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Abstract

Cancer is a multifactorial condition that originates from genomic alterations in the
cells, which confer them the ability to evade various cellular regulations and
proliferate incessantly. Furthermore, the accumulation of these mutations confers
metastatic abilities to the tumor cells, which help them in contriving various
features essential for invasion of the host tissues and evading immune surveil-
lance and thus spreading to distant sites. Metastasis is a key phenomenon in
cancer pathogenesis, which involves invasion of host tissue, escape into the blood
vascular system, survival within the circulation, extravasation into the secondary
sites, establishment of micrometastasis, and colonization. The tumor cells utilize
various host cells and pathways to reach the pre-destined sites, also known as
pre-metastatic niches (PMNs). The primary tumor is known to secrete various
factors, which render the secondary metastatic sites hospitable for the arriving
tumor cells. These tumor cells, in turn, invade the PMNs and either undergo
dormancy or outgrow to develop secondary metastases. Since metastasis involves
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a cascade of events, it also offers attractive targets for therapeutic intervention.
This chapter elaborates the series of events involved in metastasis initiation and
progression along with the role of PMNs and various therapeutic approaches to
target metastasis.
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10.1 Introduction

The process of movement of primary tumor cells from their original site of growth to
other distant sites or organs, where they colonize and establish secondary metastases,
was termed as metastasis by Jean Claude Recamier in 1829 [1]. During metastasis,
the tumor cells gain the ability to invade neighboring tissue, access the blood supply,
and disseminate to distant organs [2, 3]. Today, metastasis is considered to be a
major contributor to cancer related deaths. In fact, 90% of the cancer associated
mortalities are attributed to metastasis following failure of surgical resection and
chemotherapeutic approaches [4, 5]. Metastasis is a multi-step process, occurring in
a defined pattern, which involves a variety of steps in a successive manner, including
the invasion of the surrounding tissue, intravasation into the blood vessels, survival
of cancer cells in the blood circulation, extravasation into the distant sites, adaptation
in the new tumor microenvironment, and colonization (Fig. 10.1) [6, 7].

In fact, the formation of PMNs by the primary tumor cells itself lays the
foundation for metastatic spread, thus justifying the words said by Paget, “When a
plant goes to seed, its seeds are carried in all directions; but they can only live and
grow if they fall on congenial soil” [8]. Thus, the distant organs/sites (soil) which are
occupied by the metastatic tumor cells (seed) are primed prior to the arrival of these
cells by various factors secreted by the primary tumor itself, which render them
conducive for the invading tumor cells to grow and colonize. The steps of a
metastatic cascade are sequentially discussed below.

10.2 Invasion of the Surrounding Tissue

Invasion of a tumor into its malignant phenotype is the very fundamental step in
metastasis. Normal cells in the body grow in a dynamic environment defined by the
extracellular matrix (ECM) surrounding stromal layers. The ECM mainly comprises
of collagen, fibronectin, proteoglycans, elastin, and laminins apart from water,
proteins, and polysaccharides [9]. Whereas the tumor-associated stroma
encompasses a heterogenous population of cells such as endothelial cells (ECs),
fibroblasts, myofibroblasts, adipocytes, plethora of bone marrow-derived cells
(BMDCs), and several immune cells including macrophages [10]. The ECM
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performs a key role in cell growth, morphogenesis, and plasticity of the parenchyma
by providing a spatio-temporally regulated scaffold to the epithelial cells, thus
maintaining the cell polarity. It is also responsible for providing essential
bio-chemical and bio-mechanical signals or cues required for cellular differentiation
and homeostasis, alteration of which is known to cause cancer [11–13]. The meta-
static process initiates with the acquisition of invasive potential by the primary tumor
cells, which then break free from the basement lining and move into the surrounding
tissues, a phenomenon known as epithelial to mesenchymal transition (EMT)
(Fig. 10.2) [14–16]. Various aspects of EMT are described in subsequent sections
below.

