Chapter 27 ®)
A Study of Code Clone Detection e
Techniques in Software Systems

Utkarsh Singh, Kuldeep Kumar, and DeepakKumar Gupta

1 Introduction

In the information technology industries, software development is not performed
under idle conditions. It is a period-bound activity and prerequisites from the stake-
holders can change at random. To satisfy the stakeholder’s changing requirements,
developers are required to speed up and complete the product improvement in the
given time limit [1]. Working under such conditions, the developers generally copy-
paste the code in which there is either no modifications or they do some minor
modifications to the code by including, erasing or updating the code statements.
Doing it at a specific degree does not affect the product, but the extreme utilization
of the copy-paste approach degrades the quality of the software systems [2].
Replicating existing code parts and pasting them with or without alterations into
various areas of the source code of a software system is a very common practice in
software development [2, 3]. The replicated code fragments are called code clones
and the process is called software code cloning. This sort of reuse approach of the
current code may lead to bug propagation. A fault arising in one part of the code
may arise in all the replicated sections of the code. To mitigate this problem, it is

U. Singh () - K. Kumar - D. Gupta

Department of Computer Science and Engineering, Dr. B R Ambedkar National Institute of
Technology, Jalandhar, Punjab 144011, India

e-mail: utkarshs885 @ gmail.com

K. Kumar
e-mail: kumark @nitj.ac.in

D. Gupta
e-mail: guptadk @nitj.ac.in

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 347
M. Dave et al. (eds.), Proceedings of the International Conference on Paradigms

of Computing, Communication and Data Sciences, Algorithms for Intelligent Systems,
https://doi.org/10.1007/978-981-15-7533-4_27


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7533-4_27&domain=pdf
mailto:utkarshs885@gmail.com
mailto:kumark@nitj.ac.in
mailto:guptadk@nitj.ac.in
https://doi.org/10.1007/978-981-15-7533-4_27

348 U. Singh et al.
very essential to locate each related code pieces throughout the source code and for
these, there is a requirement of software code clone detection techniques [4].

In this paper, after reviewing existing works on software clones, we gathered and
summarized investigations in the area of software code clone detection. We explored
different code clone detection techniques, provided a brief description of various
clone terminologies, code clone evolution, clone detection process, and detailed
description of code cloning with its pros and cons. It assists the users in understanding
the clone detection process and choosing the appropriate techniques for detecting
a possible type of clones. The detection and analysis of such clones can help in
refactoring and maintenance processes [5].

The left part of the paper is sorted out as follows: Basic terminologies utilized in the
area of code clones are clarified in Sect. 2. Section 3 talks about the literature review.
Having talked about the points of advantages and disadvantages of code clones in
Sect. 4 have a descriptive brief of the clone detection techniques is provided in Sect. 5.
An overview of code clone evolution is discussed in Sect. 6. Section 7 concludes the
paper with a detailed depiction on future directions.

2 Clone Terminologies
This section discusses different terminologies that are used during software code
clone detection.

2.1 Clone Relation Terminologies

Code clone detection techniques produce results as clone classes, clone pairs or both.
A couple of code fragments is known as aclone pair when they have significant
similarities between them. For example, consider the three code fragments, Mel,
Me2, and Me3 as given in Table 1, we have five clone pairs, <Mel(e), Me2(e)>,

Table 1 An example illustrating clone pairs and clone class

Fragment Mel Fragment Me2 Fragment Me3

intsqrt =0,1=0,b = 0;
while(i<n) {b=1i*1;
sqrt = sqrt * b; i++;} (e)

intsqrt =0,1i=0,b = 0;
while(i <n){b =1 *i; sqrt =
sqrt¥b; i ++;} (e)

if(sqrt > 0){sqrt = n +
sqrt; }
else{sqrt = 0;} ()

if(sqrt > 0){sqrt = n + sqrt; }
else{sqrt = 0;} (f)

if(res < 0){res = m-+res;}
else{res = 0;} (e)

while(sqrt > n){if(sqrt > 0){sqrt
= sqrt/n;
sqrt = sqrt + n;}} (g)

while(res > m){if(res > 0){res =
res/m;
res =res + m;}} (f)




27 A Study of Code Clone Detection Techniques in Software Systems 349
<Mel(f), Me2(f)>, <Me2(f), Me3(e)> , <Me2(g), Me3(f)> and <Mel(f), Me3(e)>.
The equivalence relation between the code fragments is shown by similarity relation
among them [3].

