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Preface

Cancer is a major cause of death worldwide and is known to be the biggest killer in
the twenty-first century. It has been ranked second in mortality rate following
cardiovascular diseases in most of the countries. Every year, the number of people
being diagnosed with cancer is increasing very fast. Due to the lack of significant
improvement in diagnosis, treatment, and prevention, cancer has or will soon
become the number one killer in most parts of the world. Induced side effects and
acquired resistance against anticancer drugs create the hassle for the treatment of
cancer and the enthusiasm for the development of new approaches.

Further, application of safe compounds with strong anticancer properties may
open new avenues in the fight against this devastating disorder. Therefore, different
antitumor mechanisms of drugs, that is, cell cycle arrest, apoptosis induction,
antioxidant, anti-inflammatory, antiproliferative, antiangiogenic, anti-invasive,
antimetastatic, and proapoptotic properties, are summarized in this book. In addition,
this book will introduce readers to the various aspects of drug interactions in
recognized cellular processes and will explore the various anticancer targets in
different phases of drug development in clinical trials along with new drug targets
for personalized cancer. The dataset presented in this book could be a valuable basis
for the understanding of cancer biology and the initiation of the human clinical trials
with patients suffering from different cancerous diseases, either alone or in combi-
nation with traditional therapies. It will help to understand the cancer biology as well
as drug mechanisms of action. Various undergraduate and post-graduate students
will also be benefited to learn various cancer regulatory processes.

Ambala, Haryana, India Hardeep Singh Tuli
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History of Oncotherapies in Cancer Biology 1
Vaishali Aggarwal, Katrin Sak, Mehak Arora, Ashif Iqubal,
Ajay Kumar, Saumya Srivastava, Anjana Pandey,
Satwinderjeet Kaur, and Hardeep Singh Tuli

Abstract

Cancer is the second leading cause of death worldwide, just behind cardiovascu-
lar diseases. In fact, there was an estimated 18.1 million new cancer cases and 9.6
million cancer deaths in 2018 around the world. Due to the continuously increas-
ing global prevalence of malignancies, novel efficient therapeutics and treatment
strategies are highly needed. The most common types of cancer treatment
modalities include surgery, chemotherapy, and radiation therapy. At that, over
50% of all cancer patients receive chemotherapy in some stages of their disease.
Although modern drugs are very efficient to kill tumor cells, they also affect
normal healthy cells often causing intolerable side effects. In addition, drug
resistance to chemotherapeutic agents is problematic. Several signaling pathways
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are found to be associated with cancer progression and survival. This book
chapter presents an overview of various oncotherapies in cancer.

Keywords

Radiotherapy · Chemotherapy · Biomarkers · Personalized medicine · Clinical
trials

1.1 Introduction

Cancer is a major burden of morbidity and mortality all around the world. Each year,
tens of millions of people get the diagnosis of cancer and more than half of them lose
their life due to this dreadful disease [1]. Currently, malignant tumors rank the
second most common cause of death worldwide just following cardiovascular
disorders [2]. However, cancer cannot be considered as only the disease of the
modern era as it has been existed with the people already from the ancient Egyptian
and Greek times [3].

The most common therapeutic strategies nowadays applied in the fight against
malignant tumors include surgery, chemotherapy, and radiotherapy. From the Egyp-
tian times until the beginning of the twentieth century, the main approach to cancer
treatment comprised of surgical eradication of superficial tumoral lesions and allevi-
ation of pain using various herbal extracts [3]. Discovery of the X-rays and radium in
the end of the nineteenth century gradually led to the introduction of modern
radiotherapy in 1920 [3]. The use of chemotherapy in cancer treatment began in
the years of the Second World War when it was found that nitrogen mustard can
retard the development of lymphomas [4]. This discovery was further followed by
the synthesis of several alkylating agents and antimetabolites, including
chlorambucil, cyclophosphamide, methotrexate, and 5-fluorouracil [4]. The progress
in research and introduction of modern technological solutions in the second half of
the twentieth century brought along the development of numerous novel cancer
drugs. Still, despite all these advancements we have not yet won the battle with
cancer. Moreover, all the conventional therapeutic modalities are associated with
different adverse effects on normal healthy tissues, causing additional distress and
aggravation of quality of life of patients. Such often intolerable side effects include
hematological toxicity, bone marrow toxicity, neurotoxicity, cardiotoxicity, hepato-
toxicity, and nephrotoxicity among several others [5]. In addition, intrinsic and/or
acquired resistance of malignant cells toward the therapeutics is also a great problem
hindering the successful treatment of tumors [6]. Therefore, we are still faced with
the urgent need to find novel, more efficient, and safe treatment modalities in
combating malignant disorders. In this book chapter, we present a thorough review
about the modern methods of oncotherapies that will probably find wider application
in the clinical settings in the near future and lead us closer to the final aim of efficient
cancer cure.
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1.2 Radiotherapy in Cancer

The meaning of radiotherapy is to use the radiations to treat cancer. Radiotherapy
works by damaging the DNA within cancer cells and destroying their ability to
reproduce [7]. When damaged cancer cells are destroyed by radiation, the body
naturally eliminates them [8]. Radiotherapy is either governed externally or inter-
nally. In external radiotherapy, radiations are delivered by using a linear accelerator
[9]. It is used to treat many tumors including cancer of head, neck area, lungs, colon,
and breast. In contrast, using internal radiotherapy, radioactive sources are given
inside the patient. It is used to treat cancers of the eye, esophagus, uterus, bladder,
and cervix [10]. Radiotherapy can be used to: cure the cancer completely and make
other treatments more effective; for example, it can be combined with chemotherapy
or used before surgery [9]. There are a variety of benefits of radiotherapy such as in
organ preservation, destroying cancer cells, treating noninvasive tumor, and improv-
ing treatment cost [11–13]. However few disadvantages of radiotherapy associated
like painful, causes skin irritation, nausea, fatigueness, diarrhea, hair loss, immuno-
suppression, and damage to surrounding tissue [14, 15].

1.3 Anticancer Drugs to Chemotherapy

The treatment for cancer involves chemotherapy besides surgery and radiotherapy
[16]. The use of anticancer drugs in chemotherapy involves DNA interactive agents
(cisplatin), antimetabolites (5-fluorouracil), topoisomerase inhibitors (topotecan),
antitubulin agents (paclitaxel), hormone (tamoxifen), monoclonal antibodies
(cetuximab), etc. [17–19]. The cytotoxic chemotherapy agents exhibit their effects
by disruption of the cell cycle, resulting in apoptosis. This may involve the interac-
tion, with DNA and/or protein involved in cell division [20]. The fast-dividing
normal cells as that of bone marrow, hair follicles, gastrointestinal tract, etc. are
affected, resulting in undesirable effects along with the development of drug resis-
tance that may be due to multidrug resistance (MDR), cell death inhibition, alteration
in drug metabolism, enhancement of DNA repair, and gene amplification [21]. In the
recent years, there is an emphasis on the development of novel targeted therapies that
block biological transduction pathways and/or specific cancer proteins that are
involved in tumor growth and progression [22]. The natural products and their
variants act as microtubules inhibitors which are quit effective in the treatment of
various malignancies including solid tumors [23–27]. The various types of the
natural compounds from the plants have been reported in the literature, to selectively
inhibit the microtubule activity, mitosis, and the cellular signaling events and showed
less toxicity in the chemotherapy [22, 28, 29]. Finally, stimulated immune system
along with the use of a smart drug delivery system (SDDS) aimed at the death of
cancer cells, minimizing the death of normal cells and undesirable side effects.
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1.4 Diagnostic Biomarkers to Molecular Basis

Of all the life-threatening diseases, the structure of cancer is very unique, as the
disease-laden cells invade healthy and normal cells around the area and tissues
[30, 31]. From there, they start metastasizing them to different other sites of a
human body [32, 33]. As the process of cells becoming cancerous continues inside
the body, a number of genetic and epigenetic mistakes occur and some of them
define the contribution of protein in cell survival, invasion, and getting metastasized
[34–36]. Targeted therapy is a very promising cure that kills the cancerous cells
without causing any harm or any major side effect to the normal cells surrounding
them [37, 38]. However, after multiple researches, it was finally traced that the
success or the effectiveness of targeted therapies entirely depends on the nature of
the target [39, 40]. One more very influential factor was the development of the
agents that could impact only the targeted areas. This was a complex situation, as
some targets found in patients with chronic myelogenous leukemia (CML) were very
unique to cancer cells [41, 42]. Some were expressed at higher levels in the patients
suffering from some very unique types of cancer, and here, it is important to know
that some of them were even expressed toward normal cells, thereby presenting the
risks of toxicity [41, 42]. Because of this, it was established that even if the targets
were unique to cancer cells, there are some nonspecific effects that would occur for
sure if the targeting agents affect other proteins [23, 24, 27, 32, 33, 38]. But since
every patient with cancer is unique, the real challenge is to ensure the delivery of
right treatments and right targeting agents that would not affect the surrounding cells
or damage/infect them [43]. This can be done very easily by some very complex tests
known as biomarker tests for molecularly targeted therapies. They are known to have
a potential to reveal before the medical teams about the most effective and safest
targeting agents or treatments [44, 45]. Medical care experts have assumed these
biomarker tests as a key to offer the most precise and the least hazardous treatments.

Precision Medicine

But to advance further in the process of using precision medicines, several tests are
needed that have to be accurately done and they should be reliable and not to
mention that they have to be properly validated as well [46, 47]. In the pursuit of
precision, the tests to be conducted need too much accuracy and at the same time,
they have to be appropriately implemented in clinical practices as well [48–
51]. Then, one more very important thing was required, i.e., collecting and sharing
of the information about the results of the patients to whom treatments were given
post these biomarker tests [52–54].

In easier words, to find precision medicine and targeting agents, it is important
that these biomarker tests are done right, as this will help oncologists in optimizing
the treatments of each individual patient and improve the chances of getting cured
[52–54]. The precision of these tests is required for one more reason that their results
would help oncologists in understanding the role of genetics in the disease in a better
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manner [55, 56]. In short, this can be said that the exactness, accuracy, or precision
of these biomarker tests for molecular targeted therapies are crucial because any
inaccuracy is as bad as a wrong medicine.

Biomarker Tests

Ever since these biomarker tests came into existence, lots of researches have been
conducted and in fact, they have evolved entirely. The first major breakthrough came
way back in 2001 from the draft sequence of the human genome [57]. Since then,
these biomarker tests have been assumed as a rapidly evolving and improving field
in terms of precision medicine and targeting agents [45, 46]. To understand these
biomarker tests in a better way, it is important to understand definitions and
terminologies, as with this information only, you would be able to cope up with
the rapidly evolving field of these tests [58, 59].

Biomarker tests can be termed as a characteristic that has to be observed as well as
evaluated as a sign of a normal biological process [58, 59]. In other words, you can
call them as a test to measure out numerous things such as macromolecules (DNA,
RNA, proteins, lipids), cells, or processes. Note that all these things are an indicator
of normal or irregular biological state in an organism. Where these biomarker tests
for molecularly targeted therapies can be used? If you see the studies conducted in
the past, a whole new light of knowledge would emerge from them because these
biomarker tests have many different uses in clinical practices [45–47]. This could
include

• Disease screening tests for prostate-specific antigen
• Diagnostic tests (pathologic or histologic assessment of a tissue biopsy)
• Treatment and posttreatment monitoring tests (detection of treatment

complications or subsequent disease advancement)
• Prognostic tests for estimating risk or time to clinical outcomes (e.g., aggressive

cancers have a poorer prognosis than more indolent cancers)

Types of Biomarker Tests

Studies further reveal that other than these, biomarker tests can also be used to
predict patient’s response to specific treatments and targeted agents [60–62]. Few of
these biomarkers are as follows:

• BRAF ¼ B-RAF proto-oncogene
• Serine/threonine kinase
• ER ¼ Estrogen receptor
• HER2 ¼ Human epidermal growth factor receptor 2
• PGR ¼ Progesterone receptor
• PIK3CA ¼ Phosphatidylinositol-4
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• 5-Bisphosphate 3-kinase
• Catalytic subunit alpha
• PTEN ¼ Phosphatase and tensin homolog

Clinical Uses of Biomarkers

Healthcare providers across the globe have been using these biomarker tests to
provide tailored treatments to individual patients based on their patient history and
an analysis of how their body would respond to a particular treatment [63]. There is a
dedicated section of these tests, which examines each individual patient’s ability to
metabolize a particular drug or targeting agent [64, 65]. This is followed by another
decision that has been designated as the task of studying biomarker tests for specific
aberrations in biological mechanisms of action. As far as biomarker tests for
molecularly targeted therapies are concerned, a number of tests can be carried out
for clinical use. This could range from single analyte tests to guide the use of a single
class of therapy to a suite of multiple, but separate, tests for single analytes [59]. As
mentioned above, these tests would guide the use of different therapies in a specific
clinical context. Lastly, using these biomarker tests, the entire genome can also be
analyzed with the help of next-generation sequencing and the good thing in this
context is that rapid technological advancements have made these tests more accu-
rate, faster, and more affordable for a common man [60–62].

1.5 Personalized Medicine: Bigger Picture Ahead of Time

Personalized medicine (PM) is an integration of personal profiles of genes or
proteins for strengthening of healthcare at personalized level by aiding the emergent
technologies “-omics,” including genomics, transcriptomics, pharmacogenomics,
and proteomics [66]. Currently, for optimizing and selecting the cancer patient’s
therapeutic care, PM has exploited the systematic usage of genetic information in
contrast to conventional cancer therapies that involve family history of patients and
lifestyle [67]. National Institutes of Health (NIH) has defined personalized medicine
as emerging medicine branch that uses genetic profile of individuals, for making
decisions on disease diagnosis and treatment [68]. It targets the factors having
positive effects on that disease to provide the timely, appropriate, and correct
treatment to the right person [69].

Cancer therapeutic drugs are not equally effective for all patients. Due to advance
high-throughput genomics and proteomics tools available for cancer molecular
mechanism understandings, it became easier to disclose the genes that are responsi-
ble for drug responses. PM is a revolution for healthcare regimen due to its ability to
integrate genetic information, to increase the drug efficacy for treatment, and to
introduce new healthcare business [69]. There is a huge variability across diseases,
that is, 38–75% patients do not respond to a drug or treatment. In the case of cancer,
average response rate of drug is minimum at 25%. In addition, adverse drug reaction
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is also a problem. In USA, 16% of the approved drugs have shown the disadvanta-
geous drug reactions [70]. Due to the personalized medicine healthcare pattern,
doctors or clinicians can make ideal selections to maximize the effectiveness of
treatment, simultaneously adverse drug reactions risks can be avoided, and
researchers can improve drug and medical device research process for enabling
early detection of disease [69].

Based on predictive biomarkers, molecular diagnostic tools provide valuable
facts and figures of patients associated with genetically defined subgroups who
would take advantage of specific therapy. For example, a 16-gene signature was
used by a diagnostic device OncotypeDX® (Genomic Health, USA), to assess the
recurrence risk in estrogen receptor positive breast cancer patients [71–73]. Likewise,
MammaPrint® (Agendia, the Netherlands) practices on a 70-gene expression profile
for assessment of distant metastasis risk in breast cancer patients of early stage
[74]. In the case of lung cancer, based on recent modern genetic studies, epidermal
growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), Cbl proto-
oncogene (CBL), MET proto-oncogene, and receptor protein kinase (MET) are
being used as targets for therapeutic purpose [75]. Crizotinib has shown significant
results in non-small cell lung cancer treatment by inhibiting ALK [76].

Personalized medicine is getting huge attention of researchers and clinicians for
its remarkable potential and countless applications. The notable introduction of
recent high-throughput tools combined with improved cancer molecular profile
knowledge provides a stable platform for novel molecular targets identification.

1.6 Cancer Therapies Successful in Clinical Trials

For the past 5 years the success of many clinical trials has been witnessed, and a
number of newer as well as existing drugs (Poly (ADP) ribose polymerase (PARP)
inhibitors, monoclonal antibodies, and cyclin-dependent kinase (CDK) 4/6
inhibitors) were approved by the US Food and Drug Administration (FDA). In
February 2018, based on the outcome of MONARCH 3 trial (NCT02246621),
FDA has approved a combination of Abemaciclib (CDK) inhibitor and Anastrozole
(aromatase inhibitor) for the treatment of HR+ epidermal growth factor receptor
2 (HER2)-negative advanced breast cancer [77]. Another recently approved drug is
the combination of Nivolumab [62, 76] and Ipilimumab (monoclonal antibody) for
advanced melanoma (CheckMate067 study) [78]. The outcome of the Check-
Mate067 study (NCT01844505) has shown a survival rate of 52% when
administered with a combination of Nivolumab and Ipilimumab, whereas 44% and
26% patients survived with Nivolumab and Ipilimumab, respectively, for a period of
5 years [78]. Based on the findings of this study, in 2018, Nivolumab/Ipilimumab
was approved as a first-line therapy in advanced melanoma [78]. CheckMate
067 was further expended in triple combination (NCT02130466) for advanced
melanoma [79]. In this study, Dabrafenib (BRAF inhibitor), Trametinib (MEK
inhibitor), and Pembrolizumab (PD-1-blocking antibody) were compared with
Dabrafenib, Trametinib, and placebo. The triple combination improved the survival
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duration for 16 months, whereas, in Dabrafenib, Trametinib, and placebo-treated
group, survival duration was only 10.3 months [79]. Further, it is well known that
survival rate for metastatic non-small cell lung cancer (NSCLC) for 5 years is only
5%, but the outcome of KEYNOTE-001 trial (NCT02220894) using
Pembrolizumab (monoclonal IgG4 antibody) has shown increased survival rate
(up to 25%), and this drug was approved as a first-line therapy for metastatic
NSCLC on April 11, 2019, by the US FDA [80, 81]. For the treatment of chronic
lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL), a controlled
randomized trial (NCT02242942) was conducted for Venetoclax (selective BCL-2
inhibitor) and based on the outcome of progression-free survival (PFS) and response
rate (85%), this drug was approved for CLL/SLL on April 11, 2016 [82]. Similarly,
based on the outcome of MURANO and CLL14 trial (NCT02005471 and
NCT02242942), a combination of Venetoclax, Rituximab (monoclonal antibody)
and Venetoclax, Obinutuzumab (anti-CD20 monoclonal antibody) were approved
on June 8, 2018, and on May 15, 2019, respectively, as a chemotherapy-free first-
line treatment of CLL [83–85]. Further, 2020 has witnessed the successful outcome
of PROfound trial (NCT02987543) using Olaparib (PARP inhibitor) and
Enzalutamide (androgen antagonist)/abiraterone (antiandrogen) for metastatic
castration-resistant prostate cancer and PRIMA trial (NCT02655016) using
Niraparib for newly diagnosed advanced ovarian cancer. The outcome of these
two trials has achieved a statically significant end point of PFS [86, 87]. Mutation
of BRAF V600E in metastatic colorectal cancer is associated with a very poor
survival rate, once initial therapy fails. Thus, the combination of Encorafenib
(BRAF inhibitor), Binimetinib (MEK inhibitor), and Cetuximab (EGFR) inhibitor)
was accessed in BEACON trial (NCT02928224), and the outcome showed longer
duration of survival with increased response rate (26%) leading to its approval of this
combination on April 8, 2020 [88, 89]. The US FDA very recently approved the
combination of Ibrutinib (Bruton’s tyrosine kinase inhibitor) and Rituximab
(approved on April 21, 2020) as a drug for CLL and SLL. Approval was based on
the successful outcome in E1912 trial (NCT02048813), where statically significant
PFS was achieved after the follow-up of 33.6 months [90].

1.7 Conclusion and Future Directions in Oncotherapies

The advancements in the field of cancer therapies have transitioned their way from
surgical therapies and radiotherapies to chemotherapy. Further, advancements in
chemotherapy have made it possible to realize the potential of immunotherapies.
These novel targeted therapies are increasingly being looked up to for cancer-
specific treatment, and a number of immunotherapies have also been approved by
FDA in the past few years for treatment of renal cell carcinoma and melanoma of the
lung, to name a few. Also, with the ongoing research and translation into clinical
trials, new oncology therapeutic drugs are being constantly envisaged to deliver best
in care therapies. With the public–private partnerships, comprehensive cancer care
centers are being established to extend best in care therapies and treatments to cancer

8 V. Aggarwal et al.



patients. These promising approaches present a way ahead in oncotherapies for
treatment of carcinomas for which we still do not have a potential cure.
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Abstract

Cancer has been posing a global health concern due to an increasing number of
people who have been struggling day by day. The fight against this global health
threat can be accomplished with efficient early diagnosis and theranostic
strategies. Cancer biomarker detection and anticancer drug monitoring utilizing
the unique features of analytical techniques constitute a vital part of developing
powerful cancer diagnosis and treatment methodologies. Hence, electrochemical
sensors and biosensors offer practical, sensitive, selective and accurate detection
of cancer biomarkers and anticancer drugs with low-cost and portable devices for
on-site and in vivo analysis by holding a potential to be an alternative to
conventional techniques. A general consideration about the electrochemical
sensors and biosensors for the cancer diagnosis and treatment has been given in
this context by presenting basic principles of electrochemical sensor and biosen-
sor fabrication and their applications in recent years. Besides, it has been
attempted to trigger readers to gain knowledge about the requirement and potency
of electrochemical sensing and biosensing strategies in terms of cancer diagnosis,
treatment and drug development studies by discussing pros and cons of electro-
chemical sensors and biosensors and predicting future perspectives.
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2.1 Introduction

Cancer has been evaluated as a global epidemic that emerges as a second leading
cause of death worldwide, and it is thought that there are more than 200 types of
cancer along with a high heterogeneity within a tumour tissue [1–6]. The early
prognosis is a prominent factor to inhibit and treat carcinogenesis to save the life of a
cancer patient by increasing the survival rate through a successful treatment [6–
8]. However, uncontrollable cell proliferation engenders the invasion and metastasis
of cancer cells to the more distant locations of the body. Moreover, the recognition of
cancer cells by immune system is tricky due to the classification of these self-derived
cells as safe by the fact that cancer cells can easily coordinate the activity of
inflammation cells through the regulation of inflammatory factors, transcriptional
factors and growth factors [5, 9–11]. In spite of the misdiagnosis possibility arising
from the contradiction in the benign and malignant lesions differentiation and lower
sensitivity, imaging technologies based on X-ray, ultrasound, magnetic resonance
and cytological or histopathological techniques have been clinically used for the
cancer diagnosis [6, 12, 13]. Polymerase chain reaction (PCR), DNA sequencing,
southern blotting, enzyme-linked immunosorbent assay (ELISA) and flow
cytometry are other widely employed sensitive and precise methods with the disad-
vantage of laborious, expensive and complicated analytical procedures
[12, 14]. Thus, efficient methodologies for the accurate, low-cost and practical
diagnosis of cancer at early stage have been strictly required.

Cancer treatment plays a crucial role as much as the early diagnosis of cancer for
the survival of the patient. Nowadays, chemotherapy has been commonly applied
compared to other treatment methodologies such as radiotherapy, surgery, immuno-
therapy and targeted therapies. In chemotherapy, a wide variety of anticancer agents
can be administered as a single dose or combined doses of different agents
[15, 16]. However, it is well-known that as a result of adaptation, serious side effects
of anticancer agents restrict the survival rate of patients and limit the treatment
efficiency, even though an initial response to chemotherapy has been observed
[15, 17]. The aforementioned issue, namely drug resistance, has a particular impor-
tance in the period of chemotherapy, since it may cause dosage limitations and
toxicity also paving a path for the development of new anticancer drugs [17, 18]. Dur-
ing the process of new drug development, as well as the monitoring in vivo and
in vitro cancer cell responses, analytical characteristics of active pharmaceutical
ingredients should be examined and corresponding concentrations that form the
response should be quantified for the determination of metabolic fate, pharmacolog-
ical activity and even the most suitable pharmaceutical formulation by keeping in
mind that lower amounts of the analyte of interest are involved in the medium [19–
21]. In order to meet the demand within this objective, fast, sensitive and selective
analysis techniques have been gaining considerable attention over the past decades.
Furthermore, a large number of studies based on electrochemical, spectroscopic,
chromatographic and radiometric methods have been devoted so as to develop novel
strategies in the field of pharmaceutical and biomedical analysis for the early
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detection of cancer-related biomarkers and anticancer drugs in recent years [6, 12,
22–30].

Among the foregoing methods in the interest of sensitive, accurate and practical
detection of cancer biomarkers and anticancer drugs, electrochemical methods have
currently come into prominence. Although the majority of studies in this field covers
spectroscopic and chromatographic methods owing to the advantages of higher
sensitivity and simultaneous analysis of different analytes with improved resolution,
longer analysis time, bulky and expensive equipment and requirement of larger
amounts of biological samples and well-trained staff are challenging issues to be
taken into account. Alternatively, electrochemical methods have suggested direct
and practical detection of analytes without the need of sample pretreatment and
derivatization procedures prior to measurement even in coloured and turbid matrices
in most cases with low cost, improved sensitivity and accuracy [5, 6, 20–22, 26, 31–
33]. Moreover, the fabrication of miniaturized electrochemical point-of-care (POC),
lab-on-a-chip and organ-on-a-chip devices has provided on-site and real-time moni-
toring, offering a promising tool for the development of ameliorated strategies in
terms of cancer diagnosis and treatment [14, 34–39].

2.2 A General Outlook to Electrochemical Sensors
and Biosensors

As defined by the International Union of Pure and Applied Chemistry (IUPAC),
chemical sensor is “a device that transforms chemical information, ranging from the
concentration of a specific sample component to total composition analysis, into an
analytically useful signal.” In the specified definition, the chemical information
implies a chemical reaction originated from the analyte or a physical property of
the examined system [40–42]. Chemical sensors can be utilized in qualitative and
quantitative analysis since a selective, continuous and reversible response to the
amount or the activity of the interested species occurs. A chemical sensor is
composed of a transduction element, called transducer, and a recognition layer.
The recognition layer interacts with the analyte of concern through a physical or
chemical interaction, and the chemical change generated from the physical or
chemical interaction is converted into electrochemical, optical, mechanical or ther-
mal signal via transducer in a measureable format consequently amplified by a signal
processor for data management. In case of a chemical interaction proceeds via a
biochemical mechanism owing to the presence of a biological component
(e.g. enzyme, DNA, antibody etc.) in the recognition layer, then the analytical device
is termed as biosensor [34, 40, 41, 43–46] (Fig. 2.1).

Biosensors can be categorized according to the signal transduction type and
biorecognition elements. As previously mentioned that signal transduction is based
on electrochemical, optical, mass detecting and enthalpic principle also valid for
sensors, whereas the classification of biorecognition elements depends on the usage
of biological components with catalytic feature (e.g. enzyme, cell, tissue or micro-
organism) and affinitive feature (e.g. antibody, nucleic acid or aptamer) [12, 47–
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49]. However, regardless of the origin of biorecognition element and signal trans-
duction principle, analytical characteristics of higher sensitivity, selectivity or speci-
ficity, a broad range of linearity, rapid response time, improved repeatability/
reproducibility and stability should be met for the fabrication of an ideal sensor or
biosensor [14, 43].

In electrochemical sensors and biosensors, analytical signal is obtained through a
change in potential, current, conductivity or resistance because of the chemical
reaction between analyte and recognition or biorecognition elements [14, 43,
50]. Therefore, the design of recognition and biorecognition layers in the construc-
tion of electrochemical sensors and biosensors constitutes the vital stage, in which
the success of sensing and biosensing strategy is closely related with the idea of
providing specific interaction of analyte with (bio)recognition element by supressing
other non-specific interactions at the same time [4, 12, 51]. Aforementioned sensing
and biosensing strategies depend on the nature and the characteristic of monitoring
species, so that further considerations will be specially discussed over recent
publications in terms of cancer biomarker and anticancer drug detection in the
upcoming sections.

As mentioned previously, transducer, the other remaining component of an
electrochemical sensor or a biosensor, is capable of converting the energy produced

Fig. 2.1 Schematic illustration of biosensor components
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during the analyte–(bio)recognition element interaction mainly into the electrical
signal. In electrochemical techniques, chemical reactions involving electron transfer
take place at electrode surface or in solution interface. Therefore, during an electro-
chemical sensing and biosensing process, electron transfer results in electricity
generation based on a chemical reaction called redox that denotes oxidation and
reduction of species by applying an external voltage or via chemical energy release
leading to a change in the quantity of electrical magnitudes such as current, potential
and resistance [19, 46, 52–54].

General classification of the electrochemical methods is established on the differ-
entiation between measuring of transport properties in ionic species and electro-
chemical equilibria, charge transfer reactions and interfaces [55]. According to
measured electrical magnitude as a function of potential, impedance or time under
static or dynamic conditions, these methods are subclassified as potentiometry,
voltammetry, amperometry and electrochemical impedance spectroscopy (EIS),
which have been conventionally employed in electrochemical sensing and
biosensing applications [12, 14, 34, 46, 54, 55]. Among these electrochemical
methods, voltammetry and electrochemical impedance spectroscopy have a particu-
lar importance. The application of advanced voltammetric techniques, cyclic
voltammetry, pulse voltammetry (differential pulse, square wave) and stripping
voltammetry, has not only contributed in electrochemical signal boosting but also
enabled to explain electrochemical reaction mechanisms [12, 46]. Electrochemical
sensor and biosensor fabrication procedure along with analyte–(bio)recognition
element interactions can be examined stepwise by evaluating capacitance and charge
transfer resistance changes by using EIS. However, since lower excitation potential
has been applied in EIS, the damage of biological microenvironment due to electrode
heating has been eliminated in real-time analysis, providing an efficient tool for
cancer cell, protein and nucleic acid biomarker detection [6, 14, 34, 56].

In order to perform an electrochemical measurement, main requirement is an
electrochemical cell, in which redox reactions take place, aside from an electrochem-
ical analyser with suitable circuitry and software [46]. Three-electrode configuration,
consisting of working, reference and counter electrodes, is extensively used in
electrochemical cells for this purpose (Fig. 2.2). These electrodes are immersed
into a solution at a certain concentration and ionic strength (generally buffer solu-
tion) containing the analyte. Working electrode is the core of this configuration due
to the presence of recognition or biorecognition layer. Current, formed as a result of
redox reaction from analyte–(bio)recognition element interaction, passes through
working and counter electrodes; while the potential of working electrode is con-
trolled in relation with reference electrode that has a constant and reproducible
potential [46, 57]. As a consequent of transduction and data management process,
the analytical data is shown as a voltammogram, amperogram or Nyquist plot
according to electrochemical technique applied in the measurement.

Working electrode properties such as size, geometry and fabricated material
profoundly affect the performance of sensor and biosensor. Redox behaviour of
the analyte and background current generated by sample matrix components are
prominent factors to be taken into consideration in sensor and biosensor fabrication

2 Electrochemical Sensors and Biosensors for the Detection of Cancer Biomarkers. . . 19



as well as toxicity, mechanical strength and potential window. Carbon-based
(e.g. glassy carbon, carbon paste) and metal (e.g. gold, platinum, silver) electrodes
have been extensively utilized in sensor and biosensor design, and many attempts
have been made to explore novel and functional materials so as to fabricate modified
electrodes with enhanced properties for the detection of cancer biomarkers and
anticancer drugs [34, 41, 46, 58–67]. Furthermore, the design of three-electrode
configuration in a single electrochemical platform, as in commercial glucometer test
strips, opened a new era offering disposable and miniaturized sensing and biosensing
strategies in the field of clinical and biomedical analysis [19, 36, 50]. Outstanding
examples of the fabricated electrochemical sensors and biosensors comprising the
modification of working electrodes with superior featured materials in terms of
cancer diagnosis and treatment will be presented in the following sections.

2.3 Electrochemical Sensing and Biosensing Strategies
in Cancer Biomarker Detection

According to the definition of the National Institutes of Health Biomarkers Working
Group, biomarker is “a characteristic that is objectively measured and evaluated as
an indicator of normal biological/pathogenic process or pharmacological responses
to a therapeutic intervention” [12, 68]. The term, biomarker, states a biological
molecule such as a cell, enzyme, protein, hormone or DNA fragment, which exists
in blood, tissues and body fluids, indicating a normal or abnormal condition or a
disease [14, 69]. Owing to their diversity and great number, cancer biomarkers are
classified into enzymatic tumour markers, embryonic and carbohydrate antigens,

Fig. 2.2 A typical three-
electrode configuration
composed of working,
reference and counter
electrodes
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protein, hormone and oncogene markers [12, 24, 70]. Even though cancer
biomarkers can be simply determined using overexpressed proteins released in
bloodstream and cancer cell surface receptor proteins, the levels of biomarkers in
body are extremely low at the initial stage of cancer that early diagnosis of the
disease is not feasible in most cases. Apart from the early diagnosis, sensitive and
accurate detection of cancer biomarkers can be informative in terms of the determi-
nation of prognosis and examination of cancer course in a patient treated by
chemotherapy, surgery or radiotherapy [5, 12, 71]. However, monitoring a single
cancer biomarker is not useful at all, since most cancer types are diagnosed based on
the presence of multiple biomarkers addressing the need for efficient diagnostic
methodologies in the same platform with improved specificity [72–74].

Computed and positron emission tomography, magnetic resonance and ultra-
sound imaging, biopsy and endoscopy have been currently employed in cancer
diagnosis by offering several advantages and also limitations such as overpriced
instruments, limited sensitivity and physical or chemical damages. Among the
genomic and proteomic techniques such as PCR, DNA quenching and fluorescence
in situ hybridization, ELISA has gained popularity with the widespread use in
laboratories and hospitals. However, laborious analysis procedures, complicated
instrumentation and insufficient sensitivity leading to false negative results have
restricted its availability as a cancer diagnostic tool [12, 25, 75]. These obstacles in
cancer biomarker detection have changed the scope of the researches, so that
minimally and non-invasive methods to overcome the pointed limitations have
shown a rising trend, nowadays. As also recommended by World Health Organiza-
tion, an ideal diagnostic test should meet the following criteria of affordability,
sensitivity, specificity, being user-friendly, rapidity and robustness, being
equipment-free and deliverable to end users [12, 36, 76]. When considered cumula-
tively, electrochemical sensors and biosensors are uniquely suited for the efficient
detection of cancer biomarkers. Researchers have mainly focused on the design of
bioreceptors and redox tags for the multiplexed bioassay based on the development
of signal amplification techniques by using various materials emphasizing the
importance of nanomaterials within this objective [14, 28, 77].

Electrochemical Immunosensors

Immunosensor is a kind of biosensor in which analyte–biorecognition element
interaction is provided through the formation of an immunocomplex between a
specific antigen and its corresponding antibody [46, 78, 79]. Even though the
basic principle resembles with the principle of immunoassay techniques,
immunocomplex formation and signal transduction occur in the same platform in
electrochemical immunosensors; whereas in immunoassay techniques,
biorecognition process of antigen is carried out in a different medium [80–
82]. Antibodies are immunoglobulins produced by B lymphocyte cells as an immune
system response to foreign species, namely antigen. In immunosensor fabrication,
immunoglobulin G is the most preferred glycoprotein, which has two identical light
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chains of about 25,000 Da with two heavy chains of about 50,000 Da constructing a
Y-shaped molecule that is held together by non-covalent interactions and disulphide
bonds. Y-shaped immunoglobulins possess physiological regions of action
containing a site called “paratope” specific to a site called “epitope” on an antigen,
providing a lock and key mechanism for antibody–antigen binding [80, 83, 84].

While fabricating immunosensors, monoclonal and polyclonal antibodies can be
utilized; however, polyclonal antibodies can bind to antigens at different locations
with variable affinity, and as the identical products of single parent cell, monoclonal
antibodies are capable of forming more specific interactions with antigens. Hence,
the binding site stereospecificity of an antigen is the indication of its antibody
selectivity, which is characterized by larger binding constants [41, 46, 85].

Electrochemical immunosensor fabrication requires the immobilization step in
which the biorecognition element, generally an antibody, is attached on the electrode
surface. Additionally, there are several studies in the literature based on the immo-
bilization of antigens on the electrode surface to detect target antibodies [80, 86–
88]. Biorecognition elements can be immobilized on electrode surface by using
physical adsorption, covalent binding, embedding, crosslinking, self-assembly and
Langmuir–Blodgett techniques [24, 80]. Regardless of the applied immobilization
technique, an efficient immobilization demands the retention of biological activity
and proper distribution of biorecognition elements with well-organized orientation
on the electrode surface [80, 89].

Detection strategies in electrochemical immunosensors are based on label-free
and labelled approaches. In label-free approach, the analytical signal, produced by
antigen–antibody interaction, is directly measured without the need of any labelling
species. Despite the rapid and real-time analysis feasibility, background signals
arising from the non-specific adsorption of co-existing proteins in the sample
diminish the sensitivity. In order to overcome the limitation arisen from
co-existing protein interferences, electrode surface can be treated by suitable agents
such as bovine serum albumin, catalase or surfactants to eliminate non-specific
interactions [90, 91]. In label-free immunosensors, EIS is a widely used technique
by offering facile monitoring of increasing electron transfer resistance due to the
antigen–antibody immunocomplex formation on the electrode surface. Pulsed
voltammetric techniques and amperometry have been also utilized within this
purpose [92–96]. In labelled approach, antibody or antigen is generally labelled
with enzymes such as horseradish peroxidase, glucose oxidase and alkaline phos-
phatase. The interaction of labelling enzyme on antigen or antibody with its substrate
forms an electroactive product, leading to obtain an indirect response of the
immunoreaction. Apart from enzymes, nanomaterials such as noble metal
nanoparticles (e.g. Au, Pt), carbon nanotubes (CNT), graphene oxide, polymer-
metal nanoparticle composites, quantum dots and mediators (e.g. ferrocene, Prussian
blue) have been also used in signal amplification [24, 34, 46, 73, 97, 98].

Labelled immunosensors can be operated through a competitive and a
non-competitive strategy. In the competitive strategy, analyte antigen competes
with the labelled antigen to bind the immobilized antibody on the electrode surface.
The obtained signal for labelled antigen is inversely proportional to the analyte
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antigen amount. In the non-competitive strategy, conventionally known as
sandwich-type immunosensing, large antigens with an ability of binding to two
antibodies can be detected. In this strategy, antigen in the sample is sandwiched
between the immobilized antibody (capture antibody) and the tracer antibody
(labelled antibody) after successive washing steps for each incubation stage, and
electrochemical signal generated from the label is monitored to determine the
antigen amount [46, 80, 99–103].

Compared to label-free immunosensors, non-specific adsorption of co-existing
molecules have been restrained in labelled immunosensors; however, the binding
efficiency of antigen-antibody is closely related with effective labelling of tracer
antibody or antigen, which requires the proper selection of the labelling agent among
a wide variety of material [89, 104]. In Table 2.1, recent studies based on labelled
and label-free electrochemical immunosensors for cancer biomarker detection have
been presented.

Electrochemical Nucleic Acid Biosensors

Even though the development of electrochemical immunosensors for protein bio-
marker detection constitutes the majority of studies in the field of electrochemistry
for cancer diagnosis, electrochemical nucleic acid biosensors have received consid-
erable attention during the past decades. In nucleic acid biosensors, single-stranded
DNA (ssDNA) is generally used as a biorecognition element due to the ability of
hybridization with its complementary strand generating a specific response, so that
the detection of the complementary DNA or RNA has become possible owing to the
probe–target pairing approach [41, 125, 126]. DNA-based biosensors, also termed as
genosensors, can be utilized for the monitoring of genomic and genetic details of a
patient through a facile route offering an alternative to direct sequencing methods in
practical applications. Additionally, it should be also mentioned that nucleic acid
sequences of several pathogens have been also detected for the diagnosis of diseases
in relation with influenza, hepatitis B and human papilloma viruses by using
electrochemical DNA sensors [125, 127–129].