Fig. 10.1 The metastatic cascade: Metastasis encompasses a sequential occurrence of events,
which ensues from invasion followed by the intravasation, survival in the circulation, extravasation
to the distant metastatic sites, development of micrometastases, and colonization of the occupied
sites. The role of various host cells in accomplishing each of these steps of this cascade is imperative
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10.3 Epithelial to Mesenchymal Transition (EMT)

The tumor-associated stroma consists of a heterotypic population of cells, which
resembles the inflammatory stromal configuration and is induced upon wound
healing processes under normal physiological conditions. This modulated stroma
then releases various signaling molecules such as interleukin-6, transforming growth
factor (TGF)-β, WNT, etc. which assist the adjacent carcinoma cells to activate the
silent EMTmechanism. EMT involves the conversion of normal epithelial cells to an
invasive mesenchymal phenotype by modulating their apical-basal polarity [17–
19]. These mesenchymal cells are characterized by enhanced invasive and migratory
capabilities and display resistance to apoptosis.

Evasion of apoptosis upon detachment from the anchorage of the basement
membrane, i.e. anoikis, is a key feature of invasive cells [20, 21]. Integrins, which
mediate the cellular attachment to the ECM, play a major role in escaping anoikis.
Among various forms of integrins, upregulation of α5β3 integrin is important in this
process [22–24]. It also stimulates the production of matrix metalloproteinase
(MMP) 2, thus further enhancing metastasis [25]. Integrin associated signaling
pathways subsuming focal adhesion kinase (FAK) and integrin linked kinase

Fig. 10.2 Various factors regulate the metastatic cascade: Metastasis encompasses several sequen-
tial steps, which are regulated by the interplay among various signaling molecules released by the
primary tumor cells and the host-derived factors. Several factors such as TGF-β, MMPs, etc. exhibit
pleiotropic functions in metastasis
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(ILK) are also involved in the obstruction of anoikis [26–28]. Similarly, cadherins
contribute critically in mediating cell–cell adhesion by forming intercellular
complexes with catenins that link them to the cytoskeletal proteins. Thus, the loss
of certain epithelial cell surface markers such as ZO-1, laminin, E-cadherin, which
favor homotypic cell adhesion, and the upregulation of N-cadherin, which promotes
heterotypic cell adhesion, lead to the dissolution of intercellular junctions favoring
the mesenchymal phenotype [29]. This transition is facilitated by activation of
various pleiotropic transcription factors, namely Slug, Snail, Twist, Zeb1/2,
FoxC2, and Prrx1 [30, 31]. This allows the migrating tumor cells to cross the
basement membrane as well as the ECM, and intravasate into the blood or lymphatic
vessels either as single entities or as clumps [32].

The migratory process involves the mechanical modulation of ECM by contrac-
tion and protrusion of the cells accompanied by degradation of the ECM by various
proteases. Although the degradation of the ECM is the most common mode of
migration of tumor cells, a protease independent mechanism is also known
[33]. This mode involves the formation of invadopodia (actin-rich projections of
cancer cells), which utilize protrusive and contractile forces to make their way
through the ECM, indeed depending on the plasticity of the ECM components
[33–35]. The role of macrophages in the initial stages of metastasis is also notewor-
thy. They have been shown to assimilate along the endothelium of blood vessels
adjacent to the site of inflammation, and these macrophages secrete epidermal
growth factor (EGF), which drives the chemotactic movement of tumor cells towards
the vasculature as observed in breast cancer models [36]. The tumor cells exhibit
EGF receptors on their surface and also secrete colony stimulating factor 1, which
draws the macrophages and instigates them to secrete EGF and vice versa, thus
forming a closed paracrine loop among themselves. This paracrine signaling results
in modulation of the actin cytoskeleton in both tumor cells as well as macrophages,
thus leading to the development of invadopodia in the migrating tumor cells and
podosomes in macrophages.

