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Preface

This book presents current advances in the application of bioremediation techniques
that could be utilized for the rejuvenation of technogenic pressures and negative
environmental consequences of anthropogenic activities. This book also provides
suitable approaches through bioremediation for evaluation, monitoring, assessment,
modeling risks, and consequences available in megapolises and presents successful
solutions to numerous environmental challenges. This book presents state-of-the-art
information on the application of bioremediation of diverse environments such as
run-off purification, soil polluted with heavy metals, waste management, and reju-
venation of polluted water and soil. The quest for sustainable, safer, and eco-friendly
alternatives coupled with current advances in nanotechnology, biotechnology, arti-
ficial intelligence and internet of things, and soft systems such as biodegradation
plants that utilize microbial agents under controlled conditions has become a more
prospective alternative compared to customary channels. This book also adopts a
swift narrative and analytical approach in articulating the critical and recent
advances in the exploitation of artificial intelligence and internet of things technol-
ogies in the design, deployment, and management of waste biodegradation plants.
This book was written by experts from multidisciplinary discipline and will be
valuable for graduate and postgraduate students, teachers, academicians from envi-
ronmental science, microbiology, chemistry, and biochemistry, soil scientists, phys-
iologists, physicists, computer scientists, and stakeholders working in urban
management. Therefore, for bioremediation to be effective for successful removal
of contaminants in the atmosphere, soil as well as water bodies, researchers,
policymakers, and governments need to intensify more effort towards the identifi-
cation of the cause, dissemination of necessary information, and provision of
necessary enlightenment and education of people on the merits of bioremediation
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in ensuring environmental sustainability, most especially to ensure the maintenance
of a cleaner environment and the safety of the ever increasing population.

Iyamho, Auchi, Nigeria Charles Oluwaseun Adetunji
Anand, Gujarat, India Deepak G. Panpatte
Anand, Gujarat, India Yogeshvari K. Jhala
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Introduction

It has been observed that there is a daily increase in the world population. Moreover,
this number will increase drastically to an astronomical figure in the year 2050. The
higher increase in the population also constitutes a higher level of anthropogenic
activities recorded globally. These anthropogenic activities have led to a higher level
of dilapidation of the ecosystem throughout the world, thereby making the environ-
ment unbearable for adequate sustainability and survival of native biological forms
as well as led to a reduction in the level of the natural resources that is still available.
Furthermore, the issue of environmental pollution has become a global concern over
the years which affects the quality of life coupled with the uncontrolled release of
contaminants into the water bodies and soil. These challenges have become aggra-
vated also through widespread industrialization; inappropriate agricultural tech-
niques which involve accidental discharge and excessive application of pesticides
and heavy metals into the water bodies and lands have contributed to the higher level
of pollution in the ecosystem on the earth. This has led to inappropriate utilization of
the scarce natural resources, loss of biodiversity, enhancement in barren fields, and
challenges of high level of pollution in most water bodies which have led to scarcity
of potable water and enormous economic damages which are very complex to even
estimate.

It has been discovered that the rate at which synthetic substances are generated
day after day increases xenobiotic and recalcitrant pollutants. Most of these hazard-
ous chemicals liberated into the environment have been estimated at 10 million tons
worldwide. Typical examples of such hazardous chemicals are polychlorinated
biphenyls, pesticides, polycyclic aromatic hydrocarbons, total hydrocarbons, and
heavy metals which have led to a high level of contamination in water and soil. Most
of these contaminants have been observed to include hazards to the environment and
health impairments. Heavy metal pollution has been observed as a typical example
of contaminants that have a detrimental effect on human beings and portend the
potential to disrupt ecosystem. There are several processes that have been recorded
to lead to a high level of heavy metal in the environment through several activities
from lead-based paints, leather industries, refineries, vehicle exhausts, metal
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processing units, pharmaceutical chemicals, waste incineration, agrochemicals, fos-
sil fuel burning, electronic wastes, nuclear power plants, and plastics. The high level
of this heavy metal in the environment has led to a high level of contamination in the
environment, which has affected the level of water and soil, making them unfit for
usage as well as causing numerous adverse effects on the ecosystem.

The recent advances in agriculture have led to tremendous green revolution over
the years, which have led to an increase in agricultural productivities with numerous
adverse effects on the environment due to effects of pesticides. This has resulted in a
high level of pesticide residues in food, water bodies, and soil as well as affects the
food chain. This has resulted in nontarget effect of numerous beneficial microor-
ganisms and detrimental effect on soil carbon, soil nutrient, and soil enzymes. Also,
this has led to a high number of mortality in animals, birds, and food poisoning in
human beings.

Furthermore, the incidence of oil spillage has led to a high level of pollution of
several water bodies, which wreaked havoc most especially in the marine ecosystem
leading to a high level of mortality of fauna and flora as well as a decrease of species,
most especially the endangered ones, and a decrease in the population of beneficial
microorganisms. Also, the presence of oil spillage has resulted in the development of
layers leading to a decrease in oxygen level and liberation of harmful pollutants,
making the mainly available agricultural soil non-fertile.

Moreover, the adventure of unstable climate changes has led to constant enhance-
ment in the release of greenhouse gases, which has led to deprivation of ecosystems
that might be linked to an increase in droughts, floods, and extreme temperatures.
Moreover, this has also led to the incorporation of pollutants leading to salinization
of land and higher rate of desertification which has led to a high level of agricultural
productivity as well as reduction in the level of available biological resources and
destruction of significant biodiversity available in the ecosystem. Therefore, since
there is an increase in the human population, there is a need to search for more
resources and the preservation of numerous natural resources. Hence, there is an
urgent need to search for techniques that could be utilized for the maintenance of a
cleaner environment, most especially the removal of toxic contaminants from the
ecosystem, improvement of saline soil, reclamation of waste and marginal lands as
well as rejuvenation of heavily polluted environment such as soil, ocean, and
polluted water bodies.

Over the years, numerous unadventurous techniques such as thermal, physical,
and chemical process have been utilized for cleaning and rejuvenation of the
ecosystems. There are numerous demerits that are related to these processes,
which lead to exorbitant economic implications involved in the treatment, generation
of toxic intermediates, transport of polluted water/soil for treatment, and ineffective
revitalization of natural flora and fauna. Therefore, the application of bioremediation
and biodegradation approaches entails biological systems such as microorganisms
and metabolites, and the purified compounds derived from these beneficial micro-
organisms could be applied for effective rejuvenation of the heavily polluted envi-
ronment. This might be linked to the fact that they are cost-effective, biocompatible,
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sustainable, ecofriendly, and highly capable of reducing the level of contaminants in
the environment.

Moreover, the application of genetic engineering has been identified to play a
crucial function in the bioremediation of heavily polluted environment. This has led
to enhancement in enzyme features and the cell membrane transportation, which
increase the spectral degradation of contaminants. The application of
pyrosequencing, a next-generation molecular approach, has been identified to play
a functional role in numerous studies that involve pollutant-microbe interactions.
This technique also stimulates the environmental reaction of microorganisms to
pollutants, enhancement in the biodegradability potential of fungal degrading
genes in soil from various diversities, and microbiome resistance against contami-
nants especially in heavily polluted environments. The application of
exopolysaccharides, biosurfactant, and biofilm has been documented. Moreover,
numerous biotechnological techniques such as microbial desalination cells,
biofiltration, microbial fuel cells, bioelectrical wells, and microbial electrolysis
cells have been documented. The application of recent advances in biotechnological
techniques such as fluxomics, metagenomics, bioinformatics, metabolomics, and
genomics has been utilized for the identification of genes that play a crucial role in
the bioremediation of heavily contaminated environment. The application of
bioaugmentation for the bioremediation of heavily polluted environment using
beneficial microorganisms was also documented. Therefore, this book provides
several biotechnological techniques that could lead to a high level of sustainability;
maintenance of ecosystem and the removal of numerous anthropogenic activities
could lead to the provision of a healthy planet that supports environmental sustain-
ability without any adverse effect on the ever increasing population.
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Chapter 1
Strain Improvement and Mass Production
of Beneficial Microorganisms for Their
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Abstract Microorganisms are ubiquitous and are also the most abundant in nature.
They have been of immense benefits in the spheres of agriculture, food, and the
environment; it is thus necessary that beneficial strains be improved. The methods by
which microbial strain could be improved include the conventional method and the
classical or nonconventional method. Conventional strain improvement techniques
include mutation, protoplast fusion and transduction, conjugation, and transforma-
tion while the nonconventional technique includes genetic engineering, genetic
recombination, rDNA, DNA, and whole-genome shuffling. Some benefits of strain
improvement method like mutation are that unwanted enzymatic activities are
blocked and adverse regulations are eliminated. Protoplast fusion and transduction
combines the beneficial traits of different strains. Improvement of microbial strains
by controlling the gene products of targeted DNA molecules could be achieved
using recombinant DNA technology. The goal of any strain improvement method is
for the overproduction of primary metabolite otherwise needed by the
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microorganism in quantities which would be considered insufficient by the industry
or for industrial purposes.

Keywords Microorganism · Strain improvement · Conventional methods ·
Nonconventional methods · Beneficial · Overproduction · Metabolite · Industrial
purposes

1.1 Introduction

Microbes are the most phylogenetic diverse and abundant group on earth; it com-
prises archaea, bacterial, cyanobacteria, fungi, and viruses (Vitorino and Bessa 2017;
Panizzon et al. 2015; Tsiamis et al. 2014). Consequently, considerations of a
Gnotobiotic Life: a concept of the existence of animals in total isolation from
microorganisms may be unrealistic (Gilbert and Neufeld 2014). There is a long
history of the use of microbes dating before the use of yeast by the Egyptians in
bread making and its exploitation for wine production in China around 5000 BC
(Demain 2014; Vitorino and Bessa 2017). Detailed history on industrial microbiol-
ogy has been outlined in the work of Demain (2014) and Kumar and Chordia (2017).

The discovery of the DNA structure and recombinant DNA technology spurred
the industrial use of microbes in biotechnology and has also widened the scope to
which these microbes can be exploited. In human health, microbes are vital in
sustaining health and have played several roles in immunity, metabolism, and drug
interaction (Kumar and Chordia 2017) with the discovery of penicillin in the Second
World War stimulating the discovery of other antibiotics.

Products of microbial metabolism such as enzymes, amino acids, vitamins, and
chemicals are produced in quantities sufficient for each microbe. Exploitation of
such microbes for industrial scale quantity has led to industrial fermentation which
uses living organisms to produce large scale commercial products.

Advances in the microbial metabolism have been of immense benefits in the
spheres of health care, agriculture, food, and the environment; it is thus necessary
that beneficial strains be improved. The core drive of strain improvement is to
enhance the productivity of primary metabolite, to alter metabolite not utilized, to
ameliorate the usage of carbon and nitrogen sources, and to separate by-products of
the cell through the enhancement of the cells morphology (Ashwini et al. 2014). We
discuss the application of microbes in agriculture and environment and further
elucidated processes of improving these microbes for maximal production of desired
products.

2 A. M. Ugbenyen and O. P. Ikhimalo



1.2 Strain Improvement

The goal of any strain improvement method is for the overproduction of primary
metabolite otherwise needed by the microorganism in quantities which would be
considered insufficient by the industry or for industrial purposes. There are two
major means of improving strains, and these include the classical or nonconventional
method and the conventional method. Conventional strain improvement techniques
include mutation, protoplast fusion and transduction, conjugation, and transforma-
tion while the nonconventional techniques include genetic engineering, genetic
recombination, rDNA, DNA, and Whole-genome shuffling.

1.2.1 Conventional Strain Improvement Techniques

1.2.1.1 Mutation

Mutation has a proven track record as an indispensable tool in the field of biotech-
nology; its use in the improvement of strains of microorganism for the production of
antibiotics, enzymes, amino acids, and other primary metabolites is priceless. Thus,
it is widely adopted in industrial fermentation and pharmaceutics. X-ray mutagenesis
of Penicillium chrysogenum X-1612 presaged the incorporation of mutation in
industrial microbiology (Adrio and Demain 2006). Most industrially important
microorganism has been improved at some point with mutation. Moreover, Derkx
et al. (2014) maintained that mutation and other classical techniques are the gener-
ally accepted means by consumers and producers in the food industry due to the tight
regulation of the application of recombinant DNA technology for improving strains.

Mutation is a heritable change in the genetic sequence of an organism; this which
is important in evolution can be used to improve strains and its performance through
a number of ways. In the use of mutation as a strain improvement tool, it must be
followed by the characterization of the variants and by selection to identify the
desired mutant (Magocha et al. 2018). Mutation could be spontaneous or induced in
which case, DNA interacts with DNA-damaging agent called mutagens. Mutagens
are either physical or chemical in nature; physical mutagens include UV rays,
X-rays, and gamma rays. Amongst all UV rays is reported as one of the best of
physical mutagens to improve yield and has been extensively used to achieve
successive mutations in microbes (Ashwini et al. 2014).

Chemical mutagens include ethyl methane sulfonate (EMS), methyl methane
sulfonate (MMS), diethyl sulfate (DES), nitrosoguanidine (NTG, NG, MNNG),
and Nitrous acid. Both forms of mutagens have several effects on the genetic
sequence varying from single base changes, structural distortion, and DNA back-
bone damage (Allison 2007).

Although classical, benefits are that unwanted enzymatic activities are blocked
and adverse regulations are eliminated. Time consuming and strenuous nature,

1 Strain Improvement and Mass Production of Beneficial Microorganisms for Their. . . 3



development of nondesired mutant, and the limited chance to increase the gene pool
are disadvantages of mutation (Fiedurek et al. 2017; Anusree and Nampoothiri
2015).

1.2.1.2 Protoplast Fusion

The term protoplast was first introduced by Hanstein in 1880; a protoplast is a cell
without a cell wall. In protoplast fusion, the cell wall of the two parent of interest is
digested away and the genes or genetic material is combined to generate a fusant or
heterokaryon containing the genome of both parent. Selection of fusants to identify
the variants of interest and its regeneration is paramount to the success of this process
(Bhatia 2015).

This technology is a vital tool in hybrid and cybrid development and genetic
recombination in bacteria and fungi (Patil et al. 2015, Hayat and Christias 2010), as it
combines the beneficial traits of different strains (Hassan 2014; Mohamed and
Haggag 2010). Isolation of organelles and mutant can be achieved effortlessly
with protoplast fusion, ultrastructural studies and the study of membrane is uncom-
plicated; in addition, single-cell cloning can be accomplished without difficulty, it
allows for the combination of genes of unrelated or distantly related species thus
routing out sexual incompatibility (Tapingkae et al. 2012). It is also vital in bio-
chemical analysis if the protoplast has also been used in hormonal study, in exam-
ining the interactions of variously labeled proteins, and in investigating the effect of
stress factors (Faraco et al. 2011).

Isolation of Protoplast

The isolation and culture media used vary with the species and with the tissue from
which the protoplasts were isolated. Protoplast is isolated by two major means:
Mechanical and enzymatic method. In both processes, digestion is done in a
hypertonic solution to plasmolyze the cell for easier removal of the cell wall.
Isolation requirement is specific to species and source tissue or cell of protoplast is
dependent on conditions such as culture media, temperature, and incubation time
(Lakhani and Vakharia 2016). Moreover, in the work by Maren (2016) duration of
exposure to enzyme is said to increase yield.

Mechanical Isolation: This is an obsolete method involving plasmolysis; how-
ever, the yield is very low and of poor quality with a poor culture performance.

Enzymatic Isolation: This is the use of lytic enzymes to digest the cell wall and
can be achieved with the use of commercial enzymes such as cellulase, pectolyase,
macerase, helicase, macrozyme, and rhozyme. This process can be done either
sequentially or enzymatically by disaggregating cells in one step by pectinase before
digesting the cell wall or simultaneously by enzymatically disaggregating with
pectinase and digesting the cell wall at the same time; thus, reducing contamination
and time (Bhatia 2015).

4 A. M. Ugbenyen and O. P. Ikhimalo



Method of Protoplast Fusion

The isolation of protoplast which is spherical in shape is subsequently followed by
fusion (Fig. 1.1). In fusing protoplast, there are two major means which could be
spontaneous or induced methods.

Fig. 1.1 Protoplast fusion with the use of polyethylene glycol (a) and hybrid production through
protoplast fusion (b). (Adapted from Bhatia 2015)

1 Strain Improvement and Mass Production of Beneficial Microorganisms for Their. . . 5



Spontaneous

In this method, in the course of isolation, adjacent connecting protoplast fuse freely
to create multinucleate protoplasts.

Induced Methods

The surface of protoplast are negatively charged and as such repel each other;
therefore, a fusogen is required to overcome this charge barrier and to enhance
fusion. Fusogens are fusion inducing agent and can be classified based on their
nature, they include:

Chemical Fusogens: A number of chemicals have been exploited in the fusion of
protoplast, examples include calcium ion (Ca2+), polyethylene glycol (PEG), and
sodium nitrate (NaNO3). In the use of PEG by Lakhani and Vakharia (2016),
attraction of pairs of protoplast was observed, followed by the breakdown of the
plasma membrane and fusion of protoplasmic content to a single, large, oval or
round shaped structure. Bhatia (2015) stated that a combination of PEG and calcium
ion is the most effective of the chemical fusogens, the molecular weight and
concentration of the PEG used is crucial to the frequency of fusion and yield,
respectively (Lakhani and Vakharia 2016; Patil et al. 2015). Patil et al. (2015)
generated hybrids with the combination of calcium chloride CaCl2 and PEG in the
protoplasts fusion of Aspergillus oryzae and Trichoderma harzianum (Table 1.1).
Chemical fusogens have also been incorporated with mutagenesis in the production
of hybrids as seen in Mohamed and Haggag (2010).

Electric fusogens: Induction of fusion can also be achieved by the application of a
potential difference in the electrode containing protoplast suspension to generate a
dielectrophoretic dipole; thus, a chain arrangement is formed. Thereafter, the appli-
cation of an electric field with high strength for a period of microseconds conse-
quently collapses the membrane leading to fusion (Verma et al. 2008). Electric
fusion is favored over chemical fusion reasons being that it is easy to control, higher
yield of fusants is obtainable, and cell division and regeneration are more efficient
(Tapingkae et al. 2012).

1.2.2 Nonconventional Strain Improvement Techniques

1.2.2.1 Genome Shuffling

Genome shuffling (GS) originates from protoplast fusion, in this strain improvement
method; recurrent protoplast fusion is done from already improved parent strains.
Parent strains are improved majorly via classical method with mutagenesis being the
most used; however, the use of genetic engineering is recorded (Fields et al. 2019).
In this method, more than two parent strains can be used as the parent library in each
generation as opposed to just two parent strains of protoplast fusion (Gong et al.
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Table 1.1 Protoplast fusion method for improved product

Parent strain Fusant Desired products References

T. reesei
Saccharomyces cerevesiae

Tr x Sc Better ethanol production than
individual parent strain

El-Barkly
(2006)

T. reesei
A. niger

Tr x An High cellulases production
High endo and exoglucanase
production
High β-glucosidase
production

El-Barkly
(2006)

Trichoderma reesei strain
PTr2
Trichoderma reesei strain
SFTr2
Trichoderma reesei strain
SFTr3

PTr2 x SFTr2 or
PTr2 x SFTr3

High CMCase activity and
more than twofold increment
in enzyme activities when
compared with high CMCase
activity with 80% of fusants
and more than twofold incre-
ment in enzyme activities

Prabavarthy
et al. (2006)

Streptomyces griseoflavus Intraspecific
protoplastfusion

Increase production of
desferrioxamine B

Nazari et al.
(2005)

Saccharomyces diastaticus
Saccharomyces uvarum

Sd x Su Produce low carbohydrate
beer of acceptable flavor in
comparison with parent strain

Janderova
et al. (1990)

Schwanniomyces
occidentalis ATCC 48086
Saccharomyces diaastiacus
ATCC13007 and Saccharo-
myces cerevisiae

Intraspecific
protoplast
fusion

Improved the ability to syn-
thesize amylolytic enzymes

Rygielska
(2004)

Nodulisporium sylviforme Intraspecific
protoplast
fusion

Improved the ability to syn-
thesize 4 enzymes
lywallzyme, snailase, lyso-
zyme, and cellulase

Zhao et al.
(2004)

Helminthosporium
gramineum subsp.,
Echinchloae (HGE) strain,
HMI and Curvularia lunata
(CL)

Hg x Ex Cl Improved spore productivity
and increased production of
Phytotoxinophiobolin A com-
pared with HMI

Zhang et al.
(2007)

Arthrobacter simplex USA
18
Arthrobacter simplex US
3011

Intraspecific
protoplast
fusion

Cholesterol oxidase activity
with 20–60% higher than that
of parental strains

Liu et al.
(1996)

Claviceps purpurea strains Intraspecific
protoplast
fusion

Tenfold higher alkaloid pro-
duction than parental strains

Brumec
et al. (1993)

Thermotolerant Saccharomy-
ces cerevisiae and
mesophilic, xylose-utilizing
Candida shehatae

Electrofusion Stable and used for lignocel-
lulosic fermentation and gave
an ethanol yield of 0.459 g/g
productivity of 0.67 g/L/h and
fermentation efficiency of
90%

Pasha et al.
(2007)

Bacillus thuringiensis spp.
(H14)

Electrofusion 1.48 time more δ-endotoxins
than wild type

Yari et al.
(2002)

(continued)
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2009); it is a favorable technique for improving the phenotypes of microbes.
Evolution of Strains of microbes with desired phenotypes can develop from this
process due to the recombination or reshuffling of genes (Shi et al. 2018; Biot-
Pelletier and Martin 2014). The genome diversity of population can be enhanced
through this means (Fields et al. 2019). Furthermore, genetic basis of complex
phenotypes of important industrial microbes has been applied in the improvement
of yield of bio-substance as seen in the increase of the nucleoside yield of Cordyceps
kyushuensis (Wang et al. 2017), used to improve the yield of Iturin of Bacillus
amyloliquefaciens with a better potential against Saccharomyces cerevisiae that is
tolerant to spent sulfite liquor (SSL) (Shi et al. 2018), used in a population-wide
genomic survey of improved strains of Saccharomyces cerevisiae that is tolerant to
spent sulfite liquor (SSL). Enhanced expression of the GS also provides a platform
for a quick improvement of secondary metabolite (Shi et al. 2018). An example is
enhanced-antifungal activity of Lactobacillus plantarum that was also achieved
through GS (Wang et al. 2013).

GS has been applied to facilitate the uptake and conversion of substrate by
microbes, thus enhancing the strain tolerance also.

In Zeng et al. (2016), an industrially satisfactory yield of Poly-γ-glutamic acid
(γ-PGA) was achieved through the genome shuffling of Bacillus subtilis to produce
strain B. subtilis F3-178. Metabolic analysis links up this high yield of γ-PGA to
increased intracellular flux and uptake of extracellular glutamate.

Moreover, Adaptation to stress environment has also been achieved through
GS. The fermentation of xylose is native to Scheffersomyces stipitis, its genome
includes genes for the bioconversion of lignocellulose and is also able to ferment
sugars (Balagurunathan et al. 2012).

Hardwood spent sulfite liquor (HSSL) rich in xylose is obtained from the
by-product of acid sulfite pulping. The yeast Scheffersomyces stipitis which can
utilize xylose to form ethanol in fermentation process is however hindered by acetic

Table 1.1 (continued)

Parent strain Fusant Desired products References

Penicillium chrysogenum
and Cephalosporium
acremonium

Fusants Produced a novel lactam
antibiotic

US Patent
7241588

Trichoderma sp. Gen
9 (P1) and Cladosporium
sp. Gen 20 (P2)

Fusants Better hyper-yield of the
enzyme L-asparaginase and L-
glutaminase with powerful
antimicrobial, antioxidant,
and anticancerous activity was
achieved from fusants than
parent strain

El-Gendy
et al. (2017)

Two parental isolates of
Trichoderma

Fusant Exhibited a potent antagonis-
tic action against pathogens of
Macrophomina phaseolina,
Pythium ultimum, and Sclero-
tium rolfsii

Hassan
(2014)
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acid and lignosulfonates toxic to this microbe. S. stipitis C4 obtained through GS is
better adapted to un-detoxified HSSL from eucalyptus than parent strain (Pereira
et al. 2015). The titers of microbial products could hinder the production of such
products, and hence inhibiting production. It is thus of a necessity if GS was applied
in Máté de Gérando et al. (2017) to improve solvent tolerance to isopropanol/
butanol/ethanol (IBE) production in Clostridium beijerinckii DSM 6423.

A technique known as inactivation is of necessity in GS to inactivate the fusion
product, and is usually achieved by the treatment with high temperature or
UV. Selection of improved variant is critical to GS process. Selection process is
one of the bottlenecks of GS and the genetic basis of improvement is yet to be
expounded (Skerker et al. 2009).

1.2.2.2 DNA Recombinant Technology

Improvement of microbial strains by controlling the gene products of targeted DNA
molecules could be achieved using recombinant DNA technology. This technology
has opened up a vast field of knowledge that has positively impact advancement to
human life. Through recombinant DNA technology, crucial gene products (proteins)
needed to solve human health challenges have become available and affordable.
These products are also safe and could be produced in sufficient amount (Khan et al.
2016). In the work of Khan et al. (2016), these technology which includes gene
therapy and gene modifications also find application in the treatment of life-
threatening diseases and in environmental bioremediation. This implies that the
technology could be employed in various disciplinary applications.

According to Berk and Zipursky (2000), recombinant DNA technology involves
the alteration of DNA molecule outside a living cell or organism using important
tools such as restriction enzymes, plasmids, and DNA ligases to obtain enhanced and
desired recombinant molecule which can give desired products when expressed in
living organisms. The technique involves the insertion of DNA fragments from
various sources, having the desired gene sequence into an appropriate vehicle
(plasmid). This gene manipulation is carried out by introducing the recombinant
molecule with either one or more novel genes and regulatory elements or by
reducing or completely blocking the expression of endogenous genes (Bazan-
Peregrino et al. 2013). Restriction endonucleases are used to cleave DNA molecule
to obtain fragments of DNAs, though the restriction enzymes cut only at specific
sites with recognition sequence. It is also used to cleave circular plasmid vector.
DNA ligase enzyme link or join the DNA fragments with the desired characteristic
with the plasmid. The plasmid is introduced into an organism which serves as host
through a process called transformation. The transformed host grows to produce
many copies of the desired DNA fragment, when cultured in a plate. These multiple
copies are referred to as clone which will be selected and harvested for use (Venter
2007) (Table 1.2).
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1.3 Microbial Cell Production for Environmental Benefit

Advances in civilization also came along with perturbations to the environment
some of which over time had negative consequences to human, animal, plant, and
microbial lives. It is important that these perturbations be critically checkmated to
halt their debilitating effect. At the crux of the human society are a number of
environmental issues such as heavy metal pollution of land, air, and water; eutro-
phication; and waste management among others. Microbes may provide some
solutions to some of these environmental dilemmas which if adequately taken care
of would better the human race.

Sustainable manufacturing is hinged on clean technology with minimal negative
impact on the environment. Natural endowment of some microbes which impact on
them the potential in waste management has been studied and new strains are
developed.

Some countries are still dependent on petrochemicals as a major source of fuel;
our world is yet to recover from the debilitating effect of by-products of petrochem-
ical combustion some of which are implicated in acid rain and global warming.
There is also a concern on the finiteness of fossil fuels prompting the need for other
energy alternatives. The generation of fuels from Lignocellulosic biomass can
supply the energy needs of our ever-growing populations thereby reducing the
concomitant dependence and adverse effect of by-products of petrochemical
combustion.

Lignocellulose biomass consist of lignin, cellulose, and hemicellulose; however,
ash, minerals pectin, proteins, and salts may be present (Tsegaye et al. 2019; Cortes-
Tolalpa et al. 2017). Agricultural waste contributes a great deal of lignocellulose
biomass in form of feedstock such as vegetable and wood residues. Pretreatment of

Table 1.2 Applications of recombinant DNA technology

Organism

Recombinant
DNA
technology Desired product References

Microbial
strains

Specific
genetic
engineering

Production of proteases Olempska-Beer et al.
(2006)

Strains of
fungi

Genetic
modification

Reduced toxic materials production Olempska-Beer et al.
(2006)

Microbial
strains

Specific
genetic
engineering

Production of lysozymes used for inhi-
bition of food spoiling microbes

Lian et al. (2012), Bang
et al. (2011), Thallinger
et al. (2013)

Microbial
strains

Specific
genetic
engineering

Production glucose oxidase for inhibi-
tion of biofilm producing bacteria and
food spoiling microbes

Torres et al. (2011)

Microbial
strains

Specific
genetic
engineering

Derivation of recombinant proteins
being used as pharmaceuticals

Ma et al. (2003)
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lignocellulose biomass is done to ease the availability of cellulose and hemicellulose
by the removal of lignin which sometimes constitute up to 20% (wt/wt) or more of
these biomass (Tsegaye et al. 2019; Yang et al. 2009) and can be achieved by several
methods including the use of heat, chemicals, and microbes. The delignification
ability of bacterial species such as Actinomycetes, Nocardia, Streptomyces,
Eubacteria are recognized in literature as well as that of Fungi such as Pleurotus
ostreatus, Trametes versicolor, Lentinula edodes, and Phanerochaete
chrysosporium. Cellulotic fungi and bacteria are the most used in biological
pretreatment; however, due to the poor amount of lignases produced by bacteria,
the breakdown of cellulotic material is limited to low lignin-containing biomass
(De Souza 2013), thus requiring strain development to increase this enzyme.

The process of energy formation from such biomass includes the biolignification,
hydrolysis, and fermentation.

Several fungi and bacterial strain such as Brevibacterium flavum ATCC 13826,
Pseudomonas sp. mutant 1167, and Corynebacterium pseudodiphtheriticumM2128
form products from lignin and lignin-derived aromatics in lignin vasolization. These
products which have application cutting across several industries includes cis, cis-
muconate, Vanillin, Ferulate, Pyridine-2,5-dicarboxylic acid, Pyruvate, Lactate,
Succinate, PHA, and Lipid (Becker and Wittmann 2019). PHA are used to produce
biodegradable plastic, vanillin is used in the food industries.

Every human has a right to potable water but this is not the case in several
nations; it has been reported that about four billion persons face water scarcity at
least once in a year (Mekonnen and Hoekstra 2016); therefore, it is absolutely
necessary to find ways of checkmating this threat to human existence. Environmen-
tal problems such as eutrophication affect the quality of water in water bodies and
may also cause a shortage of the supply of potable water (Yang et al. 2009). There is
potential for the use of microbial enzymes to treat wastewater. Halophytic bacteria
such as Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense, and
Staphylococcus aureus was used to treat high saline wastewater generated from the
tannery industry (Sivaprakasam et al. 2008).

Single cell protein has created an avenue to reuse nutrients and biogas in
wastewater generated from several industries in the formation of other molecules
of importance (Verstraete and De Vrieze 2017). SCP has been applied to activated
sewage sludge (Shier and Purwono 1994).

In the use of Rhodopseudomonas faecalis PA2 to treat sugar wastewater, sub-
stantial amount of SCP was recovered with the obtained biomass containing all
essential amino acid as well as greater amount of leucine and lysine (Saejung and
Salasook 2018). This can be channeled into commercial feed production where
lysine is limiting (Mukhtar et al. 2017).

Plastic is a synthetic polymer with application in wide range of industries and its
nondegradable nature once celebrated is now a source of concern; however its
biodegradability is continuously being researched to avert its threat which include
taking long time to decompose and the release of toxins in the form of plastic
additives, and plastic (de Paula et al. 2018); concerns have also been raised on
microplastics from plastic disintegration. The microplastics are of size less than
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5 mm and could be produced from disintegration of plastic over time due to
degradation, reaction with the sun’s ultraviolent rays, and oxygen (Dris et al.
2015). Microplastic are ubiquitous in the marine and fresh water and have also
been isolated from fish, sea-salt, air, food, and drink. A number of concerns have
been raised on microplastic and these include contamination of human food and drink.
Microplastics have been isolated from drinking water; however, there is yet result to
confirm the effect on humans. In pisceas, it could lead to pseudo-satiation upon
injection thus causing starvation. Leaching of harmful chemicals into the environment
is also a concern, also they could absorb and distribute harmful organic substances.
Isolation of microplastics from other aquatic animals may be a threat to humans.

These negatives of the use of conventional plastic necessitate an alternative.
There are some reports on the plastic biodegradability of some microbes.
Brevibacillus borstelensis, Trichoderma sp., Clostridium botulinum, and Penicil-
lium roquefort are reported to play a role in the biodegradation process of plastic
waste (Pathak and Navneet 2017).

Plastic biodegradation by microbes may take a long time; thus, researchers looked
on to biodegradable plastic (biopols). Biodegradable plastic provides same service as
synthetic plastic with an added benefit of being able to biodegrade and not adding to
the carbon footprint. Polylactic acid (PLA) and PLB are examples of biodegradable
plastics (Vitorino and Bessa 2017). PLA homopolymer and copolymer was pro-
duced from direct fermentation of engineered Escherichia coli (Jung and Lee 2011).

PHB is a lipoidic inclusion accumulated as a carbon reserve under nutrient
limitation produced from bacteria including Gram positive, Gram negative,
cyanobacteria, and archaea as part of normal physiological process (Gangurde and
Sayyed 2012). Its production is initiated under conditions of low nitrogen.

Bioremediation is the degradation of environmental pollutants by living organ-
isms. Microbial remediation of contaminated land by petrochemicals (Khan 2014)
and oil spills have a negative impact on soil and water health as well as the living
organisms contained in them. Some organisms have potentials in the reclamation of
lands and water bodies affected by oil spills and these include heavy metal contam-
ination of soil and groundwater is prevalent around mining site, effluents of textile,
brewery, and industries (Pan et al. 2018; Emenike et al. 2018). The atomic level of
heavy metals renders decomposition impractical (Pan et al. 2018).