DNA hybridization that proceeds on the electrode surface can be examined on the
basis of Watson–Crick base-pair recognition phenomena. In a similar manner with
electrochemical immunosensor fabrication, DNA fragment to be used as a probe is
immobilized on the electrode surface. After the immobilization procedure, probe–
target hybridization is generally accomplished by immersing the probe-immobilized
electrode into target DNA-containing solution. Electrical signal generated as a result
of hybridization process can be detected via an electroactive indicator such as
enzyme and redox labels by measuring current changes, or direct monitoring of
hybridization-related changes like capacitance or conductivity can be carried out
[126, 130]. According to the study reported by Wang et al., a dual-probe electro-
chemical DNA biosensor was fabricated to detect double-stranded DNA (dsDNA) of
acute promyelocytic leukaemia-related gene. In this study, genosensor was designed
based on “Y” junction structure with restriction enzyme, endonuclease, assisted
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cyclic enzymatic amplification strategy. Signal amplification is based on the repeated
cycles of hybridization, cleavage and separation steps. In the first step, hybridization
occurs between the capture DNA probe and the target DNA by forming DNA
duplexes with restriction sites. In the second step, DNA duplexes are cleaved by
endonuclease enzyme and target DNA is released to be identified by another capture
DNA probe to start a new cycle of hybridization, cleavage and separation in the final
step. The requirement of special sequences of target DNA limits the applicability of
the strategy. For this purpose, two separate detection probes containing a capture and
an assisted probes complementary with partial sequences of two strands of the target
dsDNA were used to improve the hybridization efficiency. Limit of detection (LOD)
was found as 47 fM, indicating a promising tool to develop integrated devices with
PCR systems and electrochemical DNA biosensors [131].

DNA methylation is evaluated as an indication of cancer in head and neck
squamous cell carcinoma and has a silencing effect on tumour suppressor in cancer
development [132, 133]. DNA methylation of O6-methylguanine DNA
methyltransferase (MGMT) gene in head and neck cancer cell lines was detected
by using a recently developed genosensor. MGMT promoter methylation probe
sequence was immobilized on gold electrode with the help of mercaptoacetic acid
and 11-mercaptoundecanoic acid self-assembled monolayers, and electrochemical
detection was carried out by EIS technique. The obtained results clearly showed an
apparent discrimination between the methylated and non-methylated DNA with a
detection limit of 0.24 pM [133].

MicroRNAs (miRNAs) are small non-coding RNA molecules consisting of
18–24 nucleotides with the ability of controlling gene expression via binding target
messenger RNA in order to induce messenger RNA degradation or repression in
protein translation. Due to the gene expression regulatory feature, miRNAs play a
critical role in cell proliferation, cell cycle progression and apoptosis apart from
functioning as tumour suppressors and oncogenes [12, 75, 134]. Circulating
miRNAs existing in body fluids such as plasma, serum, saliva and urine can be
evaluated as ideal non-invasive cancer biomarkers owing to their tissue-specific and
dysregulated expression profiles in cancer and higher stability in body fluids
[75, 135–137]. Thus, many attempts have been made to detect miRNA as a potent
non-invasive cancer biomarker by academia and also industry that miRNA-based
diagnostic kits are available on market. However, there are also limitations such as
difficulty in miRNA amplification and isolation owing to the short length structure of
miRNA. Besides, multiplexed and in vivo analysis of miRNAs with single nucleo-
tide specificity is still demanded [138]. In order to correspond this demand, electro-
chemical genosensors have been fabricated based on labelled and label-free
strategies by offering low-cost and portable devices for commercialization
[12, 138]. Salimi et al. developed an amine-functionalized graphene-based
genosensor for monitoring miRNA hybridization. miRNA-155 was selected as a
model, since it is overexpressed in many types of cancer (e.g. breast, colon and
cervical cancer) [139]. Genosensor was fabricated onto glassy carbon electrode by
modifying amine-functionalized graphene to provide an efficient platform for
miRNA-155 probe immobilization via crosslinking with glutaraldehyde and highly
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conductive layer, preventing the electrode surface passivation. Target and probe
miRNA-155 hybridization was detected by using DPV responses in the presence of
5 mM Fe(CN)6

4-/3- redox probe. The authors claimed that the proposed genosensor is
capable of detecting miRNA-155 at femtomolar level [140]. There are also papers in
the literature reporting the development of electrochemical biosensors for the sensi-
tive detection of miRNA-21, miRNA-34a, miRNA-122b, miRNA-141, miRNA-
197, let-7a and let-7b as cancer biomarkers [141–148]. Multiplexed detection of
miRNAs has been an emerging issue in cancer diagnosis as mentioned previously.
Construction of electrochemical biosensors based on ssDNA or hairpin DNA to
detect multiple miRNA targets has been reported in the literature [149, 150]. The use
of these one-dimensional capture probes in multiple miRNA detection is lack of
sensitivity due to the decreasing accessibility of molecules to capture probes consid-
ering the high surface disturbance and uncontrolled density. Alternatively, three-
dimensional nanostructured DNA capture probes suggest an improved capture
efficiency with minimal non-specific adsorption [151, 152]. Hence, in another
study by Xu et al., a novel DNA circle capture probe containing multiple target
recognition sites was designed for the simultaneous detection of miRNA-21 and
miRNA-155. For this purpose, DNA circle capture probe was attached on the top of
the tetrahedron DNA nanostructure immobilized on gold nanoparticle deposited on
glassy carbon electrode. The single strand chain in DNA tetrahedron nanostructure
was hybridized with capture probe consisting of two recognition sites, and then the
hybridization of target miRNA-21 and miRNA-155 was employed via helper strands
by triggering mimetic proximity ligation assay to capture ferrocene and methylene
blue labels. The proposed technique showed wider linear ranges between 0.1 fM and
10 nM with LOD values of 18.9 and 39.6 aM for miRNA-21 and miRNA-155 from
cancer cell lysates, thus offering novel and efficient strategy for multiple miRNA
detection [153].

Aptamers are synthetic short oligonucleotides with 30–40 nucleobases of RNA or
ssDNA, which have been widely used in the fabrication of electrochemical
biosensors termed as aptasensors. Aptamers enable specific binding of target and
oligonucleotide analyte in a similar manner with conventional nucleic acid
biosensors. However, aptamers are capable of binding various types of target
analytes including proteins, biologically important small molecules and even
organisms by folding into a three-dimensional structure to interact through their
complementary shapes rather than their sequences. The advantages of thermal
stability, facile modification with demanded functional groups and in vitro synthesis
have made aptamers favourable biological elements to design novel biosensors for
cancer biomarker detection. Nevertheless, complex ingredients of sample matrixes
due to the presence of macromolecules and ions may cause non-specific interactions,
leading to a significant limitation for the utilization of aptasensors in cancer diagno-
sis as commercialized devices [12, 14, 41, 125]. In spite of the limitations to be
overcome, electrochemical aptasensors still offer an efficient strategy for the detec-
tion of a wide variety of cancer biomarkers. Current studies have demonstrated the
efficacy of electrochemical aptasensors in singular and multiplexed detection of

2 Electrochemical Sensors and Biosensors for the Detection of Cancer Biomarkers. . . 27



cancer biomarkers as well as cancer cell and cancer cell-released exosome quantifi-
cation [154–166].

In addition to electrochemical immunosensors and nucleic acid-based biosensors,
electrochemical cytosensing strategies deserve a special mention owing to the
capability of detecting circulating tumour cells released from primary and metastatic
tumours inducing metastasis and even death of the patient. On basis of the fact that
cancer cells overexpress a significant amount of proteins, enzymes or receptors on
the cell surface or within the cell, novel sensing and biosensing strategies have been
developed so as to fabricate efficient platforms for cancer cell detection as a precise
diagnostic tool to determine the appropriate treatment method [5, 167]. In this point
of view, the interaction of cell surface biomarkers, in other words overexpressed
proteins, enzymes or receptors by cancer cell, with the recognition layer of the
sensing/biosensing platform establishes the principle of the biosensor called
cytosensor. Since each cells of different types of cancer have significant and unique
surface characteristics, selective detection of the interested cancer cell by discrimi-
nating normal cells and other cancerous cells is possible by designing cytosensor
biorecognition layer with specific and affinitive agents [35, 167, 168]. In electro-
chemical cytosensing strategies, aptamer-based direct and sandwich assays utilizing
enzyme and nanomaterial signal probes and displacing DNA/nanostructured probes
as well as advanced functional material-modified electrochemical platforms have
become a popular area of research in the past decade [167, 169–181]. Furthermore,
electrochemical cytosensing approaches devoted to cell type identification and cell
counting could be considered as alternative and complementary techniques to flow
cytometry [167, 182].

2.4 Electrochemical Sensing and Biosensing Strategies
in Anticancer Drug Detection

In recent years, advances in drug discovery and development studies based on in
silico, in vitro and in vivo methodologies have made a considerable impact on
diagnosis, treatment and prevention of the diseases. There is no doubt that pharma-
ceutical analysis has a vital role in this progress by providing an analytical knowl-
edge to researchers from drug formulation to marketing stages [21, 183, 184]. Owing
to the fact that cancer imposes a global health concern based on the estimation of
more than 25 million new cases by 2050, the development of efficient treatment and
theranostic strategies are urgently demanded [15]. For the time being, chemotherapy
is the most commonly applied strategy in the cancer treatment, which requires
anticancer drugs with higher specificity of action and undesired side effects, thereby
also demanding accurate and precise analytical techniques to obtain useful informa-
tion about the quantity, purity, stability, toxicity and therapeutic index of anticancer
drugs in pharmacokinetic and pharmacodynamic trials [15, 17, 184–186]. Therefore,
sensitive and selective detection of anticancer drugs in biological fluids and pharma-
ceutical formulations could give a consideration about the efficiency of anticancer
drugs to be utilized in cancer treatment.
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Electrochemical techniques offer sensitive, selective and practical detection of
anticancer drugs in pharmaceutical formulations and biological materials with
low-cost and potential miniaturized devices as mentioned in previous sections.
Furthermore, electrochemical sensing and biosensing strategies access in vivo phar-
macological activity prediction of a drug through the investigation of its electro-
chemical redox characteristics. The examination of the related redox reactions gives
insights into understanding the interaction mechanism of anticancer drug with living
cells, and also its bioavailability and metabolic fate by gaining analytical knowledge
about the electrochemical behaviour as well as possible interaction of anticancer
drug with sample matrix components [21, 33, 183].

Electrochemical anticancer drug monitoring strategies are based on the fabrica-
tion of electrochemical sensors and biosensors with superior materials to amplify the
signal bearing on the specific interaction of anticancer agents with the recognition
elements in a similar way with cancer biomarker detection. Apart from the biological
materials to construct biosensors for this purpose, literature survey reveals the
utilization of nanomaterials as signal boosting materials in majority due to their
electrocatalytic activity, larger surface area-to-volume ratio, improved conductivity
and biocompatible nature [187–195]. Thus, the rising trend in the fabrication of new
state-of-the-art electrochemical sensors and biosensors for anticancer drug detection
is based on the synthesis of hybrid and composite nanomaterials with synergetic
effect [61, 192, 196–201]. In addition, it should be mentioned that metal-organic
frameworks and molecularly imprinted polymers have recently comprised a hotspot
in this field [63, 202–206].

Since most of the pharmaceutically active compounds tend to be easily oxidized
or reduced compared to remaining excipients in the pharmaceutical formulations,
direct detection of anticancer drugs is available by measuring their oxidation and
reduction signals, leading to fabrication of a wide variety of electrochemical sensors
[33, 183]. In Table 2.2, successful examples of electrochemical sensors fabricated in
the past five years for the sensitive detection of anticancer drugs are presented.

It is likely that most of the electrochemical anticancer drug detection studies are
based on the development of electrochemical sensors. Besides, there are also many
attempts to fabricate electrochemical biosensors, in which aptamers, peptides, DNA
and cancer cells have been used as the biorecognition element, to quantify the
anticancer drug amount and examine drug–cancer cell or drug–DNA interactions.
Hence, electrochemical biosensors assure highly efficient tools for monitoring cell
viability and drug resistance as well as in situ pharmacokinetic assays as also
demonstrated in the reported studies [220–226].

2.5 Conclusions and Future Perspectives

Electrochemical sensing and biosensing strategies have been receiving tremendous
attention in order to fabricate efficient platforms for non-invasive cancer biomarker
detection, therapeutic drug monitoring and investigation of drug–target interactions
over the last decade. As mentioned in sections earlier, electrochemical sensors and
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biosensors have a great impact on sensitive, selective, practical and low-cost detec-
tion of cancer biomarkers and anticancer drugs in biological samples and pharma-
ceutical dosage forms, owing to well-engineered design of electrode surfaces with
appropriate biological elements and materials with superior properties. It should be
also emphasized that electrocatalytic activity, biocompatibility, larger surface area
and enhanced electrical conductivity make nanomaterials (e.g. CNT, graphene,
metal nanoparticles, quantum dots, hybrid and composite nanostructures) indispens-
able components of electrochemical sensors and biosensors, and multifunctional
nanomaterials are being fabricated to enable more sensitive, selective, precise and
accurate analysis. Besides, the development of point-of-care, lab-on-a-chip and
organ-on-a-chip electrochemical devices has paved the way for their widespread
utilization in laboratories and hospitals. Even though many successful attempts have
been made as a proof of concept, there are several challenges to be overcome for
commercialization and replacing the current technology in this field. Multidisciplin-
ary approaches including materials science, engineering, medicine, biology, chem-
istry and bioinformatics will enable to overcome the limitations from sensor or
biosensor design to commercialized device production.

Multiple cancer biomarker detection still requires much more attention since
electrochemical techniques suffer from complexity of sample matrixes containing
various interfering species, which may be eliminated by designing multi-array
platforms. However, long-term stability and reusability should also be taken into
account in electrochemical sensor and biosensor design for cancer biomarker and
anticancer drug detection. Long-term stability and reusability are also related with
the retention of immobilized biomaterial activity, especially for enzymes, that
biomimetic materials could be an alternating choice in electrochemical sensor and
biosensor fabrication within this scope. Although electrochemical sensor and bio-
sensor fabrication face with limitations of signal amplification, storage and device
integration, they are still promising candidates to be potentially used as novel and
complementary technologies in cancer biomarker and anticancer drug detection in
future.
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Cell Cycle Arrest: An Impending
Therapeutic Strategy to Curb Cancer 3
Gaurav Kumar, Sonam Mittal, Deepak Parashar, Kapilesh Jadhav,
Anjali Geethadevi, Pradeep Singh Cheema, and Hardeep Singh Tuli

Abstract

Eukaryotic cell division is divided into several phases and each of these phases
has their own control mechanisms. Failure of any of these control mechanisms
may lead to development of errors which may be propagated to up-coming
generations leading to development of carcinogenic phenotype. Therefore, cell
cycle has become an attractive target in anticancer research which is mainly
focused on dealing with the regulators and checkpoints involved in the progres-
sion of cell cycle. The major components involved in controlling the cell cycle are
cyclins, cyclin-dependent kinases (CDKs), and cyclin-dependent kinase
inhibitors (CDKIs). Apart from these, an efficient DNA repair system and the
proper assembly of spindle fibers also contribute to smooth progression of cell
cycle. Therefore, in addition to the great dependency of anticancer research on
cyclins, CDKs, and CDKIs, DNA repair system and assembly of spindle fiber
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also contribute to the foundation of anticancer research. In this chapter, we
describe cell cycle and its importance in anticancer research, the clinical studies
based on cell cycle to curb neoplastic development, and approaches used in anti-
tumor research to counter cancer progression.

Keywords

Cell cycle · Cyclins · Checkpoints · Cancer · Anticancer therapy

3.1 Introduction

The cell cycle is a coordinated sequence of events that deals with duplication of
genomic material and subsequent distribution of duplicated genetic material leading
to the division of cells [1]. In the case of eukaryotes, the cell cycle has been
categorized into several phases including Gap 1 (G1) phase, DNA synthesis
(S) phase, Gap 2 (G2) phase, and Mitosis (M) phase. In first three phases, a cell
prepares itself for division, and in M phase, segregation of chromosomes occurs
followed by division of cells [2]. The M phase is progressed by initiation of prophase
where nuclear envelop is disappeared and chromosomes become visible as
chromatids. Prophase is followed by the alignment of chromosomes in metaphase,
segregation of sister chromatids in anaphase, and subsequent movement of
chromosomes at opposite poles in telophase followed by the division of genetic
material leading to next interphase which is characterized by G1, S, and G2 phases as
shown in Fig. 3.1 [3, 4]. The interphase is although a resting phase, but prepares a
cell for the actual M phase, since a cell performs a normal metabolic role in
interphase to duplicate its genetic material in S phase followed by DNA proof-
reading, and preparation of M phase by the end of G2 phase. Additionally, G0 phase
is a part of cell cycle in which cells are quiescent but have the potential of division
under proper stimulus. Strict regulation of all the events in cell cycle is important for
duplication of genetic material with high fidelity and its transfer in next generation
with great accuracy since, even subtle errors in the cell cycle may lead to the fatal
outcomes that may manifest in the development of complex diseases such as cancer.
This chapter aims to provide a glimpse of the cell cycle and its crucial component
with emphasis on the regulation of cell cycle in development as well as prevention of
cancer.

3.2 Regulation of Cell Cycle by Interacting Partners

Several regulatory components are involved in the hassle-free progression of the cell
cycle. These components work in a fashionable manner. Cyclins, cyclin-dependent
kinases (CDKs), and CDK inhibitors (CDKIs) are the key components involved in
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regulating the cell cycle which perform in a coordinated manner to ensure proper
progression of the cell cycle. The following few sections are briefly focused on the
description of each of these regulatory components. Additionally, different
interacting partners involved in progression of cell cycle are given in Table 3.1
below.

Cyclins

Cyclins are proteins known to regulate the progression of the cell cycle by their
ability to complex with appropriate CDK partners. The expression of a particular

Fig. 3.1 Different phases of the cell cycle. Cell cycle comprises G1 phase, S phase, G2 phase, and
M phase. Duplication of genetic material and cell organelles to assist in remaining cell cycle phases
starts in G1 phase. S phase is represented by actual duplication of genetic material while in G2
phase, a cell continues to grow by completing its genetic content. M phase is demonstrated by actual
segregation of chromosomes followed by division of cells. In G0 phase, cells undergo quiescence
and may participate in division under the effect of proper signal

Table 3.1 The functional
role of CDKs and cyclins in
different phases of cell
cycle (adapted and
modified from Bai et al. [5])

CDKs Cyclins Cell cycle phase

CDK1 Cyclin A G2/M transition

CDK1 Cyclin B M

CDK2 Cyclin A S

CDK2 Cyclin E G1/S transition

CDK4 Cyclin D1, D2, and D3 G1

CDK6 Cyclin D1, D2, and D3 G1
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cyclin occurs in a particular phase of cell cycle, therefore, there is a sequential
change in the expression pattern of cyclins which is dependent on specific cell
progression phase.

Of the two types of cyclins, including cell-cycle related cyclins, viz. Cyclin A,
B, D, and E, and non-cell cycle-related cyclins, viz. Cyclin C and H, cell-cycle
related cyclins such as cyclin D and E play a pivotal role in G1 to S phase transition
of the cell cycle [6]. Similarly, cyclin A forms the complex with CDK1 and CDK2
and plays a key role in S and M phase transition. The accumulation of cyclin A starts
during the S phase and is down-regulated before commencement of M phase
[7]. Similarly, cyclin B regulates the M phase and is required for a cell to enter
and proceed through M phase. Therefore, cyclic change in the levels of cyclins is
necessary in cell cycle progression.

Cyclin-Dependent Kinases (CDKs)

CDKs are about 300 amino acid proteins that contain binding motifs favoring the
binding of appropriate cyclins. On binding to cyclins as their preferred binding
partners, CDKs become catalytically active [8, 9]. Unlike cyclins, the expression of
CDKs remains constant throughout the cell cycle, and several members of CDK
family switch their association with cyclins, and their functional activities vary in
accordance with a particular cell cycle phase. Notably, four different CDKs, namely,
CDK 1, 2, 3, and 4 are responsible for governing the progression of the cell cycle
[10]. In this way, at the G1/S phase transition, CDK4/6 and CDK 2 are required to
make the cells to enter in S phase. CDK2 remains active throughout the S phase, and
its activity declines after the cell exits S phase [9]. Similarly, CDK 1 is active during
the G2 phase with persistent activity during mitosis [6]. CDK 1 associates with
cyclin A and B, and acts on the interface of the G2/M phase. The accumulation of
cyclin A and B and their degradation at the initiation of anaphase leads the cells to
enter and exit mitosis, respectively. Therefore, periodic changes in the activities of
CDKs are required for transition in phases of the cell cycle.

CDK Inhibitors (CDKIs)

CDKIs are up-regulated in response to a variety of anti-proliferative signals. CDKIs
are known to regulate the activity and functions of CDK family members
[11]. CDKIs are majorly categorized in two families, namely, CIP/KIP family of
universal cyclin/CDK inhibitors, and INK4 family. The members of CIP/KIP family
include p21 Waf1/Cip1, p27 Kip21, and p57 Kip2 proteins, and are known to bind and
inhibit both cyclins, through their conserved LFG residues present in their cyclin box
motif, and CDKs concurrently [12]. On the other hand, the members of INK4 family
including p16 INK4a

, p15
INK4b, p18 INK4c, and p19 INK4d, specifically bind and inhibit

cyclin D, CDK4, and CDK6 (Fig. 3.2) [13].
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It is noteworthy that the relative concentration and distribution of the members of
these two families determine the progression of the cell cycle. For instance, p21
plays a significant role in the inhibition of CDK kinase activity and inhibits the
replication of DNA. Additionally, it is also known to arrest the cell cycle in G
1 phase so as to allow a cell to repair its DNA damage; which is seen when p53 is
up-regulated (Fig. 3.3) [14]. Therefore, CDKIs act as a surveillance system to
regulate the faithful progression of the cell cycle.

3.3 Cell Cycle Checkpoints

The status of the cell cycle progression from one phase to next is ensured by
chronological activation as well as inactivation of a plethora of regulatory gates
which are known as cell cycle checkpoints. These checkpoints monitor the status of

Fig. 3.2 Different families of CDKIs controlling the cell cycle. CDKIs of CIP/KIP family include
p21 Waf1/Cip1, p27 Kip21, and p57 Kip2, while CDKIs of INK4 family include p16 INK4a

, p15
INK4b,

p18 INK4c, and p19 INK4d. The members of both CDKI families work in a coordinated manner so as
to inhibit the progression of cell cycle under certain circumstances
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dividing and non-dividing cells [15]. Functionally, checkpoints are subsets of gene
products that function in a sequential and controlled manner to ensure the fidelity in
the cell cycle progression. If any of these checkpoints are mutated or altered, they
confer independence in the cell cycle progression; which was otherwise dependent
on successful completion of on-going cellular progression. Cells can arrest the
progression of the cell cycle transiently so as to overcome the stress, viz. DNA
damage. Otherwise, if the stress is irreversible, then checkpoints can direct a cell to
programmed cell death. Alteration in the reliability of checkpoints can manifest with
an expansion of DNA damage and permanent genetic lesions over several
generations. It is noteworthy that cell cycle checkpoints are often hampered in
cancerous cells resulting in the propagation of tumorigenic growth [16]. Hence, a
cell has to pass through a huge number of internal checkpoints to ensure proper
forwarding of genetic information to daughter generation [3, 17, 18]. The following
few sections are focused on the type of cell cycle checkpoints and their importance in
cancer.

Fig. 3.3 Regulation of cell cycle under genotoxic stress. When DNA is damaged, p53 dependent
up-regulation of p21 leads to inhibition of cyclin E-CDK2 complex resulting in
hypophosphorylation of Rb protein which is accomplished by inhibition of cell cycle, DNA repair,
and apoptosis
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G1/S Checkpoint

The inhibition of G1 phase cyclin and CDK complexes plays a significant role in
maintaining the G1/S checkpoint [19]. As discussed earlier, CDKs can be negatively
regulated by CDKIs. Among CDKIs, the members of the INK4 family are known to
inhibit CDK4 and CDK6 during the G1 phase, while the members of CIP/KIP family
can inhibit the activity of CDKs in all phases of the cell cycle (Fig. 3.2), thereby
firmly maintaining the G1/S checkpoint. Furthermore, when a normal cell faces the
genotoxic insult, transcription of p21, an important member of the CDKI family is
up-regulated by p53 protein. Subsequently, p21 binds and inactivates cyclin
E-CDK2 complex leading to hypophosphorylation of pRB followed by arresting
the cell cycle from G1/S transition, allowing a cell to repair DNA damage, accumu-
late apoptotic factors such as Puma, Bax, Noxa, and up-regulate oxidative stress
response as shown in Fig. 3.3. Additionally, p16 arrests the cell cycle in the G1 phase
in p53 independent manner in response to DNA damage by abrogating cyclin
D/CDK4 and cyclin D/CDK6 dependent pRB phosphorylation [20, 21]. Therefore,
G1/S checkpoint acts by targeting two important tumor suppressor pathways which
are often deregulated in a variety of human cancers.

S Phase Checkpoint

The S phase checkpoint, also known as intra-S phase checkpoint, operates to avoid
the duplication of damaged DNA to transfer in mitosis further. This checkpoint is
regulated by two different signaling pathways which include ATM/ATR-Chk1-
Cdc25A and ATM-Nbs1-SMC1 [22]. DNA damage induced by ionizing radiations
of UV radiations may provoke either of these pathways to arrest the cell cycle in the
S phase. ATM or ATR results in phosphorylation of Chk1 that in turn
phosphorylates Cdc25 A on serine residues maintaining the required concentration
of Cdc25 A. The augmented functional activity of Chk1 and Chk2 leads to Cdc25 A
down-regulation resulting in subsequent inhibition and inactivation of Cdk2-cyclin
E complex in response to genotoxic insult [23]. ATM-mediated phosphorylation of
Nbs1 on Ser 343 residue and some other residues results in activation of Nbs1-
Mre11-Rad50 complex which is involved in S phase arrest [24, 25]. Similarly,
cohesin protein SMC1 is also phosphorylated by ATM on Ser 957 and Ser
966 depending on the phosphorylation status of Nbs1, which is essential in S
phase arrest of the cell cycle. Several other components including BRCA1,
FANCD2, MDC1, and p53 BP1 are also involved in intra-S checkpoint [22, 26].

G2 Phase Checkpoint

If a cell feels genotoxic stress, then the cell can trigger a checkpoint mechanism
arresting the cell cycle in G2 phase. For instance, ATM (ataxia-telangiectasia
mutated)- and ATR (ATM and Rad3-related)-dependent signaling can arrest the
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cell cycle in G2 phase by inhibiting CDK1 as a consequence of DNA damage. If a
cell is exposed to ionizing radiations, ATM-dependent checkpoint kinase 2 (Chk2)
activation can be seen. Whereas if a cell is exposed to ultraviolet radiation insult,
ATR dependent Chk1 activation is prevalent [27]. Chk1 and Chk2 are known to
phosphorylate Cdc25 C, thus generate a docking site for 14-3-3 proteins which leads
to nuclear export and cytoplasmic sequestration of phosphatases followed by inhibi-
tion of CDK1 resulting in G2 phase arrest of the cell cycle [27].

Previously, studies have revealed that sustained G2 arrest can be mediated by p53
as a consequence of DNA damage in cancerous cells [28, 29]. p53 leads to tran-
scriptional up-regulation of 14-3-3σ and p21 thereby inhibits G2 progression as a
consequence of cytoplasmic sequestration and thus inactivating CDK1-cyclin B
complex, respectively [29–32]. Additionally, once accumulated, p21 may cause
the arrest of the cell cycle in G2 phase (Fig. 3.3) by disturbing the interaction of
proliferating cell nuclear antigen and Cdc25 C [33].

Mitotic Spindle Checkpoint

The attachment of microtubules and chromosomes is under the strict control of
mitotic spindle fiber checkpoint. This checkpoint monitors the accurate segregation
of chromosomes during anaphase. Kinetochore associated proteins including
MAD2, BUBR1, BUB1, BUB3 proteins are key components of mitotic spindle
checkpoints [34]. Out of these, MAD2 and BUB are known to directly interact and
inhibit APC machinery preventing the entry of cells in anaphase in case of mitotic
spindle fiber dysfunction. Similarly, BUB1 and BUB3 also contribute to mitotic
arrest in case of spindle dysfunction [34].

3.4 Dysregulation in Checkpoint Leading to Cancer

Cancer is the second leading cause of death in developed countries including United
States [35, 36]. Abnormal cell proliferation due to the loss of cell cycle checkpoints
is a key hallmark of cancer and also crucial for cancer progression [37–39]. Indeed,
modulation in the machinery of cell cycle progression occurs in a variety of cancers.
A healthy cell considers such modulations as a genetic insult which results in
dysregulation of tumor suppressor genes which are considered as a suitable target
for the implication of anticancer regimens [40]. For instance, regulation of cell cycle
progression by tumor suppressor Rb protein plays a central role in curbing tumor
development since oncogenic modulation in cyclins, CDKs, and other regulators of
pRB is prevalent in a plethora of human cancers, viz. retinoblastoma, osteosarcoma,
and many other cancers [41]. In cancers where pRB protein encoding is normal, even
a subtle alteration in the alteration in signaling pathways regulating pRb can be
frequently observed with augmented levels of cyclin D and cyclin E, deletion of
p 16, and enhanced amplification of genes encoding CDK4 and CDK6 [41]. It is
noteworthy that nearly half of the metastatic breast cancers are manifested with
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increased expression of cyclin D as compared to normal breast epithelium in the
vicinity [42]. In support of this, previously it has been speculated that transgenic
mice overexpressing either human cyclin D1 or cyclin E in breast cells are more
prone to develop breast adenocarcinomas [43, 44]. Likewise, sarcomas, melanomas,
gliomas, and breast cancer have also shown amplification in CDK4/6 encoding
genes [45]. Therefore, cell cycle dysregulation as a consequence of an alteration in
cell cycle machinery is a major phenomenon detected in various cancer types.

Alteration In Cellular Checkpoint Proteins

The molecular events of checkpoint proteins play a crucial role in cell cycle regula-
tion and these checkpoints altered during cancer progression [46]. Gene encoding
cell cycle checkpoint proteins may undergo several genetic alterations leading to the
development of cancer. For instance, mutations in p53 are one of the most often
reported genetic alterations in human cancers [21]. Germline mutations in p53 are
responsible for Li–Fraumeni syndrome which is manifested with provoked
incidences for the development of breast cancer, brain tumors, and sarcomas
[47]. The normal function of p53 may be altered by several cellular proteins such
as Mdm2. This protein binds with p53 and leads to ubiquitin-mediated proteasomal
degradation. Additionally, overexpression of Mdm2 may result in subsequent inac-
tivation of p53 [48, 49]. Similarly, CDK1 modifications are also very often in human
tumors. Apart from this, lower expression levels of p27 are found in aggressive
breast cancers [50, 51], which may be more susceptible to oncogene-dependent
transformation [52]. Similarly, lower expression levels of p27 are found in human
bladder cancer [53]. Furthermore, either deletion or epigenetic modification, viz.
methylation of p15 and p16 is related to human melanomas, lymphomas, and many
other cancers [45]. Similarly, lower expression levels of p57 are associated with
human bladder cancers [53] and epigenetic modification, viz. methylation of p15 and
p16 or their deletion is linked with human mesotheliomas, melanomas, lymphomas,
and pancreatic cancers [45].

Alteration in Spindle Fiber Checkpoint

The development of a plethora of human cancers is also linked to modulation in
spindle checkpoints. For example, mutations in BUB1 have been identified and
linked with the development of human colon cancer [54] which promotes the
tumorigenic transformation of cells lacking BRCA2 breast cancer susceptibility
gene [55]. Previously it has also been reported that MAD2 haploinsufficiency results
in premature anaphase and chromosome instability in mammalian cells, resulting in
increased incidences of lung cancer development [56]. Hence, alteration in either of
the spindle fiber checkpoint components may manifest in the development of
cancerous growth.
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Alteration in DNA Repair System

Mutations in the components of the DNA repair pathway may also lead to the
development of tumors due to sustained DNA damage. For instance, in ataxia-
telangiectasia, a familial disease, ATM mutations are manifested with increased
chances of lymphomas, breast cancers, and leukemias [57].

3.5 Therapeutic Approaches to Curb Cell Cycle in Cancer

It is clear that even subtle alterations in the cell cycle result in the development of a
plethora of human cancers. Moreover, pieces of evidence have also supported the
fact that cells with defective checkpoint functions are more prone to develop cancer.
Fortunately, it also provides the opportunity to the scientific community to develop
effective therapeutic regimens against carcinogenesis. Hence, the research is always
focused on the development of alternative approaches to deal with cancer. The
efforts against cancer are focused on the identification of novel, efficient, and potent
drug molecules which have potential to target cell cycle checkpoints by considering
(1) the use of high-throughput screening of anticancer lead molecules (2) the use of
structure-based rational drug designing strategies for the development of small
molecules against cancer, and (3) the use of genetics, proteomics, and metabolomics
to identify potent anticancer therapeutics. The following few sections are focused on
such approaches in a battle against cancer.

Screening of Novel Anticancer Molecules

Strategies involving the search for novel molecules have been employed to identify
anticancer compounds against cancer. Previously, the National Cancer Institute
(NCI) examined the inhibitory activity of about 70,000 small molecules against
60 different cells of human cancer origin [58]. Similarly, a group of authors also used
NCI cell lines to examine the transcriptional levels of genes involved in cell cycle
arrest and correlated the outcomes with standard anticancer chemotherapeutics
[59]. Previously, it has been seen that the p53 status of cells is a crucial determinant
of chemosensitivity since cells with mutant p53 are less responsive towards chemo-
therapeutic agents as compared to wild type cells [60]. Similarly, cDNA microarray
studies have also been used earlier to examine the gene expression status of cell lines
responding to the treatment with chemotherapeutic agents. Such evidence provide a
valuable and definitive link between chemosensitivity and gene expression [61].

Apart from this, high-throughput screening has also been implemented in order to
identify potent small molecules against cell cycle checkpoint components. For
instance, breast cancer cells expressing mutant p53 were used in one of such studies
where the G2 phase arrest of the cell cycle was induced by radiations. The cells were
then co-treated with nocodazole, a microtubule inhibitor, and extracts from marine
invertebrates. Consequently, isogranulatimide was identified as a novel inhibitor of
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the G2 phase working in synergism with ionizing radiations [62]. Similarly, eight
novel molecules with potent anti-mitotic efficacy were identified from 24,000
extracts from marine invertebrates and plants [63].

Genomic Approaches

Genetic approaches to counter cancer primarily depend on (1) conservation of
cellular checkpoint pathways and (2) ease of manipulation in the genome of the
organism under investigation. Therefore, Saccharomyces cerevisiae provides an
excellent choice to be considered as a system to encounter against cancer [64]. Pre-
viously, anticancer drugs were screened on several strains of S. cerevisiae containing
known mutations in cellular checkpoint pathways Notably, the toxicity profiles of
ionizing radiations and chemopreventive therapeutic regimens were different from
one another in several strains with defined mutations indicating the importance of
particular mutation in cell cycle checkpoint and DNA repair pathways and thus
giving a clue for deciding the therapeutic regimen [65]. Similarly, to identify
selective peptide inhibitors and to identify novel cellular therapeutic candidates for
anticancer drugs, Schizosaccharomyces pombe has also been used [66]. Additionally,
the benefits can be taken from yeast genome which can be combined with cDNA
microarrays to examine the changes in expression patterns of genes involved in cell
cycle checkpoints after treatment with anticancer therapeutics [67]. Indeed, this
approach has been used to generate a database of several cell cycle mutants of
S. cerevisiae to screen novel anticancer molecules and ionizing radiations [68] and
fortunately, the analysis of their profiles has demonstrated novel candidates in cell
cycle regulatory pathways.

Chemical Approaches

Since the activity of cell cycle components such as CDKs is often deregulated in
cancer, inhibitors of CDKs may be effective anticancer agents. For instance,
Flavopiridol arrests the cell cycle in G1/S and G2/M phases by acting as CDKI
and inhibiting CDK1, 2, and 4. Flavopiridol also acts synergistically with other
anticancer drugs and has potent anticancer efficacy in human cancer cells and several
in vivo xenograft tumor studies with mice [69]. Additionally, a number of phase
1 studies and phase 2 studies conducted on subjects with lung, renal, colorectal, and
esophageal cancers have demonstrated the anticancer potential of Flavopiridol.
Furthermore, several anticancer studies with breast and prostate cancer and
non-Hodgkin’s lymphoma are in process with Flavopiridol [45]. Furthermore,
chemopreventive potency of several agents such as ionizing radiations can be
enhanced by therapeutic agents such as caffeine or pentoxifylline which disturb
G2 checkpoints [70, 71]. Similarly, UCN01 has also demonstrated anticancer
activities against a variety of in vitro and in vivo cancer models by acting as a potent
inhibitor of several kinases including Akt, protein kinase C, CDKs, and PDK 1. The
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anticancer properties of UCN01 involve a variety of cellular pathways including
prevention of nucleotide excision DNA repair, inhibition of G2 checkpoint kinase
Chk1 thereby arresting the cells in G1/S phase followed by apoptosis [72–77]. Simi-
larly, histone deacetylase inhibitors including FR901228 and MS27275 have shown
promising anticancer activity in vitro [78], in vivo [79], and in clinical studies
[80]. Therefore, a huge number of plant derived active pharmaceutical ingredients
such as curcumin, quercetin, isothiocyanates, gambogic acid, carnosol, and many
others are involved in cancer chemoprevention by targeting cell cycle as a preferable
anticancer therapy [81–85].

3.6 Experiences from Clinical Studies

From the above discussion it is clear that arresting the cell cycle can be an impending
strategy to curb the progression of cancer. Moreover, several clinical studies have
also supported a positive correlation between cell cycle arrest and cancer prevention.
Inhibition of CDK4/6, aurora kinase, Wee1 kinase, spindle proteins, viz. Kinesin,
and microtubules have been seen as some of potent therapies against cancer in a
variety of clinical studies [5, 86]. Recently, Mills et al. [87] have reviewed a number
of clinical studies justifying the involvement of cell cycle arrest as a potent thera-
peutic anticancer strategy [87]. Furthermore, some of the completed clinical studies
are enlisted below in Table 3.2.

3.7 Conclusion and Future Perspectives

For sustained development of novel and effective anticancer therapeutics, it is
necessary that therapeutic agents must have the ability to identify the molecular
differences between healthy and cancerous cells. Thereafter, therapeutic agents
should selectively target tumor cells keeping the healthy cells intact and alive.
Hence, the cytotoxic efficacy of such agents should be at par or well enough to
affect cancer cells only. Unfortunately, with partial success in hand, the desired
treatment of cancer is not possible. This is further aided by a poor prognosis of
cancers in initial stages. However, mechanism-based approaches such as the use of
proteomics and genomics have provided enormous opportunities to the scientific
community and clinicians, to come up with effective treatment regimens against
cancer. Although to fulfill the lacunae in existing treatment approaches, there is a
consistent need to develop technologies with enough potential to identify the cell
cycle checkpoint components with extreme precision. Additionally, advanced drug-
delivery strategies, for instance, nano-encapsulation, may also aid up in present-day
treatment approaches giving more effective therapeutic outcomes against cancer.
The scientific community should also focus on exploiting the novel, in-depth, and
mechanistic approaches to meet the need for early diagnosis and effective anticancer
treatment.
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Abstract

Apoptosis is a biological feature, which causes programmed cell death. It consists
of two pathways, namely extrinsic and intrinsic, and mitochondria are the site of
apoptotic process completion. An abnormality in the apoptotic process can make
cells immoral, which is one of the major characteristics of cancer cell formation
and cancer development. Chemotherapeutic molecules, which have been used as
anticancer drugs, or drugs under investigations, have mostly designed in a way
that they can revert apoptotic abnormalities or induce apoptosis. This book
chapter discusses the apoptotic process and its abnormalities in cancer cells,
and how chemotherapeutic drugs can induce apoptosis, with most advanced
and updated findings on mechanisms of action.
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4.1 Introduction

To grow and eliminate unnecessary or toxic materials, our body takes the support of
apoptosis. Apoptosis is a type of cell death known as biological programmed cell
death (PCD) in a controlled manner. The principal of apoptosis was first introduced
in 1842 by Karl Vogt, a German scientist, which was later explained in detail by
Walther Flemming in 1885 [1]. The number of cells is controlled by the contribution
of both cell division and cell death. Intracellular cell death is activated when
particular cells become useless. This technique is, therefore, referred to as
programmed cell death, even though it is more commonly known as “apoptosis”, a
Greek word meaning “falling off.” Billions of cells die in the bone marrow and
intestine every hour in a healthy adult human [2]. Development of mouse paws,
tadpole to frog, finger and toe formation of the fetus are all about apoptosis. If this
were not so, the tissue would go through excess expansion and shrinkage, affected
by antigen or limitless cell proliferation. Mainly there are two pathways in apoptosis:
extrinsic pathway (via death receptor) is activated by extracellular pro-apoptotic
stimuli; intrinsic pathway (mitochondrial) is initiated following mechanisms
ingrained to the cell by itself. Stimulation of the caspases is the result of apoptotic
pathways, which is crucial for this process [3]. The caspases change from inactive
zymogen to active component during apoptosis [4].