The protease dependent mechanism followed by the migrating cells involves
secretion of various MMPs responsible for the breakdown of several proteins
involved in maintaining the integrity of the basement membrane and associated
cellular parenchyma [37, 38]. The MMPs are also called as matrixins, and they
belong to the metzincin superfamily of zinc-endopeptidases, which specifically
cleave a variety of ECM components by proteolysis. Apart from the MMPs, other
prominent members of this superfamily include A Disintegrin and
metalloproteinases (ADAMs) and A Disintegrin and metalloproteinases with
thrombospondin motifs (ADAMTS). MMPs are further categorized on the basis of
their substrates into Collagenases, Gelatinases, Stomelysins, Matrilysins,
Membrane-type MMPs, and other MMPs [37]. These MMPs cleave and degrade
their respective substrates, thus facilitating the alteration of the ECM.

Moreover, the rapidly proliferating tumor mass also develops hypoxic conditions
towards its core due to lack of proper blood supply, thus generating hypoxic
conditions. Hypoxia mediated upregulation of lysyl oxidase (LOX) is also known
to activate FAK and integrins, which further drive actin polymerization in the

10 Metastasis: A Major Driver of Cancer Pathogenesis 189



invadopodia, thus enhancing the migration of these cells. The exploration of LOX
functioning in breast cancer cells uncovered its essential role in recruiting various
MMPs, viz. MMP 2, MMM 9, and MMP 14, thus potentiating the tumor cell motility
[39]. Therefore, the cancerous cells invade through the ECM, cross the basement
membrane, reach the nearest blood or lymphatic vessel, and proceed to intravasation.

10.4 Intravasation

The process of entering the lymph or blood vessels by the locally invasive cancer
cells is known as intravasation, which marks the second step in the metastatic
cascade. There are two known modes of dissemination of cancer cells: the hematog-
enous spread, which occurs via the blood vessels, and the lymphatic spread, which
proceeds via the lymphatic system. Hematogenous spread of the carcinogenic cells is
the most common mode of transmission in metastasis [4]. In order to intravasate, the
presence of blood vessels in proximity to the tumor cells is mandatory. The tumor
cells therefore induce neo-angiogenesis by secreting various chemokines, which
induce the generation of nascent blood vessels. This vasculature generated by
neo-angiogenesis is prone to leakage due to lack of basement membrane and
unorganized perivascular layers. These haphazardly formed blood vessels thus
lead to the irregular supply of nutrients and oxygen to the rapidly proliferating
tumor mass. Additionally, these mal-developed vessels provide various growth
factors and cytokines to the tumor-associated matrix but their leakiness also leads
to a poor blood supply to the core of the developing tumor, thus rendering it hypoxic.
Various transcription factors that are responsive to low availability of oxygen are
thus activated, which bestow the tumor cells with the ability to survive these oxygen
deficient conditions. One such key protein is the hypoxia inducible factor (HIF1α).
HIF1α further activates various subordinate genes involved in angiogenesis and
invasion such as Forkhead Box M1 (FOXM1) and vascular endothelial growth
factor (VEGF), etc. [40]. FOXM1 is an oncogenic transcription factor that controls
the expression of several downstream genes regulating metastasis. In fact, FOXM1
is also known to transcriptionally regulate VEGF, MMP 9, etc. [41]. VEGF is the
most potent angiogenic factor involved in the production of new blood vessels
[42]. Besides VEGF, activation of MMPs such as MMP 2, 9, and 14 further
aggravates the invasive nature of the carcinoma cells [38]. MMP 9 leads to the
release of the sequestered VEGF, thus making it available to bind to its receptor
VEGF-R, which enhances the generation of defective endothelial blood vessels.
Thus, the interplay between these various molecules leads to intravasation of the
invasive tumor cells into the blood circulation, resulting in circulating tumor cells
(CTCs). These CTCs upon survival within the blood vessels migrate into the distal
target organs and form micrometastases (Fig. 10.2).
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10.5 Survival in the Circulation