In a study by Basha and Rajaganesh (2014), effluent of textile dye abounding
with cadmium, lead, and zinc was bioremediated with Escherichia coli, Salmonella
typhi, Bacillus licheniformis, and Pseudomonas fluorescence. Results revealed a
reduction of 98.34% of cadmium, 94.83% of lead, and 96.14% from samples.
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1.4 Microbial Solutions for Advances in Sustainable
Agriculture

The focus of the world today is towards sustainable agriculture. The use of improved
microbial strains for agricultural activities encompasses most aspects of agriculture
and plant beneficial microbes. Several amino acids are limiting in the feed industry,
such as lysine, methionine isoleusine, and arginine (Mukhtar et al. 2017).

The use of microbial cell factories (MCF) to produce amino acids, enzymes,
vitamins, and minerals is sustainable, environmentally friendly, and cheap
(Acevedo-Rocha et al. 2019).

Overexploitation of medicinal plants has rendered some of these plants to the
status of endangered and extinct in severe cases, the use MCF has also proved of
immense benefit in the production of plant natural products whose utilization cuts
across several industries (Liu et al. 2017). Exploitation of MCF will preserve these
endangered medicinal plant species.

Investigations by Singh et al. (2017), Rashid et al. (2016), and Vassilev et al.
(2015) raised concerns on the use of chemical fertilizers known to increase crop
yield. These concerns include the acidification of the soil, contamination of ground-
water, eutrophication of water bodies through runoff, and decrease of microbial
diversity. Moreover, other than the concerns stated above, population spikes have
resulted in intensive cultivation of available land and subsequent degradation of such
land through erosion and other anthropological effect, thus declining the productiv-
ity and fertility of the soil.

The plant environment including the root and rhizosphere is colonized by a
variety of microbes including bacteria, algae, and fungi, some of which are beneficial
and are known to promote plant growth and development (Timmusk et al. 2017).
These beneficial microbes known as plant growth-promoting bacteria (PGPB) and
plant growth-promoting rhizobacteria (PGPR) are able to promote the the fertility of
the soil and productivity of the plants directly or indirectly through their biological
activity; in the direct mechanism, PGPB and PGPR either enhances nutrient bio-
availability or provides plant with a beneficial exudate produced by the bacterium
while in the indirect mechanism pathogenic organism of plants and their adverse
metabolite are inhibited (Alori and Babalola 2018). These mechanisms have been
researched on extensively leading to the development of biofertilizers, biocontrol
agents, bioherbicides, and biopesticides, which are inoculated into seeds and soils;
microbial inoculation of seed is a means of introducing microbial biocontrol agent
into the soil (O’Callaghan 2016).

Biofertilizers are formulations of microbes in the active or latent form with the
potential of enhancing the nutrient availability of the soil when applied (Fediala Abd
El-Gleel et al. 2018; Suyal et al. 2017).

Biofertilizers enhances nutrient bioavailability of otherwise scarce nutrient and
are grouped into nitrogen fixers, phosphorus mobilizers, and potassium and iron
mobilizers (Rashid et al. 2016). Rhizosperic microbes especially the arbuscular
mycorrhizal fungi (AMF) also improves the soil structure by forming soil aggregates
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through the production of polysaccharides and other exudates. Inoculum of plant
growth-promoting bacteria are prospective fertilizers (Alori and Babalola 2018).

PBPB are able to produce and regulate the levels of phytohormones. Plant growth
hormones are regulators of plant growth and development and comprise auxin,
gibberellin, cytokinin, and ethylene. Their functions include root initiation, shoot
elongation, and fruit ripening.

PBPB and PBPR could also synthesize plant secondary metabolites such as
alkaloids, flavonoids and phenols and microbial volatile organic substances. Bio-
control agents inclusive of biopesticides, bioherbicide, biofungicide, and
bionematicide are environmentally friendly and biodegradable compared to their
chemical counterpart; in addition, they target specific pest. Examples of microbes
used in this terrain includes thurigenesis which has been applied in developing plant
such as the Bt cotton and the Bt maize, resistant to another is the Trichoderma
species which is resistant to some plant pathogenic fungi. Montesinos (2003)
highlighted a number of bacterial and fungi-based biocontrol agents registered in
some countries; examples are: B. subtilis GB03 used against soil-borne and wilt
caused by fungi; Pseudomonas fluorescens against soil-borne fungi, Verticillium
lecanii against Whitefly; and Trichoderma polysporum and T. harzianum against
soil-borne fungi. The mechanism of action of microbes used as biocontrol agents
includes competitive exclusion through nutrient colonization, antibiosis, production
of antimicrobial substance, induction of resistance and defense mechanism of the
plant host to pathogenic microbes, and degeneration of signal messengers essential
for quorum sensing (Bonaterra et al. 2011).

Seed bio-priming is a method of inoculating PBPR in seeds before sowing. The
livestock industry of the agricultural sector is not left out; the amino acid lysine,
methionine, and threonine are limiting factors in feed (Mukhtar et al. 2017), and
microbial fermentation for the production of this amino acid is favored over chem-
ical synthesis.

1.5 Conclusion

This chapter presents various methods of improving microbial strain for the maximal
production of their metabolite which is of great benefit in agricultural and environ-
mental sectors. Conventional and nonconventional methods of strain improvement
have resulted in several benefits in various industries. Mutation and protoplast fusion
were discussed in detail as a conventional method of improving microbial strain to
optimize the production of the desired product of the microbial cell factory. Genome
shuffling and DNA recombinant techniques were also discussed as nonconventional
means of microbial strain improvement. The goal of any strain improvement method
is for the overproduction of primary metabolite otherwise needed by the microor-
ganism in quantities which would be considered insufficient by the industry or for
industrial purposes.
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Abstract The whole universe is currently under a greater pressure in order to meet
the world’s growing demands on food security and sustainable environment, agri-
cultural production must double in terms of food production by the year 2050. To
achieve these objectives, there must be a deliberate attempt by all the necessary
stakeholders to harness every alternative method available that could be utilized
towards improving the agro science sector while preserving environmental health.
Recently, there has been serious attention focusing on the interaction between
beneficial microorganism and plant such as acquisition and uptake of essential
nutrients, plant growth and development, pathogenic control and improved soil
microenvironment and structure in order to boost agro science sector. Many bene-
ficial microorganisms are being utilized across the globe such as Bacillus spp.,
Pseudomonas spp., Rhizobia spp., Streptomyces spp., Azospirillum spp., Mycorrhi-
zae spp., and Trichoderma spp. The utilization of molecular biology techniques will
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help to unravel the physiological and biochemical importance of beneficial micro-
organisms in agro science sector and also the possible advances in food
biotechnology.

Keywords Beneficial microorganism · Molecular biology · Environmental health ·
Food biotechnology · Agro science

2.1 Introduction

The utilization of chemical fertilizers have witnessed a huge negative impact on the
soil and agro products due to widespread production, circulation, utilization by
farmers and government policies through subsidy and importations most especially
across the world and agrochemical industries. Recently, due to the detrimental
effects of these chemical fertilizers on the soil and agro produce, there is a need to
search for a sustainable and a more nontoxic, eco-friendly, and cost-effective
alternative biofertilizers to reduce the burden of chemical fertilizers derived from
fossil fuel (Mazid and Khan 2014).

Biofertilizers are derived from beneficial microorganisms capable of generating
biomolecules that can be converted to various products for the benefit of the
environment and agro science sector. Even though much attention has not been
given to these bioproducts, due to the dearth of information, relevant stakeholders
can make much economic value from it if properly harnessed. Biofertilizers have the
ability to make nutrients available for plants, enhance soil physiology and integrity,
and of course protect the environment due to reduced toxicity level (Schulz et al.
2013). The production and utilization of a robust combination of agrochemical
products with biofertilizers is gaining significant attention because of the potential
of sustainability of environment and agricultural development through innovative
research, public sensitization, and stakeholder’s intervention (Jacoby et al. 2017).

Mosttafiz et al. (2012) revealed that through molecular biology techniques and
biotechnology, quite a number of microbial biodiversity have not been discovered or
exploited for economic value. The author also showed that microbial biodiversity
represents a significant aspect of global biological diversity with a large portion of
beneficial microorganisms capable of synthesizing different biomolecules for com-
mercial gain. To develop new modern bioproducts from beneficial microorganisms
careful selection of appropriate microbes and techniques must be carried out for
environmental health and agricultural sustainability (Bravo et al. 2011). Different
agricultural challenges such as disease control, water contamination, soil physiology
and maintenance, crop yield, and quality together with environmental concerns such
as waste recycling can be solved by utilizing appropriate microbial techniques
(Classen et al. 2015). In the twenty-first century, global problems such as diseases,
climate change, and food insecurity can be managed by employing modern
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development such as nanotechnology and electronics in combination with beneficial
microbes (Bhattacharyya et al. 2016). These developments will ensure advancement
in agricultural sustainability and environmental health.

Therefore, this chapter intends to provide a detailed information on the utilization
of beneficial microorganisms for sustainable agricultural and environmental health.
The various types of biochemicals that could be derived from beneficial microor-
ganisms were also provided in detail. The application of these diverse biochemical in
agroindustry and some other relevant sectors were provided in detail.

2.2 Biochemical Role of Beneficial Microorganisms

Plants and microorganisms cohabit together in their natural environment and form a
rich ecosystem with diverse potentials in the soil, sea, and environments and play a
significant role in mineralization, pathogenic control, and improved performance.
Though there are still knowledge gaps to cover and several biomolecules to be
exploited, in recent time, significant progress has been made in the functional
dynamics and compositions of rhizospheric microbiomes as a potential replacement
for artificial agrochemical inputs (Barea 2015). In the rhizosphere niche, microbiome
structures are shaped and adapted to thrive through interactions with plants using a
different alternative mechanism which are now being uncovered. Therefore, this
chapter will show the interaction of root-based microbes and plant interaction
enhancing nutritional status, mineralization, and recent knowledge adapted to
improve our understanding.

The application of biotechnology in the area of agricultural and environmental
sustainability is enormous and it is a new fast-developing filed in biological and
medical sciences. Recently, there has been renewed interest on the use of
bioflavonoids, biomolecules, and polyphenols from medicinal plants due to their
widespread biological and pharmacological applications and benefit to health. Var-
ious functional and chemical evaluations like number of hydroxyl groups, configu-
ration, and functional groups are ongoing to appropriately elucidate the potential
metabolism, biological activity, and bioavailability of flavonoids linked with dietary
supplements including vegetables and fruits (Drogue et al. 2013). Many
bioflavonoids are utilized for various health issues such as in the management and
treatment of cancer, inflammation, microbial infections, and cardiometabolic and
endocrine disorders. Through the use of beneficial microorganisms interacting with
plant system, diverse bio flavonoids have been generated from plants to combat or
fight against pathogens, stress, and function as a growth modulator (Köhl et al.
2019).

Haile and Kang (2019) demonstrated that coffee is one of the most valued cash
crops across the globe utilized by pharmaceutical and food biotechnology industries
to produce different products. Different microbes capable of producing enzymes
used in fermentation processes are employed in the production of food and bever-
ages by food industries. Majorly in food industries during fermentation processes,
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meticulous attention is always given to such beneficial microbes with certain unique
properties like biodegradation, suppression of pathogenic growth, mucilage ten-
dency, tolerance to stress to enhance adequate yield, taste, aroma, and quality
(Haile and Kang 2019). The utilization of beneficial microorganisms has contributed
significantly to the progress and advancement of food industries most especially by
increasing the neutraceutical attributes and improve the qualities of the food prod-
ucts such as taste, odors, and aroma.

Gupta et al. (2016) demonstrated that bioresources derived from excreta and cow
dung can be a great potential source of biofuel, hence reducing the impact of fossil
fuel on climate change and environmental pollution. The interaction of beneficial
microorganisms with organic compounds can generate huge source of bioproducts,
novel chemicals constituents, and different metabolites and if open up can serve as a
new source of economy with enormous benefits such as enhancing soil fertility and
nutritional status (Gupta et al. 2016). Today, many industrial sectors are now
benefiting from the use of beneficial microorganisms with cow dung to generate
alternative source of biofuel to increase productivity and reduce environmental
pollution, hence reducing the hazardous effects of fossil fuel on climate change.

In pest management system, recent studies have revealed that to scale the
challenges of using chemical in the fight against pathogens which have developed
a high level of resistance, the use of biopesticides are becoming more efficient. The
important role of beneficial microorganism towards the development of eco-friendly
and sustainable pest management control strategies are being investigated to clarify
the mode of action. Plants and animals are very susceptible to different disease
pathogens that can affect agricultural yield, productivity, and environmental health
(Wiesel et al. 2014). The application of beneficial microorganisms has been identi-
fied as a sustainable alternative solution to a more robust and improved biological
control measures and improved products (Kachhawa 2017). Current practice of
using synthetic chemicals in controlling pest and pathogens have been shown to
be deleterious and hazardous to the environment health and are beginning to have
decreased value. In order to improve plant growth, tolerance to biotic and abiotic
stress, nutrient uptake, the utilization of biofertilizer derived from beneficial micro-
organism has become expedient in agro science for optimal food production and
sustainable industrial sector (Bhardwaj et al. 2014).

Lily and Mary (2014) revealed that the potential role of beneficial microorgan-
isms in the agro science sector and the biochemical importance in crop production
and yield must be fully understood in terms of pathogen control, fertilization,
molecular mechanism of action, side effects, and economic viability of beneficial
microbes. Also Leowa et al. (2018) highlighted the important role of beneficial
microorganisms in organic waste management and treatment. The authors revealed
that extensive utilization of beneficial microorganisms can significantly contribute to
biodegradation and elimination of pathogens. So much popularity has been
witnessed in the use of beneficial microorganisms in waste treatment and manage-
ment. Lignocellulosic components of cellulolytic microorganisms are particularly
important in accelerating the biodegradation of waste through digestion by anaerobic
mechanism (anaerobic digestion, which is described as a method in which microbes
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disintegrate biodegradable constituents without the use of oxygen) and composting
at low-temperature method especially for heavy metal contaminates.

Microbial diversity, the use of probiotics and prebiotics and their important role
in the body has become necessary for scientific study. Information on the beneficial
microorganism and environment on balanced trophic chains, physiological activi-
ties, and conservation of natural habitats remains essential. It is generally known that
beneficial microorganism contributes products capable of synthesizing vitamins and
antimicrobial substances (Sangeetha et al. 2011). Karolina and Gajda (2018)
revealed that soil represent the microenvironment in which the development and
growth of plants take place together with the physiological interaction of beneficial
microflora producing essential resources. Beneficial microflora are majorly respon-
sible for biogenic element circulation, biomass decomposition making nutrient
available to plants, maintenance of soil structure, and biodegradation. The survival
of microorganisms in the soil depends on the moisture, pH, structure, and chemical
nature. The activity of humans over the years has impacted negatively on the
biological and chemical formation of ecosystem. Studies have shown that soil
diversity and bioavailability can change tremendously if unsuitable agrotechnology
is used (Arora and Sahni 2016). Synthetic utilization of various chemicals in agro
science sector have significantly shifted and impacted negatively on the ecosystem.
Girmay (2019) demonstrated that phosphorus is the major macronutrient necessary
for all vital growth and developmental aspect of plants. Studies have revealed that
phosphate solubilizing microbes (PSMs) are microorganisms with the ability to
hydrolyze inorganic and organic degradable phosphorus molecules to soluble phos-
phorus type which can be integrated by plants due to scarcity of phosphorus.

Pagan et al. (2017) showed that the use of glyphosate can significantly improve
microbial biomass in 14 days period of carbon and nitrogen content in about nine
different soil types. These authors also showed that there was a significant increase at
30 days in soil microbial biomass treated with chlorpyrifos and cartap hydrochloride,
which later reduced gradually. Soil earthworms, protozoa, and nematodes are
equally influenced by the use of synthetic pesticides (Arora and Sahni 2016).
Synthetic agro products are known to increase environmental CO2 and pollutants,
alter greenhouse gas emissions, stimulates loss of plant and soil biodiversity thereby
affecting the ecosystems. Beneficial microorganisms are capable of stimulating
organic matter decomposition and gases release playing a critical role in the soil
ecosystem. Intercropping variety of plant species can increase carbon fixation by
plants, and relocate carbon into the soil, via mycorrhizas, consequently modulating
interplant collaborations (Pagan et al. 2017).

Rigorous agro science utilization of synthetic products to stimulate increased
production of food is linked with high rate of greenhouse emission of gases resulting
in climate changes and other environmental hazards. To mitigate these challenges
without compromising yield is to employ the utilization of beneficial microorgan-
isms (Bare 2015). Available studies have shown that soil microflora plays a signif-
icant function in the formation of weeds and invasive plants by linking up with
microorganisms for their growth and development. Weed controlling strategies, such
as the use of tillage and pesticides majorly distort the soil configuration together with
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alterations in the ecosystem. The establishment of new sequencing technologies for
examining soil microbiomes has provided the possibility for deeper analysis. Taking
advantage of the knowledge of beneficial microorganisms will offer the possibility
for new improved bio control approaches against weeds based on soil and plant-
linked microbes (Friederike et al. 2016).

Beneficial microorganisms’ products are deployed to plants for genetic regulation
of pathogens by acting through a range of pathways. It is generally known that the
method of regulation may be through indirect interaction with plants via prompting
resistance and preparing plants against pathogens without contact. Others may
function through competitive nutrient deprivation or regulating developmental con-
ditions in the pathogen. Drugs like antagonists function via antibiosis and hyperpar-
asitism directly block the growth of the pathogen. These connections are modulated
by series of metabolic processes and physiological signaling, often utilizing diverse
mechanisms such as signaling molecules, metabolites, and enzymes produced in situ
at a low amount during collaboration (Treichel et al. 2010). In recent years, studies
have shown that biological method of controlling pathogens has become a very
useful alternative which lowers the burden of climate change and soil ecological
degradation commonly found with the use of synthetic chemicals. The mechanism
by which these beneficial microflora elicit their effect could be through direct
inhibition of soil-borne diseases or indirect effect on plant-controlled resistance
reaction. The general mode of action is through competitive nutritional availability,
parasitism or space, antibiosis, membrane degradation through hydrolyzing factors,
and induction of resistance to diseases (Singh 2014).

Beneficial microorganisms like plant growth-promoting rhizobacteria (PGPR)
perform an important function in the agro science sector. This is because PGPR is
environmentally friendly and capable of aiding plant development via indirect or
direct processes such as modulating hormonal receptor response, nutritional intake,
disease resistance, and nutrient uptake, respectively. The soil nutritional level will
determine the quality and yield of crops and healthy food produced (Itelima et al.
2018). Therefore, soil management strategies should be based on exploiting alter-
native measures to boost the integrity and physiological properties of soil using
beneficial microorganisms as biofertilizers which are known to cause less threat to
health and the environment. Some of the recently found microorganisms commonly
used as biofertilizers include cyanobacteria, growth-promoting rhizobacteria, potas-
sium and phosphorus solubilizers, endo and ectomycorrhizal fungi, and nitrogen
fixers (Itelima et al. 2018). There are different beneficial microorganisms capable of
promoting soil integrity and environmental health such as photosynthesizing bacte-
ria, actinomycetes, lactic acid bacteria, yeasts, and fermenting fungi (Joshi et al.
2019). Also studies have shown that phosphorus is an important element in the
adenosine triphosphate (ATP) transport system in cells for energy metabolism
(Antouna 2012). Most of the resistance to pathogens and nutritional benefits of
beneficial microorganisms are driven through high energy levels. Therefore, phos-
phorus solubilizers derived from microorganisms offer great benefits in this
approach. Energy is released during these metabolic processes by the plants to
drive the stimulation response in order to maintain the defense reactions.
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Pereira et al. (2008) revealed that transgenic plant cultivated in a commercial
value is the transgenic soybean which is resistant to glyphosate. These authors
studied the influence of endosulfan, glyphosate, and their combinations on the
microbial soil functions in soybean plant. Studies have revealed that endosulfan
utilization alone or in combination with glyphosate can suppress CO2 generation
through beneficial microorganisms in the soil microenvironment. Microbial quotient
plus biomass were reduced when treated using endosulfan alone and in those using
endosulfan combined with glyphosate compared with glyphosate alone or control.

Šantric et al. (2018) showed the role of glyphosate or nicosulfuron herbicides on
microbial function in two soils with diverse chemical and physical properties (sand
and loam). Changes in urease plus dehydrogenase function, with microbial biomass
carbon, were studied. The outcomes obtained by the authors revealed that the role of
glyphosate or nicosulfuron depended on duration of activity, treatment rate, soil
types, and test parameters. They concluded that the utilization of the herbicides
increased the functions of urease plus dehydrogenase. Nicosulfuron had excitatory
effects on microbial biomass carbon in loam, while both herbicides showed negative
effects on the parameter in the sandy soil.

Köhl et al. (2019) revealed that microbial biological control agents (MBCAs) act
in a wide range of mechanisms when used on crops to control pathogens in plants.
Many MBCAs relate with plants through the induction of resistance without direct
influence on the targeted pathogen. Other MBCAs act through competitive nutri-
tional deprivation plus many other mechanisms controlling the developmental
conditions for the pathogen. Hyperparasitism is the mechanism by which antagonists
perform their biocontrol of pathogens and antibiosis directly inhibiting the patho-
gens which are sometimes controlled by a series of metabolic activities in diverse
modes of action. The authors also revealed that many compounds are involved in
such signaling, enzymes and other inhibiting metabolites are generated in situ at a
reduced rate during collaboration. The prospect of microbes to generate compound
in vitro does not essentially relate with their in situ inhibitory action. Presently, the
risks of microbial metabolites implicated in antagonistic mechanism of action are
sometimes assessed comparable to assessments of single-molecule fungicides. The
dynamism of the mechanism of action of antagonists needs a reconsidering of data
requirements for the cataloging of MBCAs.

Nielsen and Winding (2002) revealed that beneficial microbes are an important
aspect of soil physiology and of extreme significance for soil health used as
indicators of soil integrity. They revealed that the present plus the potential prospect
use of microbes will account as an index of soil integrity and recommended
particular microorganism indices for soil ecosystem parameters demonstrating pol-
icy pertinent endpoints. It was suggested that identification of a particular minimum
data for exact policy pertinent endpoints, plus judiciously establishing standard
values, to advance body of knowledge on biodiversity plus modeling of soil data,
and to apply new indices into soil evaluation programs where applicable.

Haney et al. (2002) revealed that the use of synthetic chemical herbicides in soils
can potentially destroy the integrity and physiological composition of microbial
activity. The amount and incidence of Roundup Ultra (RU; N-(phosphonomethyl)

2 Biochemical Role of Beneficial Microorganisms: An Overview on Recent. . . 27



glycine) utilization have been seen to worsen Roundup-tolerant crops. They studied
the role of Roundup Ultra on soil microbial activity and biomass in diverse range
soils with different fertility levels using isopropylamine salt of glyphosate. This
significantly activates soil microbial activity measured by nitrogen and carbon
mineralization, together with microbial biomass which increased beyond the basal
level in all the verified soil. They discovered that there is a positive relationship
between soil microbial mineralization and the nitrogen and carbon contents of
isopropylamine salt of glyphosate suggesting that RU was the cause of the elevated
microbial activity.

2.3 Recent Development in the Biochemical Role
of Beneficial Microorganisms

2.3.1 Fermentation Processes

Fermentation was traditionally used as a process to preserve perishable foodstuff in
the past until recent novel preservative methods have evolved; therefore, the signif-
icance of fermentation as a preservative method has reduced, and hence today the
major purpose of food fermentation is to produce diverse forms of fermentation
products with different aroma, taste, texture, and flavor. The use of beneficial
microorganism subjected to different fermentation conditions (substrates, microor-
ganisms, fermentation period, temperature) plus biochemical engineering (industrial
fermentation) accomplishments have made it conceivable to produce thousands of
different kinds of dairy products, meat products, vegetable, alcoholic beverages,
bread, vinegar, other food acids and wine together with oils and cosmetics products.

Bourdichon et al. (2011) revealed that fermentation plays diverse functions in
food processing and agro science industries. Some of the important roles are:
maintenance of food via creation of inhibitory metabolites, like lactic acid, formic
acid, acetic acid, and propionic acid which all organic acids, bacteriocins, generally
combined plus decrease of water activity (use of salt or by drying), ethanol,
improved food safety level via antagonizing pathogenic organism plus elimination
of toxic molecules, improved nutritional status, improved sensory quality, and
enlargement of the diet for more diversity. For most impulsive fermentations,
beneficial microorganisms sequence takes place: more often lactic acid bacteria
(LAB) will first control the process, next series of yeasts. Molds will then grow
aerobically that considerably contribute by generating lipolytic and proteolytic
enzymes that extremely impact the texture and flavor of the products, thus limiting
their existence in certain kinds of fermented products. LAB generates antimicrobial
substances and lactic acid that can block the growth of dangerous bacteria together
with lowering the sugar content, hence elongating the shelf life (Treichel et al. 2010).

Vogel et al. (2011) demonstrated that the addition of bacteriocin-generating strain
starter cultures alone or in mixture with certain bacteriocin-resistant strains of
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beneficial microorganisms have become popular in food industries. In the
manufacturing of wine and beer, yeasts and molds generating single-strain starter
cultures are generally used with diverse aroma and taste, and LAB for the generation
of dairy products with elongated shelf life. Also for sourdough, dairy products, wine,
and sausages, multiple starter cultures are often utilized. The application of this
biochemical compounds offers a great improvement in food biotechnology and
environmental health.

2.3.2 Food Additives

Recently, different metabolites from beneficial microorganisms have found its
application and use as food additives. Microbial rennets from various microorgan-
isms due to its proteolytic specificities have now being used for the production of
cheese. Also lactase for lactose-free food or low-lactose is important for lactose-
intolerant individual. Lactase-treated drinks and milk also promotes its sweetness,
hence avoiding the need for adding sugars in the production of flavored drinks. Also
production of yogurt, frozen desserts, and ice cream utilizes lactase to improve
creaminess, scoop, digestibility plus sweetness and to decrease sandiness in the
crystallization of lactose in thick preparations. In the preparation of protein hydro-
lysates, alkaline proteases are utilized to give high nutritional value. Protein hydro-
lysates are utilized in infant food preparations, strengthening of fruit juices plus
drinks, and particular therapeutic dietary products. Pectinases from beneficial
microbes are utilized in fruit juice clarification and extraction. Pectins add to fruit
juice viscosity and turbidity. A combination of pectinases plus amylases is utilized to
clarify fruit juices. β-amylase plus Glucoamylase are utilized for the manufacturing
of low-calorie beer. Transglutaminase is utilized for different purposes like
suppressing allergy in certain foods plus improving flavor, texture, and appearance.
Xylanases are utilized alongside with pectinase plus cellulase for liquefying vege-
tables and fruits. β-D-glucopyranosidase plus α-L-Arabinofuranosidase are employed
in food and drink processing (Sangeetha et al. 2011).

2.4 Production of Metabolites Facilitated Suppression
of Pathogenic Diseases

The determination of aggressive biocontrol action against pathogens plays an
important role in the generation of metabolites such as siderophores with high
attraction for iron preventing pathogenic development, antibiotics like 2,4-diacetyl
phloroglucinol (DAPG), Agrocin 84, and Phenazines, biosurfactants, Organic mol-
ecules, hydrolytic enzymes, and pyocyanin which act as systemic resistance against
pathogens. Another mechanism by which beneficial microorganisms act in
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protecting against foreign pathogens is the generation of free radicals, antioxidant
defense molecules, or proteins plus formation of structural barriers in the induced
plant which is energy dependent (Wiesel et al. 2014). Microbe-associated molecular
patterns (MAMPs) with the ability to induce pathogenic resistance in plants like
bacterial proteins flagellin, glucan, chitin, and xylan are generated by many micro-
organisms like Phytophthora megasperma or Trichoderma viride. Some are antiox-
idant superoxide dismutase, 23 amino acid peptide, pep-13 transglutaminase,
cellulose-binding lectins, sterol-binding elicitins; ergosterol, arachidonic acid;
N-glycosylated yeast peptides, glucan, chitin, peptidoglycans which are membrane
components; and lipooligosaccharides synthesized by oomycetes, gram-negative
bacteria, lipophylic MAMPs, and oligosaccharide MAMPs. Microbial biological
control agents (MBCAs) act as pathogenic control via the induction of priming or
resistance which relies on a complex series of transduction pathway where the
MBCA primarily has bound to the host, then release of particular metabolite or
substrates recognized by particular receptors in plant and subsequently activating
pathways within the plant causing the onset of defense response making the plant
resistance to disease (Köhl et al. 2019). The initial point in this series of events is
dependent on the MBCA, the next part is based on physiological and genetic
composition of the plant. The MBCA activates defense response in the plant via
complex signaling molecules which are low molecular weight constituents or
degraded membrane products which are often generated microorganisms at low
millimolar to subnanomolar concentrations for endocrine response in microorgan-
isms with plants (Mauch-Mani et al. 2017).

2.5 Biofertilizers

Ansari et al. (2013) showed that beneficial microorganisms can generate biomole-
cules or substrates like auxins, ethylene, and gibberellins which function as a plant
growth regulator, though ethylene is responsible for inhibition of growth in dicot
plants. For instance, Rhizobium spp. and Bacillus spp. can produce auxin at different
conditions in the presence of agro-waste as carrier material. Also many plant-linked
microbes can synthesize biomolecules when induced with Paenibacillus polymyxa.
Generally, in the production of biofertilizers, many physiochemical steps are being
utilized to degrade complex molecules into a very simple structure through anaer-
obic digestion. Anaerobic biodigestion can be described as a process of biodegra-
dation of materials or compounds into simpler structures with the use of oxygen. In
the first step, complex organic matter is degraded by cellulolytic microbes to
generate simple molecules like long-chain fatty acids and other constituents. In the
second step, the bioproducts are fermented producing simpler intermediate metab-
olites like acetic acids, pyruvic acids and carbon dioxide, etc. The third step,
methanogens act on the bioproducts, liberating combinations of gases called biogas
and other beneficial metabolites or compounds. There are different types of organic
biofertilizers based on the microbial type or class Phosphate solubilizing biofertilizer
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(PSB), Potassium solubilizing biofertilizer (KSB), Nitrogen-fixing biofertilizers
(NFB), Plant growth-promoting biofertilizer (PGPB), Sulfur oxidizing biofertilizer
(SOB), Potassium mobilizing biofertilizer (KMB), and Phosphate mobilizing
biofertilizers (PMB) (Itelima et al. 2018). Organic acid generation is the major
process by which phosphate solubilizing microbes activates phosphate from spar-
ingly soluble phosphates resulting in a drop in pH.

2.6 Conclusion and Future Recommendation

This chapter has provided a detailed information on the application of information
on the utilization of beneficial microorganisms for sustainable agricultural and
environmental health. The various types of biochemicals that could be derived
from beneficial microorganisms were also provided in detail. The application of
these diverse biochemical in agroindustry and some other relevant sectors were
provided in detail. Moreover, a general overview on the interaction of root-based
microbes and plant interaction enhancing nutritional status, mineralization, and
recent knowledge adapted to improve our understanding were also provided.
There is a need to isolate several beneficial microorganisms using metagenomonic,
next generation sequencing for molecular characterization of these beneficial micro-
organisms. There is also a need to apply cheminformatics, informatics, and
metabolomics to validate an array of biomolecules of interest that could lead to an
increase in agricultural production and high level of enhancement in food produc-
tion. The application of genetic engineering should be encouraged for the effective
improvement of microorganism strains of interest. This will lead to an increase in the
production of numerous products of interest.
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Abstract Biodegradation of toxic organic contaminants has been documented to
involve a large number of bacterial, fungal, and plant microbial enzymes. Biodeg-
radation is a cost-effective biotechnology powered by microbial enzymes. This
chapter intends to provide detailed information on the application of microbial
enzymes in the bioremediation of heavily polluted environment. Detailed informa-
tion on the application of microbial enzymes and their modes of action were also
provided in detail. Various types of microbial enzymes were also provided in detail.
Specific information on high-rate up-flow anaerobic bed reactor and digester waste-
water effluents were also highlighted while the process involved in the degradation
efficiency in soil washing effluence by polycyclic aromatic hydrocarbons were
stated. Techniques involved in the removal of phenanthrene, fluoranthene, and
pyrene in soil washing effluent, the immobilization of specific microorganism and
their enzymes with a cross-linking system when investigated using polyvinyl alco-
hol, sodium alginate, and nano alumina composites.

Keywords Biodegradation · Waste · Environment · Enzyme · Microorganism ·
Immobilization · Bioremediation · Pollutants

3.1 Introduction

Wastes are strongly associated with human activities. Research and experience have
shown that urbanization, industrialization, and agricultural production activities are
key players that promote the generation of wastes (Aliyu and Amadu 2017). Since
man cannot be distanced from these activities it follows that waste management
would continue to be relevant and could not be swept aside by individuals and
governments alike (Oyebode 2018).

Consequent upon such relevance as to maintenance of healthy conducive envi-
ronment, the government of every country owe its citizenry the duty to protect the
environment from pollution, diseases, and other hazards which could potentially
undermine the physical and/or psychological well-being of humans, animals, and the
entire natural ecosystem. Various machineries are often set in motion in the process
with agencies, ministries, departments created and mandated usually through legis-
lations, laws, edicts, bye-laws, etc., to conduct activities necessary to ensure the
realization of such objectives and functions contained in the respective legal pro-
visions (Ayotamuno and Godo 2000; Kalu et al. 2009; Oyeniyi 2011).
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A typical example of such a State is Nigeria, where there are presently over
20 active federal legislations all connected to environmental management especially
the control and regulation of wastes including those with toxic components such as
radioactive and industrial wastes from breweries, mine sites, steel production facto-
ries, etc. Federal ministries such as Environment, Health, Science and Technology,
all have departments and agencies under their respective supervision with mandate
to ensure healthy environment.