Genome integrity and cellular homeostasis are processed through a complex
system that proceeds following DNA damage, stimulating checkpoints of cell
cycle and promoting DNA repair, or removing injured cells from the proliferation.
Moreover, cell death regulates cell proliferation, such as the number of nerve cells to
match the number of target cells entailed for innervations. Basically cell death
controls cell division. So any stunt in the pathway can lead to heart failures,
neurodegenerative diseases, immune-deficiencies, and more to say cancer, that is,
uncontrolled cell proliferation [5, 6]. Accelerating apoptosis approach has been a
novel way in the history of cancer treatment by the fact that abnormal cell death has
seen to be the mainstay of tumor growth and anticancer drug resistance. The most
effective anticancer drugs thus might target apoptosis pathway.

66 M. Junaid et al.



4.2 Basic Mechanism of Apoptosis

Approximately 50 to 70 billion cells go through apoptosis in adult people per day
[7]. PCD, or more specifically, apoptosis, is a unique strategy for protecting a host
from every possible pathogen. The apoptosis process is characterized by the accu-
mulation of nuclear chromatin, condensation of cytoplasm, DNA damaging, forma-
tion of blebs, and dissolution of cell into small apoptotic bodies consumed by
lysosomes of surrounding cells [8]. This PCD is stimulated by active caspase
(cysteine-aspartic acid-specific proteases) protein, following intrinsic or extrinsic
route. Extrinsic pathway worked by activating cell surface death receptor, while
intrinsic pathway took place in mitochondria impairing the cytoskeletal protein and
nuclear proteins which are crucial for cell surveillance [9]. Generally, the caspases
remain as inactive zymogen form which develop into their active heterotetrameric
forms in a consecutive proteolytic apoptotic stimulation process.

Mitochondrial proteins are involved in intrinsic pathways of apoptosis (Fig. 4.1).
Cells with damaged DNA and/or overexpressed oncogenes influence this pathway.
The overall pathway is governed by the B-cell lymphoma 2 (Bcl-2) family proteins
[9]. The upregulation of Bcl-2 Homology 3 (BH3)-only proteins activates both Bcl-2
Associated X (BAX) and Bcl-2 antagonist/killer (BAK) [10]. BAX is regulated by
tumor suppressor p53 [11]. BAK and BAX oligomerization results in forming
mitochondrial outer membrane permeabilization (MOMP) after activation. MOMP
is the significant event of intrinsic apoptosis and is taken as the point of no return

Fig. 4.1 Basic mechanism of apoptosis
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[12]. Eventually upon the release of intermembrane protein cytochrome c,
apoptosome forms, and apoptotic protease-activating factor-1 (APAF-1),
deoxyadenosine triphosphate (dATP) activate procaspase-9 [13]. After that
procaspase-9 is activated into caspase-9 that activates killer protein caspases-3 and
-7 [14]. The executioner caspases immediately start to cleave proteins that leads to
cell death. Additionally p53 has been demonstrated as crucial for the induction of
apoptosis enabling activation of cell cycle checkpoints and DNA damage surveil-
lance and p21 has appeared as down-regulator of p53, resulted in controlling
apoptosis and cell cycle progression [6].

The extrinsic or death receptor pathway is mediated by death receptors
(DR) activated by ligand binding (Fig. 4.1). DRs belong to tumor necrosis factor
(TNF) receptor super family. Some death ligands possess TNF, TNF-related apo-
ptosis-inducing ligand (TRAIL), and Fas ligand (Fas-L) [15]. The perforin/
granzyme pathway is also involved in apoptosis, but mostly unclear. In this pathway,
apoptosis is programmed via any of granzyme A or B. All these three apoptotic
pathways coincide in the same terminal cellular pathway [15]. After ligand binding
to receptor, intracellular death domain of DRs binds with some specific protein
motifs like Fas-associated death domain (FADD) and TNF receptor-associated death
domain (TRADD). These certain proteins are connected with other protein interac-
tion domain, named death effector domain (DED). Pro-caspase-8 also has DED that
is stimulated upon interaction with the DED of FADD [16]. At this phase, a death
inducing signaling complex (DISC) is formed. This signal triggers auto-catalytic
activation of procaspase-8 [17]. The active caspase-8 then activates effector
caspases, which performs the execution of destruction. Moreover, there are other
pathways of caspase activation too, including a principle role of caspase-2 or
caspase-12 in apoptosis activation by endoplasmic reticulum (ER) stress [18]. Sev-
eral of the inhibitor of apoptotic protein (IAP) family members have also been found
to take part in pathological conditions, particularly neurodegenerative disorders and
cancer by upsurging proliferation protein [19].

4.3 Apoptosis Dysregulation in Cancer Cells

Abnormal apoptosis has been found to be associated with human diseases whereas
extreme apoptosis causes degenerative disorders, and inadequate apoptosis results in
neoplastic diseases. Cancer involves the anomalous growth of cells due to the loss of
balance between apoptosis and proliferation. The ratio of pro-apoptotic and anti-
apoptotic proteins plays an important role in apoptosis regulation. In this respect,
cancer cells evade apoptosis by deactivating the machinery of cell death through
different mechanisms such as overexpression of Bcl-2 family proteins or inhibition
of pro-apoptotic Bcl-2 proteins, thus acquisition of a higher survival benefit. More-
over, another well-known mechanism of cancer cell survival is tumor suppressor p53
inactivation [20]. Usually, cancer cells evade this apoptosis by following
mechanisms (1) disruption of pro-apoptotic and anti-apoptotic protein balance
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(2) Enhancement of IAP expression (3) inhibition of function of caspases, and
(4) compromised signaling in DRs (Fig. 4.2).

Disruption of Pro-apoptotic and Anti-apoptotic Protein Balance

The Bcl-2 family of proteins are anti-apoptotic and pro-apoptotic, and they are
involved in apoptosis regulation, particularly through the intrinsic pathway of
caspase activation as they exist in upstream of cellular damage (irreversible) and
function primarily in mitochondria. Based on the function and Bcl-2 homology
(BH) domains, Bcl-2 family proteins are of three groups. (1) The anti-apoptotic
proteins Bcl-2, Bcl-xtra large (Bcl-xL), myeloid cell leukemia 1 (Mcl-1), Bcl-w, A1/
Bfl-1, and Bcl-B/Bcl-2-like protein 10 (Bcl-B/Bcl2L10) that comprise all of the four
BH domains, and they defend cells from apoptotic signals. (2) The second group
involves BH-3 proteins including Bcl-2 associated agonist of cell death (Bad),
Bcl-2-modifying factor (Bmf), BH3 interacting domain death agonist (Bid), Noxa,
Bcl-2-like protein 11 (Bim), BCL2 interacting killer (Bik), p53 upregulated
modulator of apoptosis (Puma) and Harakiri, Bcl-2 interacting protein (Hrk).

Fig. 4.2 Deregulation of apoptosis due to (a) Reduction in caspase activation; (b) Enhancement of
IAP expression; (c) Imbalance in pro- and anti-apoptotic Bcl-2 ratio; (d) Impairment in death
receptor signaling pathway mediated by reduced death signal, reduced death receptor expression,
and decoy receptor expression without death domain
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These pro-apoptotic proteins being the initiator of apoptosis, become activated in
response to deprivation of growth factors, DNA damage, and ER stress (3) A third
group protein members including Bak, Bax, and Bcl-2 related ovarian killer/Mtd
(Bok/Mtd) that contain all four BH domains, and they are pro-apoptotic too [21]. If
there is an imbalance in the balance between pro-apoptotic and anti-apoptotic Bcl-2
family of proteins, the outcome is dysregulation in apoptosis process in the damaged
cells.

Enhancement of IAP Expression

Apoptosis inhibitor c-IAP1 (BIRC2), NAIP (BIRC1), X-linked inhibitor of apopto-
sis protein (XIAP, BIRC4), IAP-like protein 2 (BIRC3), c-IAP2 (BIRC8), Apollon
(BRUCE, BIRC6), Survivin (BIRC5), and Livin/MLIAP (BIRC7) are a group of
functionally and structurally similar proteins, which regulate signal transduction,
cytokinesis, and apoptosis. These inhibitors contain a characteristic baculovirus IAP
repeat (BIR) protein domain and reduce the activity of caspase via binding BIR
domain to caspase active site. IAPs promote degradation of active caspases by this
mechanism or by keeping away the caspases from their target, thereby inhibit
apoptosis [22].

Reduced Caspase Activity

The cellular machinery that mediates apoptosis includes a cysteine proteases family
termed caspases. Therefore, it is rational to consider that Mammalian caspases are
divided into 3 clusters functionally: initiator (caspase 2, 8, 9, and 10), executioner
(caspase 3, 6, and 7), and inflammatory (caspase 1, 4, 5, 11, and 12) [23]. The
binding of a death ligand to a DR initiates the extrinsic pathway of apoptosis, which
then recruits, dimerizes, and activates the caspase-8 via TRADD/FADD adapter
proteins. Activated caspase-8 later either stimulates apoptosis by cleaving directly
and in that way activates the executioner caspases (3, 6, and 7), or stimulates intrinsic
pathway of apoptosis via BID cleavage to persuade effective cell death. The mito-
chondrial or intrinsic or apoptosis pathway can be initiated through different cellular
stresses that trigger to the freeing of cytochrome c from mitochondria, and
apoptosome formation, consisted of apoptotic protease-activating factor
1 (APAF1), caspase-9, and cytochrome c, consequently activate caspase-9. Later
the activated caspase-9 stimulates apoptosis by cleaving and activating executioner
caspases [24]. Caspases become one of the key proteins in apoptosis initiation and
execution. That is why, a reduced level of caspases or dysfunction of caspases is
linked to decrease of apoptosis or cancer progression.
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Impaired Death Receptor Signaling

DRs and DR-associated ligands are essential elements in extrinsic apoptotic path-
way. DRs which are involved in this pathway are TNFR1 (also called DR 1), Fas
(also known as APO-1 or DR2 or CD95), DR3 (also known as APO-3), DR4 (also
known as TRAIL-1 or APO-2), DR5 (also known as TRAIL-2), DR 6, nerve growth
factor receptor (NGFR) and ectodysplasin A receptor (EDAR). These receptors
contain a death domain and triggered by death signaling, death domain attracted
by numerous molecules that result in signaling cascade activation. But, when death
ligands bind to decoy DRs excluding a death domain, it fails to generate signaling
complexes, consequently fail to initiate signaling cascade. Different anomalies in
this pathway, leading to avoidance of extrinsic apoptotic pathway have been
characterized, for example, receptor downregulation or destruction of its function,
as well as a reduction in death signal levels, which play role in the impairment of
signaling and henceforth reduce apoptosis [25].

4.4 Chemotherapeutic Drugs and Apoptosis

Researchers developed numerous chemotherapeutics by targeting the intrinsic and
extrinsic pathway regulating proteins of apoptosis. Fas and TRAIL induce the
extrinsic pathway, and caspase 9 activation by MOMP and blocking of XIAP by
second mitochondrial-derived activator of caspase/direct inhibitor of apoptosis pro-
tein binding protein with a low isoelectric point (SMAC/DIABLO) play role in the
initiation of intrinsic apoptotic pathway [4].

Chemotherapeutics Targeting the Extrinsic Apoptotic Pathway

Pro-apoptotic Receptor Agonists (PARAs)
Activation of TRAIL stimulates apoptosis in cancer cells via TRAIL-R1 and
TRAIL-R2 DRs. It is pre-clinically evident that agonistic antibodies against
TRAIL-Rs induce apoptosis in different cancer types without affecting normal
tissues, that made it an appropriate approach in targeting cancer [4].

Pan Recombinant Human TRAIL (rh-TRAIL) Antibodies: Dulanermin
Both of TRAIL-R1 and TRAIL-R2 are targeted by rh-TRAIL. In cancer cells,
Dulanermin selectively induces apoptosis by activating caspase and leading to
consequential cell death [26]. A number of studies reported its apoptotic function
as a single chemotherapeutic agent or in combination with other agents in hemato-
logical cancer and solid tumor [4].

TRAIL-R1 Agonistic Monoclonal Antibodies: Mapatumumab
Mapatumumab, a human immunoglobulin G1 lambda (IgG1λ) targets TRAIL-R1. A
number of studies (mainly pre-clinical) revealed that mapatumumab inhibits tumor
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progression in mice indicating established human tumor xenografts expressing
TRAIL-R1. Mapatumumab is competent to improve the anticancer potential of
cytotoxic compounds in numerous cancer cell lines as a single agent, with those
resilient to chemotherapy [27]. Its activity also evaluated in combination with other
chemotherapeutics by many studies. A phase I clinical trial investigated
mapatumumab activity with paclitaxel and carboplatin in advanced solid tumor
patients, where 44% of patients acquired stable disease (SD) [28]. Again,
mapatumumab was used in combination with gemcitabine and cisplatin, and
25 gained SD with an average length of 6 months [29]. Another study combined
mapatumumab and sorafenib in patients with progressive hepatocellular carcinoma
(HCC), and reported a PR in 2 patients out of 19, with 4 SD patients [30].

TRAIL-R2 Agonistic Monoclonal Antibodies

Lexatumumab Lexatumumab is a fully recombinant human IgG1λ mAb, which
efficiently binds with and triggers TRAIL-R2. Its activity against ovarian, breast,
renal, colorectal cancer (CRC), and hematological cells and animal model by
activating caspase 8 and caspase 9 is well-evident [31].

Conatumumab Conatumumab (AMG 655), another mAb found to stimulate the
caspases in human cancers by targeting specifically TRAIL-R2 [32]. Though there is
no data of overall survival (OS) or progression free survival (PFS) advantage with
doxorubicin in refractory soft tissue sarcoma or carboplatin and paclitaxel in non-
small-cell lung carcinoma (NSCLC) [33, 34], in combination with gemcitabine in
randomized phase II study resulted in a non-significant upgrading [35].

Other Agonistic TRAIL-R2 Antibodies: Tigatuzumab, Drozitumab,
and LBY135
Tigatuzumab, drozitumab, and LBY135 are agonist antibodies to TRAIL-R2, which
have been tested in phase I/II trials. During the study, minor responses were found
for drozitumab in 3 patients suffered from CRC, chondrosarcoma, and granulosa cell
tumor, whereas 14 patients out of 41 got SD [36]. In case of tigatuzumab phase I
trial, 7 patients out of 17 got SD [37]. LBY135 testing reports revealed that clinical
activity was restricted to SD, when used as single agent, though 2 PRs (CRC, breast)
were attained in combination with capecitabine [38].

Chemotherapeutics Targeting the Intrinsic Apoptotic Pathway

Bcl-2 Inhibitors
Anti-apoptotic Bcl-2 proteins, named Bcl-XL, Bcl-2, Mcl-1, and Bcl-w are
overexpressed in different cancers, including hematological malignancies, small-
cell lung cancer (SCLC) and B-cell lymphoma [39]. Inhibitors are of different types
as follows:
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Antisense Oligonucleotides as Bcl-2 Inhibitors: Oblimersen Sodium The
18-antisense oligonucleotide “oblimersen sodium” (Genasense, G3139) targets
Bcl-2 m RNA of intrinsic pathway. G3139 exerts pro-apoptotic effects by increasing
Bax, discharging cytochrome c from mitochondria to stimulate caspases, and even-
tually releasing Smac/DIABLO to suppress IAPs, which causes caspase 3 and
9 activation, triggering the initiation of apoptosis [40]. Also, Bcl-2 downregulated
by oblimersen in the non-apoptotic pathway where stimulation by Bcl-2 caused the
release of Beclin-1 to mediate cell death by autophagy [41]. Furthermore,
oblimersen has been found to boost tumor immunity via triggering polyclonal
antibody production, and stimulating dendritic cell maturation [42].

Small Molecule Downregulating Bcl-2 Gene or Protein Expression Several
small molecules are established for regulating upstream factors of anti-apoptotic
Bcl-2 proteins that caused their reduced expression [43]. Sodium butyrate (NaB),
Depsipeptide and Vorinostat are the inhibitors of class-I histone deacetylase
(HDAC), which expression is positively correlated with Bcl-2 expression. Inhibition
of HDAC1 causes the downregulation of the Bcl-2, Bcl-XL, and Mcl-1 in multiple
myeloma (MM) and mesothelioma cells [44].

Synthetic Retinoid Synthetic retinoids were documented to decline the expression
of Mcl-1 through phosphorylating the c-Jun kinase (JNK) in malignant cells without
affecting non-cancerous cells [45]. The upregulation of Mcl-1 is generally linked
with several antitumor drugs resistance, so Mcl-1reduced expression should aug-
ment cytotoxicity of the cancer cell targeting drugs.

BH3 Mimetics Targeting BH3 Domain of Bcl-2
BH3 mimetics small molecules can target BH3 domain of Bcl-2. These BH3
mimetics make interaction with anti-apoptotic Bcl-2 proteins via binding to their
BH-3 binding groove. Some of the BH3 mimetics are discussed below:

Gossypol Gossypol (AT-101, Ascenta) isolated from cotton seeds and roots. This
BH3 mimetic natural polyphenolic compound suppressed Bcl-2 by disrupting the
Bcl-2 and pro-apoptotic protein hetero dimerization [46]. Levo gossypol with higher
affinity binds with hydrophobic groove of Bcl-2, Bcl-XL, and Mcl-1 and mediates
apoptosis more competently compared to dextro gossypol [47]. It can also bind to
Bak directly, consequently form oligomer by activating the Bak [48]. Moreover,
levo gossypol also upsurges the sensitivity of chemotherapy and radiation therapy
via activating the signaling pathway of stress-activated protein kinases (SAPK/JNK)
that is regulating mitochondrial pro- and anti-apoptotic proteins [47]. Subsequently,
levo gossypol is verified in a clinical trial in combination with other chemotherapeu-
tic agents, such as with docetaxel in hormone refractory prostate cancer and with
rituximab in treating chronic lymphocytic leukemia (CLL) [43].
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Obatoclax Obatoclax (also identified as GX15-070) is an indole bi pyrrole small
molecule that can inhibit Bcl-2. It prevents BAK to bind with MCL-1 and
upregulates BIM expression [49].

ABT-263 (Navitoclax) and ABT-737 (A-779024) ABT-737 (A-779024) mimics
BH3 domain of BAD protein and specifically binds with higher affinity to Bcl-XL,
Bcl-2, and Bcl-w, but not to Bcl-B, Mcl-1, and A1 proteins [50]. ABT-263
(navitoclax) shows parallel anti-Bcl-2 activity with its antecedent, and reveals higher
affinity for Bcl-2, Bcl-w, and Bcl-XL, but not for protein A1 or Mcl-1
[51]. ABT-737 displays strong antitumor activity as single agent in vitro against
small-cell carcinoma cells and lymphoma, and similarly in mouse xenograft models
with elevated upregulation of Bcl-XL or Bcl-2 [52]. Phase I and II clinical trials
disclosed that both ABT-737 and ABT-263 were efficient in SCLC and CLL.
Besides their activity as single agent, ABT-737 and ABT-263 have noteworthy
effects in triggering apoptosis as combination therapy with other anticancer drugs.
ABT-263 has been found to increase the effectiveness of chemotherapy and radia-
tion therapy for CLL, SCLC, follicular lymphoma, and so on [51], while ABT-737
prompts sensitization of cancer cells to arsenic trioxide, flavopiridol, or fenretinide
[53]. Further studies exhibited that ABT-263 promotes sensitization of many solid
tumors to conventional agents, such as cyclophosphamide, fludarabine, and
rituximab [51, 54]. Nevertheless, both ABT-263 and ABT-737 can decrease platelet
for pointing Bcl-xl, which is essential in upholding the life expectancy of circulating
platelet, demanding the improvement of Bcl-2 inhibitors selectively [52]. Several
other BH3-mimetic compounds developed, that shares similar features like
ABT-263 and ABT-737’s inhibiting Bcl-xl and Bcl-2; these compounds include
S44563, BM-1198, AZD4320, and Bcl2-32 [3].

ABT-199 (Venetoclax) ABT-199 (GDC-0199) showed its inhibitory effect against
Non-Hodgkin’s lymphoma (NHL) cell lines, comprising those resultant from follic-
ular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), or mantle cell
lymphoma (MCL), along with its activity in clinical trials against acute myeloid
leukemia (AML) and acute lymphoblastic leukemia (ALL) cell lines [55]. Due to its
specific inhibitory function to Bcl-2, it was approved to treat CLL by FDA in 2015
[56]. ABT-199 was designed to circumvent the nonselective interaction of ABT-263
with Bcl-xl inducing the antagonistic effect of thrombocytopenia [57]. Research
studies also exposed that ABT-199 had a substantial sensitizing role in combination
therapy with other anticancer drugs, like obinutuzumab, rituximab, in AML and
CLL patients [52, 58, 59].

S55746 (Bcl201, Servier-1) This orally available chemotherapeutic agent showed
effective killing of cancer cells overexpressing Bcl-2 in vitro and in vivo, and it was
tested in refractory CLL patients in a phase I trial. S55746 also tested as a sensitizing
agent in combination with phosphoinositide 3-kinase delta (PI3Kδ) inhibitor in
follicular lymphoma (FL) and mantle cell lymphoma [52].
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Selective Inhibitors Targeting Bcl-XL Agent (A-1155463, A-1331852,
and WEHI-539) These therapeutic agents mimic BH3-only proteins and do not
bind to Bcl-2, instead they bind strongly at p4 and p2 hotspots of Bcl-XL [60]. In
colorectal cancer, Bcl-XL plays vital role, and study showed that these inhibitors are
efficient against solid tumors. WEHI-539 was developed based on A-1155463 or
A-1331852 and possesses the greatest selectivity for Bcl-XL, signifying its
promising role as a single agent for some solid tumors [61].

Selective Anti-Mcl-1 Agents (UMI-177, A-1210477, and AMG176) UMI-77
precludes Mcl-1from binding with Bak and Bax, which stimulate apoptosis for
many tumor cells. Though, UMI-77 had a rational selectivity for Mcl-1, demanding
additional optimization. Consequently, A-1210477 was created and revealed high
selectivity and binding affinity for p3 and p4 hotspots of Mcl-1. Through a sub
nanomolar affinity, A-1210477 can be employed as a single agent and could also
combine with ABT-263 to kill more cell lines [62].

AMG176, the recognized Mcl-1 inhibitor, also tested for clinical acceptability,
antitumor response, pharmacokinetics in combination therapy for refractory multiple
myeloma, Burkitt Lymphoma (BL), and AML where it induces apoptosis by altering
the expression of anti-apoptotic and pro-apoptotic Bcl-2 proteins [52, 63, 64].

Maritoclax Maritoclax (also called marinopyrrole A) was isolated from marine-
dwelling Streptomyces species that can directly target MCL-1, and marks it for
proteasomal degradation; thus effectively mediating apoptosis. Also it can stimulate
apoptosis in MM cell lines through interfering with MCL-1 [3].

ML311/EU-5346, S63845, S64315 (MIK665) ML311/EU-5346 has optimal
strength for MCL-1 suppression in MCL-1 dependent cell lines. A threefold to
fourfold lower efficacy for Bcl-2 inhibition and negligible effect on BCL-XL
inhibition [3]. S63845 revealed effectiveness against MCL-1 reliant cell lines
equally in vitro and in vivo, which were resilient to both venetoclax and navitoclax,
as like A1210477, but S63845’s effectiveness against MCL-1-reliant cell lines was
above 1000 times superior. S64315 (MIK665) was derived from S63845, and is
currently employing patients for two phase I studies: in myelodysplastic syndrome
and refractory/relapsed AML (clinical trial ref.#NCT02979366), and another in
patients with lymphoma or relapsed/refractory MM (clinical trial ref.#
NCT02992483) [3].

AZD5991 AZD5991 is comparatively newly described. It is macrocyclic structur-
ally and lucidly designed compound demonstrating higher selectivity for MCL-1. It
binds directly to MCL-1, promptly enabling the detachment of BAK from the BAK/
MCL-1 [3].
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Targeting Inhibitors of Apoptosis (IAPs) by SMCS

Smac-Mimetic Compounds (SMCS) [SH-130, JP1201, Compound A (CA),
AT-406, LCL-161, GDC-0152, Birinapant, HGS-1029, BV6 XIAP]
A Smac-mimetic SH-130 compound, as a radio sensitizer has revealed activity in
prostate cancer cells. JP1201 was found effective against pancreatic cancer model.
An unique and smac-mimetic molecule, “compound A” (CA), was found synergis-
tically effective with TRAIL in primary CLL cells as an inhibitor of XIAP to
promote effective apoptosis [4].

AT-406, another inhibitor of cellular inhibitor of apoptosis protein 1 (cIAP1),
cIAP2, XIAP play inhibitory role towards solid tumors. It is also utilized synergisti-
cally with Carboplatin, cisplatin, Bcl-2, paclitaxel, radiation therapy, TRAIL, and
BRAF inhibitors [65]. LCL-161 destroys cIAP1 and cIAP2 and has potential action
against solid tumors, multiple myelofibrosis, esophageal squamous cell carcinoma,
and NSCLC. It is used in combination with TNF-α/TRAIL, paclitaxel, and radiation
therapy [65, 66]. GDC-0152 is an inhibitor of cIAP1, cIAP2, XIAP and ML-lAP,
and it has been used against breast cancer and glioblastoma [65, 67].

Birinapant was found to degrade cIAP1 and cIAP2 in solid tumors and mela-
noma. It is used in combination therapy by combining with Carboplatin, TRAIL,
TNF-α [65, 68]. HGS-1029 causes XIAP inhibition, and loss of cIAP expression
[69] in colon cancer and adenocarcinoma [65]. BV6 XIAP, degrade cIAP1 and
cIAP2 [70] playing role against breast cancer, AML, and childhood ALL in combi-
nation with different chemotherapeutics, such as Drozitumab, 5-azacytidine, and
dexamethasone [65]. Table 4.1, represents a bird eye view of various chemothera-
peutic agents that are known to target apoptotic cell death of cancer.

Targeting Survivin and XIAP
Upregulation of XIAP via apoptotic stimuli is associated with tumor cell death
resistance [77]. Some agents targeting XIAP and survivin are discussed below.

AEG35156 This has been tested in early phase clinical trials. Pre-clinical studies
displayed the efficacy of AEG35156 in triggering XIAP downregulation and there-
fore boost apoptosis [71].

YM155 This small imadazolium-based YM155 (sepantronium bromide) com-
pound was recognized against anti-apoptotic protein survivin. YM155 showed
pre-clinical success regarding survivin inhibition at both of mRNA and protein
levels [72].

LY2181308 This molecule can bind to survivin complementarily and suppress its
expression in cancerous cells. As a radio sensitizer, it showed potential effect in
cancer cell lines with an inhibition of survivin expression [73, 78], along with
substantial suppression of human xenograft growth while directed intravenously.
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Table 4.1 Apoptosis inducing chemotherapeutics in pre-clinical and clinical trial and their mode
of action for triggering apoptosis

Drug inducing apoptosis Molecular mechanism References

Dulanermin Caspase activation [31]

Mapatumumab Enhance the anticancer activities of cytotoxic
compounds

[31]

Lexatumumab Activating caspase 8 and caspase 9 [31]

Conatumumab Activating intracellular caspases by stimulating
DR5

[32]

Drozitumab Stimulate death receptor DR5 [36]

Tigatuzumab Stimulate death receptor DR5 [37]

LBY135 Stimulate death receptor DR5 [38]

Oblimersen sodium
(Genasense, G3139)

Increasing Bax, discharging cytochrome c from
mitochondria to stimulate caspases and eventually
releasing Smac/DIABLO to suppress IAPs, and
activation of caspase-3 and caspase-9

[40]

Sodium butyrate (NaB),
Depsipeptide, and
Vorinostat

Downregulation of the anti-apoptotic proteins
Bcl-2, Bcl-XL, and Mcl-1

[44]

Synthetic retinoid Reduce the expression of Mcl-1 through
phosphorylating the c-Jun kinase (JNK)

[45]

Gossypol Suppressed Bcl-2 by disrupting the Bcl-2 and
pro-apoptotic proteins hetero dimerization, activate
the Bak,

[46, 48]

Obatoclax Prevents the binding of BAK to MCL-1, and
increases BIM expression

[49]

ABT-199, ABT-263, and
ABT-737 (navitoclax)

Inhibit Bcl-2, Bcl-XL proteins; but not of BCL-w
protein

[50, 51,
55, 56]

S55746 (Bcl201, Servier-1) Inhibit anti-apoptotic Bcl-2 [52]

A-1155463, A-1331852,
and WEHI-539

Inhibit anti-apoptotic Bcl-XL [60, 61]

UMI-177 Precludes Mcl-1 from binding with Bak and Bax,
which stimulate apoptosis

[52, 62–
64]

A-1210477 and AMG176 Inhibit anti-apoptotic Mcl-1 [52]

Maritoclax (marinopyrrole
A)

Binds to Mcl-1 and induces proteasomal
degradation

[3]

ML311/EU-5346, S63845,
S64315 (MIK665)

Inhibit anti-apoptotic Mcl-1 [3]

AZD5991 Inhibit anti-apoptotic Mcl-1 [3]

SH-130 compound Enhance radiation-induced activation of caspase
and induction of apoptosis

[4]

JP1201 Inhibit IAPs [4]

Compound A (CA) Inhibit XIAP [4]

AT-406 Inhibit cIAP1, XIAP, cIAP2 [65]

LCL-161 Destroys cIAP1 and cIAP2 [66, 65]

GDC-0152 Inhibit XIAP, cIAP1, cIAP2, and ML-lAP [65, 67]

Birinapant Degrade cIAP1 and cIAP2 [65, 68]

(continued)
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LY2181308 also made tumor susceptible to cytotoxics such as paclitaxel,
gemcitabine, and docetaxel [73].

Other Molecules

Thymoquinone Thymoquinone (TQ), a compound from black cumin was found to
induce apoptosis in cervical cancer cells (CaSki and SiHa). In those cell lines, not by
affecting the expression of poly A polymerase (PARP), Bcl-2, Bax, caspase 3 and
9, indicating other possible mechanisms involved in apoptosis induction, such as
regulation of p53 pathway, NF-κB pathway, reactive oxygen species (ROS) genera-
tion, etc. [74].

Cordycepin Cordycepin treatment was found to enhance apoptotic cell death in
SiHa and HeLa cervical cancer cell lines. Its mode of action indicated that apoptotic
activity was might be due to the increased ROS generation in the tested cancer cell
lines as no remarkable changes were detected for anti-apoptotic or pro-apoptotic
proteins [75].

Resveratrol Resveratrol treatment in a low concentration remarkably elevated the
activity of superoxide dismutase (SOD) in PC-3, MCF-7, and HepG-2 cells, and
upregulated the expression of SOD, Catalase, and glutathione peroxidase
disproportionally in cancer cells that leads to H2O2 accumulation in mitochondria,
which in turn stimulated apoptotic death of cancer cells [76].

Table 4.1 (continued)

Drug inducing apoptosis Molecular mechanism References

HGS-1029 Inhibition of XIAP inhibition, and loss of cIAP
expression

[65, 69]

BV6 XIAP Degrade cIAP1 and cIAP2 [65, 70]

AEG35156 Down regulation of XIAP [71]

YM155 Inhibit survivin [72]

LY2181308 Inhibit survivin [73]

Thymoquinone Regulation of p53 pathway, generation of ROS,
and interference with NF-κB pathway

[74]

Cordycepin Increased ROS generation [75]

Resveratrol Upregulation of the expression and enzymatic
activity of SOD, CAT, and GAP

[76]
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Role of Redox Potential of Anticancer Molecules in Apoptosis
Induction

ROSs are reactive biochemical components, for example, superoxide anion (O2
•–),

hydroxyl radical (•OH), hydrogen peroxide (H2O2), or nitroperoxide (ONOOH).
Upon produced by eukaryotic cells cellular aerobic metabolism plays major role in
signaling pathway and apoptosis. Oxidative stress by ROS and associated signaling
pathways offer a critical challenge towards anticancer therapies because of its both
pro- and antitumor dual roles. Cancer cell requires moderate oxidative stress for its
proliferation and invasion, whereas increased oxidative exposure to cancer cell could
induce its apoptosis. Highly effective redox system makes cancer cell resistant to
oxidative stress. Thus targeting the redox system in cancer cells by using oxidants or
antioxidants is an important approach in current cancer therapeutic research [79, 80].

Antioxidant Enzymes: Regulator of Apoptosis

SOD, catalase, glutathione peroxidase (GPx), and thioredoxin reductases (Trx) are
important antioxidant enzyme systems. These enzymatic antioxidants possess the
ability to destroy ROS that provide highly effective protection against vigorous and
substantial oxidative damage.

Studies corroborated that the mitochondria are the key generators of ROS as well
as the leading target of generated ROS. Enormous accumulation of ROSs in
mitochondria triggers Mn-SOD overexpression to suppress oxidative injury in
mitochondria. Besides, this accumulated ROS in mitochondria can promote the
transition of mitochondrial permeability, hence distort the stability of mitochondrial
membrane. Mitochondrial outer membrane damage eventually causes the cyto-
chrome c release along with pro-apoptotic factors, namely apoptosis inducing factor
(AIF), OMI/HtrA2, Smac/Diablo, and endonuclease G, finally prompts caspase
activation and apoptosis [81]. GSH used as reductant by GPx to catalyze the
conversion of organic hydroperoxides or H2O2 into water or the analogous alcohols.
GPxs members have anti-oxidative role at diverse cellular organelles, such as cytosol
and mitochondria (GPx1), cytosol and nucleus (GPx2), plasma (GPx3), and in
membrane (GPx4). The endogenous Trx antioxidant system includes NADPH and
Trx, which play very significant role against oxidative insults. These antioxidants
repair DNA and protein via reducing methionine sulfoxide reductases and ribonu-
cleotide reductase. Trx antioxidants and its binding proteins (TBP2 and ASK1)
regulate apoptosis or metabolism of lipids and carbohydrates. Both Trx and GSH
system can defend oxidative attack by removing different ROS effectively [81, 82].

For example, resveratrol, a natural anticancer polyphenol mediates the accumu-
lation of H2O2 in mitochondria through antioxidant enzymes regulation, which in
turn, stimulated apoptosis in different cancer cells [76]. Resveratrol also plays
suppressive role in colorectal cancer in rats by inhibiting oxidative stress. Investiga-
tional results demonstrated that resveratrol supplementation (entire-period) consid-
erably elevated the enzymatic (SOD, glutathione reductase, catalase, GST, and GPx)
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and non-enzymatic (decreased vitamin C, beta-carotene, vitamin E, and glutathione)
antioxidant status along with a concomitant alleviation in the level of lipid peroxi-
dation markers. Taurine upsurges the expression of catalase, SOD, and GPx gene
and hence, it was found potent against melanoma [80].

ROS Trigger Apoptosis by Modulating Different Cellular Pathways

Initiation of cell apoptosis originates from intracellular and extracellular signals by
the DRs and the mitochondria-mediated extrinsic and intrinsic pathways. After the
initiation of cellular apoptosis, disruption of the homeostasis of intracellular redox
system and consistent oxidative alterations of DNA, lipid, and protein enhance ROS
concentration that influences oxidative stress mediated signaling of apoptosis. ROS
stimulate the cancer cell apoptosis through TRAIL, and increase CD95 expression
and TRAIL DRs via instigating NF-κB [83]. Further, ROS-induced activation of
JNK plays an important role in mitochondrial dysfunction with consecutive apopto-
sis initiation. Instigation of ROS/JNK can also uplift and withstand p53 activity that
further leads to robust apoptotic effect in cancer cells [84]. The mitogen-activated
protein kinase (MAPK) that is sensitive to redox and the apoptosis signal-regulating
kinase 1 (ASK1) are the upstream proteins of ROS/JNK. The activity of ASK1 is
inhibited due to its interactions with redox proteins (Trx1 and Grx). ROS induce the
dissociation of Trx1 from the Trx1-ASK1 complex, and also recruit tumor necrosis
factor receptor-associated factors (TRAF2/TRAF6) to the Trx1-ASK1 complex.
Stimulated ASK1 later provide signals to activate JNK, and persuades apoptosis
either by signaling to mitochondria or by AP-1-dependent pro-apoptotic gene
transcription. Moreover, ROS-induced distraction of the Trx2/ASK1/ASK2 com-
plex of the mitochondria mediates cytochrome c release. ROS can also be increased
due to the ER stress and stimulate the adjacent mitochondria for initiating the
intrinsic apoptosis signaling pathway [85].

Anticancer molecules found to play significant role in ROS mediated apoptosis
by activating different molecular pathways. Evidence have shown that
thymoquinone mediates apoptosis by ROS generation through various molecular
signaling pathways, like inducing Akt activation and stimulating Bax protein’s
conformational changes that eventually leads to the damage of membrane potential
of mitochondria and cytochrome c release and next, initiation of the caspase-
dependent apoptotic pathway. Also, ginsenosides apply their anticancer potentials
through ROS mediated signaling cascades [86]. Figure 4.3 presents a simplified
diagram showing ROS mediated apoptotic mechanisms.
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Mechanism of Balancing Antioxidant/Oxidant Mechanism by
Chemotherapeutic Molecules to Protect Cells and Induce Apoptosis

Cancer cells are capable of adopting to new environments easily because of their
highly compatible redox mechanisms that allow them to mediate a new redox
balance for promoting cancer cell’s growth.

There are different anticancer molecules mimicking antioxidant enzymes,
targeting anti-apoptotic Bcl-2 proteins, caspase activation, and IAP. Mangafodipir
is a potent SOD mimic possessing a combination of catalase-, SOD, and glutathione
reductase-like functions. Hence, it can modulate different ROS cascade steps by
neutralizing H2O2, O2•– and by reestablishing GSH enzymes actions
[87]. Niclosamide has proved as a powerful radiosensitizer that sensitize cells to

Fig. 4.3 ROS mediated signaling of apoptosis through caspase activation via the release of
cytochrome c and ASK-1 activation
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H2O2, via activating p38 MAPK-c-Jun axis, thus increasing apoptosis
[88]. Organotellurides are well designated catalyst of redox with unique
prooxidative role. Tellurium and selenium-based compounds convert the oxidizing
redox milieu (existed in particular cancer cells) into a deadly accumulation of ROS
that force these cells towards an acute redox threshold, and finally destroy these
cells via apoptosis [89]. Allicin from garlic is a reactive sulfur species that has
oxidizing properties, and is capable to oxidize thiols groups in cells, for example,
cysteine residues in glutathione. This organosulfur stimulates apoptosis by elevating
the cytochrome c level of mitochondria and release of Bax [90]. Quercetin provides
anti-oxidant activity as metal chelator and ROS scavenger. It also exerted anticancer
functions in cancer cells mainly via activating apoptosis [91].