Upon entering the blood circulation, the majority of the CTCs die, either due to the
stress of blood flow or due to the immune destruction. Thus, only 0.01% of the
circulating cells survive to form secondary metastases even though tumor cells
shedding into the vasculature provide an ample number of tumor cells to intravasate
[43, 44]. Altogether, they spend a short time in transit through the blood vessels and
usually get trapped into the first capillary bed which they encounter [45]. Prior to
their entrapment, the CTCs encounter a plethora of cells in the circulation such as
platelets, natural killer cells (NK cells), and various bone marrow cells during their
travel to secondary metastatic sites. The CTCs are able to undergo remarkable
changes in their nuclear and overall shape to fit into the capillaries [46]. They acquire
various features that enable survival in the host circulation, such as loss of various
immunogenic markers from the cell surface and elevated expression of certain
immune-suppressive markers, thus enabling them to evade apoptosis mediated by
NK cells and circulating macrophages [47]. The CTCs express tissue factor (TF) as
well as P-selectin ligands on their surfaces, which lead to interaction and activation
of platelets, respectively, while instigating coagulation as well [48, 49]. Platelets are
known to play a critical role in the survival of CTCs in the circulation as their
depletion by genetic manipulation or pharmacological inhibition in metastatic tumor
models greatly reduces metastasis [50]. Stimulation of platelets by the CTCs also
serves as a source of TGF-β, which suppresses the immunolytic ability of NK cells
by diminishing the NKG2D receptor. TGF-β is also reported to act in concert with
the platelets to induce the activation of nuclear factor kappa B (NF-κB) pathway in
the CTCs, thus sustaining their EMT phenotype. The secretion of platelet derived
growth factor by platelets is also known to enhance their survival in circulation [51–
53]. Apart from this, the interaction of platelets with the CTCs forms a physical
shield over them forming tumor-platelet emboli, which helps them escape the
immune surveillance. The CTCs draw similar benefits from the neutrophils present
in the circulation, for example, the formation of neutrophil extracellular traps
(NETs), which are known to entangle the tumor cells in circulation, thus enhancing
their survival and providing them apt surface to adhere to the endothelial cells and
extravasate [54]. Formation of tumor-host cell emboli mediated via interactions of
CTCs and immune cells not only prevents the metastasizing cells from immune
destruction but also helps them to reach the destined secondary sites and extravasate.
Apart from passive trapping of the tumor emboli into the capillaries, the adherence
ability of these complex structures is also found, which enables them to adhere to
vessels of larger than the capillary diameter. This active adhesion is mediated by
various adherence molecules such as integrins, selectins, and metadherins, which are
also contributed by the interacting platelets, leukocytes, and other stromal fibroblasts
[55–59]. Therefore, CTCs survive the circulation and get blocked in the capillary
beds, where they extravasate into the metastatic site and form micrometastases.
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10.6 Extravasation

Following the course of the bloodstream, the CTCs either get arrested in the capillary
beds within few minutes after entering the circulation due to the capillary diameter
restriction or adhere to the EC surface mediated by various adhesion and cell
signaling mechanisms. Extravasation is similar to intravasation, which requires the
CTCs to cross the endothelial barrier and this phenomenon is referred to as
transendothelial migration (TEM) [60]. Most of these extravasated cells then migrate
to the PMNs but only a few survive and proceed to micrometastasis and colonization
whereas most of them are destroyed by immune cells. While the tumor cell-platelet
emboli arrest at the endothelial lining, the activated platelets release adenine
nucleotides (viz. ATP), which interact and activate the P2Y2 receptors on the ECs.
This interaction leads to downstream activation of protein kinase C and causes
unlocking of the endothelial barrier [61]. As mentioned earlier, the interaction of
CTCs with various cells in the blood circulation as well as the endothelium leads to
the secretion of various other chemokines such as VEGF, MMPs, cyclooxygenase
2 (COX2), and C-C motif ligand 2 (CCL2). These chemokines alter the integrity of
the vascular membrane, thus facilitating extravasation [60, 62]. Similarly, the lung
tumor and stromal cells secrete CCL2 which recruits CCR2+ monocytes that facili-
tate extravasation [63, 64]. Furthermore, secretion of TGF-β by the CTCs is also
known to stimulate secretion of Angiopoietin-like 4 (ANGPTL4), and promote
vascular permeability in breast carcinoma cells [65, 66]. Most of these factors are
also implicated in the formation of PMNs as well as facilitation of invasion and
intravasation, thus implying the pleiotropic nature of these molecules in metastasis.