Agencies like the National Environmental Standards Regulation and Enforce-
ment Agency (NESREA) in Nigeria comes to mind whenever wastes and environ-
mental protection are in context. While such agencies and legislations are worthy
interventions in their own respect and right, the need for effective techniques and
technologies that could help actualize the laid down goals of such agencies is very
relevant in any public or private environmental management campaign or program
irrespective of the locality, geographical coverage, and jurisdiction.

In recent times, there has been a consistent drift from traditional waste manage-
ment paradigms. The new paradigm shift is hinged on the developments in biotech-
nology, nanotechnology, and artificial intelligence among other rapidly evolving
technologies. Consequent upon these developments, some factors which were hith-
erto not evaluated while designing waste management programs have now become
issues of vital concern. In other words, cost, safety, eco-friendliness, and sustain-
ability have become major factors considered in recent times while developing
policies, guidelines, programs, and proposals on regional and urban waste manage-
ment. The same is true on the design, acquisition, deployment of modern waste
management infrastructure.

Notably, two decades ago, disposal of wastes including toxic wastes usually
employ various methodological approaches which are shown in Fig. 3.1. Each
method adopted depends on the category of waste.

These approaches include: Concentration using collection channels and subse-
quent disposal to remote uninhabited sites including landfills; Incineration;
Recycling, etc.

While each adopted approach has its merit, there had been some attendant side-
effects from such traditional methods that often results in challenging issues. These
side-effects include:

(a) Pollution (Sharma et al. 2013).
(b) Health hazards arising from dumping or burying radioactive wastes in remote

uninhabited places. Such hazards may manifest years after they are even forgot-
ten. Often times they could spike disasters like explosions whose immediate
cause may not be unraveled.

(c) Death of aquatic life: Unfortunately, some legislations do permit industries or
companies with waste disposal license to dump industrial wastes in water bodies
such as flowing rivers, sea, ocean, streams, lakes, etc. This practice is not strange
in many developing countries, unlike Nigeria. While majority of these compa-
nies remain unsupervised (Agagu 2009) owing to the permit they had obtained
via high license fees from the necessary authorities such as NESREA (Nigeria),
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future implications of such wastes on the aquatic ecosystem are not readily
contemplated by anyone. It is widely reported that these unwholesome practices
of uncontrolled release of effluents by companies have remained unabated for
years (Mallak et al. 2016; Gadzama and Ayuba 2016; Emejuru 2015; Guerrero
et al. 2013). The problem is worsened by endemic corruption in many of those
agencies wherein the helmsmen are often settled by corrupt chief executives of
those companies.

(d) Acidic rain: uncontrolled incineration had been an age-long traditional practice
of disposing domestic, agricultural, and industrial wastes. Cities like Lagos and
Port Harcourt among other urban areas in sub-Saharan Africa are notable for
creating dump sites. Wastes are conveyed through large trucks to these sites. It
may be clearly observed that combustion continues in these sites almost
unabated giving rise to atmospheric pollution and resultant acidic rain.

(e) Disease and epidemics (Coppeta et al. 2019).
(f) Increase in mortality rate (Romanelli et al. 2019; Thompson and Anthony 2005).

Consequent to the downsides of customary methods of waste management,
research had been consistently ongoing on safer, healthier, more sustainable, and
eco-friendly alternatives.

Conceptualization along these factors have become vital owing to challenges
posed by climate change in recent times (Ukhurebor et al. 2019; Ukhurebor and Azi
2019; Nwankwo and Ukhurebor 2019; Ukhurebor and Nwankwo 2020; Nwankwo

Fig. 3.1 Traditional waste management methodologies
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et al. 2020a, b, c) and the need to help cleanse, revitalize, and save the environment
from sudden collapse as man’s industrial activities increase. With advances in
nanotechnology, biotechnology, and intelligent systems, a paradigm shift towards
integration of useful microbes in waste management programs and instrumentation
have become a realistic venture and concern.

Microbial applications in environmental remediation and waste management
have remained interesting research domain for over two decades as continuous
searches for effective solutions to the menace inherently caused by waste manage-
ment are ongoing and new methods, techniques, and procedures are continuously
sought after (Shalaby 2011; Abatenh et al. 2017). It is on this note that this chapter is
poised to present recent advances on vital applications of relevant microbial
enzymes in the biodegradation of wastes and hazardous materials. Prior to rendering
a detailed review of some key developments in this domain, identifying the major
occurrences of wastes and possible characterization is very noteworthy. Figure 3.2
shows common sources of wastes including hazardous effluent wastes.

Characterization of wastes have been found of immense relevance in the deter-
mination of biological and/or biotechnological approaches to waste management.

Fig. 3.2 Sources of wastes
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Accordingly, Fig. 3.3 presents the various characteristics of wastes that could be
used in the planning and implementation of appropriate microbiological systems for
waste management.

As may be deduced from Fig. 3.3, one of the vital components of solid and liquid
wastes are the microbes themselves. These microbes include protozoa, algae, fungi,
bacteria, and viruses. Thus, the ubiquity of microbes is an important factor in
strategic and tactical planning of various microbial waste processing infrastructure.

The presence of microbes in many wastes irrespective of the form may also lend
credence to the high probabilities of realizing a successful microbiological system
for waste management such as integrated bioreactor systems. The unique
physiochemical and biological properties of these microbes in addition to the
ubiquity factor stated earlier provide sufficient grounds for embarking on deploy-
ment of appropriate microbial systems for waste management. The effect is that
useful microbes can easily be isolated, reproduced, stored, and utilized under
controlled conditions.

Fig. 3.3 Biophysical and chemical characteristics of wastes
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Several microbial waste management methodologies have been studied and
would be discussed in this chapter. They include:

(a) Biodegradation.
(b) Biostimulation.
(c) Mycoremediation.
(d) Bioaugmentation.
(e) Bioreactor systems.

Each of these microbiological systems of waste processing has its own strengths
and drawbacks. It is believed that hybrid waste processing and control systems could
be designed using a mixture of these microbiological procedures. With advances in
AI, Machine learning, and Analytics, a much more impressive, intelligent, remote-
controlled, rewarding yet cost-effective, sustainable, and eco-friendly waste treat-
ment apparatus could be designed and deployed.

This chapter presents a detailed account on current developments on enhanced
biodegradation of industrial and hazardous wastes.

3.2 Application of Microbial Enzymes
for the Biodegradation of Agricultural and Industrial
Wastes

Agricultural and industrial wastes can either be in solid or liquid form. Normally, we
could categorize these wastes from agriculture and industries into two broad groups,
viz.; biodegradable (recyclable) wastes and nonbiodegradable (nonrecyclable)
wastes (Ivanov 2010; Ansari 2011; Adebayo and Obiekezie 2018).

The biodegradables or recyclable wastes which are also known as “biowastes” are
those wastes produced either via agricultural or industrial activities, which can be
broken down (decomposed) by microbes. Reportedly, they hardly constitute the
foremost sources of effluence to the environment for an elongated period (Adebayo
and Obiekezie 2018). Examples of biowastes are paper materials as well as wastes of
plant and animal sources, such as fecal substance, cadaver, droppings as well as
animal waste products from poultry, cattle, etc. These biodegradable wastes, despite
their ability to undertake degradation without much difficulty by means of microor-
ganisms within little period of time, still have some limitations, such as evolving
belligerent aroma and it also constitutes irritation to the attractive environment when
compared to the nonbiodegradable wastes. They can also institute a decent environ-
ment for the flourishing of pathogenic microbes which can contaminate fresh food
produce as well as bases of fresh water in most municipal without difficulty globally
(Waites et al. 2011; Semerci 2012; Adebayo and Obiekezie 2018).

The nonbiodegradable wastes, on the other hand, are usually not broken down or
degradable by microbes; indicating that the medium require other procedures for the
treatment and disposal of wastes (Waites et al. 2011; Semerci 2012; Adebayo
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and Obiekezie 2018). Examples of such procedures are landfill, incineration, and
recycling. Examples nonbiodegradable wastes are wastes from metallurgical and
smelting industries (such as uninhibited vehicles, machines, vehicle fragment and
scuffle metals and other machine fragments) as well as wastes from construction
industries (such as bitumen wastes, sand, gravel, concrete, and other waste from
building and construction constituents), waste from plastic industries (such as plastic
containers, cable paddings, tires, plastic sitting constituents, cellophane constituents,
plastic catering ingredients, sachet, containments, etc.), and waste from glass indus-
tries (Ezeonu et al. 2012; Adebayo and Obiekezie 2018).

Appropriate management of agricultural and industrial wastes as well as other
environmental contaminants will assist greatly in the reduction or elimination of the
incessant adverse environmental influences on all living organisms as well as
supports economic, environmental, and agricultural sustainability development and
enhanced the quality of our well-being generally (Ezeonu et al. 2012; Nwankwo and
Ukhurebor 2019; Aigbe et al. 2020; Nwankwo et al. 2020a, b, c).

Composting is the utmost regularly used biological or organic waste treatment
process for both agricultural and industrial wastes. This process is controlled by
aerobic putrefaction or decomposition of biological organic waste constituents by
means of minor invertebrates and microbes (Both 2017). According to Adebayo and
Obiekezie (2018), composting is a procedure whereby biological or organic waste
constituents such as food and plants are putrefied or broken down and then recycled
as manure for agricultural and landscaping benefits and uses (Both 2017). Adebayo
and Obiekezie (2018), further reported that the furthermost composting procedures
are “static pile composting, vermicomposting, windrow composting, and in-vessel
composting.”

The topical scientific advancement has been attained in the environmental man-
agement of wastes from agriculture and industries via the application of microor-
ganisms. Several agricultural and industrial activities have caused serious
environmental and social complications globally; these incessant complications are
a cause for serious concern that require remedial solutions by establishing physical,
chemical, and biological machineries (Satyanarayana et al. 2012; Adebayo and
Obiekezie 2018).

However, in this section, we will concentrate briefly on the biological procedures
involving biotechnological means for the advancement of sustainable agricultural
and environmental cleaning approaches that are progressively flexible for waste
management procedures. Such biodegradation measures according to Adebayo and
Obiekezie (2018) are “bioremediation, biostimulation, bioaugmentation,
phytoremediation, etc.”

3.2.1 Biodegradation

Biodegradation involves the breaking down, dilapidation, or degradation of biolog-
ical or organic matter and constituents into nutritional substances (nutrients) that
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could be beneficial and useful to other living organisms (Adebayo and Obiekezie
2018). According to Chahal (2015), such breakdown, decay, or degradation is
carried out by means of several organisms such as fungi, bacteria, worms, insects,
and some other saprophytic living organisms which consume deceased or dead
substances and reprocess it into fresh forms.

Bioremediation make use of microbes as well as their resulting constituents in the
presence of optimum environmental circumstances and adequate nutritional sub-
stances to breakdown, dilapidate, or degrade pollutants or contaminants as well as
hazardous constituents. Bioremediation machinery make use of microbes for the
reduction, elimination, monitoring, collection, management, or transformation of
some categories of pollutants or contaminants contained or existing in the air, soils,
or water (Chahal 2015; Adams et al. 2015).

3.2.2 Biostimulation

Biostimulation encompasses the alteration of the environment for the stimulation of
prevailing bacteria that are proficient in bioremediation (Adebayo and Obiekezie
2018). The procedure is carried out by adding some forms of restrictive nutritional
substances as well as electron acceptors like oxygen, phosphorus, carbon, or nitro-
gen that are readily accessible in measures that are small enough to oblige microbial
actions and processes (Chahal 2015).

3.2.3 Bioaugmentation

Bioaugmentation involves the addition of active microbial cells proficient in break-
ing down, dilapidation, or degradation to supplement the original microbial inhab-
itants present in the environment. The microbes that are used for bioaugmentation
are called “bioremediators.” It could take some time say days, months, or years for
microorganisms to clean up a place or site, depending on some factors such as high
pollutant concentrations, pollutants trapped regions, or the polluted place or region
(Chahal 2015).

3.2.4 Mycoremediation

Mycoremediation is another category of bioremediation which comprises the use of
fungi to disinfect a contaminated area or region. According to Adebayo and
Obiekezie 2018, the secretion of “extracellular enzyme” and acids by “mycelium”
is responsible for the breakdown or degradation of lignin and cellulose.
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3.2.5 Bioreactor Landfills

Bioreactor landfills are topical technological and scientific research that are report-
edly better off when compared to the “traditional or conventional sanitary landfills
and controlled dumps.” These topical technological and scientific bioreactor landfills
make use of more advanced microbiological procedures in the transformation and
stabilization of the readily and temperately decomposable biological or organic
waste ingredients within a very short time (Ni et al. 2009; Adebayo and Obiekezie
2018). The regulatory and monitoring feature is the unceasing addition of fluid,
basically liquid to be specific form for sustaining the optimum moisture or humidity
for the microbial digestion process. The addition of the fluid is by the “recirculation
of the landfill leachate.” Peradventure that the quantity of the leachate is insufficient,
the liquid or fluid waste such as sewage sludge is applied to make up for the
insufficiency.

Reportedly, there are three recognized kinds of bioreactors presently, viz., “aer-
obic, anaerobic, and a hybrid” (Adebayo and Obiekezie (2018). These three tech-
niques encompass the reintroduction and restoration of the composed leachate
complemented or supplemented with water so as to maintain the levels of the
humidity or moisture in the landfill. Microbes are responsible for the putrefaction
or decomposition; hence, they are stimulated to decay at an improved or amplified
rate with an attempt to diminish the injurious emissions (Adebayo and Obiekezie
2018).

In the case of the aerobic bioreactors, air is propelled or pumped into the landfill
by means of either vertical or horizontal settings in the pipes. The aerobic environ-
ment putrefaction is enhanced and the quantity of unstable organic composites,
noxiousness of the leachate as well as the methane are diminished accordingly
(Murphy 1992; Adebayo and Obiekezie 2018).

In the case of the anaerobic bioreactors, as the leachate is being disseminated, the
landfill generates methane at a rate that is faster and quicker than the conventional or
traditional landfill technique. The high concentration together with the amount of the
methane permits it to be applied for more resourcefully commercialized purposes,
while the reduction of the time or period needed by the landfill to observe the
generation of the methane (Adebayo and Obiekezie 2018).

In the case of the hybrid bioreactors which entails the combination of both the
aerobic and the anaerobic techniques, as reported by “the Hinkley Center for Solid
and Hazardous Waste Management (2006),” is subject to the upper regions of the
landfill by means of the aerobic-anaerobic sequences to upsurge the putrefaction
rate, while methane is generated via the lower regions of the landfill. The bioreactor
landfills generate lesser amounts of unstable organic composites compared to the
conventional or traditional landfill technique, apart from H2S, which are reportedly
generated in advanced quantities by the bioreactor landfills (Adebayo and Obiekezie
2018).

The process of anaerobic digestion is the utmost of the in-vessel treatment of
waste and is normally regarded as one of the utmost inventive and beneficial
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technologies established by industries (Capel 2010; Adebayo and Obiekezie 2018).
Not just that it avails a large-scale means of treating biological or organic waste but it
also avails the ensuing gases to be converted into other forms of energy.

According to Kangle et al. (2012), anaerobic digestion is the multistep organic
procedure in which anaerobic microbes translate biological or organic constituents
or waste to “bio-gas and bio-fertilizer” without the use of oxygen. It comprises a
sequence of metabolic connections among several kinds of microbes, and takes place
in four phases of “hydrolysis/liquefaction, acidogenesis, acetogenesis, and
methanogenesis.”

However, there is more advanced technology presently used for huge-scale
recycling of biological or organic waste, according to Adebayo and Obiekezie
(2018), such technology is the use of “bio-dung composting and vermiculture
technology.”

Vermiculture technology is a setting that harness earthworms for the “bioconver-
sion” of biological or organic waste into “vermicompost” which has widespread
benefits in waste monitoring, management, and sustainable organic agriculture
(Adebayo and Obiekezie 2018). It has been demonstrated to be an utmost efficient
technique in the monitoring and management of organic wastes with minimum
intricacy and economic feasibility. Ansari (2011) was the first to adopt “vermiculture
technology” in his research study.

The mixture of both grass pieces, water hyacinth as well as cattle dung was
applied as organic waste for the settings of “bio-dung and vermicomposting.”
Reportedly, from the obtained results, there were indications that the organic wastes
were effectively treated by means of “partial bio-dung composting and
vermicomposting” for about 86,400 s (that is 60 days); this contributed to the
amount of the vital micronutrients and also encompasses the growth inspiring
constituents such as “auxins and cytokinins” (Adebayo and Obiekezie 2018).

As reported by Sneha (2015), the procedures involved in the development of
“vermicompost” are itemized below:

(a) Excavation of the pit of approximately 0.5 m2 and 1.0 m depth.
(b) Facing the excavated pit with stubble or dehydrated vegetations and grass.
(c) Establishment of the dumping of organic wastes into the excavated pit as and

when produced or generated.
(d) Introduction of a culture of larvae or worms (which are readily obtainable).
(e) Ensuring that the fillings are enclosed with a sprinkling of dehydrated vegeta-

tions and soil on a daily basis.
(f) Irrigating the excavated pit, at least twice a week to preserve the moisture, and

revolving over the fillings of the excavated pit at least once every 2 weeks
(14–15 days).

In around a month and a half (which is about 45 days) time, the waste will then be
putrefied via the microbe’s action or process. The resulting soil from this procedure
is fertile and rich in nutritional value.

As a result of the eco-friendly and low-cost advantages of the application of
microbes in the monitoring and management of waste, and also bearing in mind the
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decomposable (biodegradable) attributes of capacious waste produced by industrial
and agricultural activities.

3.3 Types of Microbial Enzymes and Their Uses

Biodegradation of toxic organic contaminants has been documented to involve a
large number of bacterial, fungal, and plant microbial enzymes. Biodegradation is a
cost-effective biotechnology powered by microbial enzymes. Table 3.1 shows some

Table 3.1 Microbial enzymes and their uses

Microbial
enzymes Uses References

Esterase It is used to biodegrade pyrethroid insecticides
used for cultivation and for household use
It is used for the biodegradation of polyester and
aromatic-aliphatic copolyesters

Bhatt et al. (2019),
Novotný et al. (2015)

Laccase It is used in surface flux and soil for the biodeg-
radation and detoxification of cypermethrin

Gangola et al. (2018)

Oxygenase It is utilized in phenol biodegradation Mathur et al. (2008)

Peroxidase It is used in the mycotoxin deoxynivalenol deg-
radation process
It is utilized in a sequencing batch reactor to
biodegrade complete petroleum hydrocarbons

Feltrin et al. (2017),
Shekoohiyan et al. (2016)

Monooxygenase This aids in the biodegradation of C1–C8
alkanes, alkenes, and cycloalkanes
It assists in the biodegradation of various aro-
matic and aliphatic compounds

Singh et al. (2017), Arora
et al. (2010)

Dioxygenase This helps biodegrade polycyclic aromatic
hydrocarbon

Chadhain et al. (2006)

Protease It hydrolyzes the peptide bond Tavano et al. (2018)

Nitrilase It helps to remove cyanide contaminated waste
and toxic nitriles

Park et al. (2017)

Cellulase This helps turn cellulosic wastes into foods Islam and Roy (2018)

Lipase It helps to remove cooking waste Okino-Delgado et al.
(2017), Srivastava et al.
(2019)

Amylase It is used for food waste biodegradation Awasthi et al. (2018)

Cutinase It is used to remove the cuticular layer cutin in
the leaves or the bark suberin

Kawai et al. (2019)

Pectinase This is used in biorefinery hydrolyzing pectin
found in pectin-rich agro-industrial waste

Garg et al. (2016)

Catalase It is used to extract H2O2 from the effluent of the
bleaching industry and also for its future use in
the food industry

Kaushal et al. (2018)
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of the microbial enzymes used for the biodegradation of hazardous waste and their
uses.

3.4 Application of Microbial Enzymes for Biodegradation
of Effluent, Solid and Municipal Waste

Mathur et al. (2008) performed biodegradation of phenol on isolated soils and
sewage samples of Rajasthan desert regions under batch cultivation using
oxygenase. The oxygenase degradation assay was performed by measuring the
consumption of NADH at 340 nm using whole cells of different isolates. The authors
found that maximum degradation was achieved at 50 �C after 2 h. However, it was
observed that four isolates out of nine phenol adapted oxygenase producing isolates
showed maximum enzymatic activity.

Wu et al. (2019) examined the biodegradation of carbaryl in soil and soil quality
enhancement with Rhodopseudomonas capsule in wastewater effluent. The authors
found that carbaryl has triggered carbaryl hydrolase gene expression by allowing
MAPKKKs, MAPKKs, and MAPKs genes to synthesize carbaryl hydrolase in the
MAPK signal transduction pathway. It was also observed that the absence of soil
organics and control treatment could not sustain Rhodopseudomonas capsule devel-
opment for more than 1 day. The residual organic products in the effluent provided
therefore an appropriate source of carbon and energy for the growth of
Rhodopseudomonas capsulata after a day. The authors noted that the approach
contributed to carbaryl contamination remediation and soil fertility enhancement,
and to wastewater reuse and the use of Rhodopseudomonas capsulata as sludge.

Genethliou et al. (2020) evaluated the biodegradation of wastewater olive mill
phenolic waste compounds that are fed to a high-rate anaerobic up-flow anaerobic
bed reactor and digester wastewater effluents that are collected under constant
operating conditions during different hydraulic retention periods. The toxicity of
each sample was also measured in accordance with the microbiotest Thamnotoxkit
FTM. The authors found that exceptionally high phenolic extraction by
hydroxytyrosol and tyrosol was obtained, reaching approximately 94.87 � 0.04%
and 93.92 � 0.33%, respectively.

Xu et al. (2019) isolated and purified Klebsiella sp. strain with a high degradation
efficiency in soil washing effluence by polycyclic aromatic hydrocarbons. For the
removal of phenanthrene, fluoranthene, and pyrene in soil washing effluent, the
immobilization of the strain KL with a cross-linking system of boric acid-CaCl2 was
investigated based on polyvinyl alcohol, sodium alginate, and nano alumina com-
posites. In immobilized beads, the concentration of polyvinyl alcohol, sodium
alginate, and nano alumina had important effects on physicochemical and
biodegrading properties. Adsorption of beads in the initial degradation stage led to
the elimination of polycyclic aromatic hydrocarbons. Greater residential Tween
80 concentrations in soil washing effluent have toxic effects on KL strain growth
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and decrease the degradation capacity of polycyclic aromatic hydrocarbons. The
requirements for the biodegradation efficiency of polycyclic aromatic hydrocarbons
were between 80 and 2500 mg/L.

Mello et al. (2019) reported the biodegradation of BTEX wastewater compounds.
Batch and continuous bioreactors which are supported by biofilms were studied to
extract BTEX compounds. The activated loam from the local wastewater treatment
plant has been modified to BTEX compounds biodegradable. The findings showed
that the biofilm was well suited to the conditions under examination and was able to
completely degrade BTEX compounds. BTEX compounds fed regularly in a batch
bioreactor obtained kinetic parameters. The tests demonstrated that biomass could
extract the BTEX compounds for up to 300 min in the bioreactor showing a possible
strategy for the petrochemical industry.

Shekoohiyan et al. (2016) developed an oxidation cycle for the biodegradation of
total petroleum hydrocarbons in a batch reactor, controlled by bacteria peroxidase. In
the bioreactor, a small amount (0.6 mM) of H2O2 at 22 h of reaction time was
obtained at almost complete biodegradation (>99%) of the high concentrations of
petroleum hydrocarbons (4 g/L). Peroxidase catalyzing hydrocarbon’s catalytic
activity is 1.48 U/mL biomass. The bioreactor determined a blend of bacteria,
including the pseudomonas spp. and the bacillus spp., that can synthesize peroxidase
and biodegrade hydrocarbon. The GC/MS effluent analysis showed that all types of
hydrocarbons could be well degraded in the sequencing batch reactor induced by
H2O2. The peroxidase-mediated cycle is thus a promising method for efficiently
biodegrading saline wastewater laden with concentrated total petroleum
hydrocarbons.

Ravindran et al. (2016) proposed microbial biodegradation of solid protein
tannery waste for Clostridium limosum processing using a substrate of animal
flesh. The development of optimal protease 433 U/ml was obtained and the purified
enzyme was classified as monomeric acidic metalloprotease. The molecular weight
of the enzyme was stated to be 71 kDa, with enhanced activity by bivalent metals
like Zn2+ and Mg2+. Clostridium limosum has been concluded as a potential
candidate for simultaneous tannery waste degradation and metalloprotease
production.

Sahariah et al. (2015) have identified and contrasted the ability of metal repair and
biodegradation for earthworm species with Metaphire posthuma and Eisenia fetida
in municipal solid waste. As a basis for comparative study, the authors used various
combinations of urban solid waste and cow dung. The overall N content and
availability of Phosphorus, Potassium, and Iron were substantially improved in
both Metaphire and Eisenia systems, followed by major pH reductions and overall
organic carbon. Both species had similar levels of urease activity and microbial
breathing. In addition, the bioavailability of heavy metals as Lead, Zinc, Manganese,
and Copper, regardless of earthworm types, was reduced significantly during
vermicomposting. Overall findings indicate that Metaphire posthuma, an indigenous
earthworm, may be used as an effective candidate for toxic waste bioprocessing.

Raaman et al. (2012) presented biodegradations of polythene isolated plastic from
contaminated sites in the area of Chennai using the fungal lines Aspergillus spp.,
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Aspergillus niger and Aspergillus japonicus were chosen for predominant fungal
strains under laboratory conditions for polythene degradation. Further electron
microscopic scanning studies confirmed the deterioration by exposing the existence
of fungal degraded polythene surface porosity and fragility. Aspergillus japonicus
showed an 8% degradation potential for 1 month compared to Aspergillus niger.

da Luz et al. (2013) have evaluated Pleurotus ostreatus’ ability to degrade
oxo-biodegradable plastics without being subjected to physical treatment, such as
ultraviolet light or heat. The authors noticed the oxo-biodegradable plastic cracks
and a small hole on the surface of the plastics after 45 days of incubation in plastic
substrate-containing bags as a result of the formation of hydroxyl groups and carbon-
oxygen bonds. The Pleurotus ostreatus degrades oxo-biodegradable plastics and
uses mushrooms as a substrate using this material. The authors concluded that
improvements in oxo-biodegradable plastic biodegradation may be caused by lac-
quer activity.

3.5 Application of Microbial Enzymes for Biodegradation
of Polluted Soil with Pesticides

The continual emission of xenobiotic compounds, such as insecticides, pesticides,
fertilizers, plastics, and other substances containing hydrocarbons, is the key source
of contamination which must be prevented. There are many methods of contempo-
rary restoration, such as physical, chemical, and biological, but they are not enough
to clean up the environment. The biodegradation based on enzymes provides a
quick, fast, eco-friendly, and socially appropriate approach to the biological degra-
dation of recalcitrant natural xenobiotic compounds.

The biodegradation and detoxification of cypermethrin was performed by
Gangola et al. (2018) in the presence of esterase and laccases present in the Bacillus
subtilis. The authors are isolating cypermethrin from an agricultural soil polluted
with pesticide using bacterial strain (MIC, 450 ppm) and distinguished by polypha-
sic approach. Bacteria showed a 95% degradation of cypermethrin in controlled
growth conditions after 15 days. In addition, cypermethrin biodegradation end
products under aerobic conditions included cyclododecylamine, phenol,
2,2-dichloroethenyl, 2,2-dimethyl cyclopropane carboxylate, 1-decanol,
chloroacetic acid, acetic acid, palmitoleic acid, cyclopentane, and decanoic acid.

Dash and Osborne (2020) have shown rapid biodegradation and biofilm-mediated
biological removal of organophosphorus pesticides using a strain of native
Kosakonia oryzae—VITPSCQ3 in a vertical flow-packed biofilm bioreactor bed.
In cultivation media, the authors centered on biodegradation of organophosphorus
pesticides, Profenophos, and Quinalphos using wetland paddy isolated bacterium.
The VITPSCQ3 strain showed greater resistance to pesticides, efficient biofilm
formation, and the ability to synthesize enzyme-degrading organophosphate. Also
used as biofilm carriers were charcoal, gravel, and mushrooms; with mushrooms, the
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formation of biofilms was high, with an optimal biodegradation ability up to 96% for
Profenophos and 92% for Quinalphos during a 120 min reaction period.

Baczynski et al. (2010) introduced in soil polluted with methanogenic granular
sludge as inoculum anaerobic biodegradation of organochlorine pesticides
μ-hexachlorocyclohexane, methoxychlorine, o, p0’-DDT, and p, p0-DDT. At all
temperatures, the pollutants were eliminated and their removal levels increased
from 1.2 to 1.7 times as the temperature rose.

Cycoń et al. (2009) presented organophosphorus insecticide biodegradation
diazinon with Serratia sp. and Pseudomonas sp. in contaminated soils. Three
bacterial strains (Serratia liquefaciens, Serratia marcescens, and Pseudomonas
sp.) were tested and described by the authors and they were responsible for the
biodegradation of diazinon in soil by fermentation. The authors have shown that
biodegradation in sterilized soil has shown an effective insecticide degradation at a
constant rate of 0.032–0.085 d-1. Also, it was found that degradation of diazinon was
accelerated when mineral salt medium was supplemented with glucose. The process
was nevertheless related to a decrease in pH values after glucose usage. Isolated
bacterial strains were proposed to potentially be used for the bioremediation of
diazinon-contaminated soils.

Kamei et al. (2011) indicated that the white-red fungus Trametes hirsuta degraded
endosulfate and endosulfansulfate successfully. The fungus has been shown to use
several pathways for endosulfan and endosulfan sulfate degradation. Strokes like
Mortierella sp. are recorded. Strain W8 and stress Cm1-45 resulted in 50–70%
degradation of endosulfan in 28 days at 25 �C, first by endosulfan diol formation
and then endosulfan lactone, contributing to fertility improvements on farmland.

For the identification of endosulfan degradation, Kafilzadeh et al. (2015) isolated
bacteria from sediments and water samples from high agricultural activity zones.
Five bacteria such as klebsiella, acinetobacter, alcaligenes, flavobacterium, and
bacillus were found to be able to effectively degrade endosulfan.

Ishag et al. (2017) investigated biodegradation from pesticidium-contaminated
soils in the mineralized salt medium by the three endosulfan (α, β) and pendimethalin
strains (Bacillus safensis strain FO-36bT, Bacillus subtilis subsp. inaquosorum strain
KCTC 13429 T, and ATCC14579 T strains of Bacillus cereus strain). Endosulfan
and Pendimethalin’s three bacterial strains were incubated at separate intervals for
GC analysis. GC–MS analysis was performed for representative samples. The loss of
0.663 mM (α endosulfan), 0.319 mM (β-endosulfan), and 1.423 mM
(pendimethalin) were tracked and used in the biphasic model to measure half-
lives. Endosulfan and pendimethalin were extracted by a percentage of media
inoculated with bacterial strains ranging from 24 to 95% (α endosulfan), 21 to
91% (β-endosulfan), and 51 to 97% (pendimethalin), respectively. The findings
usually suggest the possible mineralization of endosulfan and pendimethalin by
certain microorganisms.

Diaz et al. (2016) isolated, reported, and investigated the biodegradability of high
pesticides for isolated vermicomposts. This was done to enhance pesticide elimina-
tion. Three separate biobed bioremediation system mixtures consisting of green-
house, olive, and winery waste, inoculated and incubated for a month, were polluted.
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In wineries and olive mills, the highest bacterial and fungal abundance was
observed. In wineries, tebuconazole, metalaxyl, and oxyfluorfen were extracted by
1.6, 3.8, and 7.7 times, respectively. Oxyfluorfen dissipation was also accelerated in
the olive mill with a remaining of less than 30% after 30 days. The isolates could be
used to boost bioremediation systems’ performance.

The cyanobacterial degradation of organophosphorus pesticides has been studied
by Vijayan and Abdulhameed (2020). The authors claimed that cyanobacteria are
photoautotrophic organisms, which would resolve the need for what is supply of
organic nutrients with heterotrophic substances. It was also noted that the spread of
cyanobacteria in the contaminated area leads to their increase in biodegradation.

Kataoka (2018) studied chlorinated cyclodiene insecticide biodegradation pro-
cesses using soil fungi. The soil infected with organochlorine pesticides was isolated
from an aerobic dieldrin degrading fungus, the Mucor racemesus strain DDF and
two aerobic endosulfan degrading strains, the Mortierella sp. strains W8 and
Cm1-45. During 10 days of incubation at 25 �C, strain dieldrin degrading fungus
decomposed more than 90% dieldrin and showed the development of a small amount
of aldrin-transdiol. On the other hand, in liquid crops with initial 8.2μM concentra-
tions of each element, the mortierella sp. strains W8 and Cm1-45 degraded more
than 70 and 50% of α and β-endosulfan, respectively, over 28 days at 25 �C. In both
cultures, only a small amount of endosulfanesulfate, a persistent metabolite, was
found, whereas endosulfidesulfate did not degrade when the compound was given as
the initial substratum. Both strains develop endosulfan diol in the first stage of
endosulfan degradation and then begin to be converted to endosulfan lactone.

3.6 Application of Computerization and Digital World,
Internet of All in Production of Microbial Enzymes
and Their Application in Biodegradation of Waste
and Hazardous Waste Material

Yadav (2017) presented the technological developments and applications of ligno-
cellulosic biomass hydrolytic enzymes for valorization. The processing of lignocel-
lulosic biomass into value-added products is a significant area of concern for the use
of hydrolytic enzymes. However, process limitations because of the inadequate
operation of the enzymes and stability, the limited pH range, and the optimum
temperature also restrict their product usage. Innovative developments that involve
enzyme activity modulation and stabilization by mutagenesis, genetic modification,
and metagenomics have contributed to a major jump in all fields through the use of
hydrolytic enzymes. The authors make recent progress in the separation and use of
microbes for the use of lignocellulose biomass, hydrolytic bacteria, advanced tech-
nologies for managing and enhancing hydrolytic enzyme activity, and applications
like enzymes in the production of value-added products based on lignocellulose
biomass.
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Aazam et al. (2016) provided a cloud-based, intelligent waste management
solution. It deals with a solution with different containers for each category of
waste (organics, plastics, bottles, and metals), which is fitted with sensors that
constantly track and update its cloud status where stakeholders are linked to collect
relevant information. The network works not only in waste management but also in
sewage and hazardous material biodegradation.