4.5 Limitation of Apoptosis Targeting Chemotherapeutics

Chemotherapeutic Dulanermin did not show any maximum tolerated dose (MTD)
and dose-limiting toxicity (DLT) in patients. Again, phase I studies reported that
Mapatumumab is safe. However, the most recurrent side effects were nausea,
hypotension, fatigue, transaminitis, pyrexia, thrombocytopenia, and neutropenic
fever found for mapatumumab. In case of Lexatumumab, the DLTs were
transaminitis, hyperamylasaemia, and hyperbilirubinaemia. Phase I clinical study
of AMG655/Conatumumab displayed fatigue, and elevated lipase level in patients.
Study of antisense oligonucleotide Oblimersen revealed fatigue, and LFTs elevation.
ABT-263 caused nausea, thrombocytopenia, fatigue, and elevated ALT, grade
4 thrombocytopenia, and bronchitis as dose-limiting toxicity (DLT). Grade III
thrombocytopenia in some patients was observed by ABT-199, tumor lysis syn-
drome (TLS), neutropenia, or infections as adverse effects in patients [92]. Obatoclax
showed neurological symptoms including dizziness, gait disturbance, somnolence,
euphoric mood, QTc prolongation. AEG35156 showed DLT such as
hypophosphatemia, asymptomatic reversible transaminitis, and thrombocytopenia.
Another apoptosis inducing therapeutic YM155 showed nausea, stomatitis, pyrexia,
and thrombocytopenia. LY2181308 showed flu-like symptoms, prolonged pro-
thrombin time, thrombocytopenia, fatigue, and grade III transaminitis [4]. One of
the established chemotherapeutic Levo gossypol affects male reproduction, causes
fatigue, diarrhea, lymphopenia, neutropenia, hypophosphatemia, and mediates gas-
trointestinal (GI) toxicity in patients [93], necessitating the improvement of analogs
with less toxicity. This caused the current advancement of apogossypol, which does
not possess two reactive aldehydes that have been recommended to be accountable
for the levo gossypol toxicity [4]. Conversely, for AZD4320, BCL2-32, BM-1197,
S44563, WEHI-539, A-1155463, A-1331852, A1210477, Maritoclax, ML311/
EU5346, S63845, and UMI-77, no pre-clinical or active clinical trial done and not
assessed in humans for toxicity. Furthermore, S55746 (BCL201, Servier-1),
S64315/MIK665, AZD5991, and AMG176 are in clinical trial but no adverse effect
has been reported yet [3]. Figure 4.4 summarizes the adverse effects of apoptosis.
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4.6 Conclusion

Apoptosis is one of the vital biological processes of life, and lack of cellular
apoptosis is one of the major events in carcinogenesis Targeting the defective
regulatory system of apoptosis is thus one of the most important approaches in
chemotherapies. Drugs inducing apoptosis by targeting its different events have
always received special consideration, and there are ongoing processes in scientific
research to develop cancer treatments, especially chemotherapeutics on the basis of
targeting apoptosis.
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Regulatory Roles of Autophagy in Cancer 5
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Abstract

Autophagy is an intracellular degradation and recycling system that aids in
maintaining the cellular metabolism and homeostasis. Various cellular stresses,
including organelle damage, deprivation of nutrients, and accumulation of dam-
aged proteins lead to autophagy that can be associated with cell survival or cell
death. Autophagy is initiated with the formation of autophagosome which is a
double membrane vesicle. Autophagosome fuses with the lysosome to form
autolysosome and deliver cytoplasmic contents that can be degraded or recycled
to adapt cellular stressful conditions. Autophagy acts in playing dual roles in
tumor suppression and tumor promotion. In addition, autophagy is involved in the
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maintenance of stemness and homeostasis in cancer stem cells, cancer metastases,
and development of resistance to anti-cancer reagents by regulating the expres-
sion of many autophagy associated genes. Autophagy modulators such as chlo-
roquine, rapamycin, and their derivatives are used against many cancers, and are
in clinical trials. The complete understanding of mechanisms that link autophagy
with cancer growth and suppression may aid in the development of promising
therapeutics against cancer.

Keywords

Autophagy · Cancer · Anti-cancer therapy · Tumor microenvironment · Tumor
cells

5.1 Introduction

Autophagy is a process of “self-eating” and degradation of cellular contents such as
damaged organelles and misfolded proteins generated under cellular stress including
starvation, cell death, tumor development, or tumor suppression. The process of
autophagy is initiated with the formation of autophagosome and ends with the
degradation or recycling of cellular contents in autolysosomes that are formed
when autophagosomes fuse with lysosomes. This helps in protecting the cells from
abnormal proteins and toxins, and to maintain cellular homeostasis and metabolism,
which aids in the cell survival [1, 2]. Autophagy can be selective or non-selective
depending upon the cellular needs of nutrients. In selective autophagy specific
targets, viz. damaged organelles, misfolded protein aggregates, and intracellular
pathogens are recognized and degraded or recycled. On the contrary, in
non-selective autophagy cytoplasmic contents are packed into autophagosomes
and supplied to lysosomes for degradation. Increasing evidence have reported that
defects in autophagy are associated with metabolic stress, genomic damage, and
oncogenesis [3]. Additionally, autophagy has been associated with cancer initiation
and cancer suppression [4, 5]. Studies have shown that autophagy may modulate the
expression of many oncogenes and tumor suppressor genes [6, 7]. In this chapter, we
discuss the role of autophagy in cancer and highlight the recent advances employed
in understanding the mechanism of interactions between tumor microenvironment,
and autophagy (Fig. 5.1).

5.2 Molecular Mechanism of Autophagy

Autophagy is a naturally conserved cellular degradation and intracellular recycling
system that aids in maintaining the cellular metabolism and homeostasis. A number
of cellular stresses including organelle damage, deprivation of nutrients, and
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accumulation of damaged proteins lead to autophagy that can be associated with cell
survival or cell death [8, 9].

In the normal cells, autophagy is utilized at basal levels for maintaining cellular
homeostasis, biological functions, removal of damaged organelles and abnormal
proteins, and quality control of cellular content [2, 10]. While in cancer cells,
autophagy inhibits the tumor growth by inhibiting the cell survival, and also
promotes tumorigenesis by facilitating the tumor cell proliferation [11, 12]. Several
proteins control the mechanisms associated with autophagy. For example, mamma-
lian target of rapamycin (mTOR) is one of such proteins which act as a key player of
signaling events associated with stress, cell proliferation, and tumor progression.
Each complex in mTOR, namely, mTORC1 and mTORC2, exhibits different cellu-
lar localization and functions [13–15]. The activity of mTORC1 is regulated by
AMP-activated protein kinase (AMPK). Activated mTORC1 phosphorylates
autophagy-related protein 13 (ATG13) and prevents it to form a Unc-51-like
autophagy-activating kinase (ULK1) complex consisting of ATG1, ATG17, and
ATG101. This event blocks the recruitment of this complex to pre-autophagosomes

Fig. 5.1 Regulation of autophagy in cancer: Increasing demands of nutrients in tumor microenvi-
ronment and chemotherapeutic treatment upregulate the autophagy. Autophagy is initiated with the
formation of autophagosome which fuses with lysosome to form autolysosome where cellular
contents are degraded or recycled. Targeting the genes associated with autophagosome (ULK1,
Beclin-1, ATGs, VPS34) decreases the formation of autophagosome, thus inhibits autophagy and
blocking autolysosome formation leads to the accumulation of ineffective autophagosome and cell
death
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at the plasma membrane, and inhibits autophagy. Inhibition of mTORC1 activity by
various means, such as organelle damage and starvation, leads to the induction
of autophagy [16, 17]. Although, the exact mechanism of mTORC1 in the induction
of autophagy is not known [18], however, it has been reported that inhibition of
mTORC1 dephosphorylates and activates the ULK1 [16]. These activated ULK
complexes then lead to the autophagosome nucleation and elongation, a crucial step
in the onset of autophagy.

Further maturation and elongation of autophagosome require Beclin1, ATGs and
VPS34, microtubule-associated protein 1 light chain 3 (LC3) [19, 20]. ATG5,
ATG12/ATG16L complexes recruit LC3 and promote autophagosome elongation.
Consequently, ATG4B converts inactive isoform of LC3 to active cytosolic isoform,
LC-I. Thereafter, phosphatidylethanolamine (PE), ATG3, and ATG7 drive the
conversion of LC3-I to LC3-II, a marker for autophagosome, followed by loading
of LC3-II over the inner and outer membrane of autophagosome. After maturation,
the autophagosomes fuse with lysosomes and form autolysosomes, exposing their
content to hydrolases that catalyze the removal of unwanted proteins and damaged
organelles (Fig. 5.1) [21].

5.3 Autophagy and Tumor Suppression

Initially, autophagy was considered as a phenomenon of tumor suppression, as the
basal level of autophagy leads to tumor suppression by removing damaged
organelles and abnormal proteins to maintain homeostasis. Depletion of Beclin
1 in various cancers such as breast, prostate, hepatocellular, cervical, squamous
cell carcinoma, and ovarian cancers results in the inhibition of autophagy, suggesting
the role of Beclin 1 gene as a tumor suppressor [22–24]. Furuya et al. showed that
MKN28 human gastric cancer cell line with overexpressed Beclin 1 displayed
increased apoptosis towards chemotherapeutic drug cis-diamminedichloroplatinum
[25]. Similarly, Beclin 1 reduced the cell proliferation and increased the apoptosis
induced by paclitaxel in CaSki cervical cancer cell line [26]. A range of proteins such
as Bax interacting factor-1 (Bif-1) and UV radiation resistance-associated gene
(UVRAG) is important for maintaining the function of Beclin 1 as a tumor suppres-
sor protein, and thereby regulates the autophagy positively [27]. The depletion in
Bif-1 and UVRAG proteins decreased autophagosome formation and autophagy,
resulting in tumor progression in the prostate, colon, gastric, and breast cancer.
Various in vivo studies with mice have shown that depletion of autophagy
regulators, viz. ATG4, ATG5, ATG7, ATG3, ATG5, and ATG9 is associated with
the development of cancer [28–30]. For instance, in ATG4 null mice, exposure of
chemical carcinogens increased the susceptibility to generate fibrosarcoma [31].

In addition, autophagy plays an important role in tumor suppression via
regulating reactive oxygen species (ROS) and any damage in mitochondria increases
the ROS production and resulting in tumorigenesis [32]. In addition to this, studies
with autophagy receptor P62 provided a potential link between autophagy and tumor
suppression. Loss of autophagy leads to the accumulation of P62 which can
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contribute to tumorigenesis [33]. Overexpression of P62 promotes the oxidative
stress and tumor growth in renal cell carcinoma suggesting that autophagy
suppresses the tumor growth through the elimination of P62 and any defect in
the autophagy leads to the oncogenesis [34]. Therefore, the studies mentioned in
this section confirm that autophagy is the crucial event in the regulation of tumor
suppression and any impairment in the autophagy leads manifest with the
oncogenesis.

5.4 Autophagy and Tumor Promotion

Increasing evidence have shown the involvement of autophagy in tumor initiation
and promotion. During tumorigenesis, cells are exposed to various stressful
conditions such as nutrient deprivation and hypoxia [35, 36]. During cancer, cellular
metabolism is altered to meet the increasing demands of energy and nutrients; that
are replenished by autophagy which recycles the important metabolic substrates to
proliferative cancer cells, thus help the tumor to grow by increasing stress tolerance.
Activating mutations in the Ras gene have been reported in many cancers including
colon, lung, and pancreatic cancer. Ras is a GTPase essential for maintaining cell
proliferation and survival [37]. It has been observed that activation of Ras in cancer
cells increases autophagy, thus leading to increased tumor survival and growth
[38]. Similarly, autophagy promotes the growth of BRAF-driven melanoma and
lung cancers [39, 40]. Additionally, inactivation of ATG17/FIP200 inhibited the
growth of breast cancer in mice suggesting the association of autophagy in tumor
promotion [41]. However, the detailed mechanism and the genetic context that lead
to autophagy dependency in cancer remain poorly understood and require further
investigations. Figure 5.2 describes the role of autophagy in tumor progression and
tumor suppression.

5.5 Autophagy and Tumor Microenvironment

The tumor microenvironment consists of many factors associated with inflammation,
hypoxia, and immune response. A high demand for nutrients and energy in the tumor
microenvironment is fulfilled by autophagy by supplying metabolic substrates
[42]. Cancer cells exhibit high hypoxic conditions in the tumor microenvironment,
which activates the stress-related signaling pathways, viz. hypoxia-inducible factor-
1 alpha (HIF-1α), affecting autophagy pathway to enable cancer cells survival and
progression in low oxygen conditions [43–45]. HIF-1α affects tumor growth by
regulating many cancer-related genes and autophagy pathways through an increase
in glucose metabolism [46]. Factors contributing inflammations are over-activated in
the tumor microenvironment and contribute to tumor progression by enhancing the
accumulation of ROS in the cancer cells and immune cells, which secretes immune-
regulatory cytokines such as transforming growth factor-β, interleukin-6, interleu-
kin-10, and tumor necrosis factor-α in the tumor microenvironment. These
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molecules induce chronic inflammatory responses and mediate tumorigenic effects
[44]. Thus, inflammation induced by autophagy in the tumor microenvironment and
nearby cells results in tumor progression, suggesting the possible role of autophagy
in modulating tumor microenvironment.

5.6 Autophagy and Cancer Metastasis

Cancer cells can invade the surrounding tissues and migrate to distant organs
through lymphatic and vascular systems. Autophagy displayed both pro- and anti-
metastatic effects in many studies. In the early stages of metastasis, autophagy acts in
anti-metastatic manner by limiting chronic inflammation and cell death, thereby
reducing migration and invasion of cancer cells. Moreover, in advanced metastasis,
autophagy promotes metastasis by enhancing cancer cell survival and migration to
distant sites [47–49]. In contrast to the tumor suppressive role of Beclin 1 gene, study
has shown that inhibition of Beclin 1 and LC3 autophagy genes inhibited breast
cancer proliferation, migration, and invasion [50]. However, the relationship
between Beclin 1 gene expression and tumor progression is not yet conclusive. In
addition to this, reduction in ATG5 expression decreased overall survival in mela-
noma patients [51]. In another study, inhibition of mTOR signaling inhibited
metastasis and induced autophagy mediated cell death in gastric cancer [52]. During
apoptotic death, cancer cells get detached from the extracellular matrix (ECM), a
process known as anoikis [53]. It is suggested that inhibition of autophagy not only

Fig. 5.2 A schematic diagram of dual role of autophagy in cancer
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blocks the lung metastasis but also decreases the anoikis resistance in hepatocellular
carcinoma [54].

Epithelial-mesenchymal transition (EMT) is essential for cancer metastasis lead-
ing to inhibition in cell–cell adhesion, change in cell polarity to increase cell motility
and invasion [55, 56]. During EMT, cells undergo a transition from epithelial to
mesenchymal phenotype. Moreover, EMT is essential for embryonic development
and plays an important role in wound healing [57]. Few studies have reported the
association between EMT and autophagy in cancer. Autophagy is enhanced in
cancer cells undergoing EMT transition in response to cellular stress and inhibition
of autophagy associated proteins such as Beclin 1, LC3, ATG5, and ATG7 increases
the EMT transition in glioblastoma cells, thus leading to migration and
invasion [58].

5.7 Autophagy as Drug-Resistant Factor in Tumors

Increasing evidence have shown that upregulation of autophagy leads to the resis-
tance against anti-cancer drugs [59, 60]. Chemotherapy is a commonly used thera-
peutic strategy in cancer treatment; the success rate of chemotherapy is usually
limited due to the development of resistance towards chemotherapeutic drugs
[42, 61, 62]. Autophagy acts as one of the protective measures in cancer cells
undergoing treatment with chemotherapeutic drugs and the induction of protective
autophagy is a major cancer treatment. For example, autophagy is often associated
with the development of chemoresistance against 5-Fluorouracil (5FU); an anti-
cancer drug which blocks DNA synthesis by inhibiting thymidylate synthase
[63, 64]. The activation of Beclin 1 and LC3I to LC3II conversion lead to the
induction of protective autophagy followed by the activation of JNK and BCL2,
which increase the autophagic flux and thereby leads to the chemoresistance [64]. In
addition to 5FU, cisplatin is also used as a primary treatment drug in various solid
cancers such as breast, pancreatic, and colon cancers, but treatment efficacy of
cisplatin is also restricted due to the development of chemoresistance [64–66]. Stud-
ies on ovarian cancer have shown that autophagy contributed to the cisplatin-
mediated resistance via activation of the Beclin 1 and ERK pathway [67, 68]. Another
study in esophageal cancer has shown that cisplatin treatment enhances autophagy
via the overexpression of Beclin 1, ATG7, and LC3I to LC3II conversion [69]. More-
over, the inhibition of autophagy in combination with cisplatin treatment signifi-
cantly enhanced the cell death in esophageal cancer [69–71]. Autophagy mediated
therapeutic resistance has also been shown with targeted agents such as AKT
inhibitors, histone deacetylase inhibitors, and tyrosine kinase inhibitors, such as
imatinib [72]. On contrary, there are many situations whereby depletion of
autophagy decreased the efficacy of a specific therapy [73]. Therefore, further
work is necessary in order to understand the mechanism of autophagy activation
or suppression in response to cancer-directed therapies.
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5.8 Autophagy as a Modulator of Immune Response in Cancer

In addition to conferring chemoresistance in cancer cells, autophagy also regulates
the immune response towards anti-cancer therapy. In anti-tumor immunity, tumor
cells release the tumor-antigens in the surrounding environment, which are taken up
by antigen-presentation cells, and are presented to T-cells for the activation of T cell-
mediated cytotoxicity against tumor cells [74]. Other immune cells such as dendritic
cells and B-cells eliminate the cancer cells by releasing chemokines and cytokines.
Knockdown of Beclin 1 and ATG7 inhibits autophagy and impairs the ability of
T-cell to survive by mitochondrial dysfunction and ROS production [75, 76]. There-
fore, autophagy is required for T-cells survival. Nevertheless, hypoxia-mediated
autophagy leads to the activation of STAT3 and thereby, renders the cancer cells
to be killed by T-cell mediated cytotoxicity. Moreover, reduced expression of Beclin
1 and ATG5 inhibits the autophagy and inactivates STAT3, thus sensitize the cancer
cells to T-cell mediated cytotoxicity [77]. In conclusion, abnormal activation of
STAT3 reduced the sensitivity of the immune response.

5.9 Autophagy in Cancer Stem Cells (CSCs)

Cancer stem cells (CSCs) represent a small amount of population of cells having the
ability of self-renewal and differentiation. CSCs can induce tumor initiation, prolif-
eration, and metastasis, thereby contribute to chemoresistance [78, 79]. Various
studies have reported the role of autophagy in the maintenance of stemness and
homeostasis in these CSCs [78, 79]. For instance, the inhibition of autophagy
reduces the differentiation, while its enhancements increase the differentiation in
glioma cells [80–83]. Reduction in the expression of Beclin 1 and LC3II is
associated with the development of astrocytic cancers [84]. Autophagy contributes
to mesenchymal-like properties in breast cancer stem cells and reduction in expres-
sion of LC3II and ATG12 proteins decreases cancer stem-like phenotypes [85].

Sharif et al. have shown that the knockdown of ATG7 and ATG5 blocks
autophagy and decreases stemness associated markers, viz. SOX2, Oct4, and
Nanog. In view of this, reduction in autophagy suppressed tumor cell proliferation
and increased the cell death in colorectal CSCs [82]. In another study with colorectal
CSCs, induction of autophagy leads to the resistance to anti-cancer drugs and
maintained stem cell like phenomenon [86]. All these findings suggested that
autophagy is essential for regulating pluripotency and maintaining therapeutic
resistance in CSCs.

5.10 Targeting Autophagy in Cancer Therapy

Association of autophagy with tumor progression or suppression makes it one of the
potential targets to increase cancer therapy. Various drugs targeting different stages
of autophagy starting from autophagosome formation to auto lysosome have been
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identified previously [87–89]. For instance, an autophagy inhibitor; chloroquine
(CQ) can potentiate the effects of photososan-II-mediated photodynamic therapy
and enhance the apoptotic cell death in colorectal cancer cells [90]. Various studies
have supported that autophagy acts as a promising and potential therapeutic target.
Many autophagy regulators, viz. CQ, hydroxychloroquine (HCQ), rapamycin and
their derivatives; temsirolimus and everolimus are currently in use against cancer.
Temsirolimus and everolimus are Food and Drug Administration (FDA) approved
autophagy regulators [91]. Both inhibitors induce autophagy by targeting mTORC1
[14]. Everolimus is used against breast cancer and neuroendocrine tumors of pan-
creatic origin, while temsirolimus is used in curbing mantle-cell lymphoma
[92, 93]. Both CQ and HCQ are anti-malaria drugs that block autophagy by altering
the lysosomal pH and inhibition of autolysosome formation; the last step in
autophagy process [94–96]. Preclinical studies with CQ or HCQ in bladder and
pancreatic cancer have shown promising results. Treatment with CQ or HCQ
inhibited autophagy and induced cell death and apoptosis in bladder cancer. Simi-
larly, treatment with CQ induced autophagic cell death in metastatic pancreatic
adenocarcinoma [97, 98]. Therefore, these reagents can potentiate the therapeutic
effects of chemotherapy in many cancers. Various natural and synthetic autophagy
inhibitors and their mode of actions are listed in Table 5.1 and Table 5.2 indicates the
ongoing clinical trials with autophagy inhibitors in different cancer. Information
given in Table 5.2 is retrieved from clinicaltrials.gov.

5.11 Conclusions

Autophagy plays a very complex and distinct role in cancer either by supporting
tumor progression or inhibiting tumor growth. Autophagy promotes tumor progres-
sion by supplying essential nutrients to the cells and by maintaining the levels of
ROS production. Additionally, autophagy promotes resistance in many cancers to
targeted anti-cancer drugs and chemotherapy. Despite this information, there are
many unanswered questions with respect to autophagy that need further investiga-
tion. For example, it is important to study the molecular events that tumor cells
harness to switch the basal level of autophagy to a higher level. It is also not clear
whether there are specific cargos or events to be degraded selectively in cancer cells
to promote growth. Studying the interaction between tumor microenvironment and
autophagy activity will provide the better insights on the dependency of tumor on
autophagy. More studies are required in this context to further understand the subsets
of tumor benefiting from autophagy inhibition and development of biomarkers of
basal level autophagy in tumors that may be useful to develop better cancer
therapeutics.
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Table 5.1 Natural and synthetic compound targeting autophagy in different cancers

Compound name Type of cancer Mode of action References

Artemisinin Lung cancer, Esophageal
cancer. Pancreatic cancer,
ovarian cancer and
glioblastoma

Induction of apoptosis in
cancer cells in synergism
with chloroquine
Induction of autophagy by
suppressing activation of
NF-κB and the ROS
accumulation
Autophagy and apoptosis in
cancer cells through
inhibition of mTOR kinase

[99–102]

Artesunate,
(semisynthetic
derivative of
artemisinin)

Colorectal cancer, breast
cancer and glioblastoma

Activation of Beclin-1,
LC3-I/LC3-II, and caspase-
3
Increase sensitivity of
epirubicin, a
chemotherapeutic agent in
breast cancer cells via
autophagy

[103–106]

Curcumin Colon cancer, malignant
glioma uterine
leiomyosarcoma
Mesothelioma and chronic
myelogenous leukemia

Decrease activation of
AKT/mTOR/p70S6 kinase
signaling pathway
Induction of autophagy
mediated apoptosis by
regulating PI3K/AKT/
mTOR and NF-κB
signaling pathways

[107–112]

Celastrol Gastric cancer,
osteosarcoma glioblastoma
and pancreatic cancer

Induction of autophagy
mediated apoptosis
Promoted proteotoxic stress

[113–117]

Paclitaxel Breast and prostate cancer Accumulation of LC3B-II
proteins and induction of
autophagosomes induced
miR-101 and autophagy
mediated apoptosis

[118–121]

Resveratrol Lung cancer, ovarian
cancer, myeloma,
hepatocellular cancer,
cervical cancer, oral
cancer, glioblastoma,
breast cancer, cervical
cancer, Promyelocytic
leukemia, prostate cancer,
chronic myelogenous
leukemia, skin cancer and
renal cancer

Induction of LC3-II
proteins and autophagy
mediated apoptosis
formation of acidic
vesicular organelles
Suppression of
Wnt/β-catenin pathway
Inhibition of NF-κB
pathway and AKT/mTOR
pathway

[122–126]

γ-Tocotrienol Breast cancer Induction of LC3-II
proteins and autophagy
mediated apoptosis

[127, 128]

(continued)
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Table 5.1 (continued)

Compound name Type of cancer Mode of action References

Palm-mixed
tocotrienol complex

Breast and prostate cancer Induction of autophagy
mediated apoptosis
Accumulation of
dihydroceramide and
dihydrosphingosine

[129, 130]

Thymoquinone Glioblastoma and head and
neck squamous cell cancer

Activation of LC3-II and
p62 proteins and induction
of autophagosomes

[131–133]

Ursolic acid Cervical cancer, breast
cancer, glioblastoma,
prostate cancer, Colon
cancer and osteosarcoma

Activation of LC3-II and
p62 proteins,
autophagosome formation,
and autophagy mediated
apoptosis. Endoplasmic
reticulum stress induction;
activation of glycolytic and
PI3K/AKT-mediated
autophagy pathway
Modulation of Beclin-1 and
Akt/mTOR pathways and
JNK pathway

[134–139]

Synthetic ursolic
acid

Lung cancer Activation and
accumulation of Beclin-1
and LC3A/B-II

[140]

Chloroquine and
hydroxychloroquine

Bladder cancer, melanoma
and pancreatic cancer

Activation of LC3-II and
p62 proteins,
autophagosome formation,
and autophagy mediated
apoptosis

[97, 98,
141]

Quinacrine Colon cancer p53 and p21-dependent
regulation of autophagy

[142, 143]

Temsirolimus Adenoid cystic carcinoma Activation and
accumulation of Beclin-1
and LC3A/B-II inactivation
of mTOR
Induction of autophagy
mediated apoptosis

[144]

Everolimus Breast cancer Induces autophagic cell
death in aromatase
inhibitor-resistant breast
cancer by targeting
estrogen receptor

[145]
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Abstract

Reactive oxygen species (ROS) have long been considered as one of the major
regulatory factors for the intracellular and intercellular signaling cascades. The
sensitive redox balance that is controlled through an improved antioxidant system
along with the enzymatic and non-enzymatic ROS production pathways sustains
physiological functions in the healthy cells. During the course of cancer, a
progressive deterioration of the redox balance can be followed via the overpro-
duction of ROS, and results in the formation of malignant phenotype through
induction of cancer hallmarks, including death evasion, uncontrolled prolifera-
tion, deregulating the cellular energetics, evading the immune response,
provoking inflammation, inducing genome instability and mutations, developing
drug resistance, angiogenesis, invasiveness, and metastasis. Apart from the carci-
nogenic roles of ROS, they have been employed as a target, mediator, and
weapon in cancer treatment modalities because of the characteristic features
considered as a double-edged sword. This chapter has consequently purposed
to indicate the sophisticated roles, contributions, activities, and importance of
ROS in the progression of cancer and cancer treatment strategies, and drawn the
attention of scientists more to enhance the research on the complicated and
versatile relationship between ROS and cancer.
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6.1 Introduction

Although a mass effort of scientists and the considerable research budgets have been
drained to find the convenient cure, drugs, and treatment strategies for cancer
diseases, cancer is still ranked as the second leading cause of death and considered
as a major public health problem worldwide [1]. The most recent global cancer
statics showed that there was an estimated 18.1 million new cancer cases and 9.6
million cancer deaths in 2018, and this bitter truth reminds us once again the
importance of the scientific research on the mechanisms of carcinogenesis, cancer
treatment strategies, and drugs [2]. It is well known that carcinogenesis is a
prolonged, complicated, and multi-stage process that can be induced by the harmful
environmental factors along with the genetic predispositions [3–5]. Because of the
stress occurring in microenvironment, carcinogenesis begins with malignant trans-
formation of some cells in the organism, and the malign transformation of these cells
is followed by hyperproliferation, insensitivity to the growth suppressing factors
(evasion), resistance to the programmed cell death (apoptosis), invasiveness, pro-
duction of angiogenic factors to induce the formation of new capillary vessels from
the existing ones (angiogenesis), and finally gaining metastatic ability, which is
defined as the ability to reach different parts of the organism through veins
[6, 7]. Additionally, the irregularities in the cellular energetics and the escape from
the immune system are also considered as the substantial parts of carcinogenesis
[6, 8]. Although the process of carcinogenesis is common for almost all cancer
diseases, it has been demonstrated that there are more than 200 types of cancer, and a
tumor tissue exhibits a morphologically and functionally heterogeneous structure
that consists of various cancer cells with different physiological characters,
mutations, and epigenetic profiles [9–12]. Thus, understanding the underlying
mechanisms of cancer hallmarks has a great importance to find the convenient
cure, drugs, and treatment strategies for cancer diseases. It is well known that the
cellular levels of oxygen molecules, reactive oxygen species (ROS), and
antioxidants have a balance in the healthy cells located in a homeostatic microenvi-
ronment [13–15]. However, this balance observed in the homeostatic microenviron-
ment can be disrupted in the progress of some diseases such as cancer, diabetes,
neurodegenerative diseases, premature aging, and obesity [16–19]. The disruption of
the balance between ROS and antioxidant molecules is considered as a leading factor
for many intracellular and intercellular problems such as the disruption of mitochon-
drial metabolism and cellular energetics, the occurrence of the unstable and hypoxic
microenvironment, and the alteration of molecular pathways [20–22]. Moreover, it is
well known that reactive oxygen species and oxidative stress play key roles in the
progress of carcinogenesis and effect the all cancer hallmarks [23]. Therefore,
understanding the complicated and sophisticated roles of oxidative stress and reac-
tive oxygen species has an exclusive place in cancer biology and anticancer therapy
[24–26].
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6.2 Cellular Sources and Regulation of ROS

Although all living aerobic organisms need molecular oxygen vitally for their
cellular respiration as a central molecule, the oxygen-containing free radicals were
determined as toxic compounds for aerobic organisms by Gerschman and coworkers
[27, 28]. It is well known today that the increased levels of reactive oxygen species
(ROS) take disruptive effects on the function, homeostasis, and structure of cells by
inducing oxidative stress and lead to the development of various pathologies such as
inflammatory, cardiovascular, and neurodegenerative diseases, age-related
disorders, and cancer [22, 29]. Cancer cells are characterized by the overproduction
of ROS both in the various cellular compartments and in the cancer cell microenvi-
ronment, and this overproduction can alter the genetic stability of cells along with
many cellular processes [30–32]. Although there is a certain balance between ROS
and antioxidant factors in the healthy cells, the balance can be disrupted by endoge-
nous and exogenous ROS generators leading to the excessive ROS production or the
antioxidant defenses limitation [33, 34]. The endogenous ROS generators can be
listed as mitochondria, peroxisomes, endoplasmic reticulum, transition metal ions,
lipoxygenases, cytochrome P450, and NADPH oxidase, though the exogenous ROS
generators are ionizing radiation, ultraviolet rays, chemotherapeutics, environmental
toxins, and inflammatory cytokines [29, 35]. Reactive oxygen species can be
observed as radicals that have at least one unpaired electron, and chemically reactive
non-radical species without unpaired electron [36]. The non-radical species such as
singlet oxygen (1O2), ozone (O3), hydrogen peroxide (H2O2), hypochlorous acid
(HOCl) can be converted to radical ones, though the short-lived and highly electro-
philic radicals such as hydroxyl (OH•), superoxide (O2

•�), and peroxyl (RO2
•)

molecules show substantial cytotoxic activity by oxidizing proteins, lipids, nucleic
acids, and other cellular molecules [37–39]. The generation of ROS in biological
systems can be eventuated by enzymatic and non-enzymatic reactions, and the
enzymatic generation of ROS can be achieved by the contribution of the cytochrome
P450 enzymes, arachidonic acid, cyclooxygenase (COX), lipoxygenase (LOX),
xanthine oxidase (XO), uncoupled endothelial nitric oxide synthase (eNOS), and
NADPH oxidases (NOXs) [39–41]. Superoxide anion radicals that are considered as
the primary reactive oxygen species are formed by transferring one electron to the
molecular oxygen (O2), and so the further interaction to generate other reactive
oxygen species can be occurred, such as the formation of hydrogen peroxide (H2O2),
which can be generated spontaneously or by the effect of the superoxide dismutase
enzyme (SOD). Moreover, hydrogen peroxide can be converted to the highly toxic
hydroxyl radicals (OH•) through the iron-catalyzed Fenton reaction, and leads to the
cellular damage and genomic instability due to the formation of oxidized proteins,
lipids, and nucleic acids [37, 42]. Apart from the enzymatic ROS generation, ROS
can be non-enzymatically generated by the mitochondrial respiratory chain
[43]. During the aerobic respiration, the oxygen molecules are reduced to water in
the electron transport chain by cytochrome-c oxidase, though approximately 1–2%
of the oxygen molecules are reduced to superoxide (O2

•�) because of the electron
leakage from the electron transport steps of ATP production [29]. Then, the formed
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superoxide radicals can be converted by the effect of SOD enzymes to the hydrogen
peroxide molecules, which can be further converted to the hydroxyl radicals (OH•)
through the Fe2+ or Cu2+ ions-catalyzed Fenton reactions (Fig. 6.1) [31, 36,
44]. Although mitochondria is widely considered as the major source of ROS,
mitochondria-generated ROS production may have been overestimated due to the
generation of functional damages during the mitochondrial isolation procedures, and

Fig. 6.1 Oxidant and antioxidant pathways for ROS homeostasis. O2
�• (superoxide radical), OH•

(hydroxyl radical), ONOO� (peroxynitrite), H2O2 (hydrogen peroxide), H2O (water), COX (cyclo-
oxygenase), eNOS (endothelial nitric oxide synthase), NO (nitric oxide), SOD (superoxide
dismutase), PRX (peroxiredoxins), TRX (thioredoxin reductase), and GPx (glutathione
peroxidases)
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performing the new techniques showed that there are much lesser amounts of
mitochondria-generated ROS than the previously estimated amounts [36, 45].

The membrane-bound NADPH oxidases (NOXs) are also considered as another
major source of superoxide radicals [46, 47]. NOXs can be found on the membranes
of plasma, nucleus, mitochondria, and endoplasmic reticulum, and so NOXs-
catalyzed reduction of oxygen molecules into superoxide radicals can be observed
where these membranes are located, and NOX-derived superoxide radical that could
not diffuse across membranes can be further converted by SODs into hydrogen
peroxides, which have an ability to diffuse across membranes as redox signaling
molecules (Fig. 6.1) [31, 37, 48]. Peroxisome organelles are recognized as an
another prominent source of ROS by generating superoxide radical, hydrogen
peroxide, hydroxyl radical, nitric oxide (NO•), and peroxynitrite (ONOO�) through
the reduced catalase (CAT) activity, which has been reported in many cancers such
as hepatocellular carcinoma, prostate, lung, colon, and kidney cancers [29]. Another
organelle, which is ROS source, is endoplasmic reticulum that has many cellular
functions including calcium storage, lipid metabolism and the synthesis, folding,
posttranslational modifications, and transport of proteins [49]. Along with the
NOX-derived ROS production over the membrane of the endoplasmic reticulum,
the accumulation of unfolded and misfolded proteins in the lumen of endoplasmic
reticulum due to the alterations in the protein folding pathways may lead to endo-
plasmic reticulum stress that triggers the ROS production, and the increased levels of
ROS in endoplasmic reticulum induce endoplasmic reticulum stress
[50, 51]. Although the endogenous and exogenous ROS generators increase the
ROS levels in cells, the antioxidant defense factors maintain the ROS homeostasis
[25]. The antioxidant defense components include antioxidant enzymes (e.g., cata-
lase (CAT), glutathione peroxidases (GPXs), glutathione reductase (Gr),
peroxiredoxins (PRXs), superoxide dismutase (SOD), and thioredoxin reductase
(TRX)), antioxidant molecules (e.g., alpha-lipoic acid, bilirubin, coenzyme Q, ferri-
tin, glutathione, l-carnitine, metallothionein, melatonin, and uric acid), dietary natu-
ral products (e.g., ascorbic acid, β-carotene, polyphenol metabolites, selenium, and
tocopherol), and synthetic products (e.g., butylated hydroxytoluene, N-acetyl cyste-
ine (NAC), and tiron) [36].

6.3 ROS in Cancer Cell Proliferation and Survival

It has been well established that ROS play a key role in mitogenic signaling cascades
by prolonging activation of growth factors and boosting levels of cellular signaling
factors [52–54]. The proliferation of many cancers such as lung, liver, and breast
cancers can be enhanced by the increased ROS level though the proliferation of these
cancers can be alleviated by the administration of antioxidants [55]. The metabolism
of cancer cells is commonly very active because of the oncogenic signals such as
Bcr-Abl, c-Myc, and Ras oncogenes-related signals, and these oncogenic signals can
also increase endogenous ROS generation without the induction of apoptosis
[26, 56, 57]. Oncogenic Ras mutations, for instance, induce ROS generation through
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NOX isoform (NOX4) that improves cell proliferation, and K-Ras oncoprotein
upregulates the pro-proliferative signal epidermal growth factor receptor (EGFR)
by elevating mitochondrial ROS production [31, 58]. Thus, it is widely considered
that the oncogene-induced ROS generation positively regulates cancer cell prolifer-
ation by promoting mitogenic signaling cascades such as protein kinase D (PKD),
mitogen activated-protein kinase/extracellular-regulated kinase 1/2 (MAPK/ERK
1/2), and phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) signaling
pathways (Fig. 6.2) [52]. For example, increased ROS level inhibits MAPK by
oxidation of cysteine residues in the active site and the degradation of MAPK
phosphatase 3 (MPK3) prominently reduces ERK 1/2 activity [59]. Similar to the
inhibition of MAPK phosphatases, the protein tyrosine phosphatase 1B (PTP1B),
phosphatase and tensin homolog (PTEN) protein, and ubiquitin ligase are negatively
regulated by the increased level of ROS via oxidation of cysteine residues in the
active sites of these proteins [53, 60, 61].

Moreover, the elevated level of ROS activates the cell proliferation-related
transcription factors such as nuclear factor-κB (NF-κB) and activator protein-1

Fig. 6.2 ROS-mediated cell proliferation and cell cycle arrest signaling in cancer
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(AP1) that upregulate the cancer cell proliferation (Fig. 6.2) [53]. Interestingly,
mitochondria-generated ROS can induce both cell proliferation and cell quiescence
by playing a dual role in cell cycle. The increased level of mitochondria-generated
ROS that mostly formed by superoxide (O2•�) induces cell proliferation as well as
superoxide dismutase (SOD) antioxidant defense system (Fig. 6.1), which converts
the superoxide to the hydrogen peroxide (H2O2), and the increased hydrogen
peroxide drives proliferating cells into quiescence [52, 62, 63]. Moreover, it is
well known that ROS can induce DNA damage such as double-strand breaks and
the DNA damage results in cell cycle arrest thanks to the cell cycle checkpoints
(Fig. 6.2) [64]. For example, it has been reported that the increased ROS can result in
a p53 independent G2/M arrest in colorectal cancer cells by activation of checkpoint
kinase 1 (Chk1) [65]. Additionally, the phosphatase inhibition activity of ROS also
induces cell cycle arrest by effecting on the cell division cycle 25 (Cdc25) protein
phosphatase family consisted of Cdc25A, Cdc25B, and Cdc25C proteins that have
substantial roles in the progression of the various cell cycle stages such as synthesis
(S) and mitosis (M) phases [66]. For example, it has been reported that the
ROS-decreased Cdc25C level leads to G2/M cell cycle arrest and the elevated
ROS dramatically decrease Cdc25A level and its phosphatase activity [64, 67–
69]. On the other hand, ROS accumulation can also predictably take an important
role in cancer cell survival as well as cell proliferation and cell cycle arrest because
of the common signaling factors such as PTEN, PI3K, PKD, Akt, ERK 1/2, and
NF-κB (Fig. 6.2) [26, 31, 52]. For example, increased generation of hydrogen
peroxide leads to the oxidation of cysteine thiol groups of PTEN, PTP1B, and PP2
(protein phosphatase 2) and inactivation of these phosphatases promote cell survival
by negatively regulation of PI3K/Akt signaling [31, 70, 71]. It has been reported that
this kind of phosphatases’ inactivation can be observed in many types of cancer such
as breast, prostate, ovarian and endometrial cancers, glioblastomas, and melanomas
[72, 73]. Ras activation along with growth factor signaling can be also induced by
hydrogen peroxide, and this activation leads to blocking the PTEN signaling
cascades and induction of PI3K/Akt/mTOR and MAPK/ERK 1/2 cell survival
pathways [31, 58]. Moreover, these cell survival pathways can be regulated by
ROS-induced inactivation of their downstream pro-apoptotic targets such as Bad,
Bax, Bim, Foxo [52, 74–76]. Apart from the Ras oncogene, the cell survival can be
also regulated by the other oncogenes such as c-Myc oncogene that induce hMre11
signals and improve the cell survival in many cancers such as cervical carcinoma,
colon cancer, leukemia, lymphoma, and testicular cancer (Fig. 6.2) [77, 78].