A clone class is a maximal arrangement of cloned code fragments in which any
couple of the two code sections is similar to each other. For example, as shown
in Table 1, we get a clone class <Mel(f), Me2(f), Me3(e)> where this three code
fragments Mel(f), Me2(f) and Me3(e) make a clone pairs with each other, respectively,
and as a result, there will produce three clone pairs, <Mel(f), Me2(f)>, <Me2(f),
Me3(e)> and <Mel(f), Me3(e)>.

2.2 Types of Clones

On the basis of syntactic and semantic similarities between code fragments, code
clones can be separated into four types: exact clones, renamed clones, near-miss
clones, and semantic clones [2]. Exact clones (type I clones) are code fragments that
are the same except the white space and comments. Renamed clones (parameter-
ized or type 2 clones) are code fragments that are syntactically identical comparative
aside changes in identifiers, literals, types. Near-miss clones (type 3 clones) are code
fragments that have been duplicated with further modifications such as proclama-
tion insertions/deletions in addition to the changes in identifiers, literals, types, and
formats. As shown in Table 2, code fragments in columns A and B, A and C, A and D
form exact, renamed, and near-miss code clones, respectively. Semantic clones (type
4 clones) are code fragments that need not be similar at the code-level but perform
similar operations. Table 3 gives an illustrative example of semantically similar code
clones.

Table 2 Examples of code fragments illustrating different types of syntactic code similarities

Code fragment (A)

Exact code clone (B)

Renamed code clone

©

Near-miss code clone
(D)

float sub(float j1, float
j2){float subtotal =
0.0;

subtotal = j1 — j2;
return subtotal; }

float sub(float j1, float
i2)

{float subtotal = 0.0;
subtotal = j1 — j2;
return subtotal; }

float sub(float x1, float
x2)

{floattotal = 0.0;

total = x1 — x2;
return total; }

float sub(float x1, float
x2)

float x4 = x2;

{Float total = 0.0;
total = x1 — x4,
return total; }

Table 3 An example illustrating semantic similarity between code fragments

Code fragment (A)

Code fragment (B)

void fibonacci(intnum) {inttl =0,2=1,t3 =0;
for (mth = 0; p] < num; PJ ++) {COU[ LtlK” «

t3 =tl + t2;
tl = t2;
2 =3;}}

if (numl <= 1)
return numl;

intfibo(int num1){

return fibo(num1-1) + fibo(num1-2);}




350 U. Singh et al.

3 Literature Survey

After some time, there has been a broad arrangement of research works in the terri-
tory of clone detection. Kamiya et al. [6] proposed a token-based clone detection
tool CCFinder for distinguishing type 3 clones. In the initial step, the source code is
converted into a token-sequence. From that point, clone sets/clone classes are extri-
cated from the token-sequence utilizing a postfix-tree-based sub-string matching
algorithm. Yang et al. [12] introduced an abstract syntax tree (AST)-based approach
for clone detection that uses the Smith-Waterman algorithm for similarity compar-
isons. They evaluated their proposed approach on more than five open-source Java
projects and achieved a significant value of precision and recall.

