coronary microvascular dysfunction (CMD) has been emerging as an aggravat-
ing factor of cardiovascular disease [27, 28]. When no flow-limiting stenosis is 
noted on coronary angiography, coronary microcirculation can be assessed by index 
of microvascular resistance (IMR) [29]. We have recently demonstrated that comor-
bid CMD determined by increased IMR >18 worsens the long-term prognosis of 
VSA patients [30] (see Chap. 8 for details). In the study by Odaka et al., we obtained 
blood samples from the left coronary ostia before spasm provocation tests, 
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measured plasma concentration of serotonin, and found that VSA patients with 
CMD had highest serotonin concentration, while no difference was noted between 
VSA and non-VSA groups, associated with increased coronary vascular resistance 
(Fig. 3.7) [31]. Fractional flow reserve (FFR), a marker for evaluating the degree of 
flow limiting coronary stenotic region, may also be able to extract the high-risk 
population among VSA patients [32].

3.5  Imaging for Coronary Artery Spasm

Cardiovascular imaging could offer additional information at cellular and molecular 
levels on the detailed features of VSA. Intravascular imaging studies reported that 
atherosclerotic changes are more common in the human coronary arterial segment 
of focal spasm as compared with that of diffuse spasm [33, 34]. We have previously 
demonstrated that chronic inflammatory changes in the coronary adventitia play 
important roles in the pathogenesis of coronary artery spasm through Rho-kinase 
activation and resultant vascular smooth muscle hypercontraction [35–37]. We thus 
sought to develop novel imaging approaches for evaluating the extent of coronary 
adventitial inflammatory changes in VSA patients in vivo. First, a mode of Fourier- 
domain (FD) optical coherence tomography (OCT) [38] is capable of visualizing a 
nutrient blood vessel for coronary arterial wall linking to the intima/media, termed 
adventitial vasa vasorum (VV) [39, 40] in pigs and humans ex vivo. In these studies, 
we used the definition of adventitial area as [area outside the external elastic lamina 
within a distance of the thickness of intima plus media—vessel area] and the defini-
tion of adventitial VV area density calculated by [adventitial VV area/adventitial 
area] [39]. We were able to demonstrate that OCT-delineated adventitial VV forma-
tion was significantly enhanced at the spastic segments of VSA patients as com-
pared with those of control subjects (Fig. 3.8a–d) [41, 43]. Adventitial VV formation 
was significantly enhanced in the group with high JCSA score than in that with low 
or intermediate score. Second, coronary perivascular adipose tissue (PVAT) volume 
measured by CT coronary angiography was increased at the spastic segment of VSA 
patients [44]. Subsequently, 18F-fluorodeoxyglucose (18F-FDG) positron emission 
tomographic (PET) imaging allows us to evaluate inflammatory changes of coro-
nary PVAT in pigs in vivo [42]. In this study, the extent of PVAT inflammation was 
expressed as target to background ratio (TBR), the standardized uptake value (SUV) 
corrected for blood activity by dividing the average blood SUV estimated from the 
ascending aorta. With the novel approach of 18F-FDG PET, we demonstrated that 
coronary PVAT inflammatory changes were more extensive at the spastic coronary 
segments of VSA patients as compared with those of control subjects (Fig. 3.8e–i) 
[45]. Inflammatory changes measured by 18F-FDG PET were significantly sup-
pressed after medical treatment (Fig. 3.8j). These imaging approaches may serve as 
a promising avenue for the fully elucidation of the pathogenesis of coronary artery 
spasm in living patients with VSA in vivo.
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Fig. 3.8 Imaging of coronary artery spasm. Representative coronary angiography after adminis-
tration of intracoronary acetylcholine (a), after resolving the spasm with intracoronary administra-
tion of isosorbide-dinitrate (ISDN) (b), and cross-sectional images of optical coherence tomography 
(OCT) of a VSA patient with provoked diffuse spams (c, d). After ISDN, the coronary artery was 
imaged by OCT (b), and adventitial vasa vasorum (VV) (yellow arrows) were manually segmented 
on each frame. Adventitial VV area was then calculated as shown in magnified OCT images. Scale 
bars: 1  mm (c, d). (Reprinted with permission from Nishimiya et  al. [41]). Representative 
18F-fluorodeoxyglucose (18F-FDG) positron emission tomographic (PET) images of a non-VSA 
control subject and a VSA patient (e–h), suggesting that coronary perivascular adipose tissue 
(PVAT) inflammation is markedly increased at the spastic segments of the left anterior descending 
coronary artery (LAD) of the VSA patient (g, h). Quantitative analysis showed that TBR in coro-
nary PVAT measured at the spastic LAD was significantly greater in the VSA group than in the 
non-VSA control group (i). TBR was significantly decreased in the VSA group after medical treat-
ment (j). (Reproduced from Ohyama et al. [42])

3.6  Future Perspectives

A recent large-scale trial has shown that the coronary intervention for myocardial 
ischemia related to organic stenosis ended up showing no significant improvement 
in exercise time when compared with a placebo procedure [46] and may not result 
in the risk reduction of future cardiovascular events [46–48]. These results empha-
size in part the importance of the assessment of coronary vasomotion abnormalities, 
including coronary artery spasm (VSA), rather than stenosis-related myocardial 
ischemia (Fig. 3.9). In conclusions, we strongly encourage to perform spasm provo-
cation tests even when no organic coronary stenosis is found angiographically, and 
expect to possess more sophisticated approaches that can be readily used in daily 
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clinical practice, enabling us to predict the prevalence and the disease activ-
ity of VSA.
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Chapter 4
Treatment of Coronary Artery Spasm
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Abstract Coronary artery spasm plays a key role in a wide range of ischemic heart 
diseases not only in vasospastic angina (VSA) but also in acute coronary syndrome 
and sudden cardiac death in Asia and Western countries. In the era of widespread 
utilization of drug-eluting stents (DES) in the field of coronary intervention, it is 
important to realize the fact that patients still have unremitting angina symptoms 
even after resolving organic coronary stenosis with DES implantation. Although 
conventional management of VSA involves lifestyle modifications, use of estab-
lished pharmacological therapies, further novel therapies need to be developed. 
Basic and clinical evidence also has been accumulated for elucidating the risk to 
predict future cardiovascular events, detailed mechanism of coronary artery spasm, 
which in turn, provides new therapeutic approach for coronary spasm. In this chap-
ter, we will summarize the recent advances in the treatment of coronary artery 
spasm mainly based on our findings.
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4.1  Importance of Treatment of Coronary Artery 
Spasm Worldwide

Coronary artery spasm plays an important role in a wide variety of ischemic heart 
disease, not only in VSA but also in other forms of angina pectoris, myocardial 
infarction, and sudden death [1]. Although it has been believed for a long time that 
VSA is more common in Asian than in Western populations [2, 3], recent studies 
from Germany revealed that the prevalence of VSA in Caucasians may be higher 
than what we expected [4, 5]. We also have recently addressed the ethnic differences 
in the long-term prognosis by comparing 1339 Japanese and 118 Caucasians VSA 
patients [6]. Multivessel spasm was more prevalent in Japanese, whereas 
provocation- related arrhythmias were more common in Caucasians. In the multi-
variable analysis, the Japanese Coronary Spasm Association (JCSA) risk score, 
including the number of coronary arteries positive for spasm provocation tests, was 
found to show good correlations with major adverse cardiac event (MACE) rates in 
both Japanese and Caucasian patients. Thus, these findings indicate the clinical 
importance of the treatment of VSA worldwide.

4.2  Management of Coronary Artery spasm

Management of VSA includes lifestyle modifications, use of pharmacological ther-
apies, and non-pharmacological approaches [1, 7]. It is important to document sup-
pression of both symptomatic and asymptomatic episodes with ambulatory ECG 
monitoring [7]. Risk stratification of future cardiovascular events in VSA patients is 
also important [8]. Treatment of VSA reduces the frequency of symptomatic epi-
sodes and appears to decrease the frequency of serious complications [7]. Associated 
with decreased disease activity and symptoms, biomarkers and cardiac images are 
also useful [9, 10].

4.2.1  Lifestyle Modifications for Risk Factors

We previously demonstrated that inflammatory stimuli causes upregulation of Rho- 
kinase leading to coronary artery spasm [11]. Notably, cigarette smoking has been 
shown to cause low-grade inflammation [12], which may also cause coronary 
spasm. Since smoking cessation removes one of the triggers for VSA and leads to a 
significant decrease in the frequency of episodes, at least in a short term, it should 
be encouraged [13]. Avoiding other risk factors for VSA, such as mental stress [14], 
alcohol consumption [15], and the use of pharmacological agents, such as cocaine 
[16], is also important in VSA patients. Indeed, we previously demonstrated that 
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sustained elevation of serum cortisol level sensitizes coronary arteries to cause 
hyperconstricting responses through Rho-kinase activation in pigs in vivo, suggest-
ing the link between stress and coronary artery spasm [17].

4.2.2  Pharmacotherapy

 Calcium Channel Blockers

Calcium channel blockers (CCBs) are the first-line therapy for VSA [7]. Indeed, 
CCBs effectively inhibit vasoconstriction and promote vasodilation of the coronary 
vasculature, thereby alleviating symptoms. Previous study demonstrated that the 
use of CCBs was an independent predictor of myocardial infarct-free survival in 
VSA patients [18].

In the era of coronary intervention with DES, it is important to realize the fact that 
patients have unremitting angina symptoms even after resolving organic coronary 
stenosis with DES implantation [19]. We have demonstrated that a first- generation 
DES cause coronary hyperconstricting responses in pigs in vivo in response to intra-
coronary serotonin at the segments proximal or distal to the DES edge, compared 
with its platform bare-metal stents (BMS) and that activation of Rho-kinase pathway, 
a molecular switch for vascular smooth muscle contraction, is involved in its patho-
genesis [20]. More recently, we conducted a multicenter randomized control study 
that showed that even the everolimus-eluting stents, most widely disseminated DES, 
were able to induce coronary hyperconstricting responses at 8–10 months after DES 
implantation [21]. Intriguingly, nifedipine, a long-acting CCB, was able to suppress 
DES-induced coronary hyperconstricting responses in humans [21]. We and others 
also demonstrated that among the 4 major CCBs (benidipine, amlodipine, nifedipine, 
and diltiazem) that effectively suppress VSA attacks in general, benidipine showed 
the most beneficial prognostic effects than others [22, 23]. Taken together, CCBs are 
useful for the treatment of VSA patients with or without DES implantation.

 Nitrates and Nicorandil

Long-acting nitrates are also effective in alleviating symptoms [7], although the 
potential nitrate tolerance makes them a less desirable first-line approach. Indeed, 
we addressed this important issue on the long-term efficacy of nitrate therapy in 
VSA patients [24]. In this study with 1429 patients with VSA, of whom more than 
90 percent were receiving treatment with a CCB, a propensity score-matched analy-
sis found that the cumulative incidence of MACE (cardiac death, nonfatal myocar-
dial infarction, hospitalization due to unstable angina or heart failure, and appropriate 
implantable cardioverter-defibrillator shocks) was similar between patients with 
nitrate treatment and those without it (11 vs. 8% at 5 years; hazard ratio [HR] 1.28, 
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95% CI 0.72–2.28) [24]. Although nicorandil, one of the nitrate-like agents used in 
the study, had a neutral effect on clinical events (HR: 0.80; 95% CI 0.28–2.27), 
multivariable analysis showed a deleterious effect of the concomitant use of nitrates 
and nicorandil (HR 2.14; 95% CI 1.02–4.47). Thus, the long-term administration of 
nitrates may not improve prognosis in VSA patients who receive CCB treatment. In 
addition, the concomitant use of more than one nitrate formulation may increase the 
risk for MACE in those patients.

 Rho-Kinase Inhibitors

Accumulating evidence indicates that Rho-kinase is substantially involved in the 
pathogenesis of coronary spasm in animals and in humans [1]. Indeed, intracoro-
nary administration of fasudil and of hydroxyfasudil, selective Rho-kinase inhibi-
tors, markedly inhibits coronary spasm in a porcine model with long-term treatment 
with IL-1β [25–27]. Importantly, the inhibition of Rho-kinase with fasudil/hydroxy-
fasudil was associated with the suppression of enhanced MLC phosphorylations 
(both MLC mono- and diphosphorylations) at the spastic coronary segments in this 
model [25, 26]. Subsequently, it was demonstrated that the expression and activity 
of Rho-kinase are enhanced at the IL-1β-induced inflammatory coronary lesions, 
thereby suppressing MLCPh through phosphorylation of its MBS with resultant 
increase in MLC phosphorylations and coronary spasm [28]. This is also the case 
for the hypercontractions of isolated arteriosclerotic human arteries [29].

We then demonstrated that in VSA patients, intracoronary fasudil also markedly 
inhibits acetylcholine-induced coronary spasm and related myocardial ischemia, 
demonstrating that Rho-kinase is substantially involved in the pathogenesis of coro-
nary spasm in humans (Fig. 4.1) [30]. Severe coronary artery spasm after coronary 
artery bypass grafting (CABG) remains a serious complication of the surgery as it 
eventually results in circulatory collapse and/or death [31]. We also showed that the 
treatment with fasudil is useful to treat intractable and otherwise fatal coronary 
spasm resistant to intensive conventional vasodilator therapy after CABG (Fig. 4.2) 
[32]. We further conducted a clinical trial for anti-anginal effects of fasudil in 
patients with stable effort angina, which demonstrated that the long-term oral treat-
ment with the Rho-kinase inhibitor is effective in ameliorating exercise tolerance in 
patients with adequate safety profiles [33]. Approximately half of VSA patients 
show abnormal responses to exercise stress tests [34]. These findings suggest that 
inappropriate coronary vasoconstriction may be involved even in the pathogenesis 
of effort angina that is effectively suppressed by Rho-kinase inhibitors.

DES-induced coronary vasomotion abnormalities even after successful PCI 
remains to be overcome [19]. We experienced a patient who suffered from an out- 
of- hospital cardiac arrest at 65 months after a sirolimus-eluting stent (first- generation 
DES) implantation [35]. Spasm provocation test using acetylcholine showed 
 coronary spasm at the DES edges, whereas intracoronary pretreatment of 
 Rho-kinase inhibitor, fasudil, markedly attenuated acetylcholine-induced vasocon-
striction [35]. We also demonstrated that pretreatment with fasudil suppresses 
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acetylcholine- induced coronary hyperconstricting responses in patients with DES 
implantation (Fig. 4.3) [36]. Taken together, Rho-kinase inhibitors are effective and 
promising drugs for the treatment of coronary artery spasm [1, 7].

 Statins and Magnesium

In 64 patients who received CCB therapy, the percentage of ACh-induced coronary 
spasm was significantly lower in the group who received fluvastatin (30 mg/day) 
compared with those without it (48 vs. 79%) [37]. Magnesium deficiency may also 
play a role in coronary artery spasm [38]. In the previous study with 22 VSA 
patients, those who received intravenous magnesium (n  =  14) showed coronary 

Control

ISDNFasudil + ACh

ACh

Fig. 4.1 Inhibitory effect of fasudil on coronary artery spasm. Top left, Baseline angiogram. Top 
right, The first ACh challenge provoked severe coronary spasm at the mid-portion of the left ante-
rior descending coronary artery (large arrow) and diffuse spasm along the left circumflex coronary 
artery (small arrows). Bottom left, No epicardial spasm was provoked during the second challenge 
after pretreatment with fasudil. Bottom right, Angiogram after treatment with intracoronary isosor-
bide dinitrate (ISDN). (Reproduced from Masumoto et al. [30])
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Control ISDN Fasudil

Fig. 4.2 Inhibitory effect of fasudil on intractable coronary spasm after CABG. Right coronary 
angiography of a patient with intractable coronary spasm after CABG. Black arrows indicate the 
spastic segments. Control, ISDN, and Fasudil indicate angiograms under control conditions, after 
intracoronary administration of isosorbide dinitrate (ISDN), and after fasudil, respectively. 
(Reproduced from Inokuchi et al. [32])

Control

ISDNFasudil+ ACh

ACh

Fig. 4.3 Inhibitory effect of fasudil on drug-eluting stent-induced coronary hyperconstricting 
responses. Top left, Baseline angiogram. Top right, The first ACh challenge provoked severe coronary 
spasm at the mid-portion of the left anterior descending coronary artery (large arrow) and diffuse 
spasm along the left circumflex coronary artery (small arrows). Bottom left, No epicardial spasm was 
provoked during the second challenge after pretreatment with fasudil. Bottom right, Angiogram after 
treatment with intracoronary isosorbide dinitrate (ISDN). Red lines indicate the site of first-genera-
tion drug-eluting stent (Cypher™) implantation. (Reproduced from Aizawa et al. [36])
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vasodilation compared with those with placebo (n = 8) [39]. Rechallenged intra-
coronary acetylcholine provocation tests also showed that they had less severe chest 
pain and ST-segment elevation. Further large studies are required to assess clinical 
outcomes before we recommend routine use of statins or magnesium for VSA 
patients.

4.2.3  Non-pharmacological Treatment

Novel non-pharmacological management of coronary vasomotion abnormalities 
includes, as we have recently demonstrated, catheter-based renal denervation (RDN) 
[40], improvement of DES polymers [41], exercise training [42], and a noninvasive 
low-intensity pulsed ultrasound (LIPUS) therapy [43].

The adventitia harbors a variety of components that potently modulate vascular 
tone, including sympathetic nerve fibers (SNF) and vasa vasorum [40]. Catheter- 
based RDN inhibits sympathetic nerve activity. Thus, we examined whether RDN 
suppresses drug-eluting stent-induced coronary hyperconstricting responses, and if 
so, what mechanisms are involved [40]. Pigs implanted with everolimus-eluting 
stents were randomly assigned to the RDN or sham group. The RDN group under-
went renal ablation. At 1 month, RDN significantly caused marked damage of the 
SNF at the renal arteries without any stenosis, thrombus, or dissections. Notably, 
RDN significantly upregulated the expression of α2-adrenergic receptor-binding 
sites in the nucleus tractus solitaries of the brain stem, attenuated muscle sympa-
thetic nerve activity, and decreased systolic blood pressure and plasma renin  activity. 
In addition, RDN attenuated coronary hyperconstricting responses to intracoronary 
serotonin at the proximal and distal stent edges associated with decreases in SNF 
and vasa vasorum formation, inflammatory cell infiltration, and Rho-kinase expres-
sion/activation. Furthermore, there were significant positive correlations between 
SNF and vasa vasorum and between SNF and coronary vasoconstricting responses. 
These results provide the first direct evidence that RDN ameliorates drug-eluting 
stent-induced coronary hyperconstricting responses in pigs in  vivo through the 
 kidney–brain–heart axis (Fig. 4.4) [40].

Recent studies have reported unremitting angina due to coronary vasomotion 
abnormalities even after successful DES implantation [19]. However, it remains to 
be elucidated which component of DES (metal stent, polymer coating, or antiprolif-
erative drug) is responsible for DES-induced coronary hyperconstricting responses. 
We developed poly-dl-lactic acid and polycaprolactone (PDLLA-PCL) copolymer 
technology with higher biocompatibility that is resorbed within 3 months [41]. Four 
types of coronary stents were made; (1) a stent with polylactic acid (PLA) polymer 
coating containing antiproliferative drug (P1+ D+), (2) a stent with PLA polymer 
coating alone without any drug (P1+ D−), (3) a stent with novel PDLLA- PCL poly-
mer coating alone (P2+ D−), and (4) a bare-metal stent (P−D−). These 4 stents 
were randomly deployed in the left anterior descending and left circumflex coro-
nary arteries in 12 pigs. After 1 month, coronary vasoconstriction in response to 
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intracoronary serotonin was enhanced at P1+ D+ and P1+ D− stent edges compared 
with P2+ D− and P−D− stent edges and was prevented by a specific Rho- kinase (a 
central molecule of coronary spasm) inhibitor, hydroxyfasudil. Immunostainings 
showed that inflammatory changes and Rho-kinase activation were significantly 
enhanced at P1+ D+ and P1+ D− sites compared with P2+ D− and P−D− sites. 
There were significant positive correlations between the extent of inflammation or 
Rho-kinase expression/activation and that of coronary vasoconstriction. These 
results indicate the causative roles of PLA polymer coating in DES- induced coro-
nary vasoconstricting responses through inflammatory changes and Rho-kinase 
activation in pigs in vivo, which could be ameliorated by PDLLA-PCL copolymers 
(Fig. 4.5) [41].

Coronary vasomotion abnormalities could develop in both epicardial coronary 
arteries and intramuscular coronary microvessels. We thus examined whether vaso-
dilator capacity of coronary microvessels is impaired in VSA patients and if so, 
whether exercise training could ameliorate vasodilator capacity of coronary 
microvessels, exercise tolerance, and angina symptoms on the top of CCB. Exercise 
training is effective for VSA patients in terms of improved vasodilator capacity of 
coronary microvessels, exercise tolerance, and angina symptoms even on the top of 
CCB [42].

However, a direct therapeutic approach to the coronary adventitia remains to be 
developed. We have developed a noninvasive, low-intensity pulsed ultrasound 
(LIPUS) therapy for angina, which exerts angiogenic and anti-inflammatory effects 

Renal denervation

Kedney

Brain

Coronary arteries at the DES edges

Vasa vasorum
Inflammation
Rho-kinase activation
vasoconstriction

Heart

Systemic responses

Blood pressure
Muscle sympathetic nerve activity

α2-adrenergic receptor
Nucleus tractussolitarius

Sympathetic nerve fiber

Fig. 4.4 Renal denervation as a potential novel therapeutic option for refractory coronary artery 
spasm. Bilateral renal denervation (RDN) ameliorates coronary hyperconstricting responses after 
DES implantation in pigs in vivo through suppression of the kidney–brain–heart axis, including 
suppressions of coronary adventitial sympathetic nerve fiber, vasa vasorum formation, inflamma-
tion, and Rho-kinase activation, suggesting that RDN is a novel therapeutic option for refractory 
angina. (Reproduced from Uzuka et al. [40])
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Fig. 4.5 Inhibitory effect of a novel polymer coating on coronary vasoconstricting responses at 
1 month after stent implantation in pigs in vivo. Results of quantitative coronary angiography for 
coronary vasoconstricting response to serotonin (10 and 100 μg/kg IC) before and after hydroxy-
fasudil (90 and 300 μg/kg IC) at 1  month after stent implantation. Coronary vasoconstricting 
responses to serotonin were equally enhanced at the P1 + D+ and P1 + D− stent edges compared 
with the P2 + D− and P − D− stent edges. These responses were all prevented by pretreatment 
with hydroxyfasudil. The 4 different stents, P1 + D+, P1 + D−, P2 + D−, and P − D− (6 each), 
were randomly implanted in the LAD and LCX in 12 miniature pigs. At 1 month after stent implan-
tation, animals underwent follow-up coronary angiography to assess coronary vasomotion in vivo 
and were then euthanized for histological and immunohistological analyses of the inflammation 
and expression/activity of Rho-kinase. IC = intracoronary; LAD = left anterior descending coro-
nary artery; LCX = left circumflex coronary artery; P − D− = stent without a polymer or a drug; 
P1 + D+ = stent with a polylactic acid polymer and a drug; P1 + D− = stent with a polylactic acid 
polymer but without a drug; P2 + D− stent with a poly-dl-lactic acid and polycaprolactone copo-
lymer but without a drug; PDLLA-PCL = poly-dl-lactic acid and polycaprolactone; PLA = poly-
lactic acid. Results are expressed as mean ± SEM. (Reproduced from Nishimiya et al. [41])

through improved coronary microcirculation. We were able to develop a noninva-
sive LIPUS therapy for coronary functional abnormalities caused by chronic adven-
titial inflammation in pigs in vivo [43].