The employment of various bone marrow-derived cells (BMDCs) further aids in
extravasation by inducing the expression of several cell surface markers on both the
ECs as well as the CTCs. For example, the recruited neutrophils are known to induce
expression of selectins, integrins, intercellular adhesion molecules (ICAM 1) on the
ECs as well as the tumor cells, thus favoring cellular interactions [67]. These
interactions, in turn, facilitate the movement of CTCs from the endothelial lining
towards the PMNs. In fact, the expression of β1 integrin and FAK helps in forming
filopodium like protrusions, which are required for the invasion of vascular endo-
thelium. Apart from the common mechanism of TEM, CTCs have also been reported
to skip the conventional mode of extravasation and proliferate in the vascular lumen
itself, thus disrupting the endothelial barrier by the shear stress of proliferating tumor
mass [55]. Interestingly, in 2016, Strilic et al. reported a previously unknown
mechanism of extravasation in lung metastasis, wherein CTCs were shown to elicit
controlled necrosis (necroptosis) in the ECs, thus disrupting the endothelial
membrane [68].
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10.7 Micrometastasis and Colonization

Certain sites in the human body are predisposed to metastatic growth. This predis-
position also leads to organotropic metastasis in cancer, for example, the prostate
tumor cells metastasize preferably to bone while cancer of breast colonizes bone,
liver, brain, and lungs whereas colorectal cancers mostly metastasize to the liver.
This propensity of various cancers to disseminate to various distant organs relies on
the receptive environment provided by the PMNs.

10.8 Pre-metastatic Niche (PMN)

The primary tumor is known to send off certain chemokines (collectively known as
secretome) to induce the formation of pre-metastatic niches at distant sites, thus
enabling the disseminated tumor cells to colonize those tissues easily (Fig. 10.2).
These factors stimulate the establishment of a suitable microenvironment in distant
sites/organs that are amicable to the growth of secondary metastases prior to the
arrival of metastasizing cells [8, 69, 70] (Fig. 10.2). This suitable microenvironment
is also known as PMN. These PMNs are formed as a consequence of combined
systemic efforts of the tumor secretome and extracellular vesicles derived from
tumors. These secreted factors support a cascade of events culminating in the
establishment of PMNs. Formation of anomalous blood vessels is the foremost
event followed by modification of the local cell milieu and recruitment of various
other cells such as BMDCs subsuming macrophages, myeloid cells, and
hematopoietic progenitor cells to the target site which, in turn, attract the CTCs to
the PMNs.