Roy and Cordy [9] introduced an AST-text based hybrid approach for distin-
guishing function clones in software systems. As a matter of fact, text-based tech-
niques discover clones with high precision and recall, yet once in a while, the distin-
guished clones do not relate to proper syntactic units. On the other hand, AST-based
techniques see syntactical clones however tend as more heavyweight because of
the requirement for the full parser and sub-tree comparison algorithm. The experi-
ments show that parser-based techniques produce low recall. So, they joined these
two strategies to beat their restrictions and utilized their advantages. They evaluated
their hybrid method on more than 15 open-source Java and C projects. They made a
benchmark that can be utilized to confirm the results of other clone detection tools
as they delivered the outcome for each project individually.

Mayrand et al. [16] introduced a tool, Datrix that utilizes metrics-based approach
for detecting exact and near-miss function clones in large software systems. They used
21 function metrics grouped into four points of comparison—name, layout, expres-
sions, and control flow—which helped in deciding the cloning levels. They validated
their approach by applying on two telemonitoring systems. They additionally intro-
duced the ordinary scale of eight cloning levels. The level range starts from the exact
copy to the distinct functions. They cited that the level-1 clones have fewer rates of
false-positives as compared to level-3 clones which get expanded substantially.

Basit and Jarzabek [17] presented a data-mining techniques for detecting high-
level clones, called as structural clones. They characterized the structural clones as
repeated configurations of lower-level contiguous cloned code fragments (they called
them as simple clones). They introduced the tool named Clone Miner that detects
structural clones by first detecting the simple clones, and then incrementally detecting
the higher-level structural clones by utilizing the idea of the frequent-closed itemset
mining technique.

Marcus and Maletic [18] utilized the latent semantic indexing on the syntactical
representation of the source code to detect semantic similarities between program
structures. Latent semantic indexing is a vector-based statistical technique which is
used to represent the meaning of all the identifiers and comments of the source code.



27 A Study of Code Clone Detection Techniques in Software Systems 351

They considered comments as one of the important factors in detecting semantic
clones. Hence, when there are no proper comments in the code, the method fails to
detect the clones.

Kodhai and Kanmani [4] proposed a hybrid approach that uses 12 different metrics
and textual comparisons for detecting clones in a software system. The proposed
method has been applied to seven different C and Java projects, and has high precision
and recall. The approach also uses less time as compared to the other parallel tools.
Table 4 presents a comparative analysis of selected clone detection techniques.

4 The Rationale for Code Duplication

There are different reasons that may prompt the nearness of code clones within soft-
ware systems. Various factors influencing software development processes such as
changes in technology, certain requirements changes, strain to complete the work
in time-limits force the designers to go for open non-appreciable development prac-
tices. Such practices may lead to the introduction of clones in software systems.
Further, reusing existing code with or without modifications is one of the popular
and straightforward techniques in component reuse, which leads to the presence of
code clones within software systems.

Sometimes, clones may be introduced by the programmers unintentionally [2].
The utilization of a specific API/library typically needs a progression of function
calls as well as other arranged groupings of commands. Use of similar APIs/libraries
can introduce clones in a software. It might also happen that two engineers were
associated with actualizing a similar sort of rationale, and in the end come up with a
similar solution, resulting in code clones in the software. Difficulty in understanding
a large software system also leads to copying the logic and the functionalities.

4.1 Advantages and Disadvantages of Clones

Sometimes, clones are introduced by the programmers intentionally in a software
system [3, 19]. First, cloning is among the quickest and easiest strategies for
addressing the change in requirements. Further, if a programmer wants to quickly
enhance the functionality of a system, it has only left with one way, i.e., reuse or using
the abstract mechanism. Code segments that are used by programmers multiple times
show that they can be usable code segments. As a result, one should add these usable
segments into a library for future use. However, due to the method calls overhead,
sometimes, programmers have to increasing efficiency so they use code duplications.