3.7 Conclusion and Future Recommendation to Knowledge

This chapter has provided detailed information on the application of microbial
enzymes in the bioremediation of heavily polluted environment. Detailed informa-
tion on the various type of enzymes that could be utilized for bioremediation was
also highlighted. There is a need for those concern especially agencies and govern-
ment parastatals that are involved in waste monitoring and management should build
on their activities and programs such as “the Integrated Solid Waste Management
System (ISWM)” project that will enlighten individuals, agriculturalists, and indus-
trialists on the appropriate and most suitable procedures in collecting, monitoring,
and managing wastes. The separation of wastes at their sources should be better
carried out to allow healthier, effective, resourceful collection, monitoring, and
management of wastes. Microbiological techniques of monitoring and managing
wastes should be established and exploited, not just for environmental cleaning
alone but also for other resourceful advantages of such techniques. The collection
methods of waste should be improved for sustainable and better sanitary environ-
mental circumstances, particularly in populated regions.
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Abstract Beneficial marine microorganisms are not only of significance for the
production of useful variety of substances, but also perform unique roles in element
cycles with animals and plants. Beneficial marine microorganisms have been recog-
nized as a repository of useful beneficial biomolecules with several industrial
applications. Moreover, there are several challenges that mitigate against the suc-
cessful determination of these molecules of special interest as well as the detection of
these beneficial microorganisms from the microbial marine environments, biological
and biodiversity. The application of molecular biology techniques are valuable
methods for evaluating the biodiversity and biological characteristics of marine
bacterial communities and its biomolecules. These techniques are generally adopted
for two different types of bacterial species such as the culturable and nonculturable
bacteria. Therefore, this chapter intends to explore the industrial relevance of several
compounds derived from marine environment. These molecules and bioactive
peptides have been identified to perform diverse biological functions such as anti-
microbial activity, antioxidant activity, antihypertensive activity, anticancer activity,
and anti-inflammatory activity, respectively. Moreover, more emphasis was placed
on the different types of methods that could be utilized for evaluating different types
of marine bioactive peptides such as organic synthesis, chemical hydrolysis,
microwave-assisted extraction, and enzyme hydrolysis, respectively. Also, the
modes of action of these biologically active compounds were highlighted.

Keywords Marine microorganisms · Biodiversity · Biomolecules · Physiology ·
Antimicrobial activity · Antioxidant activity · Antihypertensive activity · Anticancer
activity

4.1 Introduction

It has been discovered that for marine-based microorganisms to survive and thrive in
their natural microenvironment, there is a need for them to secrete specific bioactive
secondary metabolites. Moreover, these unique molecules have been found to have a
very high significant benefit for industrial, medical, pharmaceutical applications
most especially for drug and vaccine production against different pathogenic dis-
eases like infections, diabetes, cancer, infertility, and aging, respectively (Prestegard
et al. 2009). Studies have shown that marine-based microorganisms and their bio-
molecules which could be referred to as secondary metabolites in the microenviron-
ment are the largest of the earth (Mimouni et al. 2012). Different studies on
important microorganisms called extremophilic have revealed that they possess a
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unique molecular ability adapted to survive in different harsh environments. In
addition to that, huge opportunities have opened up through their applications in
different industrial sectors owing to the fact that they can generate biocatalyst now
named as extremozymes with immense biological activities such as salt allowance,
thermostability, cold adaptivity, and biotransformations. In recent times, several
biomolecules have been studied and new ones are gaining attention majorly because
of their industrial applications such as thermophilic proteins, xylanases, proteases,
acidophilic proteins, halophilic proteins, piezophilic proteins, esterases, isomerases,
chitinases, cellulases, pectinases, lipases, dehydrogenases, amylases, and
pullulanases (Mehbub et al. 2014).

Therefore, this chapter intends to provide a detailed information on the potential
natural biologically active molecules derived from the marine environment while
place more emphasis on the biological benefits, biochemical functions of beneficial
marine-based microorganisms together with their biodiversity in biotechnology and
agro science industries.

4.2 General Overview on the Biological Active Molecules
Derived from Marine Environment

It has been observed that establishing the physiochemical properties or features of
marine-based beneficial microorganisms revealed that they possess physiological
adaptations which have numerous biotechnology and biological advantage. The
major producer of substantial amount of biomolecules could be attributed to the
capability of microorganisms, most especially fungi, to cohabiting with several other
marine-based invertebrates and plants such as corals fungi, sponges, marine algae,
mangroves, endophytes, and seagrass. In pulp and paper industries, studies have
shown that fungi are the largest source of wood degrading enzymes used in biore-
mediation (Mayer et al. 2013). Also in the pharmaceutical industries,
thraustochytrids can generate a large quantity of omega-3 fatty acids called
docosahexaenoic acid (DHA) utilized as nutraceutical. The knowledge and explo-
ration of deep sea fungi with high hydrostatic pressure and temperature with high
metal concentration is still very little, when fully harnessed, they show promising
abilities due to different genes involved in the adaptation mechanism (Lordan et al.
2011).

Furthermore, through rigorous research on interactions of different host microor-
ganisms, it has been observed they have yielded positive outcomes in terms of
ecosystem and their biodiversity. Though, there is still paucity of information
concerning the molecular mechanisms through which these microorganisms execute
their biological activities. Beneficial microbes offer a great deal of industrial and
investigative benefits owing to their novel attractive enzymes with unique catalytic
properties like thermal stability, biocatalytic efficiency, and adaptation. Many of
these biomolecules derived from marine-based microorganisms are utilized in food
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industries for stabilizers, pigments, prebiotics, food ingredients, preservatives, gel-
ling agents, nutraceuticals, and dietary supplements (Lee et al. 2010). For biodegra-
dation of polymers, different approaches have been utilized to produce biomolecules
from beneficial marine microorganisms. A lot of efforts have been invested towards
reducing the environmental health hazard generated from increasing use of synthetic
polymers. These synthetic polymers have been shown to constitute a very high level
of pollution and constitute health and environmental hazards most especially when
they are ingested in the form of microplastic to humans, sea, and marine dwelling
animals. It has been shown that fungi and bacteria are capable of generating a huge
amount of biological substances with distinctive biodegradation properties against
these synthetic polymers. The common species of fungi and bacteria are Aspergillus
niger, Aspergillus flavus, Fusarium lini, Pycnoporus cinnabarinus, Mucor rouxii,
Streptomyces setonii, Butyrivibrio fibrisolvens, Pseudomonas aeruginosa,
Comamonas acidovorans, Streptomyces badius, Clostridium thermocellum, Pseu-
domonas stutzeri, Rhodococcus ruber (Kusama et al. 2014).

Marine bioactive peptides, as a source of distinctive bioactive molecules, have the
capacity to exert in diverse biological functions such as antimicrobial activity,
antioxidant activity, antihypertensive activity, anticancer activity, and anti-
inflammatory activity. Various methods have been utilized for the synthesis and
identification of marine active peptides. Typical examples of these include organic
synthesis, chemical hydrolysis, microwave-assisted extraction, and enzyme hydro-
lysis. As such, comparing the marine-based microbial compound against the terres-
trial metabolites, significant amount of biomolecules have been discovered with new
structure and physiological functions (Joint et al. 2010).

Current findings also reported the utilization of microalgae for the production of
biofuels. Algae, with photosynthetic cyanobacteria, offer a great deal of ideal
solutions because they can be cultivated year-round, on nonarable land, alleviating
the pressure on farmland and freshwater resources that would be exerted by crops
grown for biofuel purposes. Many strains of algae are suitable for producing
renewable fuels (biodiesel, bioethanol, and kerosene). They have also been shown
as a promising source of food and feed. The production of algae, in particular
microalgae, has been documented to possess several industrial relevances most
especially in the area in biotechnology development (Jaspars et al. 2015). The recent
advances in biotechnology through the utilization of novel techniques such as
mutation and genetic engineering have improved the application of research on the
use of transgenic algae is also expanding, and commercial applications are upscaled.

Bioremediation uses living organisms for removing contaminants from the envi-
ronment, for example, polluted land. To date, there have been few cases of biore-
mediation involving transgenic microorganisms. This is probably due to current
paucity of information concerning the threats and advantages of releasing them into
contaminated soils. The development of cleaners, detergents, and other similar
products containing microorganisms has increased over recent years. In many
cases, detailed knowledge of their composition is lacking. As far as is known, it is
unlikely that any such products currently available contain transgenic forms of
microorganisms, though this remains a possibility for the future (Hu et al. 2015).
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Marine pharmacology could be defined as a pharmacological study that utilized
marine-based biomolecules for significant advancement of chemistry study for
effective deep knowledge of the pharmacology of these active metabolites. The
US Food and Drug Administration has approved new product from snails known as
ziconotide, v-conotoxin MVIIA used in the treatment of chronic pain. Also another
product called trabectedin, ET-743 was manufactured synthetically majorly from
marine-based microbes. The drugs have been utilized for the treatment of tumors and
cancer such as tissue sarcomas and ovarian cancer. Subsequently, many marine-
based active metabolites have been placed in the market due to increase in the
number of research emanating from academic community and research institute
collaborating with pharmaceutical organizations (Gupta et al. 2015).

The biodiversity and bioprospecting of marine-based metabolites in the Arctic
could be linked to the huge economic potential of biomolecules in biotechnology
which has translated from just academic point of view to commercial values. It
should be noted that there is an increasing number of commercial companies with
significant interest in undertaking research on these marine-based biomolecules.
This covers significant vast areas of research and development such as enzymology
for life science and industrial use, bioremediation, nutraceuticals, drugs and dietary
components, health products and cosmetic industries, and antifreeze proteins,
respectively.

In recent times huge success have been recorded in the research and development
most especially the application of biotechnology for the transformation of biomol-
ecules from marine-based microorganisms with enormous capability of generating
enormous revenues if harness properly. Moreover, it has been discovered that
traditional chemical technology using biotechnology offers great approaches of
adjusting and adapting natural resources into a more environmental friendly and
cost-effective products to increase its performance level (Dionisio-Se 2010). The
main economic approach of the twenty-first century research and development
policy is to engage in a sustainable marine-based bioproducts that utilize
eco-friendly and renewable bioresources. Also, the improvement in biomass gener-
ation for industrial use and waste material for biofuel has been made possible by
increasing the rate of investment dedicated to research and development to enhance
the knowledge value of biomolecules in biology, biodiversity, ecology, and biotech-
nology in sustainable way. This advancement has resulted in a rapid increase in
biodegradation of contaminants and renewable energy production through science
and technology (Chiang et al. 2011). The economic impact of marine-based bio-
molecules is huge and can revitalize both developed and developing countries’
economies if harnessed properly. Developing can effectively migrate from fossil
fuel generation to a more eco-friendly biofuel-based economy from marine-based
microorganisms. Also developed countries can adapt it for the bioproduction of
chemicals and energy generation. This will shape the future economy and impact
positively to the growth and development of quality life for all (Qian et al. 2015).

Marine-based bioresources include different kinds of microorganisms like
viruses, plants, bacteria, small sea animals, and fungi capable of generating bio-
molecules with industrial application. This involves a rigorous search and
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investments to discover biomolecules and metabolites with the capability to trans-
form many industrial sectors (Fenibo et al. 2019). There is an array of products
generated from these marine-based biomolecules such as gases, oils, biofuels, food
or feeds, and antioxidants. Bioprocessing is a vast field of knowledge with a
multidisciplinary approach and intensive collaborations by academia, industries,
and government to stimulate the course of the commercial venture towards
establishing a long-term sustainable growth and development (Nigam 2013). Bio-
diversity is a necessary tool for bioprocessing of different species such as plants and
microbial organisms but the major setback is that it is not possible to just predict the
species, genes, or habitat that will result into generation of biomolecules without
engaging in research and rigorous search (Corinaldesi et al. 2017). Diverse ecosys-
tems have offered great potential and yielded products for bioprospecting such as
semiarid and arid land, montane and polar regions, warm and cold seas and oceans,
temperate forest, and grasslands.

Recently, due to the rapid advancement in bioprospecting which have resulted
into the establishment of biobased industries like grazing, farming, forestry, fisher-
ies, plus poultry that utilizes marine-based biomolecules, increased production in
drugs, food, and drinks have been witnessed for the purpose of reduction in poverty,
improvement of natural resources, and expansion in global economic growth plus
development. Also there are new emerging industries such as biorestoration, bio-
degradation, biomimetics, and bioremediation of numerous biodiversity knowledge
base. To generate huge income from bioprospecting, huge investments in conserva-
tion of biodiversity and research are needed in any given country (Pham et al. 2019).
Recently, the world has witnessed significant threats to our biodiversity which will
definitely impact negatively the discovery of new biomolecules and microbial
varieties for medicine, agriculture, and biotechnology (Nihorimbere et al. 2011).
Majorly, due to the microscopic nature of some of these biodiversities, recent global
decline and lack of recognition of losses will impact heavily on bioprospecting such
as change in gene expression, low productivity, knowledge loss, and gross weaken-
ing of natural biodiversity (Baskaran et al. 2017).

The use of microorganisms and its biomolecules in food biotechnology has
contributed immensely to the value chain of food industries owing to the utilization
of biomolecules needed to convert some perishable raw material into a palatable and
more preserved manner. The utilization of biomolecules in fermentation processes
has offered huge success in the beverage industries providing different taste, aroma,
and flavor to different brands of products thereby increasing the nutritive value. This
improvement has been made possible in fermentation due to new marine-based
biomolecules utilized for these processes in recent times (Bekiari et al. 2015).
Fermentation is known to improve food stability and safety through the adoption
and utilization of different strains of live marine-based biomolecules to generate new
ideas.

The development of probiotics came from the recognition and advanced devel-
opment of fermented foods from marine-based beneficial microorganisms with their
active metabolites utilized in these fermentation processes directly or indirectly.
Thus, through the mechanism of its functionality, appropriate application of specific
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strain can exert a huge substrate level in the host. Though the realization of the
industrial benefits of beneficial marine-based microorganisms have been recognized
in our generation, there is still far more valuable resources to be utilized and
exploited (Blunt et al. 2009). The reality of global warming and environmental
effects of climate change is seen in loss of biodiversity and food insufficiency.
This has alerted governments and relevant stallholders to start planning on alterna-
tive means of combating this scenario. Studies using mathematical models have
projected that the impact of climate changes on desertification and traditional
lifestyle such as pharmaceuticals affects about two billion people around the globe
who solely rely on fermented food and microbial-based medical products (Dang and
Lovell 2016). Studies have revealed that 70% of the earth is occupied by seas and
oceans providing energy and biomass to significant number of life on earth (Debbab
et al. 2010). The living biomass of marine ecology is dominated by microbes that
have evolved billions of years ago which are specialized viruses, archaea, fungi,
bacteria, and microalgae. Through the knowledge of informatics, molecular biology,
and genomics their functional diversity and genetics have given immense biological
functions (Gracia et al. 2015). Also through collaborative research, many essential
products from marine-based microbes have been unraveled for biochemical pro-
cesses. Studies have revealed that marine-based microorganism produces biomole-
cules essential for sustainability and existence of our planet. So many lives depend
on these biomolecules to sustain life through biological processes such as feeding,
storage, reproduction, and movements. Therefore, it is worthy to note that microbes
are an essential element in sustaining life. The huge amount of biodiversity of
microbes translate to huge amount of bioproducts of important application in
agriculture, pharmaceuticals, medicines, and industries (Hay 2009).

Though very little is known about the opportunities of marine-based beneficial
microorganisms and many untapped metabolites they produced despite the enor-
mous awareness and research generated from academia. To compound this problem
so many marine-based microbes cannot be cultured in a conventional laboratory
making their physiological functions and applications difficult to investigate. There-
fore, to change these dynamics and reduce the knowledge gap, there is a need for all
the relevant stakeholders to invest massively into research and infrastructure with
well-coordinated programs (Mohamed et al. 2008). Since most of these microorgan-
isms are very small in size and difficult to recognize, there is possibility of neglecting
their importance in the ecosystem and difficulty in harnessing support for them.
More important is the affiliation of microorganisms to disease and pathogenic
conditions in humans, plants, and animal which has over the years clouded the
beneficial role of some marine-based microbes. Hence, adequate research and
awareness programs must be developed to project the beneficial effects of microbi-
ological research (Penesyan et al. 2010).

Identification and isolation of important enzymes with new biocatalytic properties
from marine-based microenvironment in order to study and understand their meta-
bolic pathways and biodiversity remains a great potential for industrial application
(Rédou et al. 2015). In the past decades, different strategies have been deployed to
identify the marine biotope with the purpose of unraveling untapped and unexploited
rich diversity of marine physiology, biochemical and biotechnological adaptations
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coupled with extraction of bioactive products which has opened up new frontiers in
industrial processes (Stiefel et al. 2016). Many nutraceuticals are derived from
microalgae for human diet supplements and probiotics such as antibiotic and growth
enhancer (Mocz 2007). Filtration systems and recirculating aquaculture systems
from important microalgae biomolecules have found great industrial applications
(Newman and Cragg 2004; Proksch et al. 2010). Kiuru et al. (2014) revealed that
advancement in molecular biology has helped to unravel the genetic and physiolog-
ical role of lipids, DNA, and proteins in the biological system. Sequencing, retrieval
of nucleotide and biomolecules are now possible with molecular tools, advanced
computational approaches, and technical innovations in analytical methods to study
and adapt microbial functions to the industrial application (Hill and Fenical 2010;
Cheung et al. 2016). The biodiversity of marine-based microbes is much larger than
the terrestrial counterpart due to the fact that oceans have the ability to harbor
unexplored, unique habitats (Wang et al. 2017). More gains in medicine and
pharmaceutical industries can be traced to the increased exploitation of marine
microbial knowledge in the development of drugs and vaccines to manage some
human diseases (Anjum et al. 2016).

The chemical and biological activities of biomolecules and enzymes have been
exploited as valuable agents in agriculture, pharmaceuticals and medicine, in treating
and developing eco-friendly products. Now, a combined effort in a multidisciplinary
approach is needed to fully access the improved yields of microbial production and
generate novel compounds (Kennedy et al. 2008). The large spectrum of bioactive
compound newly discovered with a plethora of industrial applications may be due to
huge microbial biodiversity in the ocean; therefore, attention should shift from
terrestrial-based microbes to the marine-based beneficial microorganisms with vari-
ety of biological benefits. Several products are produced from these microbes such as
carotenoids, chitosan, exopolysaccharides, mycosporines, and mycosporine-like
amino acids and fatty acids representing a low-cost, fast-production, and sustainable
products with diverse industrial applications (Boziaris 2014; Bruno et al. 2019). In
this chapter, we review the existing knowledge of these compounds produced by
beneficial marine microorganisms, highlighting the marine habitats where such
compounds are preferentially produced and their potential application in different
industries. Some biocatalyst and bioremediation products generated from microbes
have been exploited for industrial applications in bioprocessing due to the
physiochemical properties and eco-friendly nature (Raghukumar 2008). Biomole-
cules which possess tension-active properties produced from microorganisms are
referred to as biosurfactants. Also mannosylerythritol lipids, sophorolipids, emul-
sion, rhamnolipids, and surfactin are newly discovered biomolecules from marine-
based beneficial microorganisms with huge industrial application as biosurfactants.
They have been shown to have competitive advantage over the synthetic
biosurfactants in performance due to their low toxicity, biodegradability, stability,
and eco-friendly nature. The widespread use of biosurfactants is still lacking due to
cost of production, yield, and awareness. Studies have revealed that synthetic
surfactants generate recalcitrant pollutants into the environments (Dumorné et al.
2017). Actinomycetes, an antibiotic-producing microbe has gained recognition in
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recent times. Interesting research findings are provided in terms of metabolites
generated, mechanisms, economic significance, and commercialization (Fakruddin
and Mannan 2013). Other antibiotics such as amphotericin, neomycin, tetracycline,
nystatin, novobiocin, gentamycin, erythromycin, vancomycin, chloramphenicol, and
enzymes like lipase, amylase, and cellulases are also generated from actinomycetes
and are seen to perform crucial functions in fermentation processes, bioremediation,
and medical sector in treating diseases such as cancer. In agro science sector,
actinomycetes have also found huge application in growth promotion and pest
control. Biotechnology and biomedical research have engaged actinomycetes in
the development of various novel drugs in the fight against diseases such as
neurometabolic dysfunctions, cancer, and infections (Komagata 1999). The role of
marine-based microbes can never be overemphasized in the advancement of phar-
maceutical agents with biological functions. More eco-friendly, underutilized bio-
active compounds with enormous potential solve the challenges and demands of
pharmaceutical industries (Glaser and Mayer 2009).

4.3 Biological and Biochemical of Biomolecules

Several biocatalysts are known as extremozymes having great biological properties
such as thermostability, salt allowance, and cold adaptivity, respectively.
Extremozymes have potential application as a biocatalyst, bio-transformations,
owing to their ability to resist extreme environmental conditions. The lists of
important biomolecule(s) from marine-based beneficial microorganisms for indus-
trial and environmental applications are shown in Table 4.1. Several biomolecules
that are derived from these beneficial microorganisms utilized for antioxidant, anti-
inflammatory, antibacterial, antimicrobial, hypolipidemic, analgesic, antitumor
include the following.

4.3.1 Piezophilic Proteins

It is generally known that high hydrostatic pressure is conferred on marine-based
beneficial microorganisms that has a greater ability to adapt and survive in high
pressured environments. This significant thermodynamic tendency has been discov-
ered to influence the physiochemical nature of these organisms (Allen and Bartlett
2000). Specific beneficial marine-based microorganisms like piezophiles which
thrive in elevated pressure environment might be linked to their physiological
characteristics such as regulatory mechanisms and molecular metabolism (Finch
and Kim 2018). Also, piezophiles can survive due to revolutionized responsive
genes and genetic products resulting in specific growth and developmental patterns
such as homeostasis, cell division and cell cycle, and transport mechanism to cope
with pressure microenvironments (Zhang and Kim 2010). Also many beneficial
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microorganisms found in the deep-sea habitats provide significant information
useful for research into the eco-diversity and biology of life in high-temperature
environments. This beneficial microorganism thrives under high temperature gener-
ally known as thermophilic proteins (Jin et al. 2019).

4.3.2 Docosahexaenoic Acid (DHA)

DHA is a high-quality marine-based compound derived from microalgae molecules
which plays a crucial role in easy digestion of nutrients in human diet, excellent for
brain development, and expansion with unique structure for wide variety of mem-
brane physiology. The brain is rich in membrane tissue involved in metabolism,
intelligence, and locomotor functions (Bradbury 2011). DHA precipitate the pro-
duction of protectins and resolvins for analgesic and hypolipidemic activity. Studies
have revealed that de novo synthesis of alpha-linolenic acid a precursor for omega-3
fatty acid synthesis in the bioproduction of DHA is lacking in mammalian cells, and
further consumption of omega-6 fatty acids displaces DHA from phospholipids
membrane. Researchers are looking for a way to study the role of DHA in neurode-
generative diseases and other metabolic dysfunction in humans.

4.3.3 Halophilic Proteins

High salt stability and solubility (complex salt bridges) enzymes derived from
marine-based microbes are called halophilic proteins. The understanding of their
adaptability and crystallization to the microenvironment needs massive research
collaboration between relevant stakeholders in government, research institutes, and
industrial sectors. The high acid residue in their sequence and protein folds shows
significant protein-solvent interactions like hydration interactions (water and
ion-binding) with high negative charge which is dependent on solvent composition
and salt type (Eisenberg and Wachtel 1987). In a biological system, the induction of
chaperone complex was seen in halophilic archaea due to salt induced stress (—Ebel
et al. 2001; Madern et al. 2000).

4.3.4 Acidophilic Proteins

Studies were performed on acidophilic green microalga Chlamydomonas eustigma
to determine their genetic sequence that makes them to adapt to acidic microenvi-
ronment with high content of heavy metals. The genomic analysis and
transcriptomics revealed that their membrane is highly enhanced with proton
pump and heat shock proteins gene when compared with its neutrophilic family
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member Chlamydomonas reinhardtii (Hirooka et al. 2017). They suggested that
these acidophilic microalgae is able to survive in the acidic microenvironment
because they possess multiple genes for detoxification of heavy metals, elaborated
buffering system, and enhanced energy pathway.

4.3.5 Lipases

A marine-based beneficial microbe Aeromonas hydrophila can generate and release
lipase similar in action to lecithin-cholesterola acyltransferase a mammalian enzyme.
Hilton and Buckley (1990) revealed that diethyl p-nitrophenyl phosphate can inhibit
this enzyme and also two of the histidines are implicated in the catalysis. The
hydrolysis and biosynthesis of acylglycerols is derived from marine microbes
capable of secreting proteases, amylases, and lipases with enantio and elevated
region-selectivity. Two-component and quorum sensing systems were involved in
gene expression, folding by disulfide-bond-forming proteins or foldases, and regu-
lation and release of lipase which can progress through ABC transporters or
Sec-dependent pathway. It should be noted that proper elucidation of the
functional-structural connections will help to adapt new lipases for industrial
applications.

4.3.6 Cellulases

It has been established that cellulosic biomaterials can be converted to products with
great industrial applications. Cellulase can degrade cellulose and is considered a
major industrial enzyme from cellulolytic marine-based beneficial microorganisms
(Sadhu and Maiti 2013). The industrial application of cellulase enzymes ranges from
textile, biofuel, brewing, paper, and pulp to agricultural feed, fermentation pro-
cesses, and food. Much research in genetics and enzymology are being developed
to unravel the economic value of cellulose that can be generated through modern
biotechnology and molecular biology tools (Kuhad et al. 2011).

4.3.6.1 Mode of Action of Cellulase in Bacterial System

1. Adhesion through cellulosome like complexes
The complex multienzyme capable of biodegradation of adhering cellulose is
called cellulosomes made up of central noncatalytic moiety called scaffoldin and
numerous attachment site referred to as cohesins where cellulose and enzymes
bind to. The enzymatic submits have a central docking and catalytic domain
called dockerin connecting with the scaffoldin. This is typically found in ther-
mophilic bacteria called Clostridium thermocellum.
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2. Adhesion via fimbriae or pili
The surface attachment used by gram-negative bacteria in adhesion process is

also called pili or fimbriae which is about 7 nm in width and 200 nm in length
with various structural units. In Streptococcus sanguis, E.coli, and Actinomyces
viscosus, there exist small carbohydrate receptor sites of pili (35 kDa) located in
the lips or the entire length. Studies have shown that the pili protein type of
cellulose-receptor protein (cbpC 17.7 kDa) with structural similarity with type IV
fimbrial proteins of bacteria exist in Ruminococcus albus.

3. Adhesion through Carbohydrate Epitopes of Complex Bacterial Glycocalyx
Electron microscope has enabled us to thoroughly study the complex attach-

ment of carbohydrate epitopes. The slime layer is made up of complex glycopro-
tein residues that are the active adhesion site of bacteria surrounding the
Ruminococcus flavefaciens and Ruminococcus albus. Treatment with dextranase
plus protease a periodate oxidation will remove the complex glycoprotein resi-
dues thereby decreasing the adhesion power of bacteria Fibrobacter
succinogenes and R. albus to cellulose.

4. Adhesion through cellulose-binding domains of cellulolytic enzymes
The two domains in the cellulose are the binding domains for bacterial enzyme

attachment connected to rich hydroxyl proteins having two cysteine residues and
four tryptophan using either hydrophobic or hydrogen bond as a form of attach-
ment and the catalytic domain for hydrolysis of glycosidic bonds. Studies have
revealed that beneficial marine-based microbes lacking this attachment domain
may be loosely bound and digestive processes for crystalloid cellulose are
impaired. Several of these binding domains have been identified in different
species such as Fibrobacter succinogenes with EGF and endoglucanase
2 (EG2) (Jaeger et al. 1999).

4.3.7 Chitinases

Chitin is a polysaccharide generally abundant in the marine microenvironment and
also derived from marine-based organisms such as crustacean, fungi, and insects.
Chitinase are enzymes responsible for the breakdown of chitin and its derivatives
with industrial applications as pesticide in control of diseases and pathogens against
plant growth and development due to the presence of glutamate on the surface
(Júnior et al. 2017). Improving the catalytic capacity of chitinase through enhanced
proton donor for glycosidic bond cleavage is the main focus of research for many
industrial usages (Rathore and Gupta 2015).
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4.3.8 Pectinases

Several studies have revealed that pectinase derived from beneficial marine micro-
organisms especially fungal strain, e.g., Aspergillus fumigatus have found several
industrial and bioenergy applications by accumulative bioethanol level (Tapre and
Jain 2014). Pectinase has the ability to breakdown pectin structure which is used in
fermentation processes, drinks and food (wine) industry, and agricultural processes.
They are also used in DNA extraction, liquefaction of biomass, enhancing nutrient
absorption in animals, wastewater management and treatment (Kubra et al. 2018).
Pectinolytic enzymes are important in drink industries for producing galacturonic, a
small molecule from a complex polysaccharides structure (Emuebie et al. 2019).

4.3.9 Esterases

Chemical insecticides have contributed significantly to the increasing levels of
resistance seen with vector control mechanisms. Esterase enzymes are present in
diverse range of insecticide with the capacity to hydrolyze ester bonds (Lopes et al.
2011). At present, research on insecticide resistance on insect esterase species gene
family is rapidly evolving with quite a unique detoxification genes that only geno-
mic, microarray analysis, and biochemical study can unravel (Montella et al. 2012).

4.3.10 Mycosporines and Mycosporine-Like Amino Acids

The marine-based beneficial microorganism through rigorous scientific discoveries
have revealed that they possess unique ability to produce mycosporine-like amino
acids (MAAs), a metabolite with immense ability to protect against ultraviolet
radiation that can cause cancer, aging, and many other disease conditions. Pharma-
ceuticals and cosmetic industries will find great usefulness in these products as there
is a huge market for it if properly harnessed. Carreto and Carignan (2011) have
revealed that the enzymatic processes involved in the synthesis of MAAs are through
endosymbionts. Other organisms that lack this common pathway may adopt symbi-
otic, bacterial association or trophic transference as an alternative means.

4.3.11 Carotenoids

Another important metabolites secreted by marine-based microbes of multiple
biological functions in plant and animal cell is called carotenoids. Recently, there
is renewed effort and interest on the biological importance of carotenoids; hence,
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there has been a rigorous search for plants and marine-based microalgae with the
potentials to secrete carotenoids. Some of the newly discovered species are chili
peppers and capsicum which accumulate carotenoid pigments in large quantity
causing the yellowing of fruits or seeds by β-cryptoxanthin, zeaxanthin, α- and
β-carotene, and lutein. The carotenoid levels in different species are influenced by
different factors such as varieties, cultivars, environmental conditions, genotypes,
and disease conditions (Gómez-García and Ochoa-Alejo 2013). Another type of
carotenoid that causes red coloration in plants are capsanthin-5, 6-epoxide,
capsanthin, and capsorubin. In plants or microorganisms the active sites for biosyn-
thesis and storage of carotenoids pigment are referred to as chromoplasts majorly
controlled by several enzymes and loci like y, c1, and c2 which have been charac-
terized and established but the molecular mechanisms of action regulation pathway
are still missing (Eldahshan and Singab 2013).

4.3.12 Exopolysaccharides

A newly discovered biomolecules produced from marine-based microorganisms
with huge industrial applications due to their unique chemical configurations and
physiochemical properties are referred to as Exopolysaccharides (EPSs) such as
pullulan, levan, dextran, and xanthan. They are utilized for textile production,
cosmetics, packaging, agriculture, chemical industry, pharmaceuticals, and food
biotechnology. Exopolysaccharides are now the center of attraction from research
point of view due to their compatibility, biodegradability, and lower environmental
toxicity (Ates 2015). One of the major limitations of exopolysaccharides obtaining
its commercial value is due to the high cost of generation or production. Therefore,
these economic challenges must be overcome before the productivity and commer-
cial impact will be realized. Huge investment in research and development towards
understanding the biosynthesis, properties, improved strains, and metabolism will
boost the industrial performance and productivity. Exopolysaccharides have been
shown to possess antitumor, anti-inflammatory, and antimicrobial activity. The
antimicrobial activity of exopolysaccharides showed sensitivity against B. subtilis,
V. cholera, E. coli, and B. cereus (Patel et al. 2018).

4.3.13 Chitosan

Using acetylation, chitin affects the biosynthesis of chitosan, other biomolecules
derived from marine-based microorganisms with high compatibility, nontoxic,
hydrophilic nature, nonallergic, and degradability (Hoell et al. 2010). Studies have
revealed that both chitosan and chitin possess significant physiological activities
such as anti-thrombogenic, antitumor, anti-cholesteremic, antioxidant, antibacterial,
immunoadjuvant, bioadhesivity, wound healing and dressing properties, and
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antifungal properties find novel application in medical and pharmaceutical industries
such as fibers (tissue engineering), sponges, powders, solutions, capsules, gels, film
production, beads, and hydrating agents (Akakuru et al. 2018). The route of appli-
cation of chitosan in the body include oral, ocular, nasal, and injectable form for drug
and vaccine delivery at normal pH (Kafetzopoulos et al. 1993). Also material like
hydroxyapatite-chitin-chitosan has shown huge promise in medical science for bone
filling (self-hardening paste) and tissue regeneration such as periodontal defects.
Alginate in combination with chitosan is utilized as a material for anti-thrombogenic
control of drug encapsulation, gene carriers, enzyme release, and cell immobilization
(Younes and Rinaudo 2015). In gene transfection and cancer treatment, chitosan
derivatives N-lauryl-carboxymethylchitosan have less membrane toxicity and are
used as hydrophobic cancer drugs carrier. Chitosan glycerophosphate, a complex
mixture of citric acid and calcium phosphate can be employed as a self-hardening
system in bone filling and repair with the N-alkylated form showing increased
efficiency when elongated in the alkyl side chains.