Percutaneous coronary intervention (PCI) is not routinely indicated for patients 
with focal spasm and minimal obstructive disease [7]. Coronary artery spasm and 
lethal ventricular arrhythmias are important causes of out-of-hospital cardiac arrest 
(OHCA) [44]. Optimal therapy for patients resuscitated from OHCA who are not 
found to have structural heart disease remains to be established. In 47 consecutive 
OHCA survivors without structural heart disease who had fully recovered (M/F 
44/3, 43 ± 13 years), we performed dual induction tests, including acetylcholine 
provocation test first followed by programmed ventricular stimulation after 
1–2  weeks. Patients with positive coronary spasm were treated with CCB-based 
anti-anginal medications, and implantable cardioverter-defibrillators (ICDs) were 
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implanted in all patients [44]. Among OHCA survivors without structural heart dis-
ease, provokable coronary spasm and ventricular arrhythmias are common and can 
be seen in Brugada syndrome. No ventricular fibrillation episodes were noted in the 
spasm-alone patients who did not also have Brugada syndrome. Thus, patients with 
coronary spasm alone without Brugada syndrome may be a lower-risk group [44]. 
Importantly, placement of an ICD was not associated with improved survival in 
patients with variant angina and OHCA [45]. Thus, although there are no current 
guidelines for patients with VSA among OHCA survivors, an ICD should be con-
sidered based on the presence or absence of Brugada syndrome [44].

4.3  Usefulness of JCSA Risk Score for Risk Stratification 
of Future Cardiovascular Events

A landmark study from the JCSA registry developed the JCSA risk score that can 
provide comprehensive risk assessment and prognostic stratification for VSA 
patients [8]. A total of 7 variables, including history of OHCA (4 points), smok-
ing, rest angina alone, organic coronary stenosis, multivessel spasm during the 
spasm provocation tests (2 points per each), ST-segment elevation during angina, 
and β-blocker use (1 point per each) were chosen for the JCSA score. Of note, 
MACE were incrementally documented in line with the low-risk, intermediate-
risk, high- risk (2.5%, 7.0% and 13.0%, P < 0.001). Among the 3 risk groups, clear 
prognostic utility of the JCSA scoring system for MACE was confirmed through-
out the follow- up period. Thus, JCSA risk score is useful for the treatment and 
assessment of the risk stratification of future cardiovascular events in VSA 
patients [8]. 

4.4  Biomarkers and Cardiac Imaging as a Treatment 
Efficacy for Coronary Artery Spasm

We previously demonstrated that Rho-kinase activity in circulating neutrophils, 
determined by the extent of phosphorylation of myosin-binding subunit (MBS, a 
substrate of Rho-kinase), is significantly enhanced in VSA patients as compared 
with controls, which is a useful noninvasive diagnostic biomarker to assess the 
vasospastic disorder and the disease activity [9]. In this study, Rho-kinase activity 
in circulating neutrophils was expressed as the ratio of phosphorylated MBS 
(p-MBS) to total MBS (t-MBS). A p-MBS ratio of 1.18 was identified as the best 
cutoff level to predict the diagnosis of VSA. The Rho-kinase activity was found to 
show the association with the severity of angina symptoms, and was able to 
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correspond to the significant reduction in the disease activity after medical treat-
ment. When we divided 174 VSA patients into 2 groups by a cutoff value (1.20), 
VSA patients with higher Rho-kinase activity (≥1.20) had significantly worse prog-
nosis [46]. In this study, a p-MBS ratio of 1.24 was identified as the best cutoff level 
to predict future cardiac events in VSA patients. Of note, combination of Rho-kinase 
activity with the JCSA risk score dramatically improved the prognostic impact in 
VSA patients as compared with either alone [46].

We previously demonstrated that chronic inflammatory changes in the coronary 
adventitia play roles in the pathogenesis of coronary artery spasm through Rho- 
kinase activation and resultant vascular smooth muscle hypercontraction [1, 26–28, 
40, 41, 47–50]. We thus developed novel imaging approaches for evaluating the 
extent of coronary adventitial inflammatory changes in VSA patients in  vivo. 
Indeed, we were able to demonstrate that optimal coherence tomography (OCT)-
delineated adventitial VV formation was significantly enhanced at the spastic seg-
ments of VSA patients as compared with those of the control subjects [51, 52]. 
Notably, VV formation was significantly increased in the group with high JCSA 
score than that with the low or intermediate score. We then demonstrated that coro-
nary perivascular adipose tissue (PVAT) volume measured by CT coronary angiog-
raphy was increased at the spastic segment of VSA patients [53]. In addition, 
18F-fluorodeoxyglucose (18F-FDG) positron emission tomographic (PET) imaging 
allows us to evaluate inflammatory changes of coronary PVAT in pigs in vivo [54]. 
The extent of PVAT inflammation was expressed as a target to background ratio 
(TBR), the standardized uptake value (SUV) corrected for blood activity by divid-
ing the average blood SUV estimated from the ascending aorta. Importantly, using 
this imaging approach with 18F-FDG PET, we demonstrated that coronary PVAT 
inflammatory changes were more enhanced at the spastic coronary segments of 
VSA patients as compared with those of controls [55]. Importantly, inflammatory 
changes measured by 18F-FDG PET were significantly suppressed after medical 
treatment (Fig.  4.6) and also associated with improvement of angina symptom 
(Fig. 4.7). Taken together, these biomarkers and imaging approaches provide better 
understanding of the pathogenesis and treatment efficacy of coronary artery spasm 
in VSA patients (Fig. 4.8) [55–57].

4.5  Future Perspectives

Although the long-term prognosis of VSA patients is usually good, refractory VSA 
and major cardiac events, including acute myocardial infarction and sudden cardiac 
death, remain important issues. Further studies are needed to improve the under-
standing of this pathophysiology and to develop new effective therapies.
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Fig. 4.6 Usefulness of 18F-FDG PET/CT images and assessment of Rho-kinase activity before 
and after medical treatment in VSA patients(A ~ E). Representative 18F-FDG PET/CT images with 
a VSA patient at baseline (a) and follow-up (b). Coronary perivascular FDG uptake was markedly 
decreased in the spastic LAD after medical treatment. Quantitative analysis showed that coronary 
perivascular TBR (c) and Rho-kinase activity (d) were significantly decreased after medical treat-
ment, although coronary perivascular adipose tissue volume index (e) was not significantly 
decreased. 18F-FDG PET/CT = 18F-fluorodeoxyglucose positron emission tomography/computed 
tomography; CT = computed tomography; FDG = fluorodeoxyglucose; VSA = vasospastic angina. 
(Reproduced from Ohyama K, et al. [55])
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Fig. 4.7 Symptom improvement after medical treatment and changes in coronary perivascular 
FDG uptake and those in Rho-kinase activity. There were significant trends between the extent of 
symptom improvement and percent change in coronary perivascular TBR and that of Rho- kinase 
activity during a median follow-up of 23 months in the group with VSA. FDG = Fluorodeoxyglucose; 
TBR  =  target-to-background ratio; VSA  =  vasospastic angina. (Reproduced from Ohyama K, 
et al. [55])
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Chapter 5
Epidemiology of Coronary Microvascular 
Dysfunction

Peter Ong and Hiroaki Shimokawa

Abstract Coronary microvascular dysfunction (CMD) is a frequent clinical condi-
tion leading to angina pectoris and/or shortness of breath in various forms of cardio-
vascular disease. Several invasive and non-invasive assessments are available for a 
comprehensive evaluation of the underlying microvascular abnormalities (e.g. coro-
nary flow velocity reserve (CFR) via transthoracic Doppler echocardiography, car-
diac magnetic resonance imaging or positron emission tomography, invasive 
assessment of CFR and microvascular resistance using adenosine as well as the 
assessment of microvascular coronary spasm using acetylcholine). It is consensus 
that impaired microvascular vasodilatory function, but also enhanced microvascular 
vasoconstriction/spasm represent important mechanisms for CMD.  The clinical 
presentation as well as the methods applied for investigation of CMD is associated 
with the prevalence of CMD. Overall, in patients with signs and symptoms of myo-
cardial ischemia yet unobstructed coronary arteries, CMD can be found in approxi-
mately 50–60% of cases. However, the epidemiology of CMD is still difficult to 
assess. Novel diagnostic techniques involving smartphone-based ECG recordings 
offer a direct assessment of ischemic ECG shifts during a chest pain attack. The 
broad applicability of this technology may also influence the epidemiology of 
CMD. This chapter reviews the available epidemiological data on CMD in patients 
with angina and unobstructed coronary arteries.
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Abbreviations

ACh Acetylcholine
ACS Acute coronary syndrome
APV Average peak velocity
CAD Coronary artery disease
CFR Coronary flow reserve
CMD Coronary microvascular dysfunction
CSX Cardiac syndrome X
CTCA Computed tomography coronary angiography
ECG Electrocardiogram
FFR Fractional flow reserve
IDP Interventional diagnostic procedure
LCA Left coronary artery
MINOCA Myocardial infarction with non-obstructive coronary arteries
NOCAD Non-obstructive coronary artery disease
NSTEMI Non-ST-elevation myocardial infarction
PET Positron emission tomography
RCA Right coronary artery
STEMI ST-elevation myocardial infarction

5.1  Introduction

Coronary microcirculation plays a pivotal role in coronary blood flow regulation in 
various forms of cardiovascular disease [1]. Commonly, microvessels are defined 
as vessels with a diameter of <500 μm. Remodelling of the coronary microcircula-
tion in response to various stimuli may result in structural and functional 
 alterations  [2]. Various clinical conditions, such as hypertension, diabetes,  
hypercholesterolemia, smoking, obesity and others, have been shown to adversely 
affect the coronary microcirculation [3]. Clinically, coronary microvascular dys-
function (CMD) can be associated with epicardial atherosclerotic disease, myocar-
dial disease, iatrogenic causes and in the absence of the latter conditions. This 
allows classification into four different groups as suggested by Crea and Camici 
[1]. Diagnosing CMD in patients without myocardial or epicardial coronary dis-
ease represents a special challenge for the clinical cardiologist. Studies have shown 
that the prevalence of CMD in patients with unobstructed coronary arteries is high 
and that their prognosis is not benign. Thus, assessment of the integrity of the coro-
nary microcirculation is important because of its prognostic impact [4]. Depending 
on the clinical presentation of the patient and the co-existing comorbidities, the 
clinical cardiologist has to decide which assessments (non-invasive and/or 
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invasive) are appropriate. A proposed diagnostic workup including both non-inva-
sive and invasive techniques is shown in Fig.  5.1. Depending on the diagnostic 
methods applied for the investigation of CMD, there is a variation in the preva-
lence of CMD. This chapter gives a contemporary overview of the epidemiology 
of CMD in patients with signs and symptoms of myocardial ischemia yet unob-
structed coronary arteries.

Patients with signs and sympyoms of myocardial ischemia
but unobstructed coronary arteries

Non-invasive

CMD

Normal
vasomotion

CMD Combined CMD CMD

Microvascular
spasm

Epicardial
spasm

Invasive

Acetylcholine-testCFR <_ 2.0 - 2.5* CFR > 2.0 - 2.5*

CFR <_ 2.0 - 2.5*

Coronary angiographyPET, TTDE, CMR

Diagnosis of impaired
vasodilation

if non-invasive
CFR available

if non-invasive
CFR available

*depending on the
used method

if CFR > 2.0 - 2.5
Epicardial and/or

microvascular spasm

CFR / MVR
by Doppler or

Thermodilution

CMD unlikely
if CFR > 2.0 - 2.5

+ ACh normal

with isolated
impaired vasodilation

impaired vasodilation
+ microvascular spam

impaired vasodilation
+ epicardial spasm

Fig. 5.1 Interventional diagnostic procedure (IDP), proposed by Ong et al. [5], including both 
non-invasive and invasive techniques in symptomatic patients with unobstructed coronary arteries 
and suspected CMD. CFR coronary flow reserve, CMR cardiovascular magnetic resonance, MVR 
microvascular resistance, PET positron emission tomography, TTDE transthoracic Doppler echo-
cardiography. (Reproduced from Ong et al. [5])
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5.2  Historical Background

Long before the discovery of coronary angiography and the advent of invasive cardiol-
ogy, physicians all over the world have treated patients with chest pain. In the absence 
of any detailed information about structural or functional heart disease, they could 
only speculate about the origin of the patient’s symptoms. However, the description of 
the patient’s symptoms was one of the most important tasks in which many of these 
physicians were masters. One of them was William Heberden, a British physician who 
lived from 1710 until 1801. He was one of the first physicians to describe chest pain as 
“angina pectoris” a term that has survived until today. Traditionally, the term “angina” 
arose from about two centuries before his time and was used to describe throat pain, 
accompanied by a feeling of anxiety. In Heberden’s description, angina pectoris was a 
thoracic discomfort, frequently retrosternal pain, with radiation to the left arm. The 
symptoms usually occurred during exertion and subsided at rest [6].

With the discovery of the ECG in 1903 by Eindhoven, physicians were able to correlate 
chest pain symptoms with ischemic ECG changes. Based on the initial description by 
Heberden [6], it was found that patients with exertional chest pain frequently showed isch-
emic ECG changes during exercise leading to the term “typical angina”. In contrast, others 
made the observation that patients with resting chest pain could have transient ST-segment 
elevation on the 12-lead ECG while their exercise capacity was preserved which led to the 
term “variant angina” by Prinzmetal in 1959 [7]. Prinzmetal assumed that this phenome-
non was based on transient spasms of the coronary arteries, and only later it was found out 
that a substantial proportion of his patients suffered from additional stenosing epicardial 
disease on autopsy. The description of patients with variant angina and unobstructed coro-
nary arteries was made shortly after and termed “variant of the variant”. Although this only 
fostered the confusion of terminology in this area of cardiology, it should be acknowl-
edged that with the advent of coronary angiography it became apparent that many patients 
with angina pectoris had unobstructed coronary arteries. In an early study by Proudfit in 
1978, it was documented that the prognosis of patients with angina pectoris correlated with 
the severity of their symptoms, the arteries affected and with an impaired left ventricular 
function [8]. Moreover, it was previously shown in 1966 that 37% of all patients had unob-
structed coronary arteries (<30% luminal obstruction) [9]. Comprehensive research was 
carried out and Arbogast and Bourassa showed that rapid pacing paradoxically resulted in 
enhanced left ventricular function in patients with angina but normal coronary arteries, 
called “group X” [10]. This phenomenon led to the introduction of the term “syndrome 
X”, a label that was commonly used to describe these patients at the time (i.e. chest pain 
and unobstructed coronary arteries). In 1988, Cannon and Epstein showed that a substan-
tial percentage of patients with angina and unobstructed coronaries exhibited a coronary 
microvascular disorder and thus introduced the term “microvascular angina” [11]. 
Subsequently, the concept of coronary microvascular spasm was introduced by Mohri 
et al. suggesting that an increased vasoconstrictive potential of the coronary microvascular 
system may be another form of microvascular dysfunction [12].

Despite these seminal studies, the focus of research in clinical cardiology shifted 
towards epicardial coronary artery disease (CAD) with the introduction of percuta-
neous coronary interventions in the 1980s by Puel and Sigwart [13]. Thus, the 
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pivotal role of the microcirculation in regulating myocardial perfusion [14] and its 
clinical importance in patients with angina and unobstructed coronary arteries 
received less attention. In recent times, the topic has gained more and more atten-
tion. This is due to an important review article in the New England Journal of 
Medicine in 2007 [1], the improvement of diagnostic assessments and therapeutic 
pathways in these patients [15, 16] and the body of evidence confirming an unfa-
vourable prognosis in various cohorts of patients with CMD [4, 17].

5.3  Epidemiological Considerations

Epidemiology is defined as “the study and analysis of the distribution (who, when and 
where), patterns and determinants of health and disease conditions in defined popula-
tions” [18] with two important measures, incidence and prevalence. Whereas inci-
dence refers to the frequency of events correlating with time and does thus reflect 
morbidity in a population [19], prevalence is a measure for the frequency of a disease, 
by defining a specific part of a defined population at a time that carries either a certain 
disease or a risk factor [20]. The epidemiology of CMD is difficult to assess as it can 
be present in various forms of cardiovascular disease. This chapter will focus on the 
epidemiology of patients with type 1 CMD according to Crea and Camici (i.e. CMD 
in the absence of coronary and myocardial disease) [1]. Moreover, there are several 
different tools available to assess CMD, each with a different definition and yield of 
establishing the diagnosis. On average, the prevalence of CMD in observational stud-
ies in patients with NOCAD ranges from 22% to 63% (Table 5.1) [2].

Table 5.1 Prevalence of CMD in observational studies with various testing modalities

Author Number of patients (n) Diagnostic approach
Prevalence of 
CMD %() Ref.

Cassar et al. 376 Coronary reactivity 
testing

63 [21]

Hasdai et al. 203 Coronary reactivity 
testing

59 [22]

Murthy et al. 1218 PET (CFR < 2.0) 53 [4]
Mygind 
et al.

919 TTDE (CFR < 2.0) 26 [23]

Reis et al. 159 Coronary reactivity 
testing

47 [24]

Sade et al. 68 TTDE (CFR < 2.0) 40 [25]
Sara et al. 1439 Coronary reactivity 

testing
64 [26]

Sicari et al. 394 TTDE (CFR < 2.0) 22 [27]
Wei et al. 293 Coronary reactivity 

testing
49 [28]

A comprehensive analysis of the prevalence of CMD, reported by multiple studies using various 
testing approaches, revealed an overall prevalence ranging from 22% to 63%
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In addition, various taxonomic definitions and descriptions for CMD have been 
used inconsistently in the literature complicating this aspect even more. A meta- 
analysis looking at 57 studies in patients with chest pain and unobstructed coronary 
arteries previously labelled as cardiac syndrome X revealed very heterogeneous 
inclusion and exclusion criteria. The authors found as many as 9 inclusion and 43 
exclusion criteria limiting the comparability of the studies. Moreover, these differ-
ent criteria had an impact on the estimated incidence of the disease over 1 year 
treated in a general hospital ranging from 3% to 11%. Interestingly, the meta- 
analysis revealed a pooled proportion of females of 0.56 (n = 1934 patients, with 
95% confidence interval: 0.54–0.59) (Fig. 5.2) [29].

5.4  Definition of Unobstructed Coronary Arteries

Patients with angina and unobstructed coronary arteries are frequently encountered 
in daily clinical practice. However, the interpretation of epicardial disease regarding 
its severity has many pitfalls. As previously shown by Bertrand et al., visual assess-
ments of epicardial stenoses by experienced cardiologist are somewhat inaccurate 
compared to computerized assessments [30]. The authors demonstrated that the 
degree of epicardial stenosis pre-PCI differed between the cardiologists and 
the computerized quantitative analysis (80.6 ± 9.7 vs. 73.4 ± 11.1). Interestingly, 
the assessment after PCI was 18.8% ± 12.3 by the cardiologists and 37.4 ± 14 by the 
computer system [30]. Moreover, there is no international consensus regarding the 
definition of unobstructed coronary arteries. A frequently applied criterion is a 
<50% stenosis based on visual assessment. However, other studies have applied a 
30% criterion or even a 70% criterion [9]. With the introduction of invasively avail-
able pressure-wire measurements for assessment of hemodynamic relevance of epi-
cardial stenoses, it is recommended to refrain from a percental classification of 
epicardial stenoses. It is rather advisable to perform pressure-wire assessments of 
any intermediate epicardial lesion as even epicardial lesions with a 30% stenosis 
may be hemodynamically relevant as shown by Toth et al. [31]. Thus, contemporary 
study protocols for the evaluation of CMD should include such pressure-wire mea-
surements in order to not overlook any relevant epicardial stenosis amenable for 
coronary revascularization.

The improvement of the CTCA technology and its broader applicability has led 
to several large studies, showing that an initial CTCA approach in patients with 
suspected CAD is feasible [32]. However, such an approach is limited by the fact 
that CTCA only delivers information about coronary anatomy but neither on any 
functional coronary disorders nor on the hemodynamic relevance of any intermedi-
ate epicardial lesion. These limitations can be overcome by the CT-FFR technique, 
where not only anatomic information about epicardial stenoses but also functional 
information about the hemodynamic relevance of a given lesion is assessed [33, 34]. 
In addition, a combined assessment of not only CTCA and CT-FFR but also 
CT-perfusion has been shown to be feasible in clinical studies [35]. The 
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Proportion female patients
First author & year

Lee 2008
Demir 2008
Timurkaynak 2008
Cemin 2008
Lanza 2008
Altum 2008
Cotrium 2008
Grabczewska 2007
Okyay 2007
Dabek 2007
Yildiz 2007
Kayikcioglu 2007
Mao 20007
Dabek 2007
Vermeitfoort 2007
Galiuto 2007
Huang 2007
Guzik 2007
Guzik 2007
Sgueglia 2007
Russell 2007
Shmilovich 2006
Sen 2007
de Vries 2006
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Cay 2006
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Leu 2006
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Cay 2005
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Guo 2005
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Kidawa 2003
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0.60
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0.75
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0.13 - 0.30
0.18 - 0.57
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0.41 - 0.64
0.35 - 0.70
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0.26 - 0.88
0.25 - 0.57
0.36 - 0.64
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0.49 - 0.87
0.22 - 0.69
0.49 - 0.77
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Fig. 5.2 The proportion of women of individual studies regarding cardiac syndrome X (CSD), 
including 95% confidence intervals. A considerable variation in 47 studies regarding the propor-
tion of women with CSX could be seen with values ranging from 0.21 to 1.0 and a pooled estimate 
of 0.56 (95% confidence interval: 0.54–0.59). Thus, women suffer significantly more often from 
CSX compared to men. (Reproduced from Vermeltfoort et al. [29])
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development of such imaging techniques represents an attractive and innovative 
approach for future assessments of such patients in whom a “one stop shop” may be 
able to provide information about epicardial plaques/stenoses (CTCA), hemody-
namic relevance (CT-FFR) as well as impairment of the coronary microcirculation 
(CT-Perfusion-CFR).

5.5  Prevalence of CMD Depends on Diagnostic 
Assessments Used

The fact that the coronary microvasculature cannot be visualized in vivo patients 
makes its assessment a true challenge. Over the past years, multiple non-invasive 
and invasive methods have been established for the assessment of CMD and their 
specific use depends not only on the clinical state of the patient, but also on local 
availability, expertise and cost as well. Non-invasive methods to evaluate the coro-
nary microvasculature include the assessment of coronary flow velocity reserve 
(CFVR) via transthoracic Doppler echocardiography, cardiac magnetic resonance 
imaging or positron emission tomography. Invasive methods, on the other hand, 
comprise the assessment of CFR and microvascular resistance using adenosine as 
well as the assessment of microvascular coronary spasm using acetylcholine (ACh). 
The COVADIS (Coronary Vasomotion Disorders International Study) Group has 
assembled the diagnostic criteria for CMD as shown in Table 5.2 [36]. It has been 
acknowledged that impaired microvascular vasodilatation as well as enhanced 
microvascular vasoconstriction/spasm represent mechanisms for microvascular 
dysfunction. Recently, a new innovative approach titled “interventional diagnostic 
procedure” (IDP), which allows the invasive assessment of coronary vasoconstrictor 
and vasodilator abnormalities in combination, has been established (Fig. 5.1) [5].

5.6  Prevalence of Chest Pain and Unobstructed Coronary 
Arteries and Prevalence of CMD in Acute 
Coronary Syndrome

Early studies have shown that a substantial proportion of patients with acute coro-
nary syndrome have unobstructed coronary arteries [37]. Hochman et al. showed 
that ~30% of women and ~14% of men with ACS had no culprit lesion [37]. The 
frequency of NOCAD was greater in patients with unstable angina compared to 
those with STEMI or NSTEMI. A more recent meta-analysis of 27 large studies 
involving a total of 176,502 patients with myocardial infarction showed frequencies 
of ACS patients without culprit lesion ranging from 1% to 14% (overall prevalence 
6%) [38]. Furthermore, patients with ACS and non-obstructive coronary arteries are 
more likely to be younger, female and it could be observed that they were less likely 
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to have hyperlipidemia compared to those with myocardial infarction and obstruc-
tive CAD. Nowadays such patients should be labelled with a working diagnosis of 
MINOCA (myocardial infarction with non-obstructive coronary arteries) and pos-
sible ischemic causes in the setting of ACS without culprit lesion should be investi-
gated according to the so-called “traffic light approach” [39]. This should also 
involve assessments for CMD. The feasibility to determine a diagnosis of CMD in 
an ACS setting has been described using non-invasive as well as invasive tech-
niques. A study by Safdar et al. using PET-CFR (cut-off CFR > 2.0 for rate-pressure 
product corrected values and CFR < 2.5 for uncorrected values) in 195 emergency 
room patients showed that in nearly half of the patients with chest pain and without 
MI or CAD, CMD could be diagnosed [40]. A great amount of these patients were 
females and obese, highlighting the important role of cardiovascular risk factors 
[40]. Other studies reported the usefulness of investigations for CMD in ACS 
patients undergoing invasive angiography. Sato et al. [41] showed that ACS patients 
without culprit lesion may also suffer from microvascular spasm on ACh testing, a 
finding that was predominantly seen in female patients. In addition, Pirozzolo et al. 
showed that coronary microvascular spasm, a subtype of CMD, can be frequently 
found in patients with MINOCA. Indeed, while epicardial spasm could be induced 
with ACh in 27% of the 96 patients, coronary microvascular spasm was seen in 31% 
[42]. Furthermore, the prevalence of epicardial spasm could be associated with 
smoking, a finding, which has been previously described [41].