Tumor derived factor such as EGFR ligand epiregulin, COX2, MMP 1, MMP
2, MMP 9, ANGPTL4, VEGF-A, etc. are well observed to aggravate the loss of
integrity of blood vessels in breast cancer [71]. These factors lead to the activation of
FAK, which leads to disruption of inter-cellular connections among the ECs, thus
facilitating the metastasis in breast cancer [62]. In fact, the activation of MMP
9 leads to the release of various sequestered cytokines, such as stromal cell-derived
factor 1, which serves as a chemoattractant for CTCs [70]. The secretion of TGF-β is
also reported to provoke the expression of ANGPTL4 and angiopoietin 2 in breast
and lung tumor cells, respectively, thus increasing the permeability of blood vessels
[65, 72]. Moreover, the secretion of chemokines such as CCL2 by both the tumor
and stromal components leads to the recruitment of various BMDCs, which assist
the CTCs in the process of extravasation as well as the formation of PMNs. CCL2
acts as a powerful chemoattractant for macrophages, NK cells, monocytes, and
T-lymphocytes, thus functioning as a primary mediator of PMN formation and the
metastatic colonization in various cancers [63, 73–75]. Apart from recruiting these
cells, in order to promote an inflammatory environment in the PMNs, CCL2 is also
known to suppress the immune ability of NK cells in breast cancer and melanoma
models by hampering their maturation, thus shielding the CTCs from NK cell
mediated destruction [76]. Another common regulator of inflammatory cues in
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PMNs is the S100 family of proteins. They act both intracellularly and extracellu-
larly to mediate the cross-talk between stromal cells and tumor cells during the
configuration of PMNs. In the lung PMNs, expression of these S100 proteins on the
endothelium layer is known to be instigated by various tumor secreted factors such
as TGF-β, VEGF-A, TNF, and CD11b + myeloid cells [73, 77]. Similarly, HIF1 is
also a crucial protein involved in the formation of PMN in various cancers
[39, 78]. Studies encompassing breast cancer have demonstrated the increment in
the shedding of extracellular tumor vesicles in a HIF dependent manner [79].

Apart from the chemokines secreted by tumor cells, extracellular vesicles (EVs)
secreted by the tumor cells also play a substantial role in not only the establishment
of PMNs but also carrying out metastasis. Tumor secreted EVs have been shown to
carry genetic material (DNA and RNA), micro RNAs, proteins, and metabolites (fats
and small metabolites), thus promoting PMN formation and disease progression
[80, 81]. Surprisingly, tumor cells are known to exhibit amplified ability to secrete
EVs, which is, in turn, boosted by hypoxic conditions [69, 79]. Various exosomes
derived from the primary tumors display adhesion molecules on their surface such as
integrin, which bind to ECM components and lead to the development of
organotropic PMNs favoring organ-specific metastasis.

Facilitated by the PMNs, the extravasated cells then enter the secondary site,
which is usually distant and has a different microenvironment as compared to the
primary tumor site. Most of these cells persist as single disseminated tumor cells
(DTCs) in the foreign tissue and either die or enter a state of dormancy, which
eventually are either eliminated by the immune system or develop successful
metastases [71, 82]. This period of dormancy can last up to days, weeks, or even
years depending upon the availability of supportive signals and proliferative micro-
environment. The state of dormancy is activated when the disseminated tumor cells
fail to adapt to the new microenvironment or by the over-powering anti-proliferative
signals in the secondary tissue or even by the failure to induce angiogenesis
[83]. The patients who develop such dormant DTCs are designated to have minimal
residual disease and are on the verge of greater risk of metastatic relapse. The
dormant DTCs instigate certain signaling mechanisms to sustain in a quiescent
state, such as the activation of AKT and SRC pathways by secretion of CXCL12
by the stroma in the metastatic niche. Upon metastasis to the bone, breast cancer cells
have been shown to set off pro-survival mechanisms in response to CXCL12
secreted by the bone parenchyma [84]. These pro-survival pathways enable the
DTCs to evade TRAIL-induced apoptosis as well as resist anoikis by further
expressing tyrosine kinase receptor (TrkB) or by stimulating the non-canonical
WNT pathway mediated by WNT2 [85]. The failure to interact with the ECM, and
thus sensing the mitogenic cues also results in the induction of dormancy. For
example, the DTCs undergo dormancy when they fall short to interact with the β1
integrin, which leads to the failure in stimulating the FAK mediated proliferative
signaling [86–88]. Various such chemical interactions among the ECM and DTCs
are also reported to induce a cell cycle exit into the G0 phase, thus inducing a state of
suspended growth [89]. The emergence of these indolent DTCs definitely requires
favorable signals, which is distinct in different cancers. For example, the gain of
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VCAM1 expression can activate the metastases of bone, by binding to the α4β1
integrin receptor on the osteoclast progenitor cells, thus initiating colonization
[90]. Similarly, the micrometastases in the lungs breakout of dormancy by
expressing coco, which is an inhibitor of the bone morphogenetic protein (BMP)
signaling thus potentiating metastatic colonization. These gains of function in the
dormant metastatic cells indicate a low-level proliferation of the cells, which seems
to be inevitable for the survival of DTCs. Acquisition of pro-proliferative signaling,
mediated by MAP kinase, FAK, TGF-β, etc. is also known to enhance the coloniza-
tion process as well [91].