4.3.14 Rhamnolipids

Rikalović et al. (2015) revealed that L-rhamnosyl-L-rhamnosyl-β
hydroxydecanoyl-β-hydroxydecanoate is the only rhamnolipid found in marine-
based microorganisms. Rhamnolipids are important biosurfactants capable of low-
ering surface tension of emulsified kerosene and water; therefore, it can be used in
the development of industrial bioremediation of contaminated environment espe-
cially the aquatic microenvironment. Many important biosurfactants derived from
marine organisms have found their way to industrial market such as sophorolipids,
alkyl polyglycosides with huge potentials to be utilized as cleaning agents (Moussa
et al. 2014). Studies have revealed that the physiochemical properties that give
rhamnolipids the special strength as a biosurfactant is because it possess complex
congeners of rhamnolipid when compared with the single congeners and others like
reduced toxicity, renewable sources, antifungal activity, and biodegradability makes
it have the largest impact in agronomy, cosmetics, nanotechnology, and food
biotechnology (Shreve and Makula 2019).

4.3.15 Sophorolipids

A glycolipid biosurfactant derived from marine-based microbes with enhanced
biological function and vast physiochemical activities is sophorolipids (SLs).
Many marine and terrestrial plants and microalgae have shown promising properties
in the biosynthesis of SLs such as edible Jatropha oil using C. bombicola to reduce
the cost of production (Saerens et al. 2011). The industrial applications include stain
removal, anti-bactericidal, and biodegradability (Joshi-Navare et al. 2013). The
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chemical structure derived from Starmerella bombicola revealed that it is made up of
(O-β-D-glucopyranosyl-2-1-β-D-glucopyranose), a disaccharide sophorose
connected with glycosidic bond to subterminal and terminal chain of fatty acid
carbon. Also the mechanism of antimicrobial action includes membrane rupture,
efflux of cytoplasmic substances, and death (Davila et al. 1994). The understanding
of the biosynthesis is important in appreciating the industrial application which
includes 5 sophorolipid genes (two glucosyltransferases, a transporter, a cytochrome
P450 monooxygenase, and an acetyltransferase) are involved in the biosynthesis of
sophorolipid (Silveira et al. 2018).

4.3.16 Mannosylerithritol Lipids

Marine-based yeast Pseudozyma has enormous potential to generate a glycolipid
biosurfactant called Mannosylerythritol lipid (MEL). Using lipase-catalyzed esteri-
fication of a di-acylated MEL with oleic acid several other tri-acylated MEL could be
produced with good interfacial properties and broad biochemical reactions.
Tri-acylated MEL is the most hydrophobic form produced in culture medium having
fatty acids residual (Fukuoka et al. 2007).

4.3.17 Surfactin and Emulsion

Another distinctive class of metabolites capable of growing on crude oil are known
as emulsan and surfactin generated from beneficial microorganisms (Liu et al. 2015).
RAG-1, an emulsan-deficient mutant grew badly on crude oil and was able to be
reversed by the addition of one single revertant (Pines and Gutnick 1986).

4.3.18 Novobiocin

Another clinically useful antibiotic with a distinctive structure consisting of a unique
sugar called noviose sugar (one ring), benzoic acid moiety (two rings), and a
coumarin moiety (two rings) connected to an amide plus glycosidic bond is called
Novobiocin. Several studies have highlighted the derivative of noviose as two
methyl groups gotten from L-methionine and D-glucose. Studies have revealed that
tyrosine produces coumarin through biochemical sequence and subsequent ring
linkage to form novobiocin (Kominek 1972).
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4.3.19 Amphotericin

Studies have shown that life-threatening invasive infections or visceral leishmaniasis
are managed by an antibiotic with a wide spectrum called Amphotericin B (AmB).
This molecule is combined with deoxycholate to increase its membrane permeability
and solubility in water. Even though several side effects have been recorded with this
antibiotic, formulation of the lipid form called liposomal AmB is still widely being
utilized for several infectious diseases. The cost of production of this lipid form is
high; therefore, more effort in terms of research should be focused on enhancing its
biological functions and reducing the side effects in order to increase the widespread
use of AmB with reduced cost and increased accessibility (Brajtburg and Bolard
1996). The antifungal properties and immunomodulatory effects are also well
established due to the feature of AmB as AmB-carrier complex (Faustino and
Pinheiro 2020).

4.3.20 Vancomycin

Adequate research on vancomycin, a glycopeptide antibiotics have revealed that it
can be used against resistant bacteria as the last line of defense due to its ability to
specifically bind cell membrane mucopeptide stopping the sequence D-Ala–D-Ala
forming asymmetric antibiotic dimers which can dock two peptides of D-Ala–D-Ala
in different directions. Acetate ion occupies one of the binding pockets with high
flexibility and asparagine side chain on the other relatively stiff (Kang and Park
2015).

4.3.21 Gentamycin

Studies have shown that gentamycin from marine-based beneficial microbes possess
the capacity to penetrate the plasma membrane, accumulate in the lysosomes, and
regulate different physiological processes. Some of these physiological processes are
reduction in lysosomes latency, reduction in y-glutamyl-transpeptidase and alanyl
aminopeptidase activity, and reduction of lysosomal sphingomyelinase functions.
Though most of these processes showed total reversal of withdrawal of gentamycin
from animal exposed to gentamycin treatment after 21 days. The study is in
agreement with the fact that nephrotoxicity is caused by gentamycin accumulation
in the lysosomes of the kidney causing blockage of enzyme activity involved in lipid
degradation, alteration of membrane permeability in the cell, and reduction in cell
metabolism causing necrosis or apoptosis (Peck and Lyons 1951).
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4.3.22 Chloramphenicol

Studies have shown that just like other antibiotics, chloramphenicol is also derived
from marine-based beneficial microorganisms with a wide spectrum of activities
blocking bacterial protein synthesis (Kunin et al. 1959). It is known to display
bactericidal activity against Streptococcus pneumonia, Haemophilus influenzae,
Meningitis, and Neisseria meningitides (Glazko et al. 1949). Structurally, it is a D-
threo isomer, made up of p-nitrobenzene ring, linked with dichloroacetyl tail via
2-amino-1, 3-propanediol moiety. Though resistant to chloramphenicol has been
revealed through several mechanisms of action, its side effect is a major concern that
limits its usage (Dinos et al. 2016).

4.3.23 Tetracycline

Tetracyclines belong to a class of antibiotics with a wide spectrum of properties
discovered about 50 years ago which are rigorously used as growth promoters and
therapy for infections in animals and humans. Studies have revealed that many
organisms have developed resistance to the therapeutic importance of tetracycline.
For instance, many tetracycline resistance genes in gram-positive and gram-negative
bacteria have been identified through transposons and plasmids. Due to this ineffi-
cacy of the present tetracycline, the use around the globe has reduced significantly
and new species have acquired gram-negative genes with genetic characteristics in
protein regulation and efflux (Chopra and Roberts 2001).

4.4 Conclusion

Therefore, this chapter has provided a detailed information on the utilization of
biologically active compounds of industrial interest derived from the marine envi-
ronment. The major part of food biotechnology involves the application of beneficial
marine microorganisms based on food processing. This will go a long way towards
improving the nutritional qualities of perishable raw materials to a more refined,
edible, and palatable foods. Though many research have revealed the potential
benefits of these microorganisms, many of these microbial species are still untapped
and unexploited; therefore, leaving wide gap in knowledge and application for
industrial purposes. It is therefore important for the government and other relevant
stakeholders to come up with sustainable strategies to harness the biological func-
tions and physiological adaptations of these biomolecules rich bioactive biodiversity
to revitalize the economy and industrial revolution, thereby creating opportunities
for growth and development across different sectors. There is a need to explore
several agro ecological and marine environment for the selection of unexploited as
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well as novel compounds of industrial interest. There is a need to utilize numerous
metabolomics techniques for the characterization of these novel and unexploited
molecules derived from the marine environment. There is a need to perform struc-
tural elucidation of active constituents that are responsible for diverse biological
activities using NMR, TLC, HPLC, and GCMS. The application of genetic engi-
neering and mutation techniques could be applied for the improvement of these
beneficial strains derived from the marine environment. The application of bioinfor-
matics, proteomics, and genomics could be applied for the detection of relevant
genes that regulate diverse biological activities in these marine microorganisms.
Therefore, it can be anticipated that many natural metabolites and biomolecules of
great industrial benefit could be generated from marine microorganisms owing to
their novel structures and functional properties within the biological system against
the terrestrial microbes.
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Abstract It has been highlighted that numerous types of pesticides could prevent
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agricultural productivity. They play a crucial role towards increment in agricultural
productivity and they could also affect the climatic changes of a particular environ-
ment at a specific period of time. The influence of beneficial soil microorganisms as a
component of essential soil factors also plays a vital part in boosting increase in food
production. Moreover, regularized application of pesticides has led to the upsurge in
the extent of health and environmental hazards and several imbalances in the
ecosystem. Hence, in view of the aforementioned, this chapter will anticipate the
significance of pesticides on the environment, essential soil factors, most especially
beneficial microorganisms as well as the influence of climate change. Specific
highlights were also given on the influence of different pesticides, their application,
role of soil functions such as beneficial microorganisms on the environment. Nec-
essary recommendations that could form a baseline study for further researches were
also recommended especially those that could assist in the improvement of food
production in order to meet the demand of the ever-increasing population at global
level.

Keywords Climate change · Environment · Microorganism · Pesticides

5.1 Introduction

Annually, about 2.6 billion pounds of pesticides are utilized for some specific
purposes such as snuffing and/or decelerating growth rate of harmful microorgan-
isms, extinguishing and/or decelerating growth rate of unwanted plants, monitoring
of germs and harmful microorganisms, and extinguishing and/or controlling of
insects universally, respectively (Widenfalk et al. 2008; Muturi et al. 2017;
Ukhurebor et al. 2020a). Approximately, 80% of these pesticides are used for the
enhancement of agricultural proficiency while the remaining 20% are mostly used
for structural and communal health in the deterrence, moderation, and obliteration of
diseases and pests (Widenfalk et al. 2008; Muturi et al. 2017).

Several types of pesticides have been highlighted for specific purposes based on
their activities. Examples of such pesticides include algaecides, fungicides herbi-
cides, fungicides, antimicrobials, rodenticides, insecticides, and disinfectants
(Ukhurebor et al. 2020a). According to Subhani et al. (2000), the level of impact
of pesticides depends on the form of pesticides applied, the quantities applied, and
the present environmental conditions when the pesticides are applied.

According to Mehjin et al. (2019), it is not easy to determine exactly the influence
of the different forms of pesticides on living organisms and their activity. The swift
upsurge in the world inhabitants has led to an increase in pesticide application which
has led to an increase in several environmental hazards as a result of high pesticide
application (Mostafalou and Abdollahi 2017; Mehjin et al. 2019). Furthermore, it
has been observed that even minimal application of pesticides might still have some
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adverse effects most especially on biological and chemical characteristics as well as
the biochemical activities of living microorganisms (Singh et al. 2008; Cycon et al.
2010).

Pesticide application and abuse have increased due to their continuous application
against pests, insects, microorganisms, and diseases. Conversely, this has resulted in
several undesirable side effects on the environment, food, and human welfare
generally (Palikhe 2007; Mostafalou and Abdollahi 2017).

Several studies have shown that the application of pesticides could lead to several
undesirable impacts on useful microorganisms in the air, land, water, and soil (Singh
and Prasad 1991; Bhuyan et al. 1992; Mostafalou and Abdollahi 2017). This has
been documented to have a greater effect on their activities, roles, and mode of
operation (Schuster and Schroder 1990).

Several microorganisms are beneficial because of the various indispensable roles
they play on the environment as a whole (Husain et al. 2009; Meena et al. 2020;
Mehjin et al. 2019).

According to Prasad Reddy et al., microbes play an essential part in soil produc-
tiveness. They assist in the biodegradation of organic matter, the recycling of
nutrients, the formation of humus, the stability of soil structure, the fixation of
nitrogen, the preferment of plant growth, the biocontrol of diseases, and several
biochemical conversion processes such as formation (ammonification) and conver-
sion (nitrification) of ammonia and its compounds (Husain et al. 2009; Meena et al.
2020; Mehjin et al. 2019).

Considering the present incessant variations and effects of weather in our diverse
daily activities which are believed to be mostly caused by human activities
(Ukhurebor and Abiodun 2018). Accordingly, the influence of the application of
pesticide is possibly one of the utmost potential contributing factors to the present
incessant variations and effects of weather or possibly the other way around
(Ukhurebor et al. 2020a; Nwankwo et al. 2020a, b). The variations in the climatic
conditions could be influential on both the application of pesticides, as well as the
losses of pesticides to the environment.

Specifically, several studies have revealed the ability of some species of micro-
organisms to distillate pesticides, as such they could be serving as a medium for
pesticide conveyance to more advanced trophic stages (Cooley et al. 2007; Jo et al.
2011). Additionally, studies have shown that the unswerving effects of pesticides on
one trophic stage could circuitously affect the copiousness of species at advanced or
minor trophic stages (Foit et al. 2010; Relyea 2009; Staley et al. 2011).

The environmental effects of pesticides as well as the hypothetically diverse
responses among some species of microorganisms could also have severe conse-
quences for the regulation of microbial measures and the well-being of other living
organisms, the health of humans in particular. However, from some previous studies,
we can inferably say that the prognostication of the effects from the application of
pesticides on bacterial species is the most awkward compared to other microorgan-
isms (Staley et al. 2015). This, according to Staley et al. (2015), is due to the wide
multiplicity of physiological approaches employed by bacteria. Consequently, it will
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be somehow difficult in drawing any general deductions concerning how the various
forms of pesticides affect bacteria in particular.

It has been observed that climate changes could be greatly influenced by several
human activities most especially through the application of pesticides on the envi-
ronment. Therefore, this chapter will provide a comprehensive review on the recent
trends on the application of pesticides and how human factors could affect the
activities of some essential soil functions such as beneficial microorganisms. Nec-
essary recommendations that could prevent several hazards and anthropogenic
activities that could increase the level of pollution as a result of pesticide applications
were also highlighted.

5.2 Climate Change

5.2.1 Causes of Climate Change

Climate change as rightly reported by “the Intergovernmental Panel on Climate
Change (IPCC) is a statistically substantial change in either the average state of the
climate or in the inconsistencies in the average state of the climate, taking place over
a lengthy period. It entails a modification in the climate ensuing as a result of natural
internal progressions or external influences that are ensuing by the direct or indirect
activities of humans” (IPCC 2014; Field et al. 2014). These vicissitudes are integral
part of the atmosphere, together with the normal discrepancy in the climate experi-
ential over an extensive period (Ukhurebor and Umukoro 2018; Ukhurebor et al.
2019; Field et al. 2014).

The Food and Agricultural Organisation of the United Nations (FAO 2018) in
their report also pointed out that there has been globe upsurge in the amount of
temperature most especially from the twentieth century to the beginning of the
twenty-first century. This increment in the amount of temperature according to
them started at about the mid of the nineteenth century.

According to Field et al. (2014), in several regions of the world the release of
the various forms of greenhouse gasses (GHGs) like Carbon (IV) Oxide (CO2),
Methane (CH4), and Nitrous Oxide (N2O) have amplified extremely due to the
activities and influence of humans, such as agricultural and industrial activities. In
their report, it was projected that in the next coming decades numerous individuals
most especially those living in unindustrialized regions or areas would encounter
shortage in water and food supply as well as adverse health implications ensuing as a
consequence of climate change.

These gasses (GHGs) which are reportedly derived from fossil fuels (that serve a
main means of global energy source) and other chemical substances including
pesticides which consequently allow astrophysical radiation to go through the air
in the atmosphere but prevent the reflection of heat from making their way back
astronomically. This could consequently lead to an increase in the earth’s
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temperature which may cause variations in the climate; possibly resulting in global
warming (Ukhurebor and Azi 2019).

The issue of the health effects as a result of environmental effluence is now a
cause of serious concern to environmental scientists globally. At the moment, there
are several ongoing scientific deliberations among environmental scientists
concerning the core source of global warming which consistently results in climate
change (Nwankwo and Ukhurebor 2019; Herndon and Whiteside 2019; Nwankwo
et al. 2020a, b). The apparent disagreement that the main source of global warming is
not only CO2 heat retention and other GHGs, but particulate pollution that engrosses
radiation, heats the lower atmosphere (troposphere), and upsurge the efficiency of
atmospheric-convective heat elimination from the earth’s surface (Nwankwo and
Ukhurebor 2019; Herndon and Whiteside 2019; Nwankwo et al. 2020a, b). Never-
theless, there have been continued research studies aimed at unraveling other
tendencies which possibly cause environmental effluences that perhaps result in
global warming (Nwankwo and Ukhurebor 2019; Herndon and Whiteside 2019). As
reported by Nwankwo et al. (2020a, b), the continuous-increasing progression in
communication and information technology via the use of computers and enormous
data centers globally had also been recognized as possible sources of environmental
effluence, dilapidation, and core contributing factor to the climate change issues.

5.2.2 Consequences of Climate Change

Change in climate was described by William Nordhaus in 2018 as a “Colossus that
threatens our world and the ultimate challenge for economics”. It was also referred to
as World War III by Joseph Stiglitz in 2001. The change in climate threatens
genuinely disastrous consequences across the globe and with the rights of huge
numbers of humans been among the victims (Alston 2019).

Reportedly, global change in climate conditions are mostly a consequence of
human activities on the natural composition of the global climate variables or ele-
ments (Ukhurebor et al. 2020b; Ukhurebor and Nwankwo 2020), especially those
caused by the release of GHGs from the use of fossil fuels. The world energy
consumption has been projected to grow by 28% between the years 2015 and
2040. Change in the climate could be linked to natural external forces like change
in the orbital parameters/variables of the earth or the emission from the sun (solar
emission) and other normal internal progressions in the earth’s climate scheme.
Moreover, these could also be linked to recent consequences such as record tem-
peratures, fast melting icecaps, extraordinary wildfires, “thousand years” floods, and
more frequent hurricanes, respectively (Philander 2008; Alston 2019).

In the short run, encouraging consequences of warming climate may be experi-
enced in some parts of Russia, northern Europe, and Artic, with the extended net
effects expectedly to be harmful if appropriate action is not put in place to decrease
GHGs emissions. Giving the position and the inadequate governmental measures in
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responding to the issues like flooding, droughts, and diminishing food production,
parts of Asia and Africa are more vulnerable (Busby and Busby 2007).

A recent report by IPCC shows that the mean land as well as the mean sea surface
temperature had increased by 0.6 � 0.2 �C. This according to them started at about
the mid-nineteenth century, with the utmost alteration observed since 1976 (IPCC
2014; Field et al. 2014). Precipitation pattern has also been altered with arid and
semi-arid areas becoming less moist. Other climatic zones, particularly mid to
latitude, are also becoming mistier. Based on an array of other development setup
and model parameterizations, the IPCC recognized that with no definite measures
taken to decrease the emissions of GHGs, there was a possibility of global temper-
ature increase between 1.4 and 5.8 �C from 1990 to 2100, with average precipitation
as well as average wind speed predicted to be less reliable; however, with
recommended important vicissitudes (McMichael et al. 2004; IPCC 2014; Field
et al. 2014).

According to the National Research Council (2012), understanding the impact of
humans on GHGs concentration is difficult due to GHGs occurring naturally in the
atmosphere of the earth, as CO2 is created and utilized in several normal activities
that are a portion of the carbon cycle. But, with the mining for long-buried carbon
forms like coal and petroleum/oil burning as a means of energy, extra CO2 is emitted
and released into the atmosphere more swiftly than in the normal carbon cycle. Other
activities of humans like the production of cement and other chemicals as well
as deforestation have also contributed to the amount of CO2 added to the
atmosphere.

More countries have experienced conflicts for the past 50 years, with nearly 70%
of sub-Saharan African countries experiencing armed conflicts since 1980. Evidence
shows a strong relationship between change in climate and increased chances of
more conflict. According to recent estimates from the WHO, 119,000 deaths were
caused by collective violence in 2012, while an estimated 505,000 deaths were
caused by interpersonal violence and suicide was committed by 804,000 people
(Akresh 2016).

Many features of our planet have been affected by the change in climate, with the
weather being one such aspect greatly affected. From 1990 to 2000, the average
global temperature has risen from 1.4 to 5.8 �C. The global mean sea level has also
increased from 4 to 8 in. (that is 10–20 cm). A recent finding by IPCC showed that
the concentration of CO2 in the atmosphere in 2005 was 375 parts per million when
compared to the periods (pre-industrial) when industrial activities were at levels of
280 parts per million. This according them is a major contributing factor in the
increase of the earth’s surface temperature to about 0.6 �C (Kaddo 2016). Also
amplified surface temperature of the earth is instigating the melting of glaciers at a
fast pace than winter snow can replace them, leading to an upsurge in the average sea
level to about 4–8 in, during the twentieth century. The upsurge in the average sea
level has the possibility of instigating a rise in the saltwater invasion into coastal
aquifers, surface islands and coastal aquifers that are supportive to humans, as well
as a change in the salinity circulation in estuaries, alteration in coastal circulation
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outline, conveyance infrastructure in truncated-lying regions, and obliteration and
amplified pressure on the coastal level arrangement (Philander 2008).

Extreme weather events have multiplied since 2002 in Romania, with the country
drought in 2007 being reported to be severest in 60 years. Also, hurricanes have
become more destructive due to warmer temperatures resulting from GHGs emis-
sion, resulting in warmer water in the oceans. Due to these warmer oceans, tornados
and hurricanes are more intense now as warmer atmosphere results in more energy in
the atmosphere. Change in climate has also played a major role in ice sheets
shrinking, with ice melting resulting in sea level increase; hence, endangering
many islands. Greenland and West Antarctic sheets were reported to be melting
approximately 130 billion tons of ice annually (Kaddo 2016; Vannuccini et al.
2018).

Poverty and inequality are aggravated by a change in climate with serious
implications in underprivileged countries, locations, and places where the poverty
level of people is high. According to Alston (2019), developing countries of the will
reportedly bear about 75–80% of the cost to alteration in the climate. The health of
humans is subtle to earthly and geographical changes in climate and weather, with
weather being considered to be subject to change by actions of humans but its effects
may be reduced by variation measures. While variation is an important determining
factor of health consequences of change in climate, the effect of anthropogenic
emission of GHG on the climate means that change in climate can be a well-
thought-out risk factor that could be changed by the intervention of human with
related effects on the disease problem (McMichael et al. 2004).

An estimation as reported by the World Health Organization (WHO), one-third of
the world’s infection/disease problems are caused by environmental factors and that
about half of these problems are bear by little children under the ages of 5 years,
representing about one-tenth of the population of the world. According to estimated
disability-adjusted life years metric by the WHO, children under the age of 5 years
bear approximately 90% of the prevailing world infection/disease problems are due
to alteration in the climate. Most of these problems are felt in unindustrialized
countries and low social-economic rank populations, which directly increases the
environmental justice issue. From the mid-1970s, change in climate has been
estimated by the WHO to contribute to more than 150,000 deaths and in the year
2000, approximately five million lost disability-accustomed life years globally
through a rise in diseases like diarrhea, malnutrition, and malaria largely in emerging
countries. It was also estimated by the WHO that changes in the climate-induced
excess risk of this limited number of consequences which would multiply by 2030,
with areas bearing the major problem of climate-sensitive infections/diseases are
those with the least capacity to adjust to risk but contribute the lowest in GHG global
emissions. The major portion of the problem of infantile morbidity and mortality
ascribed to alteration in climate is malnutrition and infectious disease, as children are
more exposed to famine and nutritional deficiency than adults. They represent the
mainstream of the world populace la-di-da by hunger as well as dysfunction from
insufficient nutrition during early development can last a lifetime. In certain regions,
children are more vulnerable to infectious diseases like pathogens (such as cholera
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and other diarrhoeal infections/diseases) from pollution resulting from plant and
water from storms and floods, in addition to vector-borne infections/diseases (such
as dengue fever and malaria) owing to change in the climate. In 2003, a rise in the
incidence of deadly heatwaves, which is a direct effect of change in climate brought
about deaths of 22,000–40,000 in Europe, with the unswerving consequence on
children as a result of hyperthermia, heat stress, renal infection/disease, and respira-
tory disease/infection (Perera 2014; Hayes et al. 2018).

In Africa, the two furthermost problems caused by the alteration in climate are;
food safety/security and human well-being (health), with both having an unswerving
and critical effect on human well-being. Food safety/security deals with the acces-
sible quantity of food for a specific purpose. Accordingly, the United Nations
Organization for Food and Agriculture (FAO) reported that the four most vital
factors for daily food safety/security are; food availability, food approachability,
food supply steadiness, and approachability as well as the degree of which safety of
food nutrients can be sustained and improved (FAO 2018). The accessibility of food
is anticipated to be greatly impacted as the alteration in climate may change areas fit
for agriculture, the growing season length, and yield potential. Food access and
supply stability are also closely linked to infrastructure conditions, as some of these
infrastructures like road and railway may struggle under growing weather pressure
and air transport may be delimited owing to allowable decrease in GHGs, with IPCC
expecting agricultural production, with food access in several African nations and
region to be sternly compromised by inconsistency and alteration in climate (IPCC
2014).

Expectedly, about one billion hectares of land which are previously arable due to
substantial activities will expand by 50–90 million hectares due to change in climate
and it is a consequence rapidly spreading hunger (IPCC 2014). Another threat of
change in climate is the probable rise in vector-borne diseases in some areas of
Africa, where in some regions, such as the East African high ground plateaus or
highlands, the possible incidence, seasonal program, and geographic extent of
vector-borne infections/diseases are anticipated to increase. These infections/dis-
eases such as various kinds of fever, malaria, different kinds of virus-related
encephalitis, schistosomiasis, leishmaniasis, onchocerciasis, and lyme infection/
disease. Expectedly, it is predicted that by 2100, there will be about 16–28% upsurge
in the human-month exposure extent of malaria especially in the African region
(Wlokas 2008).

The main drivers of agriculture response to the change in climate are biophysical
influences and socioeconomic issues. Development of crops is exaggerated
biophysically via weather-related (meteorological) parameters/variables which
include change in temperatures, change in precipitation patterns, and surge in the
extent of CO2. These consequences exaggerated by biophysical parameters will vary
through time, with some area having a positive or negative impact on agricultural
production in some regions and agriculture systems. While socioeconomic factors
impact the response to vicissitudes in the production extent of crops, with deviations
in price and modifications in comparative benefit (Parry et al. 2004; Serdeczny et al.
2017). The IPCC (2014) report summarizes the effect of change in climate by type,
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possibility, and influence on diverse segments like human health and agriculture,
which concludes that several weather actions and extreme will frequently and
intensely become more widespread during the twenty-first century.

An extensive retreat of glaciers on five continents has been as a result of global
warming. An upsurge in sea level is caused by the distribution of water to the river,
sea, or ocean resulting from melting land ice and the thermal/heat expansion in water
within these rivers, seas, or oceans. As the ocean water temperature rises, the rivers,
seas, or oceans become less dense leading it to spreading and inhabiting more
surface area on the earth. Since the end of the period of ice (about 18,000 years
ago), river/sea/ocean levels have increased by about 120 m (Sharma et al. 2013).

Reportedly, some studies have shown that the influence of alteration in climate
setups on the hydrology of several regions and basins, with a projected increase in
temperature and a decline in rainfall results in the decrease of the net recharge and
affects freshwater resources. In Africa, there has been a decrease in the water
resources over time due to persistent droughts and land-use patterns, a projected
29% increase of water shortage to be experienced in Sub-Saharan Africa (SSA) by
2050, while the river flow in the Nile area expected to decline by 75% with a
damaging consequence on irrigation practices [“the United Nations Environment
Programme (UNEP) African regional implementation review for the 14th session of
the commission on sustainable development (CDS-14), report on climate change,
prepared by UNEP on behalf of the Joint Secretariat, the United Nations Economic
Commission for Africa (UNECA), the United Nations Environment Programme
(UNEP), the United Nations Industrial Development Organization (UNIDO), the
United Nations Development Programme (UNDP), the African Development Bank
(ADB), and the New Partnership for Africa’s Development (NEPAD) Secretariat”].

The increasing demand for water resources also poses considerable risks to water
safety/security in Sub-Saharan Africa, which is intensified via the change in climate
upsetting river runoff, contribution to difficulties in the quest for water from irriga-
tion and posing risk of surface groundwater effluence (contamination/pollution) as a
result of intense rainfall. Some periods of little rainfall was observed in the 1970s
and 1980s when compared to 1900–1970 leading to severe drought in the Sahel
region. Also, there are reports of severe flooding amplification in the Niger Basin in
the last few years, with an increased risk of flooding with temperature increase.
Groundwater regeneration rates have also been predicted to decrease by about
30–70% in the western parts of southern Africa and rise by about 30% in some
regions of eastern and southeastern regions of Africa for both 2 and 3 �C warmings
above preindustrial extents. This estimated increase of incidence in heavy rainfall in
East Africa does not lead to authentic groundwater renewal due to penetration
extents which was not contemplated (Serdeczny et al. 2017).

According to Nwankwo et al. (2020a, b), some human actions have changed
atmospheric structures, such as temperature, rainfall, levels of CO2, and ground-
level ozone. As precisely emphasized by IPCC, there are some doubts about
vicissitudes in the climate. They emphasized that warming of the climate scheme
is now explicit and it is apparent that global warming is getting higher as a result of
the synthetic emissions of GHGs, particularly CO2 by humans (Field et al. 2014).
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Subsequently, there is a need for global exploitation to resist these influences that
are happening incessantly. Nevertheless, as a result of global warming, the kind,
amount, and extent of life-threatening events are projected to increase even with
slight upsurge in temperature (Meehl et al. 2007).

5.3 Influence of Climate Change on Microorganisms

Microorganisms play a fundamental role in animal and plant nutrition and health.
They are the architects of soil health and productivity given that they take part in
nutrient mobilization and uptake. Notably, they aid in plant development and offer
infection/disease protection in their well-known processes namely; phosphate and
sulfate solubilization, siderophore formation, nitrogen fixation, denitrification,
immune variation, signal transduction, and pathogen management (Prakash et al.
2015) In marine life, microbes such as bacteria, fungi, archaea, viruses, and protists
are engines of the ecosystems. They not only act as food to marine life but also keep
the ecosystem healthy, clean ocean waste, and protect it against diseases.

Imperatively, on earth, microorganisms exist in all environments. Human activ-
ities (effects) such as agriculture, eutrophication, and environmental changes,
namely, UV radiation, salinity, water chemistry, elevation, mountain topography,
and precipitation constitute factors that affect microbial well-being. These factors
may lead to microbe’s extinction and loss of biodiversity (loss species, communities,
and habitats) (Cavicchioli et al. 2019). Accordingly, in this section, we would
explore the effect of climate change on microorganisms. Noteworthy, we examine
both marine and terrestrial microorganisms.

5.3.1 Effect of Climate on Marine Microorganisms

It is well established that the marine environment covers approximately 70% of the
total surface of the earth. This environment includes tropics, shallow water, water
coral reefs, and deep ocean trenches. The marine habitats play host to a million
organisms which include many autotrophs, animals, and both autotrophic and
heterotrophic microorganisms. Microorganisms are important in the well-being of
coral reefs in that they recycle waste products, provide vital nutrients, carbon flow in
the marine ecosystem, organic matter decomposition, and vitamins and essentially
assist the immune system to fight pathogens (Bourne et al. 2016).

Human activities in the form of burning of fossil fuels and industrialization have
given rise to CO2 concentration in the atmosphere. CO2 is the main cause of global
warming and its dissolution in the ocean surface results in seawater carbonate
chemistry (Bourne et al. 2016). These have resulted in an increase in acidity and
lowering of pH levels thus causing a change in several chemical properties. Ocean
warming, acidification, eutrophication, and overuse together cause the decline of
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coral reefs and may cause ecosystems to shift towards macroalgae (Hughes 1994;
Mumby et al. 2007; Enochs et al. 2015). Therefore, observing an appropriate
carbonate concentration is paramount for the formation of calcium carbonate
which is vital in the building of skeletons and shells of marine organisms, coral
reefs, and plankton.

The ratio of CO2 concentration at the ocean surface to the atmosphere is approx-
imately 1:1. Therefore, an increase in the atmospheric concentration results in an
unexpected increase in CO2 dissolved in ocean waters. Occasionally, if not all the
time, an elevated CO2 concentration can be detrimental to aquatic settings. For
instance, it can hinder reproduction, disturb the growth process, and cause a change
in skeletal and otolith development (Noorashikin and Das 2019). A study on
elevated CO2 levels on individual phytoplankton species demonstrates that an
increase in the extents CO2 offers selective benefit to noxious microalga, vicicitus
globosus, resulting in interruption of biological/organic matter transmission across
trophic stages (Riebesell et al. 2018). Furthermore, there is an increase in cell
dimensions and carbon to nitrogen relations when photosynthetic green alga is
subjected to elevated CO2 levels. According to Schaum et al. (2012), CO2 level
increment results in changes in ecotypes and niche population of O. teuri which
affects food webs and biogeochemical cycles.