Table 5.2 Clinical criteria for suspecting coronary microvascular dysfunction

1. Symptoms of myocardial ischemia
  (a) Effort and/or rest angina
  (b) Angina equivalents (i.e. shortness of breath)

2. Absence of obstructive CAD (<50% diameter reduction or FFR > 0.80) by
  (a) Coronary CTA
  (b) Invasive coronary angiography

3. Objective evidence of myocardial ischemia
  (a) Ischemic ECG changes during an episode of chest pain
  (b)  Stress-induced chest pain and/or ischemic ECG changes in the presence or absence of 

transient/reversible abnormal myocardial perfusion and/or wall motion abnormality
4. Evidence of impaired coronary microvascular function

  (a)  Impaired coronary flow reserve (cut-off values depending on methodology use 
between ≤2.0 and ≤2.5)

  (b)  Coronary microvascular spasm, defined as reproduction of symptoms, ischemic ECG 
shills but no epicardial spasm during acetylcholine testing

  (c) Abnormal coronary microvascular resistance indices (e.g. IMR > 25)
  (d) Coronary slow flow phenomenon, defined as TIMI frame count >25

The following criteria should lead to the suspicion of CMD
ECG electrocardiogram, CAD coronary artery disease, CTA computed tomographic angiography, 
FFR fractional flow reserve, IMR index of microcirculatory resistance, TIMI thrombolysis in 
 myocardial infarction. (Reproduced from Ong et al. [36])
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5.7  Chronic Coronary Syndrome

From the beginning of coronary angiography, patients with angina and unobstructed 
coronary arteries were not infrequently encountered. Until today, they represent one 
of the most challenging groups of patients in clinical cardiology. The study by 
Proudfit et al. in 1966 revealed that 37% of 1000 patients undergoing coronary angi-
ography had unobstructed coronary arteries (<30% diameter obstruction) [9]. Such 
numbers were confirmed in several large registry studies. In more recent times, a 
seminal publication from the USA by Patel et al. revealed that more than 50% of 
patients with suspected CAD had NOCAD [43]. This led to speculations as to 
whether or not the inclusion criteria and the indication for invasive angiography 
should be optimized. Moreover, these findings also fostered prospective studies for 
the investigation of coronary vasomotor disorders as an explanation for the patient’s 
symptoms in this setting [44]. A study by Jespersen et al. confirmed previous obser-
vations that a diagnosis of NOCAD is not benign with an event rate of 1.7%/year 
[45]. Frequently, cardiovascular risk factors lead to the pathophysiologic sequelae of 
CMD and ultimately a clinical presentation with either shortness of breath, angina or 
both. Established causes for CMD in this setting are either an impaired coronary flow 
reserve/elevated microvascular resistance or coronary microvascular spasm [36]. 
Recently, detailed recommendations for the diagnosis of CMD in the clinic have 
been published [5], and a comprehensive assessment of both impaired vasodilatory 
capacity and assessment of enhanced vasoconstrictor responses to ACh has been rec-
ommended (so-called interventional diagnostic procedure, IDP) (Fig. 5.1).

Non-invasive assessments have revealed a prevalence of CMD between 26% and 
54%. In the iPower study, 26% of 963 symptomatic women with no obstructive 
CAD had coronary flow velocity reserve <2 when assessed by transthoracic Doppler 
echo [23]. Furthermore, Murthy et al. [4] could show that PET-CFR was not only a 
powerful tool to diagnose CMD (prevalence ~50%), but that it can also be used as a 
powerful predictor of MACE since patients with a reduced CFR exhibited a higher 
likelihood of cardiovascular events.

Invasive assessment revealed that approximately 34% of patients with angina 
and unobstructed coronary arteries in the ACOVA study suffered from microvascu-
lar spasm (Fig. 5.3) [44] and approximately 50% of patients suffered from impaired 
CFR (Fig. 5.4) in another cohort as shown by Reis et al. [24]. The high prevalence 
of CMD in the setting of NOCAD has been recently confirmed in a study from the 
WISE cohort. The investigators compared their findings from coronary reactivity 
testing in an older patient cohort (1997–2001) with a more recent patient cohort 
(2009–2011) and endothelial and microvascular dysfunction prevalence and sever-
ity was similar to that found in the earlier original WISE cohort (overall approx. 
40%) [46]. More recent data from Suda et  al. have shown that when the IDP is 
applied in patients with angina and non-obstructive coronary arteries, 12% suffer 
from microvascular spasm, 35.3% suffer from impaired CFR, 40.1% suffer from a 
high IMR and 15% suffer from a combination of low CFR and high IMR [47]. 
These various forms of CMD are called endotypes and have been described in more 
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detail elsewhere [15]. A methodological limitation of the IDP is that CFR and 
microvascular resistance are often only measured in a single coronary artery (e.g. 
left anterior descending coronary artery) and not all three coronary arteries. This 
may be an important factor for the prevalence of CMD as studies could show that 
invasive evaluation of all three coronary arteries in 93 patients revealed 1-vessel 
CMD in 23.7% of cases, 2-vessel CMD in 14.0% and 3-vessel CMD in 3.2%. CMD 
was observed at a similar rate in the territories supplied by all three major coronary 
vessels (left anterior descending coronary artery 28.0%, left circumflex artery 
19.4% and right coronary artery 23.7%; P = 0.39) [48].

Overall, the prevalence of CMD in patients with angina and unobstructed coro-
nary arteries is not negligible and prospective randomized trials are on the way for 
the development of targeted treatments based on these different endotypes [16, 49]. 
Due to the high prevalence of CMD, additional assessments during invasive coro-
nary angiography are highly recommended when epicardial disease is ruled out.

A - Left coronary artery C - 100mg acetylcholine

D - after nitroglycerineB - Right coronary artery

Fig. 5.3 Representative example of a patient with CMD, diagnosed with ACh provocation testing, as 
part of the IDP. This case presents a 73-year-old woman with hypercholesterolemia and recurrent 
attacks of resting angina pectoris associated with nausea and palpitations. Coronary angiography 
showed unobstructed but curly LCA (a). No relevant epicardial stenosis could be found in the RCA 
either (b). Additional intracoronary ACh testing to assess vasomotion in this patient revealed coronary 
microvascular spasm. The patient reported a reproduction of her usual symptoms and ST-segment 
depression in leads V2–V6 occurring at a dose of 100 mg of ACh (red arrows), without relevant epi-
cardial vasoconstriction of the arteries (c). After intracoronary administration of nitroglycerine, her 
symptoms and ECG shifts quickly resolved (d). ACh, acetylcholine. (Reproduced from Ong et al. [5])
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5.8  Outlook

In times of personalized and individualized medicine, patients with angina and 
unobstructed coronary arteries should be comprehensively investigated (e.g. by an 
IDP). This is warranted because of the guarded prognosis of these patients in whom 
frequently the quality of life is severely impaired with loss of workforce in many 
cases. Indeed, studies by Jespersen et  al. could show that the prevalence of 

RCA LCA

APV at rest: 31 cm/s

CFR = 1,5  Æ pathological

APV after adenosine: 45 cm/s

Fig. 5.4 Representative example of a patient with CMD, diagnosed with CFR measurement dur-
ing IDP. This figure presents a case of a 74-year-old female patient with diabetes type 2, hypercho-
lesterolemia, increased lipoprotein(a) and hypertension. She suffered from effort- related dyspnoea 
and chest tightness for several months. During coronary angiography, unobstructed coronary arter-
ies could be seen (RCA and LCA). Additional CFR measurement in the left anterior descending 
coronary artery revealed a pathologically reduced CFR (1.5), indicating an impaired microvascular 
dilator capacity, which is known to be a typical long-term complication of diabetes affecting the 
coronary microvasculature. APV, average peak flow velocity. (Reproduced from Ong et al. [5])
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persistent angina in patients with diffuse non-obstructive CAD or normal coronary 
arteries was higher compared to those with obstructive CAD [50, 51]. Moreover, 
patients with persistent angina were likely to suffer from long-term anxiety, depres-
sion, decrease in physical function and impairment of quality of life. Consequently, 
patients with angina symptoms and both obstructed or non-obstructed coronary 
arteries have a significantly higher likelihood of disability pension and premature 
workforce compared to the reference population [50, 51].

In patients with chest pain of unknown origin, novel smartphone-based ECG tech-
nologies offer a direct assessment of ischemic ECG changes during a chest pain attack 
[52]. This may reduce diagnostic uncertainty and prompt further diagnostic assess-
ments. The broad applicability of this technology may also influence the epidemiology 
of CMD as many patients with chest pain of unknown origin may suffer from unde-
tected CMD. Further studies are needed to provide robust data in this emerging field 
of digitalized medicine where artificial intelligence may also be involved.

Another important aspect is the female preponderance of patients with angina 
and unobstructed coronary arteries in general and those with CMD in particular 
[53]. Basic science as well as clinical research projects should focus on such sex 
differences and ensure equally distributed numbers of male and female study par-
ticipants. It seems likely that individualized pharmacotherapy may also be different 
in male and female patients with CMD as recently shown in other cardiology drug 
studies [54]. Finally, research projects aiming at the discovery of systemic micro-
vascular dysfunction and its associated conditions such as Raynaud’s disease, cere-
bral microvascular dysfunction and microvascular renal impairment may 
revolutionize our understanding of CMD and put the condition in a new light [55].

5.9  Conclusion

CMD is an important condition often responsible for the clinical presentation of 
patients with angina and unobstructed coronary arteries. It can be comprehensively 
assessed by e.g. an interventional diagnostic procedure. The prevalence of CMD in 
patients with angina and unobstructed coronary arteries is high with approx. 
50–60%. The unfavourable prognosis should prompt proper assessments enabling 
the treating physician to prescribe the most appropriate pharmacological treatment.
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Chapter 6
Pathophysiology of Coronary 
Microvascular Dysfunction

Shigeo Godo and Hiroaki Shimokawa

Abstract Coronary microvascular dysfunction (CMD) has been implicated in a 
wide spectrum of cardiovascular disease. The underlying mechanisms of CMD 
appear to be heterogeneous, including several structural and functional alterations. 
Among them, central to coronary vasomotion abnormalities are threefold: enhanced 
coronary vasoconstrictive reactivity (i.e. coronary spasm) at epicardial and micro-
vascular levels, reduced endothelium-dependent and -independent coronary vasodi-
lator capacity, and increased coronary microvascular resistance, all of which can 
cause myocardial ischemia due to CMD and often coexist in various combinations 
even in the absence of obstructive coronary artery disease. The endothelium plays 
essential roles in modulating vascular tone by synthesizing and releasing endothelium- 
derived relaxing factors, including vasodilator prostaglandins, nitric oxide (NO), and 
endothelium-dependent hyperpolarization (EDH) factors in a distinct vessel size–
dependent manner; NO mainly mediates vasodilatation of relatively large, conduit 
vessels (e.g. epicardial coronary arteries), while EDH factors in small resistance 
vessels (e.g. coronary microvessels). Endothelium-derived hydrogen peroxide 
(H2O2) is a physiological signaling molecule serving as one of the major EDH fac-
tors especially in coronary microcirculation and has gained increasing attention in 
view of its emerging relevance for cardiovascular disease. In this chapter, we will 
briefly summarize the latest knowledge on the pathophysiology of CMD with a spe-
cial reference to endothelial modulation of vascular tone mediated by H2O2/EDH 
factor and coronary microvascular spasm, in addition to discussing clinical implica-
tions of and therapeutic approaches to CMD in cardiovascular disease.
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Abbreviations

CAD Coronary artery disease
cGMP Cyclic guanosine monophosphate
CMD Coronary microvascular dysfunction
EDH Endothelium-dependent hyperpolarization
EDRF(s) Endothelium-derived relaxing factor(s)
EETs Epoxyeicosatrienoic acids
eNOS Endothelial nitric oxide synthase
H2O2 Hydrogen peroxide
HFpEF Heart failure with preserved ejection fraction
IHD Ischemic heart disease
INOCA Ischemia and no obstructive coronary artery disease
NO Nitric oxide
NOS Nitric oxide synthase
PGs Prostaglandins
PKG cGMP-dependent protein kinase
ROS Reactive oxygen species
sGC Soluble guanylate cyclase
SOD Superoxide dismutase
VSMC Vascular smooth muscle cells

6.1  Introduction

A growing body of evidence has demonstrated that coronary microvascular dys-
function (CMD) plays important roles in the pathophysiology of cardiac ischemia 
in patients with a wide spectrum of cardiovascular disorders, including ischemic 
heart disease (IHD) [1, 2], aortic stenosis [3], and heart failure with preserved 
ejection fraction (HFpEF) [4–6]. More than 50% of patients undergoing invasive 
coronary angiography for the evaluation of suspected obstructive coronary artery 
disease (CAD) have no significant coronary artery stenosis [7], where the role of 
CMD has been recognized as an alternative mechanism for symptoms and signs 
of myocardial ischemia. Indeed, recent studies using comprehensive assessment 
of coronary physiology by multimodality protocols have unveiled that a substan-
tial proportion of patients with ischemia and no obstructive coronary artery dis-
ease (INOCA) differ in the underlying coronary microvascular physiology [8–11]. 
Mechanistically, structural and functional abnormalities of “epicardial” coronary 
arteries in patients with IHD are the focus of previous studies; however, those of 
coronary microvasculature, referred to as CMD, have attracted much attention in 
view of their unexpectedly high prevalence in and significant prognostic impact 
on this population in many clinical settings [12–14]. The etiologies of CMD 
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appear to be heterogeneous; several structural (e.g. luminal obstruction, vascular 
remodeling, vascular rarefaction, and extramural compression) and functional 
alterations (e.g. endothelial dysfunction, vascular smooth muscle cells [VSMC] 
dysfunction, and microvascular spasm) have been proposed for the pathophysio-
logical mechanisms of CMD [15–19]. Among them, central to coronary vasomo-
tion abnormalities [1, 20] are enhanced coronary vasoconstrictive reactivity (i.e. 
coronary spasm) not only at epicardial but also at microvascular levels, reduced 
endothelium-dependent and -independent coronary vasodilator capacity (e.g. cor-
onary flow reserve [CFR] <2.0), and increased coronary microvascular resistance 
(e.g. index of microvascular resistance [IMR] >25), all of which can cause myo-
cardial ischemia due to CMD even in the absence of obstructive CAD and often 
coexist in various combinations in patients with angina and non-obstructive CAD 
[8, 10, 11].

In this chapter, we will briefly summarize the current knowledge on the patho-
physiology of CMD with a special reference to endothelial modulation of vascular 
tone and coronary microvascular spasm, in addition to briefly discussing clinical 
implications of and therapeutic approaches to CMD in cardiovascular disease. 
Further discussions on the coronary microcirculation physiology are available else-
where [15–19, 21, 22].

6.2  Endothelial Modulation of Vascular Tone: NO 
and EDH Factors

6.2.1  Vessel Size–Dependent Contribution 
of Endothelium- Derived Relaxing Factors

The endothelium plays pivotal roles in modulating the tone of underlying VSMC by 
synthesizing and releasing endothelium-derived relaxing factors (EDRFs) in an auto-
crine and paracrine manner, including vasodilator prostaglandins (PGs) (e.g. prostacy-
clin), nitric oxide (NO), and endothelium-dependent hyperpolarization (EDH) factors, 
as well as endothelium-derived contracting factors [1, 23, 24] (Fig. 6.1). Endothelial 
dysfunction is characterized by reduced production and/or action of EDRFs, serving 
as the hallmark of atherosclerotic cardiovascular diseases as well as one of the major 
pathogenetic mechanisms of CMD [15–18]. Of note is that these EDRFs regulate vas-
cular tone in a distinct vessel size–dependent fashion [25, 26] (Fig. 6.1); endothelium-
derived NO mainly mediates vasodilatation of relatively large, conduit vessels (e.g. 
epicardial coronary arteries), while EDH factors- mediated responses are the predomi-
nant mechanisms of endothelium-dependent vasodilatation of resistance arteries (e.g. 
coronary microvessels). By contrast, vasodilator PGs play a small but constant role in 
general, independent of vessel size. This vessel-size-dependent contribution of NO 
and EDH factors in endothelium-dependent vasodilatation is well preserved from 
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rodents to humans, shaping a physiological balance between them [1, 23]. Thus, EDH 
factors-mediated vasodilatation is a vital mechanism especially in microcirculations, 
where blood pressure and organ perfusion are critically determined. Moreover, such 
redundant mechanisms in endothelium-dependent vasodilatations are advantageous 
for ensuring proper maintenance of vascular tone under pathological conditions, where 
one of EDRFs-mediated responses is impaired, favoring a vasoconstrictor and proin-
flammatory state. Indeed, in various pathological conditions with atherosclerotic risk 
factors, NO-mediated relaxations are easily compromised, while EDH factors- 
mediated responses are fairly preserved or even enhanced to serve as a compensatory 
vasodilator system [26, 27]. Multiple mechanisms are involved in the enhanced EDH 
factors-mediated responses in small resistance vessels, including negative interactions 
between NO and several EDH factors, as discussed later. The regulatory mechanisms 
of NO-mediated responses are extensively reviewed elsewhere [28–30].

Fig. 6.1 Vessel size–dependent contribution of endothelium-derived relaxing factors and Rho- 
kinase- mediated vascular smooth muscle hypercontraction. cGMP cyclic guanosine monophos-
phate, EDH endothelium-dependent hyperpolarization, NO nitric oxide, PGs prostaglandins. 
(Reproduced from Shimokawa and Godo [24])
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6.2.2  EDH Factors: The Predominant Mechanism 
of Vasodilatation in Small Arteries

In 1998, Feletou and Vanhoutte [31] and Chen et al. [32] independently demonstrated 
the existence of endothelium-derived non-NO, non-prostanoid relaxing factors, 
unforeseen EDH factors. EDH factors-mediated responses are the major mechanism 
of endothelium-dependent vasodilatations in resistance arteries, although, by defini-
tion, the contribution of EDH factors is determined only after the blockade of both 
vasodilator PGs and NO. EDH factors cause hyperpolarization and subsequent relax-
ation of underlying VSMC with resultant vasodilatation of small resistance vessels 
and thus finely regulate blood pressure and organ perfusion instantaneously in response 
to diverse physiological demands [23, 33]. The nature of EDH factors varies depend-
ing on the vascular bed, vessel size, and species of interest, including epoxyeicosatri-
enoic acids (EETs), metabolites of arachidonic P450 epoxygenase pathway [34, 35], 
electrical communication through gap junctions [36], K+ ions [37], and as we demon-
strated, endothelium-derived hydrogen peroxide (H2O2) [24, 38] (Fig.  6.2). EETs 

Fig. 6.2 Molecular mechanisms of endothelial modulation of vascular tone. AMPKα1 α1-subunit 
of AMP-activated protein kinase, CaM calmodulin, CaMKKβ Ca2+/CaM-dependent protein kinase 
β, cAMP cyclic AMP, cGMP cyclic GMP, COX cyclooxygenase, EETs epoxyeicosatrienoic acids, 
eNOS endothelial NO synthase, EOX epoxygenase, HETEs hydroxyeicosatetraenoic acids, H2O2 
hydrogen peroxide, IP3 inositol trisphosphate, I/R ischemia-reperfusion injury, KCa calcium- 
activated potassium channel, KIR inwardly rectifying potassium channel, LOX lipoxygenase, LTs 
leukotrienes, NO nitric oxide, ONOO− peroxynitrite, PGI2 prostacyclin, PKG1α 1α-subunit of 
protein kinase G, PLA2 phospholipase A2, PLC phospholipase C, SOD superoxide dismutase. 
(Reproduced from Shimokawa and Godo [24])
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mainly participate in EDH-mediated relaxations in bovine [34], porcine [35], and 
human coronary arteries [39]; K+ ions in rat hepatic and mesenteric arteries [37, 40], 
porcine [41] and bovine [42] coronary arteries, and human kidney interlobar arteries 
[43]; and H2O2, at physiologically low concentrations, in human [44], porcine [45], 
and canine coronary arteries [46–48].

Coronary vascular resistance is predominantly determined by the pre-arterioles 
(>100  μm in diameter) and arterioles (<100  μm) where EDH factors-mediated 
responses become more prominent than NO-mediated relaxations. Given that H2O2 
has potent vasodilator properties in coronary resistance vessels, impaired H2O2- 
mediated vasodilatation may lead to CMD. In the next section, we will focus on 
endothelium-derived H2O2 as an EDH factor in detail. Readers are encouraged to 
refer to an excellent textbook for more comprehensive information on the role of 
other EDH factors [49].

6.3  Endothelium-Derived H2O2 as an EDH Factor

6.3.1  Identification of H2O2/EDH Factor

Reactive oxygen species (ROS) have been considered to be primarily harmful 
because of their detrimental property to cells and tissues and pathological implica-
tions in various cardiovascular diseases including CMD [50]. However, as exempli-
fied by endothelium-derived H2O2/EDH factor, many studies have demonstrated 
that physiological levels of ROS can serve as crucial signaling molecules in health 
and disease [51] and have acknowledged H2O2 as a physiological signaling mole-
cule, regulating blood pressure [52], metabolic functions [53, 54], and coronary 
microcirculation [46–48].

Following the original reports on the existence of EDH factors in 1988 [31, 32], 
we hypothesized that a putative EDH factor might be a non-NO vasodilator sub-
stance (likely ROS) derived from endothelial NO synthases (NOSs) system, based 
on a hint from several early observations and notions. First, both NO-mediated and 
EDH-mediated responses are susceptible to vascular injuries caused by atheroscle-
rotic risk factors, and inversely, the treatment of those risk factors can restore both 
responses [1, 26]. Second, it had been previously demonstrated that endothelium- 
derived free radicals exert endothelium-dependent vasodilator and vasoconstrictor 
effects in canine coronary arteries [55]. Third, both endothelial NOS (eNOS)-
derived NO generation and EDH-mediated responses are dependent on calcium/
calmodulin [56]. Fourth, a simple molecule (like NO), rather than complex sub-
stances, may be opportune for modulating vascular tone instantaneously in response 
to various physiological demands in the body. On the basis of these notions, in 
2000, we demonstrated for the first time that endothelium-derived H2O2 is an EDH 
factor in mouse mesenteric arteries; EDH-mediated hyperpolarizations and relax-
ations of underlying VSMC were inhibited by catalase, a specific H2O2 inhibitor, in 
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small mesenteric arteries from wild-type mice and were significantly reduced in 
eNOS-knockout (KO) mice [38]. This was also true for other vascular beds, includ-
ing human mesenteric [57] and coronary [58] arteries, porcine [45] and canine 
 [46–48] coronary arteries, and piglet pial arterioles [59]. Notably, the estimated 
concentrations of endothelium-derived H2O2/EDH factor are in micromolar order 
(<50 μmol/L) [45, 47], which are much lower concentrations than those observed in 
various pathological conditions [60]. When applied in organ chamber experiments, 
approximately 10–100 μmol/L of exogenous H2O2 elicits vasodilatation of human 
coronary arterioles [58, 61] and mouse small mesenteric arteries [38, 62, 63], while 
higher concentrations of H2O2 rather induce vasoconstriction by releasing 
cyclooxygenase- derived thromboxane [64]. Here, only 10–15% of H2O2 applied 
exogenously reaches the intracellular targets due to endogenous antioxidants and 
membrane impedance [65].