6.4 ROS and Endogenous Signaling Molecules

It is widely known that there is a tight relationship between the ROS generation and
the endogenous signaling molecules such as the growth factors and cytokines, which
regulate the molecular mechanisms of many cellular phenomena such as prolifera-
tion, growth, invasion, healing, differentiation, metastasis, etc., by involving the
intracellular and intercellular signaling pathways [53, 79]. Although the ROS
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production can be induced by the intracellular growth factors and cytokines such as
epidermal growth factor (EGF), endothelial cell growth factor (ECGF), transforming
growth factor beta 1 (TGF-β1), and hepatocyte growth factor (HGF), the elevated
ROS in turn can stimulate the multiple growth factors and cytokines that play crucial
roles in carcinogenesis by binding to the cell membrane receptors such as receptor
serine/threonine kinases, G protein-coupled receptors, receptor tyrosine kinases, and
cytokine receptors [32, 73, 79–81]. This phenomenon between the endogenous
signaling molecules and ROS display the existence of a positive feedback loop
[32]. For example, it has been reported that ROS production in several culture
systems may be elevated by TGF-β1, which plays substantial roles in growth
regulation and tumor cell progression as a multipotent cytokine [80–82]. Similarly,
the tight relationship has been shown between ROS production and HGF, which is
known as a prognostic marker for hepatocellular carcinoma, ROS can mediate the
HGF receptor and c-met signaling [83–85]. Moreover, the superoxide level in a cell
can be elevated by the stimulation of angiotensin, epidermal growth factor (EGF),
lysophosphatidic acid, platelet-derived growth factor (PDGF), and tumor necrosis
factor-α (TNF-α) though the oncogenic mutation of RhoGTPase K-ras has been
reported to be related with the elevation of superoxide level and the incidences of
several cancers [30, 53, 86–91]. As well as the oncogenic mutation of RhoGTPase
K-ras, the major ones of growth factors and cytokines including HGF, PDGF,
vascular endothelial growth factor (VEGF), and TNF-α increase the production of
ROS through NADPH oxidases or mitochondrial electron transport chain system
depending on the cellular environment [32, 92, 93]. Although the structures of
NADPH oxidases are similar to each other, their regulatory subunits and activation
mechanisms are different from each other. For example, p22phox is a necessity for
the activation of NOX4 though the other NADPH oxidases do not need it
[94, 95]. Moreover, NOX4 can be activated by the influences of various growth
factors and receptors such as TGF, bone morphogeneticprotein-2 (BMP-2), insulin
like growth factor-I (IGF-I) and toll like receptor 4 (TLR4), and the activated NOX4
plays role in the ROS generation [96–98]. As the effects of NOX-generated ROS
production, the relationship between endogenous signaling molecules and ROS
generation generally affects the fate of cancer hallmark such as cancer cell prolifera-
tion and cell survival, angiogenesis, invasion, metastasis, and increased genomic
instability by the altering and blocking of related signaling cascades [52, 99].

6.5 ROS and Emerging Hallmarks of Cancer

As widely known, Hanahan and Weinberg published an influential paper in the year
2000 that describes the hallmark of cancer, including six major traits, and they
updated the described cancer hallmarks in 2011 by adding two emerging and two
enabling traits of cancer [6, 7]. The emerging hallmarks of cancer have been
described as deregulating the cellular energetics and evading the immune response
[6]. It is not surprising that there is a strict relationship between the emerging
hallmarks of cancer and the intracellular accumulation of ROS, and the elevated
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metabolic activity, oncogenic signals, and genetic changes in cancer cells induce an
increased ROS production along with the adaptation to the antioxidant system and
the compensation for the oxidative damages [31, 100]. Thus, alterations occur in the
redox homeostasis and cellular signaling pathways, and cancer cell metabolism is
reprogrammed [101]. Cancer cells acquire adaptations to survive under hypoxic
conditions and utilize alternative metabolic pathways because of their higher metab-
olism than the normal cells [23, 101]. This alteration in the energy metabolism of
cancer cells was firstly discovered in 1924 by Otto Warburg, who reported that
cancer cells convert glucose to lactate using glycolytic pathway instead of pyruvate
regardless of the presence of oxygen [102]. This phenomenon has been known as
Warburg effect, which contributes an aggressive cancer phonotype because a
prolonged survive under hypoxic condition leads to a series of alterations in genetic
stability, metabolic pathways, organelles, etc., though the hypoxic condition leads to
cell death in normal cells [52, 103]. It can be clearly seen that there is a reciprocal
crosstalk between the redox balance and metabolic pathways such as glycolysis, the
pentose phosphate pathway, one-carbon metabolism, fatty acid oxidation, and
glutaminolysis [31, 104]. For example, redox homeostasis can be regulated by
glycolysis through shuttling of the pentose phosphate pathway-generated intermedi-
ate nicotinamide adenine dinucleotide phosphate (NADPH) and glutaminolysis-
generated intermediate glutathione (GSH) [52]. Although it is expected that the
glucose-deprivation causes cell death by the accumulation of hydrogen peroxide,
the Warburg effect provides the cancer cells to acquire adaptation of the glucose-
deprivation by exaggeratedly using glycolysis pathway to prevent hydrogen
peroxide-induced cell death [105, 106]. Targeting glycolysis and lactate dehydroge-
nase enzyme is therefore considered a successful strategy to prevent the cancer cell
progression by inducing oxidative stress and decreasing the production of the
intracellular ATP [31, 107–109]. For example, let-7a that is an early-discovered
microRNA was used as a therapeutic enhancer because let-7a elevates the ROS
generation and downregulates some enzymes involved in glycolysis such as glucose
6-phosphate dehydrogenase (G6PD) and inosine monophosphate dehydrogenase
(IMPDH) [110]. Pyruvate kinase muscle isoenzyme 2 (PKM2), the isoenzyme of
the rate-limiting glycolysis enzyme named pyruvate kinase, plays a crucial role in
reprogramming cancer metabolism, but the ectopic expression of microRNA-1 and
microRNA-133b inhibits PKM2 through silencing polypyrimidine tract-binding
protein 1 (PTBP1), which can convert the active PKM2 to the inactive PKM1
[111, 112]. On the other hand, it is well documented that cancer cells produce an
elevated level of ribose 5-phosphate by employing pentose phosphate pathway that
is considered a key feature for many cancers, and regulate the ROS homeostasis
through NOXs and replenishing the decreased GSH and TRX [31, 113]. As previ-
ously mentioned, mitochondria is considered as one of the major sources of ROS
because they are inevitably generated in oxidative phosphorylation as the byproducts
[114]. The elevated ROS accumulation because of hypoxia causes oxidative stress
and consequently results in damages of organelles and the other cellular components
such as lipids, proteins, metabolites, etc. [115, 116]. Moreover, the structure,
morphology, and dynamics of mitochondria are considered linking with the
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accumulated amounts of ROS, i.e., there is a mutual interaction between
mitochondria and ROS [117]. The overproduction of ROS induces mitochondrial
damages and these damages result in the elevated ROS production, so this phenom-
enon is called as ROS-induced ROS release [115, 118, 119]. For example,
mitochondria induce elevated production of ROS under hypoxic condition and the
hypoxia-induced ROS production can cause the mitochondrial fragmentation though
the mitochondrial fusion is considered as a cellular adaptation process for the
alterations in the surrounding environment, and which can prevent the elevated
production of ROS [120, 121]. One of the most prominent transcription factors for
the cellular adaptation to the hypoxic conditions is hypoxia inducible factor-1
(HIF-1) that is a heterodimer consisted of two subunits HIF-1α and HIF-1β, and it
is well known that ROS play a key role in the accumulation of HIF-1 [52, 122,
123]. The increased levels of antioxidants reduce the accumulation of HIF-1 though
the increased levels of hydrogen peroxide and superoxide elevate the accumulation
of HIF-1 [63, 124, 125]. Apart from the endogenous ROS, the exogenous ROS can
alter mitochondrial dynamics by inhibiting mitofusin-1 (Mfn1) and mitofusin-
2 (Mfn2) and inducing the depolarization of mitochondrial membrane potential,
which trigger the mitochondrial fission along with the overproduction of ROS
[115, 126]. Moreover, the oxidative stress-induced mitochondrial fission and fusion
influence on the mitochondrial metabolism and function because of the dramatic
changes in mitochondrial DNA (mtDNA), ribosomes, proteins, metabolites, etc.,
that lead to many diseases including cancers, cardiometabolic diseases,
neuropathies, and neurodegenerative diseases [127–129].

As previously mentioned, the second emerging hallmark has been described as
evading the immune response, and ROS have been identified as immunosuppressive
factors in the cancer microenvironment to facilitate the other cancer hallmarks such
as growth, invasion, and metastasis [6, 31, 130]. Apart from the pathological
conditions such as cancer, ROS play key roles in the regulation of immune responses
and serve as central mediators of immune cells [131]. For example, dendritic cells
(DC) that have a substantial role in antigen specific immune response as the major
antigen-presenting cells (APC) are activated by hydrogen peroxide, which can be
produced in a large quantity by phagocytic cells [132]. On the other hand, the
pathological conditions such as cancer or chronic inflammatory diseases can allevi-
ate the function of natural killer cells (NK cells) and the effector T cells depending on
the macrophages- and granulocytes-generated ROS levels [133–135]. Although NK
cells increase the ROS production in the early stage of the encounter with cancer
cells to mediate cytolysis, it has been reported that monocyte-generated ROS
production in cancer patients inhibits the interferon gamma (IFN-γ) production,
proliferation, activation, and cytotoxicity of NK cells along with the induction of
NK cells’ apoptosis [136, 137]. The differences of NK cells responses to the ROS
generation are regulated by the CD56bright and CD56dim that are the NK cells antigen
subsets [138]. Monocyte-derived ROS direct CD56dim NK cells to apoptosis though
the CD56bright NK cells display a significant resistance to the ROS-induced func-
tional inhibition and apoptosis because of their stronger antioxidant capacity than
CD56dim NK cells [139–141]. Thus, the resistance of CD56bright NK cells provides

118 M. Varol



the cancer cells to evade immune system because the ROS-sensitive CD56dim NK
cells have higher cytotoxic activity than the ROS-resistant CD56bright NK cells
[136]. Similarly, the oxidative stress in the cancer microenvironment provides
cancer cells to evade immune system by regulating the accumulation of different
subsets of T cells because the conventional T cells are more sensitive to the hydrogen
peroxide-induced cell death than the regulatory T cells (Tregs) that have an ability to
inhibit the functions of other infiltrating immune cells [142–144]. Moreover, either
the functions of T cells can be suppressed or the apoptosis of T cells can be induced
via Jak3/STAT5 signaling pathway, which is regulated through the inducible nitric
oxide synthase (iNOS)-generated nitric oxide (NO) production by myeloid-derived
suppressor cells (MDSCs) [136, 145–147].

6.6 ROS and Enabling Hallmarks of Cancer

In the paper published by Hanahan and Weinberg [6], two enabling hallmarks of
cancer have been added to the previously described six hallmarks along with the two
emerging hallmarks, and these two enabling hallmarks have been described as the
tumor-promoting inflammation, and the genome instability andmutation [6, 7]. Actu-
ally, the relationship between inflammation and carcinogenesis has been known far
before the paper of Hanahan and Weinberg [6]. In 1863, Rudolf Virchow reported
that the “lymphoreticular infiltrate” reflected the origin of cancer at the locations of
chronic inflammation by observing white blood cells or leukocytes in neoplastic
tissues [23, 148–150]. The currently known data obtained from the numerous studies
performed after the Virchow’s hypothesis clearly indicate that there is a tight and
intricate relationship between the cancer progression and the promotion of inflam-
mation coordinated by the level of inflammatory cytokines (TNF, interleukin-1
(IL-1), and IL-6), chemokines (CXC chemokine receptor 4 (CXCR4) and IL-8),
and inflammation-related factors, especially located in the tumor microenvironment
[151–153]. Moreover, it is well known that ROS predictably take important roles in
the regulation of the sophisticated interaction between the course of cancer and the
promotion of inflammation by effecting the presences, levels, and types of the
inflammatory cytokines, chemokines, and inflammation-modulating factors such as
activator protein 1 (AP-1), HIF-1α, specificity protein 1 (Sp1), β-catenin,
wingless-type MMTV integration site family (Wnt), HIF-1α, NF-κB, peroxisome
proliferator-activated receptors-gamma (PPAR-γ), p53, signal transducer and acti-
vator of transcription 1 (STAT1)/STAT3, and nuclear factor erythroid 2-related
factor 2 (Nrf2) [154–157]. A series of signal transduction cascades can be activated
by the accumulation of inflammatory cells in the tumor microenvironment, which
provokes the further recruiting of inflammatory cells by producing cytokines and
chemokines, and a massive ROS production is therefore occurred by the activation
of the oxidation-related enzymes such as iNOS, NOX, XO, and myeloperoxidase
(MPO), and the upregulation of the expression of COX2 and LOXs [156, 158]. The
massively produced ROS leads to significant oxidative damages in genetic materials,
macromolecules, and organelles, which support the progression of carcinogenesis
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and overpowered production of supplemental ROS, and this excessively produced
ROS activate again the inflammatory cytokines, chemokines, and
inflammation-modulating factors. This phenomenon may be named as “inflamma-
tory response-mediated ROS-induced ROS release” by considering its similarity
with “ROS-induced ROS release” because ROS-induced inflammatory responses
release excessive ROS that induce again inflammatory responses [154, 155, 159,
160].

The other enabling hallmark of cancer has been described as the genome insta-
bility and mutation, the main cause of the genetic diversity in many cancers and the
cancer cell heterogeneity within the tumor tissue, and the overproduced ROS are
known as the prominent factors leading the oxidative DNA damages, including base
damages and modifications, deletions and insertions in DNA sequence, DNA
miscoding lesions, DNA single-strand and double-strand breaks, gene amplification,
and the activation of oncogenes, which contribute in cancer initiation and progres-
sion [26, 31, 161–164]. It can be possible to say that there is a cycle between the
overproduction of ROS and the oxidative DNA damages. As previously mentioned,
the elevated ROS level can activate the oncogenes such as Bcr-Abl, c-Myc, and Ras,
which can play substantial roles in the regulation of tumor suppressor genes, cancer
cell proliferation, mitochondrial dysfunction, angiogenesis, and metastasis, and the
oncogene activation is known as the main cause of the overproduction of ROS that
leads to the formation of replication stress [165–167]. For example, it has been
reported that the replication fork velocity can be reduced because the polymerase
activity is affected by the occurrences of ROS-oxidized deoxyribonucleotide
triphosphates (dNTPs) [168, 169]. The progression of replication fork can be
regulated by ROS by dissociation of peroxiredoxin2 oligomers (PRDX2), and the
fork accelerator named TIMELESS can be inhibited by a replisome associated ROS
sensor formed PRDX2 [170]. Thus, the replication fork speed can be reduced
through the dissociation of PRDX2 and TIMELESS, which is regulated by the
overproduced ROS [170]. Moreover, the replication forks can be prevented physi-
cally due to the occurrences of oxidized bases, and this phenomenon can cause the
breakdown of replication forks at fragile sites across the genetic material along with
the under-replicated or over-replicated DNA [64, 171]. On the other hand, the highly
accumulated ROS may directly effect on DNA through reacting with purines,
pyrimidines, and chromatin proteins, and causing the DNA single-strand and
double-strand breaks [172, 173]. A point mutation, for example, can be formed
because of the production of 8-hydroxy-20-deoxyadenosine (8-OH-dAdo) or
8-hydroxy-20-deoxyguanosine (8-OHdG) that are the widely known oxidative
DNA damage markers, which can be occurred through the reaction of hydroxyl
radicals with adenine or guanine nucleotides, respectively [173–176]. Additionally,
it should be noted that quinine is considered as the most sensitive nucleobase to
oxidation than other nucleotides, and so 8-OHdG emerges as the most common
oxidized nucleobase [177]. Apart from the 8-OHdG, there are some other oxidative
DNA damage markers such as 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-
dihydroadenine (8-oxoAde), 8-oxo-7,8-dihydro-2-deoxyguanosine (8-oxodG),
5,6-dihydroxy-5,6-dihydrothymine, 2,6-diamino-4-hydroxy-5-formamido-
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pyrimidine, and 4,6-diamino-5-formamido-pyrimidine [29, 172, 178]. ROS-induced
production of oxidized nucleobases generally leads to further mutations and DNA
damages along with the accumulation on some specific location such as telomere
sites, which are less efficiently repaired than the other genomic sites [179]. 8-oxoGua
can be, for example, accumulated on the telomere sites, and behaves as a blockage
for telomerase activity through reducing the binding potential of telomeric proteins,
disrupting telomere length, and precluding of chromosomal-end capping, and this
phenomenon can result in cell death, aging, carcinogenesis, chromosome instability,
and genotoxic formations such as nuclear buds (NBUDs), nucleoplasmic bridges
(NPBs), and micronuclei (MN) [179–181].

6.7 ROS and Angiogenesis

Angiogenesis can be considered as one of the most important cancer hallmarks
because cancer cells rapidly proliferate to form and expand the tumor tissue, but the
tumor tissue expansion increases the distance between cells and capillary vessels
[12]. However, the appropriate distance between the cells and capillary vessels is
restricted to 100–200 μm to maintain the balanced composition of oxygen, carbon
dioxide, nutrient substances, and metabolic wastes [182, 183]. Additionally, the
tumor tissue enlargement provides a hypoxic, hypoglycemic, hypoferric, and
acidified microenvironment along with the occurrence of an intolerable mechanical
stress on the cancer cells, and so the cancer cells are driven to migrate, invade, and
metastasize [12]. The cancer cells induce therefore angiogenesis to form new
capillary vessels originated from the existing vessels, run away from the stressed
microenvironment by participating in the circulatory system, and sustain the course
of carcinogenesis [184]. Angiogenesis is regulated via an angiogenic switch, which
can be opened and closed by variation of the balance between angiogenesis promot-
ing (angiogenic) and suppression (anti-angiogenic) factors [185]. The formation of
ROS and the occurrence of oxidative stress within the cells and microenvironment
predictably regulate the direction of the angiogenic switch along with the activation
of angiogenic or anti-angiogenic factors through the regulation of transcriptional
factors, releasing of some growth factors, and alteration of the cellular signaling
cascades (Fig. 6.3) [186, 187]. For example, the cancer cells in a hypoxic microen-
vironment can induce the releasing of proangiogenic growth factors such as vascular
endothelial growth factor (VEGF), epidermal growth factor (EGF), fibroblast growth
factor (FGF), hepatocyte growth factor (HGF), and platelet-derived growth factor
(PDGFB) and the increased production of the other angiogenic proteins such as
angiopoietin-1, leptin, endoglin, prominin-1, transforming growth factor beta
(TGF-beta), integrins, and matrix metalloproteinase (MMP) enzymes [12, 188–
190]. After the opening of angiogenic switch and the formation of new capillaries
surrounding the tumor tissue, the tumor cells and their microenvironments are
re-oxygenated. Contrary to the expectations, the tumor-induced angiogenesis and
re-oxygenation of tumor cells lead to larger problems instead of solving the problem
of cancer cells [187].
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Although the hypoxic microenvironment induces an overproduction of ROS by
disrupting the mitochondrial metabolism and the electron transport system, an
oxygen abundance occurs because of the angiogenesis-motivated re-oxygenation
phase, which results in 100 times higher ROS production than hypoxic state [191–
193]. This phenomenon is named as “cyclic hypoxia” because hypoxia-induced
angiogenesis leads to an excessive production of ROS and these ROS induce
again angiogenesis through the direct activation of HIF-1α, VEGF, and VEGFR2,
and the oxidation of lipids that stimulate NF-κB pathway-mediated angiogenesis
[187]. ROS-induced equilibrium corruptions in the angiogenic switch can lead to
many structural and functional abnormalities within the newly formed capillaries
surrounding tumor tissue, and these abnormalities result in hyperpermeability,
hypoglycemia, hypoxia, abnormal blood flow, and increased pressure, which also
increase the ROS production [187, 194]. Additionally, ROS such as superoxide
anion and hydrogen peroxide molecules have a special importance for the vascular
cells because they can regulate the fate of these cells depending on the
concentrations [195]. For example, the low concentrations of hydrogen peroxide
such as 0.1–10 μM induce the capillary tube-like formation of endothelial cells
though its high concentrations (>125 μM) induce lethal damages [187, 195]. Conse-
quently, ROS have a substantial role in the regulation of angiogenesis though the
tumor-induced angiogenesis is one of the major causes of the excessive ROS
production, and it is widely considered that the main source of ROS caused by
tumor-induced angiogenesis is mitochondria and electron transport system because

Fig. 6.3 ROS and VEGF-mediated angiogenesis. Hypoxic environment and elevated ROS
increase the production of angiogenic factors such as VEGF and angiopoietin, and activate a series
of signaling cascades to regulate angiogenesis
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of the hypoxic condition and the cyclic hypoxia-induced oxygen abundance
[12, 187].

6.8 ROS in Cancer Cell Invasion and Metastasis

Cancer cell invasion and metastasis are commonly considered as the carcinogenesis
processes that can be possible depending on the formation of angiogenesis though
the metastasis can be observed in many solid tumors regardless of the early or late
stages of the carcinogenesis [6, 187, 196]. Besides the similarities of the underlying
reasons of the tumor-induced angiogenesis and metastasis, the close interaction
between angiogenesis and metastasis has been known since the first observations
of Judah Folkman (1971) and Pietro Gullino (1978) [189, 197–199]. As previously
mentioned, the uncontrolled expansion of tumor tissue results in an unsuited micro-
environment qualified with the hypoxic, hypoglycemic, hypoferric, and acidified
features along with the mechanical stress, and so the cells forming tumor tissue
would like to escape from this microenvironment by inducing angiogenesis and
operating the complex processes of metastasis [12, 187]. Metastasis can be occurred
employing a series of cellular phenomena, including the degradation of extracellular
matrix (ECM), losing the cellular polarity and detaching from the ECM, cancer cell
invasion along with the amoeboid or mesenchymal migration, accessing to the
capillary vessels, intravasation, sustaining the anchorage-independent growth and
survival by evading anoikis (anchorage-dependent apoptosis), bypassing the
immune surveillance, extravasation, adhesion, proliferation, and colonization within
the secondary tumor site [200–203]. Numerous papers have revealed that ROS have
substantial regulative roles in the complex processes of metastasis as well as in the
angiogenesis, and many clinical and experimental data have suggested that the level
of ROS is changed during the metastasis [204]. For example, several studies reported
that the overproduced ROS induce the epithelial to mesenchymal transition (EMT), a
biological phenomenon that acts on the metastasis-related cellular functions such as
the cell–cell and cell–matrix interactions along with the cellular motility and migra-
tion, and EMT can be regulated by various cytokines such as TGF-β1 and EGF,
transcription factors including Twist, Snai1, Slug and ZEB1/2 (zinc-finger E-box-
binding homeobox), and signaling pathways such as the inhibitory kappa B kinase
(IKK)/NF-kB, MAPK, Notch, PI3K/Akt, TGF-b/Smad, andWnt/b-catenin signaling
pathways [205–208]. Although the cell invasion is facilitated by the elevated
expression of urokinase plasminogen activator (uPA) and matrix metalloproteinases
(MMPs), the cell–cell and cell–matrix adhesions are emaciated by decreasing the
epithelial markers and tight junction proteins such as occludin, claudin, and
e-cadherin, and increasing the mesenchymal markers such as fibronectin, vimentin,
and n-cadherin [205, 208]. The overproduced ROS are commonly considered as the
prominent regulator for the processes of EMT and metastasis, and ROS-induced
cancer cell metastasis by affecting the molecular pathways, transcription factor,
cytokines, and growth factor have been extensively reviewed by many scientists
[204, 205, 209–212]. For example, one of the prominent inducer of EMT named
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TGF-β1 can be regulated by ROS-dependent pathway; the Rac1-NOXs-ROS-depen-
dent activation of NF-κB pathway mediates the TGF-β1-regulated uPA and MMP9
activities on cell migration and invasion [210, 213]. Additionally, the Rac-dependent
ROS production has been suggested to be related to the activities of MMPs (e.g.,
MMP2, MMP3, and MMP9) and the transduction of mechanical perturbations into a
pro-invasive gene expression [209, 214–216]. Moreover, the loss of TGF-β1-
activated kinase 1 (TAK1) can lead to the integrin-Ras-induced ROS production
that activates the EMT signaling cascade [217]. Pelicano and coworkers reported
that mitochondria-derived ROS production leads to the AP-1 signaling pathway-
mediated upregulation of C-X-C motif chemokine 14 (CXCL14) expression and the
boost in cell motility by increasing the amount of cytosolic Ca2+ levels [218]. On the
other hand, the evading anoikis (anchorage-dependent apoptosis), which is the most
important part of metastasis is succeeded by ROS-dependent mechanisms. Anoikis
resistance of cancer cells can be conferred through NOX4-induced ROS-activated
the epidermal growth factor receptors (EGFR) and angiopoietin-like 4 (ANGPTL4)-
integrin complex-induced ROS-activated PI3K/Akt and ERK pathway [219–221].

6.9 ROS and Cancer Cell Death Pathways

Although the overproduced ROS are well known as a key factor in the initiation and
development of cancer through the disrupting effects on the genetic materials,
cellular macromolecules, organelles, signaling cascades, components, and homeo-
static balances along with the significant contribution in the cancer cell survival, the
disproportionately increased ROS emerge as a substantial approach for the cancer
treatment strategies because of the cell death provoking activity [23, 52]. Apart from
the non-inflammatory, caspase-independent, and ROS-sensitive special cell death
pathway named “oxeiptosis,” there are well-described ROS-induced cell death
pathways such as caspase-dependent apoptosis, caspase-independent ferroptosis,
and necroptosis, inflammasome-driven pyroptosis, and autophagic cell death
(Fig. 6.4) [222–227].

Kelch-like ECH-associated protein 1 (Keap1) is known as a main sensor to
monitor oxidative and electrophilic stress, and regulates the expression of
cytoprotective molecules by ubiquitination and degradation of Nrf2 under the
physiological conditions, though the overproduced ROS-oxidized Keap1 leads to
insufficient expression of cytoprotective molecules and highly expressed antioxidant
factors, viz., NAD(P)H quinone dehydrogenase 1 (NQO1), homeobox protein
1 (Hox1), and Thioredoxin (Txn) because of the highly accumulated Nrf2
[227, 228]. Besides the accumulation and translocation of Nrf2, the oxidized
Keap1 could not interact with the phosphoglycerate mutase 5 (PGAM5) that is
known as a common factor for many caspase-independent cell death pathways,
and so the released PGAM5 dephosphorylates the apoptosis inducing factor
mitochondria associated 1 (AIFM1) at Ser116 [227, 229]. Thus, AIFM1-deficient
cells undergo to the oxeiptosis by ROS-induced cell death pathway that includes
KEAP1, PGAM5 and AIFM1 [227].
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On the other hand, the ROS-induced caspase-dependent cell death pathways are
well known and the cellular pathways have been broadly described in many papers
[222–227]. For example, cytochrome-c is released from mitochondria because of the
ROS-induced mitochondrial abnormalities and dysfunctions, and so apoptosome
complex can be formed by the incorporation of the released cytochrome-c, Apaf-1
(apoptotic peptidase activating factor 1), and procaspase-9 to activate effector
caspases, e.g., caspase-3, which leads to the cleavage of cellular proteins and
apoptosis [23, 230]. Additionally, the intracellular accumulation of ROS regulates
the expression of the pro-apoptotic (Bad, Bak, Bax, Bid, and Bim) and anti-apoptotic
(Bcl-2, Bcl-w, and Bcl-xL) members of the Bcl-2 family via their phosphorylation
and ubiquitination, and the Bcl-2 family proteins play key roles in the regulation of
the mitochondrial membrane permeabilization and apoptotic signaling [52, 231,
232]. The other well-known ROS-induced cell death is autophagy that can be
regulated by several kinase cascades such as the most familiar mammalian target
of rapamycin complex1 (mTORC1), which can be regulated by PTEN/PI3K/AKT
signaling pathway [233]. The overproduced ROS-induced autophagy results in
degradation of the mitochondria that excessively produce ROS, and so this kind of
autophagy is called as mitophagy that leads to the reduced ROS levels as a result of
the NIX/BNIP3L and PARKIN/PTEN induced putative kinase 1 (PINK1) molecular
pathways [52, 234–236]. Moreover, the ROS-induced autophagy can be occurred
through Nrf2/Keap1 pathway by preventing degradation of Nrf2 as well as the

Fig. 6.4 ROS-induced cell death pathways
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ROS-induced oxeiptosis [237]. The attentions of many scientists seem to be focused
on the ROS-dependent cell death pathways because there is certainly a complex
relationship between the intracellular ROS and the cell death pathways, and the
ROS-mediated anticancer drugs and treatment strategies are commonly considered
as the beneficial treatment modalities.

6.10 ROS and Anticancer Treatment Strategies

Although unexpected and long-term changes in the intracellular ROS level are
considered as the main factors for the occurrence of extremely complex cellular
processes that induce carcinogenesis, numerous studies have shown that cancer cells
are more susceptible to the changes in intracellular ROS accumulations and more
dependent on the antioxidant systems than their healthy counterparts [39]. The
exogenous ROS generation is therefore considered as a promising option for the
anticancer treatment strategies because the vulnerability of cancer cells towards
oxidative stress provides a therapeutic selectivity in anticancer therapies
[238]. ROS-dependent treatment strategies are generally based on three different
approaches such as directing cancer cells to the cell death pathways by promoting an
excessive ROS generation, activating ROS-dependent cancer cell death by blocking
the antioxidant systems, and inhibiting carcinogenesis by reducing ROS generation
via activating antioxidant systems and employing antioxidant molecules. There are
many chemotherapeutic agents that increase ROS generation to selectively induce
cancer cell death because of the ROS-induced irreparable damages [54]. Examples
of these chemotherapeutics include, but not limited to the arsenic trioxide,
anthracyclines (e.g., daunorubicin, doxorubicin, epirubicin, and idarubicin),
bleomycin, β-lapachone, cisplatin, elesclomol, and sulindac [54, 238–240]. These
drugs can induce ROS generation by using different cellular mechanisms. For
example, doxorubicin that is a topoisomerase inhibitor, DNA intercalation agent,
and also one of the most known chemotherapeutics employed in the treatment of
many cancers, including bile duct, breast, endometrium, esophagus, gastric, pancre-
atic and liver cancers, osteosarcoma, Kaposi’s sarcoma and soft tissue sarcomas,
Hodgins and non-Hodgins lymphomas, induces intracellular ROS generation by
reacting with flavoprotein reductases, intracellular chelation of iron, which respec-
tively result in apoptosis and ferroptosis [52, 241, 242]. Apart from the application of
chemotherapy-induced ROS generation, there are different cancer treatment
strategies that induce intracellular ROS generation, such as photodynamic cancer
therapy (PDT) and sonodynamic cancer therapy (SDT) [243, 244]. PDT is a
non-invasive and clinically approved treatment method that induces excessive
ROS generation in the presence of molecular oxygen thanks to the synergic
interactions of a non-thermal light source and a nontoxic photosensitizer molecule
to induce apoptosis by damaging the cellular components of target cells
[244, 245]. Similar to the PDT, the ultrasound-mediated cancer therapy (SDT)
induces apoptosis in the target cells through the production of ultrasonic cavitation,
sonochemical bubble collapse, and finally free radicals and ROS generation
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[243, 246]. The second ROS-dependent cancer treatment approach emerges as the
suppressing cellular antioxidant systems (e.g., glutathione and thioredoxin) resulting
in the overproduced ROS-dependent activation of cell death pathways, and
examples of these chemotherapeutics include 2-methoxyestradiol, buthionine
sulfoximine, phenylethyl isothiocyanate, imexon, mangafodipir, and
tetrathiomolybdate [39]. For example, buthionine sulfoximine, phenylethyl isothio-
cyanate, and imexon lead to the increased accumulation of intracellular ROS by
reducing the intracellular GSH level [247–249]. Moreover, it has been thought that
the redox adaptation mechanisms can be evaded by combining the first and second
ROS-depended anticancer treatment approaches, viz., the promoting an excessive
ROS generation and the suppressing cellular antioxidant systems [39]. The last one
of the ROS-dependent treatment approaches is known as the targeting ROS produc-
tion by using antioxidant molecules that can be employed as a cancer preventive
therapy by using daily dietary compounds such as green tea-derived
epigallocatechin-3-gallate (EGCG), carotenes vitamin C and vitamin D
[250, 251]. However, it should be noted that there are also some reports indicating
that some antioxidants such as carotene, vitamin A, and vitamin E can be effective
on the elevated risk of cancer [252–254]. The substantial contributions of ROS into
the drug resistance development processes and further progression of carcinogenesis
should be also noted, because the overproduced ROS are well known as the
prominent factors for the oncogenic signaling, genetic instability, and DNA damages
along with the metabolic adaptations, enhanced proliferation, and survival
[255]. Consequently, it should be thoroughly considered the advantages,
disadvantages, and the exact activity mechanisms of the ROS-dependent anticancer
therapies because it is clear that targeting redox homeostasis of cells may lead to the
unexpected and unwanted consequences as well as the expected and wanted
outcomes.

6.11 Concluding Remarks and Future Prospects

As can be clearly seen in the previous parts of the chapter, ROS play substantial roles
in the regulation of physiological homeostasis such as the controlling of cellular
signaling cascades via low-level productions and the provoking of cell death
pathways via overproductions. Although numerous studies have shown that more
than 150 human disorders are related to the disruption of redox homeostasis, the bulk
of ROS-mediated intracellular signaling pathways and the consequences remain
unknown. It is well known that cancer cells induce the overproduction of ROS
and the elevated ROS production contributes in the progression of carcinogenesis
through provoking the DNA damage and genetic instability, cancer cell proliferation
and survival, metabolic adaptations, and drug resistance. Interestingly, ROS-induced
cell deaths in a cancer tissue can result in a more aggressive and chemotherapy
resistant cancer tissue in some cases because the elevated ROS can kill the sensitive
cancer cells though the aggressive ones can cope with the same amount of ROS.
Conversely, the combination therapy that is employed by using redox-active
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molecules and conventional treatment strategies is considered as a rational option to
overcome chemotherapy resistance. Many anticancer drugs, for example, kill the
cancer cells by activation of ROS-dependent cell death pathways though the cancer
cells develop resistance towards them by activating the antioxidant systems. The
antioxidant system inhibitors can be therefore employed to evade the cancer cell
resistance. It should be also noted that the anticancer drugs that kill the cancer cells
by ROS-dependent cell death pathways are preferred more to perform a selective
treatment because the cancer cells are regarded as more sensitive that health
counterparts due to the lack of redox homeostasis. On the other hand, the antioxidant
dietary substances are generally considered as beneficial to preclude carcinogenesis
and many scientists have recommended people to include these substances in their
daily diets to keep them away the cancer risks. However, some papers have
displayed the link between the increased cancer risks and some dietary antioxidants
such as carotene, vitamin A, and vitamin E. Thus, the activity mechanisms of the
dietary antioxidants need to be extensively investigated to understand well their
benefits and harms, and give recommendations to the people who would like to keep
themselves healthy. Although the consequences of the enhanced ROS production in
the cells seem to be not predictable because of the dependence on many different
factors, the ROS-mediated treatment strategies such as photodynamic therapy and
sonodynamic therapy seem to be promising because of their non-invasive features.
The relationship between microRNAs and ROS was not extensively discussed to
keep concise in this chapter, but this relationship seems to be substantial for the
regulation of many intracellular signals and epigenetic changes. Moreover, the
extensive investigations of ROS-mediated effects of drugs on epigenetic
mechanisms seem to be quite beneficial because ROS are known as the effective
factors on epigenetic regulations and aberrations that play crucial roles in cancer
heterogeneity and carcinogenesis. Consequently, ROS are considered as a double-
edged sword and the effects of the edges should be therefore extensively investigated
by developing interdisciplinary projects and collaborations to understand well and
employ efficiently this sword as a weapon, target, or mediator in the cancer treatment
modalities.
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Inflammatory Mediators: Potential Drug
Targets in Cancer 7
Mükerrem Betül Yerer, Eren Demirpolat, and İffet İpek Boşgelmez

Abstract

Inflammation or allergic responses are bio-physiological processes that are
known to be associated with the progression of disorders such as
neurodegeneration and cancer. Previously it has been seen that inflammatory
markers such as cytokines and chemokines are elevated several times in cancer
patients. Majorly, NF-kβ is one among the other inflammation-inducing
pathways, which have been found to be inhibited by various chemotherapeutic
drugs. They are also found to induce inhibition of inflammation via p38/MAPK
and PI3K/Akt and COX-2 activity. In the present chapter, the advancements in
understanding the inflammation-mediated cancer progression and associated
preclinical/clinical studies will be discussed.

Keywords
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7.1 Introduction

In recent years, mounting evidence have underlined the link between inflammation
and cancer. Many types of cancers stem from sites of infection, chronic irritation,
and inflammation (Table 7.1). Patients suffering from chronic inflammatory
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disorders are more likely to have cancer, which has been also well-listed by Kumar
Kundu et al. [11]. With the extensive knowledge about the tumor microenvironment,
orchestrated by inflammatory cells via chemical mediators, has proved that inflam-
mation is an inevitable participant in the neoplastic progress [12] and anti-
inflammatory drugs reduces this risk by prevention and also important for therapy
[13, 14].

The response of the body to a cancer has many relationships with inflammation.
Recurrent or persistent inflammation has been associated with the induction or
promotion processes or it may affect the susceptibility to carcinogenesis. In 1863,
Virchow hypothesized that chronic inflammation was at sites of origin of cancer, and
according to the hypothesis, several irritants may enhance cell proliferation as a
result of the tissue injury and ensuing inflammation [15]. Since the Virchow’s early
observation regarding the relationship of inflammation and cancer, as also evident
from the increasing number of published materials in this field (Fig. 7.1),
accumulating data have underlined the fact that tumors may originate at the sites
of chronic inflammation or infection [16].

Inflammation is the body’s natural defense mechanism against cell injury or
tissue damage. Upon tissue damage, mast cells and macrophages secrete molecules
that regulate the migration of leucocytes and inflammatory cells to the site of
damage. In general, acute inflammation is followed by rapid resolution where
irritants are cleared from the host. However, as depicted in Fig. 7.2, when resolution
fails, a state of chronic inflammation ensues owing to excess production of
cytokines, chemokines, and growth factors that inevitably lead to uncontrolled
inflammatory reactions which leads to cancer progress [17].

Table 7.1 Examples of inflammation- and infection-associated cancers

Etiologic agent or condition
Inflammation or
Infection Cancer References

Asbestos fibers Asbestosis Mesothelioma [1]

Tobacco smoke exposure Chronic obstructive
pulmonary disease

Lung cancer [2]

Excessive alcohol use
history, mutations

Pancreatitis Pancreatic cancer [3]

Possible genetic and
environmental factors

Inflammatory bowel
disease

Colorectal cancer [4]

Helicobacter pylori Gastritis, ulcer Gastric adenocarcinoma [5]

Hepatitis B
And/or C virus

Hepatitis Hepatocellular
carcinoma

[6]

Different etiological factors
including infections

Prostatitis Prostate cancer [7]

Human papillomavirus Cervicitis Cervical cancer [8]

Bacterial infection in
prostate

Prostatitis Atypical prostate
hyperplasia and
dysplasia

[9]

Several etiological factors Thyroiditis Papillary thyroid
carcinoma

[10]
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Fig. 7.1 (a) Distribution of the top-25 “Web of Science Categories” within the published items
regarding the terms “cancer” and “inflammation” (last accessed: June 6th 2020). The distribution of
“Web of Science Categories” within the published items on the topics “cancer” and “inflammation”
reveals 63,169 records (as of June 6th 2020), while primarily related with “Oncology” as expected
(~23.5%), other fields including “Biochemistry Molecular Biology,” “Cell Biology,” and “Pharma-
cology Pharmacy” also appear in the tree map. (b) The number of publications in the “Web of
Science” between 2000 and 2019 per year related to search terms “cancer” and “inflammation.” The
search of this combination hits 2603 publications in 2020 (last accession: June 6th 2020)
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There are two different paradigms to the link between inflammation and cancer:
(1) the intrinsic pathway, and (2) the extrinsic pathway [18]. In the intrinsic pathway,
different classes of oncogenes are activated leading to the expression of
inflammation-associated programs and cause an inflammatory microenvironment.
Therefore, DNA damage, chromosomal instability, and epigenetic alterations that
consequently lead to inappropriate gene expression are the key components of the
intrinsic pathway. In the extrinsic pathway, inflammatory signals from infections and
autoimmune diseases play a crucial role and these inflammatory conditions promote
cancer development. Both pathways activate various important transcription factors
[including nuclear factor κB (NF-κB) and signal transducer and activator of tran-
scription 3 (STAT3)] that are key inducers of the inflammatory cascade [19–22].

The cross-talk between the pro-inflammatory and tumorigenic mediators (e.g.,
cytokines, chemokines, oncogenes, transcription factors, immune cells, etc.) retards
the efforts to clarify the molecular mechanism(s) that cause formation of the
inflammatory-tumor microenvironment. The activation and/or deactivation of these
molecular mediators, as delicate key points between inflammation and cancer, are

Fig. 7.2 The potential interplay between inflammation and cancer
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influenced by intrinsic (i.e., hereditary) and extrinsic (i.e., environmental and life-
style) factors.