Besides having advantages of having code duplication, clones have a serious
impact on software systems. They can influence the product quality, maintenance
cost, and can likewise influence product development [20]. Due to the cloned code,
it is possible that it will put a strain on the resources. It is because cloning will



352

Table 4 Comparative analysis of selected clone detection techniques

U. Singh et al.

Author Approach Datasets Tools/metrics Targeted clone
Kamiya et al. | Transformation of | C, C++, Java, CCFinder Syntactic code
[6] input source code | COBOL (JDK, clones

into tokens FreeBSD, NetBSD,

followed by Linux)

token-by-token

comparison
Lietal. [7] Based on frequent | Linux and CP-Miner Syntactic code

subsequence FreeBSD clones

mining technique
Lingxiao Distinguishing Large codebases Deckard Syntactic code
et al. [8] similar sub-trees of | written in Java, C clones

the source code (Linux kernel,

and with the help | JDK)

of this try to make

atree

representation of

the source code
Roy and A hybrid approach | Linux Kernel, Nicad Exact clones,
Cordy [9] utilizing the Apache-httpd, and near-miss clones

advantages of other open-source

Text-based and C and Java systems

AST-based

methods
Kodhai and A lightweight Open-source C and | Clone manager | Function clones
Kanmani [4] | hybrid approach Java projects

combining textual
analysis and
metric-based
comparison

Sajnani et al.

[10]

Various
code-blocks
comparisons are
expected to
distinguish clones,
as well as for token
comparisons

Large inter-project
repositories written
in C, Java, and C#

SourcererCC

Exact clones,
near-miss clones

Lietal. [11]

From the known
code clone, we
extract the tokens
and non-clones to
prepare a classifier,
and after that
utilizes the
classifier to
identify clones.

Large codebases
written in C and
Java

CClLearner

Code clones

(continued)



27 A Study of Code Clone Detection Techniques in Software Systems

Table 4 (continued)

353

Author Approach Datasets Tools/metrics Targeted clone
Yang et al. Tree-based Open-source - Function clones
[12] detection projects developed

techniques. The in Java, Ant,

extracted abstract | Tomcat, JDK,

syntax tree is used | ANTLR, DNSJava

for sub-tree

comparison
Wang et al. A specific Cook, Redis, CCAligner Syntactic code
[13] matching index is | PostgreSQL, Linux clones

generated for 1.0 in C projects. J

finding the DK, openNLP,

similarity matching | Maven, Ant in Java

in the code uses an | project

asymmetric

similarity

coefficient
Luan et al. Use query Java and Aroma Code search
[14] code-snippet to Android-based engine

search similar code | applications
Singh and Metric-based Abyss v0.3, Bison |- Function clones
Kumar [15] technique 2.4, Apache-httpd

228

increase resource usage and degrades the quality of the software. Further, the part
of the code fragments which are copied may have a bug. Copying such buggy code
fragments can lead to the probability of propagation of bugs in the software [7].

5 Clone Detection Process and Techniques

In this section, we discuss the clone detection process and various techniques for
detecting code clones in detail. We discuss the distinguishing properties of different
techniques thereafter.

5.1 Clone Detection Process

There are a few methodologies for identifying code clones; a few methodologies use
source code directly, some apply a transformation to convert the source code into an
appropriate form for the postprocessing of the output produced [2]. Although there
are different detection techniques, Fig. 1 presents a general overview of the process
followed by different clone detection techniques.



354 U. Singh et al.

Code
Transformation
4
Clone Extraction
Filtered Clone Class Postprocessu‘lg F?rmamng {ll'll.'l
and Aggregation Code Mapping

Fig. 1 An overview of the clone detection process

Source code Preprocessing

)

Preprocessing. During the advancement of the software product, sometimes,
developers uses remarks, whitespaces, comments and numerous other naming
conventions which have nothing to do with the functioning of the product but they
use for the better comprehension and intelligibility; it will work the same if these are
not used [21]. In this step, such irrelevant parts and code artifacts that are of not any
relevancy for clone detection are removed.