6.3.2  Source of H2O2/EDH Factor

Endothelium-derived H2O2 is mainly produced by the dismutation of superoxide 
anions derived from various sources in the endothelium, including NADPH oxi-
dase, mitochondrial electron transport chain, xanthine oxidase, lipoxygenase, and 
NOSs (Fig. 6.2) [60]. Importantly, superoxide anions relevant to H2O2/EDH factor 
are not derived from pathologically uncoupled eNOS because H2O2-mediated EDH- 
type responses are not cancelled by NOS inhibitors (i.e. L-arginine analogs) and 
upregulation of eNOS co-factor tetrahydrobiopterin has no effects on the responses 
[66]. eNOS produces superoxide anions under physiological conditions when syn-
thesizing NO from L-arginine and oxygen, while Cu,Zn-SOD dismutates those 
superoxide anions into H2O2. Cu,Zn-SOD-KO mice show markedly impaired EDH- 
mediated hyperpolarizations and relaxations in mesenteric arteries and coronary 
circulation without VSMC dysfunction [67]. Other sources of superoxide anions in 
H2O2-mediated vasodilatation have been identified in human coronary arterioles, 
including mitochondrial respiratory chain in flow-mediated dilatation [68] and 
NADPH oxidase in bradykinin-induced relaxation [69].

6.3.3  Regulatory Mechanisms of Physiologically 
Relevant H2O2

Recent studies have provided potential regulatory mechanisms underlying the phys-
iologically relevant H2O2 in the endothelium [51]. It is important to note that local 
subcellular concentrations at microdomains, rather than net cellular concentrations, 
may be critical to determine whether the effects of ROS can be detrimental or ben-
eficial for cellular signaling and that co-localization of the source and target of H2O2 
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may help to avoid non-specific harmful oxidations [70, 71]. In addition, specific 
cysteine residues, such as peroxiredoxins, can function as a redox-dependent 
molecular switch to regulate ROS-mediated signaling [60]. Moreover, a novel 
mechanism of CMD in human CAD has been proposed [22, 72, 73]. As mentioned 
above, healthy human coronary circulation is regulated by NO and low physiologi-
cal levels of H2O2/EDH factor. However, various atherosclerotic risk factors 
 (e.g.  aging, hypertension, obesity, and smoking) can cause a switch from NO to 
H2O2 in the mediator of endothelium-dependent vasodilatation in human coronary 
arteries. The resultant impaired production of NO and pathologically elevated levels 
of H2O2 manifest as CMD that favors a vasoconstrictor and pro-inflammatory state, 
leading to the development of coronary atherosclerosis [22, 72, 73].

6.3.4  Mode of Action of H2O2/EDH Factor

Among several modes of action of H2O2/EDH factor [74, 75], oxidative modifica-
tion of cGMP-dependent protein kinase (PKG) plays a central role in H2O2-induced 
hyperpolarization and relaxation of underlying VSMC [52, 76] (Fig. 6.2). Briefly, 
H2O2 induces dimerization of 1α-isoforms of PKG (PKG1α) through an interprotein 
disulfide bond formation between them to enhance the kinase activity through phos-
phorylation. The activated PKG1α subsequently stimulates K+ channels with resul-
tant hyperpolarization and vasodilatation in mouse mesenteric arteries [52] and 
human coronary arterioles [58, 61]. H2O2 also promotes the translocation of PKG1α 
from cytoplasm to membrane in human [61] and porcine [77] coronary arteries. 
Such reversible post-translational modification, like phosphorylation, is advanta-
geous for the fine control of vascular tone in response to various demand fluctuation 
in vivo [30].

6.3.5  Clinical Significance of H2O2/EDH Factor

The oxidant-mediated signaling by H2O2 is of clinical importance because it is 
associated with blood pressure control in vivo [52]. Pharmacological inhibition of 
catalase decreases arterial blood pressure in association with enhanced PKG1α 
dimerization in vivo [77]. Moreover, the ‘redox-dead’ knock-in mice of Cys42Ser 
PKG1α, whose mutant PKG1α is unable to be activated by H2O2-induced dimer-
ization because of the deletion in its redox-sensitive sulfur, exhibit markedly 
impaired EDH-mediated hyperpolarization and relaxation in resistance arteries 
ex vivo associated with systemic arterial hypertension [52]. Furthermore, physi-
ological levels of H2O2 have potent vasodilator properties in coronary resistance 
vessels, contributing to coronary autoregulation [46], cardioprotection against 
myocardial ischemia- reperfusion injury [47], and tachycardia-induced metabolic 
coronary vasodilatations [48] in dogs in  vivo. Given that coronary vascular 
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resistance is predominantly determined by the prearterioles and arterioles [17] 
where the effect of EDH- mediated responses on vascular tone is superior to that 
of NO-mediated relaxations, it is important to maintain the vessel size–dependent 
contribution of NO and EDH factors for the treatment of CMD. Taken together, 
endothelium-derived H2O2 functions as an important endogenous second mes-
senger at its physiological low concentrations to elicit EDH-meditated vasodila-
tation and to maintain vascular homeostasis in the coronary circulation [23, 74]. 
In the clinical settings, it has been repeatedly reported that the effects of chronic 
nitrate therapy are neutral or even harmful in patients with cardiovascular dis-
eases [78–82] and that antioxidant treatments are disappointingly ineffective to 
prevent cardiovascular events [83]. These lines of evidence suggest the impor-
tance of the physiological balance between NO and H2O2/EDH factor in main-
taining cardiovascular homeostasis and in curing diseases associated with 
endothelial dysfunction.

6.4  Mechanisms of Enhanced H2O2/EDH Factor 
in Microcirculation

6.4.1  Diverse Roles of Endothelial NOSs System

Endothelium-derived NO and EDH factors share the roles in modulating vascular 
tone in a distinct vessel size–dependent manner through the diverse roles of endo-
thelial NOSs system (Fig.  6.2). In large conduit vessels, NOSs mainly act as a 
NO-generating system to cause soluble guanylate cyclase (sGC)-cyclic guanosine 
monophosphate (cGMP)-mediated vasodilatation, whereas in small resistance ves-
sels, they serve as a superoxide-generating system to evoke H2O2/EDH factor- 
mediated responses [84]. Among three NOS isoforms (neural NOS [nNOS, NOS1], 
inducible NOS [iNOS, NOS2], and eNOS, NOS3) expressed in the cardiovascular 
system, eNOS is the dominant isoform in blood vessels [85] and the most important 
isoform in generating H2O2/EDH factor in the endothelium [86]. As mentioned 
above, genetic ablation of eNOS in mice results in impaired EDH-mediated vasodi-
latation associated with systemic hypertension [87]. Using singly-eNOS-KO, dou-
bly- n/eNOS-KO, and triply-n/i/eNOS-KO mice, we have previously demonstrated 
that EDH-mediated relaxations are progressively reduced in accordance with the 
number of NOS genes ablated [84]. As compared with wild-type mice, H2O2- 
mediated EDH-type relaxations of small mesenteric arteries are reduced approxi-
mately by half in singly-eNOS-KO mice, further diminished in doubly-n/eNOS-KO 
mice, and are finally absent in triply-n/i/eNOS-KO mice without underlying VSMC 
dysfunction [84]. The remaining EDH-mediated relaxation of small mesenteric 
arteries in eNOS-KO mice is still sensitive to catalase [38]. Collectively, these 
results indicate that three NOSs isoforms compensate each other to maintain H2O2- 
mediated EDH-type relaxations.
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6.4.2  Mechanisms for H2O2/EDH Factor Dominance 
in Coronary Microcirculation

Accumulating evidence has provided mechanistic insights into vessel size– 
dependent contribution of NO and H2O2/EDH factor in coronary microcirculation. 
Pretreatment with NO donors attenuates EDH-mediated vasodilatation in porcine 
coronary arteries in vitro [88] and canine coronary microcirculation in vivo [89] and 
NO exerts a negative-feedback effect on endothelium-dependent vasodilatation 
through cGMP-mediated desensitization in canine coronary arteries ex vivo [90]. 
Mechanistically, cGMP-dependent activation of PKG desensitizes VSMC to H2O2 
by inhibiting H2O2-induced PKG1α dimerization, a central mechanism of H2O2/
EDH factor-mediated vasodilatation, and conversely, pharmacological inhibition of 
sGC sensitizes conduit vessels, but not resistance vessels, to H2O2-induced vasodi-
latation in mice [91]. In addition, mouse resistance vessels have less NO production 
and less antioxidant capacity, predisposing PKG1α to be more sensitive to H2O2- 
induced activation [91]. Other key players for enhanced H2O2/EDH factor-mediated 
vasodilatation in coronary microcirculation include endothelial caveolin-1, a nega-
tive regulator of eNOS [62, 92], and α1-subunit of endothelial AMP-activated pro-
tein kinase [93]. Taken together, these mechanisms are compatible with the widely 
held view that EDH-mediated responses function as a compensatory vasodilator 
system when NO-mediated relaxations are compromised. It is important to maintain 
the vessel size–dependent contribution of NO and EDH factors because excessive 
endothelial NO production by either caveolin-1 deficiency or eNOS overexpression 
disrupts the physiological balance between NO and EDH factors in endothelium- 
dependent vasodilatation, compromising coronary flow reserve in mice in  vivo 
[63, 92].

6.5  Coronary Microvascular Spasm

Besides endothelial dysfunction, CMD can be caused by endothelium-independent 
mechanisms in general, which encompass impaired coronary microvascular dilata-
tion and enhanced coronary microvascular constriction. Coronary artery spasms at 
both epicardial and microvascular levels have been implicated in a wide variety of 
IHD [1]. Mechanistically, Rho-kinase-induced myosin light chain phosphorylation 
with resultant VSMC hypercontraction is the central mechanism in the pathogenesis 
of coronary artery spasm at epicardial [94, 95] as well as at microvascular [96] lev-
els, whereas the role of endothelial dysfunction may be minimal (Fig. 6.1) [1, 20]. 
Intracoronary administration of a Rho-kinase inhibitor, fasudil, is effective not only 
for relieving refractory coronary spasm resistant to nitrates or calcium-channel 
blockers but also for suppressing coronary microvascular spasm in most patients 
with the disorder [97]. In addition, enhanced epicardial and coronary microvascular 
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spasms are associated with increased production of other vasoconstrictive media-
tors, such as endothelin [98] and serotonin [99] in patients with CMD.

Intracoronary acetylcholine (ACh) provocation test is useful in inducing coro-
nary artery spasm with high sensitivity and specificity in the cardiac catheter labora-
tory [100]. A high prevalence of ACh-induced coronary microvascular spasm has 
been reported in one-third of patients with stable chest pain and non-obstructive 
CAD [101, 102]. The Coronary Vasomotion Disorders International Study 
(COVADIS) Group proposed a consensus set of standardized diagnostic criteria for 
microvascular angina attributable to CMD, including ACh-induced coronary micro-
vascular spasm [103]. The diagnostic value of these criteria has been demonstrated 
by a recent randomized clinical trial [104]. More recently, we have demonstrated 
that increased coronary microvascular resistance as evaluated by IMR is associated 
with Rho-kinase activation in the pathogenesis of coronary functional abnormalities 
[11]. Considering that patients with coronary artery spasm are not necessarily asso-
ciated with conventional coronary risk factors and positive results of non-invasive 
functional stress tests, comprehensive assessment of coronary physiology using 
multimodality protocol is of diagnostic value to identify coronary vasomotion 
abnormalities and to avoid false reassurance in patients with INOCA [10, 11, 100].

6.6  Clinical Implications

6.6.1  Importance of Endothelial Function Tests

Assessment of endothelial function has been acknowledged as an excellent surro-
gate marker of future cardiovascular events in many clinical settings [105], although 
it is challenging to specifically assess EDH factors-mediated responses in humans 
in vivo. The reason for this difficulty is at least twofold: (1) the contribution of EDH 
factors could be determined only after the blockade of both vasodilator PGs and NO 
and (2) coronary resistance arteries are not visible on coronary angiography. 
Endothelial dysfunction is manifested as impaired production and/or action of 
EDRFs. EDH factors-mediated vasodilation can be temporarily enhanced to com-
pensate for impaired NO-mediated responses in the early stage of atherosclerotic 
conditions [33, 74]. However, after prolonged exposure to atherosclerotic risk fac-
tors, this compensatory role of EDH factors-mediated responses is finally disrupted 
to cause metabolic disturbance [106]. Endothelial dysfunction, as evaluated by 
impaired flow-mediated dilation (FMD) of the brachial artery or digital reactive 
hyperemia index (RHI) in peripheral arterial tonometry, is associated with future 
cardiovascular events in patients with CAD and one standard deviation decrease in 
FMD or RHI is associated with doubling of cardiovascular event risk [105]. More 
recently, peripheral endothelial dysfunction has been shown to be common in 
patients with coronary vasomotion abnormalities [107, 108].
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6.6.2  Role of H2O2/EDH Factor in the Pathophysiology 
of Coronary Artery Disease

Previous studies focused on structural and functional abnormalities of “epicardial” 
coronary arteries in patients with CAD because they are easily visible on coronary 
angiography and amenable to procedural intervention (e.g. percutaneous coronary 
intervention). However, those of coronary microvasculature, referred to as CMD, 
have gained increasing attention as a novel research target in this population 
 [12–14]. It is conceivable that impaired H2O2/EDH factor-mediated vasodilatation 
is involved in the pathogenesis of CMD in light of its potent vasodilator properties 
in coronary resistance vessels where EDH factors-mediated responses become rela-
tively dominant to NO-mediated relaxations. A good example of this is that CMD 
caused by impaired H2O2/EDH factor is also associated with cardiac diastolic dys-
function in eNOS-KO mice [109]. Thus, it is essential to maintain the physiological 
balance between NO and H2O2/EDH factor for the treatment of CAD, which notion 
is supported by the fact that significant negative interactions exist between NO and 
several EDH factors [63, 88–91] and that nitrates as NO donors are not beneficial 
for the treatment of CMD [78, 80]. More recently, it has been highlighted that 
endothelium- dependent CMD is associated with low endothelial shear stress, larger 
plaque burden, and vulnerable plaque characteristic beyond conventional coronary 
risk factors in angina patients with INOCA [110, 111]. Shear stress is one of the 
important physiological cues that make endothelial cells synthesize and release 
EDRFs to maintain vascular homeostasis, while altered oscillatory or low shear 
stress with disturbed flow on coronary artery wall is implicated in the local progres-
sion of atherosclerotic coronary plaque through endothelial and VSMC prolifera-
tion, inflammation, lipoprotein uptake, and leukocyte adhesion [110, 111]. Indeed, 
altered shear stress on the coronary artery wall has been implicated in the local 
progression of atherosclerotic coronary plaque [112].

6.6.3  Lessons from Clinical Trials Targeting NO: Less 
Is More?

Although the role of CMD has been implicated in patients with obstructive CAD 
who underwent successful revascularization [113], the effects of isosorbide-5- 
mononitrate were unexpectedly neutral in patients with residual microvascular 
ischemia despite successful percutaneous coronary intervention [82]. Moreover, 
recent studies highlighted the high prevalence and pathophysiological relevance of 
CMD in patients with HFpEF [4–6]. Contrary to the premise that enhancing 
NO-mediated vasodilatation could exert beneficial effects on patients with HFpEF, 
the results of systemic and long-term administrations of inorganic nitrite in those 
patients were neutral or even harmful in randomized clinical trials [79, 81]. 
Similarly, antioxidant therapies for patients with cardiovascular diseases had no 
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benefits [83], although multiple mechanisms may be involved in so-called “anti-
oxidant paradox” in clinical trials, including inadequate dose, short treatment 
duration, and pro-oxidant effects of antioxidants upon supplementation. These 
lines of evidence indicate that it is important to turn our attention to avoid exces-
sive NO supplementation and to pay attention to the potential harm of non-specific 
elimination of ROS by antioxidants. An alternative explanation for such “paradox” 
of NO-targeted therapy may be nitrosative stress induced by an excessive amount 
of supplemental NO [92, 114], again suggesting the importance of physiological 
balance between NO and EDH factors in endothelium-dependent vasodilatation. 
Although standard medications used for the treatment of cardiovascular diseases 
share the pleiotropic effects on endothelial function by enhancing NO-mediated 
vasodilatation with modest antioxidant capacities, including angiotensin-convert-
ing enzyme inhibitors, angiotensin II receptor blockers, and statins, further research 
is warranted to address how to modulate CMD to improve clinical outcomes of 
patients with cardiovascular diseases.

6.6.4  CMD as Systemic Vascular Dysfunction beyond 
the Heart

Recent studies have highlighted the importance of CMD with major clinical 
implications. First, if complicated with CMD, even angina patients who have 
angiographically normal coronary arteries or non-obstructive CAD are associated 
with increased future cardiac events, including myocardial infarction, percutane-
ous or surgical revascularization, cardiac death, and hospitalization for unstable 
angina [11, 12, 115, 116]. Moreover, the prevalence of CMD in this clinical entity 
is not negligible [8–11]. Although contemporary non-invasive stress tests have 
limited diagnostic accuracy for detecting CMD in patients with chest pain and 
non- obstructive CAD [9, 117], comprehensive invasive assessment of coronary 
vasomotor reactivity using intracoronary ACh, adenosine, and other vasoactive 
agents is safe, feasible, and of diagnostic value to identify patients with CMD [8, 
9, 100, 104, 118]. Second, CMD is a cardiac manifestation of the systemic small 
artery disease [107], which supports the novel concept of “primary coronary 
microcirculatory dysfunction” [119]. Despite the high prevalence of CMD in 
patients with INOCA, they are often underestimated and offered no specific treat-
ment or follow-up under the umbrella of “normal” coronary arteries. On the con-
trary to this otherwise common practice, patients with CMD are predisposed to 
future coronary events and associated worse outcomes [12, 115, 116]. Furthermore, 
CMD may be attributable to residual cardiac ischemia even after successful 
revascularization of significant epicardial coronary stenosis [113]. Identifying 
CMD in patients with stable IHD may provide physicians with useful information 
for decision making and risk stratification beyond conventional coronary risk 
factors.
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6.7  Conclusions

This chapter highlighted the pathophysiology of CMD with emphasis placed on 
endothelial modulation of vascular tone mediated by H2O2/EDH factor and coro-
nary microvascular spasm. It remains an open question for future research how to 
improve CMD without affecting the delicate balance between NO and EDH factors. 
Further characterization and better understanding of CMD are indispensable to this 
end, which helps us develop novel therapeutic strategies in patients with the disease.

Acknowledgments This work was supported in part by the Grants-in-Aid for Scientific Research 
from the Ministry of Education, Culture, Sports, Science and Technology, Tokyo, Japan, and the 
Grants-in-Aid for Scientific Research from the Ministry of Health, Labour, and Welfare, 
Tokyo, Japan.

References

 1. Shimokawa H. 2014 Williams Harvey lecture: importance of coronary vasomotion 
abnormalities- from bench to bedside. Eur Heart J. 2014;35(45):3180–93. https://doi.
org/10.1093/eurheartj/ehu427.

 2. Kaski JC, Crea F, Gersh BJ, Camici PG. Reappraisal of ischemic heart disease. Circulation. 
2018;138(14):1463–80. https://doi.org/10.1161/circulationaha.118.031373.

 3. Michail M, Davies JE, Cameron JD, Parker KH, Brown AJ. Pathophysiological coronary and 
microcirculatory flow alterations in aortic stenosis. Nat Rev Cardiol. 2018;15(7):420–31. 
https://doi.org/10.1038/s41569-018-0011-2.

 4. Crea F, Bairey Merz CN, Beltrame JF, Kaski JC, Ogawa H, Ong P, Sechtem U, Shimokawa 
H, Camici PG. The parallel tales of microvascular angina and heart failure with preserved 
ejection fraction: a paradigm shift. Eur Heart J. 2017;38(7):473–7. https://doi.org/10.1093/
eurheartj/ehw461.

 5. Dryer K, Gajjar M, Narang N, Lee M, Paul J, Shah AP, Nathan S, Butler J, Davidson CJ, Fearon 
WF, Shah SJ, Blair JEA. Coronary microvascular dysfunction in patients with heart failure 
with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2018;314(5):H1033–H42. 
https://doi.org/10.1152/ajpheart.00680.2017.

 6. Shah SJ, Lam CSP, Svedlund S, Saraste A, Hage C, Tan RS, Beussink-Nelson L, Fermer 
ML, Broberg MA, Gan LM, Lund LH. Prevalence and correlates of coronary microvascular 
dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF.  Eur Heart 
J. 2018;39(37):3439–50. https://doi.org/10.1093/eurheartj/ehy531.

 7. Patel MR, Peterson ED, Dai D, Brennan JM, Redberg RF, Anderson HV, Brindis RG, 
Douglas PS.  Low diagnostic yield of elective coronary angiography. N Engl J Med. 
2010;362(10):886–95. https://doi.org/10.1056/NEJMoa0907272.

 8. Lee BK, Lim HS, Fearon WF, Yong AS, Yamada R, Tanaka S, Lee DP, Yeung AC, 
Tremmel JA.  Invasive evaluation of patients with angina in the absence of obstructive 
coronary artery disease. Circulation. 2015;131(12):1054–60. https://doi.org/10.1161/
circulationaha.114.012636.

 9. Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coro-
nary microvascular dysfunction among patients with chest pain and nonobstructive coro-
nary artery disease. J Am Coll Cardiol Intv. 2015;8(11):1445–53. https://doi.org/10.1016/j.
jcin.2015.06.017.

S. Godo and H. Shimokawa

https://doi.org/10.1093/eurheartj/ehu427
https://doi.org/10.1093/eurheartj/ehu427
https://doi.org/10.1161/circulationaha.118.031373
https://doi.org/10.1038/s41569-018-0011-2
https://doi.org/10.1093/eurheartj/ehw461
https://doi.org/10.1093/eurheartj/ehw461
https://doi.org/10.1152/ajpheart.00680.2017
https://doi.org/10.1093/eurheartj/ehy531
https://doi.org/10.1056/NEJMoa0907272
https://doi.org/10.1161/circulationaha.114.012636
https://doi.org/10.1161/circulationaha.114.012636
https://doi.org/10.1016/j.jcin.2015.06.017
https://doi.org/10.1016/j.jcin.2015.06.017


111

 10. Ford TJ, Yii E, Sidik N, Good R, Rocchiccioli P, McEntegart M, Watkins S, Eteiba H, Shaukat 
A, Lindsay M, Robertson K, Hood S, McGeoch R, McDade R, McCartney P, Corcoran D, 
Collison D, Rush C, Stanley B, McConnachie A, Sattar N, Touyz RM, Oldroyd KG, Berry 
C. Ischemia and no obstructive coronary artery disease: prevalence and correlates of coronary 
vasomotion disorders. Circ Cardiovasc Interv. 2019;12(12):e008126. https://doi.org/10.1161/
circinterventions.119.008126.

 11. Suda A, Takahashi J, Hao K, Kikuchi Y, Shindo T, Ikeda S, Sato K, Sugisawa J, Matsumoto 
Y, Miyata S, Sakata Y, Shimokawa H. Coronary functional abnormalities in patients with 
angina and nonobstructive coronary artery disease. J Am Coll Cardiol. 2019;74(19):2350–60. 
https://doi.org/10.1016/j.jacc.2019.08.1056.

 12. Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, Johnson BD, Sopko 
G, Bairey Merz CN. Coronary microvascular reactivity to adenosine predicts adverse out-
come in women evaluated for suspected ischemia results from the National Heart, Lung and 
Blood Institute WISE (Women’s ischemia syndrome evaluation) study. J Am Coll Cardiol. 
2010;55(25):2825–32. https://doi.org/10.1016/j.jacc.2010.01.054.

 13. Jespersen L, Hvelplund A, Abildstrom SZ, Pedersen F, Galatius S, Madsen JK, Jorgensen 
E, Kelbaek H, Prescott E. Stable angina pectoris with no obstructive coronary artery dis-
ease is associated with increased risks of major adverse cardiovascular events. Eur Heart 
J. 2012;33(6):734–44. https://doi.org/10.1093/eurheartj/ehr331.

 14. Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, Dorbala S, Blankstein R, 
Rimoldi O, Camici PG, Di Carli MF.  Effects of sex on coronary microvascular dysfunc-
tion and cardiac outcomes. Circulation. 2014;129(24):2518–27. https://doi.org/10.1161/
circulationaha.113.008507.

 15. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830–40. 
https://doi.org/10.1056/NEJMra061889.

 16. Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur 
Heart J. 2014;35(17):1101–11. https://doi.org/10.1093/eurheartj/eht513.

 17. Crea F, Lanza G, Camici P. Mechanisms of coronary microvascular dysfunction. In:  Coronary 
microvascular dysfunction. Milan: Springer; 2014. p. 31–47.