7.2 ROS and RNS and Their Role in Inflammation and Cancer

A possible mechanism by which chronic inflammation can trigger tumorigenesis is
the generation of reactive oxygen species (ROS) and/or reactive nitrogen species
(RNS) in the inflamed tissue and subsequent DNA damage which results in the
activation of oncogenes and inactivation of tumor suppressor genes [14]. Cancer
encompasses the initiation, promotion, and progression stages where oxidative stress
may affect any of them (Fig. 7.2). In the initiation stage, it causes mutational changes
in DNA. In promotion it blocks cell-to-cell communication, changes secondary
messenger systems and these lead cancer cells to proliferate faster and lose the
apoptosis ability. In progression phase, DNA is changed much more which makes
the cancer cells become chemo-resistant and migrate to other tissues [23].

Endogenous or exogenous sources such as alcohol, radiation, pesticides, diet,
smoking, developmental life, infections, obesity, generation of ROS, and reactive
nitrogen species (RNS) may trigger the cancer progress [24]. Examples for endoge-
nous sources include cytochrome P450 metabolism, peroxisomes, mitochondrial
oxidative phosphorylation, activation of inflammatory cells such as macrophages
and neutrophils. During mitochondrial respiratory process, it is assumed that 1–2%
of molecular oxygen is converted to ROS including superoxide, hydrogen peroxide,
hydroxyl and peroxynitrite radicals, through one to three electron reductions in the
electron transport chain. These ROS are not stable and may damage the key
components of the cell such as lipids, proteins, and DNA. On the other hand,
DNA damage is not always necessary for tumor formation and epigenetic alterations
is another factor. Epigenetic changes such as DNA methylation, acetylation,
deacetylation can be thought as non-genotoxic mechanisms for tumor formation.
According to the studies, oxidative stress may cause formation of single-stranded
DNA which leads to DNA methylation. DNA methylation, which occurs in the
promoter region of genes, causes gene silencing and this contributes to the process of
carcinogenesis. In this regard, oxidative stress can trigger cancer formation through
genetic and epigenetic mechanisms [25].

Mutation is one of the ROS-related genes which can lead to carcinogenesis. ROS
mediated DNA oxidation generates a by-product, named 8-hydroxy-2-
0-deoxyguanosine (8-OHdG). This molecule is highly mutagenic for DNA which
enhances carcinogenesis. The damage is not observed only in DNA. Also, proteins
are affected and they lose their function as a consequence of oxidative stress. Loss of
protein function may be associated with many diseases. Cell membrane is rich in
polyunsaturated lipids and they are very sensitive to oxidation by ROS which causes
lipid peroxidation. This alters the permeability of cell membrane that could lead to
cell death [26].

Ras pathway is one of the most critical pathways that is related to oxidative stress,
inflammation, and cancer. According to the studies if there is a mutant Ras, it leads to
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an increase in ROS levels leading to DNA damage [26]. Almost 25% of all
malignancies has a link with a Ras mutation leading to promotion of cell prolifera-
tion, tumor growth, and angiogenesis. Ras increases the expression of some inflam-
matory genes such as IL-1, IL-6, IL-11, and IL-8 [27].

Down-regulation of the antioxidant defense mechanisms by a serine threonine
kinase Akt might contribute to the survival of tumor cells. Akt that is activated by
ROS via inhibition of phosphatase can disable proapoptotic molecules including
caspase 9, Bcl-2 and trigger the NF-κB and inhibit apoptosis. Mild oxidative stress
may trigger NF-κB activation while excess oxidative stress lead to inhibition of
NF-κB. The activation is dose dependent; however, antioxidants including
N-acetylcysteine, thiols, polyphenols, and vitamin E can block NF-κB stimuli [27].

Breast cancer type 1 susceptibility protein 1 (BRCA1) that is responsible for
DNA repair has been mutated in 40–50% of hereditary breast cancer patients.
BRCA1 can upregulate the genes which are involved in antioxidant response
because it can control transcription factors such as nuclear factor erythroid
2-related factor (Nrf2) which induces Glutathione-S-Transferase (GST) and Gluta-
thione Peroxidase (GPx) in order to fight against oxidative stress. It is thought that
Nrf2 is the master regulator of antioxidant response BRCA1 also reduces RNS-based
protein nitration in cells and enhances DNA repair mechanisms [26]. People who
have mutations in BRCA1 gene cannot produce functional protein properly and they
are at risk for cancer development.

There are so many signaling pathways that are related with ROS, inflammation,
and cancer, some of which are listed in Table 7.2.

ROS-related cancer formation can be divided into different progression
categories, including (a) cell proliferation (via ERK1/2), (b) evasion of apoptosis
(via PI3K, Src, NF-κB), (c) tissue invasion and metastasis (matrix
metalloproteinases; MMPs), and (d) angiogenesis (VEGF) [28, 29]. Under hypoxic
conditions, the tissue environment becomes more hypoxic because cancer cells have
high proliferation rates. To overcome with this situation, cancer cells upregulate the
angiogenesis genes because angiogenesis means new blood and oxygen supply for
them. Furthermore, excessive ROS may regulate the metastasis via upregulation of
metastasis-linked genes and by induction of enhanced glycolysis with the help of
mitochondrial DNA encoding [30].

Tumors have many angiogenic factors such as vascular endothelial growth factor
(VEGF), matrix metalloproteinases (MMPs), angiopoietin-1, fibroblast growth fac-
tor (FGF), interleukin-8, platelet derived growth factor (PDGF), and tumor growth
factor (TGF). VEGF is highly expressed in most human cancer cells and it is
accepted as the rate limiting factor for the regulation of angiogenesis. VEGF, the
major factor in angiogenesis, is upregulated in cancer cells by hypoxic conditions,
ROS production, growth factors, and cytokines [31]. This factor stimulates endothe-
lial cell proliferation and migration through binding the receptor tyrosine kinase
VEGF receptor 2. Binding to the receptor kinase insert domain receptor (KDR) is
phosphorylated ends up with the activation of some downstream enzymes such as
ERK1/2, Akt, as well as endothelial nitric oxide synthase (eNOS), contributing to
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angiogenesis of the vessels to carry more oxygen and glucose to the tumor
microenvironment.

7.3 Role of Hypoxia and (HIF-1a) in Inflammation and Cancer

Normally at the initiation stage of cancer, cells proliferate so fast and the environ-
ment becomes hypoxic. Under these circumstances, signaling pathways are activated
to regulate proliferation, angiogenesis, and death but these mechanisms are not
effective on cancer cells because they develop adaptive counter mechanisms to
survive and proliferate more even under hypoxic conditions. Cells shifts from
aerobic to anaerobic metabolism and hypoxia-inducible factor-1a (HIF-1α) like
pathways are activated (Fig. 7.2). Prolonged hypoxia causes cell death but new
vessels which are formed near cancerous tissue supplies low oxygen at the beginning
but cancer cells are adaptive to proliferate under hypoxic condition. After the vessels
are grown, they supply enough oxygen for cells to help them proliferate more [32].

Table 7.2 Signaling pathways linked to ROS and inflammation in cancer

AHR c-Myc eNOS iNOS mTor Protein kinase C

AP-1 CREB ERK Integrin NAD[P]H
quinone
oxidoreductase
1

PPAR-γ

ATM Cyclins and
cell cycle
regulation

Fas Interferon NF-κB PTEN

cAMP Cytokine
network

FOXO JAK/
STAT

Nrf2 Protein tyrosine
phosphatases/
protein tyrosine
kinases PTPs/
PTKs

cAMP-
dependent
protein
kinase A

DNA
methylation

HIF-1α JNK PI3K/Akt Sp1

Cdk5 DNA repair
mechanism

Heme
oxygenase-
1

MAPK p38 TNF

Chemokines Epidermal
growth
factor

IL-10 Mismatch
repair

p53 VEGF
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7.4 Role of Chemical Mediators of Cancer Microenvironment
and Transcription Factors

During chronic inflammation, numerous intracellular signaling pathways are
deregulated. For example, inflammation-driven deregulation of kinases such as
Janus kinase (JAK) and mitogen-activated protein kinases (MAPKs) leads to trans-
mission of growth signals that permit cellular acquisition of a malignant phenotype.
Additionally, inflammation-induced aberrant activation of several transcription
factors such as STAT3, NF-κB, and HIF-1α (hypoxia-inducible factor-1α) has
often been implicated in oncogenesis [17, 18, 20, 33]. The well described
arachidonic acid pathway in cancer progress is depicted in Fig. 7.3.

Some pro-inflammatory gene products have been described that mediate an
important role in the suppression of proliferation, apoptosis, invasion, metastasis,
and angiogenesis. Some of these products are tumor necrosis factor (TNF) and
members of its superfamily, IL-1α, IL-1β, IL-6, IL-8, IL-18, chemokines, MMP-9,
VEGF, Cyclooxygenase 2 (COX-2), and Lipoxygenase (5-LOX). The expression of
all these genes are mainly organized by a transcription factor known as NF-κB,
which is constitutively produced in most tumors and its production is increased by
carcinogenic viral proteins (HIV-tat, HIV-nef, HIV-vpr, KHSV, EBV-LMP1,
carcinogens (such as tobacco smoke), tumor promoters, chemotherapeutic agents,
HTLV1-tax, HPV, HCV, and HBV), and γ-irradiation [34].

Inflammation can contribute to carcinogenesis through potential mechanisms that
cover induction of genomic instability, changes in epigenetic events resulting in

Fig. 7.3 Arachidonic acid
pathway in cancer progress
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improper gene expression, aggressive tumor neovascularization, resistance to apo-
ptosis, enhanced proliferation of initiated cells, invasion via tumor-associated base-
ment membrane and metastasis, etc. [11].

Many of pro-inflammatory mediators, especially prostaglandins, cytokines, and
chemokines turn on the angiogenic switches mainly regulated by VEGF, thereby
causing inflammatory angiogenesis and tumor cell-stroma communication.

NF-κB enables a mechanistic linkage between inflammation and cancer, thus
provides an important mediator for the control of the ability of pre-neoplastic and
malignant cells to fight against apoptosis-based tumor-surveillance mechanisms. In
addition, the fact that NF-κB controls tumor angiogenesis and invasiveness, and the
signaling pathways that mediate its own activation, provides attractive targets for
novel prophylactic and therapeutic approaches [19]. Key mediators at the intersec-
tion of the extrinsic and intrinsic pathway include cytokines (e.g., TNF), transcrip-
tion factors (e.g., NF-κB, STAT3, HIF-1α), and chemokines. Signal transducer and
activator of transcription 3 (STAT3) that acts as a point of convergence for various
oncogenic signaling pathways is triggered in tumor cells and in immune cells
available in the tumor microenvironment.

Constitutively activated STAT3 on the one hand decreases the expression of
mediators to be used in immune response against tumor cells, on the other hand
increases the production of immunosuppressive mediators that turn on STAT3 in
various immune-cell subsets, altering gene-expression programs and, inhibiting anti-
tumor immune responses [21] (Table 7.3).

7.5 Role of Inflammatory Cells: TAMs and TANs

Neutrophils act as the first recruited cells to an acute inflammatory response. Next,
monocytes differentiate into macrophages, while they are guided to the tissue injury
site via chemotactic factors called chemokines. Macrophages, as the major source of
growth factors and cytokines, completely affect the endothelial, epithelial, and
mesenchymal cell proliferation in the microenvironment. Besides, mast cells take
part in the acute inflammation due to the release of inflammatory mediators, namely
histamine, cytokines, and lipid mediators leading to large number of cell migration
to the local microenvironment of the inflamed tissue [12].

Regarding neutrophils, it has been suggested that a four-step mechanism controls
the recruitment of these cells to injury sites as well as to the extracellular matrix
including activation of the selectin family of adhesion molecules (L-, P-, and
E-selectin).

This process in the microenvironment of the inflammation comprises; (1) facilita-
tion of transport on the vascular endothelium; (2) triggering the signaling pathways
related with the activation and upregulation of leukocyte integrins mediated by
cytokines and leukocyte-activating molecules; (3) immobilization of neutrophils
on vascular endothelium through the medium of tight adhesion via α4β1 and α4β7
integrins binding to endothelial vascular cell-adhesion molecule-1 (VCAM-1) and
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Table 7.3 The role of signaling molecules in inflammation and cancer (a compilation of Refs.
[11, 12, 34–61])

Signaling
molecules Role in inflammation-associated cancer References

Pro-
inflammatory
cytokines

Over-expression in inflamed, hyperplastic, metaplastic
tissues, and adenocarcinomas

[35]

DNA damage induction [36]

Stimulation of inflammatory angiogenesis [37]

Activation of pro-inflammatory signaling via JAK-STAT and
NF-κB

[38]

Stimulation of cell proliferation and inhibition of apoptosis [39, 40]

Chemokines Attraction of inflammatory and immune cells to the
microenvironment

[41]

Promotion of tumor cell migration [42]

Enhancement of extravasation of tumor cells through stromal
tissue

[43]

Stimulation of inflammatory angiogenesis through
upregulation of proangiogenic factors (e.g., VEGF and
MMP)

[12]

COX-2 Catalyzing the biosynthesis of lipid mediators related with
inflammation

[34]

Contributing to the maintenance of a persistent inflammatory
state in the premalignant and malignant lesions

[44]

Over-expression in cancers related with inflammation [42]

Promotion of cell proliferation and apoptosis blockage [45]

Acceleration of angiogenesis via triggering PGE2 signaling
and expression of VEGF and stabilization of HIF-1α

[46]

PGE2 Promotion of tumorigenesis in animal models [47]

Excessive production in inflamed, hyperplastic, and
dysplastic tissues, and carcinomas

[48]

Augmentation of cell proliferation, suppression of apoptosis [49]

Induction of proangiogenic factors (e.g., VEGF) [34]

Activation of pro-inflammatory signaling pathways within
the tumor microenvironment

[50]

iNOS Elevation in tumoral lesions [51]

Induction of ROS and RNS associated with DNA damage [52]

Production of pro-inflammatory mediators such as nitric
oxide (NO)

[53]

Acting as a downstream effector of NF-κB and inflammatory
cytokine-mediated signaling

[53]

NO Promotion of tumor growth via cell proliferation [54]

Leading to S-nitrosylation of pivotal proteins related with
inflammation and cancer

[55]

Nitrosative stress resulting in DNA damage [56–58]

NF-κB Increasing the expression/production of pro-inflammatory
mediators

[59]

Augmentation of the antiapoptotic proteins expression [60]

Promotion of invasion and metastasis [61]
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MadCAM-1, respectively, (4) transmigration through the endothelium to injury
sites, with the help of extracellular proteases (e.g., MMPs) [12, 62].

Although the infiltration of leukocytes to the neoplastic tissue appears to provide
anti-tumor effect; expanding evidence underlines the fact that the infiltrate of
activated macrophages and lymphocytes recruited from the microcirculation is a
critical source of pro-inflammatory cytokines, chemokines, growth factors, and
angiogenic factors in the neoplastic tissue microenvironment [16, 63].

At the site of injury, chemokines and cytokines play a pivotal role in the
recruitment of appropriate subsets of leucocytes to initiate and maintain the inflam-
matory response. Macrophages are differentiated cells of circulating peripheral-
blood monocytes, which migrate into tissues both at steady state and/or in response
to inflammation [64–66].

Numerous reports highlight the direct link between tumor-associated macrophage
(TAM) density and tumor progress (Table 7.4). Moreover, by regulating activation
and/or deactivation of numerous kinases, transcription factors and molecular
mediators, TAMs consistently mediate the switch from chronic inflammation to
tumorigenesis. An increase in TAM numbers correlates with an increase in tumor
angiogenesis. By expressing mediators such as transforming growth factor β
(TGFβ), VEGF, PDGF, MMPs, thymidine phosphorylase (TP) and various
chemokines, TAMs either directly or indirectly influence the angiogenic process
[77, 78].

7.6 A Summary of Inflammation and Its Pro’s and Con’s
in Cancer Progress

As a summary, inflammation is a well-defined mechanism lying under carcinogene-
sis and uses many common pathways both in the cancer and wound healing progress.
In the inflamed environment as a reaction to tissue injury, a multifactorial network of
chemical signals is triggered to maintain a host response dedicated to “recover” or
“repair” the impacted site which is orchestrated with many cells and the factors
released from these cells. For instance, chemotactic factors such as TGF-β and
PDGF, derived from activated platelets, induce and activate the proteolytic enzymes
crucial for remodeling of the extracellular matrix. Epithelial and stromal cell types
engage in a reciprocal signaling dialogue to facilitate healing [12].

The cells related to inflammation play different roles in cancer progress. Early in
the neoplastic process, these cells are critical tumor promoters that produce an
attractive environment for tumor growth, facilitate genomic instability, and promote
angiogenesis. Afterwards, during tumorigenic process, neoplastic cells divert inflam-
matory mechanisms (e.g., selectin–ligand interactions, MMP production, and che-
mokine functions) to favor proliferation and metastasis [19–22]. During the
inflammation, neutrophil chemotaxis is activated by various components (e.g.,
circulating complement factor 5, leukotriene B4, kallikrein, endotoxins and factors
released from platelets such as PDGF, TGF-β, platelet-activating factor, and platelet
factor-4). In wound healing process in the inflamed tissue, these phagocytic cells
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Table 7.4 Role of TAM in several cancer types

Type of tumor Details or outcomes of the study References

Bladder A significantly higher TAM count was detected in invasive
bladder cancers as compared to superficial cancers. A high
TAM count was associated with higher cystectomy rates,
distant metastasis and vascular invasion; moreover, these
patients had a lower 5-year survival rate. In this regard,
evaluation of TAM count in these tissue samples has been
suggested to predict the prognosis, as well as a tool for
selection of the convenient treatment

[67]

Breast CD68, CD163, and MMP-9 were co-localized, displaying
higher expression in ER- breast cancers. In consideration
of the association between higher CD163 protein
expression in TAMs with augmented overall survival in
ER-cases but not in ER+ cancers, the authors have
suggested that triple negative breast cancer may benefit
from an analysis of CD163 for a diagnostic and/or
macrophage-targeted therapeutic intent

[68]

Breast Evaluation of the VEGF protein expression in primary
breast carcinomas and its association with focal
macrophage infiltration (macrophage index) revealed a
significant inverse correlation between VEGF and EGFR
(high VEGF expression—low EGFR levels). The authors
reported two types of macrophage infiltrates in breast
cancers: (1) EGFR-positive and low VEGF expression in
tumor, (2) EGFR-negative tumors with high VEGF
expression. In EGFR+ tumors, macrophage counts were
higher, while they found no associations between VEGF
expression and microvessel-density increase. On the other
hand, VEGF expression and macrophage index were
positively associated in the EGFR- group

[69]

Cervix IL-8 levels and TAM numbers were significantly
correlated, thus IL-8 content may be of use as a prognostic
indicator as an angiogenic factor originating from TAMs.
While the prognosis of patients with high IL-8 was poor,
the 24-months survival rate was recorded as 67% in
patients with low IL-8

[70]

Colon This study, enrolling two independent large cohorts, has
shown that CD206/CD68 ratio that was significantly
associated with poor disease-free survival and overall
survival may serve as a prognostic and predictive marker
of postoperative adjuvant chemotherapy for stage II colon
cancer

[71]

Colorectal An association between high intra-epithelial CD68+
macrophage density and poor overall survival or
progression-free survival was of note. In colorectal cancer,
the density of intratumoral macrophages may be utilized as
a prognostic indicator in order to further stratify the T cell
populations

[72]

Esophageal The infiltration of CD68(+) macrophages and CD163(+)
macrophages have been evaluated in patients with

[73]

(continued)
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initiate tissue repair by providing the early response pro-inflammatory cytokines
such as tumor necrosis factor-α (TNF-α) [79], and interleukin (IL)-1α and IL-1β
[80]. These cytokines play role in the leukocyte adherence to vascular endothelium,
to initiate repair by inducing expression of MMPs and keratinocyte growth factor
(KGF/fibroblast growth factor (FGF-7)) by fibroblasts [81]. All these factors are key
components and suitable targets for cancer therapy.

After the deployment of monocytes/macrophages to the inflammation site, they
differentiate into mature macrophages or immature dendritic cells [69]. Endothelial,
epithelial, mesenchymal or neuroendocrine cells in their local microenvironment are
profoundly affected by macrophage products in cancer site after this complex
inflammation process. Macrophages serve in the regulation of the local tissue
remodeling: Briefly, they induce ECM components, stimulate production of
MMPs, and other proteolytic enzymes as well as urokinase-type plasminogen
activator, clear apoptotic and necrotic cells, and modulate angiogenesis via local
production of thrombospondin-1 [12, 82].

In conclusion, there are many mediators orchestrated with the cells and the cell
end-products released in the tumor microenvironment those have been shown to be
related in both cancer and inflammation revealing the strong relationship between
them. Taking this into account, many potential drug targets have been identified in
this aspect, and in this chapter, we tried to summarize these factors which might be
potential drug targets in several cancer types.

Table 7.4 (continued)

Type of tumor Details or outcomes of the study References

esophageal cancer. Results have depicted that high CD68
(+) and CD163(+) macrophage infiltration correlated with
poor response to chemotherapy, both clinically and
pathologically. In the patients undergoing neoadjuvant
chemotherapy, CD163(+) as the marker for M2
macrophages, has been suggested as an independent factor
for prognosis

Hodgkin’s
lymphoma

An increased number of TAMs (CD68+) was strongly
correlated with shorter progression-free survival along
with a tendency for relapse after autologous hematopoietic
stem-cell transplantation that leads to shorter disease-
specific survival in patients with classic Hodgkin’s
lymphoma

[74]

Lung (non-small
cell lung cancer)

High levels of M1, CD204 + M2, and CD68 macrophages
have been suggested as independent prognostic indicators
of prolonged survival in patients. A pathological stage-
related evaluation is provided

[75]

Prostate The odds ratio for lethal prostate cancer has been estimated
as 1.93 (95%CI: 1.23–3.03) for patients with high
infiltration of CD163-positive M2 macrophages versus low
infiltration. Additionally, higher CD163 positive
macrophages in patients with an uncertain outcome has
been shown to predict a poorer prognosis

[76]
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Pharmacologic Modulation of the Immune
Response Against Tumours in the Elderly 8
Juan Bautista De Sanctis

Abstract

Despite the high incidence of cancer in the elderly, little is known about the
protective immune response against cancer and the treatment of other
comorbidities. Inflammaging has been defined to explain a protective inflamma-
tory response in the elderly. New subpopulations of stem cell memory T cells
seem to be responsible for a quick memory response to antigens and probably
against tumours. Biological immune therapy with anti-checkpoint inhibitors
could be an essential tool to treat patients; however, adverse or toxic events are
often observed in elderly patients. Several medications used in the elderly,
metformin and valproic acid, have been shown to have anti-neoplastic effects.
These effects suggest that therapeutic approaches in the elderly should be care-
fully analysed. Clinical trials are required to assess the exact role of immune
response and therapy in tumour incidence and survival in the elderly.
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8.1 Introduction

The incidence of cancer in the elderly has always been a matter of discussion [1, 2]
(https://www.cancerresearchuk.org/health-professional/cancer-statistics/incidence).
The documented decrease in immune vigilance, along with the increase of inflam-
mation markers, has generated interest in the field [3–5]. Modulation of immune
response by vaccination has been considered appropriate therapy for rescuing
memory against infectious diseases [6]; however, in cancer, more sophisticated
strategies have to be analysed [7]. The increased susceptibility to infections in the
elderly is a clear indication of an impaired innate immunity which, as a consequence,
leads to a decreased response of adaptive immunity [3–5]. It is expected that ageing
will predispose individuals to a less anabolic and catabolic activity which would
limit the response of cells and tissue to injuries. One biological mechanism that
partially compensates this phenomenon is inflammaging [3–5]. Inflammaging is
defined as a dynamic protective response in which pro-inflammatory mediators
and circulating primed cells are increased without generating a clinically perceptible
inflammation [3–5, 7, 8]. This pro-inflammatory response is a quick adaptive
response observed in healthy elderly individuals. It is often underestimated, it
could be modified by therapy, and it partially protects from tumour growth
[7, 8]. Thus, the immune response of the elderly should be considered different
from healthy adults and infants.

Cancer is frequently diagnosed in the elderly, with approximately 50% of patients
being over 70 years of age [1, 2] (https://www.cancerresearchuk.org/health-profes
sional/cancer-statistics/incidence). According to the British cancer organisation,
female rates of cancer are lower than male after 75 years, and there is a drop in
cancer incidence after 85 years (https://www.cancerresearchuk.org/health-profes
sional/cancer-statistics/incidence). Tumour screening is either decreased after
85 years or healthy elderly individuals that have an efficient immune response live
longer and dye of other natural causes.

In solid tumours, one of the most common cancers in males is prostate cancer and
in women breast cancer; however, in both genders, the second most common is lung
cancer [1, 2] (https://www.cancerresearchuk.org/health-professional/cancer-statis
tics/incidence). Leukaemias and lymphomas are also prevalent in the elderly popu-
lation [1, 2] (https://www.cancerresearchuk.org/health-professional/cancer-
statistics/incidence). One of the hypotheses in geriatric oncology is that continuous
replacement of circulating T cells from the bone marrow, impaired genetic control
mechanisms, and the absence of thymic selection increases the probability of
generating tumour cells (lymphoma). Patients with mild immune deficiencies and
some with acquired immunodeficiencies are prone to develop B cell lymphoma.
Others in minor extent develop monocytic leukaemia. Nonetheless, patients that had
an incipient or surgical removed tumour may present new tumour growth in the same
organ or other organs due to the reactivation of dormant metastatic cells which have
not been contained by the immune system [9, 10]. This late group is now carefully
monitored by the oncologists due to the marked increase in documented cases [1, 2]
(https://www.cancerresearchuk.org/health-professional/cancer-statistics/incidence).
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Usually, studies that involve tumour therapy or immune tumour therapy do not
include elderly individuals [11–15]. It is assumed that most of the elderly individuals
have comorbidities; however, there is a group of healthy individuals with an
adequate response to pathogens and tumours who have been overlooked
[7, 8]. This group may provide new pieces of evidence for immune modulation,
which can be useful for the treatment of elderly patients with incipient tumours and
tumour survivors with a high risk of metastatic tumours. Due to the marked increase
in the elderly population, pharmaceutical companies have started programs to
monitor different treatment options.

8.2 Protective Immune Cell Populations in Healthy Elderly

Most of the innate immune response in elderly individuals is partially unresponsive
to stimuli [3, 4]. The unresponsiveness is generally due to a decrease in signal
pathway activation and a reduction in cytokine secretion [3, 4]. The vigilant tissue
immune cells in ageing are slow in the generation of resolution mediators which
paradoxically provide a mild advantage on alert immune responses [3–5]. Due to the
reduced innate response, adaptive responses, based on memory, take charge of the
immune response to many know antigens [7, 8]. Nonetheless, the immune challenge
with vaccines has proven a useful stimulation of innate immunity providing a more
sustained and effective memory response [6, 16].

One of the hallmarks of healthy ageing is the increase in CD4 cells, the decrease
in CD8 cells, and an increase in T reg cells with an increase in PD1 [3–5, 7, 8]. The
markers of senescence are expressed predominantly in the CD8 population
suggesting that crucial antiviral and antitumour response is partially impaired
[7, 8]. Several reports in mice and humans have indicated that this decrease in T
cell population is assumed by NK cells, NKT cells, or Tγδ cells although this point is
still under discussion [3–5, 7, 8, 16].

In healthy elderly individuals, antigen responsive T cells are composed of central
memory T (TCM) cells (CD45RO + CCR7+), effector memory T (TEM) cells
(CD45RO + CCR7�), and effector T (TEF) cells (CD45RO-CCR7�) [8]. After
continuous antigen stimulation with age, a shift in the T cell subset distribution from
naïve T cells to TCM, TEM, and TEF. This process is characterised by the loss of
expression CD27 and CD28, which may be accompanied to a higher risk of
infections, chronic diseases, and cancer [7, 8]. However, a cell population
co-expresses CD28, CD95, CD45RO+, and CCR7+ and has been defined as stem
cell memory T cells (TSCM) respond quickly to antigen, generating an active
immune response [8]. This population seems to originate from the follicular com-
partment, and they are released to compensate for a decreased number and function
of T cells [17]. Thus, effective T cell responses in healthy ageing can be observed
and do not represent the majority of the circulating T cells encountered.

Endogenous glucocorticoids produced in stress conditions and ageing induce a
decreased immune response in the elderly [18]. Predisposition to chronic diseases or
inflammation along with the lack of exercise, non-proper nutrition, and dysbiosis
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may generate this increase [18]. Behavioural changes can affect the production of
glucocorticoids. In mice, unaligned chronic circadian rhythm expedites immune
senescence suggesting that simple changes in behaviour may alter immune response
which increases the susceptibility to lack of immune response which, in turn, would
predispose to more probability of tumour growth [19].

One of the most common infections observed in the elderly population is cyto-
megalovirus infection (CMV). The infection induces a decrease in the expression of
CD28 and NK cell activity making the patient more susceptible to other viral
infections and the development of tumours [20]. Different T cell responses are
also impaired [21, 22]. However, in some elderly individuals, the immune response
is restored, which suggests that genetics plays a significant role in the process
[23]. Challenging the immune system with vaccination could provide valuable
clinical evidence to assess the individual capacity to respond to pathogens and
tumours. One could envision that those elderly patients, survivors of cancers that
do not respond to vaccines, tumour reappraisal may occur. Vaccines are then an
indirect but essential tool for clinicians to assess effective immune responses.
Figure 8.1 represents the main differences between the typical healthy adult immune
response and inflammaging observed in the elderly population.

8.3 Chemotherapy and Toxicity

Toxicity due to chemotherapy is frequent in elderly patients [14, 15]. Cytokine storm
can be generated in these patients due to a marked increase in cell death. This
uncontrolled amount of cytokines can be avoided by treating the patients with
steroids or additional immunosuppressants to decrease the inflammatory burden.
Adding steroids to the treatment jeopardises the protective immune response,
moreover, if the patient has comorbidities, it may aggravate them [14, 15]. This

Fig. 8.1 Differences in the immune response between healthy normal adults and elderly
individuals
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stress-induced response prolongs hospitalisation, deteriorates the immune response,
and the patient is more susceptible to infections. Elderly patients are very labile.

Biological therapy against PD1 and CTLA-4 in elderly patients may not be as
effective as in other ages [13, 14]. There are no general guidelines for elderly patients
[14, 15]. As aforementioned on T cell populations, the amount of highly active stem
T cells in the elderly may be pushed to apoptosis with the anti-checkpoint inhibitors.
Thus, checkpoint inhibitors may generate highly toxic side effects in elderly patients
by enhancing cytokine storm [13]. These adverse events have been identified as
immune-related adverse events (irAEs). The report from the European Society for
Medical Oncology (ESMO) differentiates side effect of checkpoint inhibitors, grade
1 and 2 toxicities [24]. The recommendation is to suspend the treatment and monitor
the events or start symptomatic or local therapy. The majority of symptoms appear
after 4 h. of the initial treatment; however, the manifestations can occur during
treatment and be maintained after several months after the treatment has been
stopped [13]. Since there may appear skin manifestations, most clinicians would
prescribe antihistaminics. In some cases, antihistamines in the elderly give more side
effects affecting consciousness and fluid retention deteriorating the patient [25]. If
the adverse effects escalate, corticosteroid therapy is recommended (some grade
2 and grade 3 and 4 toxicities). If there is no improvement, more aggressive
immunosuppressive therapy is used [24]. In conclusion, biological therapy should
be carefully managed in elderly patients.

One of the proposed options in elderly patients is to the use of JAK inhibitors for
tumour treatment. However, as suggested after the COVID 19 outbreak, the use of
JAK inhibitors could be more detrimental than effective since they would inhibit
immune response [26].

8.4 Other Medications that May Affect Tumour Growth
and Immune Response

Recently, commonly used drugs in the elderly have been used to treat cancer since
some important mechanisms of the compounds have been studied in more detail.

It is well known that hyperglycemic states reduce immune response, and
glycemic control restores the effectiveness of the immune system. Metformin is an
old drug that has been used in patients with increased insulin resistance and type
2 diabetes for glucose control [27]. The rationale of using metformin in cancer is to
decrease the uptake of glucose by the tumour, inhibit rapamycin, enhance mitochon-
drial control of cell cycle, and eventually induce death by inhibiting autophagy and
enhancing apoptosis [28]. Tseng et al. demonstrated that diabetic patients that use
metformin had a better survival of lung cancer than their counterparts [29]. On the
contrary, diabetic patients without strict glycemic control are prone to have higher
tumour growth. Insulin, a known modulator of the immune response, is able to
restore immune response at the concentrations normally used to control glycaemia
[30, 31]. Hypoglycaemia in the elderly, it is a very dangerous condition, and in
patients with cancer with controlled insulin levels is considered a bad prognosis.
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Since cholesterol synthesis has been related to tumour growth, treatment with
statins was proposed as adjuvant therapy [32]. Perhaps due to the complex metabo-
lism of tumours, no major direct effect has been described. Simvastatin has been
studied for breast cancer as an inhibitor of signal pathways related to triple-negative
breast tumours [33]. However, the most striking responses on statins and cancer
come from trials with diabetic patients in which the use of statins, the best
rosuvastatin, seem to enhance a protective immune response increasing patient
survival [34]. One may conclude that clinical trials related to the use of statin in
elderly patients with cancer should be performed in order to ascertain the effective-
ness of these drugs as adjuvant therapy.

Valproic acid (VA), a known anti-epileptic drug also used to treat bipolar
disorder, has been shown to a potent demethylating agent useful in cancer therapy
[35]. In principle, VA was shown to decrease monocyte to dendritic cell maturation
and affect some of the macrophage and NK cytotoxic responses; however, VA
increases NK cytotoxic receptors enhancing a specific antitumour response
[35]. Most probably these contradictions arise from the in vitro assays as compared
to the in vivo assays. The slower clearance of the drug in the elderly [36] suggests
that lower doses of the compound would be more therapeutic than higher does which
in fact would decrease immune response efficiency.

There are other medications usually used by elderly patients; however, the lack of
relevant data prompted us not to comment on it.

8.5 Conclusions

There is general consent that tumours are frequent in the elderly and that elderly
individuals have an impaired immune response. These comparisons are usually
performed comparing average young and middle-age individuals to the elderly.
However, only a few researchers have compared healthy elderly individuals with
aged patients with cancer and elderly cancer patients with comorbidities [37]. In
general, healthy old individuals have an excellent protective immune response
mostly dependent upon pro-inflammatory cells and mediators, which are clinically
silent. A good memory response may protect these individuals from tumour
appraisal or reappraisal.

On the contrary, in elderly patients with comorbidities, the protective response
may be impaired, and tumour appearance and reappraisal increase dramatically.
Up-to-date, it is difficult to distinguish if the group with comorbidities is more
susceptible to develop tumours and why. Pharmacological therapy can play a role
in increasing the risk to develop cancer.

Most of the clinical trials with different therapeutic schemes are usually not
performed in elderly individuals. The pharmacokinetics and pharmacodynamics of
many compounds are calculated in clinical trials that usually includes young and
middle-aged people. Then, the recommended doses may produce toxic effects in the
elderly. Besides the fact that unadjusted drug concentrations can be detrimental cell
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metabolism or to immune response, drug interactions may not be appropriately
addressed.

The use of chemotherapy and checkpoint inhibitor therapy should be strictly
monitored in the elderly population, especially in the presence of comorbidities.
The addition of coadjuvant therapy should be carefully analysed depending on the
individual. Finally, more research is required on the field in order to provide the
critical guidelines required. In the recent COVID 19 outbreak, we have learned how
many elderly people different countries have and how susceptible elderly
populations are to infections. However, many people have not understood that this
population is increasing rapidly. It represents a challenge that must be resolved.
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Angiogenesis: A Therapeutic Target
for Cancer 9
Neha Atale and Vibha Rani

Abstract

The proliferation and metastatic spread of tumor cells depend on the newly
developed blood vessels. Vasculature not only provides an adequate supply of
oxygen and nutrients but also removes waste products or gas exchange. The
process of angiogenesis is controlled by various transcriptional factors and
growth factors. It has been observed that the discovery of angiogenic inhibitors
can help to reduce carcinomas growth. Presently, chemotherapeutic drugs
mediated inhibition of hypoxia-inducible factor (HIF-1), which initiates
neovascularization under hypoxic conditions in the tumor, is being investigated.
Vascular endothelial growth factor (VEGF) and receptor VEGFR mediated
activation of endothelial cells are also inhibited by chemotherapeutic drugs.
Furthermore, chemotherapeutic drugs inhibit the PI3K/AKT/mTOR signaling
pathways mediated growth of new blood vessels. The aim of this chapter would
be to highlight the role of angiogenesis in cancer progression. Furthermore,
various anti-cancer therapeutic strategies/trials based upon inhibition of blood
vessels would also be discussed.
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9.1 Introduction

Angiogenesis is the process of branching out existing blood vessels into new ones.
This is highly controlled phenomenon, and has potential role in progression of
various pathological conditions, especially cancer [1, 2]. Oxygen and nutrients are
prime elements in angiogenesis for the development of blood vessels. Every tissue
which requires supply of oxygen and nutrients is found to have blood capillaries
within few 100 μm around it. Capillaries are required for exchanging nutrients,
metabolites, and gases to tissues and removal of waste products.

Decades ago, Dr. Folkman gave hypotheses towards a therapeutic approach that
could stop tumor growth by blocking angiogenesis in tumor cells [3]. The idea
behind these was that when the tumor growth starts, the initial tumor cell population
is dormant and does not require vasculature for oxygen supply until the size of the
tumor reaches 1–2 mm in diameter. Once the cells reach this size, they can recruit
surrounding blood vessels to trigger angiogenesis leading to formation of new ones.
Angiogenesis triggers the tumor growth and metastasis followed by chemical signals
releasing from cancer cells [4]. Physiological factors are also important to strengthen
the vascular networks and vessel walls.

Neovascularization is the process of creation of new blood vessels from matured
ones following endothelial proliferation and migration leading to angiogenesis.
When cancer cells go rogue and start to proliferate, they use blood capillaries around
them to access oxygen and nutrients through diffusion which works to range of
100–200 μm allowing the tumor to grow up to 1–2 mm. Beyond this size, the
diffusion process is not enough to sustain the growth of the tumor cells and it
becomes dormant. To sustain growth beyond this size, new blood vessels need to
be created (neo-vascularization) around the tumor [5, 6]. As cells, either tumor or
healthy grow and oxygen supply reduces, the cells go into hypoxic stress, which is
detected by factors called hypoxia-inducible factor 1 (HIF-1). The activation of
HIF-1 leads to formation of angiogenic proteins mainly VEGFs (vascular endothelial
growth factors). Various growth factors including VEGFs/VEGFRs, platelet-derived
growth factors (PDGFs/PDGFRs), fibroblast growth factors (FGFs), and
angiopoietin/tie receptors [7] activate the process of angiogenesis and stimulate
hypervascularization [8]. VEGF is considered as the most important regulator of
angiogenesis in early embryonic and adult cells [9]. Therefore, angiogenesis is a
prime factor for the growth of cancer.

The understanding on the angiogenic tumor progression and its treatment has
rapidly developed over the past decades. Clinical evidences have also suggested the
effectiveness of angiogenic inhibitors for the prevention of tumor establishment and
growth. During tumor formation, there is an imbalance occurring between endoge-
nous stimulator and inhibitor levels, leading to an “angiogenic switch” [10]. It is very
necessary to maintain activators and inhibitors equilibrium for vascular homeostasis.

A marking effect of angiogenic cancer therapy was primarily exemplified when
Avastin (bevacizumab) was authorized by Food and Drug Administration (FDA)
against metastatic colorectal cancer [11]. Therefore, it is essential to explore the
mechanisms of tumor angiogenesis for the identification of new therapeutic targets.
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Traditional therapies like chemotherapy complemented by anti-angiogenic drugs
and nanotechnology was found to be successful in cancer patients. The following
chapter gives a broad overview of the mechanisms and growth factors involved in
tumor angiogenesis, and also showed chemotherapeutic drugs mediated inhibition of
angiogenesis in cancer.

9.2 Significance of Angiogenesis in Cancer

The formation of new blood vessels occurs from pre-existing vessels by the
“sprouting” of endothelial cells, which further enlarge the vascular tree [12]. There
are few fundamental steps of angiogenesis: (1) protease production, (2) endothelial
cell migration and proliferation, (3) vascular tube formation and their conjugation,
(4) basement membrane formation and integration of smooth muscle cells (Fig. 9.1).