Code Transformation. The preprocessed source code is then changed into a
suitable representation with a goal that the detection process can be applied to it and
the machine can perform this detection process efficiently. Tokenization of source
code, parsing of code, generating abstract syntax trees/program dependency graphs,
calculating metrics, etc., are some of the transformation activities that can be applied
to the preprocessed source code [2, 3].

Clone Extraction. After performing the transformation, the source code is in an
appropriate form on which a detection algorithm can be applied. In this step, the
transformed units are compared to all other transformed units to find the cloned
matches. For better performance and to detect clones closely, transformed units are
merged into bigger units so that the precision of the techniques can be improved. The
output can be in any form, i.e., clone pair or clone classes per the detection technique
followed.

Formatting and Code Mapping. After getting a list of clone pairs, it is mapped
on the original source code. Line numbers or proper references are provided on the
original source code with reference to the clone pairs.

Postprocessing and Aggregation. Since there are no automated verification
methods available, manual verifications are important to discover false-positive
clones. In this step, verification of detected clones is carried out, and after filtering
out the false-positives, it is represented using proper visualization technique so that
the output is easy to understand and can be visualized easily [3]. In aggregation, we
reduce the data amount for analysis. Clone sets are accumulated into clone clusters,
classes, or clone groups.



27 A Study of Code Clone Detection Techniques in Software Systems 355

5.2 Clone Detection Techniques

In large software systems, to identify code clones, there should be a need for detailed
knowledge of the orientation and its internal structure such as programming language,
file extensions, etc. Likewise, to discover all the code clones, it is required to compare
each code part and all other accessible code pieces, which is a costly process in
terms of the calculation performed by the system to accomplish this [2]. So, there are
different types of techniques depending on the alternative ways to deal with detecting
code clones in a software system.

Text-based Detection Techniques. It deals with sequences of code or strings
used. In code fragments, each statement is termed as a sequence of text/string [2]. To
detect code clones, two code parts are matched based on the similarities of text/string
sequences. After the detection, the results can be returned as a clone sets or clone class.
Sometimes, the original source code is not in an appropriate form for comparison, so
as to make it suitable for comparison, we have to apply some transformations/changes
or filtering to the source code [21].

Token-based Techniques. In this technique, the whole source code is changed
to sequences of tokens using reasonable parser or various transformations. Looking
at the whole, text/strings can be expensive, which gets improved in the token-based
technique since it changes the whole source code into tokens. It makes it robust and
simple for comparison. After tokenization, similar token-subsequences are identified
by using various algorithms. These similar token-subsequences correspond to clone
pairs or clone classes.

Tree-based Techniques. In this technique, the source code is converted into a tree-
like structure where nodes represent to program entities (such as code fragments,
methods, etc.) and edges represent connections among program entities. During
detection, a similar sub-tree is looked into the whole tree with some suitable tree-
searching algorithms. Postprocessing is applied to return the clone pairs or clone
classes on the detected similar sub-trees [3].

Program Dependency Graph-based Techniques. In this approach, semantic
information is represented in the forms of data flow and control flow among the
components of the software system. For detecting code clones, appropriate sub-
graph matching algorithms are used and isomorphic diagrams are searched [2]. It
has several benefits in terms of any statements addition, deletion, or re-ordering.

Metrics-based Techniques. In this technique, different metrics such as lines of
codes, numbers of edges/vertices in the control flow graph representation, cyclomatic
complexity, etc., are calculated for the program entity (a unit of comparison used for
clone detection). At that point, program entities having similar metrics are returned
as clone pairs/classes.



356 U. Singh et al.

5.3 Discussion

Collectively, we analyze different clone detection techniques with respect to their
distinguishing properties.