 18. Camici PG, d'Amati G, Rimoldi O.  Coronary microvascular dysfunction: mechanisms 
and functional assessment. Nat Rev Cardiol. 2015;12(1):48–62. https://doi.org/10.1038/
nrcardio.2014.160.

 19. Pries AR, Reglin B. Coronary microcirculatory pathophysiology: can we afford it to remain 
a black box? Eur Heart J. 2017;38(7):478–88. https://doi.org/10.1093/eurheartj/ehv760.

 20. Shimokawa H.  Reactive oxygen species in cardiovascular health and disease: special 
references to nitric oxide, hydrogen peroxide, and Rho-kinase. J Clin Biochem Nutr. 
2020;66(2):83–91. https://doi.org/10.3164/jcbn.19-119.

 21. Gould KL, Johnson NP. Coronary physiology beyond coronary flow reserve in microvascular 
angina: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72(21):2642–62. https://doi.
org/10.1016/j.jacc.2018.07.106.

 22. Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait-Aissa K, Beyer AM. The 
human microcirculation: regulation of flow and beyond. Circ Res. 2016;118(1):157–72. 
https://doi.org/10.1161/circresaha.115.305364.

 23. Vanhoutte PM, Shimokawa H, Feletou M, Tang EH. Endothelial dysfunction and vascular dis-
ease -a 30th anniversary update. Acta Physiol. 2017;219(1):22–96. https://doi.org/10.1111/
apha.12646.

 24. Shimokawa H, Godo S.  Nitric oxide and endothelium-dependent hyperpolarization 
mediated by hydrogen peroxide in health and disease. Basic Clin Pharmacol Toxicol. 
2020;127(2):92–101. https://doi.org/10.1111/bcpt.13377.

 25. Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, Takayanagi T, 
Nagao T, Egashira K, Fujishima M, Takeshita A.  The importance of the hyperpolarizing 
mechanism increases as the vessel size decreases in endothelium-dependent relaxations 
in rat mesenteric circulation. J Cardiovasc Pharmacol. 1996;28(5):703–11. https://doi.
org/10.1097/00005344-199611000-00014.

6 Pathophysiology of Coronary Microvascular Dysfunction

https://doi.org/10.1161/circinterventions.119.008126
https://doi.org/10.1161/circinterventions.119.008126
https://doi.org/10.1016/j.jacc.2019.08.1056
https://doi.org/10.1016/j.jacc.2010.01.054
https://doi.org/10.1093/eurheartj/ehr331
https://doi.org/10.1161/circulationaha.113.008507
https://doi.org/10.1161/circulationaha.113.008507
https://doi.org/10.1056/NEJMra061889
https://doi.org/10.1093/eurheartj/eht513
https://doi.org/10.1038/nrcardio.2014.160
https://doi.org/10.1038/nrcardio.2014.160
https://doi.org/10.1093/eurheartj/ehv760
https://doi.org/10.3164/jcbn.19-119
https://doi.org/10.1016/j.jacc.2018.07.106
https://doi.org/10.1016/j.jacc.2018.07.106
https://doi.org/10.1161/circresaha.115.305364
https://doi.org/10.1111/apha.12646
https://doi.org/10.1111/apha.12646
https://doi.org/10.1111/bcpt.13377
https://doi.org/10.1097/00005344-199611000-00014
https://doi.org/10.1097/00005344-199611000-00014


112

 26. Urakami-Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A. Importance 
of endothelium-derived hyperpolarizing factor in human arteries. J Clin Invest. 
1997;100(11):2793–9. https://doi.org/10.1172/jci119826.

 27. Ozkor MA, Murrow JR, Rahman AM, Kavtaradze N, Lin J, Manatunga A, Quyyumi 
AA. Endothelium-derived hyperpolarizing factor determines resting and stimulated forearm 
vasodilator tone in health and in disease. Circulation. 2011;123(20):2244–53. https://doi.
org/10.1161/circulationaha.110.990317.

 28. Vanhoutte PM.  How we learned to say NO.  Arterioscler Thromb Vasc Biol. 
2009;29(8):1156–60. https://doi.org/10.1161/atvbaha.109.190215.

 29. Feletou M, Kohler R, Vanhoutte PM. Nitric oxide: orchestrator of endothelium-dependent 
responses. Ann Med. 2012;44(7):694–716. https://doi.org/10.3109/07853890.2011.585658.

 30. Vanhoutte PM, Zhao Y, Xu A, Leung SW. Thirty years of saying NO: sources, fate, actions, and 
misfortunes of the endothelium-derived vasodilator mediator. Circ Res. 2016;119(2):375–96. 
https://doi.org/10.1161/circresaha.116.306531.

 31. Feletou M, Vanhoutte PM.  Endothelium-dependent hyperpolarization of canine 
coronary smooth muscle. Br J Pharmacol. 1988;93(3):515–24. https://doi.
org/10.1111/j.1476-5381.1988.tb10306.x.

 32. Chen G, Suzuki H, Weston AH. Acetylcholine releases endothelium-derived hyperpolarizing 
factor and EDRF from rat blood vessels. Br J Pharmacol. 1988;95(4):1165–74. https://doi.
org/10.1111/j.1476-5381.1988.tb11752.x.

 33. Feletou M, Vanhoutte PM.  EDHF: an update. Clin Sci. 2009;117(4):139–55. https://doi.
org/10.1042/CS20090096.

 34. Campbell WB, Gebremedhin D, Pratt PF, Harder DR. Identification of epoxyeicosatrienoic 
acids as endothelium-derived hyperpolarizing factors. Circ Res. 1996;78(3):415–23. https://
doi.org/10.1161/01.res.78.3.415.

 35. Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I, Busse R. Cytochrome P450 
2C is an EDHF synthase in coronary arteries. Nature. 1999;401(6752):493–7. https://doi.
org/10.1038/46816.

 36. Griffith TM, Chaytor AT, Edwards DH.  The obligatory link: role of gap junctional com-
munication in endothelium-dependent smooth muscle hyperpolarization. Pharmacol Res. 
2004;49(6):551–64. https://doi.org/10.1016/j.phrs.2003.11.014.

 37. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH.  K+ is an endothelium- 
derived hyperpolarizing factor in rat arteries. Nature. 1998;396(6708):269–72. https://doi.
org/10.1038/24388.

 38. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, 
Takeshita A. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J 
Clin Invest. 2000;106(12):1521–30. https://doi.org/10.1172/jci10506.

 39. Miura H, Gutterman DD.  Human coronary arteriolar dilation to arachidonic acid 
depends on cytochrome P-450 monooxygenase and Ca2+-activated K+ channels. Circ Res. 
1998;83(5):501–7. https://doi.org/10.1161/01.res.83.5.501.

 40. Dora KA, Garland CJ. Properties of smooth muscle hyperpolarization and relaxation to K+ 
in the rat isolated mesenteric artery. Am J Physiol Heart Circ Physiol. 2001;280(6):H2424–9. 
https://doi.org/10.1152/ajpheart.2001.280.6.H2424.

 41. Beny JL, Schaad O. An evaluation of potassium ions as endothelium-derived hyperpolar-
izing factor in porcine coronary arteries. Br J Pharmacol. 2000;131(5):965–73. https://doi.
org/10.1038/sj.bjp.0703658.

 42. Nelli S, Wilson WS, Laidlaw H, Llano A, Middleton S, Price AG, Martin W. Evaluation of 
potassium ion as the endothelium-derived hyperpolarizing factor (EDHF) in the bovine coro-
nary artery. Br J Pharmacol. 2003;139(5):982–8. https://doi.org/10.1038/sj.bjp.0705329.

 43. Bussemaker E, Popp R, Binder J, Busse R, Fleming I. Characterization of the endothelium- 
derived hyperpolarizing factor (EDHF) response in the human interlobar artery. Kidney Int. 
2003;63(5):1749–55. https://doi.org/10.1046/j.1523-1755.2003.00910.x.

S. Godo and H. Shimokawa

https://doi.org/10.1172/jci119826
https://doi.org/10.1161/circulationaha.110.990317
https://doi.org/10.1161/circulationaha.110.990317
https://doi.org/10.1161/atvbaha.109.190215
https://doi.org/10.3109/07853890.2011.585658
https://doi.org/10.1161/circresaha.116.306531
https://doi.org/10.1111/j.1476-5381.1988.tb10306.x
https://doi.org/10.1111/j.1476-5381.1988.tb10306.x
https://doi.org/10.1111/j.1476-5381.1988.tb11752.x
https://doi.org/10.1111/j.1476-5381.1988.tb11752.x
https://doi.org/10.1042/CS20090096
https://doi.org/10.1042/CS20090096
https://doi.org/10.1161/01.res.78.3.415
https://doi.org/10.1161/01.res.78.3.415
https://doi.org/10.1038/46816
https://doi.org/10.1038/46816
https://doi.org/10.1016/j.phrs.2003.11.014
https://doi.org/10.1038/24388
https://doi.org/10.1038/24388
https://doi.org/10.1172/jci10506
https://doi.org/10.1161/01.res.83.5.501
https://doi.org/10.1152/ajpheart.2001.280.6.H2424
https://doi.org/10.1038/sj.bjp.0703658
https://doi.org/10.1038/sj.bjp.0703658
https://doi.org/10.1038/sj.bjp.0705329
https://doi.org/10.1046/j.1523-1755.2003.00910.x


113

 44. Miura H, Bosnjak JJ, Ning G, Saito T, Miura M, Gutterman DD. Role for hydrogen peroxide 
in flow-induced dilation of human coronary arterioles. Circ Res. 2003;92(2):e31–40. https://
doi.org/10.1161/01.res.0000054200.44505.ab.

 45. Matoba T, Shimokawa H, Morikawa K, Kubota H, Kunihiro I, Urakami-Harasawa L, Mukai 
Y, Hirakawa Y, Akaike T, Takeshita A. Electron spin resonance detection of hydrogen per-
oxide as an endothelium-derived hyperpolarizing factor in porcine coronary microves-
sels. Arterioscler Thromb Vasc Biol. 2003;23(7):1224–30. https://doi.org/10.1161/01.
atv.0000078601.79536.6c.

 46. Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Goto M, Ogasawara Y, Kajiya 
F. Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an 
important role in coronary autoregulation in vivo. Circulation. 2003;107(7):1040–5. https://
doi.org/10.1161/01.cir.0000050145.25589.65.

 47. Yada T, Shimokawa H, Hiramatsu O, Haruna Y, Morita Y, Kashihara N, Shinozaki Y, Mori 
H, Goto M, Ogasawara Y, Kajiya F. Cardioprotective role of endogenous hydrogen peroxide 
during ischemia-reperfusion injury in canine coronary microcirculation in vivo. Am J Physiol 
Heart Circ Physiol. 2006;291(3):H1138–46. https://doi.org/10.1152/ajpheart.00187.2006.

 48. Yada T, Shimokawa H, Hiramatsu O, Shinozaki Y, Mori H, Goto M, Ogasawara Y, Kajiya 
F.  Important role of endogenous hydrogen peroxide in pacing-induced metabolic coro-
nary vasodilation in dogs in  vivo. J Am Coll Cardiol. 2007;50(13):1272–8. https://doi.
org/10.1016/j.jacc.2007.05.039.

 49. Feletou M. The endothelium: part 2: EDHF-mediated responses “the classical pathway”. San 
Rafael, CA: Morgan & Claypool Life Sciences Publisher; 2011.

 50. Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Oshima T, Chayama K. Endothelial function 
and oxidative stress in renovascular hypertension. N Engl J Med. 2002;346(25):1954–62. 
https://doi.org/10.1056/NEJMoa013591.

 51. Holmstrom KM, Finkel T. Cellular mechanisms and physiological consequences of redox- 
dependent signalling. Nat Rev Mol Cell Biol. 2014;15(6):411–21. https://doi.org/10.1038/
nrm3801.

 52. Prysyazhna O, Rudyk O, Eaton P.  Single atom substitution in mouse protein kinase G 
eliminates oxidant sensing to cause hypertension. Nat Med. 2012;18(2):286–90. https://doi.
org/10.1038/nm.2603.

 53. Nakajima S, Ohashi J, Sawada A, Noda K, Fukumoto Y, Shimokawa H. Essential role of 
bone marrow for microvascular endothelial and metabolic functions in mice. Circ Res. 
2012;111(1):87–96. https://doi.org/10.1161/circresaha.112.270215.

 54. Reddi AR, Culotta VC. SOD1 integrates signals from oxygen and glucose to repress respira-
tion. Cell. 2013;152(1–2):224–35. https://doi.org/10.1016/j.cell.2012.11.046.

 55. Rubanyi GM, Vanhoutte PM. Oxygen-derived free radicals, endothelium, and responsive-
ness of vascular smooth muscle. Am J Physiol. 1986;250:H815–21. https://doi.org/10.1152/
ajpheart.1986.250.5.H815.

 56. Nagao T, Illiano S, Vanhoutte PM. Calmodulin antagonists inhibit endothelium-dependent 
hyperpolarization in the canine coronary artery. Br J Pharmacol. 1992;107(2):382–6. https://
doi.org/10.1111/j.1476-5381.1992.tb12755.x.

 57. Matoba T, Shimokawa H, Kubota H, Morikawa K, Fujiki T, Kunihiro I, Mukai Y, Hirakawa 
Y, Takeshita A.  Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in 
human mesenteric arteries. Biochem Biophys Res Commun. 2002;290(3):909–13. https://
doi.org/10.1006/bbrc.2001.6278.

 58. Liu Y, Bubolz AH, Mendoza S, Zhang DX, Gutterman DD. H2O2 is the transferrable factor 
mediating flow-induced dilation in human coronary arterioles. Circ Res. 2011;108(5):566–73. 
https://doi.org/10.1161/circresaha.110.237636.

 59. Lacza Z, Puskar M, Kis B, Perciaccante JV, Miller AW, Busija DW. Hydrogen peroxide acts 
as an EDHF in the piglet pial vasculature in response to bradykinin. Am J Physiol Heart Circ 
Physiol. 2002;283(1):H406–11. https://doi.org/10.1152/ajpheart.00007.2002.

6 Pathophysiology of Coronary Microvascular Dysfunction

https://doi.org/10.1161/01.res.0000054200.44505.ab
https://doi.org/10.1161/01.res.0000054200.44505.ab
https://doi.org/10.1161/01.atv.0000078601.79536.6c
https://doi.org/10.1161/01.atv.0000078601.79536.6c
https://doi.org/10.1161/01.cir.0000050145.25589.65
https://doi.org/10.1161/01.cir.0000050145.25589.65
https://doi.org/10.1152/ajpheart.00187.2006
https://doi.org/10.1016/j.jacc.2007.05.039
https://doi.org/10.1016/j.jacc.2007.05.039
https://doi.org/10.1056/NEJMoa013591
https://doi.org/10.1038/nrm3801
https://doi.org/10.1038/nrm3801
https://doi.org/10.1038/nm.2603
https://doi.org/10.1038/nm.2603
https://doi.org/10.1161/circresaha.112.270215
https://doi.org/10.1016/j.cell.2012.11.046
https://doi.org/10.1152/ajpheart.1986.250.5.H815
https://doi.org/10.1152/ajpheart.1986.250.5.H815
https://doi.org/10.1111/j.1476-5381.1992.tb12755.x
https://doi.org/10.1111/j.1476-5381.1992.tb12755.x
https://doi.org/10.1006/bbrc.2001.6278
https://doi.org/10.1006/bbrc.2001.6278
https://doi.org/10.1161/circresaha.110.237636
https://doi.org/10.1152/ajpheart.00007.2002


114

 60. Burgoyne JR, Oka S, Ale-Agha N, Eaton P. Hydrogen peroxide sensing and signaling by 
protein kinases in the cardiovascular system. Antioxid Redox Signal. 2013;18(9):1042–52. 
https://doi.org/10.1089/ars.2012.4817.

 61. Zhang DX, Borbouse L, Gebremedhin D, Mendoza SA, Zinkevich NS, Li R, Gutterman 
DD. H2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization 
and large-conductance Ca2+-activated K+ channel activation. Circ Res. 2012;110(3):471–80. 
https://doi.org/10.1161/circresaha.111.258871.

 62. Ohashi J, Sawada A, Nakajima S, Noda K, Takaki A, Shimokawa H.  Mechanisms for 
enhanced endothelium-derived hyperpolarizing factor-mediated responses in microvessels in 
mice. Circ J. 2012;76(7):1768–79. https://doi.org/10.1253/circj.cj-12-0197.

 63. Godo S, Sawada A, Saito H, Ikeda S, Enkhjargal B, Suzuki K, Tanaka S, Shimokawa 
H.  Disruption of physiological balance between nitric oxide and endothelium-dependent 
hyperpolarization impairs cardiovascular homeostasis in mice. Arterioscler Thromb Vasc 
Biol. 2016;36(1):97–107. https://doi.org/10.1161/atvbaha.115.306499.

 64. Garcia-Redondo AB, Briones AM, Beltran AE, Alonso MJ, Simonsen U, Salaices 
M. Hypertension increases contractile responses to hydrogen peroxide in resistance arteries 
through increased thromboxane A2, Ca2+, and superoxide anion levels. J Pharmacol Exp Ther. 
2009;328(1):19–27. https://doi.org/10.1124/jpet.108.144295.

 65. Antunes F, Cadenas E.  Estimation of H2O2 gradients across biomembranes. FEBS Lett. 
2000;475(2):121–6. https://doi.org/10.1016/s0014-5793(00)01638-0.

 66. Takaki A, Morikawa K, Murayama Y, Yamagishi H, Hosoya M, Ohashi J, Shimokawa H. Roles 
of endothelial oxidases in endothelium-derived hyperpolarizing factor responses in mice. J 
Cardiovasc Pharmacol. 2008;52(6):510–7. https://doi.org/10.1097/FJC.0b013e318190358b.

 67. Morikawa K, Shimokawa H, Matoba T, Kubota H, Akaike T, Talukder MA, Hatanaka M, 
Fujiki T, Maeda H, Takahashi S, Takeshita A. Pivotal role of Cu,Zn-superoxide dismutase in 
endothelium-dependent hyperpolarization. J Clin Invest. 2003;112(12):1871–9. https://doi.
org/10.1172/jci19351.

 68. Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, Gutterman DD. Mitochondrial sources 
of H2O2 generation play a key role in flow-mediated dilation in human coronary resistance 
arteries. Circ Res. 2003;93(6):573–80. https://doi.org/10.1161/01.res.0000091261.19387.ae.

 69. Larsen BT, Bubolz AH, Mendoza SA, Pritchard KA Jr, Gutterman DD. Bradykinin-induced 
dilation of human coronary arterioles requires NADPH oxidase-derived reactive oxy-
gen species. Arterioscler Thromb Vasc Biol. 2009;29(5):739–45. https://doi.org/10.1161/
atvbaha.108.169367.

 70. Sartoretto JL, Kalwa H, Pluth MD, Lippard SJ, Michel T.  Hydrogen peroxide dif-
ferentially modulates cardiac myocyte nitric oxide synthesis. Proc Natl Acad Sci U S 
A. 2011;108(38):15792–7. https://doi.org/10.1073/pnas.1111331108.

 71. Shiroto T, Romero N, Sugiyama T, Sartoretto JL, Kalwa H, Yan Z, Shimokawa H, Michel 
T.  Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative 
stress in vascular endothelium. PLoS One. 2014;9(2):e87871. https://doi.org/10.1371/jour-
nal.pone.0087871.

 72. Freed JK, Beyer AM, LoGiudice JA, Hockenberry JC, Gutterman DD. Ceramide changes 
the mediator of flow-induced vasodilation from nitric oxide to hydrogen peroxide in 
the human microcirculation. Circ Res. 2014;115(5):525–32. https://doi.org/10.1161/
circresaha.115.303881.

 73. Beyer AM, Freed JK, Durand MJ, Riedel M, Ait-Aissa K, Green P, Hockenberry 
JC, Morgan RG, Donato AJ, Peleg R, Gasparri M, Rokkas CK, Santos JH, Priel E, 
Gutterman DD. Critical role for telomerase in the mechanism of flow-mediated dilation 
in the human microcirculation. Circ Res. 2016;118(5):856–66. https://doi.org/10.1161/
circresaha.115.307918.

 74. Shimokawa H.  Hydrogen peroxide as an endothelium-derived hyperpolarizing factor. 
Pflugers Arch. 2010;459(6):915–22. https://doi.org/10.1007/s00424-010-0790-8.

S. Godo and H. Shimokawa

https://doi.org/10.1089/ars.2012.4817
https://doi.org/10.1161/circresaha.111.258871
https://doi.org/10.1253/circj.cj-12-0197
https://doi.org/10.1161/atvbaha.115.306499
https://doi.org/10.1124/jpet.108.144295
https://doi.org/10.1016/s0014-5793(00)01638-0
https://doi.org/10.1097/FJC.0b013e318190358b
https://doi.org/10.1172/jci19351
https://doi.org/10.1172/jci19351
https://doi.org/10.1161/01.res.0000091261.19387.ae
https://doi.org/10.1161/atvbaha.108.169367
https://doi.org/10.1161/atvbaha.108.169367
https://doi.org/10.1073/pnas.1111331108
https://doi.org/10.1371/journal.pone.0087871
https://doi.org/10.1371/journal.pone.0087871
https://doi.org/10.1161/circresaha.115.303881
https://doi.org/10.1161/circresaha.115.303881
https://doi.org/10.1161/circresaha.115.307918
https://doi.org/10.1161/circresaha.115.307918
https://doi.org/10.1007/s00424-010-0790-8


115

 75. Chidgey J, Fraser PA, Aaronson PI. Reactive oxygen species facilitate the EDH response 
in arterioles by potentiating intracellular endothelial Ca2+ release. Free Radic Biol Med. 
2016;97:274–84. https://doi.org/10.1016/j.freeradbiomed.2016.06.010.

 76. Burgoyne JR, Madhani M, Cuello F, Charles RL, Brennan JP, Schroder E, Browning DD, 
Eaton P.  Cysteine redox sensor in PKGIα enables oxidant-induced activation. Science. 
2007;317(5843):1393–7. https://doi.org/10.1126/science.1144318.

 77. Dou D, Zheng X, Liu J, Xu X, Ye L, Gao Y. Hydrogen peroxide enhances vasodilatation by 
increasing dimerization of cGMP-dependent protein kinase type Iα. Circ J. 2012;76(7):1792–8. 
https://doi.org/10.1253/circj.cj-11-1368.

 78. Russo G, Di Franco A, Lamendola P, Tarzia P, Nerla R, Stazi A, Villano A, Sestito A, 
Lanza GA, Crea F. Lack of effect of nitrates on exercise stress test results in patients with 
microvascular angina. Cardiovasc Drugs Ther. 2013;27(3):229–34. https://doi.org/10.1007/
s10557-013-6439-z.

 79. Redfield MM, Anstrom KJ, Levine JA, Koepp GA, Borlaug BA, Chen HH, LeWinter MM, 
Joseph SM, Shah SJ, Semigran MJ, Felker GM, Cole RT, Reeves GR, Tedford RJ, Tang 
WH, McNulty SE, Velazquez EJ, Shah MR, Braunwald E. Isosorbide mononitrate in heart 
failure with preserved ejection fraction. N Engl J Med. 2015;373(24):2314–24. https://doi.
org/10.1056/NEJMoa1510774.

 80. Takahashi J, Nihei T, Takagi Y, Miyata S, Odaka Y, Tsunoda R, Seki A, Sumiyoshi T, Matsui 
M, Goto T, Tanabe Y, Sueda S, Momomura SI, Yasuda S, Ogawa H, Shimokawa H. Prognostic 
impact of chronic nitrate therapy in patients with vasospastic angina: multicentre registry 
study of the Japanese coronary spasm association. Eur Heart J. 2015;36(4):228–37. https://
doi.org/10.1093/eurheartj/ehu313.

 81. Borlaug BA, Anstrom KJ, Lewis GD, Shah SJ, Levine JA, Koepp GA, Givertz MM, Felker 
GM, LeWinter MM, Mann DL, Margulies KB, Smith AL, Tang WHW, Whellan DJ, Chen 
HH, Davila-Roman VG, McNulty S, Desvigne-Nickens P, Hernandez AF, Braunwald E, 
Redfield MM. Effect of inorganic nitrite vs placebo on exercise capacity among patients with 
heart failure with preserved ejection fraction: the INDIE-HFpEF randomized clinical trial. 
JAMA. 2018;320(17):1764–73. https://doi.org/10.1001/jama.2018.14852.