Previous studies reported that endothelial and smooth muscle cells function using
oxygen-sensitive NADPH oxidases, endothelial nitric oxide synthases, and heme-
oxygenases [13]. Various cellular activities towards hypoxic conditions are
regulated by hypoxia inducible factors (HIFs). All the isoforms of HIFα (HIF-1–3)
may form a transcriptional complex by heterodimerizing with the aryl hydrocarbon
receptor nuclear translocator (HIFβ/ARNT) subunit that begins the expression of

Fig. 9.1 Major events in the formation blood vessels during angiogenesis: Neo-vascularization
occurs through sprouting of vessels occurring in multiple stages. Dormant tumor cells detect
hypoxia and release growth factors, such as VEGF. These stimulate nearby endothelial cells to
migrate towards the tumor by creating a chain from blood vessels. As the ECs reach the tumor, they
mature to create a tube where the blood starts to enter. The tubes sprout further to create capillaries
engulfing the tumor and creating stable vasculature
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various genes regulating cell survival and angiogenesis [14]. HIFs also allow growth
of vasculature in healthy tissues where the vessels cannot provide enough oxygen for
the growing cells to survive. Cancer cells also need oxygen and nutrients to grow and
metastasize which can only be provided by sufficient blood supply. In developing
cancers, endothelial cells are very active due to the secretion of IL-8, prostaglandin
E1 and E2, TNF-α, VEGF, bFGF that can induce endothelial cell maturation when
the anti-angiogenic factors generation is decreased [15]. This allows for the tumor
cells to grow continuously by increasing the vasculature around them. Thus it is
important to understand mechanism of vascularization in tumor cells to produce
efficient anti-angiogenesis drugs.

9.3 Factors Involved in Angiogenesis

Angiogenesis is regulated by different transcriptional factors and growth factors,
responsible for the proliferation and migration of endothelial cells in vivo. The
following section shows the major factors which trigger the process of angiogenesis.

Vascular Endothelial Growth Factor (VEGF)

Vascular endothelial growth factor (VEGF) is a vascular permeability factor and a
prime agent of angiogenesis. It is an important pro-angiogenic factor in the skin and
existing at higher levels in wounds, keratinocytes and fibroblasts [9]. Being a special
mitogen for endothelial cells, it triggers endothelial cell functions leading to new
capillaries formation, such as proliferation, differentiation, migration, and survival
[16]. VEGF-A is a 45 kDa protein, along with the other major members of the family
including VEGF-B, VEGF-C, VEGF-D, and PlGF. VEGF-A is produced by cancer
cells and is correlated with tumor growth and metastasis. VEGF produces its various
isoforms by alternative splicing [17]. VEGF-A binds with VEGF receptor-1
(VEGFR-1) and VEGF receptor-2 (VEGFR-2), while VEGFR-2 is found to be
crucial of the two receptors for regulating endothelial cell function by activating
downstream signaling cascades. Phosphorylation of tyrosine residues occurs when it
binds to VEGF at VEGF receptor and promotes activation of protein kinase B. The
binding also stimulates the mitogen-activated protein kinase (MAPK) pathway
which is known to stimulate proliferation in endothelial cells. VEGF-A isoforms
have also been found to bind with neuropilins (NRPs). These single-pass transmem-
brane proteins are also known to bind to semaphorins. NRPs work to enhance the
activity of VEGFRs and serve as coreceptors for VEGF [18].

During tumor growth, VEGF triggers endothelial cell proliferation by ERK and
PI3K/AKT pathways [19]. VEGF based cell invasion also stimulates the production
of MT-MMPS, MMP-2, MMP-9 and plasminogen activators. Since VEGF triggers
angiogenesis, it has been considered as an important target in anti-angiogenesis
mechanisms to stop tumor growth. Many chemotherapy drugs use VEGF/VEGFR
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antibodies and inhibitors for tyrosine kinase receptors. But VEGF also plays impor-
tant role in vasculature in healthy cells and a generic non-targeted approach for
VEGF inhibition can lead to many side effects such as related to gastric and
neurotoxicity. Thus extensive research is required to understand the VEGF inhibitor
concentrations needed to carefully block angiogenesis in tumor cells while reducing
the potential side effects due to excessive or poor targeted dosages.

Platelet Derived Growth Factor (PDGF)

Platelet derived growth factor (PDGF) is also an important factor in angiogenesis.
PDGF, a 30 kDa dimer, binds with receptors α (PDGFRα) or β (PDGFRβ) to induce
proliferation, migration, and differentiation in various cell types. It is comprised of
four genes: PDGF-A, PDGF-B, PDGF-C, and PDGF-D [20]. All four PDGF chains
are assembled into five isoforms named as—PDGF-AA, PDGF-BB, PDGF-AB,
PDGF-CC, and PDGF-DD [21]. PDGF A, B, and C have stronger affinity towards
PDGFRα, while PDGF-B and D show higher affinity towards PDGFRβ. The
binding of these ligands leads to dimerization, which activates the tyrosine kinase
pathways and subsequent recruitment of SH-2-domain-containing signaling
proteins. Activation of these pathways leads to cellular processes such as prolifera-
tion and migration.

PDGF is majorly involved in the process of angiogenesis, cell migration, and
proliferation, and also plays some role in tumor growth and development of lesions
in inflammatory diseases. The process of PDGF activating tyrosine kinase receptors
and the binding of PDGFRα and PDGFRβ is known to upregulate VEGF factors
which in turn can induce angiogenesis and modulate proliferation and recruitment of
perivascular cells [22]. PDGF may not only lead to VEGF-A production but it has
been found that PDGF-B stimulation can induce increased endothelial cells lineage
commitment and differentiation of hematopoietic precursors [23]. In knockout
models, PDGF-B and PDGFRβ signaling have been found to create functional
blood vessels by recruiting and stabilization of perivascular cells. PDGF-B has
also been found to trigger production of transcription factor E26 transformation
specific sequence-1 (Ets-1) [24]. In endothelial cells, Ets-1 is also elicited by
stimulation with PDGF-B. PDGF-D has shown to play some role in the migration,
proliferation, and tube formation of endothelial progenitor cells (EPCs) and enhance-
ment of angiogenic capacity of EPCs. PDGF-D also stimulates phosphorylation of
many signaling molecules, such as AKT, STAT3, ERK1/2, and mTOR indicating its
pivotal role in angiogenesis [25]. PDGF therefore is another critical factor that
requires further research for developing safe new anti-angiogenic therapies.
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Fibroblast Growth Factor (FGF)

Fibroblast growth factors (FGFs) are pro-angiogenic factors that mainly interact with
heparan-sulfate proteoglycans, tyrosine kinase receptors, and integrin. FGFs are
involved in organ development and angiogenesis leading to cancer. Specifically,
FGF-2 binds with receptor FGFR-1 may allow tumor growth. Gene silencing by
targeting FGF2 and FGFR-1 has shown to significantly reduce size of tumor in
human melanoma [26]. FGF2 induces VEGF expression in endothelial cells
showing its angiogenic response. A novel strategy by combining anti-VEGF treat-
ment along with FGF-ligand trap showed suppression of angiogenesis and reduction
in size of the tumor [27].

Angiopoietin (Ang)

In endothelial cells, angiopoietin (Ang) is an important growth factor in angiogene-
sis by expressing receptor Tie2. There are mainly four major angiopoietins: Ang1,
Ang2, Ang3, Ang4, in which Ang 1 and 2 have prime role in tumor development.
Ang 2 inhibits Ang1 stimulated Tie2 signaling thus working as an antagonist to
Ang1, which is important for stabilization of blood vessels. On the one hand, Ang2
suppressed VEGF expression, thereby inhibiting proliferation of endothelial cells
and impairing pericyte coverage of tumor vasculature, further leading to reduction in
tumor growth [28]. It has also been reported that specific induction of Ang2 in
gliomas, certain mammary and lung carcinomas inhibited tumor growth and metas-
tasis [29]. However few other reports stated that Ang2 concentrations may be
correlated with malignancy of certain cancer types. Overexpression of Ang2 showed
increased tumor angiogenesis in mice.

9.4 Chemotherapeutic Drugs as Angiogenesis Inhibitors

There are various chemotherapeutic agents/drugs available for inhibition of angio-
genesis by targeting VEGF, PDGF, bFGF, and other growth factors (Fig. 9.2).
Although monotherapy and combination therapy with such inhibitors have been
applied in preclinical and clinical trials in various cancer types, but advanced
therapies with better efficacy and less drug resistance are still highly required. In
the following section, we have listed the drugs showing anti-angiogenesis effect by
targeting different molecules in the molecular pathway of angiogenesis. We have
also summarized the drugs along with their targets and therapeutics against cancer in
Table 9.1.

170 N. Atale and V. Rani



Bevacizumab

Bevacizumab is known to be the first U.S. FDA-approved anti-angiogenesis drug. It
is known to significantly increase the survival rates in patients having colorectal and
various cancer types when administered along with conventional chemotherapy. It is
a recombinant monoclonal antibody synthesized against VEGF, and after binding
with soluble VEGF, inhibits endothelial cell proliferation and vessel formation
[30]. Clinical studies have shown that treatment with bevacizumab alone or in
combination with a cytotoxic agent reduces tumor growth. This is used along with
paclitaxel and cisplatin for the treatment of cervical, colorectal, and lung cancer. This
is also used with interferon alpha in case of renal cell carcinoma.

Cabozantinib

Cabozantinib is used for the treatment of multiple cancer types such as thyroid
cancer, hepatocellular and renal cell carcinoma. It is found in the USA under the
brand names Cabometyx and Cometriq. This drug mainly targets VEGF receptors
(VEGFRs), AXL and MET, which are responsible for angiogenesis and metastasis
[31]. Treatment with cabozantinib prevented MET and VEGFR2 phosphorylation
in vivo and in vitro tumor models and reduced cell invasion in vitro [32].

Fig. 9.2 VEGFs targeting Drugs: Anti-angiogenic drugs bind with VEGFs/PDGFs/FGFs and
block their activities
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Table 9.1 List of anti-angiogenic drugs targeting various factors (VEGFs/PDGFs) and PI3K/
AKT/mTOR pathway

S. no. Drugs Drug target Cancer treatment References

1 Bevacizumab VEGF Cervical colorectal, lung cancer, renal
cell carcinoma

[30]

2 Cabozantinib VEGFR2 Thyroid cancer, hepatocellular and
renal cell carcinoma

[31, 32]

3 Axitinib VEGF, AKT Kidney cancer [33]

4 Lenvatinib VEGFR1-3,
FGFR1-4,
PDGF

Endometrial and hepatocellular
carcinoma, thyroid cancer

[34]

5 Ramucirumab VEGFR-2 Gastric cancer [35]

6 Regorafenib VEGFR1/3,
PDGFR-β
and FGFR1

Metastatic colorectal cancer,
gastrointestinal stromal tumor

[36]

7 Sorafenib VEGFR-
2 and
PDGFR

Hepatocellular carcinoma, renal cell
carcinoma, thyroid cancer

[37]

8 Sunitinib VEGF,
PDGF

Pancreatic cancer, gastrointestinal
stromal tumor

[38]

9 Ziv-
Aflibercept

VEGF-A,
VEGFR1/2

Metastatic colorectal cancer [39]

10 Leflunomide Ephrin-A1/
EphA2

Breast cancer [40]

11 LY294002 PI3K Pancreatic cancer [41]

12 PX-866 PI3K Prostate cancer, colorectal, non-small
cell lung cancer

[42]

13 Buparlisib PI3K Prostate cancer, breast cancer,
non-small cell lung cancer

[43]

14 Pilaralisib PI3K Solid cancers, breast cancer, gastric
cancer, non-small cell lung cancer

[43]

15 Pictilisib PI3K Solid cancers, breast cancer, gastric
cancer, non-small cell lung cancer

[44]

16 Taselisib PI3K Solid cancers, breast cancer, gastric
cancer, non-small cell lung cancer

[45]

17 Idelalisib PI3K Multiple myelomas, chronic
lymphocytic leukemia

[46]

18 Perifosine AKT Breast cancer, ovarian cancer,
non-small cell lung cancer, breast
cancer, multiple myeloma, leukemia

[47]

19 GSK-690693 AKT Lymphoblastic leukemia [48]

20 Rapamycin mTORC1 Melanoma, glioblastoma [49]

21 Everolimus mTOR Metastatic renal cell carcinoma,
breast cancer, melanoma, ovarian
cancer, neuroendocrine tumors

[50]

22 Temsirolimus mTOR Hepatocellular carcinoma, metastatic
renal cell carcinoma

[51]

23 Ridaforolimus mTOR Endometrial cancer, sarcoma,
hematological malignancies

[52]
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Axitinib

Axitinib inhibits VEGF-associated endothelial cell migration and adhesion on
matrix proteins and promotes early apoptosis. It also blocks protein kinase B
(Akt), endothelial nitric oxide synthase (eNOS), and mitogen-activated protein
kinases (ERK 1/2) phosphorylation [33]. Clinical studies using axitinib in combina-
tion with avelumab and pembrolizumab showed significantly longer survival rates in
patients with kidney cancer.

Lenvatinib

Lenvatinib is a multi-tyrosine kinase inhibitor which inhibits the VEGF family
(VEGFR1–3) along with fibroblast growth factors (FGFR1–4), PDGF receptor
(PDGFRα), tyrosine-kinase receptor (KIT) and rearranged during transfection recep-
tor (RET). It inhibits the growth of new vessels and reduces vascular permeability
close to the tumor to halt oxygen and nutrient exchange. It is available under the
brand name Lenvima and used alone or in combination with pembrolizumab for the
treatment of endometrial and hepatocellular carcinoma and thyroid cancer [34].

Ramucirumab

Ramucirumab is the first FDA approved drug against gastric cancer along with
chemotherapy [35]. Ramucirumab is a monoclonal antibody that binds to VEGF-
R2 and inhibits its activation. This in fact binds to the extracellular VEGF-binding
site with high affinity and inhibits VEGFR2 activity. It is mainly used in patients
along with docetaxel, for the treatment against adenocarcinoma.

Regorafenib

Regorafenib, a kinase inhibitor, potentially inhibits endothelial cell kinases such as
angiogenic kinases (VEGFR1/3, PDGFR-β, and FGFR1). Chemical structure of
Regorafenib, or Stivarga®, is similar to sorafenib, however presence of fluorine in
phenyl group denotes its higher activity against receptor tyrosine kinases and
intracellular signaling kinases, than that of sorafenib. Regorafenib is used for the
treatment of gastrointestinal stromal tumors and metastatic colorectal cancer [36].

Sorafenib

Sorafenib is an angiogenic inhibitor and significantly inhibits the stimulation of
endothelial cell based VEGFR-2 and PDGFR-h tyrosine kinases, showing its anti-
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angiogenic characteristics [37]. It plays a major role in the cure of hepatocellular
carcinoma, renal cell carcinoma, and thyroid cancer.

Sunitinib

Sunitinib checks various tyrosine kinases, including VEGF, PDGF, and proto-
oncogene cKIT [38]. Sunitinib malate is sold under the brand name Sutent. This
has also been concerned in enhanced cancer growth and metastasis. It is used for the
treatment against gastrointestinal stromal tumor and pancreatic cancer.

Ziv-Aflibercept

Ziv-aflibercept is available under the brand Zaltrap. It is a high-affinity blocker of
VEGF-A and showed better therapeutic efficacy against colorectal cancer.
Ziv-aflibercept also found to be an effective inhibitor of VEGFR-1 or VEGFR-
2 stimulation [39].

Leflunomide (LFN)

Leflunomide (LFN) is an inhibitor of the mitochondrial enzyme dihydroorotate
dehydrogenase, which plays a central role in the de novo pyrimidine synthesis
pathway. It is recently found that LFN can produce anti-angiogenic effect in breast
cancer cells by inhibiting the angiogenic soluble Ephrin-A1/EphA2 system
[40]. However, the role of LFN in anti-angiogenesis needs to be studied further.

9.5 Drugs Targeting PI3Kinase/AKT/mTOR

The PI3K/AKT pathway plays an important role in blood vessels formation during
angiogenesis. Studies have shown that p110α catalytic subunit of PI3K is very
crucial for endothelial cell migration and angiogenesis [53] and defect in its function
leads to dysregulation in vascular permeability. When VEGF binds to its receptor on
normal endothelial cells, RAS and PI3K pathways are activated. Pharmacological
inhibition of PI3K (α/β) suppressed both RAS or VEGF mediated vascular response
and survival of primary endothelial cells. There are various inhibitors targeting the
PI3K/AKT pathway have been developed and some of them are currently in clinical
trials (Fig. 9.3).
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PI3K Inhibitors

LY294002 and Wortmannin are ATP binding PI3K inhibitors, and have been used
broadly in preclinical models of cancer [41]. Treatment of LY294002 with
gemcitabine is found to be effective against pancreatic cancer. PX-866, also a
pan-PI3K inhibitor, is used for treatment against prostate, colorectal, and
non-small cell lung cancer [42]. Buparlisib (NVP-BKM120) and Pilaralisib
(XL147) are other pan-PI3K inhibitors that inhibit the activity of p110-α-γ enzymes

Fig. 9.3 Drugs targeting Pl3K/AKT/mTOR signaling pathway: Various inhibitors bind with Pl3K/
AKT/mTOR individually and inhibit their activities, and finally hinder the process of angiogenesis.
The pathway is regulated by binding of PI3K to receptor tyrosine kinases, leading to initiate the
cascade of events. The phosphorylation and activation of AKT associated with mTORC activation,
which results in different cellular processes
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[43]. Clinical studies showed their safe effect in gastric and colorectal carcinomas.
Pictilisib (GDC-0941) a selective, orally bioavailable inhibitor of pan-class I PI3K
blocks the activity of p110-α//δ, further regulating the process of angiogenesis. It is
used to treat solid cancer, breast cancer, gastric cancer, non-small cell lung cancer
[44]. Taselisib (GDC-0032) is a PI3K inhibitor with higher attraction for mutated
PI3Kα and decreased suppression against PI3Kβ [45]. Another drug, idelalisib has
been used to treat certain relapses in chronic lymphocytic leukemia. Along with
rituximab, it also shows therapeutic effects in follicular B-cell non-Hodgkin’s
lymphoma and on its own against small lymphocytic lymphoma [46].

AKT Inhibitors

These are majorly classified as ATP-competitive inhibitors, phosphatidylinositol
(PI) analogs, and allosteric inhibitors. Perifosine (KRX-0401), a lipid-based inhibi-
tor, that prevents the translocation of AKT to plasma membrane, required for
pathway activation [47]. It is useful against various cancers such as breast, ovarian,
multiple myeloma, leukemia, and osteosarcoma [54]. In vitro studies have shown
that perifosine allows better therapeutic effect when given with cisplatin and pacli-
taxel in ovarian cancer [55]. Another new ATP-competitive AKT inhibitor that has
to have selectivity for all three AKT isoforms is the GSK-690693. In vitro and
in vivo studies in multiple cancer types have found GSK-690693 to suppress
proliferation of cancer cells [48]. The compound was under phase I clinical trials
but was withdrawn prior to enrollment.

mTOR Inhibitors

Sirolimus (rapamycin; Rapamune®), a well-known chemotherapeutic drug, having
anti-angiogenic activity promotes apoptosis by inhibiting the mammalian target of
rapamycin (mTOR) pathway [49]. Rapamycin and its analogs (rapalogs) along with
FKBP12 (FK506-binding 12 kDa protein) bind to mTOR via its FRB site and inhibit
specific cite on mTORC1; however, rapamycin resistance has been discovered in
some epitopes phosphorylated by mTORC1. Some ATP-competitive inhibitors of
mTOR directly target the kinase part of mTOR [56]. Unlike rapalogs, these can
block both mTORC1 and mTORC2 completely. Some of these inhibitors also block
PI3K along with the mTOR and are therefore categorize as dual PI3K/mTOR
inhibitors.

Two rapamycin analogs, everolimus and temsirolimus (CCI-779; Torisel®),
which inhibit cytostatic tumor growths and decrease capillary perfusion have
showed some promising results in preclinical trials [50, 51]. Unfortunately,
everolimus did not show significant efficacy in phase II clinical study but it still
showed some anti-angiogenic properties that could allow for a potential use in
combination therapy. Temsirolimus, on the other hand, along with chemotherapeutic
agent, temozolomide, resulted in reduction of tumor growth and increased apoptotic
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death in melanoma cells that had become resistant to BRAF inhibitor vemurafenib
[57]. In phase I clinical trials, a combination of temsirolimus and
hydroxychloroquine (an autophagy inhibitor) showed promising results with
increased cell death in melanoma [58].

Ridaforolimus (AP23573;MK8669) a derivative of rapamycin has recently
gained some attention. In preclinical studies, ridaforolimus when used alone reduced
tumor growth up to 67% in leiomyosarcoma xenografts, however its use with other
traditional drugs like with doxorubicin, carboplatin, or paclitaxel gave promising
results in endometrial and sarcoma cells. In several phase II studies it has shown
promising results in one endometrial cancer and sarcomas trial and in another trial
stabilizing hematologic malignancies in 40% patients, showing strong response
while 10% patients having partial stabilization of the cancer [52]. The drug has
recently entered phase III clinical trial for sarcoma.

9.6 Drugs Targeting Hypoxia-Inducible Factor-1

An increasing number of chemotherapeutic drugs have been shown to inhibit tumor
growth and suppress HIF action by reducing HIF-1α mRNA levels and protein
synthesis as well as HIF subunit heterodimerization and transcriptional activity.
Many of the following drugs that are used for the treatment of cancer or other
diseases are given below.

Hycamtin (Topotecan), known as a topoisomerase I inhibitor, inhibits hypoxia-
inducible factor (HIF)-1α protein aggregation. Drugs that suppress topoisomerase I
and II levels are also able to reduce HIF-1α levels [59]. GL331, a podophyllotoxin
derivative, and also topoisomerase II inhibitor reduced HIF-1α mRNA as well as
protein levels [60]. DX-2-1, a carbomycin derived compound functions as a HIF-1
inhibitor, along with the other transcription factors. Vorinostat inhibits HDACs and
HIF and regulates the release of growth factors, invasion and metastatic markers, and
cytokines in cutaneous T cell lymphoma (CTCL) [61].

9.7 Advances in Clinical Trials and Drug Discovery
for Anti-Angiogenesis

There are various clinical trials on the horizon for further analyzing anti-angiogenic
therapy. Different combinations of drugs are tested for their efficacy and reproduc-
ibility. Paclitaxel in combination with nivolumab and ramucirumab are currently
being under test as secondary chemotherapeutic agents in a phase II clinical study
(UMIN000025947). These drugs show dramatic improvements and reduced side
effects when associated with anti-angiogenic drugs. Garcimultiflorone K, polyphe-
nol compound extracted from Garcinia multiflora stems directly act on the
AKT/mTOR/p70S6K and AKT/eNOS pathways which leads to significant reduc-
tion of angiogenesis in zebrafish models by inhibiting proliferation, migration, and
tube generation in EPC cells [62].
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One of the recent studies combined anti-CD40 immunotherapy in combination
with dual Ang2 and VEGFA blockade to achieve signification tumor regression.
Interestingly, anti-CD40 alone or in combination with VEGFA blockade could not
achieve the same results. This indicates a possible strategy to use Ang2 inhibition as
an anti-angiogenic method along with T cell-targeting immunotherapies [63].

CIGB-247 vaccine used for VEGF suppression is another promising drug for
tumor reduction. Recent phase I clinical trials of the vaccine showed that the cancer
patients had more VEGF in their platelets, which were then reduced to the range
observed in healthy control. This results shows that the CIGB-247 can normalize
VEGF levels in platelets of the patients showing more promising possibilities ahead
for this vaccine [64].

Another possible anti-angiogenesis compound that has recently gained interest is
Celecoxib (CXB) [65]. CXB is believed to have many different antitumor
mechanisms. These include proliferation inhibition, triggering of apoptosis, immu-
noregulation, and importantly some anti-angiogenic effects. Many clinical trials are
currently looking into effectiveness of CXB as anti-tumor agent [66].

Interestingly, ibuprofen (IBP) is also looked into as a possible anti-angiogenesis
drug. It has been found to decrease mitosis rate and trigger inhibition of proliferation
of several types of cancer cells [67]. Recent in vitro experiments have suggested that
IBP can induce anti-angiogenesis, apoptosis, and altered expression of Akt, p53,
proliferating cell nuclear antigen, Bax and Bcl2 [68]. Radiation therapy in presence
of the above-mentioned anti-angiogenic agents can greatly increase the effectiveness
of cancer treatments, killing both cancer and endothelial cells at the same time.

9.8 Nanoparticle for Targeted Anti-Angiogenesis

Current status of anti-angiogenic therapy needs improvement as new studies show
that tumor cells can use multiple pathways to achieve angiogenesis therefore becom-
ing resistant against specific treatments. Further, evaluating the optimal dose calcu-
lation of angiogenic drugs, especially in presence of other chemotherapeutic agents,
is very challenging. An interesting new approach in anti-angiogenesis is using
nanoparticles (NPs) to target specific ligands to deliver drugs. This also helps in
reduction in side effects and toxicity, further improving the overall efficacy of
chemotherapy. Lipid-based Nps showed highly efficient delivery of VEGF siRNA
in human lung samples resulting in inhibiting angiogenesis [69]. Sorafenib, an
otherwise effective anti-angiogenic but with poor targeting capabilities showed
high efficiency, when encapsulated with lipid NPs in treating glioblastoma by
inhibiting CD31 [70]. Similarly, rapamycin and other equivalent drugs loaded
onto lipid-based NPs proved to have strong targeted anti-angiogenic effects
[71, 72]. Polymer NPs such as water-soluble TNP-470 conjugated
2-Hydroxypropyl methacrylamide (HPMA) copolymer and nanopolymeric micelles
(Lodamin) have shown to provide some crucial benefits such as allowing for better
targeting, controlled drug release and being orally delivered without toxic side
effects. The NP targeted drug has been shown to inhibit A2058 human melanoma
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and Lewis lung carcinoma (LLC) tumor growth [73]. Nanopolymer was also
successful in delivering several anti-angiogenic drugs using LyP-1 peptide as a
targeting ligand [74].

Inorganic NPs such as AuNPs inhibit VEGF165 leading to anti-angiogenesis.
Quercetin when delivered with gold nanoparticles has been shown to effectively
inhibit tumor angiogenesis, epithelial-mesenchymal transition, and metastasis by
blocking EGFR/VEGFR2 controlled pathway in in vitro and in vivo breast cancer
[75]. In in vivo mice model, use of nanoceria (NCe) NPs showed promising
inhibition of ovarian cancer causing activation of MMPs and inhibition of vascular
endothelial cell migration and proliferation [76]. Protein based NPs are another
possible nanoparticle family ideal for drug delivery due to their highly biodegradable
nature. An albumin-based NP encapsulating paclitaxel and 4-HPR (angioprevention
vitamin A analog) showed excellent anti-glioma efficacy in mouse model by
inhibiting angiogenesis, and inducing apoptosis [77]. Rapamycin’s targeting effi-
ciency can also be improved when combined with albumin-based NP in breast
cancer xenograft models.

9.9 Conclusion

Angiogenesis is found be a significant process during tumor progression. Effective
inhibition of angiogenesis may control the process of tumor growth but would not
eliminate the tumor completely, especially with alone anti-angiogenic agent. There-
fore a combination of various anti-angiogenesis agents may prove to be significant
prospective for anti-cancer therapy. Novel multi-schema strategies, involving tradi-
tional chemotherapeutic approach with anti-angiogenic drugs can prove to be highly
effective in reducing tumors and inhibiting them from metastasizing. Moreover,
nanotechnology has shown promising results in providing better targeting and drug
delivery to prevent angiogenesis within tumors while avoiding side effects. How-
ever, extensive studies are necessary in order to measure the potential relevance of
nanoparticles-based strategies for clinical studies.
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Abstract

Cancer is a multifactorial condition that originates from genomic alterations in the
cells, which confer them the ability to evade various cellular regulations and
proliferate incessantly. Furthermore, the accumulation of these mutations confers
metastatic abilities to the tumor cells, which help them in contriving various
features essential for invasion of the host tissues and evading immune surveil-
lance and thus spreading to distant sites. Metastasis is a key phenomenon in
cancer pathogenesis, which involves invasion of host tissue, escape into the blood
vascular system, survival within the circulation, extravasation into the secondary
sites, establishment of micrometastasis, and colonization. The tumor cells utilize
various host cells and pathways to reach the pre-destined sites, also known as
pre-metastatic niches (PMNs). The primary tumor is known to secrete various
factors, which render the secondary metastatic sites hospitable for the arriving
tumor cells. These tumor cells, in turn, invade the PMNs and either undergo
dormancy or outgrow to develop secondary metastases. Since metastasis involves
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a cascade of events, it also offers attractive targets for therapeutic intervention.
This chapter elaborates the series of events involved in metastasis initiation and
progression along with the role of PMNs and various therapeutic approaches to
target metastasis.

Keywords

Metastasis · Pre-metastatic niches · Cancer · Tumor cells · Extracellular matrix ·
Anti-cancer therapy

10.1 Introduction

The process of movement of primary tumor cells from their original site of growth to
other distant sites or organs, where they colonize and establish secondary metastases,
was termed as metastasis by Jean Claude Recamier in 1829 [1]. During metastasis,
the tumor cells gain the ability to invade neighboring tissue, access the blood supply,
and disseminate to distant organs [2, 3]. Today, metastasis is considered to be a
major contributor to cancer related deaths. In fact, 90% of the cancer associated
mortalities are attributed to metastasis following failure of surgical resection and
chemotherapeutic approaches [4, 5]. Metastasis is a multi-step process, occurring in
a defined pattern, which involves a variety of steps in a successive manner, including
the invasion of the surrounding tissue, intravasation into the blood vessels, survival
of cancer cells in the blood circulation, extravasation into the distant sites, adaptation
in the new tumor microenvironment, and colonization (Fig. 10.1) [6, 7].

In fact, the formation of PMNs by the primary tumor cells itself lays the
foundation for metastatic spread, thus justifying the words said by Paget, “When a
plant goes to seed, its seeds are carried in all directions; but they can only live and
grow if they fall on congenial soil” [8]. Thus, the distant organs/sites (soil) which are
occupied by the metastatic tumor cells (seed) are primed prior to the arrival of these
cells by various factors secreted by the primary tumor itself, which render them
conducive for the invading tumor cells to grow and colonize. The steps of a
metastatic cascade are sequentially discussed below.

10.2 Invasion of the Surrounding Tissue

Invasion of a tumor into its malignant phenotype is the very fundamental step in
metastasis. Normal cells in the body grow in a dynamic environment defined by the
extracellular matrix (ECM) surrounding stromal layers. The ECM mainly comprises
of collagen, fibronectin, proteoglycans, elastin, and laminins apart from water,
proteins, and polysaccharides [9]. Whereas the tumor-associated stroma
encompasses a heterogenous population of cells such as endothelial cells (ECs),
fibroblasts, myofibroblasts, adipocytes, plethora of bone marrow-derived cells
(BMDCs), and several immune cells including macrophages [10]. The ECM
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performs a key role in cell growth, morphogenesis, and plasticity of the parenchyma
by providing a spatio-temporally regulated scaffold to the epithelial cells, thus
maintaining the cell polarity. It is also responsible for providing essential
bio-chemical and bio-mechanical signals or cues required for cellular differentiation
and homeostasis, alteration of which is known to cause cancer [11–13]. The meta-
static process initiates with the acquisition of invasive potential by the primary tumor
cells, which then break free from the basement lining and move into the surrounding
tissues, a phenomenon known as epithelial to mesenchymal transition (EMT)
(Fig. 10.2) [14–16]. Various aspects of EMT are described in subsequent sections
below.

Fig. 10.1 The metastatic cascade: Metastasis encompasses a sequential occurrence of events,
which ensues from invasion followed by the intravasation, survival in the circulation, extravasation
to the distant metastatic sites, development of micrometastases, and colonization of the occupied
sites. The role of various host cells in accomplishing each of these steps of this cascade is imperative
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10.3 Epithelial to Mesenchymal Transition (EMT)

The tumor-associated stroma consists of a heterotypic population of cells, which
resembles the inflammatory stromal configuration and is induced upon wound
healing processes under normal physiological conditions. This modulated stroma
then releases various signaling molecules such as interleukin-6, transforming growth
factor (TGF)-β, WNT, etc. which assist the adjacent carcinoma cells to activate the
silent EMTmechanism. EMT involves the conversion of normal epithelial cells to an
invasive mesenchymal phenotype by modulating their apical-basal polarity [17–
19]. These mesenchymal cells are characterized by enhanced invasive and migratory
capabilities and display resistance to apoptosis.

Evasion of apoptosis upon detachment from the anchorage of the basement
membrane, i.e. anoikis, is a key feature of invasive cells [20, 21]. Integrins, which
mediate the cellular attachment to the ECM, play a major role in escaping anoikis.
Among various forms of integrins, upregulation of α5β3 integrin is important in this
process [22–24]. It also stimulates the production of matrix metalloproteinase
(MMP) 2, thus further enhancing metastasis [25]. Integrin associated signaling
pathways subsuming focal adhesion kinase (FAK) and integrin linked kinase

Fig. 10.2 Various factors regulate the metastatic cascade: Metastasis encompasses several sequen-
tial steps, which are regulated by the interplay among various signaling molecules released by the
primary tumor cells and the host-derived factors. Several factors such as TGF-β, MMPs, etc. exhibit
pleiotropic functions in metastasis
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(ILK) are also involved in the obstruction of anoikis [26–28]. Similarly, cadherins
contribute critically in mediating cell–cell adhesion by forming intercellular
complexes with catenins that link them to the cytoskeletal proteins. Thus, the loss
of certain epithelial cell surface markers such as ZO-1, laminin, E-cadherin, which
favor homotypic cell adhesion, and the upregulation of N-cadherin, which promotes
heterotypic cell adhesion, lead to the dissolution of intercellular junctions favoring
the mesenchymal phenotype [29]. This transition is facilitated by activation of
various pleiotropic transcription factors, namely Slug, Snail, Twist, Zeb1/2,
FoxC2, and Prrx1 [30, 31]. This allows the migrating tumor cells to cross the
basement membrane as well as the ECM, and intravasate into the blood or lymphatic
vessels either as single entities or as clumps [32].

The migratory process involves the mechanical modulation of ECM by contrac-
tion and protrusion of the cells accompanied by degradation of the ECM by various
proteases. Although the degradation of the ECM is the most common mode of
migration of tumor cells, a protease independent mechanism is also known
[33]. This mode involves the formation of invadopodia (actin-rich projections of
cancer cells), which utilize protrusive and contractile forces to make their way
through the ECM, indeed depending on the plasticity of the ECM components
[33–35]. The role of macrophages in the initial stages of metastasis is also notewor-
thy. They have been shown to assimilate along the endothelium of blood vessels
adjacent to the site of inflammation, and these macrophages secrete epidermal
growth factor (EGF), which drives the chemotactic movement of tumor cells towards
the vasculature as observed in breast cancer models [36]. The tumor cells exhibit
EGF receptors on their surface and also secrete colony stimulating factor 1, which
draws the macrophages and instigates them to secrete EGF and vice versa, thus
forming a closed paracrine loop among themselves. This paracrine signaling results
in modulation of the actin cytoskeleton in both tumor cells as well as macrophages,
thus leading to the development of invadopodia in the migrating tumor cells and
podosomes in macrophages.

The protease dependent mechanism followed by the migrating cells involves
secretion of various MMPs responsible for the breakdown of several proteins
involved in maintaining the integrity of the basement membrane and associated
cellular parenchyma [37, 38]. The MMPs are also called as matrixins, and they
belong to the metzincin superfamily of zinc-endopeptidases, which specifically
cleave a variety of ECM components by proteolysis. Apart from the MMPs, other
prominent members of this superfamily include A Disintegrin and
metalloproteinases (ADAMs) and A Disintegrin and metalloproteinases with
thrombospondin motifs (ADAMTS). MMPs are further categorized on the basis of
their substrates into Collagenases, Gelatinases, Stomelysins, Matrilysins,
Membrane-type MMPs, and other MMPs [37]. These MMPs cleave and degrade
their respective substrates, thus facilitating the alteration of the ECM.

Moreover, the rapidly proliferating tumor mass also develops hypoxic conditions
towards its core due to lack of proper blood supply, thus generating hypoxic
conditions. Hypoxia mediated upregulation of lysyl oxidase (LOX) is also known
to activate FAK and integrins, which further drive actin polymerization in the
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invadopodia, thus enhancing the migration of these cells. The exploration of LOX
functioning in breast cancer cells uncovered its essential role in recruiting various
MMPs, viz. MMP 2, MMM 9, and MMP 14, thus potentiating the tumor cell motility
[39]. Therefore, the cancerous cells invade through the ECM, cross the basement
membrane, reach the nearest blood or lymphatic vessel, and proceed to intravasation.

10.4 Intravasation

The process of entering the lymph or blood vessels by the locally invasive cancer
cells is known as intravasation, which marks the second step in the metastatic
cascade. There are two known modes of dissemination of cancer cells: the hematog-
enous spread, which occurs via the blood vessels, and the lymphatic spread, which
proceeds via the lymphatic system. Hematogenous spread of the carcinogenic cells is
the most common mode of transmission in metastasis [4]. In order to intravasate, the
presence of blood vessels in proximity to the tumor cells is mandatory. The tumor
cells therefore induce neo-angiogenesis by secreting various chemokines, which
induce the generation of nascent blood vessels. This vasculature generated by
neo-angiogenesis is prone to leakage due to lack of basement membrane and
unorganized perivascular layers. These haphazardly formed blood vessels thus
lead to the irregular supply of nutrients and oxygen to the rapidly proliferating
tumor mass. Additionally, these mal-developed vessels provide various growth
factors and cytokines to the tumor-associated matrix but their leakiness also leads
to a poor blood supply to the core of the developing tumor, thus rendering it hypoxic.
Various transcription factors that are responsive to low availability of oxygen are
thus activated, which bestow the tumor cells with the ability to survive these oxygen
deficient conditions. One such key protein is the hypoxia inducible factor (HIF1α).
HIF1α further activates various subordinate genes involved in angiogenesis and
invasion such as Forkhead Box M1 (FOXM1) and vascular endothelial growth
factor (VEGF), etc. [40]. FOXM1 is an oncogenic transcription factor that controls
the expression of several downstream genes regulating metastasis. In fact, FOXM1
is also known to transcriptionally regulate VEGF, MMP 9, etc. [41]. VEGF is the
most potent angiogenic factor involved in the production of new blood vessels
[42]. Besides VEGF, activation of MMPs such as MMP 2, 9, and 14 further
aggravates the invasive nature of the carcinoma cells [38]. MMP 9 leads to the
release of the sequestered VEGF, thus making it available to bind to its receptor
VEGF-R, which enhances the generation of defective endothelial blood vessels.
Thus, the interplay between these various molecules leads to intravasation of the
invasive tumor cells into the blood circulation, resulting in circulating tumor cells
(CTCs). These CTCs upon survival within the blood vessels migrate into the distal
target organs and form micrometastases (Fig. 10.2).
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10.5 Survival in the Circulation

Upon entering the blood circulation, the majority of the CTCs die, either due to the
stress of blood flow or due to the immune destruction. Thus, only 0.01% of the
circulating cells survive to form secondary metastases even though tumor cells
shedding into the vasculature provide an ample number of tumor cells to intravasate
[43, 44]. Altogether, they spend a short time in transit through the blood vessels and
usually get trapped into the first capillary bed which they encounter [45]. Prior to
their entrapment, the CTCs encounter a plethora of cells in the circulation such as
platelets, natural killer cells (NK cells), and various bone marrow cells during their
travel to secondary metastatic sites. The CTCs are able to undergo remarkable
changes in their nuclear and overall shape to fit into the capillaries [46]. They acquire
various features that enable survival in the host circulation, such as loss of various
immunogenic markers from the cell surface and elevated expression of certain
immune-suppressive markers, thus enabling them to evade apoptosis mediated by
NK cells and circulating macrophages [47]. The CTCs express tissue factor (TF) as
well as P-selectin ligands on their surfaces, which lead to interaction and activation
of platelets, respectively, while instigating coagulation as well [48, 49]. Platelets are
known to play a critical role in the survival of CTCs in the circulation as their
depletion by genetic manipulation or pharmacological inhibition in metastatic tumor
models greatly reduces metastasis [50]. Stimulation of platelets by the CTCs also
serves as a source of TGF-β, which suppresses the immunolytic ability of NK cells
by diminishing the NKG2D receptor. TGF-β is also reported to act in concert with
the platelets to induce the activation of nuclear factor kappa B (NF-κB) pathway in
the CTCs, thus sustaining their EMT phenotype. The secretion of platelet derived
growth factor by platelets is also known to enhance their survival in circulation [51–
53]. Apart from this, the interaction of platelets with the CTCs forms a physical
shield over them forming tumor-platelet emboli, which helps them escape the
immune surveillance. The CTCs draw similar benefits from the neutrophils present
in the circulation, for example, the formation of neutrophil extracellular traps
(NETs), which are known to entangle the tumor cells in circulation, thus enhancing
their survival and providing them apt surface to adhere to the endothelial cells and
extravasate [54]. Formation of tumor-host cell emboli mediated via interactions of
CTCs and immune cells not only prevents the metastasizing cells from immune
destruction but also helps them to reach the destined secondary sites and extravasate.
Apart from passive trapping of the tumor emboli into the capillaries, the adherence
ability of these complex structures is also found, which enables them to adhere to
vessels of larger than the capillary diameter. This active adhesion is mediated by
various adherence molecules such as integrins, selectins, and metadherins, which are
also contributed by the interacting platelets, leukocytes, and other stromal fibroblasts
[55–59]. Therefore, CTCs survive the circulation and get blocked in the capillary
beds, where they extravasate into the metastatic site and form micrometastases.
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10.6 Extravasation

Following the course of the bloodstream, the CTCs either get arrested in the capillary
beds within few minutes after entering the circulation due to the capillary diameter
restriction or adhere to the EC surface mediated by various adhesion and cell
signaling mechanisms. Extravasation is similar to intravasation, which requires the
CTCs to cross the endothelial barrier and this phenomenon is referred to as
transendothelial migration (TEM) [60]. Most of these extravasated cells then migrate
to the PMNs but only a few survive and proceed to micrometastasis and colonization
whereas most of them are destroyed by immune cells. While the tumor cell-platelet
emboli arrest at the endothelial lining, the activated platelets release adenine
nucleotides (viz. ATP), which interact and activate the P2Y2 receptors on the ECs.
This interaction leads to downstream activation of protein kinase C and causes
unlocking of the endothelial barrier [61]. As mentioned earlier, the interaction of
CTCs with various cells in the blood circulation as well as the endothelium leads to
the secretion of various other chemokines such as VEGF, MMPs, cyclooxygenase
2 (COX2), and C-C motif ligand 2 (CCL2). These chemokines alter the integrity of
the vascular membrane, thus facilitating extravasation [60, 62]. Similarly, the lung
tumor and stromal cells secrete CCL2 which recruits CCR2+ monocytes that facili-
tate extravasation [63, 64]. Furthermore, secretion of TGF-β by the CTCs is also
known to stimulate secretion of Angiopoietin-like 4 (ANGPTL4), and promote
vascular permeability in breast carcinoma cells [65, 66]. Most of these factors are
also implicated in the formation of PMNs as well as facilitation of invasion and
intravasation, thus implying the pleiotropic nature of these molecules in metastasis.