10.9 Targeting Metastasis: Opportunities and Challenges

Metastasis is a highly unpredictable event, almost leading to the culmination of
cancerous growth, making it certainly difficult to treat the cancer patients due to
widespread mutations acquired by the metastasizing cells [92, 93]. Since metastasis
is the major contributor to cancer related mortality, targeting metastasis provides a
vast window of possibilities in dealing with cancer. However, by the time metastasis
is detected in cancer patients, it has already spread to distant sites, which makes it a
daunting target to follow [94]. Moreover, the involvement of various host cells, thus
forming a heterogenous population that initiates and sustains metastasis is another
major hurdle in pharmacological targeting of the metastatic cascade. Genetic insta-
bility forms the basis of neoplastic growth and the accumulation of these mutations
with time makes it difficult to control metastasis. Increasing genetic instability
confers the tumor cells with unprecedented variations which not only allow them
to evade immune checkpoints but also survive under unfavorable conditions. Nev-
ertheless, analysis of the metastatic cell karyotype and single cell studies have shown
that these cells can originate from a single tumor cell potentiated by genetic
variations [95, 96].

Since metastasis consists of a series of events, blocking the progression of any of
these steps can be crucial in stopping it. While dealing with cancer metastasis, the
majority of the therapies target the rapidly proliferating cells and associated
mechanisms. Various anti-metastatic approaches have been enlisted below in
Table 10.1. However, since the DTCs are known to be crucial purveyors of meta-
static growth and relapse, specific approaches to target them should also be
employed to obtain the recurrence-free survival of cancer patients. Different
approaches to target metastasis have been employed, such as the inhibition of
invasion promoting MMPs, thus curbing metastasis. The role of platelets in assisting
CTCs to survive and extravasate has also garnered attention, thus the drugs targeting
platelets have also been utilized against metastasis, although they do not reduce
pre-existing lesions [115]. Following the entry into the blood, the CTCs have been
proposed as markers of metastasis; however, these cells can also be targeted to
prevent the establishment of metastases. With the advent of various techniques for
isolating the CTCs from patient blood samples including the FDA approved
Cellsearch® platform, various approaches to target them have been deployed
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Table 10.1 Various inhibitors targeting different target molecules or pathways being used in
treatment of metastatic cancer

S.
No. Name

Target molecule/
pathway Clinical Status References

1. Bevacizumab
(monoclonal
antibody)

VEGF/angiogenesis Approved by FDA for
resistant ovarian cancer,
glioblastoma, cervical
cancer, colorectal cancer,
metastatic lung cancer, and
renal cancer

[97–102]

2. Denosumab
(monoclonal
antibody)

Receptor activator of
nuclear factor kappa-
B ligand/osteoclast
activation

Approved by FDA for
glioblastoma, metastatic
lung cancer, colorectal and
renal cancer. Also approved
for cervical, colorectal, and
resistant ovarian cancer

[103, 104]

3. Cetuximab
(monoclonal
antibody)

EGFR Metastatic colorectal
carcinoma, non-small cell
lung cancer (NSCLC), and
head and neck cancer

[105]

4. Gefitinib/
Erlotinib (small
molecule)

EGFR/downstream
receptor tyrosine
kinase pathway

Approved by FDA for
metastatic NSCLC

[106]