For over 20 million years, the pH of the oceans was fairly constant. Apparently, in
the past 200 years, it has fallen by an alarming 0.1 unit and if the atmospheric
concentration of CO2 reaches 800 ppmv, it is expected to fall by a further 0.3–0.4
unit in comparison to the present concentration level of 397 ppmv (Raven 2005). As
a consequence, lower pH levels are expected which simply results in interference of
intracellular homeostasis of microorganisms (Flynn et al. 2012). Moreover, lower
pH causes a change in gene expression in bacteria and archaea and thus causes
support in cell maintenance as opposed to growth (Bunse et al. 2016). Therefore, pH
regulation is paramount and species which lack the capacity to do so are adversely
affected. Regulation of pH is influenced by factors such as organism size, aggrega-
tion state, metabolic activity, and growth rate (Flynn et al. 2012).

An elevated temperature due to ocean warming triggers melting of sea ice, a rise
in sea level, increased frequency of regional climate anomalies, deceased solubility
of oxygen, and the diverse biological effect that influences whole ocean ecosystem
and their constituent’s species from microorganisms to algae to top predators (Yao
et al. 2014). The latter (effect on microorganisms) which is our subject needs a clear
and conscious discussion. Studies show that raising temperatures of some marine
taxa could result in a poleward modification of cold-adapted communities (Follows
et al. 2007; Barton et al. 2010, 2016; Thomas et al. 2012; Swan et al. 2013). Also, it
has been reported that raise in temperatures upsurge protein synthesis in eukaryotic
phytoplankton while tumbling cellular ribosome concentration (Toseland et al.
2013). Smaller plankton thrives well over larger ones during ocean warming
resulting in change in biogeochemical fluctuations for instance particle/material
spread or export (Moran et al. 2010). Furthermore, warming lessens iron constraint
of nitrogen-fixing cyanobacteria, with hypothetically deep consequences for

5 Climate Change and Pesticides: Their Consequence on Microorganisms 93



new-fangled nitrogen supplied or provided to food webs of the imminent warming
oceans (Cavicchioli et al. 2019; Jiang et al. 2018).

5.3.2 Effect of Climate on Terrestrial Microorganisms

As aforementioned, the world today is grappling with the problems of global
warming and climate change. These issues arise from the high concentration of
GHGs (such as carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons) in
the atmosphere which leads to a warming effect. Like marine life, these affect
terrestrial environments which contain approximately a total of 1029 microorgan-
isms which is comparable to the number in marine environments (Flemming and
Wuertz 2019).

Studies show that a change in climate alters microorganisms’ species distribution
and dictates their interactions with others. Of importance, soil microorganisms help
in regulating nutrient transformation, afford plants with nutrients, permit coexistence
among neighbors as well as monitor and manage plant population (Classen et al.
2015). Soil microbial connections involve interactions with each other together with
living organisms’ abundance, multiplicity, and configuration. Plant microbial inter-
action is considered undesirable when the net effects of all soil creatures diminish
plant performance while interactions are desirable when aids brought about by soil
communal improve plant performance such as biomass formation and existence
(Classen et al. 2015).

Furthermore, climate shift is probable to upsurge the intensity, occurrence, and
duration of cyanobacterial blooms in several eutrophic lakes, reservoirs, and estuar-
ies (Paerl and Huisman 2008; Huisman et al. 2018). Imperatively, these
cyanobacterial blooms yield a diversity of neurotoxins, hepatotoxins, and
dermatoxins, which can be deadly to birds and mammals as well as impend the
use of waters for recreation, drinking water invention, irrigational agriculture, and
fisheries (Huisman et al. 2018).

Significantly, microorganisms respond differently to the change of climate
because of their variance in physiology, growth rates, and sensitivity to temperature
(Castro et al. 2010). It has been reported that when forest temperature was warmed
by 5%, a change in soil bacterial abundance was noted whereby an increase in
bacterial to the fungal proportion of the community was registered (DeAngelis et al.
2015). This kind of alteration of the microbial communal as a result of temperature
modification is expected to cause a shift in ecosystem functions. Imperatively,
according to Bakken et al. (2012), some microbes are responsible for “nitrogen
fixation, nitrification, denitrification, and methanogenesis.” Therefore, alteration in
the comparative copiousness of living organisms that controls precise progressions
could have an unswerving impact on the amount of that progression. Moreover, a
warming study done on forest soil showed a sequential discrepancy in organic or
biological matter putrefaction and CO2 release (Melillo et al. 2017). This led to a
significant change in the microorganism community and carbon use efficiency. In
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general, Melillo et al. (2017) in their study predicted anthropogenic climate change
as a result of long-term cumulative and constant carbon release. Furthermore, carbon
effect on the harmful cyanobacterial genus Microcystis was studied. Both field and
laboratory experiments showed that the Microcystis spp. uptake of CO2 and HCO�

3
was discovered to depend on the concentration of inorganic carbon (Sandrini et al.
2016).

A modification in temperature level results in a sudden change in soil moisture
thus affecting the microbial community. Studies have shown that the bacterial
community displays a rapid response to moisture pulses while the fungal group
shows a slow response (Bell et al. 2008). Further, dry periods favor the fungal
community. It has been established that a 30% reduction in water holding capacity
shows fungal community dominating (Kaisermann et al. 2015). This tendency
reveals that during non-dry extreme wet-dry conditions greater fungal population
than bacterial community prevails (Kaisermann et al. 2015). Also, studies on the
effect of elevated temperature on microbial respiration rates and mechanisms have
been carried (Barton et al. 2016). It has been established that in soils with high-
temperature settings registered lower respiration rates, showing that thermal or heat
adaptation of microorganisms could decrease encouraging climate reactions
(Bradford et al. 2019).

5.4 Pesticides: Types and Its Applications

Pesticides, according to Rani and Dhania (2014), are a massive and diverse set of
constituents that are considered precisely to destroy organic/biological organisms
such as weeds, insects, and rodents. Nevertheless, the prevalent applications of
pesticides can result in the accrual which can affect agricultural yield, cause trun-
cated biodegradability and this has caused pesticides to be classified as persistent
toxic substances (Rani and Dhania 2014).

These are organic chemicals deliberately used for growing agricultural harvest,
soil output, quality of products, reducing losses of agricultural products owing to
crop pests, and for prevention of the human and animals’ epidemic outbreak through
insect vectors control. The use of pesticides in the field of agriculture after World
War II lead to a progressive increase in world food production. Lately, more than
500 compounds were registered and used as pesticides globally (Parte et al. 2017).

Pesticides are applicable in various sectors of the economy such as health,
agriculture, and industry. They are used essentially for monitoring various pests
and disease carriers. They are mostly applied in agriculture for the monitoring of
undesirable plants, insect plague, and diseases in both plants and animals (Meena
et al. 2020; Mehjin et al. 2019). They are used in public well-being for vectors of
infection/disease killing like mosquitoes and to kill pest damaging agricultural
products. They vary in their chemical, physical, and undistinguishable features
from one class to another. They are categorized based on their features and are
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studied under their specific groups. Pesticides are grouped into different categories
depending on their requirements. The three common techniques of pesticide classi-
fication are based on the means of entry, pesticide purpose and the pest organism to
destroy, and the pesticide chemical configuration (Yadav and Devi 2017).

The application of pesticides is of great significance in the protection, prevention,
mitigation, and destruction of pests and diseases that could impair agricultural
produce. They are applied essentially in the agricultural process to increase agricul-
tural productivity to improve the standard of living (Meena et al. 2020; Mehjin et al.
2019).

Notwithstanding the benefits of the application of pesticides in agriculture and
other endeavors, there have also been some consequences accompanying their
applications. Consequently, the effluence resulting from the application of pesticides
to living organisms as well as the environment have incessantly remained a course of
apprehension (Mostafalou and Abdollahi 2017; Herndon and Whiteside 2019).
However, our concern in this section is mainly on the implication’s connection
between climatic change and pesticides.

According to Palikhe (2007), when pesticides are used there is a possibility of the
pesticides being moved from the area where they are used to other areas. Conse-
quently, their mobility makes them occasionally move via air, land, soil, and water.
Mostafalou and Abdollahi (2017), reported in their study that one of the foremost
problems with the movement of pesticide from one area to another is that during
such movement, they might come in contact with living organisms, and such
connection can result in some impairment of both the living organisms and the
environment. Pesticide exposure has led to immeasurable infections, development of
cancer, and the death of thousands of people annually (Palikhe 2007; Mostafalou and
Abdollahi 2017; Meena et al. 2020; Mehjin et al. 2019).

Another main problem accompanying the application of pesticides is
bioaccumulation and biological magnification. Accordingly, the application of pes-
ticides is now causing enormous menaces due to the obnoxious side effects of the
chemical composition. These effects are perceptible in the environment mostly in
food quality, biodiversity, human well-being, and changes in the climate
(Mostafalou and Abdollahi 2017; Meena et al. 2020; Mehjin et al. 2019).

For categorization based on the means of entry, how pesticides interaction with
the target are known as means of entry such as systemic, contact, stomach poisons,
fumigants, and repellents. While for categorization based on pesticide purpose and
pest organism they destroy, pesticides are categorized according to the target pest
organism and they are given a precise name to show their action. The names of the
pesticide group come from the Latin word “cide”, which means “to kill or killer”, are
used as a suffix after corresponding pests name, they kill. Other pesticides are
categorized according to the purpose such as development regulators that inspire
or reduce pest growth, repellents which repel pests, desiccants which haste the
aeration of plants for automatic harvest, or causes the dehydration or death of insects
and chemosterilants, which sterilize pest. For categorization based on the chemical
composition of pesticides, it is one of the furthermost techniques used for pesticide
classification based on their chemical composition and dynamic ingredient nature.
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This kind of categorization gives hint about the efficacy, and chemical and physical
features of the various pesticides. The chemical and physical characteristics of
pesticide information are greatly valuable in the determination of the application
mode, application precautions, and the rates of application. According to Yadav and
Devi (2017), based on chemical configuration, pesticides are categorized into four
key categories which are; “organochlorines, organophosphorus, carbamates, and
pyrethrin and pyrethroids.”

There is a progressive increase in demand for pesticides, with more than 50% of
the pesticides used are from Asia. The growing worldwide request for quality
protein-rich food resources for the increasing population of the world allows for
the need for the ecologically sound strategy development for sustaining soil health
and evolving food security with soil biodiversity degradation (Meena et al. 2020).

Examples of commonly used pesticides include insecticides, nematicides, fungi-
cides, herbicides, molluscicides, rodenticides, fumigants, disinfectants, wood pre-
servatives, and antifoulants used as primary agents efficient against “insects,
nematodes, fungi, weeds, slug pellets rat and mouse, etc.” (Wesley et al. 2017;
Rani and Dhania 2014). The application of pesticides certainly has a diverse
influence on various species of microorganisms (Meena et al. 2020; Mehjin et al.
2019). It is therefore imperative to understand how these consequences of the use of
pesticides affect the environment and use the resulting understanding to prognosti-
cate the ubiquity of pesticides in such contaminated environments to confound
standard regulatory procedures.

Insecticides are generally the most harmful to the environment followed by
fungicides and herbicides (Yousaf et al. 2013). Despite the enormous volume of
pesticides used, organophosphorus (OP) pesticides are a wide range of insecticides
used on a broad spectrum of crops like vegetables, fruits, grains, and ornamentals.
They are designed to repel or kill pests but can also be detrimental and deadly to
other organisms including humans (Rani and Dhania 2014).

Other types of insecticides used counter to insects in all developmental forms
according to Wesley et al. (2017) are “ovicides, larvicides, and adulticides used
against the eggs, larvae, and adult stages of insects, respectively.” However, the
extensive use of insecticides has resulted in severe contamination and pollution of
the environment, with the lingering effects, including carcinogenicity, mutagenicity,
reproductive harmfulness, and respiratory and circulatory implications (Wesley et al.
2017).

Other research studies have shown that in some situations the use of pesticides in
the environment interrupts the equilibrium or stability of the ecosystem (Mostafalou
and Abdollahi 2017; Meena et al. 2020; Mehjin et al. 2019). This according to them,
occurs when the said pesticide applied kills or affects the non-intended target,
thereby alluringly distort the systematic stability of the ecosystem and the environ-
ment possibly will be changed for the benefit of the targeted pest. Such interruption
in the stability of the ecosystem can also lead to climate inconsistency (Herndon and
Whiteside 2019; Nwankwo and Ukhurebor 2019).

Several findings have shown that human-induced actions such as the application
of pesticides and other chemicals (through the emission of GHGs from these
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chemical constituents) to the environment are enormously contributing to vicissi-
tudes in the climate scheme (IPCC 2014; Field et al. 2014).

Report from the United Nations Framework Convention on Climate Change
(UNFCCC 2007) and IPCC (2014) has stated that these GHGs (CO2, CH4, and
N2O) are a consequence from the application of chemical constituents (such as
pesticides) to the environment. These GHGs emissions allow radiation from the
sun to transverse via the atmosphere; nevertheless, do not permit the reflected
thermal/heat energy from going back into space. Hence, causing an upsurge in the
temperature of the earth (Ukhurebor et al. 2020b; Ukhurebor and Nwankwo 2020)
and this action will habitually cause climate variation that could as well cause to
global warming (UNFCCC 2007; IPCC 2014; Field et al. 2014).

According to the statement from IPCC (2014), global warming is now a threat to
living organisms globally. Presently, in Nigeria and several other nations of the
world, there is a tremendous upsurge in the release of GHGs as a result of human
actions (Field et al. 2014). Conversely, some reports have revealed that climate
discrepancy, alteration or change could increase the risk in the diffusion losses of
pesticides occurring from agriculture to the environment (Palikhe 2007). These
incessant changes in the climate will not only disturb agricultural yields but could
also expectedly make effects from the application of pesticides pretentious.

Notwithstanding the eminent harmful aids of pesticides on microorganisms and
other living organisms as well as human well-being and the environment in general,
the means of application and mode of action provides a proportionate advantage to
agricultural productivity. Hence, the efficiency and application of pesticides are
vulnerable to environmental effects.

The changes in the climate system, which conceivably arise from the ensuing of
emission or release of GHGs, global warming, and another additional effluence such
as the application of pesticides have been reported to have a significant influence on
mortality rates in most parts of sub-Saharan Africa (Bakshi et al. 2019). Given these
obvious environmental effects of the variations in the climate system, there could be
an inference that the application of pesticides to the environment may also affect
climate change impacts on the environment.

The application of pesticides certainly has a diverse influence on various species
of microorganisms (Meena et al. 2020; Mehjin et al. 2019). It is therefore imperative
to understand how these consequences of the use of pesticides affect the environ-
ment and use the resulting understanding to prognosticate the ubiquity of pesticides
in such contaminated environments to confound standard regulatory procedures.

Due to the detrimental effects of pesticides on some microorganisms, the use of
pesticides is unavoidable. According to Ukhurebor et al. (2020a), “these pesticides
comprising of insecticides, herbicides, and fungicides are a group of potentially toxic
substances that are capable of disrupting the microbial structure and function in
aquatic habitats.”

Bearing in mind the dynamicity and influence of weather in our daily activities, it
is believed that the effects of pesticides used for the prevention, mitigation, and
destruction of pests and diseases for the improvement of agricultural efficiency could
also be a contributing factor and vice versa. Ukhurebor et al. (2020a) reported that
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climate change could influence both the use of pesticides, as well as the losses of
pesticides to the environment. Presently, the issue of climate change is one of the
furthermost intellectually stimulating issues confronting the entire human race
(Nwankwo and Ukhurebor 2019).

Research findings from the study carried out by Mostafalou and Abdollahi (2017)
provide a fundamental understanding by what means pesticide arbitrated vicissitudes
in aquatic microbial groups could disturb aquatic groups as well as main environ-
mental progressions such as bioremediation, putrefaction, and cycling of nutrients.
These discoveries are similarly crucial in understanding the anthropogenic chemical
impurities’ effect on the health of humans since aquatic environments are subjugated
by mosquitoes which transport a wide spread diversity of disturbing and dangerous
human pathogens.

Therefore, we must continue to protect our environment from these unfavorable
effects of climate change by extremely tumbling the emissions of greenhouse gases
especially via the use of chemical substances such as pesticides.

5.5 Impact of Pesticides on Microorganisms

In their rightful usage, pesticides are designed to destroy and control/regulate
unwanted biological organisms such as insects, weeds, fungi, and other pests to
enhance crop yields and stability. However, continued usage/misuse of these sub-
stances poses serious environmental problems for both targeted and untargeted
organisms. Pollution by pesticides is well facilitated by the frequency of usage,
amount of rainfall, drainage pattern, properties of pesticides, and activities as a result
of microbes (Mensah et al. 2014). Importantly, this pollution affects aquatic life and
soil ecosystems which comprise of microorganisms, birds, invertebrates, and human
beings.

5.5.1 Effect of Pesticides on Aquatic Microorganisms

The consequence of pesticides on aquatic life is immeasurable. Notably, they
interfere with respiration, growth rate, reproduction, biosynthetic reactions, and
photosynthesis of fundamental microorganisms such as algae, fungi, bacteria, and
plankton. Owing to the importance of microorganisms, any effect on them leads to a
dramatic change in marine life. For example, a compromise of zooplanktons leads to
migration and death of fish which in return prompts the death of many birds that
depend on fish as prey. Furthermore, contamination of breeding sites of amphibians
by pesticides is another concern. Reports have shown that green frogs and latewood
frogs have been affected by an application of atrazine (Storrs and Kiesiecker 2004;
Delorenzo et al. 2001). Having regard to the aforementioned, here we present
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concised highlights on pesticides (examples of some of the insecticides, fungicides,
and herbicides) and their effects on microorganisms.

5.5.1.1 Insecticide

Chlorinated Hydrocarbons: A wide response of marine organisms to chlorinated
carbons have been observed and recorded. Firstly, they affect the respiratory
response of algae (Vance and Drummond 1969; Clegg and Koevenig 1974; Hill
and Wright 1978). At lower concentrations of less than 1 mg/L, endrin, dieldrin, and
aldrin have no elaborate effect on green and blue-green algae respiration. However,
at elevated concentrations of around 100 mg/L, studies have shown a lowering of
adenosine triphosphate levels by aldrin and dieldrin but algal population density was
not altered (Clegg and Koevenig 1974). Nineteen and 17% growth inhibition of
algae by mirex and methoxychlor was reported. Nevertheless, a mixture of the two
comprising of 50 μg/L each did not have any effect on their population growth
(Kricher et al. 1975).

Endosulfan: Insecticide affects reproduction. It has been found that a delay of
meiosis for 5 days was experienced when Chlamydomanas reinhardtii, which is a
green alga, was exposed to a single exposure of endosulfan during its four develop-
ment stages. On the other hand, exposure of 47 and 150 μg/L concentration
weakened, respectively, the growth of female and tetrasporophyte of Champia
parvula (red algae) (Thursby et al. 1985). On the bacterial population, 0.02 and
2 mg/L of endosulfan application resulted in 30.99% and 70.58% population
inhibition of heterotrophic bacteria (Rajendran et al. 1990). Similarly, a reduction
of bacterial abundance was reported when 1 and 10 μg/L concentrations of endo-
sulfan were used in estuarine microbes also resulting in a decline of cyanobacterial
communities (DeLorenzo et al. 1999).

Chlorpyrifos: Studies show that at a concentration of between 1 and 10 mg/L, the
growth of Anabaena (blue alga) was affected by the insecticide (Lal and Lal 1988).
However, the concentration of 0.24 and 0.64 mg/L administered to Skeletonema
costatum and Minutocellus polyorpus proved toxic (Walsh et al. 1998). On bacteria
species, chlorpyrifos results in a reduction of plankton in freshwater ponds with an
application of 1.2 μg/L concentrations (Brown et al. 1976).

5.5.1.2 Herbicide

Brominated Herbicide Diquat: As herbicide, diquat has shown tremendous
effects on aquatic life. For instance, at a concentration of �0.3 mg/L of diquat, a
significant alteration of densities of algae and bacteria is reported. Similarly, at a
concentration greater than 0.3 mg/L, the richness of protozoa is greatly reduced and
there is no recovery after 21 days of exposure (Melendez et al. 1993). Furthermore, a
comparative study has shown varied inhibition of algal and bacterial species. Out of
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this study, two algal species exhibited 53–69% inhibition of 14 C (carbon-14)
uptake, another two showed 99–100% while cyanobacteria (five species) showed
100% inhibition (Peterson et al. 1994).

Phenylurea Herbicide: It affects growth, reproduction, and proved toxic. A
decline in the growth rate of Chlorella sp. was experienced when the admission of
monuron (a type of phenylurea) of 4 mg/L concentration was made (Cho et al. 1972).
The same concentration proved toxic to marine species when diuron, a lethal
phenylurea, was added (Ukeles 1962). The herbicide diuron is considered the most
toxic phenylurea. Reproduction inhibition of Chlorella fusca was observed with
23.39 mg/L of chlortoluron, another type of phenylurea (Faust et al. 1994).

Atrazine: The herbicide has expansive effects on the algal community. The effects
depend on exposure time, concentration, and the type of species involved. For
example, 1 μg/L of atrazine results in 41–67% decrease of chlorophyll in Chlorella
vulgaris and Stigeoclonium tenue. After 7 days of exposure, similar results were
observed in Oscillatoria lutea which is a blue alga (Torres and O’Flaherty 1976). A
35% inhibition growth rate of Nannochloris oculate was reported when 50 μg/L was
used (Mayasich et al. 1986). Interestingly, the same amount showed no effect on the
growth rate on Phaeodactylum tricornutum. Conversely, a 5000 μg/L concentration
suppressed five algae growth rates (Stratton 1984).

5.5.1.3 Fungicide

Fungicide has similar effects to those discussed on insecticides and herbicides.
Herbicides like ethyl mercury (Ukeles 1962), zineb, and nabam are toxic to algae
(Moore 1970). They inhibit growth, an example being organomercury which with a
dosage of <1 μg/L reduced plankton growth and its photosynthesis (Harriss et al.
1970). Inhibition of carbon-14 uptake has also been reported in several algae
(Peterson et al. 1994). This observation was witnessed on the Scenedesmus
quadricauda, a blue alga, when 0.08 mg/L of triazole was used with the uptake of
carbon-14 was from 0 to 30% experienced. Also, Rajendran et al. (2007) examined
the effect of biopesticide, an insect repellent/insecticide, and a fungicide on
Tolypothrixscytonemoides. The authors stated that the extents of the photosynthetic
oxygen development reduced but the rate of respiratory oxygen utilization was
enhanced in the algae cell exposed to these chemicals (pesticides). It was observed
that the glutamine synthetase action was affected in all the pesticides with the
exception of bavistin that improves the nitrogenis activities. Moreover, the liberation
of carbohydrate and ammonia was drastically improved in the cells that were
exposed to the pesticides but there was a decrease in the liberation of carbohydrate
when treated with bavistin.
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5.5.2 Impact of Pesticides on Terrestrial Lives

Impact on humans: Three different ways through which humans are exposed to
pesticides include; direct deposition or contact of pesticides, consumption of con-
taminated fees (food, water, or drinks), and inhalation of polluted air (Sánchez-Bayo
2011). Pesticides have proved to be toxic and the magnitude or nature of toxicity be
subject to the amount, nature of the chemical, means of exposure (whether orally,
dermal, or inhaling), and organism type (Yadav and Devi 2017). The noxiousness
can be acute (severe) or chronic (long-lasting). Severe effects result from a single
exposure of harmful effects entering through any route. It causes severe infection/
illness and humans develop symptoms such as headaches, body aches, skin rashes,
poor concentration, nausea, dizziness, impairment of vision, cramps, fright or panic
attacks, and in severe cases coma. On the other hand, chronic effect emanates from
the repeated dosage of small amounts extended over some time. Chronic effects
include birth implications, noxiousness to a fetus, formation of benign or malignant
tumors, genetic vicissitudes, blood disorders, nerve disorders, endocrine interrup-
tion, and reproduction implications (Yadav and Devi 2017). A good example
summing up effects on humans is a report which indicates that a staggering number
of 5000–20,000 of persons are killed and over a million get poisoned per year
(Yadav et al. 2015; FAO/WHO 2000).

Impact on soil microflora: The interaction of soil with pesticides may change
biochemical reactions, enzymatic activities, and microbial diversity. Microbial
diversity alteration will eventually result in loss of fertility. The killing and imbal-
ance of microbes’ community may adversely compromise fundamental responses
such as nitrogen fixation, nitrification, and ammonification (Yadav and Devi 2017;
Hussain et al. 2009; Munoz Leoz et al. 2011). This will result in death of some
organisms, reduction in nutrient cycling and decomposition, low productivity,
infertility, etc.

For instance, it has been recognized that important soil microorganisms that could
colonize the roots of plants such as arbuscular mycorrhizal fungi and bacteria could
form a symbiotic relationship with many plants and enhances their growth. These
beneficial microorganisms also possessed the capability to enhances the growth of
plants even under a normal or stressed condition (Sainz et al. 2006; Saleem et al.
2007). Also, the utilization of pesticides possibly will stimulate the effects of such
pesticides which could consequently affect the activities of such microorganisms.

Sainz et al. (2006) examined the influence of soil pollution with hydrogen
cyanides on the vegetation and its relationship with arbuscular mycorrhizae in a
noncontaminated soil and in highly contaminated soil having the same plant cover.
The authors used Plantago lanceolata plants during the mycorrhizal evaluation
which might be linked to their presence in both plots with known mycotrophy. It
was observed that the hydrogen cyanide did not have any significant influence on the
rate of colonization of Plantago lanceolata by the arbuscular mycorrhiza fungi while
the density of the arbuscular mycorrhiza fungal spores and viable arbuscular
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mycorrhiza hyphae were minimal in HCH-polluted soil when compared to the
nonpolluted soil.

Verdin et al. (2006) evaluated the effect of anthracene on the rate of colonization
of chicory root by Glomus intraradices. The authors discovered that the utilization
of anthracene decreased the growth of extra radical mycelium which led to reduction
in the rate of spore germination, sporulation, and root colonization. Vieira et al.
(2007) stated that the influence of sulfentrazone on rhizobial and mycorrhizal
effectiveness of soybean plant. They observed that pesticides possess the capability
to reduce the microbial infection of soybeans which consequently affect the rate of
nitrogen fixation and the total growth of plants also. Fox et al. (2007) showed that the
application of organochlorine pesticides reduced the growth of rhizobial bacteria on
host plant root which consequently led to a decrease in root nodules, decrease the
rate of nitrogenase activity, and decrease the yield of the harvested plant.

5.6 Significance of Dynamics that Influences Application
of Pesticides and Climates Changes on Microbial
Diversity

The influence of pesticides on the level of beneficial microorganisms available in
the soil is regulated by numerous environmental factors such as its bioavailability,
the level of toxicity of the pesticides, their persistence, and the concentration of the
pesticides (Abdel-Mallek et al. 1994). Moreover, it has been observed that the
process of desorption and adsorption also performs a crucial aspect in regulating
the level of pollutant accessible in the soil solution (Bonczek and Nkedi-Kizza 2007;
Katagi 2008) which consequently affects its bioactivity, bioavailability, and the level
of its biodegradation in the soil.

Menon et al. (2004) investigated the inhibitory consequence of quinalphos and
chlorpyrifos available in the sandy loam soil and loamy sand soil which might be
linked to the greater bioavailability of the pesticides in loamy sand. This could be
linked to the small level of organic content and clay content. The study carried out by
Gundi et al. (2005) investigated the influence of three main insecticides containing
cypermethrin, monocrotophos, and quinalphos on the microbial inhabitants avail-
able in the dark clay soil. It was detected that the comminatory influence of these
pesticides when applied at a lower level had a detrimental effect on these microor-
ganisms. Widenfalk et al. (2004) observed that the following pesticides containing
deltamethrin, pirimicarb, captan, isoproturon were observed to have a detrimental
effect on freshwater sediment microbial communities when applied a safer concen-
tration that has been recommended to be eco-friendly.

Moreover, the presence of organic matter, soil texture, and vegetation was
observed to have a greater influence on the level of toxicity on the soil microorgan-
isms in the soil. The augmentation of different sources of carbon-containing acetate
and glucose and protein source, such as tryptophan, glutamine, serine, arginine,
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improves the level of resistance of some soil fungi to pesticides applied (Mishra and
Pandey 1989). Moreover, it has been observed that the application of tillage or no
tillage does not have any effect on the effect of pesticides applied to the environment.
It was observed that there was presence of more soil retention in the presence of
organic matter with enhanced level of accumulation of constituent parts (Murage
et al. 2007).

It was observed that these processes enhance the cycling of microbial biomass
and the fate of soil biological or organic matter. Therefore, the application of
pesticides under some of these conditions have a diverse influence on soil microbial
biomass and their diversity. Santos et al. (2006) evaluated the influences of herbi-
cides containing fomesafen and fluazifop-p-butyl as well as the combination of their
mixture on microbial activities of soil when bean was planted without the application
of conventional tillage and tillage system. They studied the rate of microbial
respiration for a period of 12, 51, and 63 days after the application of herbicides.
The following microbial variables/parameters were evaluated; microbial biomass
carbon, grain yield, metabolic quotient, microbial quotient, and proportion of bean
root colonization by mycorrhizal fungi at the conclusion of the cycle. The authors
stated that there was an enhanced microbial respiratory rate when the process of
tillage was not applied, with fluazifop-p-butyl showing the minimal respiration. The
microbial biomass carbon and microbial quotient were negatively affected when
subjected to 12 days application containing fomesafen and by combined herbicide
mixtures.

Also, it was observed that the herbicides influence the rate of mycorrhizal
colonization after 12 days of application under controlled tillage system. Moreover,
it was observed that the herbicides applied led to reduction in the level of microbial
biomass carbon and microbial quotient values after 15 days of application, while
microbial quotient showed an enhanced activity under no tillage system when
compared to the controlled tillage system. Furthermore, it has been observed that
the presence of numerous pesticides together with other natural soil conditions and
other contaminants may affect the functionality of such pesticides at a particular
period of time most especially on the microbial diversity or their level of activities. In
the study carried out byWang et al. (2006) they performed a work on the influence of
urea and methamidophos on the microbial multiplicity available in the soil utilizing
community-level physiological profiles and integrated methods of soil microbial
biomass approaches. The authors suggested that the agrochemicals possessed the
capability to decrease the level of soil microbial biomass and increase the functional
diversity of soil microbial groups which shows that several species of the bacteria
could be improved in soil subjected to different methamidophos pressure (Wang
et al. 2006).

Also, Demanou et al. (2006) evaluated the consequence of synergestic effect of
mefenoxam and copper when combined on the functional multiplicity of soil
microbial community when subjected to metabolic and structural profiling using
RNA arbitrarily primed and capriciously primed polymerase chain reaction. It was
observed that amoA, a functional molecular indicator for b-subgroup ammonia-
oxidizing bacteria was affirmed in the treatment containing mefenoxamþcopper
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and mefenoxam containing enhanced gene copies as well as increase in the level of
soil nitrification after 60 days of application. It was also resolved that Nitrosospira-
like organisms constitute the significant nitrifiers under mefenoxam dealings.

Conversely, these observations could vary when pesticides are used under dif-
ferent conditions. For example, Sáez et al. (2006) established the influence of
different pesticides containing diflubenzuron, aldrin, captan, lindane, methidathion,
dimethoate, atrazine, and methyl parathion on the activity and growth of
Xanthobacter autotrophicus CECT 7064 which is a denitrifying microorganism. It
was observed that the insecticide dimethoate and herbicide atrazine totally affected
the biological activity and growth of X. autotrophicus when applied at 10 mg/L but
the remaining tested pesticides prevented the development of strain CECT 7064
without affecting the growth of bacteria after 96 h of culturing. The pesticides
applied negatively affect the biological activities of X. autotrophicus with the
exemption of fungicide captan. It was also observed that the liberation of N2O was
strongly affected by numerous pesticides containing diflubenzuron, aldrin, methyl
parathion, methidathion, and lindane while simazine, dimethoate, and atrazine,
affected the activities of denitrifying microorganisms available in the soil (Sáez
et al. 2006).

In the study carried out by Wang et al. (2007), they examined the synergistic
effect of butachlor and cadmium on microbial activity. The result obtained showed
that the incorporation of a higher concentration of butachlor applied together with
cadmium enhances the level of soil multiplicity of the microbial community. How-
ever, the combination of the fertilizer together with pesticides affects the action of
soil microorganisms available in the soil environment.

5.6.1 Influence of Pesticides on Algae

It has been observed that pesticides have a detrimental effect on algae by affecting
their metabolic activities, nitrogen fixation, growth, biochemical structure, and
photosynthesis (Friesen et al. 2003; Fathi 2003; Ma et al. 2002; Mostafa and Helling
2002; Ma and Liang 2001). Moreover, small information has been recorded on the
influence of pesticides on numerous algal species (Ma et al. 2004a, b).

In the study carried out by Ma (2005), they tested the effect of five pyrethroids
and organotins pesticides on three different cyanobacteria containing “Microcystis
aeruginosa, Anabaena flosaquae, andMicrocystis flosaquae,” respectively while the
five algae include Chlorella pyrenoidosa, Selenastrum capricornutum, Chlorella
vulgaris, Scenedesmus quadricauda, and Scenedesmus obliqnus, respectively. The
experiment was carried out for a period of 96 h acute toxicity tests. The authors
observed that there was variation in the level of responses observed by different
algae when exposed to the pesticides. It was observed that the level of pyrethroids
pesticides toxicity was lower when compared to that of the organotin pesticides but
the ecological risk of pyrethroids pesticides was more pronounced when compared
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to that of organotin pesticides. The difference in their variation might be linked to the
variation in their rate of metabolic activities.