During transformation, string-based approaches remove whitespaces and
comments (and sometimes, it uses normalizations), token-based approaches trans-
form source code to tokens, tree-based approaches parse the source code to AST,
PDG-based approaches convert the code to a PDG, and metric-based approach gener-
ates metrics values. In code representation, string-based approaches generate filtered
or normalized source code, token-based approaches generate a sequence of tokens,
tree-based approaches generate abstract syntax trees of the program dependent on
its structure and the code test, PDG-based approaches generate a set of PDGs for the
procedure of program and metrics-based generate set of metrics values [20]. During
comparison granularity, string-based approaches compare lines or tokens of line,
token-based approaches compare only tokens, tree-based approaches compare tree
node, PDG-based approaches compare PDG node, and metrics-based approaches
compare metrics values use for each method/block.

Text-based techniques are lightweight and can distinguish accurate clones with
high recall. Token-based techniques are quick in detecting a huge number of clones
with high recall yet flopped precision. Parser-based methods are commendable in
detecting syntactic clones with high precision. Regardless, they give low recall
but the detected candidates can be used by the developers in refactoring for the
clone management [3]. Metric-based methods are extremely efficient in detecting
both syntactic and semantic clones. PDG-based methods can discover progressively
semantic clones. These restrictions in existing strategies give a way to examine
mixture or combination of the detection techniques so as to defeat them [20].

6 Code Clone Evolution

During the evolution of software systems, designers regularly roll out certain
improvements in existing code and use them directly. So, if a model/tool can recog-
nize all such code parts, at that point, it will be very useful in the maintenance process.
Since a large software system is being followed for a decade, several versions have
been launched over time. Different analysts have worked out to distinguish how the
clones evolve in various versions of a software system.

Machine learning models such as autoregressive integrated moving average model
(ARIMA), back propagation neural network, and multi-objective genetic algorithm
neural networks (MOGA-NN) have been applied to find the advancement of code
clones across different versions of a software system [22]. Aside from the machine
learning models, there are different strategies pursued in the past to predict clone
evolution [23, 24, 25].



27 A Study of Code Clone Detection Techniques in Software Systems 357

Kim et al. [23] used code snippets’ text and locations to analyze clone evolution.
Code text shows an internal description of the code which a clone detector uses
for comparison purpose. The code location is utilized to follow the code snippets
across all versions of software systems. To inspect how much the content of code
snippets has changed over the variants, they have utilized a text similarity functions
that compute the textual similarity between the writings of code snippets across the
versions. Thummalapenta et al. [24] recognized all clone classes in a single version,
and then they discovered all the code clones groups that change across all versions
of a software system.

A methodology that uses information from a unique AST to find clone evolution
was proposed by Bakota et al. [25]. Before matching code fragments across the
versions of a software system, they first eliminated all possible matches of code
fragments whose AST sub-tree representations have different types of the root node.
For each remaining pair of the code fragments, they calculated a similarity metric
that is an aggregation of five weighted metric values.

7 Conclusions and Future Scope

This paper puts a light on all the types of semantic and syntactic clones and various
clone detection techniques for detecting the clones. There are a lot of factors that
influence software development processes such as changes in technologies, certain
requirements changes, and strain to complete the work in time-limits force the
designers to go for open non-appreciable development practices. Such practices may
lead to the introduction of clones in software systems. Clones have a serious impact
on software systems; they can influence the product quality, maintenance cost, and
can likewise influence product development. Their detection can help in decreasing
maintenance costs, improving project comprehension, and controlling code modifi-
cations. Since there are various individual clone detection techniques with certain
advantages and disadvantages in their calculation, another way for improving this
calculation is by combining different clone detection techniques. It produces an
outcome with higher precision and recall. This area has still a great deal of future
scope for specialists to take a shot at code clone family, examining potential clones
from the actually detected clones, recognizing type 4 (semantic) clones with more
precision and accuracy, refactoring of clones, and breaking down the significance
of clone detection in maintenance which is the most expensive phase of software
development life cycle.

Acknowledgements This work has been supported by a research grant from the Science and
Engineering Research Board (SERB), Department of Science and Technology, Government of
India under the Early Career Research Award Scheme.



358

U. Singh et al.

References

12.

13.

14.

15.

16.

17.

18.

19.