 82. Golino M, Spera FR, Manfredonia L, De Vita A, Di Franco A, Lamendola P, Villano A, Melita 
V, Mencarelli E, Lanza GA, Crea F. Microvascular ischemia in patients with successful per-
cutaneous coronary intervention: effects of ranolazine and isosorbide-5-mononitrate. Eur Rev 
Med Pharmacol Sci. 2018;22(19):6545–50. https://doi.org/10.26355/eurrev_201810_16070.

 83. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in randomized tri-
als of antioxidant supplements for primary and secondary prevention: systematic review and 
meta-analysis. JAMA. 2007;297(8):842–57. https://doi.org/10.1001/jama.297.8.842.

 84. Takaki A, Morikawa K, Tsutsui M, Murayama Y, Tekes E, Yamagishi H, Ohashi J, Yada T, 
Yanagihara N, Shimokawa H.  J Exp Med. 2008;205(9):2053–63. https://doi.org/10.1084/
jem.20080106.

 85. Forstermann U, Li H.  Therapeutic effect of enhancing endothelial nitric oxide synthase 
(eNOS) expression and preventing eNOS uncoupling. Br J Pharmacol. 2011;164(2):213–23. 
https://doi.org/10.1111/j.1476-5381.2010.01196.x.

 86. Stuehr D, Pou S, Rosen GM.  Oxygen reduction by nitric-oxide synthases. J Biol Chem. 
2001;276(18):14533–6. https://doi.org/10.1074/jbc.R100011200.

 87. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman 
MC. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 
1995;377(6546):239–42. https://doi.org/10.1038/377239a0.

 88. Bauersachs J, Popp R, Hecker M, Sauer E, Fleming I, Busse R. Nitric oxide attenuates the 
release of endothelium-derived hyperpolarizing factor. Circulation. 1996;94(12):3341–7. 
https://doi.org/10.1161/01.cir.94.12.3341.

 89. Nishikawa Y, Stepp DW, Chilian WM.  Nitric oxide exerts feedback inhibition on 
EDHF-induced coronary arteriolar dilation in  vivo. Am J Physiol Heart Circ Physiol. 
2000;279(2):H459–65. https://doi.org/10.1152/ajpheart.2000.279.2.H459.

6 Pathophysiology of Coronary Microvascular Dysfunction

https://doi.org/10.1016/j.freeradbiomed.2016.06.010
https://doi.org/10.1126/science.1144318
https://doi.org/10.1253/circj.cj-11-1368
https://doi.org/10.1007/s10557-013-6439-z
https://doi.org/10.1007/s10557-013-6439-z
https://doi.org/10.1056/NEJMoa1510774
https://doi.org/10.1056/NEJMoa1510774
https://doi.org/10.1093/eurheartj/ehu313
https://doi.org/10.1093/eurheartj/ehu313
https://doi.org/10.1001/jama.2018.14852
https://doi.org/10.26355/eurrev_201810_16070
https://doi.org/10.1001/jama.297.8.842
https://doi.org/10.1084/jem.20080106
https://doi.org/10.1084/jem.20080106
https://doi.org/10.1111/j.1476-5381.2010.01196.x
https://doi.org/10.1074/jbc.R100011200
https://doi.org/10.1038/377239a0
https://doi.org/10.1161/01.cir.94.12.3341
https://doi.org/10.1152/ajpheart.2000.279.2.H459


116

 90. Olmos L, Mombouli JV, Illiano S, Vanhoutte PM. cGMP mediates the desensitization to 
bradykinin in isolated canine coronary arteries. Am J Physiol. 1995;268(2 Pt 2):H865–70. 
https://doi.org/10.1152/ajpheart.1995.268.2.H865.

 91. Burgoyne JR, Prysyazhna O, Rudyk O, Eaton P. cGMP-dependent activation of protein kinase 
G precludes disulfide activation: implications for blood pressure control. Hypertension. 
2012;60(5):1301–8. https://doi.org/10.1161/hypertensionaha.112.198754.

 92. Saito H, Godo S, Sato S, Ito A, Ikumi Y, Tanaka S, Ida T, Fujii S, Akaike T, Shimokawa 
H. Important role of endothelial caveolin-1 in the protective role of endothelium-dependent 
hyperpolarization against nitric oxide-mediated nitrative stress in microcirculation in mice. J 
Cardiovasc Pharmacol. 2018;71(2):113–26. https://doi.org/10.1097/fjc.0000000000000552.

 93. Enkhjargal B, Godo S, Sawada A, Suvd N, Saito H, Noda K, Satoh K, Shimokawa 
H.  Endothelial AMP-activated protein kinase regulates blood pressure and coronary flow 
responses through hyperpolarization mechanism in mice. Arterioscler Thromb Vasc Biol. 
2014;34:1505–13. https://doi.org/10.1161/atvbaha.114.303735.

 94. Kikuchi Y, Yasuda S, Aizawa K, Tsuburaya R, Ito Y, Takeda M, Nakayama M, Ito K, 
Takahashi J, Shimokawa H. Enhanced Rho-kinase activity in circulating neutrophils of patients 
with vasospastic angina: a possible biomarker for diagnosis and disease activity assessment. J 
Am Coll Cardiol. 2011;58(12):1231–7. https://doi.org/10.1016/j.jacc.2011.05.046.

 95. Nihei T, Takahashi J, Hao K, Kikuchi Y, Odaka Y, Tsuburaya R, Nishimiya K, Matsumoto 
Y, Ito K, Miyata S, Sakata Y, Shimokawa H. Prognostic impacts of Rho-kinase activity in 
circulating leucocytes in patients with vasospastic angina. Eur Heart J. 2018;39(11):952–9. 
https://doi.org/10.1093/eurheartj/ehx657.

 96. Mohri M, Shimokawa H, Hirakawa Y, Masumoto A, Takeshita A. Rho-kinase inhibition with 
intracoronary fasudil prevents myocardial ischemia in patients with coronary microvascular 
spasm. J Am Coll Cardiol. 2003;41(1):15–9. https://doi.org/10.1016/s0735-1097(02)02632-3.

 97. Kikuchi Y, Takahashi J, Hao K, Sato K, Sugisawa J, Tsuchiya S, Suda A, Shindo T, Ikeda 
S, Shiroto T, Matsumoto Y, Miyata S, Sakata Y, Shimokawa H. Usefulness of intracoronary 
administration of fasudil, a selective Rho-kinase inhibitor, for PCI-related refractory myocar-
dial ischemia. Int J Cardiol. 2019;297:8–13. https://doi.org/10.1016/j.ijcard.2019.09.057.

 98. Halcox JP, Nour KR, Zalos G, Quyyumi AA. Endogenous endothelin in human coronary vas-
cular function: differential contribution of endothelin receptor types A and B. Hypertension. 
2007;49(5):1134–41. https://doi.org/10.1161/hypertensionaha.106.083303.

 99. Odaka Y, Takahashi J, Tsuburaya R, Nishimiya K, Hao K, Matsumoto Y, Ito K, Sakata Y, 
Miyata S, Manita D, Hirowatari Y, Shimokawa H. Plasma concentration of serotonin is a 
novel biomarker for coronary microvascular dysfunction in patients with suspected angina 
and unobstructive coronary arteries. Eur Heart J. 2017;38(7):489–96. https://doi.org/10.1093/
eurheartj/ehw448.

 100. Lanza GA. Diagnostic approach to patients with stable angina and no obstructive coronary 
arteries. Eur Cardiol. 2019;14(2):97–102. https://doi.org/10.15420/ecr.2019.22.2.

 101. Mohri M, Koyanagi M, Egashira K, Tagawa H, Ichiki T, Shimokawa H, Takeshita A. Angina 
pectoris caused by coronary microvascular spasm. Lancet. 1998;351(9110):1165–9. https://
doi.org/10.1016/s0140-6736(97)07329-7.

 102. Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U. High prevalence 
of a pathological response to acetylcholine testing in patients with stable angina pectoris 
and unobstructed coronary arteries. The ACOVA study (Abnormal COronary VAsomotion 
in patients with stable angina and unobstructed coronary arteries). J Am Coll Cardiol. 
2012;59(7):655–62. https://doi.org/10.1016/j.jacc.2011.11.015.

 103. Ong P, Camici PG, Beltrame JF, Crea F, Shimokawa H, Sechtem U, Kaski JC, Bairey Merz 
CN.  International standardization of diagnostic criteria for microvascular angina. Int J 
Cardiol. 2018;250:16–20. https://doi.org/10.1016/j.ijcard.2017.08.068.

 104. Ford TJ, Stanley B, Good R, Rocchiccioli P, McEntegart M, Watkins S, Eteiba H, Shaukat 
A, Lindsay M, Robertson K, Hood S, McGeoch R, McDade R, Yii E, Sidik N, McCartney 
P, Corcoran D, Collison D, Rush C, McConnachie A, Touyz RM, Oldroyd KG, Berry 

S. Godo and H. Shimokawa

https://doi.org/10.1152/ajpheart.1995.268.2.H865
https://doi.org/10.1161/hypertensionaha.112.198754
https://doi.org/10.1097/fjc.0000000000000552
https://doi.org/10.1161/atvbaha.114.303735
https://doi.org/10.1016/j.jacc.2011.05.046
https://doi.org/10.1093/eurheartj/ehx657
https://doi.org/10.1016/s0735-1097(02)02632-3
https://doi.org/10.1016/j.ijcard.2019.09.057
https://doi.org/10.1161/hypertensionaha.106.083303
https://doi.org/10.1093/eurheartj/ehw448
https://doi.org/10.1093/eurheartj/ehw448
https://doi.org/10.15420/ecr.2019.22.2
https://doi.org/10.1016/s0140-6736(97)07329-7
https://doi.org/10.1016/s0140-6736(97)07329-7
https://doi.org/10.1016/j.jacc.2011.11.015
https://doi.org/10.1016/j.ijcard.2017.08.068


117

C. Stratified medical therapy using invasive coronary function testing in angina: the CorMicA 
trial. J Am Coll Cardiol. 2018;72(23):2841–55. https://doi.org/10.1016/j.jacc.2018.09.006.

 105. Matsuzawa Y, Kwon TG, Lennon RJ, Lerman LO, Lerman A.  Prognostic value of flow- 
mediated vasodilation in brachial artery and fingertip artery for cardiovascular events: a 
systematic review and meta-analysis. J Am Heart Assoc. 2015;4(11):e002270. https://doi.
org/10.1161/jaha.115.002270.

 106. Chadderdon SM, Belcik JT, Bader L, Peters DM, Kievit P, Alkayed NJ, Kaul S, Grove KL, 
Lindner JR. Temporal changes in skeletal muscle capillary responses and endothelial-derived 
vasodilators in obesity-related insulin resistance. Diabetes. 2016;65(8):2249–57. https://doi.
org/10.2337/db15-1574.

 107. Ford TJ, Rocchiccioli P, Good R, McEntegart M, Eteiba H, Watkins S, Shaukat A, Lindsay 
M, Robertson K, Hood S, Yii E, Sidik N, Harvey A, Montezano AC, Beattie E, Haddow 
L, Oldroyd KG, Touyz RM, Berry C. Systemic microvascular dysfunction in microvascu-
lar and vasospastic angina. Eur Heart J. 2018;39(46):4086–97. https://doi.org/10.1093/
eurheartj/ehy529.

 108. Ohura-Kajitani S, Shiroto T, Godo S, Ikumi Y, Ito A, Tanaka S, Sato K, Sugisawa J, Tsuchiya S, 
Suda A, Shindo T, Ikeda S, Hao K, Kikuchi Y, Nochioka K, Matsumoto Y, Takahashi J, Miyata 
S, Shimokawa H. Marked impairment of endothelium-dependent digital vasodilatations in 
patients with microvascular angina: evidence for systemic small artery disease. Arterioscler 
Thromb Vasc Biol. 2020;40(5):1400–12. https://doi.org/10.1161/atvbaha.119.313704.

 109. Ikumi Y, Shiroto T, Godo S, Saito H, Tanaka S, Ito A, Kajitani S, Monma Y, Miyata S, 
Tsutsui M, Shimokawa H.  Important roles of endothelium-dependent hyperpolarization in 
coronary microcirculation and cardiac diastolic function in mice. J Cardiovasc Pharmacol. 
2020;75(1):31–40. https://doi.org/10.1097/fjc.0000000000000763.

 110. Siasos G, Sara JD, Zaromytidou M, Park KH, Coskun AU, Lerman LO, Oikonomou E, 
Maynard CC, Fotiadis D, Stefanou K, Papafaklis M, Michalis L, Feldman C, Lerman A, Stone 
PH. Local low shear stress and endothelial dysfunction in patients with nonobstructive coro-
nary atherosclerosis. J Am Coll Cardiol. 2018;71(19):2092–102. https://doi.org/10.1016/j.
jacc.2018.02.073.

 111. Godo S, Corban MT, Toya T, Gulati R, Lerman LO, Lerman A. Association of coronary micro-
vascular endothelial dysfunction with vulnerable plaque characteristics in early coronary ath-
erosclerosis. EuroIntervention. (in press). 2019; https://doi.org/10.4244/eij-d-19-00265.

 112. Corban MT, Eshtehardi P, Suo J, McDaniel MC, Timmins LH, Rassoul-Arzrumly E, 
Maynard C, Mekonnen G, King S 3rd, Quyyumi AA, Giddens DP, Samady H. Combination 
of plaque burden, wall shear stress, and plaque phenotype has incremental value for pre-
diction of coronary atherosclerotic plaque progression and vulnerability. Atherosclerosis. 
2014;232(2):271–6. https://doi.org/10.1016/j.atherosclerosis.2013.11.049.

 113. Al-Lamee R, Thompson D, Dehbi HM, Sen S, Tang K, Davies J, Keeble T, Mielewczik M, 
Kaprielian R, Malik IS, Nijjer SS, Petraco R, Cook C, Ahmad Y, Howard J, Baker C, Sharp 
A, Gerber R, Talwar S, Assomull R, Mayet J, Wensel R, Collier D, Shun-Shin M, Thom 
SA, Davies JE, Francis DP. Percutaneous coronary intervention in stable angina (ORBITA): 
a double-blind, randomised controlled trial. Lancet. 2018;391(10115):31–40. https://doi.
org/10.1016/s0140-6736(17)32714-9.

 114. Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, Luo X, Jiang N, 
May HI, Wang ZV, Hill TM, Mammen PPA, Huang J, Lee DI, Hahn VS, Sharma K, Kass DA, 
Lavandero S, Gillette TG, Hill JA. Nitrosative stress drives heart failure with preserved ejec-
tion fraction. Nature. 2019;568(7752):351–6. https://doi.org/10.1038/s41586-019-1100-z.

 115. Suwaidi JA, Hamasaki S, Higano ST, Nishimura RA, Holmes DR Jr, Lerman A.  Long- 
term follow-up of patients with mild coronary artery disease and endothelial dysfunction. 
Circulation. 2000;101(9):948–54. https://doi.org/10.1161/01.CIR.101.9.948.

 116. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, 
Quyyumi AA. Prognostic value of coronary vascular endothelial dysfunction. Circulation. 
2002;106(6):653–8. https://doi.org/10.1161/01.cir.0000025404.78001.d8.

6 Pathophysiology of Coronary Microvascular Dysfunction

https://doi.org/10.1016/j.jacc.2018.09.006
https://doi.org/10.1161/jaha.115.002270
https://doi.org/10.1161/jaha.115.002270
https://doi.org/10.2337/db15-1574
https://doi.org/10.2337/db15-1574
https://doi.org/10.1093/eurheartj/ehy529
https://doi.org/10.1093/eurheartj/ehy529
https://doi.org/10.1161/atvbaha.119.313704
https://doi.org/10.1097/fjc.0000000000000763
https://doi.org/10.1016/j.jacc.2018.02.073
https://doi.org/10.1016/j.jacc.2018.02.073
https://doi.org/10.4244/eij-d-19-00265
https://doi.org/10.1016/j.atherosclerosis.2013.11.049
https://doi.org/10.1016/s0140-6736(17)32714-9
https://doi.org/10.1016/s0140-6736(17)32714-9
https://doi.org/10.1038/s41586-019-1100-z
https://doi.org/10.1161/01.CIR.101.9.948
https://doi.org/10.1161/01.cir.0000025404.78001.d8


118

 117. Cassar A, Chareonthaitawee P, Rihal CS, Prasad A, Lennon RJ, Lerman LO, Lerman 
A.  Lack of correlation between noninvasive stress tests and invasive coronary vasomotor 
dysfunction in patients with nonobstructive coronary artery disease. Circ Cardiovasc Interv. 
2009;2(3):237–44. https://doi.org/10.1161/circinterventions.108.841056.

 118. Ong P, Athanasiadis A, Borgulya G, Vokshi I, Bastiaenen R, Kubik S, Hill S, Schaufele T, 
Mahrholdt H, Kaski JC, Sechtem U. Clinical usefulness, angiographic characteristics, and 
safety evaluation of intracoronary acetylcholine provocation testing among 921 consecu-
tive white patients with unobstructed coronary arteries. Circulation. 2014;129(17):1723–30. 
https://doi.org/10.1161/circulationaha.113.004096.

 119. Lerman A, Holmes DR, Herrmann J, Gersh BJ. Microcirculatory dysfunction in ST-elevation 
myocardial infarction: cause, consequence, or both? Eur Heart J. 2007;28(7):788–97. https://
doi.org/10.1093/eurheartj/ehl501.

S. Godo and H. Shimokawa

https://doi.org/10.1161/circinterventions.108.841056
https://doi.org/10.1161/circulationaha.113.004096
https://doi.org/10.1093/eurheartj/ehl501
https://doi.org/10.1093/eurheartj/ehl501


119© Springer Nature Singapore Pte Ltd. 2021
H. Shimokawa (ed.), Coronary Vasomotion Abnormalities, 
https://doi.org/10.1007/978-981-15-7594-5_7

Chapter 7
Diagnosis of Coronary Microvascular 
Dysfunction

Jun Takahashi and Hiroaki Shimokawa

Abstract Coronary microvascular dysfunction (CMD) has emerged as a third potential 
mechanism of myocardial ischemia in addition to coronary atherosclerotic disease (CAD) 
and epicardial coronary artery spasm. Since several studies indicated that CMD could be 
associated with increased risk of cardiovascular events, it is important to make correct 
diagnosis and assessment of CMD. However, in contrast with epicardial coronary arter-
ies, the coronary microcirculation cannot be directly visualized in vivo with coronary 
angiography or intracoronary imaging technique. Although there are several non-invasive 
(e.g. transthoracic Doppler echocardiography, positron emission tomography, cardiac 
magnetic resonance imaging) and invasive (e.g. assessment of coronary flow reserve and 
microvascular resistance using adenosine, microvascular coronary spasm with acetylcho-
line) approaches for the evaluation of coronary microvascular function, all of them have 
several limitations. Currently, the interventional diagnostic procedure, which consists of 
acetylcholine testing for the detection of coronary spasm as well as coronary flow reserve 
and microvascular resistance assessment in response to adenosine using a coronary pres-
sure–temperature sensor guidewire, could represent the most comprehensive coronary 
vasomotor evaluation. Furthermore, several biomarkers have recently attracted much 
attention as a diagnostic tool for CMD. Especially, plasma concentration of serotonin 
may be a novel biomarker to dissect CMD from epicardial coronary artery spasm. Correct 
diagnosis of the underlying cause of angina should enable us to stratify the treatment for 
distinct disorders, including CMD, vasospastic angina, and non-cardiac chest pain.
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7.1  Introduction

It has been reported that up to 40% of patients undergoing diagnostic coronary 
angiography for typical chest pain have no significant coronary stenosis [1]. The 
Women’s Ischemia Syndrome Evaluation Study showed that there are at least 
3–4 million patients in the United States alone who have signs and symptoms of 
myocardial ischemia with non-obstructive coronary artery disease (CAD), associ-
ated with poor quality of life, psychological distress, and health-care costs that 
approximate those of patients with obstructive CAD [2, 3]. In such cases, myo-
cardial ischemia may be caused by different types of functional disorders involv-
ing the epicardial coronary arteries, coronary microcirculation or both [4]. 
Vasospastic angina (VSA) is one of the important functional cardiac disorders 
characterized by myocardial ischemia attributable to epicardial coronary artery 
spasm and a number of studies have elucidated patient characteristics, outcomes, 
and prognostic factors of VSA [5–7]. Furthermore, the Japanese Circulation 
Society guidelines describe the standard methods for the diagnosis of VSA in the 
current clinical practice based on the currently available evidence [8]. The 
Coronary Vasomotion Disorders International Study Group (COVADIS) also 
developed international standards for the diagnostic criteria of VSA [9]. 
Remarkably, the spasm provocation tests with ergonovine and acetylcholine 
employed in the catheterization laboratory have been established as a high-reli-
able diagnostic tool to detect functional disorder of the epicardial coronary artery 
[10, 11]. We also have recently demonstrated that Rho- kinase activity in circulat-
ing neutrophils is enhanced in VSA patients and is a useful biomarker for diagno-
sis and disease activity assessment of the disorder [12, 13]. On the other hand, 
coronary microvascular dysfunction (CMD) has emerged as a third potential 
mechanism of myocardial ischemia in addition to coronary atherosclerotic dis-
ease and epicardial coronary spasm [4, 14]. Indeed, it was demonstrated that 
CMD could be associated with increased risk of cardiovascular events, [15] indi-
cating that it is important to make a correct diagnosis or assessment of 
CMD. However, in contrast with epicardial coronary arteries, the coronary micro-
circulation cannot be directly visualized in vivo with coronary angiography or 
intracoronary imaging technique. Thus, microvascular function is assessed indi-
rectly, generally through measurements of coronary or myocardial blood flow 
(MBF) which is regulated by coronary arteriolar tone in healthy vessels, or detec-
tion of propensity to coronary vasoconstriction. A number of studies published in 
the past 2 decades have highlighted how abnormalities in the function and struc-
ture of the coronary microcirculation can interfere with the control of MBF, and 
contribute to the pathogenesis of myocardial ischemia [16]. In this chapter, we 
will briefly review the diagnostic methods and strategies for CMD.
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7.2  Clinical Criteria for Suspecting Microvascular Angina 
Due to CMD

CMD could be developed by several pathological mechanisms. In 2007, Camici and 
Crea proposed the clinical and pathogenetic classifications of CMD (Table  7.1) 
[14]. From a pathophysiological point of view, and independently of the underlying 
mechanisms, CMD results in varying degrees of disruption of the normal coronary 
physiology. These alterations eventually impair the capacity of MBF to adapt to 
changes in myocardial oxygen demand. Indeed, CMD is typically suspected in 
patients with angina and nearly normal coronary angiograms. The term “microvas-
cular angina” (MVA) typically describes myocardial ischemia triggered by CMD in 
the absence of CAD.  Stable MVA is characterized by effort-induced symptoms 
similar to those observed in patients with angina triggered by obstructive 
CAD.  However, MVA patients often have angina at rest and a variable angina 
threshold, suggestive of dynamic coronary vasomotor changes. CMD can result 
from a variable combination of abnormal vasodilatation and increased vasoconstric-
tion caused by various stimuli of coronary microvessels (Fig. 7.1) [17]. Thus, the 
presence of both effort and rest angina suggests a possible coexistence of reduced 
coronary microvascular dilatory function and microvascular spasm [18]. Patients 

Table 7.1 Classification of coronary microvascular dysfunction

Clinical setting
Main pathogenic 
mechanism

Type 1: in the absence of myocardial diseases 
and obstructive CAD

Risk factors SMC dysfunction
Microvascular angina Endothelial 

dysfunction
Vascular remodeling

Type 2: in myocardial diseases Hypertrophic 
cardiomyopathy

Vascular remodeling

Dilated cardiomyopathy SMC dysfunction
Anderson-Fabry’s 
disease

Extramural 
compression

Amyloidosis Luminal obstruction
Myocarditis
Aortic stenosis

Type 3: obstructive CAD Stable angina SMC dysfunction
Acute coronary 
syndrome

Endothelial 
dysfunction
Luminal obstruction

Type 4: iatrogenic PCI Luminal obstruction
Coronary artery grafting Autonomic 

dysfunction

CAD coronary artery disease, SMC smooth muscle cells, PCI percutaneous coronary intervention. 
(Reproduced from Crea et al. [14])
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with MVA may have chest pain that can persist even after cessation of the activity 
[19]. Furthermore, they may not have rapid or sufficient symptom relief in response 
to sublingual nitroglycerin, because nitroglycerin selectively dilates larger microves-
sels but not arterioles [20]. Furthermore, typical and atypical chest pain does not 
differentiate between obstructive and non-obstructive CAD and symptom complex-
ity may not always identify patients with CMD [21, 22]. Excluding angiographic 
atheroma or establishing that a stenosis has no effect on coronary physiology 
 (e.g. normal fractional flow reserve) strongly suggests a microvascular origin of symp-
toms [23]. Although objective documentation of myocardial ischemia is warranted 
for the diagnosis of CMD, imaging modalities often give negative results despite the 
occurrence of ischemia. This is because, contrary to what is seen in obstructive 
CAD, myocardial ischemia does not follow a regional pattern in MVA and ischemia 
may be limited to the subendocardium in many cases [19]. Based on these clinical 
features of MVA, the Coronary Vasomotor Disorder Study (COVADIS) group has 
recently proposed the following diagnostic criteria for MVA [24]; signs and symp-
toms of myocardial ischemia, reduced coronary flow reserve (CFR) defined as the 
ratio of coronary blood flow (CBF) during near maximal coronary vasodilatation to 
baseline CBF, or microvascular spasm, and documented myocardial ischemia, 
which is not triggered by obstructive CAD but by functional or structural abnor-
malities at the site of the coronary microcirculation (Table 7.2). Angina occurs in 
approximately 30–60% of patients with CMD [22, 25–28]. Other cardinal manifes-
tations of CMD include exertional dyspnea and possibly heart failure [29]. Patients 
may also manifest with a gradual decrease in exercise tolerance or dyspnea on exer-
tion. It may represent an ischemic equivalent caused by LV diastolic dysfunction 
with an excessive rise in end-diastolic pressure leading to cardiopulmonary conges-
tion. In those patients presenting with heart failure, the typical signs of elevated 
filling pressure, such as jugular venous distention, rales, and pedal edema, may be 
present.