5.7 Conclusion and Future Recommendation to Knowledge

This chapter has provided a detailed information on the detrimental effect of
pesticides on beneficial microorganisms as well as their influence on climate
change, which have been highlighted with numerous activities in the ecosystem. It
was observed that appropriate precaution needs to be put in place for effective
application of pesticides in the environment for effective protection of all the
beneficial microorganisms and other living organisms as well as human health and
the protection of the ecosystems. There is a need to perform more in vitro and in
vivio experimental assays on the effects of these pesticides on essential soil functions
as well as the effect of climate changes. There is a need for government,
policymakers, and scientists to put necessary measures in place that will regulate
the application of pesticides, thereby minimizing the health and environmental
hazards. The application of biopesticides could be a sustainable, eco-friendly, and
cost-effective technique that could lead to the maintenance of a cleaner environment.
Moreover, the application of biosensors and climate smart agriculture should be
encouraged as well as adequate sensitization most especially on modalities of mod-
erating the rates of pesticides applied in the environment.
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Abstract Heavy metals are ubiquitous elements, and some of them play unique
roles in biological systems. They are key components of soil as some of them are
eco-friendly in their geochemical state. The continual increase in their concentration
due to the increasing anthropogenic influences such as mining, agricultural process,
and combustion of fossil fuels among others is the cause for concern. Most of these
metals though present in various components of the environment are more concen-
trated in the soil, which acts as a natural storeroom for environmental waste from all
other media. The high content of these metals in soil is toxic not only to plants and

A. Inobeme (*)
Department of Chemistry, Edo University Iyamho, Auchi, Edo State, Nigeria
e-mail: inobeme.abel@edouniversity.edu.ng

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
C. O. Adetunji et al. (eds.), Microbial Rejuvenation of Polluted Environment,
Microorganisms for Sustainability 27, https://doi.org/10.1007/978-981-15-7459-7_6

115

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7459-7_6&domain=pdf
mailto:inobeme.abel@edouniversity.edu.ng
https://doi.org/10.1007/978-981-15-7459-7_6#DOI


animals but also to microorganisms that play an indispensable role in soil and aid the
sustenance of natural cycles. This chapter examines the effect of heavy metal on soil
microorganisms. The effect of heavy metals on microbial biomass, population,
activities, and diversity is discussed. The methods for assessing heavy metal toler-
ance in microorganisms are also presented, and finally a brief review on the
mechanisms of adaptation of soil microorganisms to high concentration of heavy
metals is also provided.

Keywords Biomass · Heavy metals · Microorganisms · Pollution and soil

6.1 Introduction

Soil is the fundamental natural resource for human existence; even in the modern
social life, soil is still the most fundamental element of human production which
links various activities of man together (Chu 2018a, b). Heavy metal pollution is a
severe global environmental problem as it adversely affects living organisms. It also
affects significantly the components and activity of soil microbial communities (Xie
et al. 2016). The role of microorganisms in the environment, most especially soil,
cannot be overemphasized. Bacteria, fungi, algae, and their enzymatic activities are
of pertinent relevance, and factors such as those that affect microbial metabolic
activity, diversity, biomass, distribution, and abundance are therefore of major
concern (John 2017).

The presence of heavy metals in the environment at high concentrations has lethal
effects on animals, plants, and microorganisms. Metals such as Hg, Cd, and Pb have
no known physiological role in plants and animals and are highly toxic even at trace
amount. Toxic metals are common contaminants of natural waters and soils and may
significantly affect the vital biodegradation processes taking place naturally in the
environment. The primary reason why heavy metal pollution is a pressing issue is
due to their hazardous nature and unique tendency to bioaccumulate in different
groups of microorganisms, plants, animals, and man, which are responsible for
various metabolic and physiological disorders (Banerjee et al. 2015).

Various researchers have reported the toxicity of heavy metals on tissues of plants
and animals. There are however varying documentations on the impacts of heavy
metal pollutions on soil microorganisms. The harmful effect of these metals on plant
growth and microbial activities would in turn influence the growth of plants
(Chibuike and Obior 2014). This would no doubt constitute fear on the fast growing
human population, which depends on the yield from these plants.

Safeguarding soil quality is therefore paramount for sustainable agriculture. Soil
biology is a significant component of soil quality, and microorganisms are useful in
the maintenance of soil fertility and primary production through organic matter
decomposition and cycling in nature (Adília and Pampulha 2006). Assessing soil
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microbial community could be an indication of the degree of soil heavy metal
pollution and the impact of heavy metal pollution on soil quality. The effects of
heavy metal pollutants could be enormous especially on microbial activities
(Oijagbe et al. 2019).

Due to the combined properties such as persistency, toxicity, and
non-biodegradability of heavy metals, they have become an issue of much concern
and have increasingly attracted the attention of researchers. This chapter examines
the effect of heavy metals on soil microorganisms.

6.2 Concept of Heavy Metals

Heavy metal elements in chemistry generally refer to a metal with a density higher
than 5.0 g/cm3 which includes 45 elements such as iron, manganese, lead, copper,
zinc, cadmium, and mercury (Chu 2018a, b). They are elements that are found
naturally with a density that is five times that of water and a relatively higher atomic
number (Oijagbe et al. 2019).

The concept of heavy metals, actually, does not avail itself to a consensus defini-
tion. Some arguments have been put forward with regard to what should constitute a
“heavy metal” and what element should be accurately grouped as such. Some writers
attempt their definitions from the perspective of atomic weight, while others look at it
from the viewpoint of specific gravity higher than 4.0, or greater than 5.0. More
currently, the term has been applied as a general term for metals and metalloids that
constitute toxicity to humans or the environment (Saunders et al. 2013).

The varying distribution of these metals in soil, water, and other components of
the environment is vital in the general assessment of metals in the ecosystem. The
reason for the pressing interest in heavy metals among other contaminants is that
they are difficult to degrade by the natural environmental processes and have high
capacity to bioaccumulate in living cells (Chu 2018a, b). Agricultural produce
cultivated on soil with enriched heavy metals content shows deteriorated growth,
poor transpiration, yellowing of leaves, poor germination of seeds, and deformed
root system (Jadwiga et al. 2013).

Some of the metals such as cerium, tin, gallium, thorium, and zircon have no
known functions in biological systems. Iron, molybdenum, and manganese are
useful trace minerals and have little toxicity. While nickel, copper, cobalt, zinc,
and vanadium are essential nutrients but are toxic. Silver, cadmium, antimony,
mercury, and lead do not have known roles and are extremely toxic (John 2017).

6.3 Heavy Metals in Soil

Heavy metals are distributed differentially in various aspects of the environment: air,
water, soil, and tissues of organisms. Most of these metals have higher proportion in
soil, since soil acts as a natural storehouse for all environmental waste. The content
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of iron and manganese naturally in soil is relatively high, and their pollution effects
are not usually insignificant. Heavy metals in soil are divided into two categories
from the biochemical characteristics: one is harmful to crops and humans and
animals, such as Pb, Cd, and Hg; the other is beneficial when present in the desired
quantity, but when present in excess would have lethal effects. Examples are Cu, Zn,
Mn, and so on (Xie et al. 2016).

Metals when present in soil exist either as separate entity or combined with other
components. These components may include exchangeable forms adsorbed on the
surfaces of ionic solids, non-exchangeable forms and insoluble metal compounds
such as calcium and magnesium carbonates and phosphates, soluble metal com-
pound such as chlorides, metal complex of organic materials, and metals binding to
silicate ores (Chibuike and Obior 2014).

Some heavy metals play an extremely important role in biochemical reactions,
which are significant for the growth and development of microorganisms, plants, and
animals (Kavamura and Esposito 2010). For example, heavy metals such as copper
and zinc are vital components of physiological processes in all living organisms,
including plants, animals, and microorganisms. Zinc (Zn), copper (Cu), etc. are vital
micronutrient for growth and enzymatic activities of heterotrophic bacteria. How-
ever, excess load of the same metals show toxicity and inhibition to microbial
processes (John 2017).

Although heavy metals are naturally present in the soil, geologic and anthropo-
genic activities increase the concentration of these elements to amounts that are
harmful to both plants and animals. Some of these activities include mining and
smelting of metals, burning of fossil fuels, use of fertilizers and pesticides in
agriculture, production of batteries and other metal products in industries, sewage
sludge, and municipal waste disposal (Chibuike and Obior 2014). Soil also gets
contaminated with metals from a variety of anthropogenic inputs, most especially
irrigation with wastewater. The use of contaminated water for irrigation contributes
to the accumulation of chemical and biological contaminants in soils and alters the
physicochemical and biological properties of soils (Kouchou et al. 2018).

Pollution of soil by heavy metals refers to the release of metals such as cadmium,
lead, mercury, chromium, and other elements that are biotoxically significant in the
soil, bringing about amounts that are higher than the permissible limit. Some heavy
metals have been identified as priority pollutants, which include argon, arsenic,
copper, mercury, nickel, lead, zinc, selenium, thallium, beryllium, and silver.
These metals and metalloids are 13 in all (Sparks 2005). They are found naturally
in rocks, minerals, and various anthropogenic inputs such as mining, sewage sludge,
industrial waste, agricultural activities, electronics, and energy production among
others (Gilmour and Riedel 2009). Heavy metals are found naturally in soils
resulting from weathering of underlying bedrock or through mineral processing
processes (Shakoor et al. 2015) and their contents in soils depend on the nature of
the parent material, where it is found and its age. They represent less than 1% of the
composition of the earth crust due to alteration of rocks and natural incidents.

More recently, the release of a large amount of these metals from industries and
mining which finally goes into the soil has led to a rise in the contents of heavy
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metals in soil. The wide usages of pesticides and fertilizers in farms have also
contributed to the increase in soil heavy metal concentrations (Park et al. 2016).

6.4 Methods for Assessing Effect of Heavy Metals on Soil
Microorganisms

Different methods have been employed for the assessment of the effect of heavy
metals on soil microorganisms.

6.4.1 Colony Count Method

Fungal abundance and species composition are commonly determined by the colony
count technique and identification by macro- and micro-morphological observations
of fungal cultures after subculture on potato dextrose agar, malt extract agar,
cornmeal agar, Czapek’s agar, and Sabouraud agar media. This method was adopted
by Pečiulytė and Dirginčiutė-Volodkien (2009) in their study on the effect of long-
term soil pollution on microorganisms’ diversity.

6.4.2 Agar Diffusion Assay

Heavy metal tolerance by microorganisms can also be tested using the agar diffusion
assay method. Solutions of different concentrations of heavy metals of interest are
prepared from 0 to 1000 μg/ml through selected ranges of concentrations using the
respective metal salts. Metal solutions are saturated in the wells dug on the culture
medium in the Petri plate, and the tolerance index is then determined by studying the
respective zones of inhibition (Nanda and Jayanthi 2011).

6.4.3 Respiration Rate

The respiration rate of soil microorganisms varies depending on the extent of
pollution of the soil. With regard to the respiration rate of polluted soil samples in
a particular area, a soil sample that is more contaminated would give a lower rate of
carbon dioxide production when compared to a less polluted soil (Joonu and Divya
2017). The addition of heavy metals such as Pb and of Cr, Cd, Cu, Zn, and Mn to soil
samples also caused a decrease in respiration rates. Tayebi and Ahangar (2004)
reported that sandy soils gave about a 15% decrease in the rate of respiration when
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375 ppm of lead was added to it, the lowest concentration used, whereas a clay soil
required 1500 ppm Pb to give the same inhibitory effect. Peat soils showed no effects
even when the concentration of lead was highest (7500 ppm).

6.4.4 Growth Studies

This method was employed by Nair et al. (1992) in assessing the effect of different
salt concentrations on microorganisms. Growth studies of bacteria such as Bacillus
subtilis, Escherichia coli, and Klebsiella pneumoniae can be carried out in nutrient
broth medium supplemented with peptone and yeast extract, etc. 10 μl of culture is
inoculated into the nutrient broth medium supplemented with copper and nickel
metal; then it is analyzed for growth studies. This can be done in a broad or narrow
range:

Broad range: using this technique, different salt concentrations of metals are used in
this technique to test the effect on the different isolates. The isolates are inocu-
lated in a broth containing heavy metals at varying concentrations and incubated
for 3 h. Then readings in UV spectrophotometer are taken at different time
intervals. A plot is then drawn using the obtained readings.

Narrow range: The isolates are tested for metal tolerance using about three different
concentrations of the metals. Copper chloride and ammonium sulfate salts of
nickel are used in varying concentrations such as 10, 15, and 20 mM. The isolates
are inoculated in a broth containing heavy metals at different concentrations and
are incubated for 24, 48, and 72 h. Then readings in UV spectrophotometer are
taken at different time intervals. By using the readings, graphs were plotted
(Joonu and Divya 2017).

6.5 Role of Soil Microorganisms

Soil contains a variety of microorganisms including bacteria, fungi, and many others
which together constitute the natural ecosystem. Microorganisms play a vital role in
nutritional chains that are an important part of the biological balance in nature, where
bacteria are essential for maintaining some of the natural cycles such as nitrogen,
carbon, phosphorus, and sulfur (Kummerer 2004).

Microorganisms are also known to play important roles in plant nutrient
recycling, soil structure conservation, poisonous chemical detoxification, and plant
pest control and management (Filip 2002). In their geoactive roles in the biosphere,
they are also essential, especially in the areas of biotransformation elements and
biogeochemical cycling, metal and mineral transformations, decomposition,
bioweathering, and soil and sediment formation. All sorts of microbes, including
prokaryotes and eukaryotes and their symbiotic interactions with each other and
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“higher species,” will actively contribute to geological phenomena, and the trans-
formations of metals and minerals are central to many such geomicrobial processes
(Gaidi 2010).

It should also be emphasized that the general metabolic activities of all microbes
influence the distribution and bioavailability of metals, not only because of the
metabolic essential nature of many metals and the existence of unique biochemical
mechanisms for their cellular accumulation but also because of the decomposition or
biodeterioration of organic and inorganic substrates (Huang et al. 2004).

Microorganisms synthesize soil enzymes and serve as biological catalysts to
promote various reactions and metabolic processes to break down organic contam-
inants and to generate important compounds for microorganisms and plants (Moreno
et al. 2002).

Microorganisms also act as a bioindicator for soil contamination, particularly
from pollutants such as heavy metals. If the concentration of heavy metals in the soil
is above their basic level, a distinction can be made between non-contaminated and
less polluted soils. Using this characteristic, however, the boundary between low
pollution level and the next, medium level cannot be established. Microbiological
indicators are the most appropriate for suggesting this level of pollution, because
changes in the composition of the soil microbial community occur at a medium level
of pollution with adverse effects (Djukic and Mandic 2000).

Studies have documented that the occurrence of negative properties in the soil is
directly associated with the distribution of special component activities within
the soil microorganism complex. For example, the proportion of microorganisms
in the epiphytic chromogenic forms and the amount of toxinogenic micromycetes in
the soil are increased. Consequently, the redistribution of active microorganisms by
the degree of dominance can justifiably be regarded as a fundamental property of the
pre-pathological stage of the microbial community in the soil (Jacoby et al. 2017).

Soil microorganisms are responsible for the improvement of soil fertility and
structure. The major components of enzymes present in soil are contributed by soil
microorganisms, which account for metabolic activity and biomass, and a short
lifetime (Kuzyakov and Blagodatskaya 2015).

Soil bacteria are considered to play a very important role in maintaining soil
properties although there are other microorganisms apart from them. Soil fungi are
made of three functional groups: decomposers, mutualists, and the pathogenic
group. Fungi, along with bacteria, are important decomposers helping to break
down substances into organic matter (Kouchou et al. 2018).

Microorganisms may typically protect plants grown in metal-contaminated soils
by improving root metal retention and helping plants to obtain adequate nutrients
and recycle organic matter (Xie et al. 2016).

Various researchers have reported that microbial parameters are relevant indica-
tors for assessing changing soil conditions brought about by chemical pollution
(Adília and Pampulha 2006).

Soil microorganisms are the key modulators of various ecological cycles such as
soil carbon, nitrogen, phosphorus, sulfur, and other elements in nature; they promote
nutrient interconversion in nature. Also, soil microbes are almost vital in all
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biochemical reactions in the soil (Chu 2018a, b). For early indication of impact of
heavy metals on soil quality, soil enzymes are used due to their sensitivity to
environmental stress (Rao et al. 2014). Castro et al. (2015) in their study also
reported that fungi and bacteria make up a major component of the soil microbial
biomass and act as very constructive models for studying the harmful effects of
metals at the cellular level (Castro et al. 2015).

In topmost layer of the ecosystems, fungi and bacteria make up about 90% of the
total soil microbial population and are responsible for the regulation of soil organic
matter nutrient availability (Six et al. 2006). Also, the production of mucilage by
bacteria and fungi helps to make up aggregates. Moreover, soil bacteria and fungi
have been reported to exhibit different responses to heavy metal pollution, which
could potentially lead to differences in the distribution and diversity of microbial
communities within both bulk soils and PSFs (Chen et al. 2017).

6.6 Differential Tolerance of Microorganisms to Soil Heavy
Metal Contamination

Various microorganisms showed different levels of tolerance to varying concentra-
tions of metals in the environment. For example, among bacteria, gram-negative
bacteria appear to be more tolerant than gram-positive ones which is in accordance
with the previous statement. Wang et al. (2010) reported the predominance of gram-
negative bacteria in a polluted area that was studied and attributed this to their higher
level of intrinsic metal resistance than majority of the gram-positive bacteria. Also,
Kouchou et al. (2018) reported that the fungi group and actinomycetes showed a
lower tolerance to heavy metals (chromium, copper, and zinc) than aerobic hetero-
trophic bacteria. The dehydrogenase assay is an effective primary test for assessing
the potential toxicity of metals to soil microorganisms (Nweken et al. 2007). Turgay
et al. (2012) reported that the strains of bacteria, obtained from Turkish serpentine
soils, were able to withstand up to 34 mM Ni in the growth medium. In addition,
since organisms at microscopic level are more responsive to environmental pressure
than macro-organisms in soil ecosystems, their tolerance range and level reflect
changes in soil environment as early as possible and are therefore considered to be
reliable indicators of soil quality at a particular time (Akmal and Jianming 2009).

In their study, Ortiz-Ojeda et al. (2017) reported that 11 of the 17 strains of
bacteria tested were able to grow in the presence of various heavy metals (0.5 mM
Pb, Cd, and Co; 0.01 mM Hg). They also noted that the strains were better able to
tolerate the heavy metals when they were grown at pH 5 instead of 4. This means the
ability of the soil microorganisms to withstand different concentrations of metals
also depends on soil pH. Chen et al. (2014) reported a decrease of soil basal
respiration and microbial biomass carbon by 3–45% and 21–53%, respectively, as
a result of high doses of heavy metal pollution.
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In a laboratory study carried out by Ghorbani et al. (2002) to examine the
tolerance of microbes to metals, they observed that the addition of heavy metals to
soil in laboratory ecotoxicological studies leads to a decrease in the microbial
biomass and an alteration in community structure. Akmal and Jianming (2009)
reported that microorganisms differ in their sensitivity to metal toxicity and a high
dose of exposure will lead to instant death of cells due to alteration of basic functions
and to more gradual changes in population sizes due to changes in viability or ability
to compete.

Microorganisms are more sensitive when compared to environmental pressure
due to pollution and even trace contamination when compared to animals, plants,
and molluscs among others. Through the soil microbial changes, whether the soil is
contaminated, the extent of soil pollution, pollution effects, and risks can be deter-
mined scientifically (Krumins et al. 2015). Pollution due to heavy metals may
produce different microbial community patterns. Even when most of the chemical
and biological properties of the soil have been altered, there are many original
microorganisms in the soil that are present in the microbial community (Oijagbe
et al. 2019).

Long-term contamination of soil with heavy metals will select those that can
specifically adapt to the microbial population of contaminated soil. The higher the
organic carbon content in heavily polluted soils, the lower the performance of
organic mineralization microbial populations (Xie et al. 2016). Previous studies
examining the population genetics of this phenomenon found that heavy metal
tolerant ecotypes evolve at an unusual level, while maintaining a high polymor-
phism. This phenomenon appeared to be the least variable parameter when com-
pared to nontolerant populations despite the founder effect and selection (Mengoni
et al. 2000).

There is now substantial evidence of a reduction in soil microbial biomass as a
result of long-term exposure to heavy metal pollution from past sewage sludge
applications as reviewed by McGrath et al. (1995).

Other studies of metal toxicity to microbes such as bacteria often report that the
bacteria have a wide range of mechanisms of resistance to and intracellular absorp-
tion of marine trace metals. For example, cadmium-tolerant communities are likely
to show co-tolerance to Zn (Paulsson and Nyström 2000), and organotin tolerance
simultaneously occurs in association with cadmium tolerance. Such metal tolerance
is a common phenomenon in the soil environment for algae and bacteria (John
2017). Oijagbe et al. (2019) in their study observe a later rise in microbial biomass
carbon and attributed it to the development of tolerance and shifts in community
structure to compensate for the loss of more sensitive populations.

Nonetheless, the fact that fungi tended to be the least affected by the high
concentrations of heavy metals among all the microbial groups studied is not
surprising, as fungi and yeasts are considered the most resistant and therefore
versatile group of soil microorganisms (Iram et al. 2013).

Rajapaksha et al. (2004) in their study compared reactions of various microbial
groups to soil pollution with Zn and Cu and found that the bacteria are far more
prone to soil contamination than the fungi. These authors have observed varying
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effects of soil pH on the microbial reaction to soil contamination, whereby lower pH
increased the harmful effect on bacteria.

From their studies, Teng et al. (2015) suggested that Rhizobia could tolerate high
concentrations of heavy metals in various ways and could play a significant role in
restoring contaminated soil. In comparison, long-term heavy metal effects can
improve bacterial population tolerance as well as fungal tolerance such as arbuscular
mycorrhizal (AM) pillows, which can play an important role in restoring polluted
ecosystems (Jiwan and Ajay 2011).

Species of microorganisms, strains of the same species, and also activities of the
same microbial species can all show noticeable differences in their resistance to
toxicity of heavy metals. Because most bioassays are based on the measurement of
size or activity of diverse microbial communities, microorganisms within a commu-
nity structure may show differences in sensitivity to metal toxicity. Van Beelen et al.
(2004) found that the sensitivity to toxicants of the microbial community responsible
for the mineralization of acetate in soils with no history of exposure to elevated metal
concentrations differed by many orders of magnitude between soils of similar
physical and chemical properties. This suggests that differences in community
structure between soils which vary in sensitivity to metal toxicity could be an
important factor in explaining discrepancies between studies (Tayebi and Ahangar
2004).

Kazaure (2018) in his study on Distribution of Bacteria in Lead Contaminated
Soil in Anka Local reported that the predominant bacterial isolates were identified as
species of Bacillus, Proteus, Achromobacter, Citrobacter, Corynebacterium,
Alcaligenes, Pseudomonas, Staphylococcus, Klebsiella, Escherichia,
Agrobacterium, Enterobacter, and Diplococcus. They had higher tolerance to the
metals investigated. Bacillus species had the highest frequency of occurrence
(45.67%). Achromobacter, Agrobacterium, Enterobacter, and Diplococcus species
had a very low frequency.

Bacteria alleviate heavy metal ion toxicity by immobilizing, mobilizing, uptake,
and transformation of heavy metals (Hassan et al. 2017).

Metals without biological function are generally tolerated only in minute con-
centrations, whereas essential metals with biological functions are usually tolerated
in higher concentrations and facilitate secondary metabolism in bacteria, actinomy-
cetes, and fungi (Haferburg and Kothe 2007).

Lenart-Boroń and Wolny-Koładka (2015) from their study showed that fungi
occurred very frequently in soils with strongly increased concentrations of heavy
metals, especially cadmium, lead, and zinc.

The biomass of the total soil microbial communities is usually negatively corre-
lated with metal stress (Wilke et al. 2005) but is less affected than community
structure. Their findings obtained in a 2-year period agree with this statement. The
resistance of bacteria and fungi in soils polluted with heavy metals has been studied
in the field (Ramsey et al. 2005) and in laboratory studies (Rajapaksha et al. 2004),
indicating that fungi are favored compared to bacteria in metal-stressed soils.

Pečiulytė and Dirginčiutė-Volodkien (2009) reported that fungi from the genera
Curvularia and Fusarium, known as common in agricultural soils, were more

124 A. Inobeme



sensitive to metals (Ni, Co, Fe, Mn, Mg) than the other fungi. Fungi that belong to
the genera Monilia and geotrichum showed a relatively low tolerance to all metals in
comparison to other ones.

6.7 Mechanisms of Resistance of Microorganisms to Heavy
Metals

Several mechanisms are developed by microorganisms in tolerating a high concen-
tration of heavy metals. Some of these mechanisms are dependent upon anabolic and
catabolic energy of microorganisms (Banerjee et al. 2015).

Rouch et al. (1995) and Ortiz-Ojeda et al. (2017) have identified the following
mechanisms for heavy metals resistance in bacteria: (1) exclusion of a metal by a
permeable barrier, (2) exclusion by active transport of the metal from the inside of
the cell outwards, (3) intracellular physical sequestration of the metal using a
polymer to prevent metal cellular damage, (4) extracellular sequestration, (5) enzy-
matic detoxification of the metal to a less toxic form, and (6) cell reduction of the
sensitivity to metals.

Regarding the metals essential for the proper course of cellular processes, such as
copper, zinc, or iron, there are mechanisms which regulate their cellular capture.
Toxic metals, however, like mercury, cadmium, or lead, do not have any specific
transport methods. Disturbances of the biological balance of soil caused by excess of
cadmium, copper, and zinc might be attributed to the disruption of physiological
functions, denaturation of proteins, and destruction of cellular membranes of soil
microorganisms (Zaborowska et al. 2006).

Heavy metal resistance in bacteria results from their primary contact with metals
that appear naturally in the environment. However, intensive human activity and
exploitation of natural deposits have led to the expansion of metal-resistant micro-
organisms (Bruins et al. 2000). Because heavy metals are increasingly found in
microbial habitats due to natural and industrial processes, microbes have evolved
several mechanisms to tolerate the presence of heavy metals (Soraia 2017).

Lenart-Boroń and Wolny-Koładka (2015) in their studies observed that microor-
ganisms whose population were not affected by varying concentrations of heavy
metals may possess various resistance mechanisms even to toxic heavy metal
concentrations and that these properties may be applied in the removal of heavy
metals from different environments (Lenart-Boroń and Wolny-Koładka 2015).

Basically, some microorganisms are able to detoxify metals by valence transfor-
mation, extracellular chemical precipitation, or volatilization. They can enzymati-
cally reduce some metals in metabolic processes that are not related to metal
assimilation (Lovley 1993). Several bacteria couple the oxidation of simple organic
acids and alcohols, hydrogen, or aromatic compounds to the reduction of Fe(III) or
Mn(IV). Bacteria that use U(VI) as a terminal electron acceptor may be useful for
uranium bioremediation (Garbisu and Alkorta 2003).
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Some microorganisms have the ability to make the metal less toxic by bringing
about its conversion to a more favorable and less harmful oxidation state, through
redox processes (Garbisu et al. 1995) Biomethylation to yield volatile derivatives
such as dimethylselenide or trimethylarsine is a well-known phenomenon catalyzed
by several bacteria, algae, and fungi (White et al. 1997). Several bacteria have been
reported to reduce hexavalent chromium that is toxic and mutagenic to its trivalent
form that is less toxic (Garbisu et al. 1997a, b). Bioprecipitation by sulfate reducing
bacteria that convert sulfate to hydrogen sulfide, which, in turn, reacts with heavy
metals to form insoluble metal sulfides such as zinc sulfide and cadmium sulfide has
been reported in some bacteria (Iwamoto and Nasu 2001).

Several studies have been reported where PGPR act as potential elicitors for
abiotic stress tolerance including heavy metal tolerance (Tiwari et al. 2017). They
limit the bioavailability of metals by forming complexes with siderophores, partic-
ular metabolites, and bacterial transporters (Ahemad 2012). These microorganisms
of agronomic importance have evolved various mechanisms to avoid heavy metal
stress including:

(a) Transport of metals across cytoplasmic membrane;
(b) Biosorption and bioaccumulation to the cell walls;
(c) Metal entrapment (Tiwari et al. 2017).

Haferburg and Kothe (2007) identified some mechanisms and adaptive strategies
developed by bacteria in combating lethal effects associated with heavy metals
presence in the environment:

1. Metal resistance is achieved via intra- and extracellular mechanisms;
2. Metals can be excreted via efflux transport systems;
3. Cytosol sequestration compounds can bind and detoxify metals in the cell;
4. The release of chelators in the extracellular medium capable of binding and fixing

metals;
5. The structure of the cell envelope which is capable of binding large quantities of

metals by sorption thus preventing impulses.

Li (2004) and Soraia (2017) categorized the bioprocess of metal accumulation
into two major group:

1. Bisorption (passive) using non-living cells
2. Bioaccumulation using living cells

El Baz (2015) reported that metal resistance can be widespread among live
actinobacteria in contaminated environments. Several bacteria have resistance mech-
anisms such as superoxide dismutases, efflux transporters, and metallothioneins.
Streptomyces are the most common among actinomycete isolates in polluted water
habitats and artificial swamps for the treatment of industrial effluents. Streptomyces
and Amycolatopsis can survive in environments contaminated by heavy metals; this
is probably due to their remarkable resistance to extreme environmental conditions
and various pollutants.
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Álvarez et al. (2013) reported that the presence of heavy-metal-resistant strains in
different Streptomyces clades can have two different explanations:

(a) Resistance is already present in the most recent common ancestor (MRCA) and
was then inherited by the different lineages;

(b) The different lines inherited from the MRCA have developed new mechanisms
or have modified those already existing, in order to generate resistance to heavy
metals.

Some microorganisms developed specific mechanisms also depending on the
metals and the nature of the environment. For Pb(II) contamination some microor-
ganisms have evolved strategies that help them to survive exposure. The main
mechanisms of lead resistance involve adsorption by extracellular polysaccharides,
cell exclusion, sequestration as insoluble phosphates, and ion efflux to the cell
exterior (Jaroslawiecka and Piotrowska 2014). A number of microorganisms
inhabiting soil and water can transform inorganic and organic lead compounds
into volatile forms, which diminishes their toxic effect (Thayer 2002).

Hao et al. (2014) showed that rhizobia heavy metal tolerance mechanisms may
include: (1) adsorption and accumulation of heavy metals and (2) microbial secretion
of enzymes and bioactive metabolites to increase their bioavailability and sequester
their toxicity.

Sonil and Jayanthi (2011) in their study observed that maximum resistance to
heavy metals is exhibited by Pseudomonas, followed by Azotobacter and Rhizo-
bium. Tolerance to Cr was found up to 200 μg/ml by Pseudomonas and Azotobacter
and 300 μg/ml by Rhizobium, while tolerance to As was almost equal in the three
bacteria but less. Pseudomonas and Azotobacter were able to tolerate higher con-
centrations of Cu and Mg. They inferred from their study that comparatively higher
concentration of Cu and Mg did not affect microbial growth to a larger extent but
those of As and Cr had an adverse effect.

6.8 Mechanisms of Accumulation of Heavy Metals
in Microorganisms

This approach relies on components on the cell surface and the spatial structure of
the cell wall on one side and on the other, the physicochemical conditions of the
environment where the cell develops are vital in the accumulation of heavy metals in
microorganisms, which have formed the basis for replacement when natural affinity
of biological compounds is necessary for metallic elements (Wang and Chen 2009).
It is recognized that pH, ionic strength, temperature, and the presence of other metals
and organic compounds play an important role in this process (Violante et al. 2010).

There is a wide variety of microbial mechanisms in the accumulation of xenobi-
otics and metals on their cells, one of which includes efflux transporters that excrete
the excess metal outside the cell (Nies 2003).
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Fungi can also transform Pb(II) into pyromorphite, the most stable lead mineral,
indicating their significant role in the lead cycle in the environment (Clipson and
Gleeson 2012; Rhee et al. 2012). In turn, Aspergillus niger is capable of solubilizing
this mineral and subsequently immobilizing Pb(II) as lead oxalates (Sayer et al.
1999).

Some prokaryotic (bacteria, archaea) and eukaryotic (algae, fungi) microorgan-
isms can also excrete extracellular polymeric substances (EPS), such as polysaccha-
rides, glucoprotein, siderophores, lipopolysaccharide, soluble peptide, etc. These
substances possess a substantial quantity of functional groups which can coordinate
with metal(loid) ions (Seshadri and Naidu 2015).

Many microorganisms synthesize extracellular polymers (EPs) that bind cations
of toxic metals, thus protecting metal-sensitive and essential cellular components
(Bruins et al. 2000). Little is known about lead resistance mechanisms in fungi, but
even low concentrations of this metal can affect their growth and reduce biomass.
The growth of S. cerevisiae is disturbed at 0.05 mM Pb(II) (Donmez and Aksu
1999).

Escherichia coli are found to adsorb more heavy metals than other species of
bacteria, and biosorption, which depends on the special structure of the cell wall, is
found to be the primary mechanism for this (Jin et al. 2018).

Microbes can accumulate heavy metals by either adsorption or absorption, which
are two main ways to increase metal ions in soil. The process of adsorption differs
from absorption, in that a fluid (the absorbate) is dissolved by or permeates a liquid
or solid (the absorbent). Thus, adsorption is a surface phenomenon, while absorption
involves the entire volume of material. The overall sorption mechanisms, include
precipitation, chemical adsorption and ion exchange, surface precipitation, the
formation of stable complexes with organic ligands, and redox reaction (Singh and
Prasad 2015).

Wang et al. (2001) showed that the primary mechanism by which microbes
accumulate heavy metal ions is adsorption, which normally does not depend on
energy metabolism, rather than absorption, which depends on energy metabolism
and almost exclusively occurs in living cells. Generally, microbes adsorb large
amounts of heavy metal ions rapidly. It has been found that at pH 7.2, Bacillus
can adsorb 60% of its Cu2+ capacity within the first minute and reach adsorption
equilibrium within 10 min (He and Tebo 1998).

Adsorption involves complexation of heavy metals on the cell surface, from
which they can be absorbed into the cell. Because of the cell surface structure
principally the cell wall and mucus layer—heavy metals can be adsorbed and
absorbed relatively easily. Many ions in the cell surface functional groups, such as
nitrogen, oxygen, sulfur, and phosphorus, can be complexed with metal ions as
coordination atoms. In addition, phosphoric acid anions and carboxyl anionic groups
on the surface of the microbial cell wall are negatively charged, and most heavy
metal surfaces carry a cationic group that interacts with the cell wall and allows the
metal ions to bind or pass through the cell membrane (Jin et al. 2018).