. Nurmuliani N, Zowghi D, Powell S (2004) Analysis of requirements volatility during software

development life cycle. In: 2004 Australian software engineering conference. IEEE, pp 28-37.
https://doi.org/10.1109/ASWEC.2004.1290455

. Roy CK, Cordy JR (2007) A survey on software clone detection research, vol 541, issue no.

115. Technical Report 541, Queen’s University at Kingston, pp 64—68

. Rattan D, Bhatia R, Singh M (2013) Software clone detection: a systematic review. Inf Softw

Technol 55(7):1165-1199

. Kodhai E, Kanmani S (2014) Method-level code clone detection through LWH (Light Weight

Hybrid) approach. J Softw Eng Res Dev 2(1):1-29. https://doi.org/10.1186/s40411-014-0012-8

. Tsantalis N, Krishnan GP (2013) Refactoring clones: a new perspective. In: 7th international

workshop on software clones. IEEE, pp 12—-13. https://doi.org/10.1109/IWSC.2013.6613035

. Kamiya T, Kusumoto S, Inoue K (2002) CCFinder: a multilinguistic token-based code clone

detection system for large scale source code. IEEE Trans Softw Eng 28(7):654—670. https://
doi.org/10.1109/TSE.2002.1019480

. LiZ,Lu S, Myagmar S, Zhou Y (2006) CP-Miner: finding copy-paste and related bugs in large-

scale software code. IEEE Trans Softw Eng 32(3):176-192. https://doi.org/10.1109/TSE.200
6.28

. Lingxiao J, Misherghi G, Zhendong S, Glondu S (2007) DECKARD: scalable and accurate

tree-based detection of code clones. In: 29th international conference on software engineering
(ICSE), pp 96-105. https://doi.org/10.1109/ICSE.2007.30

. Roy CK, Cordy JR (2009) Near-miss function clones in open source software: an empirical

study. J Softw Maintenance Evolu Res Pract 22(3):165-189. https://doi.org/10.1002/smr.416

. Sajnani H, Saini V, Svajlenko J, Roy CK, Lopes CV (2016) SourcererCC: scaling code clone

detection to big-code. In: Proceedings of the 38th international conference on software engi-
neering. ACM Press, New York, New York, USA, pp 1157-1168. https://doi.org/10.1145/288
4781.2884877

. Li L, Feng H, Zhuang W, Meng N, Ryder B (2017) CCLearner: a deep learning-based clone

detection approach. In: 2017 IEEE international conference on software maintenance and
evolution (ICSME). IEEE, pp 249-260. https://doi.org/10.1109/ICSME.2017.46

Yang Y, Ren Z, Chen X, Jiang H (2018) Structural function based code clone detection using
a new hybrid technique. In: 42nd Annual computer software and applications conference, vol
1. IEEE, pp 286-291. https://doi.org/10.1109/COMPSAC.2018.00045

Wang P, Svajlenko J, Wu Y, Xu Y, Roy CK (2018) CCAligner. In: Proceedings of the 40th
international conference on software engineering. ACM Press, New York, New York, USA, pp
1066-1077. https://doi.org/10.1145/3180155.3180179

Luan S, Yang D, Barnaby C, Sen K, Chandra S (2019) Aroma: code recommendation via
structural code search. Proc ACM Program Lang 3:1-28. https://doi.org/10.1145/3360578
Singh MK, Kumar K (2020) Scalable and accurate detection of function clones in software
using multithreading. In: Jarzabek S, Poniszewska-Marafida A, Madeyski L (eds) Integrating
research and practice in software engineering. Springer International Publishing, Cham, pp
31-41. https://doi.org/10.1007/978-3-030-26574-8_3

MayrandJ, Leblanc C, Merlo E (1996) Experiment on the automatic detection of function clones
in a software system using metrics. In: International conference on software maintenance, vol
96. IEEE, pp 244-253. https://doi.org/10.1109/ICSM.1996.565012