1. Abnormal vasodilatation 2. Microvascular spasm

Increased vasoconstriction
. Acetylcholine
. Serotonin
. Rho-kinase
. CatecholaminesEndothelium-dependent

(Flow-mediated)
. Acetylcholine
. Serotonin
. Histamine
. Bradykinin

Coronary
microvascular

dysfunction
(CMD)

Endothelium-dependent
. Adenosine
. Catecholamines

Fig. 7.1 Coronary microvascular dysfunction car result from a variable combination of abnormal 
vasodilatation and increased vasoconstriction caused by various stimuli
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7.3  Assessment for Diastolic Function 
of Coronary Microvasculature

Coronary microvascular function is usually assessed by measurement of coronary 
microvascular response to vasodilator stimuli. In many cases, the vasodilator capac-
ity is often evaluated by CFR calculated as the ratio of CBF during maximal vaso-
dilatation over basal CBF. Since CFR is an integrated measure of flow through both 
the large epicardial arteries and the coronary microcirculation, reduced CFR is a 
marker of CMD in the absence of obstructive stenosis of the epicardial arteries [16]. 
The most widely used substance to assess coronary microvascular dilator function 
is adenosine. Adenosine is administered at an intravenous dose of 140 μg/kg/min, as 
this dose has been found to achieve maximal coronary microvascular dilatation 
[30]. Although adenosine has possible side effects, including bradycardia due to 
atrioventricular or sino-atrial node blockade and bronchoconstriction, both of which 
are mediated by purinergic A1 receptor, relevant advantages of adenosine are its 
very short half-life (10 s) which enables rapid regression of side effects and repeti-
tion of the test during the same session, if necessary [31]. Another frequently used 
substance to assess endothelium-independent coronary microvascular dilatation is 

Table 7.2 Clinical criteria for suspecting microvascular angina

1. Symptoms of myocardial ischemia
  (a) Effort and/or rest angina
  (b) Angina equivalents (e.g. shortness of breath)

2. Absence of obstructive CAD (<50% diameter reduction or FFR > 0.80) by
  (a) Coronary CTA
  (b) Invasive coronary angiography

3. Objective evidence of myocardial ischemia
  (a) Ischemic ECG changes during an episode of chest pain
  (b)  Stress-induced chest pain and/or ischemic ECG changes in the presence or absence of 

transient/reversible abnormal myocardial perfusion and/or wall motion abnormality
4. Evidence of impaired coronary microvascular function

  (a)  Impaired coronary flow reserve (cut-off values depending on methodology use 
between ≤2.0 and ≤ 2.5)

  (b)  Coronary microvascular spasm, defined as reproduction of symptoms, ischemic ECG 
shifts but no epicardial spasm during acetylcholine testing

  (c) Abnormal coronary microvascular resistance indices (e.g. IMR > 25)
  (d) Coronary slow flow phenomenon, defined as TIMI frame count >25

    CAD coronary artery disease, CTA computed tomographic angiography, 
FFR fractional flow reserve, IMR index of microcirculatory resistance, TIMI 
thrombolysis in myocardial infarction

    Definite MVA is only diagnosed if all four criteria are present
    Suspected MVA is diagnosed if symptoms of ischemia are present with 

non-obstructive
    CAD but only objective evidence of myocardial ischemia, or evidence of 

impaired coronary microvascular function alone

(Reproduced from Ong et al. [24])
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dipyridamole, which acts by inhibiting adenosine degradation by adenosine deami-
nase [32]. Acetylcholine is often used as a endothelium-dependent coronary micro-
vascular vasodilator. However, it is not the ideal substance to assess 
endothelium-dependent vasodilator function, since it also acts directly on smooth 
muscle cells (SMCs), including vasoconstriction [4]. There are several non-invasive 
and invasive approaches for evaluation of coronary vasodilator response, while all 
of them have several limitations. Although there is currently no consensus on the 
cut-off for the diagnosis of CMD based on imaging, a three-tiered characterization 
of CMD has been proposed as follows: CFR < 1.5, definite; CMD 1.5–2.6, border-
line; and CMD >2.6, no CMD [33].

7.3.1  Non-invasive Techniques for Diagnosis of CMD

Transthoracic Doppler echocardiography (TTDE) can measure coronary blood flow 
velocity (CBFV) of the distal left anterior descending artery (LAD), which is a sur-
rogate for CBF. CFR is measured as the ratio of peak CBFV after vasodilator to 
CBFV at rest in a highly reproducible fashion [34]. CFR measured by TTDE has 
been demonstrated to have good agreement with that measured by an intracoronary 
Doppler flow wire and positron emission tomography (PET) [34, 35]. Advantages 
of TTDE are its relatively low cost and high feasibility, but considerable intra- 
observer and inter-observer variability (~10%) needs to be taken into account when 
examining serial recordings obtained for assessing the effects of therapy [36]. 
Myocardial contrast echocardiography (MCE) exploits the property of intrave-
nously administered, echogenic, gas-filled microbubbles that are similar in size and 
rheological properties to red blood cells [37]. MCE enables repeated, quantitative 
measurement of microvascular flow velocity and capillary blood volume, and pro-
vides an estimate of MBF that correlated well with that measured by PET [38]. 
There is a growing body of evidence that a reduced coronary flow velocity reserve 
index helps to identify CMD and allows risk stratification [39, 40].

PET is a well-validated technique that can provide non-invasive, accurate, and 
reproducible quantification of MBF and CFR in humans, and is thus used for assess-
ment of coronary vasomotor function [41, 42]. Recent PET studies demonstrated 
that coronary vascular dysfunction, as defined by reduced CFR, is highly prevalent 
among patients with CAD, [25] increases the severity of inducible myocardial isch-
emia and subclinical myocardial injury, [43], and identifies patients at high risk for 
future cardiac events [44]. PET also has the advantage of assessing all three coro-
nary distributions, thus allowing a more accurate assessment of microvascular dys-
function, as CMD has been shown to have a heterogenous distribution over the three 
vessels [45].

Cardiac magnetic resonance (CMR) has also been used to quantify myocardial 
perfusion following the injection of a gadolinium-based contrast agent [46]. 
Advantages of CMR are high spatial resolution, allowing transmural characteriza-
tion of myocardial blood flow, and the lack of ionizing radiation, along with the 
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ability to perform a comprehensive assessment of cardiovascular structure and func-
tion. A decreased response to vasodilator is seen in the subendocardial region in 
CMD patients and was shown to predict prognosis [47, 48]. A gadolinium-free 
stress CMR approach using T1 mapping has also been recently proposed for diag-
nosis of myocardial ischemia with and without obstructive CAD [49].

7.3.2  Invasive Guidewire-Based Techniques 
for Diagnosis of CMD

Invasive coronary angiography, by combining the ability to exclude obstructive 
CAD with complementary catheter-based techniques to investigate epicardial and 
microvascular coronary physiology, is an attractive approach to evaluate patients 
with CMD [50]. It often involves an interventional procedure where a guidewire- 
based assessment of coronary blood flow is performed at rest and during interroga-
tion with pharmacological probes, typically adenosine [27, 50]. The procedure is 
invasive by nature, requires special expertise, and can be time-consuming. However, 
it has been shown to be safe and effective when performed by experienced interven-
tional operators [51]. Coronary flow reserve (CFR) reflects the ratio of hyperemic 
flow to basal flow and was first describe by Gould et al. in 1974 [52]. This is also 
termed the vasodilator capacity and reflects the ability of the coronary circulation to 
augment blood flow from rest. CFR is calculated using thermodilution as the resting 
mean transit time divided by hyperemic mean transit time, and an abnormal CFR is 
defined as ≤2 (Fig. 7.2) [25, 53]. Importantly, decreased CFR is associated with 
increased risk of MACE [15]. CFR reflects the combined vasodilator capacity of the 
epicardial coronary artery and its subtended microvasculature. Thus, there are some 
limitations for the use of invasively measured CFR due to its sensitivity to systemic 
hemodynamics, myocardial contractility, and challenges with establishing true rest-
ing coronary blood flow during invasive coronary angiography [54]. Specific 

Epicardial coronary artery Microcirculation

CFR

IMR

Coronary flow reserve

Index of microcirculatory resistance
= Pd x hyperemic Tmn

Pa Pd

Pa= mean proximal coronary pressure
Pd=mean distal coronary pressure
Tmn=mean transit time

Pressure- temperature
senior guidewire

Injection of saline

Mean transit time (Tmn)

= resting Tmn/hyperemic Tmn

Fig. 7.2 To evaluate relaxation of the coronary artery, a guidewire-based assessment of coronary 
blood flow is performed at rest and during interrogation with pharmacological probes, typically 
adenosine. CFR coronary flow reserve, IMR index of microcirculatory resistance
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measures of microvascular resistance are more reproducible and specific and are 
directly informative about microvascular disease [55]. Index of microvascular resis-
tance (IMR) is calculated as the distal coronary pressure divided by the inverse of 
the mean transit time during maximal hyperemia [56]. It can be measured by the use 
of a combined pressure-temperature sensor-tipped coronary guidewire, which 
allows simultaneous measurement of coronary pressure and hyperemic flow 
(Fig. 7.2). Increased IMR (e.g. ≥25) is representative of CMD and is associated 
with worse cardiovascular outcomes [57, 58]. Here is the standard measurement 
technique of IMR [59]. Briefly, systemic administration of heparin (50 ~ 100 IU/kg) 
and intracoronary nitroglycerin (100  ~  200  μg) is necessary before measuring 
IMR. A coronary pressure–temperature sensor guidewire is calibrated, equalized to 
the guide catheter pressure with the pressure sensor positioned at the tip of the cath-
eter, and advanced to the distal two thirds of the target vessel. For an accurate ther-
modilution measurement, the sensor needs to be at least 6  cm into the coronary 
artery. A three-way stopcock and 3-mL syringe are connected to the back of the 
manifold. The guide catheter is flushed with saline, clearing all contrast, and an 
operator should pause for a minute to allow coronary flow to return to baseline. If 
the operator intends to calculate CFR also, then 3 mL of room-temperature saline is 
briskly injected through the guide catheter under resting conditions, and the console 
automatically calculates the mean transit time (Tmn) at rest. After making the resting 
measurement, hyperemia is induced by either infusing intravenous adenosine 
(140 μg·kg−1·min−1) or by injecting intracoronary papaverine (10 ~ 20 mg). During 
maximal hyperemia, 3 mL of room-temperature saline is briskly injected through 
the guide catheter, and the hyperemic Tmn (TmnHyp) is measured again as described 
above. The system allows the operator to examine the Tmn curve and calculated time; 
if the operator is not happy, the value can be replaced with another injection. In 
some cases, variability in the Tmn values can occur, particularly if the guide catheter 
is moving out of the coronary ostium during saline injection. If all 3 Tmn values are 
<0.25%, then the variability can be ignored because in most cases, IMR will be in 
the normal range. If Tmn is >0.25% and ([the maximum individual Tmn value minus 
the minimum Tmn value]/the maximum Tmn value×100%) >30%, then the Tmn value 
that is furthest from the mean Tmn should be replaced. Pd is measured simultane-
ously with the same pressure wire during maximal hyperemia, and IMR is calcu-
lated as Pd multiplied by TmnHyp [60].

7.4  Objective Documentation of Coronary 
Microvascular Spasm

Primary reduction of coronary blood flow caused by spasm of coronary small 
arteries or arterioles may be the cause of angina at rest. This hypothesis is sup-
ported by the careful observations of patients with syndrome X which demon-
strated that angina and ischemic ST shift were not always preceded by increments 
in heart rate [61]. Sinus tachycardia that had caused ischemia during exercise 
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testing did not develop chest pain or ECG change in most instances [61]. The vari-
able threshold for angina symptoms during daily life suggests the presence of cir-
cadian variations in vasomotor tone and small vessel hyperconstriction [62]. Mohri 
et al. prospectively examined a cohort of 117 patients with angina (mostly at rest) 
and normal or minimally diseased epicardial coronary arteries. In 25% of the 
patients studied, no epicardial spasm was demonstrated during angina attack on 
selective coronary arteriography [63]. Chest pain which was similar to patients’ 
previous ones developed in association with ischemic ECG changes and lactate 
production (an objective marker of myocardial ischemia) spontaneously or follow-
ing intracoronary acetylcholine. In these patients, the pressure-rate product (an 
index of myocardial oxygen demand) was comparable between at rest and at the 
onset of angina. Thus, the decrease in coronary blood flow, rather than increased 
myocardial oxygen consumption, was a likely explanation for myocardial isch-
emia. This study suggests that coronary microvascular spasm is the cause of chest 
pain in a subset of patients with rest angina and normal epicardial coronary arter-
ies. Microvascular constriction and myocardial ischemia as evidenced by ECG 
change were also provoked by intracoronary infusion of a peptide neurotransmit-
ter, neuropeptide Y [64].

Acetylcholine provocation test should be performed following the guidelines of 
the Japanese Circulation Society [8]. Briefly, ACh was administered into the coro-
nary artery in a cumulative manner (20, 50, and 100 μg) with careful monitoring of 
arterial pressure and 12-lead ECG and serial coronary angiograms at 1-min inter-
vals. Calcium channel blockers, long-acting nitrates, and nicorandil need to be dis-
continued at least 48 h before the provocation test. To determine whether multivessel 
coronary spasm would develop, the authors first perform ACh provocation test for 
the LCA in a cumulative manner (20, 50, and 100 mg). If the test for the LCA is 
negative or ACh-induced spasms in the LCA resolves spontaneously, ACh is then 
injected into the right coronary artery in a cumulative manner (20 and 50 mg). When 
coronary spasm is induced, 5 mg of isosorbide dinitrate (ISDN) is injected into the 
responsible coronary artery. Additionally, to evaluate the presence of coronary 
microvascular spasm, lactate production during myocardial ischemia induced by 
ACh provocation test is recommended. Myocardial lactate extraction ratio is calcu-
lated as the ratio of the coronary arterial–venous difference in lactate concentration 
to the arterial concentration. Myocardial lactate production defined by negative 
myocardial lactate extraction ratio is considered to be highly sensitive to myocardial 
ischemia [65]. Microvascular spasm (MVS) is defined as myocardial lactate pro-
duction despite the absence of angiographically demonstrable epicardial spasm 
throughout ACh provocation test or prior to the occurrence of epicardial coronary 
spasm following intracoronary injections of ACh [66]. At 1 min after each dose of 
ACh is given to LCA, paired samples of 1 mL of blood are collected from the left 
coronary ostium and the coronary sinus for measurement of lactate concentrations, 
which are immediately determined with a calibrated automatic lactate analyzer. We 
usually evaluate lactate production during ACh provocation test only in the LCA, as 
the great coronary sinus drains blood from the LCAs but not from the right coro-
nary artery.
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7.5  Biomarkers of Coronary Microvascular Dysfunction

The causes of CMD appear to be heterogeneous [14, 17]. Classical coronary risk 
factors are associated with impaired coronary microvascular dilatation and enhanced 
coronary microvascular constriction [67]. Recently, low-grade inflammation attracts 
much attention in the pathogenesis of CMD, as CRP levels correlate with the fre-
quency of angina attacks and impairment of coronary microvascular dilatation in 
patients with syndrome X [68]. Although the importance of CMD has been emerg-
ing, reliable biomarkers for CMD still remain to be developed. Serotonin is released 
from aggregating platelets, causing vasoconstriction and platelet aggregation with 
cyclic flow reduction [69]. Several clinical studies previously addressed the rela-
tionship between systemic serotonin concentrations and coronary vasomotor dys-
function in a small number of patients with inconsistent results [70, 71]. We 
examined the potential usefulness of plasma concentration of serotonin to diagnose 
CMD [72]. CMD was defined as myocardial lactate production without or prior to 
the occurrence of epicardial coronary spasm during acetylcholine provocation test. 
Although no statistical difference in plasma concentration of serotonin [median 
(inter-quartile range) nmol/L] was noted between the vasospastic angina (VSA) and 
non-VSA groups, it was significantly higher in patients with MVS compared with 
those without it (Fig.  7.3). Among the four groups classified according to the 
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Fig. 7.3 (a) Plasma concentrations of serotonin were compatible between the VSA and the non- 
VSA groups. Results are expressed as box-and-whisker plots; the central box covers the interquartile 
range, with the median indicated by the line within the box. The whiskers extend to the most extreme 
values within 1.5 interquartile ranges. More extreme values are plotted individually. (b) Plasma 
concentrations of serotonin were higher in patients with MVS than in those without it. (c) Plasma 
serotonin concentrations of the four groups classified according to the presence or absence of VSA 
and MVS are shown. The serotonin concentrations were significantly higher in the VSA with MVS 
group than in the chest pain syndrome group by Steel-Dwass test. *P < 0.01 for the difference in 
plasma concentrations of serotonin among the four groups by Kruskal-Wallis test. VSA vasospastic 
angina, MVS coronary microvascular spasm. (Reproduced from Odaka et al. [72])
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presence or absence of VSA and MVS, serotonin concentration was highest in the 
VSA with MVS group (Fig.  7.3). Importantly, there was a positive correlation 
between plasma serotonin concentration and baseline TIMI frame count, a marker 
of coronary vascular resistance [73]. The classification and regression trees analysis 
showed that plasma serotonin concentration of 9.55 nmol/L was the first discrimina-
tor to stratify the risk for the presence of MVS. In multivariable analysis, serotonin 
concentration greater than the cut-off value had the largest odds ratio in the predic-
tion of MVS [73]. These results suggest that plasma concentration of serotonin may 
be a novel biomarker to dissect MVS from epicardial coronary artery spasm.

7.6  Comprehensive Evaluation of the Coronary 
Functional Abnormalities

Although the importance of coronary functional abnormalities (epicardial coronary 
spasm and CMD) in patients with chest pain and non-obstructive CAD has been 
emerging, their pathogenesis and prognostic implications remain to be fully eluci-
dated. Lee et al. showed that integration of microvascular assessment by both CFR 
and IMR can improve the accuracy of prognostic prediction for patients with high 
FFR; however, no attention was paid to epicardial coronary spasm [58]. Recent 
studies demonstrated that VSA is frequently noted in Caucasian patients with chest 
pain and non-obstructive CAD and those with acute myocardial infarction and non- 
obstructive CAD than ever thought [74, 75]. Thus, attention should always be paid 
to possible involvement of epicardial coronary spasm in patients with chest pain and 
non-obstructive CAD. Thus, we examined the significance of coronary functional 
abnormalities in a comprehensive manner for both epicardial and microvascular 
coronary arteries in patients with angina and non-obstructive CAD [76]. Recently, 
the combined invasive assessment of coronary vasoconstrictor as well as vasodilator 
abnormalities has been titled interventional diagnostic procedure (IDP) [50, 77]. 
When examining patients with chest pain and non-obstructive CAD, we routinely 
performed intracoronary ACh testing for detection of coronary spasm as well as 
coronary flow reserve and microvascular resistance assessment in response to ade-
nosine using a coronary pressure–temperature sensor guidewire. Then, we prospec-
tively enrolled consecutive patients, who underwent ACh provocation test for 
coronary spasm and measurement of IMR to evaluate coronary microvascular func-
tion, and followed them. Multivariable analysis revealed that IMR correlated with 
the incidence of cardiac events and receiver-operating characteristics curve analysis 
identified IMR of 18.0 as the optimal cut-off value. Importantly, there were substan-
tial overlaps of coronary functional abnormality in various combinations among 
VSA, low CFR (CFR < 2.0), and high IMR (IMR ≥ 18) (Fig. 7.4). Among the four 
groups based on the cut-off value of IMR and the presence of VSA, the Kaplan- 
Meier survival analysis showed a significantly worse prognosis in the group with 
high IMR (≥18.0) and VSA compared with other groups (Fig. 7.5). Importantly, 
intracoronary administration of fasudil, a Rho-kinase inhibitor, significantly 
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ameliorated IMR in the VSA patients with increased IMR. These results indicate 
that in patients with angina and non-obstructive CAD, coexistence of epicardial 
coronary spasm and increased microvascular resistance is associated with worse 
prognosis, for which Rho-kinase activation may be involved. Thus, comprehensive 
assessment of coronary functional abnormalities, including epicardial coronary 
spasm and increased microvascular resistance, could be useful for risk stratification 
of patients with angina and non-obstructive CAD. Furthermore, Rho-kinase inhibi-
tion with fasudil may be useful for the treatment of those coronary functional 
abnormalities.

There is a critical missing link between the use of relevant diagnostic tests of 
coronary artery function and therapeutic agents with proven efficiency and health 
outcomes of patients with angina without obstructive CAD. This gap in evidence 
was recently addressed in CORonary MICrovascular Angina randomized controlled 
trial (CorMicA), which tested whether an IDP linked to stratified medicine improves 
health status in patients with ischemia but non-obstructive CAD [77]. CorMicA trial 
demonstrated that vasoreactivity testing with ACh and measurement of CFR and 
IMR can be used to guide medication therapy in patients without non-obstructive 
CAD. Moreover, the stratified medical therapy leads to marked and sustained angina 
improvement and better quality of life at 1 year following invasive coronary angiog-
raphy [78]. Based on these results of CorMicA, it was suggested that the IDP could 
provide the most comprehensive coronary vasomotor assessment.