5. Dasatinib (small
molecule)

SRC/ABL kinase Approved by FDA for
chronic myeloid leukemia
(CML) and resistant
acute leukemia (AL)

[107]

6. Olaparib (small
molecule)

Poly (ADP ribose)
polymerase

Approved by FDA for
metastatic breast cancer

[108]

7. Lutetium Lu
177dotate
(radioactive
compound)

Somatostatin
receptor

Approved by FDA for
neuroendocrine tumors
(GEP-NETs)

[109]

8. Abiraterone
acetate (hormone
drug)

Approved by FDA for
castration resistant prostate
cancer in combination with
prednisolone

[110]

9. Abemaciclib
(small molecule)

CDK4/CDK6 Approved by FDA for
metastatic breast cancer

[111]

10. Brentuximab
vedotin (antibody
drug conjugate)

CD30 antigen Approved by FDA for
classical Hodgkin’s
lymphoma in combination
with chemotherapy

[112]

11. Osimertinib
(small molecule)

EGFR Approved by FDA for
metastatic NSCLC

[113]

12. Trastuzumab
deruxtecan
(monoclonal
antibody-drug
conjugate)

Human epidermal
growth factor
receptor 2 (HER2)

Approved by FDA for
unresectable and metastatic
HER2 positive breast cancer

[114]
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[116–118]. Since the diagnosis of cancer in its earliest stages is not possible,
targeting the formation of PMNs does not sound to be a confident option. Surgical
resection of primary tumors definitely reduces the tumor cell load as well as the
clonal variants in the host body; however, a holistic approach, which can target
multiples facets of metastasis simultaneously, seems to be the best option for now.

10.10 Role of Natural Compounds in Targeting Metastasis

Targeting metastasis in anti-cancer research has proved to be an effective approach
to curb cancer. However, the use of anti-metastatic agents is associated with several
adverse outcomes. Surgical removal of tumor is also not possible in every carcino-
genic scenario, for instance, in leukemia. Similarly, radiotherapy also has its own
limitations and cannot be used everywhere as a generalized anti-cancer approach. In
such scenario, the use of natural compounds against metastasis has proven itself a
boon for cancer patients. Recent years have witnessed a spike in the use of natural
compounds in treating cancer, and this is further aided by the fact that utilization of
natural compounds is considered safer with no or lesser side effects than any other
anti-cancer approach. Therefore, a variety of natural anti-metastatic agents are being
currently used against cancer. A few of recently used anti-cancer natural compounds
are listed below in Table 10.2.

10.11 Conclusion and Future Perspectives

Metastasis is a life-threatening phenomenon, which is initiated by the primary tumor
cells and it subsequently marks distant organs for the development of secondary
tumors by forming PMNs. Although this cascade has been acknowledged as the
basis of most cancer related deaths for several years, the precise mechanisms and
molecules involved in the spatio-temporal regulation of this cascade are still incom-
pletely understood. However, the active involvement of the host cells and
chemokines with the tumor cell milieu has garnered considerable attention and
appreciation in recent years. The utilization of host-derived factors and cellular
components for metastatic dissemination demonstrates a remarkable interaction
among the primary tumor cells and the metastatic niches. Additionally, the rebel
nature of metastatic cells not only allows them to successfully evade the host
immune system but also utilize it for their own propagation and survival. These
characteristics also bestow these cells with the ability to resist various therapeutic
agents targeting cancer. Thus, metastasis stands as a major challenge for the scien-
tific community today in dealing with cancer and necessitates in-depth research in
the coming years. Although a plethora of studies have shed light on various
happenings that lead to the origin of primary tumors and subsequent establishment
of clinically detectable metastases, still a lot of effort is needed to comprehend the
cues leading to the initiation of metastasis and subsequent colonization of distant
metastatic sites. Further dissection of the microenvironment alterations and
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host-tumor interplay will not only allow us to understand the early events involved in
metastasis but also will assist us to formulate specific and better therapeutic
modalities against it.
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