Basit HA, Jarzabek S (2009) A data mining approach for detecting higher-level clones in
software. IEEE Trans Softw Eng 35(4):497-514. https://doi.org/10.1109/tse.2009.16

Marcus A, Maletic JI (2001) Identification of high-level concept clones in source code. In:
Proceedings of 16th annual international conference on automated software engineering. IEEE,
pp 107-114. https://doi.org/10.1109/ASE.2001.989796

Kapser CJ, Godfrey MW (2006) Supporting the analysis of clones in software systems. J Softw
Maintenance Evol Res Pract 18(2):61-82. https://doi.org/10.1002/smr.327


https://doi.org/10.1109/ASWEC.2004.1290455
https://doi.org/10.1186/s40411-014-0012-8
https://doi.org/10.1109/IWSC.2013.6613035
https://doi.org/10.1109/TSE.2002.1019480
https://doi.org/10.1109/TSE.2006.28
https://doi.org/10.1109/ICSE.2007.30
https://doi.org/10.1002/smr.416
https://doi.org/10.1145/2884781.2884877
https://doi.org/10.1109/ICSME.2017.46
https://doi.org/10.1109/COMPSAC.2018.00045
https://doi.org/10.1145/3180155.3180179
https://doi.org/10.1145/3360578
https://doi.org/10.1007/978-3-030-26574-8_3
https://doi.org/10.1109/ICSM.1996.565012
https://doi.org/10.1109/tse.2009.16
https://doi.org/10.1109/ASE.2001.989796
https://doi.org/10.1002/smr.327

27

20.

21.

22.

23.

24.

25.

A Study of Code Clone Detection Techniques in Software Systems 359

Bellon S, Koschke R, Antoniol G, Krinke J, Merlo E (2007) Comparison and evaluation of
clone detection tools. IEEE Trans Softw Eng 33(9):577-591. https://doi.org/10.1109/TSE.
2007.70725

Koschke R (2007) Survey of research on software clones, Internat. Begegnungs-und
Forschungszentrum fiir Informatik

Pati J, Kumar B, Manjhi D, Shukla KK (2017) A comparison among ARIMA, BP-NN, and
Moga-NN for software clone evolution prediction. IEEE Access 5:11841-11851. https://doi.
org/10.1109/ACCESS.2017.2707539

Kim M, Sazawal V, Notkin D (2005) An empirical study of code clone genealogies. In: European
software engineering conference held jointly with 13th ACM SIGSOFT international sympo-
sium on Foundations of software engineering (ESEC/FSE-13). ACM, pp 187-196. https://doi.
org/10.1145/1081706.1081737

Thummalapenta S, Cerulo L, Aversano L, Di Penta M (2010) An empirical study on the
maintenance of source code clones. Empirical Softw Eng 15(1):1-34. https://doi.org/10.1007/
$10664-009-9108-x

Bakota T, Ferenc R, Gyiméthy T (2007) Clone smells in software evolution. In: IEEE interna-
tional conference on software maintenance (ICSM). IEEE, pp 24-33. https://doi.org/10.1109/
ICSM.2007.4362615


https://doi.org/10.1109/TSE.2007.70725
https://doi.org/10.1109/ACCESS.2017.2707539
https://doi.org/10.1145/1081706.1081737
https://doi.org/10.1007/s10664-009-9108-x
https://doi.org/10.1109/ICSM.2007.4362615

	27 A Study of Code Clone Detection Techniques in Software Systems
	1 Introduction
	2 Clone Terminologies
	2.1 Clone Relation Terminologies
	2.2 Types of Clones

	3 Literature Survey
	4 The Rationale for Code Duplication
	4.1 Advantages and Disadvantages of Clones

	5 Clone Detection Process and Techniques
	5.1 Clone Detection Process
	5.2 Clone Detection Techniques
	5.3 Discussion

	6 Code Clone Evolution
	7 Conclusions and Future Scope
	References