Overall n=187

n=48

n=19
n=28

n=33

n=15 n=4
n=10

Negative
n=30

Vasospastic angina

Low CFR High IMR

Fig. 7.4 Among 187 patients, 128 (68.4%) were diagnosed as having VSA by ACh provocation 
test. Furthermore, 66 (35.3%) had low CFR (CFR < 2.0) and 75 (40.1%) high IMR (IMR ≥ 18). 
Thus, more than half of VSA patients had microvascular functional abnormalities, including low 
CFR (n = 19, 10.2%), high IMR (n = 33, 17.6%), and both of them (n = 28, 15.0%). CFR coronary 
flow reserve, IMR index of microcirculatory resistance, VSA vasospastic angina. (Reproduced 
from Suda et al. [76])
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Chapter 8
Treatment of Coronary Microvascular 
Dysfunction

Jun Takahashi and Hiroaki Shimokawa

Abstract Patients with ischemia and non-obstructive coronary artery (INOCA) 
often have coronary microvascular dysfunction (CMD), and they are at high risk for 
adverse cardiac events. Nevertheless, the management of CMD represents a major 
unmet need because the lack of large, randomized studies makes it difficult to gen-
erate evidence-based recommendations. Recently, it was demonstrated that strati-
fied medical therapy guided by an interventional diagnostic procedure improves 
health status of patients with INOCA. Accordingly, the latest guidelines state that 
treatment of CMD should address the dominant mechanism of microcirculatory 
dysfunction. In patients with impaired microcirculatory conductance and a negative 
acetylcholine (ACh) provocation test, beta-blockers, ACE inhibitors, and statins, 
along with lifestyle modifications and weight loss, are indicated. On the other hand, 
patients developing ECG changes and angina in response to ACh testing but without 
severe epicardial coronary vasoconstriction (all suggestive of microvascular spasm) 
may be treated mainly by calcium channel blockers. However, in patients with 
INOCA, coronary functional abnormalities, including epicardial coronary spasm, 
reduced microvascular vasodilatation, and increased microvascular resistance, fre-
quently coexist in various combinations. Thus, in everyday clinical practice, a com-
bination of several types of vasodilators, such as a beta-blocker and a long-acting 
dihydropyridine calcium channel blocker, should constitute the second step when a 
single drug fails to success. In cases with refractory symptoms which seriously limit 
life quality, analgesic drugs or non-pharmacological interventions, including reha-
bilitation exercise programs, spinal cord simulation, and/or psychological treat-
ments, might be helpful. In this section, we will discuss the treatment options for 
CMD, taking into consideration currently accepted pathogenic mechanisms of the 
disorder.
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8.1  Introduction

Patients with ischemia and non-obstructive coronary artery (INOCA) often have 
coronary microvascular dysfunction (CMD) and are diagnosed as having microvas-
cular angina (MVA). Recent studies demonstrated that they are at high risk for 
adverse cardiac events, including cardiac death, non-fatal myocardial infarction, 
heart failure, and hospitalization due to unstable angina [1, 2]. Nevertheless, the 
management of CMD represents a major unmet need because the lack of large, 
randomized studies involving homogeneous patient groups makes it difficult to gen-
erate evidence-based recommendations. Indeed, the guidelines of the European 
Society of Cardiology and the Japanese Circulation Society confirm relatively low 
levels of evidence for treatment of patients with CMD and no large randomized 
outcome trials [3, 4]. Thus, the treatment for CMD has so far been empirical because 
its pathophysiology appears to be multifactorial, with overlapping phenotypes that 
often coexist. On the other hand, recent papers have discussed the management of 
those patients and suggested potential therapies for CMD [5–7]. Targets for those 
therapies include conventional coronary risk factors and endothelial dysfunction, 
myocardial ischemia due to impaired coronary microvascular dilatory function or 
microvascular spasm, and chest pain–increased nociception [5–7]. The therapeutic 
aims are to improve myocardial ischemia addressing its causes, improve quality of 
life, and improve long-term prognosis. In this section, we will discuss the treatment 
options for CMD, taking into consideration currently accepted pathogenic mecha-
nisms of the disorder.

8.2  Control of Risk Factors for Coronary 
Microvascular Dysfunction

The presence of CMD in patients with cardiovascular risk factors can be predictive 
of future development of macrovascular atherosclerosis [8]. Especially, those using 
intravascular ultrasound have also shown that non-obstructive coronary artery dis-
ease (CAD) is noted in a large proportion of patients with CMD [9]. Thus, aggres-
sive management of all modifiable conventional risk factors is of paramount 
importance in the CMD patients [5, 10]. Smoking cessation, weight loss, adequate 
control of blood pressure, diabetes and metabolic abnormalities, lipid management, 
improved nutrition, and regular exercise may be applicable [11]. It has been demon-
strated that anti-hypertensive drugs are able to improve CMD in patients with 
hypertension, although some differences among classes of medications may exist 
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[12–14]. For instance, angiotensin-converting enzyme (ACE) inhibitors and angio-
tensin II receptor blockers (ARBs) have been shown to improve or even normalize 
endothelium-independent coronary microvascular function in hypertensive patients 
[12]. Furthermore, olmesartan, but not amlodipine, has been shown to improve 
endothelium-dependent coronary vasodilatation in hypertensive patients irrespec-
tive of blood pressure (BP) reduction [13]. In contrast, another study showed that 
verapamil, but not enalapril, was able to improve myocardial blood flow (MBF) 
during atrial pacing despite a similar BP reduction [14]. These findings suggest that 
the favorable effects of antihypertensive drugs on CMD mainly depend on mecha-
nisms other than hypotensive effect, including direct effects on vascular smooth 
muscle cells, an improvement of oxidative state, endothelial function, and diastolic 
function, as well as effects on autonomic nervous system. Statins, alone or in com-
bination with ACE inhibitors, have been shown to exert beneficial effects in patients 
with coronary endothelial and/or vascular smooth muscle dysfunction despite non- 
obstructive CAD [15–17]. Unlike the cases with hypertension or hypercholesterol-
emia, the effect of glycemic control on CMD in diabetic patients remains to be 
elucidated. Indeed, weight loss in obese patients has also been reported to improve 
microvascular function with increased adiponectin levels [18, 19]. Thromboxane A2 
(TXA2) could cause microvascular constriction, platelet aggregation, and vascular 
injury. Thus, low-dose aspirin, which is a TXA2 inhibitor, could provide microvas-
cular protection against oxidative injury in the microcirculation [20].

CMD is also initiated by classical cardiovascular risk factors that also maintain a 
low-grade inflammation [21, 22]. Additionally, chronic systemic inflammation is 
associated with CMD possibly mediated through C-reactive protein (CRP), which 
levels were related to coronary flow reserve impairment in patients with a chest pain 
syndrome without risk factors for CAD and angiographically normal epicardial 
arteries [23]. Anti-inflammatory agents block associated endothelial dysfunction 
that plays a key role in the pathogenesis of CMD. Specific approaches to modify 
inflammation in CMD are difficult to assess since essentially all effective anti- 
ischemic and anti-atherosclerosis agents modify inflammation to some degree [24].

8.3  Pharmacological Symptomatic Therapies for Coronary 
Microvascular Dysfunction

8.3.1  Beta Blockers

The European Society of Cardiology guidelines for patients with MVA recommend 
beta-blockers as first-line and calcium channel blockers if the former are not toler-
ated or efficacious [25]. Beta-blockers are able to reduce myocardial oxygen con-
sumption and to improve coronary perfusion by prolonging diastolic time. In 
particular, beta-blocker therapy may be considered to provide therapeutic benefit 
for MVA patients with exercise-induced symptoms and those with increased 
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sympathetic nervous activity as evidenced by elevated blood pressure-rate response 
to exercise [26, 27]. Actually, propranolol reduced the number of episodes of 
ST-segment depression during 24-h ECG Holter monitoring as compared to vera-
pamil [28]. The use of atenolol has been shown to reduce the number of angina 
episodes and also improve the ischemic threshold [29, 30]. Carvedilol has been 
shown to improve endothelial function [31]. Furthermore, nebivolol, which is a 
highly selective beta-1 blocker with vasodilatory effects via nitric oxide (NO) pro-
duction, has beneficial effects on angina and exercise capacity in patients with CMD 
[32]. Notably, nebivolol improved left ventricular filling pressure and coronary flow 
reserve (CFR) in uncomplicated arterial hypertension, suggesting the involvement 
of enhanced myocardial NO production and improvement of coronary microvascu-
lar function [32]. However, the effects of beta-blocker therapy on symptoms of 
chest pain are variable in MVA patients ranging from 19% to 60% [26]. Additionally, 
caution should be exercised in the use of beta-blockers in patients with microvascu-
lar spasm because they could exacerbate coronary vasoconstriction by unmasking 
α-adrenoceptors in the coronary circulation [5, 7].

8.3.2  Calcium Channel Blockers

Calcium channel blockers (CCBs) have potent vasodilatory effects and are therefore 
expected to improve the increased resistance of coronary microcirculation. However, 
while dihydropyridine CCBs can reduce systemic blood pressure rapidly, they 
might simultaneously cause a reflex increase in adrenergic activity that antagonizes 
their favorable vasodilatory effects. In contrast, non-dihydropyridine CCBs could 
decrease myocardial oxygen consumption by the negative chronotropic and inotro-
pic effects. In a clinical setting, CCBs are widely used in patients with non- 
obstructive CAD and coronary vasomotor disorders including vasospastic angina 
(VSA). In particular, benidipine, a long-acting dihydropyridine, showed beneficial 
prognostic impacts in VSA patients [33]. Additionally, with the hope of improving 
reduced vasodilator capacity of the coronary microcirculation and reducing cardiac 
afterload, CCBs are often used for patients with CMD, which is supported by an 
experimental study showing that amlodipine improves inward remodeling in CMD 
[34]. In expert consensus, CCBs are likely to represent the first-line agents for 
patients with documented microvascular spasm or abnormal CFR and those with 
mainly exercise-related symptoms if beta-blockers are without effects [6, 7, 25]. 
However, CCBs have shown variable results in the previous trials with INOCA 
patients [28, 29, 35, 36]. It has been reported that intracoronary diltiazem does not 
improve CFR in patients with MVA [35]. Furthermore, no significant improvement 
in angina was noted with amlodipine in INOCA patients, [29] and verapamil failed 
to reduce spontaneous episodes of ischemic ST-segment changes in another study 
[28]. On the other hand, patients with abnormal vasodilator reserve can have 
improved symptoms, less nitrate use, and improved exercise tolerance with vera-
pamil or nifedipine [36]. Moreover, long-acting nifedipine exerted cardiovascular 
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protective effects through inhibition of vascular inflammation and improvement of 
endothelial function in CAD patients with vasomotor dysfunction (Fig. 8.1) [37, 38]. 
Thus, long-acting L-type calcium channel blockers appear to be more effective for 
coronary microcirculation compared with short-acting ones. Importantly, it should 
also be noted that some patients may paradoxically experience worsening of symp-
toms on CCBs with a resultant withdrawal [7, 25].

8.3.3  Nitrates

Nitrates are one of the classical drugs that have been widely used for cardiovascular 
diseases. Nitrates act via NO signaling pathways and exert endothelium- independent 
vasodilatation, leading to an increase in coronary perfusion and reductions in car-
diac pre- and post-load [39, 40]. With these pharmacological features, nitrates 
acutely improve cardiac conditions, such as angina attacks and acute heart failure. 
However, chronic exposure to nitrates results in a rapid development of tolerance, 
blunting their anti-ischemic and hemodynamic efficacy [39, 40]. Furthermore, their 
potential harm for cardiovascular patients, such as generation of reactive oxygen 
species with resultant endothelial dysfunction, [41] sympathetic nerve activation, 
[42] and increase in sensitivity to vasoconstrictors [43], has also been reported. 
Since nitrate therapy acutely improves vasospastic symptoms, [44] they are often 
used mainly as a concomitant therapy with CCBs in VSA patients [4, 45]. However, 
the effects of nitrates on the coronary microcirculation seem to be variable and 
rather limited. Indeed, sublingual short-acting nitrates, which are the first-line drugs 
to treat angina attacks in patients with MVA as well as those with obstructive CAD 
or epicardial spasm, were found to be effective in only about a half of patients [46]. 
The previous studies suggested that sublingual nitrate therapy worsened or failed to 
improve exercise tolerance in patients with syndrome X [47, 48]. Furthermore, 
chronic oral nitrate therapy with isosorbide-5-mononitrate (40 mg) also failed to 
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improve symptoms and quality of life over a period of 4 weeks in those patients, 
[29] and ISDN was not helpful for patients with CMD [49]. On the basis of these 
results, long-acting nitrates have generally presented no positive effect and thus 
may not be recommended as first-line drugs for patients with CMD.

8.3.4  Nicorandil

Nicorandil has the dual properties of nitrate and KATP channel agonist, showing the 
cardiovascular protective effects without tolerance development [50]. This agent opens 
ATP-sensitive potassium channels, thereby causing dilatation of coronary resistant 
arterioles and possesses a nitrate moiety which dilates epicardial coronary arteries. In 
fact, nicorandil could cause vascular relaxation without intracellular cGMP accumula-
tion through opening potassium channels in the plasma membrane with resultant 
hyperpolarization of vascular smooth muscle cells. Importantly, a functional role of 
KATP channels in response to nicorandil becomes more apparent when cyclic GMP 
formation is suppressed as in the case of nitrate tolerance [51]. A previous study dem-
onstrated that intravenous administration of nicorandil could lead to significant 
improvements in scintigraphy results as well as anginal symptoms and ST-segment 
depression during exercise [52]. Furthermore, in another randomized placebo-con-
trolled trial, a 2-week therapy with nicorandil in patients with microvascular angina 
resulted in significant improvement in exercise-induced myocardial ischemia and exer-
cise tolerability [53]. Accordingly, where available, nicorandil should be taken into 
account in the treatment of patients with CMD, in particular as an alternative to nitrates.

8.3.5  ACE Inhibitors

Local tissue angiotensin II is involved in the regulation of coronary microvascular 
structure and function, and it also enhances the effects of sympathetic nervous sys-
tem on coronary microvascular tone. Thus, renin-angiotensin system inhibition has 
been considered to be an appropriate therapy for patients with CMD. Furthermore, 
ACE inhibitors could benefit coronary vascular bed by restoring endothelial func-
tion and may improve coronary flow reserve (CFR) by bradykinin-mediated, 
NO-dependent mechanisms [54]. Indeed, enalapril has been demonstrated to 
improve CMD through increase of NO availability and reduction of oxidative stress 
in MVA patients [55]. It also has been demonstrated that enalapril and cilazapril 
reduce the magnitude of ST-segment depression and increasing the total exercise 
duration and time to 1 mm of ST-segment depression in MVA patients with reduced 
coronary flow [56, 57]. Moreover, improvements of angina symptoms and exercise 
capacity have been noted with the use of several kinds of ACE inhibitors [16, 58, 
59]. Thus, since available studies assessing the effects of ACE inhibitors in MVA 
patients have generally shown beneficial results, more proactive use of the agents 
should be recommended in patients with CMD.
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8.3.6  Ranolazine

Ranolazine is an anti-ischemic dug that acts via inhibiting the transmembrane late 
sodium current, resulting in reduction of intracellular calcium levels and prevention of 
calcium overload during ischemia [60]. Thus, ranolazine is considered to be able to 
improve myocardial relaxation and left ventricular diastolic function [60]. The effect 
of ranolazine on CMD has been conflicting in the pilot placebo-controlled trials, 
[61, 62] whereas a recent large randomized crossover trial of ranolazine vs. placebo 
found no difference in symptoms or cardiac magnetic resonance imaging- myocardial 
perfusion reserve [63]. However, in a pre-defined subgroup who had CFR assessed 
invasively, symptomatic patients with CFR <2.5 and non-obstructive CAD showed 
improved angina and myocardial perfusion with ranolazine, indicating that ranolazine 
provides a promising management option for patients with CMD and low CFR [64].

8.3.7  Ivabradine

Selective If-channel blockade using ivabradine is a specific bradycardic agent that 
selectively reduces sinus node activity through inhibition of the If current [65]. In 
contrast to β-blockers, ivabradine does not cause vasoconstriction or negative ino-
tropic effects [65]. Beneficial effects of ivabradine in IHD are mediated by its indi-
rect effects to improve exercise tolerance, prolong time to ischemia during exercise, 
and reduce angina severity and frequency compared with other antianginal agents in 
patients with stable angina [65, 66]. Ivabradine improved angina in patients with 
MVA but coronary microvascular function did not change, suggesting that symp-
tomatic improvement could be attributed to heart-rate-lowering effect [62]. However, 
others have found that ivabradine improves CFR in non-obstructed coronary arteries 
of patients with stable CAD at both baseline and paced heart rates identical to that 
before treatment [67]. Thus, ivabradine may improve CFR in patients with stable 
CAD.  These effects persist even after heart rate correction, indicating improved 
microvascular function [68]. Thus, it is possible that ivabradine and/or perhaps 
some other If-channel inhibitors have a role in CMD patients, although further stud-
ies are needed.

8.3.8  Xanthine Antagonists

Xanthine derivatives are considered to have favorable effects on nociception in 
MVA patients. They were suggested to have analgesic effects that result from antag-
onizing stimulation of cardiac nerve pain fibers through adenosine, a major media-
tor of ischemic chest pain [69]. They may also have anti-ischemic actions through 
attenuation of the coronary microvascular steal phenomenon observed in MVA 
patients [70]. Aminophylline may improve exercise tolerance and exercise-induced 
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myocardial ischemia in patients with INOCA [71, 72]. Clinically, these drugs rep-
resent a bailout option in completely refractory patients before more invasive meth-
ods such as spinal cord stimulation may be considered.

8.4  Expectation for Rho-Kinase Inhibitor, Fasudil, 
as a Therapeutic Option for CMD

Enhanced Rho-kinase activity plays important roles in the pathogenesis of both epicar-
dial coronary and microvascular spasm [73]. In particular, the pathogenetic mechanisms 
of CMD appear to be heterogeneous, and many confounding cardiovascular risk factors 
cause both endothelial dysfunction and VSMC hyperconstriction, where activated Rho-
kinase pathway plays important roles (Fig. 8.2). Furthermore, Rho-kinase pathway has 
also been shown to be substantially involved in inflammatory cell accumulation in 
blood vessel adventitia, [74] and a pathogenetic mechanism in patients with chest pain 
and non-obstructive CAD [75]. Rho- kinase enhances myosin light chain phosphoryla-
tion through inhibition of myosin-binding subunit of myosin phosphatase, leading to 
vascular smooth muscle hypercontraction (Fig. 8.3) [76]. Fasudil, a specific Rho-kinase 
inhibitor, is highly effective in preventing acetylcholine-induced coronary spasm and 
resultant myocardial ischemia (Fig. 8.3) [77]. Indeed, intracoronary fasudil is effective 
not only for patients with epicardial coronary spasm [77] but also for approximately two 
thirds of MVA patients [78]. Specifically in the latter, Mohri et al. studied consecutive 
18 patients with angina and normal epicardial coronaries in whom intracoronary ACh 
induced myocardial ischemia (defined as ischemic electrocardiographic changes, 
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Impaired vasodilation Increased 
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Fig. 8.2 Pathogenesis of coronary microvascular dysfunction and important role of Rho-kinase in 
it. The pathogenetic mechanisms of coronary microvascular dysfunction appear to be heteroge-
neous, and many confounding cardiovascular risk factors cause both endothelial dysfunction and 
VSMC hyperconstriction, where activated Rho-kinase pathway may play an important role. 
CV cardiovascular, ET-1 endothelin-1
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myocardial lactate production, or both) without angiographically demonstrable epicar-
dial coronary vasospasm. All patients underwent a second ACh challenge test after pre-
treatment with either saline (n = 5) or fasudil (4.5 mg intracoronarily, n = 13). While 
myocardial ischemia was reproducibly induced by ACh in the saline group, 11 of the 13 
patients pretreated with fasudil had no evidence of myocardial ischemia during the sec-
ond infusion of ACh (P < 0.01). The lactate extraction ratio (median value [interquartile 
range]) during ACh infusion was improved by fasudil pretreatment, from −0.16 (−0.25 
to 0.04) to 0.09 (0.05 to 0.18) (P = 0.0125) (Fig. 8.4). These results strongly indicate 
that fasudil is able to ameliorate myocardial ischemia in patients who were most likely 
having coronary microvascular spasm. Furthermore, Fukumoto et al. examined whether 
Rho-kinase is involved in coronary microvascular constriction in patients with obstruc-
tive CAD [79]. In brief, intracoronary administration of fasudil (300 mg/min for 15 min) 
significantly increased oxygen saturation in coronary sinus vein from 37  ±  3% to 
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Fig. 8.3 Roles of the Rho/Rho-kinase signaling pathway in VSMC hyperconstriction. Contraction 
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Rho-kinase-mediated pathway is activated, resulting in the inhibition of MLCPh (through phos-
phorylation of its MBS), with a resultant increase in MLC phosphorylation. This Rho-kinase- 
mediated contraction of VSMC can occur independently of intracellular Ca2+ levels and is known 
as “calcium sensitization.” Rho-kinase can also increase MLC phosphorylation and contractility 
by inactivating MLCPh after phosphorylation of CPI-17 or by direct phosphorylation of MLC. ACh 
acetylcholine, Ang II angiotensin II, Cat catalytic subunit, ET-1 endothelin-1, IP3 inositol 
(1,4,5)-trisphosphate, M20 20-kDa subunit, NE norepinephrine, PLC phospholipase C, PDGF 
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41 ± 3% (P < 0.05) but not in six age-matched controls (from 42 ± 3% to 43 ± 3%, 
P=NS). Importantly, intracoronary fasudil significantly ameliorated pacing-induced 
myocardial ischemia in patients with obstructive CAD (magnitudes of symptom, 
1.5  ±  0.6 to 0.6  ±  0.4, P  <  0.01; ischemic ST-segment depression, 1.8  ±  0.3 to 
1.0 ± 0.2 mm, P < 0.01; percent lactate production, 50 ± 17% to 0.4 ± 7%, P < 0.01) 
without significant hemodynamic changes [78]. These results provide the evidence that 
Rho-kinase is substantially involved in the pathogenesis of CMD associated with myo-
cardial ischemia in patients with obstructive CAD, suggesting that fasudil could be a 
therapeutic option for CMD with obstructive CAD. Myocardial hypertrophy induced 
by pressure overload leads to myocardial dysfunction, CMD, and ischemia possibly due 
to oxidative stress, enhanced vasoconstriction to endothelin-1, and compromised endo-
thelial NO function via elevated Rho-kinase signaling [80]. Fasudil may be effective in 
a wide variety of CMD where Rho-kinase plays an important role.

8.5  A Rational Approach for the Management 
of CMD Patients

Considering the results of the CorMicA trial, [81] the latest ESC guidelines 
state that treatment of microvascular angina should address the dominant mech-
anism of microcirculatory dysfunction (Fig.  8.5). In patients with impaired 

Lactate extraction ratio

saline fasudil

Fig. 8.4 Clinical findings in a patient with microvascular angina. Representative coronary angiog-
raphy and ECG recordings (left) and group data comparison of the lactate extraction ratio during 
acetylcholine (ACh) infusion with (n = 13, fasudil group) and without pre-treatment of fasudil 
(n = 5, saline group) (right). Intracoronary administration of ACh caused no appreciable vasocon-
striction of epicardial coronary arteries, whereas ECG changes and myocardial lactate production 
indicated the occurrence of myocardial ischemia. Intracoronary pre-treatment with fasudil abol-
ished the ACh-induced myocardial ischemia. F fasudil, ISDN isosorbidedinitrate. (Reproduced 
from Masumoto et al. [77])
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microcirculatory conductance with abnormal CFR <2.0 or IMR ≥25 units, and 
a negative acetylcholine provocation test, beta-blockers, ACE inhibitors, and 
statins, along with lifestyle modifications and weight loss, are indicated. On the 
other hand, patients developing ECG changes and angina in response to acetyl-
choline testing but without severe epicardial vasoconstriction (all suggestive of 
microvascular spasm) may be treated mainly by CCBs like VSA patients. 
However, as demonstrated by our group, in patients with INOCA, coronary 
functional abnormalities, including epicardial coronary spasm, reduced micro-
vascular vasodilatation, and increased microvascular resistance, frequently 
coexist in various combinations [75]. Thus, in everyday clinical practice, the 
first-line medication is represented by beta-blockers or long-acting dihydro-
pyridine CCBs, while a combination of them should constitute the second step 
when single drugs fail to success. In some cases, long-acting nitrates could be 
added, although there is less evidence of their actual efficacy. A proposed treat-
ment algorithm for patients with MVA is shown in Fig. 8.5. All patients should 
receive optical risk control. If symptoms are not well controlled, addition of 
traditional and non-traditional anti-ischemic drugs is recommended. Ivabradine 
can be added when beta-blockers are scarcely tolerated, while ranolazine should 
be considered in MVA patients with reduced CFR.  In cases with refractory 
symptoms that seriously limit quality of life, analgesic drugs or non-pharmaco-
logical interventions including rehabilitation exercise programs, spinal cord 
simulation, psychological treatments, and shock wave therapy [82] might be 
helpful.
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Fig. 8.5 Treatment algorithm for patients with microvascular angina
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