The employment of various bone marrow-derived cells (BMDCs) further aids in
extravasation by inducing the expression of several cell surface markers on both the
ECs as well as the CTCs. For example, the recruited neutrophils are known to induce
expression of selectins, integrins, intercellular adhesion molecules (ICAM 1) on the
ECs as well as the tumor cells, thus favoring cellular interactions [67]. These
interactions, in turn, facilitate the movement of CTCs from the endothelial lining
towards the PMNs. In fact, the expression of β1 integrin and FAK helps in forming
filopodium like protrusions, which are required for the invasion of vascular endo-
thelium. Apart from the common mechanism of TEM, CTCs have also been reported
to skip the conventional mode of extravasation and proliferate in the vascular lumen
itself, thus disrupting the endothelial barrier by the shear stress of proliferating tumor
mass [55]. Interestingly, in 2016, Strilic et al. reported a previously unknown
mechanism of extravasation in lung metastasis, wherein CTCs were shown to elicit
controlled necrosis (necroptosis) in the ECs, thus disrupting the endothelial
membrane [68].
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10.7 Micrometastasis and Colonization

Certain sites in the human body are predisposed to metastatic growth. This predis-
position also leads to organotropic metastasis in cancer, for example, the prostate
tumor cells metastasize preferably to bone while cancer of breast colonizes bone,
liver, brain, and lungs whereas colorectal cancers mostly metastasize to the liver.
This propensity of various cancers to disseminate to various distant organs relies on
the receptive environment provided by the PMNs.

10.8 Pre-metastatic Niche (PMN)

The primary tumor is known to send off certain chemokines (collectively known as
secretome) to induce the formation of pre-metastatic niches at distant sites, thus
enabling the disseminated tumor cells to colonize those tissues easily (Fig. 10.2).
These factors stimulate the establishment of a suitable microenvironment in distant
sites/organs that are amicable to the growth of secondary metastases prior to the
arrival of metastasizing cells [8, 69, 70] (Fig. 10.2). This suitable microenvironment
is also known as PMN. These PMNs are formed as a consequence of combined
systemic efforts of the tumor secretome and extracellular vesicles derived from
tumors. These secreted factors support a cascade of events culminating in the
establishment of PMNs. Formation of anomalous blood vessels is the foremost
event followed by modification of the local cell milieu and recruitment of various
other cells such as BMDCs subsuming macrophages, myeloid cells, and
hematopoietic progenitor cells to the target site which, in turn, attract the CTCs to
the PMNs.

Tumor derived factor such as EGFR ligand epiregulin, COX2, MMP 1, MMP
2, MMP 9, ANGPTL4, VEGF-A, etc. are well observed to aggravate the loss of
integrity of blood vessels in breast cancer [71]. These factors lead to the activation of
FAK, which leads to disruption of inter-cellular connections among the ECs, thus
facilitating the metastasis in breast cancer [62]. In fact, the activation of MMP
9 leads to the release of various sequestered cytokines, such as stromal cell-derived
factor 1, which serves as a chemoattractant for CTCs [70]. The secretion of TGF-β is
also reported to provoke the expression of ANGPTL4 and angiopoietin 2 in breast
and lung tumor cells, respectively, thus increasing the permeability of blood vessels
[65, 72]. Moreover, the secretion of chemokines such as CCL2 by both the tumor
and stromal components leads to the recruitment of various BMDCs, which assist
the CTCs in the process of extravasation as well as the formation of PMNs. CCL2
acts as a powerful chemoattractant for macrophages, NK cells, monocytes, and
T-lymphocytes, thus functioning as a primary mediator of PMN formation and the
metastatic colonization in various cancers [63, 73–75]. Apart from recruiting these
cells, in order to promote an inflammatory environment in the PMNs, CCL2 is also
known to suppress the immune ability of NK cells in breast cancer and melanoma
models by hampering their maturation, thus shielding the CTCs from NK cell
mediated destruction [76]. Another common regulator of inflammatory cues in
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PMNs is the S100 family of proteins. They act both intracellularly and extracellu-
larly to mediate the cross-talk between stromal cells and tumor cells during the
configuration of PMNs. In the lung PMNs, expression of these S100 proteins on the
endothelium layer is known to be instigated by various tumor secreted factors such
as TGF-β, VEGF-A, TNF, and CD11b + myeloid cells [73, 77]. Similarly, HIF1 is
also a crucial protein involved in the formation of PMN in various cancers
[39, 78]. Studies encompassing breast cancer have demonstrated the increment in
the shedding of extracellular tumor vesicles in a HIF dependent manner [79].

Apart from the chemokines secreted by tumor cells, extracellular vesicles (EVs)
secreted by the tumor cells also play a substantial role in not only the establishment
of PMNs but also carrying out metastasis. Tumor secreted EVs have been shown to
carry genetic material (DNA and RNA), micro RNAs, proteins, and metabolites (fats
and small metabolites), thus promoting PMN formation and disease progression
[80, 81]. Surprisingly, tumor cells are known to exhibit amplified ability to secrete
EVs, which is, in turn, boosted by hypoxic conditions [69, 79]. Various exosomes
derived from the primary tumors display adhesion molecules on their surface such as
integrin, which bind to ECM components and lead to the development of
organotropic PMNs favoring organ-specific metastasis.

Facilitated by the PMNs, the extravasated cells then enter the secondary site,
which is usually distant and has a different microenvironment as compared to the
primary tumor site. Most of these cells persist as single disseminated tumor cells
(DTCs) in the foreign tissue and either die or enter a state of dormancy, which
eventually are either eliminated by the immune system or develop successful
metastases [71, 82]. This period of dormancy can last up to days, weeks, or even
years depending upon the availability of supportive signals and proliferative micro-
environment. The state of dormancy is activated when the disseminated tumor cells
fail to adapt to the new microenvironment or by the over-powering anti-proliferative
signals in the secondary tissue or even by the failure to induce angiogenesis
[83]. The patients who develop such dormant DTCs are designated to have minimal
residual disease and are on the verge of greater risk of metastatic relapse. The
dormant DTCs instigate certain signaling mechanisms to sustain in a quiescent
state, such as the activation of AKT and SRC pathways by secretion of CXCL12
by the stroma in the metastatic niche. Upon metastasis to the bone, breast cancer cells
have been shown to set off pro-survival mechanisms in response to CXCL12
secreted by the bone parenchyma [84]. These pro-survival pathways enable the
DTCs to evade TRAIL-induced apoptosis as well as resist anoikis by further
expressing tyrosine kinase receptor (TrkB) or by stimulating the non-canonical
WNT pathway mediated by WNT2 [85]. The failure to interact with the ECM, and
thus sensing the mitogenic cues also results in the induction of dormancy. For
example, the DTCs undergo dormancy when they fall short to interact with the β1
integrin, which leads to the failure in stimulating the FAK mediated proliferative
signaling [86–88]. Various such chemical interactions among the ECM and DTCs
are also reported to induce a cell cycle exit into the G0 phase, thus inducing a state of
suspended growth [89]. The emergence of these indolent DTCs definitely requires
favorable signals, which is distinct in different cancers. For example, the gain of
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VCAM1 expression can activate the metastases of bone, by binding to the α4β1
integrin receptor on the osteoclast progenitor cells, thus initiating colonization
[90]. Similarly, the micrometastases in the lungs breakout of dormancy by
expressing coco, which is an inhibitor of the bone morphogenetic protein (BMP)
signaling thus potentiating metastatic colonization. These gains of function in the
dormant metastatic cells indicate a low-level proliferation of the cells, which seems
to be inevitable for the survival of DTCs. Acquisition of pro-proliferative signaling,
mediated by MAP kinase, FAK, TGF-β, etc. is also known to enhance the coloniza-
tion process as well [91].

10.9 Targeting Metastasis: Opportunities and Challenges

Metastasis is a highly unpredictable event, almost leading to the culmination of
cancerous growth, making it certainly difficult to treat the cancer patients due to
widespread mutations acquired by the metastasizing cells [92, 93]. Since metastasis
is the major contributor to cancer related mortality, targeting metastasis provides a
vast window of possibilities in dealing with cancer. However, by the time metastasis
is detected in cancer patients, it has already spread to distant sites, which makes it a
daunting target to follow [94]. Moreover, the involvement of various host cells, thus
forming a heterogenous population that initiates and sustains metastasis is another
major hurdle in pharmacological targeting of the metastatic cascade. Genetic insta-
bility forms the basis of neoplastic growth and the accumulation of these mutations
with time makes it difficult to control metastasis. Increasing genetic instability
confers the tumor cells with unprecedented variations which not only allow them
to evade immune checkpoints but also survive under unfavorable conditions. Nev-
ertheless, analysis of the metastatic cell karyotype and single cell studies have shown
that these cells can originate from a single tumor cell potentiated by genetic
variations [95, 96].

Since metastasis consists of a series of events, blocking the progression of any of
these steps can be crucial in stopping it. While dealing with cancer metastasis, the
majority of the therapies target the rapidly proliferating cells and associated
mechanisms. Various anti-metastatic approaches have been enlisted below in
Table 10.1. However, since the DTCs are known to be crucial purveyors of meta-
static growth and relapse, specific approaches to target them should also be
employed to obtain the recurrence-free survival of cancer patients. Different
approaches to target metastasis have been employed, such as the inhibition of
invasion promoting MMPs, thus curbing metastasis. The role of platelets in assisting
CTCs to survive and extravasate has also garnered attention, thus the drugs targeting
platelets have also been utilized against metastasis, although they do not reduce
pre-existing lesions [115]. Following the entry into the blood, the CTCs have been
proposed as markers of metastasis; however, these cells can also be targeted to
prevent the establishment of metastases. With the advent of various techniques for
isolating the CTCs from patient blood samples including the FDA approved
Cellsearch® platform, various approaches to target them have been deployed
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Table 10.1 Various inhibitors targeting different target molecules or pathways being used in
treatment of metastatic cancer

S.
No. Name

Target molecule/
pathway Clinical Status References

1. Bevacizumab
(monoclonal
antibody)

VEGF/angiogenesis Approved by FDA for
resistant ovarian cancer,
glioblastoma, cervical
cancer, colorectal cancer,
metastatic lung cancer, and
renal cancer

[97–102]

2. Denosumab
(monoclonal
antibody)

Receptor activator of
nuclear factor kappa-
B ligand/osteoclast
activation

Approved by FDA for
glioblastoma, metastatic
lung cancer, colorectal and
renal cancer. Also approved
for cervical, colorectal, and
resistant ovarian cancer

[103, 104]

3. Cetuximab
(monoclonal
antibody)

EGFR Metastatic colorectal
carcinoma, non-small cell
lung cancer (NSCLC), and
head and neck cancer

[105]

4. Gefitinib/
Erlotinib (small
molecule)

EGFR/downstream
receptor tyrosine
kinase pathway

Approved by FDA for
metastatic NSCLC

[106]

5. Dasatinib (small
molecule)

SRC/ABL kinase Approved by FDA for
chronic myeloid leukemia
(CML) and resistant
acute leukemia (AL)

[107]

6. Olaparib (small
molecule)

Poly (ADP ribose)
polymerase

Approved by FDA for
metastatic breast cancer

[108]

7. Lutetium Lu
177dotate
(radioactive
compound)

Somatostatin
receptor

Approved by FDA for
neuroendocrine tumors
(GEP-NETs)

[109]

8. Abiraterone
acetate (hormone
drug)

Approved by FDA for
castration resistant prostate
cancer in combination with
prednisolone

[110]

9. Abemaciclib
(small molecule)

CDK4/CDK6 Approved by FDA for
metastatic breast cancer

[111]

10. Brentuximab
vedotin (antibody
drug conjugate)

CD30 antigen Approved by FDA for
classical Hodgkin’s
lymphoma in combination
with chemotherapy

[112]

11. Osimertinib
(small molecule)

EGFR Approved by FDA for
metastatic NSCLC

[113]

12. Trastuzumab
deruxtecan
(monoclonal
antibody-drug
conjugate)

Human epidermal
growth factor
receptor 2 (HER2)

Approved by FDA for
unresectable and metastatic
HER2 positive breast cancer

[114]
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[116–118]. Since the diagnosis of cancer in its earliest stages is not possible,
targeting the formation of PMNs does not sound to be a confident option. Surgical
resection of primary tumors definitely reduces the tumor cell load as well as the
clonal variants in the host body; however, a holistic approach, which can target
multiples facets of metastasis simultaneously, seems to be the best option for now.

10.10 Role of Natural Compounds in Targeting Metastasis

Targeting metastasis in anti-cancer research has proved to be an effective approach
to curb cancer. However, the use of anti-metastatic agents is associated with several
adverse outcomes. Surgical removal of tumor is also not possible in every carcino-
genic scenario, for instance, in leukemia. Similarly, radiotherapy also has its own
limitations and cannot be used everywhere as a generalized anti-cancer approach. In
such scenario, the use of natural compounds against metastasis has proven itself a
boon for cancer patients. Recent years have witnessed a spike in the use of natural
compounds in treating cancer, and this is further aided by the fact that utilization of
natural compounds is considered safer with no or lesser side effects than any other
anti-cancer approach. Therefore, a variety of natural anti-metastatic agents are being
currently used against cancer. A few of recently used anti-cancer natural compounds
are listed below in Table 10.2.

10.11 Conclusion and Future Perspectives

Metastasis is a life-threatening phenomenon, which is initiated by the primary tumor
cells and it subsequently marks distant organs for the development of secondary
tumors by forming PMNs. Although this cascade has been acknowledged as the
basis of most cancer related deaths for several years, the precise mechanisms and
molecules involved in the spatio-temporal regulation of this cascade are still incom-
pletely understood. However, the active involvement of the host cells and
chemokines with the tumor cell milieu has garnered considerable attention and
appreciation in recent years. The utilization of host-derived factors and cellular
components for metastatic dissemination demonstrates a remarkable interaction
among the primary tumor cells and the metastatic niches. Additionally, the rebel
nature of metastatic cells not only allows them to successfully evade the host
immune system but also utilize it for their own propagation and survival. These
characteristics also bestow these cells with the ability to resist various therapeutic
agents targeting cancer. Thus, metastasis stands as a major challenge for the scien-
tific community today in dealing with cancer and necessitates in-depth research in
the coming years. Although a plethora of studies have shed light on various
happenings that lead to the origin of primary tumors and subsequent establishment
of clinically detectable metastases, still a lot of effort is needed to comprehend the
cues leading to the initiation of metastasis and subsequent colonization of distant
metastatic sites. Further dissection of the microenvironment alterations and
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host-tumor interplay will not only allow us to understand the early events involved in
metastasis but also will assist us to formulate specific and better therapeutic
modalities against it.
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Abstract

Cancer being a multifactorial disease, its genesis and progression are enormously
complicated. The classical chemotherapeutics along with recent targeted molecu-
lar therapy approach have not been effective in complete eradication of all tumor
cells and is often been limited by drug resistance and side effects on normal
tissues and cells. With the fast evolving field of genomics and molecular medicine
translating into precision medicine, the importance of individualized therapeutic
protocols has been realized. For transitioning from surgical treatments to radio-
therapy to chemo and immunotherapies, in this fast advancing world, it will not
be far away when the personalized medicine will be the choice of treatment for
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one and all. The major challenge in the anticancer drug development is multidrug
resistance and relapse. In this chapter, we describe the promising anticancer
targets in different phases of drug development in clinical trials along with new
drug targets for personalized cancer treatment in near future.

Keywords

Cancer vaccine · Gene therapy · Monoclonal antibody · Gene editing · Nano-
delivery

11.1 Introduction

Cancer is the second leading cause of mortality and morbidity, just after the
cardiovascular diseases, causing almost ten million deaths each year globally
[1, 2]. Current standard treatment modalities include chemotherapy, radiotherapy,
and surgical resection [3–6]. Although chemo- and radiation-therapies when applied
either alone or in combination are effective in killing a population of malignant cells,
however, these therapies cannot eradicate all malignant cells. Consequently, relapse
occurs and tumor cells metastasize at distant sites [7]. Moreover, even when tumor
cells initially respond to chemotherapeutic agents and irradiation treatment, after a
while, they can rapidly develop molecular mechanisms of resistance and continue
their growth and spread over the body [8]. Furthermore, cytotoxic
chemotherapeutics and radiotherapy are toxic also to healthy cells, destroying
normal functioning of several tissues and leading to bone marrow toxicity, hemato-
logical toxicity, cardiotoxicity, neurotoxicity, hepatotoxicity, and nephrotoxicity
among others [9]. Taking into consideration these bottlenecks in the current cancer
treatment methods, there is no doubt that novel, more efficient, and safer strategies
are highly needed to reduce the duty that humankind must pay to this frightening
disease.

Until the recent years, the same treatment scheme has been prescribed to patients
suffering from the same type and stage of tumors. However, individuals with the
same malignancies can often react differently toward the same treatment scheme
depending on the genetic changes in their tumors [10]. Personalized approach in
cancer treatment takes these genetic peculiarities into consideration and administers
the most efficient therapy to those patients who gain the maximal benefit from it,
sparing others from toxic side effects. The selection criteria for such personalized
strategy of drug prescription include the expression of certain targets on the tumoral
cells or in the cancer microenvironment (Fig. 11.1) [11–14]. In the current chapter,
different approaches of personalized cancer treatment are reviewed according to
their molecular targets and cellular mechanisms. It is hoped that combination of
these novel modalities with traditional cancer treatment strategies enhances survival
rate and improves the quality of life of cancer patients.
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11.2 Role of Vaccines in Cancer Therapy

Vaccines are considered as the most safe and economical prophylactic agents against
various diseases like smallpox, chickenpox, measles, polio, etc. Though cancer
vaccines are difficult and challenging, but with the advancement in the field of
molecular biology and a greater understanding of mechanisms to harness the
immune system, it has become possible. These advancements have made it possible
to develop cancer vaccines which are being used to treat cancer patients via activa-
tion of immune system [15]. Vaccines for cancer can be broadly classified as
preventive and therapeutic and precisely into categories which encompass genetic
(DNA, RNA, and viral) vaccines, protein/peptide vaccines, and cell vaccines (tumor
or immune cell) [16]. Research in the last few decades to develop preventative
vaccine against different forms of cancer had though resulted in many futile
outcomes but recent attempts focused on improving therapeutic cancer vaccines
have been found to be encouraging [17]. The preventive vaccines like human
papilloma vaccine (HPV) (Cervix [18], Gardasil, and Gardasil-9 [19]) that prevent
infection by certain types of HPV and hepatitis B (HBV) vaccine [20] that inhibits
Hepatitis B, are commercially available for cervical cancer and liver cancer, respec-
tively. These vaccines are the only vaccines clinically approved for cancer preven-
tion. Keeping in view the immuno-compromised condition and low immunogenicity
of cancer patients, more emphasis is given to development of vaccines from thera-
peutic viewpoint which can improve immune response via increasing antibody
production or activation of cytotoxic T cells [21]. Bacillus Calmette–Guérin
(BCG) which is basically a tuberculosis vaccine, got its first approval in 1990
from Food and Drug Administration (FDA) and henceforth there has been no
looking back with the positive biotherapies for the treatment of early-stage bladder
cancer for more than 30 years [22]. Furthermore, researchers were also successful in

Fig. 11.1 Evolution of cancer therapeutics
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identification of some cell proteins that are produced abnormally high by cancer cells
and targeted these proteins to develop therapeutic vaccines like Sipuleucel-T vaccine
(PROVENGE) which was approved by FDA in the year 2010 and used for the
treatment of patients with advanced prostate cancer. This vaccine evokes an immune
response against prostatic acid phosphatases (PAP) that is often over expressed by
prostate cancer cells. Still research is continuing to further improve efficacy of this
very first FDA approved immunotherapy through combination approaches
[23]. Moreover, unlike over expressed proteins some specific proteins that arise
due to mutations are exclusively expressed by tumor cells. These proteins called as
“neoantigens” also exhibit unique targets to develop cancer vaccines and thus can
become part of standard cancer therapy and prevention [24]. Earlier, heat shock
proteins (HSP)-based vaccines were also intended to be one of the therapeutic
approaches for malignancy management as expression of HSP genes is believed to
be elevated in tumors. With this purview, HSPPC-96 complex, called Vitespen
(formerly Oncophage), a HSPs-based vaccine was formed and has been considerably
examined in Phase I and II clinical trials showing activities on different malignancies
with admirable effects in melanoma and kidney cancer in Phase III clinical trials
[25]. Recently, with the emergence of therapeutic cancer DNA vaccines, unprece-
dented avenues have opened up to enhance specific and enduring immune response
against tumor antigens. These are mainly the bacterial plasmid vaccines which
encode antigens and encode immune stimulatory molecules (interleukin-2 (IL-2),
granulocyte-macrophage colony stimulating factor (GM-CSF), etc.). However, can-
cer DNA vaccines established moderate efficacy and thus limiting standard cancer
management. Consequently, it was deciphered that combination therapies,
i.e. combining DNA vaccines with traditional procedures (chemotherapy, radiother-
apy, surgical procedures) can synergistically potentiate immune response, thus
leading to effective cancer treatment [15].

In conclusion, different target antigens have been tested for vaccine platforms and
the field is still evolving with many vaccines which are still under clinical trials only.
In order to have promising cancer treatment with enhanced immune responses and
minimal additional toxicity, it is evident that combining immune checkpoint
inhibitors with therapeutic vaccines may uphold great potential for effectively
modulating the antitumor immune response and thus treating malignancies [17].

11.3 Role of Monoclonal Antibodies for Cancer Treatment

Antibodies are proteins which are heterodimeric in nature and approximately of
150 kDa in size. Antibodies consist of two each identical heavy and light chain
which are arranged in a Y shaped conformation joined by disulfide bonding
[26]. There are two distinct parts of an antibody, the antigen binding fragment
(Fab) and the constant fragment (Fc). The Fab consists of complementary determin-
ing region in variable heavy and light chains and particularly responsible for
identification and binding to antigen epitope [27]. The Fc domain is responsible
for communicating with the effector immune cells through its binding with Fc
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gamma receptors (FcγR) and initiating both complement-dependent cytotoxicity
(CDC) and antibody-dependent cellular cytotoxicity (ADCC) [28, 29].

Antibodies have been segregated into different classes depending on the compo-
sition of heavy chain sequences, which are IgD, IgA, IgE, IgM, and IgG. IgG
monoclonal antibodies (mAb) are used for clinical therapeutic applications among
the mentioned five classes due to ease of production process and increased half-life
in circulation. IgG mAb’s have been further divided into IgG1, IgG2, IgG3, and
IgG4 subtypes. Out of these four subtypes, IgG1 is the preferred mAb for use in
cancer therapeutic applications due to its ability to induce ADCC, a desired effector
function for cancer treatment [27, 30].

Rituximab was the first mAb approved by FDA for clinical chemotherapeutic
application in 1997 [31]. Moreover mAb can be divided into two types based on
their origin and function. mAb’s can be generated as chimeric (suffix: ximab),
humanized (suffix:zumab), and human (suffix: umab) [31–34]. Functionally
mAb’s can target multiple pathways. First, they can bind the antigen on cancer
cells and prime the immune system. Second, mAB target the immune checkpoint
regulators which include programmed cell death protein 1 (PD-1) and cytotoxic
T-lymphocyte associated protein 4 (CTLA-4) which up-regulate the immune
response. Third, they can bind to growth receptors implicated in cancer and block
their activity. Fourth, utilizing conjugation mAb’s can be used as delivery vehicles
for chemotherapeutic drugs to tumor cells.

11.4 Role of Non-Coding RNA in Cancer Treatment

In 1990s and 2000, the completion of Human Genome Project revealed the number
of Protein coding regions genes, i.e. 20,000–25,000 and human genes 35,000
approximately through clone based methods [35–37]. On the other hand,
non-coding RNAs in human have also been studied through transcriptome [38–
40], which plays an important role in diseases and cellular responses and cancer
treatment [41]. In human genome 95% of DNA sequences are non-coding which are
further transcribed into non-coding RNAs which contain several kinds of long
non-coding RNAs (lncRNAs), small interfering RNAs, microRNAs (miRNAs),
and antisense RNAs (asRNAs) [42–45]. Non-coding RNAs are RNA transcript
which does not translated into protein and contains diversity in their structure. The
therapeutic potential and targets of ncRNAs playing an important role in preclinical
studies and clinical trials against cancer and genetic disorders and defects in human.
In cancer therapy, the major challenge is to develop the anticancer resistant drugs.
Non-coding RNAs and its different types play an important role and regulatory
network to overcome in complex mechanism of chemoresistance and
chemosensitivity [46, 47]. MiRNA, cirRNA, and lncRNA are ncRNA which plays
an important role and studied against variety of cancer drugs, chemoresistance, and
sensitivity [48]. The detailed role of ncRNA in cancer cells and its functions on
therapeutic resistance and sensitivity is given, playing role in regulating the pro-
cesses of DNA damage repair, apoptosis, and EMT [49, 50]. In in vivo studies in
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mouse models, doxorubicin and miR-10b have been used for treatment of breast
cancer [51]. Additionally, antisense oligonucleotides (ASOs) blocking metastases
associated lung adenocarcinoma transcript 1 (MALAT1) [52] and phosphorodiamidate
morpholino oligomer that silences miR-487 [53] help in treating the tumor burden
and metastasis of cancer cells with no damage to normal cells. A morpholinos based
drug named as AVI4126 is used to treat various cancer cells, such as breast, lung,
and prostate cancer by inhibiting the expression of c-myc translation sequence by
blocking and mis-splicing of its pre-mRNA [54, 55].

Above study proved that the drugs which were based on morpholinos can show
promising effect for cancer therapy by targeting oncogenic ncRNAs. Although these
ncRNAs have therapeutic potential because of their uniqueness in chemical
properties and mechanism and its pharmokinetics trial. There are still more studies
which need to carried out to realize and validate its therapeutic potential of ncRNAs
in treatment of cancer. The diagrammatic illustration of different forms of ncRNA in
cancer therapy is explained in Fig. 11.2A. In lipid nanoparticles (LNP) encapsulated
non-coding RNAs (SOs, SiRNA, saRNA, and miRNA) are protected from degrada-
tion from biological conditions and are directly delivered to tumor cells.
Figure 11.2B illustrates how chemically conjugated SiRNA with carriers forms
carrier-siRNA conjugates which are used for cancer treatment. Similarly,
SAMiRNA, the self-assembled lipid nanoparticles are formed from modified
PEG-siRNAs and lipid molecules as illustrated in Fig. 11.2C. With the help of

Fig. 11.2 Diagrammatic illustration of different forms of ncRNA in cancer therapy.
(A) (a) SiRNA, (b) MiRNA, (c) ASO, (d) SaRNA. (B) SiRNA. (C) PEG-siRNA-lipid siRNA.
(D) ShRNAs, sgRNAs
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oncolytic adenovirus-mediated strategy, Fig. 11.2D ShRNA and sgRNA can hereby
accomplish a long-lasting expression of ncRNA in malignant cells [41].

Due to recent studies and progress in biotechnology and pharmaceutical
industries, ncRNAs have become the promising players in the fight against cancer.
The basic treatment like radio and chemotherapy will remain there as mainstream for
cancer patients, the ncRNAs with its conjugate carriers act as mediator in chemo-
and radio-resistance which will be in high demand for specific receptor with the help
of nanotechnology in drug delivery system.

11.5 Gene Therapy for Cancer Treatment

All over the world gene therapy has been poised as first line of therapy for cancer and
it possesses a number of advantages such as low off-target toxicity, high specificity,
multiple gene delivery, high potency [56] and have limited side effects [57]. It
involves the transfer of genetic material in vivo to the targeted tissues [58]. More
than 400 clinical studies have been performed using gene therapy over the past
15 years, out of which 70% were focused on cancer gene therapy [59]. Multiple
alterations at genetic levels lead to the development of various cancer and different
therapeutic genes have been used to alter the tumoral lesions [60]. Two gene groups,
i.e. oncogenes and tumor suppressor genes, counterbalancing each other, play
important role in the development of cancer. Cell proliferation is enhanced by
oncogenes, whereas apoptosis or programmed cell death is induced by tumor
suppressor genes. These both gene groups could be used in cancer treatment. In
addition, cancer can be treated by suicide gene strategy which involves the combi-
nation of gene therapy and chemotherapy. In this strategy the non-toxic prodrug is
converted into active cytotoxic metabolite by a non-mammalian enzyme within the
tumor [61, 62]. Gene therapy can also be mediated by using cytokines encoding
genes which enhances the immune response against the cancerous cells
[63, 64]. Gene therapy can be mediated by DNA vaccines [65, 66] or injecting
naked DNA directly into the tumors [64, 67]. Biological systems such as viruses and
non-biological agents like liposomes, cationic peptides, and cationic polymers can
be used as gene therapy vehicles. Viruses are modified to enhance their efficiency
and reduce their pathogenicity. They infect the host cell and release their genetic
material into them, but they suffer from limitations such as restricted size of genetic
material transferred into host, and they are difficult to produce [68]. These
limitations can be prevented by using non-biological agents for gene therapy;
however, these agents have limited efficiency. Therefore, it is crucial to modify
the biological as well as non-biological agents to achieve desirable characteristics for
efficient gene therapy [58].
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11.6 Gene Editing for Cancer Treatment (CRISPR)

Our body contain many cells, and each cell harbors a copy of our genome that
contains over 20,000 genes and each gene consists of 3 billion letters of DNA
consists of two strands twisted into a double helix held together by a simple pairing
rule A pairs with T and G pairs with C. Due to the tremendous advances in DNA
sequencing and advent of next generation technologies, numerous disease specific
association of genes have been identified. In the last 20 years, a new method called
clustered regularly interspaced short palindromic repeats (CRISPR) method has been
introduced which has shown promising results with the technology of editing the
DNA of humans and other species as well. CRISPR technology is based on the
response mechanism of how bacteria protect itself from viral infection. Upon viral
infection, bacteria successfully detect viral DNA which then leads to production of
two types of short RNA (one of which contains a sequence matching that of invading
virus). A CRISPR associated protein 9 (Cas9) complex is formed with these two
RNAs which targets the DNA and disables virus activity.

In the laboratory, RNA oligos (crRNA and tracrRNA) are widely used, since we
can design their structures. Once inside the nucleus, Cas9 complexed with
tracrRNA, and will lock onto a short of the protospacer-adjacent motif (PAM)
sequence [69]. When this happens the cell tries to repair the cut either by homology
directed repair (HDR) endogenous repair mechanisms or non-homologous end
joining (NHEJ). But the repair process is error-prone leading to mutations (insertion
or deletion (indel) mutations) that can disable the gene, allowing researchers to
understand its function. Over the past few years, researchers studying the system
realize that this could be engineered to cut DNA sequence at a specific location. The
CRISPR-Cas9 system has also been successful in generating the generically
manipulated mutant mouse models using previous approaches [70]. For instance,
microinjection of the Cas9 mRNA and gRNA was used by one group to create a
human lateral meningocele syndrome (LMS)-related mutant mouse model of the
Notch3 gene [71]. This technology has also been used in several other studies for
mouse models of osteoporosis [72–74].

In the context of cancer, CRISPR-Cas9 knock-in mice for genome editing and
cancer modeling were widely used. For developing this model, adeno-associated
viruses (AAV) vector system was delivered with the gRNA of the top three signifi-
cantly mutated genes, i.e. GTPase (KRAS), KRAS proto-oncogene, p53, and liver
kinase 1 (LKB1) to induce lung adenocarcinoma [75]. Nevertheless, these mutations
are random but sometimes researchers have also tried replacing a healthy copy in
place of a mutant gene. It has also been emphasized that cellular communication
network factor 2/connective tissue growth factor (CCN2/CTGF) leads to over
expression of matrix metalloproteinases (MMP) family proteins in tumor cells
[76]. Specifically, matrix metalloproteinase 3 (MMP3) has been reported to regulate
CCN2/CTGF and knockout of MMP3 by CRISPR/Cas-9 has been showed to inhibit
migration and invasion in cancer cells via reduction of promoter activity of CCN2/
CTGF [77]. Additionally, it has been noted that the high expression of nuclear factor
erythroid 2-related factor 2 (NRF2) is one of the major causal factors of
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chemoresistance in cancer cells [78]. Kelly and his colleagues have identified a
unique PAM which specifically cleaves NRF2 in a site specific manner in malignant
cells [69] implicating the importance of CRISPR-directed gene editing in solid
tumors.

Lastly but not the least, despite that all this CRISPR gene editing can be done in
cultured, unlike previous methods, CRISPR can be used to target many genes at
once, which gives a big advantage for studying complex diseases which are
attributed to mutations in multiple genes acting together. These methods are being
improved rapidly and will have many applications in basic research and clinical trials
in the anticancer drug development or for treating human patients with cancers due
to genetic mutations.

11.7 Targeted Drug Delivery Through Nanotechnology
for Cancer Treatment

Chemotherapy in combination with surgery and radiation remains the most success-
ful lines of treatment for malignant growth [79]. However, these medications when
applied either separately or in combination have different antagonistic impacts like
general distress, neuropathy, cytotoxicity, nausea, myelosuppression, nephrotoxi-
city, alopecia, cardiotoxicity, and poor solubility of medications [80–82]. Further,
high dose of these medications should be directed to accomplish restorative levels,
because of which healthy cells are also injured. Further, many a times malignant
growth is analyzed in late stages which diminish the general adequacy of these
medicines [83]. Another serious issue is that malignant growth cells can become
resistant towards chemotherapeutic medications [84].

Nanotechnology utilizes the combination of therapeutics with diagnostics which
help in specific drug delivery to disease tissue without influencing ordinary tissues,
consequently gaining huge consideration worldwide for malignant growth treatment
[85]. In nanomedicine, nanoparticles are used for diagnosis and treatment of cancer.
These nanomedicine have high surface to volume proportion which let them being
absorbed and pass on to focused site as therapeutic agents with biomolecule like
DNA, RNA, medications, and proteins [86]. These drug carriers help in delivering
chemotherapeutic agents to tumors, maintaining a strategic distance from normal
cells via specific targeting which reduces toxicity to normal cells [87, 88].

To date, different organic (templated, lipid-based, layer-by-layer assembled, and
cell-membrane inferred) and inorganic (silver, iron oxide, gold, and silica or silicon)
nanoparticles have been synthesized [89–92] and are endorsed for clinical use
[93]. Not just these nanoparticles help in decrease of side effects, e.g., decreased
nausea/vomiting, hair loss, anemia, and cardio toxicity [94] yet some ongoing
clinical preliminaries are indicating guarantee of higher survival benefit when
contrasted with standard treatment [95]. The first clinically endorsed nano-based
anticancer drug carrier Doxil/Caelyx (PEGylated liposomal doxorubicin) was used
for Kaposi’s sarcoma treatment [87]. The nanotechnology based medication was
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seen as clinically extra convincing and less harmful than the standard blend chemo-
therapy (bleomycin, doxorubicin, and vincristine) [96].

Another serious issue in viable malignant growth treatment is early stage detec-
tion of disease especially before tumor cells metastasize. The majority of the tumors
can be dealt with successfully in the event that they are identified at a beginning
period. However, diagnosis at early stage still remains a challenge, as clinical
symptoms seldom manifest before disease advances to a lethal stage. In recent
times, many kind of nanoparticle-based technologies are being created for enhanced
imaging for different type of cancers [97, 98]. Nanoparticles, for example, semicon-
ductor quantum spots and iron oxide nanocrystals, have optical, attractive, or
auxiliary properties that do not happen in normal particles. Different particles can
be used with nanoparticles for targeting cancer cells in particular and include various
antitumor agents ranging from different antibodies to peptides, different particles,
conjugation with which can be valuable in screening tumor cells and early detection
[99]. In view of the promise nanotechnology has presented these nanomaterials have
been used to recuperate target-specificity and additionally tissue infiltration of a
symptomatic test, consequently permitting prior recognition of threat [100]. These
advance and sensitive imaging procedures will permit the prior identification and
better prognosis as well as focused delivery of medication will also help eliminate
the need for radiation therapy and/or invasive surgery [101, 102]. Hence, the
development of highly specific and highly sensitive nanoparticles could revolution-
ize prevention, diagnosis, and treatment of malignant growth.

So it may be well presumed that malignancy nanomedicines (nanodrugs,
nanocarriers, or nanotherapeutics) are miniaturized delivery frameworks, which
helps in improving the viability of presently available chemotherapeutic agents.
Nanomaterial’s in oncology additionally incorporates diagnostics, theranostics, clin-
ical gadgets, and more recently therapeutics for customized medication (Fig. 11.3)
[101, 103]. Finally, nanotechnology can help permit real-time tracking of the
targeted delivery of therapeutics in cancer patients [104].

11.8 Conclusion and Future Directions in Personalized
Medicine

With the fast evolving field of genomics, biotechnology, and molecular medicine,
translating into precision medicine, the importance of individualized therapeutic
interventions is being considered by the pharmaceutical companies and basic
researchers. For transitioning from surgical treatments to radiotherapy to chemo
and immunotherapies, in this fast advancing world, it will be not be far away when
the personalized medicine will be the choice of treatment for one and all. This is
strongly supported by the initial experience in the field of personalized medicine
which is directed to the patient at individual level and also decreases the trial-and-
error during diagnosis and treatment. The medical fraternity is slowly realizing the
importance of genetic and molecular basis of disease specifically in cancer and is at
the initial forefronts to adapt molecular screening for assessment of disease
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associated risk factors and preventive mechanisms. The personalized medicine is
also being closely followed by the government authorities, regulatory authorities,
and healthcare agencies for updates on the safety and efficacy for long-term transla-
tion of promising era of molecular medicine. In view of the promise personalized
medicine holds in transitioning the future from conventional chemotherapy regime
to precision medicine, it may not be long when we see translation of personalized
medicine to clinics. This translational value of personalized medicine will help
manage the diseases at the forefront on individual basis and response to therapy
which will be promising in the upcoming era.
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