Heavy metal ions bind to the surface of the cell not only by electrostatic
interaction and complexation but also by ion exchange to the cell surface; for

128 A. Inobeme



example, the non-living brown algae (Ascophyllum nodosum) exchanges the original
cell wall adsorption of K+, Ca2+, and Mg2+ to adsorb Co2+ (Freitas et al. 2006).
Brady and Duncan showed that yeast releases approximately 70% of K+ rapidly and
60% of Mg2+ slowly in the process of adsorbing Cu2+ (Aly 2018).

Numerous microbial species, including bacteria and fungi from Bacillus, Pseu-
domonas, Streptomyces, Aspergillus, Rhizopus, and Penicillium, have significant
removal ability. At present, it has been found that a variety of bacteria can absorb soil
heavy metals. Among them, Escherichia coli K-12 can absorb the widest variety of
metal ions; the outer membrane of this stain can absorb more than 30 different kinds
of metal ions. Rhizopus can absorb Zn, Cu, Cd, Pb, and other heavy metal ions, and
Thiobacillus can absorb heavy metal ions as well as inorganic ions, such as S, which
combines with the metal ions to form a precipitate that can be separated from the soil.

Mechanisms involved in the detoxification and transformation of metals, include
the mechanism that restricts entry into the cell and intracellular detoxification or
organellar compartmentation, the latter occurring in some eukaryotes, e.g., algae and
fungi. Operation of a number of mechanisms is possible depending on the organism
and the cellular environment; mechanisms may be dependent on and/or independent
of metabolism. A variety of mechanisms may be involved in transport phenomena
contributing to decreased uptake and/or efflux. A variety of specific or nonspecific
mechanisms may also affect redox transformations, intracellular chelation, and
intracellular precipitation. Biomineral formation (biomineralization) may be biolog-
ically induced, i.e., caused by physicochemical environmental changes mediated by
the microbes, or biologically controlled (solid rectangles) (Gadd 2009).

6.9 How Microorganism Are Used to Effect the Process
of Metal Remediation

The utilization of organisms, primarily microbes, to clean up contaminated soils,
aquifers, sludges, residues, and air, known as “bioremediation,” is a rapidly chang-
ing and expanding area of environmental biotechnology that offers a potentially
more effective and economical clean-up technique than conventional physicochem-
ical methods (Garbisu and Alkorta 2003). The use of microbes to change the
concentration of heavy metals in soil and improve the ability of plants to deal with
elevated metals concentrations has significant economic and ecological benefits (Jin
et al. 2018).

Microbes are known for enhancement of plant growth and survival under heavy
metal stress condition as they have the capability of consuming waste and converting
the complex waste into simple nontoxic by-products/compounds. This is feasible
because microorganisms have developed many resistance mechanisms for survival
in the presence of toxic heavy metals in their environment (Mustapha and Halimoon
2015).
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These microbes interact with metals and minerals in natural and synthetic envi-
ronments, altering their physical and chemical state, with metals and minerals also
able to affect microbial growth, activity, and survival (Gadd 2010).

The use of microbial remediation has become more common, and it is generally
considered promising owing to its many advantages, including retention of soil
structure, and the fact that the pollutants and microbes can be almost completely
removed from the soils, and secondary pollution can be avoided (Singh and Prasad
2015). Microbial remediation therefore presents new techniques for addressing the
problem of heavy metal pollution in soil, and it has become a focus of new research
and development in bioremediation technology (Jin et al. 2018).

Sodango et al. (2018) reported algae to be a more efficient biosorbent (with a
reported rate of 15.3–84.6%) compared to other microbial biosorbents (bacteria and
fungi). Microbes have a variety of properties that can effect changes in metal
speciation, toxicity, and mobility, as well as mineral formation or mineral dissolution
or deterioration.

Microbes possess transport systems for essential metals; inessential metal species
can also be taken up. Microbes are also capable of mediating metal and mineral
bioprecipitation, e.g., by metabolite production, by changing the physico-chemical
microenvironmental conditions around the biomass, and also by the indirect release
of metal-precipitating substances from other activities, e.g., phosphate from organic
decomposition or phosphate mineral solubilization.

Many different metal-containing minerals formed as a direct or indirect result of
microbial activity, e.g., various carbonates, phosphates, etc., are omitted from the
table. Microbial cell walls, outer layers, and exopolymers can sorb, bind, or entrap
many soluble and insoluble metal species as well as, e.g., clay minerals, colloids,
oxides, etc. which also have significant metal-sorption properties. Redox transfor-
mations are also widespread in microbial metabolism; some are also mediated by the
chemical activity of structural components (Gadd 2010).

Fungal cell wall contains different materials which proved to be efficient metal
biosorbents. Due to their properties, some fungal species, such as Aspergillus niger
or Mucor rouxii, have been successfully investigated for their usefulness in adsorp-
tion of heavy metals and therefore metal removal from various environments (Javaid
et al. 2011; Joshi and Sahu 2014).

6.10 Effect of Heavy Metals on Soil Microorganisms

Monitoring the structure of microbial communities and animals is a sensitive tool for
the assessment of soil quality and health. Generally, the microbial parameters in the
soil ecosystems are considered to be the best indicators reflecting changing soil
quality and properties, and thus, enabling early detection of soil degradation
(Fazekašova and Fazekaš 2019).

Heavy metals also have large effects on processes important for soil fertility by
affecting the structure and function of microbial communities (Sandaa et al. 1999).
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The high concentration of heavy metals can directly affect the microbiotope by
modifying the population size, diversity, and activity. These modifications are
expressed by the blocking of the main functional groups, the displacement of the
essential metal ions, or by the modification of the active aspect of the biological
molecules.

Soraia (2017) reported that there was a clear mutual influence in the mining areas
from which microbes in the soil are not only directly and indirectly affected by their
environment, but they control in particular the soil parameters. Haferburg and Kothe
(2007) also suggest that growth and metabolism can lead to changes in pH and ionic
strength of the soil.

A large number of laboratory and field studies have been carried out on the effects
of heavy metals on soil microorganisms which play an important role as decom-
posers in the soil ecosystems. Some problems have, however, been pointed out in
both laboratory and field studies. The laboratory conditions, where a high concen-
tration of heavy metals is added to soil on a single occasion, are not representative of
the field conditions where heavy metal pollution has usually been occurring at a low
concentration for a long period of time (Hiroki 1992).

Microorganisms are the first group that undergoes any direct and indirect effect of
heavy metals in the soil environment. Adverse effects of metals on soil microorgan-
isms may cause decreased decomposition of organic matter, reduced soil respiration,
decreased microbial diversity, as well as they reduce the activity of some soil
enzymes (Lenart-Boroń and Wolny-Koładka 2015).

They can have inhibitory effect on the development of bacteria, fungi, and
actinomycetes. Heavy metals reduce the biomass of microorganisms and lower
their soil activity. Several studies have shown a negative relationship between
heavy metal concentration and microbial activities, such as respiration (Sonil and
Jayanthi 2011).

Earlier reports suggest that heavy metals inhibit the growth of specific microbial
groups, especially nitrifiers and nitrogen fixers (Bääth 1989).

6.10.1 Effect of Heavy Metals on Microbial Genetic Structure

Heavy metals alter the conformational structures of nucleic acids and proteins and
consequently form complexes with protein molecules which render them inactive.
Those effects result in disruption of microbial cell membrane integrity or destruction
of entire cell (Bong et al. 2010).

Sensitive microorganisms are negatively affected by heavy metals, but it should
also be noted that heavy metals lead to the development of tolerant species that can
survive and adapt due to their genetic characteristics (MacNaughton et al. 1999).

Heavy metal contamination is a major environmental threat worldwide due to its
adverse effects (toxicity) on natural biota and humans which are manifested as DNA
damage, lipid peroxidation and other deleterious effects on living cells (Kazaure
2018).
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Heavy metals affect soil microorganism production, morphology, and metabo-
lism by functional disruption, protein denaturation, or loss of cell membrane integ-
rity. The metals do this by altering the conformational structures of nucleic acids and
proteins, thereby forming more stable complexes with protein molecules, which
render them inactive (John 2017). It is reasonable to assume that any changes in the
microbial properties of the contaminated soil sample can be attributed to the effects
of the metal contamination and the presence of organic matter in soil (Kouchou et al.
2018).

Evidence from the field indicates that under longtime metal tension there is a
change in the genetic structure of the soil microbial community, which brings about
an increase in metal tolerance. A decrease in the total soil microbial biomass under
persistent metal stress has been perceived in many field studies, but is perhaps to be
preceded by changes in community structure. A decreased size of the microbial
biomass can likely at least partially be described by physiological reasons such as a
decrease in the microbial substrate utilization efficiency and an increased preserva-
tion energy requirement (Tayebi and Ahangar 2004).

6.10.2 Effect of Heavy Metals on Microbial Biomass

There is now a considerable amount of evidence documenting a decrease in the soil
microbial biomass as a result of long-term exposure to heavy metal contamination
from past applications of sewage sludge as reviewed by McGrath et al. (1994). It is
generally accepted that accumulation of metal(loids) reduces soil microbial biomass
and various enzyme activities, leading to a decrease in the functional diversity in the
soil ecosystem (Crowley 2008) and changes in the microbial community structure
(Yang et al. 2007).

A drop in the population of beneficial soil microorganisms due to high contam-
ination by metals can result in a decrease in organic matter decomposition leading to
a decline in soil nutrients. Enzyme activities necessary for plant metabolism may
also be affected due to heavy metal influence on the activities of soil microorganisms
(Chibuike and Obior 2014). The heavy metal ions inhibit the activities of these
enzyme by forming a bond with the substrate or combining with the protein-active
sites (Wu et al. 2011).

Several studies, depending on the isolation-based techniques used, have revealed
that heavy metal contamination gave rise to shifts in microbial populations (Roane
and Kellogg 1996). However, heavy metals when present in amounts equal to the
geochemical background do not interfere with the soil metabolism, which is asso-
ciated with the growth and development of soil microorganisms as well as the
processes of synthesis and re-synthesis, governed by intra- and extracellular
enzymes (Jadwiga et al. 2013). However, isolation-based techniques are limited
because they only represent a small component of the microbial community. This
limitation could be attributable to the fact that only a small percentage of soil
microbes are culturable for such study.
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For instance, fungi constitute a high proportion of the microbial biomass in soil.
Their large surface-to-volume ratio and high metabolic activity are used to change
the heavy metal dynamics in soil (Ayangbenro and Babalola 2017).

Markowicz et al. (2016) in their study reported that the biomass of gram-negative
bacteria and fungi was affected by heavy metals; a drop in microbial activity was
observed and was attributed to high metal concentrations. Also a positive relation-
ship was observed between microbial biodiversity and metal content, with the
genetic diversity decreasing with a rise in metal content.

Heavy metal contamination may lead to a reduction of total microbial biomass, to
a decrease in numbers of specie populations such as infecting rhizobia or mycorrhi-
zae, or to shifts in microbial community structure (Sandaa et al. 1999).

It is shown that Cd has much more significant effect in decreasing bacterial
population than Pb that has little effect. It is also clear that the higher concentration
of Pb and Cd causes decreases in total bacterial population (Abdousalam 2010).

Adverse effects of heavy metal contamination of the environment can be reflected
not only in the accumulation of metals in plants but also in the alteration of soil
microbial community (Lenart-Boroń and Wolny-Koładka 2015).

Cr (VI) has been reported to cause shifts in the composition of soil microbial
populations and known to cause detrimental effects on microbial cell metabolism at
high concentrations (Shun-hong et al. 2009).

Analysis of soils contaminated with heavy metals from other sources such as Cu
and Zn in animal manures, run-off from timber treatment plants, past applications of
Cu-containing fungicides, and analysis of soils in the vicinity of metal-contaminated
army disposal sites confirm that a decrease in the microbial biomass occurs at a
relatively modest, and sometimes even at a surprisingly low, metal loading. The
widespread occurrence of this effect of metal toxicity suggests that there may be a
common physiological explanation (Tayebi and Ahangar 2004).

Lenart-Boroń and Wolny-Koładka (2015) in their study observed that the corre-
lation between the concentration of heavy metals and microbial numbers was very
weak and statistically insignificant. High numbers of fungi were observed in the
contaminated sites, which was particularly interesting in one of the sites, strongly
contaminated with Cd, Pb, and Zn. Cd-contamination can decrease the taxonomic
species of microbes in soil and change the soil microbial composition. The func-
tional pathways involve changes in the soil microbial structure, many of which are
related to the heavy metal tolerance of soil microbes.

6.10.3 Effect of Heavy Metals on Microbial Diversity

Microorganism communities in soil seem to be extremely diverse, with estimates of
as many as 13,000 species of bacteria present in a single gram of soil and an
unknown diversity of soil fungi and algae. Gross measurements of microbial diver-
sity have been used to estimate environmental stress (Tayebi and Ahangar 2004).
Until now only few studies have tried to examine more subtle effects of heavy metal
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pollution on the structure of microbial communities or on the genetic diversity of
particular groups of organisms.

The influence of heavy metals on the size of microbial communities changes,
depending upon which group of microorganisms is being discussed, on the metal
involved, and on the particular environment. For instance, on the phylloplane,
bacteria appear to be more sensitive to metal pollution than fungi (Tayebi and
Ahangar 2004).

Chen et al. (2010) suggested that heavy metals caused a decrease in bacterial
species richness and a relative increase in soil actinomycetes or even decreases in
both the biomass and diversity of the bacterial communities in contaminated soils.

Sandaa et al. (1999) in their study reported that compared to non-contaminated
soil, a pronounced reduction of bacterial diversity as well as changes in bacterial
community structure were obtained even in the presence of low metal concentrations
below the upper legal limits set by the European Union.

However, Lenart-Boroń and Wolny-Koładka (2015) from their study observed
that despite increased concentrations of some heavy metals, particularly zinc and
lead, the recorded contamination did not have a significant impact on the numbers of
the selected microbial groups in soils. Lenart-Boroń and Wolny-Koładka (2015)
attributed the possible reason for the previously mentioned decreased microbial
diversity in heavy metal-containing soils to the selection of tolerant strains.

Pollution affects microbial diversity both in terms of species richness due to the
extinction of species which have no sufficient resistance to the stress imposed, and
can potentially lead to the enrichment of new species which survive well in the stress
condition. These studies have caused to highlight that subtle effects of heavy metals
on the diversity of microorganisms in soils are happening which may disturb the
potential response of the soil microbial community to new stresses (i.e., it may
decrease the resilience of the soil ecosystem). Evidence from the field indicates that
under longtime metal tension there is a change in the genetic structure of the soil
microbial community thereby bringing about an increase in metal tolerance (Tayebi
and Ahangar 2004).

6.10.4 Effect of Heavy Metals on Microbial Activity

Heavy metals indirectly affect soil enzymatic activities by shifting the microbial
community which synthesizes enzymes (Jiwan and Ajay 2011). Heavy metals
exhibit toxic effects towards soil biota by affecting key microbial processes and
decrease the number and activity of soil microorganisms (Jiwan and Ajay 2011).

Enzymatic activities are frequently used for determining the influence of various
pollutants including heavy metals on soil microbiological quality (Shen et al. 2005).
Heavy metals can inhibit enzymatic activities by interacting with the enzyme-
substrate complexes, denaturing the enzyme protein, and interacting with its active
sites (Megharaj et al. 2003).
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Microbial enzymes might be affected by heavy metals due to the potential
inhibition of both enzymatic reactions and complex metabolic processes. Heavy
metals decrease the phosphatase synthesis during the composting process. Microor-
ganisms have to cope with toxic Pb during their growth in the Pb-contaminated
substrates, and the exposure of microorganisms to metals always inhibits microbial
growth and activity (Huang et al. 2010).

In the soil environment, almost all reactions are catalyzed by enzymes that are
largely of microbial origin and associated with viable cells (Sardar et al. 2007).
Heavy metals exhibit toxic effects towards soil biota by affecting key microbial
processes and decrease the number and activity of soil microorganisms (Jiwan and
Ajay 2011).

Contamination of soil by heavy metals does not only directly affect the microor-
ganisms but also the enzymatic processes in the soil. The microorganism population
can be affected seriously by Pb, Cd, Zn, and Cu, which in turn leads to a decrease in
the activities of invertase, urease, cellulase, and acid phosphatase. As a result of this,
the decomposition rate of carbon, nitrogen, and phosphorus in soils would be
affected and the natural cycles thereby disrupted (Li et al. 2018).

Xie et al. (2016) in their study reported that the total bioactivity, richness, and
diversity of microorganisms decreased with increasing heavy metal concentrations.
The excessive amounts of metals such as cadmium, copper, and zinc alter the
homeostasis of soil by affecting the control mechanisms on the level of genes,
thus inhibiting the activity of microbial enzymatic proteins. They cause damage to
metabolic pathways, often resulting in the apoptosis of cells. Hence, the species
diversity of soil microorganisms decreases. Natural processes such as nitrification
and ammonification are inhibited, alongside the activity of soil enzymes (Jadwiga
et al. 2013).

Bong et al. (2010) investigated the effect of heavy metals on soil organisms and
enzymatic processes and showed that the addition of Zn did not cause any significant
changes on the bacteria abundance. However, the addition of Zn clearly decreased
the aminopeptidase activity compared to control. They further observed that Zn
contamination seems to have an effect on the microbial activities and transformation
of proteins in the aquatic system. Although high concentrations of heavy metals
inhibit bacterial growth, there are some species which are resistant and could grow
up to 5000 ppm of Pb (Kumar et al. 2015).

Hagman et al. (2015) showed declines in enzymatic activity associated with soil
metal load. In a study to determine the effect of heavy metals on enzymatic activity,
Kandeler et al. (2000) found that metals resulted in decreased enzyme activities.

Although in water and sediments almost all heavy metal studies have been
directed towards various aspects of carbon cycling, in the case of soil the effects
of heavy metals on nitrogen transformations have also received a considerable
amount of attention. Rother et al. could find little or no effect of various metals on
nitrogenase activity (acetylene reduction) in a number of polluted and
uncontaminated soils. In fact they concluded that in their investigation soil moisture
was probably more limiting than heavy metal toxicity.
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Moreira et al. (2008) in their study on associative diazotrophic bacteria in grass
root and soil from heavy metal-contaminated sites reported that nitrogenase activity
decreased as metal concentrations increased, but it varied depending on both metal
concentration and isolates/strains.

Ashraf and Ali (2007) also reported that the heavy metals exert toxic effects on
soil microorganism and hence result in the change of the diversity, population size,
and overall activity of the soil microbial communities and observed that the heavy
metal (Cr, Zn, and Cd) pollution influenced the metabolism of soil microbes in all
cases. In general, an increase of metal concentration adversely affects soil microbial
properties, e.g., respiration rate and enzyme activity, which appear to be very useful
indicators of soil pollution. The presence of heavy metals in the environment
changed microbial communities and activities (Jansen et al. 1994; Matyar et al.
2008).

An increase in metal concentration also influences the soil microbial properties,
especially respiration and enzymatic activity that serve as good indicators of metal
pollution (Sonil and Jayanthi 2011). Dahlin et al. (1997) found reduced nitrogenase
activity by heterotrophic soil bacterial populations in HM-contaminated soil treated
with sewage sludge.

Heavy metals may inactivate enzyme reactions by complexing the substrate, by
reacting with protein-active groups of enzymes, or by reacting with the enzyme-
substrate complex or indirectly by altering the microbial community which synthe-
sizes enzymes (Jiwan and Ajay 2011). However, in some studies no correlation has
been found between microbial parameters and heavy metal contamination (Trasar-
Cepeda et al. 2000).

Also, the microbial metabolic entropy of metal-polluted soil is higher, and the
content of organic carbon converted to bio-carbon is reduced. Finally, heavy metals
can result in physiological dysfunction and plant malnutrition as metal exposure can
be passed to plant seed (Jin et al. 2018).

6.11 Conclusion

The effect of heavy metals on soil microorganisms has been unveiled in this chapter.
Although some heavy metals have unique roles in soil as trace nutrient, their effect
on soil microorganism and other organisms is an issue of concern since their
accumulation in living cells has detrimental effect. Generally toxic metals cause
enzyme inactivation and also cause damage to cells by acting as antimetabolites or
form precipitates or chelates with essential metabolites. The response of soil micro-
organisms to heavy metals has also been employed as an indicator of the extent of
soil contamination by these metals.
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Abstract Microbial communities including bacteria and archaea in anaerobic
digestion (AD) process play a crucial role in biogas production. In microbial
communities, a deep understanding is required related to microbial diversity, com-
position, abundance, interactions, and its behavior to produce biogas. In addition,
their active genes, proteins, and active metabolic products also enhance the
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productivity of AD process. Increased valuable products and biogas production can
be carried out by optimizing the process parameters. The optimization can be
visually seen by microbial diversity by performing metagenomic, meta-
transcriptomic, meta-proteomic, and metabolomic data. However, the abundance
and diversity of microbial communities are easily evaluated by high-throughput
sequencing and a suitable bioinformatics analysis which are critically important for
overall process. This chapter includes the microbial diversity and abundance
presented in various bioreactors, process optimization factors and its impact on the
biogas production. Thus, metagenomic data-based fermentation or AD can be
proposed by integrating the bioinformatic data of microbial communities with
their performance on the anaerobic digesters to facilitate the process improvement
and higher generation of energy and value-added products.

Keywords Anaerobic digestion · Archaea · Biogas · Bacterial diversity ·
Methanogens

7.1 Introduction

Bio-methanation is a microbiological process of anaerobic digestion (AD) or deg-
radation of organic materials which causes the production of biogas. It comprises a
mixture of methane and carbon dioxide. It mainly occurs in natural environments,
such as landfills, rice fields, sediments, and intestinal tracts of animals, where light
and inorganic electron acceptors (oxygen, nitrate, sulfate, iron, etc.) are not present
or limiting (Hattori 2008). The AD process is a multistep complex process
performed by the combined action of three major physiological groups of microor-
ganisms (Hattori 2008): hydrolytic–acidogenic bacteria, syntrophic–acetogenic bac-
teria, and methanogenic archaea. These fermenting microorganisms decompose the
biopolymers (lipids, proteins, nucleic acids, carbohydrates, etc.) to soluble mono-
mers (long-chain fatty acids, glycerol, amino acids, purines, pyrimidines,
monosugars, etc.) that are further converted to short chain fatty acids (butyrate,
propionate, acetate, etc.), alcohols (ethanol and methanol), hydrogen, and carbon
dioxide by the same microbes. Short chain fatty acids and also alcohols are oxidized
by proton-reducing syntrophic acetogens to hydrogen, acetate, formate, and carbon
dioxide. These end products are ultimately transformed to methane and carbon
dioxide by the methanogenic archaea (Thauer et al. 2008).

As shown in Fig. 7.1, AD is a multistep process which includes the number of
microbial interrelationships and dependencies. Individual processes are kinetically
nonlinear with respect to substrate concentration and inhibitors, and under most
circumstances, either hydrolysis or acetolactic methanogenesis is the rate-limiting
process. This is not a fixed rule, and under certain conditions (e.g., highly loaded
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glucose-fed systems), a buildup of hydrogen can prevent acetogenesis from occur-
ring (Angelidaki et al. 2011).

7.1.1 Hydrolysis

In AD of complex materials, the term hydrolysis is used to describe a wide range of
depolymerization and solubilization processes by which complex polymeric organic
compounds are broken down into soluble monomers. Most of these reactions, such
as carbohydrate, polypeptide, triglyceride, and nucleic acid hydrolysis, are true
hydrolysis processes, while others (e.g., scission of disulfide bonds) are reductive
or oxidative bio-transformations (Sevier and Kaiser 2002). The three main primary
substrates (biopolymers) for hydrolysis are carbohydrates, lipids, and proteins,
which hydrolyze to monosaccharides, long-chain fatty acids plus glycerol, and
amino acids, respectively. In waste or feedstreams to anaerobic digesters, materials
can either be a mixture of the three substrates. Hydrolysis is widely regarded as the
rate-limiting step of degradation of particulate organic matter (e.g., manure, sewage
sludge, crop residues, etc.) (Pavlostathis and Giraldo-Gomez 1991). Therefore, the
overall rate of the process is determined by the hydrolysis rate of this complex
substrate. There are also particular considerations for different primary materials,
classified as biofibers, carbohydrates, proteins, and fats. The most common com-
posite feed is waste-activated sludge from sewage treatment plants. This is a mixture
of microbial material, decay products, and inert materials originating from the feed.
The degradation of decay products and inerts is generally limited in anaerobic
processes, and hence the degradability of waste-activated sludge depends heavily
on upstream properties (Ekama et al. 2007). Proteins and lipids are generally found
together in streams such as originating from meat processing. Protein degradation
depends on protein structure, with semi-soluble globular proteins being highly
degradable, and fibrous proteins being relatively difficult to hydrolyze (McInerney
et al. 2008). Lipids are normally triglycerides, which are hydrolyzed by lipases.
Hydrolysis rates of lipids depends less on the chemical properties of the substrate
and more on particle size and environmental conditions such as pH and surface
tension (Yang et al. 2009).

7.1.2 Fermentation

Fermentation is anaerobic conversion of organic materials in the absence of inor-
ganic electron acceptors such as sulfate, nitrate, or oxygen. Reduction of protons to
form hydrogen may take place, but this is generally facultative. This is in contrast to
degradation of propionate or butyrate to acetate and hydrogen, a process more
properly referred to as anaerobic oxidation. A wide range of substrates can be
fermented, including monosaccharides, amino acids, unsaturated fatty acids,
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glycerol, and halogenated organics (Madigan et al. 2008). However, the most
abundant substrates for fermentation, and a primary route for carbon flux, are
monosaccharides and amino acids. Fermentation of amino acids and monosaccha-
rides has common elements, in that both fermentative processes are relatively energy
rich and rapid. They have a wide range of operating conditions in terms of pH and
oxidation/reduction potential (Batstone et al. 2002; Madigan et al. 2008; Ramsay
and Pullammanappallil 2001).

Monosaccharides: Monosaccharides ferment via the Embden–Meyerhof–Parnas
(EMP) or Entner Doudoroff (ED) pathway, and subsequently to C3 products (lactate
and propionate) or C2/C4/C6 products (acetate/butyrate/caproate) via acetyl-CoA.
C3 products are uncommon, except under overload conditions, and the most com-
mon products are acetate, butyrate, and ethanol, with waste carbon converting to
carbon dioxide, and excess electrons to hydrogen gas (Rodríguez et al. 2006). There
is some dispute as to whether ethanol production is enhanced at low (Ren et al. 1997)
or high pH (Temudo et al. 2008).

Amino acids:Amino acids can act as electron acceptor, donor, or in some cases as
both (Ramsay and Pullammanappallil 2001). Glutamate fermentation is an example
of uncoupled amino acid degradation (Buckel 2001).

7.1.3 Acetogenesis

Acetogenesis refers to the synthesis of acetate, which includes the formation of
acetate by the reduction of carbon dioxide and the formation of acetate from organic
acids. Hydrogen-utilizing acetogens, previously also termed homoacetogens, are
strict anaerobic bacteria that can use the acetyl-CoA pathway as (1) their predom-
inant mechanism for the reductive synthesis of acetyl-CoA from carbon dioxide,
(2) terminal electron-accepting, energy-conserving process, and (3) mechanism for
the synthesis of cell carbon from carbon dioxide (Drake 1994). These bacteria
compete with methanogens for substrates like hydrogen, formate, and methanol.

Organic acids (such as propionate and butyrate) and alcohols (such as ethanol)
produced during the fermentation step are oxidized to acetate by hydrogen-
producing acetogens. Electrons produced from this oxidation reaction are transferred
to protons to produce hydrogen or bicarbonate to generate formate. The term
obligate means that the primary substrate cannot be used as alternative electron
acceptor, and electrons must be wasted to hydrogen ions or carbon dioxide, with
generally unfavorable energetics (Stams and Plugge 2009).

Acetogens that oxidize organic acids obligately use hydrogen ions and carbon
dioxide as electron acceptor. Acetogenic bacteria are limited by the unfavorable
energetics of the conversion processes (Schink and Stams 2006). Figure 7.1 illus-
trates the conversion of propionate and butyrate, important intermediates in anaer-
obic fermentations of complex organic matter, to the methanogenic substrates,
acetate and hydrogen. Figure 7.2 shows the involvement of multi-species for the
conversion of acid to methane. It is evident that bacteria can only derive energy for
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growth from these conversions if the concentration of the products is kept low. This
results in an obligate dependence of acetogenic bacteria on methanogenic archaea or
other hydrogen scavengers (e.g., sulfate reducers) for product removal (McInerney
et al. 2008; Sousa et al. 2009; Stams and Plugge 2009).

7.1.4 Methanogenesis

Methanogenic bacteria and archaea are responsible for the final step in AD process
which is methane formation from acetate and/or from carbon dioxide and hydrogen,
formate, alcohols, and methylated C1 compounds (Thauer et al. 2008). These types
of organisms are strictly anaerobic microorganisms and their abundance in environ-
ment is varied from place to place. It is because of the need of external electron
acceptors such as O2, NO3, Fe

3+, and SO4
2�, which are limited. Common habitats

for those archaea are anoxic marine and freshwater sediments, gastrointestinal tracts
of ruminants and insects, anaerobic digesters, hot springs, and flooded soils (Nguyen
et al. 2019).

Methanogens have a unique metabolism involving a number of unique enzymes
and coenzymes (Deppenmeier 2002). The most interesting feature is that none of the
methanogenic archaea can utilize energy from substrate level phosphorylation, and
ATP is probably generated by a proton motive force and, for hydrogenotrophic
methanogens, by a sodium motive force (Boone et al. 1993).

7.2 Microbial Communities and the Process

In AD process, mainly bacterial and archaeal communities are observed which are
mainly responsible for the fermentation or degradation of polymeric substances and
its final conversion into methane gas.

Fig. 7.2 Schematic for electron transfer within inter-bacterial species, i.e., acetogens to
methanogens
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7.2.1 Bacteria

Various genuses of Firmicutes such as Acetovibrio, clostridium, leuconostoc and
lactobacillus are generally observed in the AD process. Proteobacteria, Spiro-
chaetes, Cloacimonetes, and Bacteroides are also most prominent phyla which are
presented in the AD process. The major function of these phyla is to convert the
polymers into various monomers and monomers to organic acids such as acetic acid,
lactic acid, etc. Some bacteria in the AD process are responsible for various other
metabolisms, i.e., sulfur reduction, nitrate reduction, metal stress, contaminant
reduction, and antibiotic-resistant metabolisms which are not linked or related to
the energy or biomethane metabolisms (Angelidaki et al. 2011).

7.2.2 Archaea

Mostly methanogenic microorganisms belong to the Archaea domain, phylum
Euryarchaeota. Six phyla of methanogens have been identified, which are:
Methanosarcinales, Methanobacteriales, Methanomicrobiales, Methanococcales,
and Methanopyrales. Methanocellales (Angelidaki et al. 2011; Sakai et al. 2008).
Methanogens are remarkably diverse with respect to cell morphology—from regular
and irregular coccoidal cell shape (Methanococcales, Methanomicrobiales sp.) to
short rods (Methanobacteriales, Methanopyrales) and long filaments
(Methanosaetacea sp. within Methanosarcinales) (Gao et al. 2019).

7.2.3 AD Process

AD process is comparatively complex which includes more than three types of
bacteria or archaea which convert the complex organic matter to methane. The
whole process is shown in Fig. 7.3. Initially, hydrolytic bacteria hydrolyze the
complex organic matter and then convert into soluble monomers or oligomers.
These compounds directly engulfed by the fermentative bacteria which convert
into volatile fatty acids and other intermediates. Thereafter, acetogens convert it
into acids like acetic acid, lactic acid, propionic acid, etc. Other syntrophic acetate
oxidizing bacteria degrade the acids into carbon dioxide and hydrogen gas which is
further utilized by hydrogenotrophic methanogens. Sometimes, homoacetogens use
carbon dioxide and hydrogen to synthesize the acetic acid which is further degraded
by acetomorphic methanogens (Angelidaki et al. 2011; Nguyen et al. 2019; Sun et al.
2016).
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7.3 Bioinformatics Analysis

Microbial communities of anaerobic digester can be analyzed via metagenomic and
bioinformatics approaches which include a series of steps (Fig. 7.4) (Zhang et al.
2019).

7.3.1 Sample Collection

Sample collection can be carried out from various AD processes which is mainly
dependent on the different feedstock. The most dominant feedstock are food waste
(>30%), sludge waste (22.8%), manure (20.3%), agricultural and horticultural waste
(15.2%) (Suhartini et al. 2014; Zhang et al. 2019).

Fig. 7.3 AD process is conducted from complex organic matter to methane synthesis via a series of
bacteria and intermediate process, wherein process is started from 1 to 6 intermediate process.
(1) conversion of organic complex matter to soluble monomers/oligomers by hydrolytic bacteria,
(2) conversion of soluble monomers/oligomers to volatile fatty acids by fermentative bacteria,
(3) conversion of intermediate metabolites and volatile fatty acids to acetic acid, CO2 and H2 by
synotrophs or acetogens, (4) conversion of CO2 and H2 to acetic acid by homoacetogens, (5) con-
version of acetic acid to CO2 and H2 gases by syntrophic acetate oxidizing bacterial, (6) conversion
of acetic acid to CH4 and CO2 by acetomorphic methanogens, and (7) conversion of CO2 and H2 to
CH4 and CO2 gases by hydrogenotrophic methanogens
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7.3.2 DNA Extraction, PCR, and Library Preparation

DNA extraction is a prerequisite for performing bioinformatics analysis of
metagenomic data of microbial communities. Prior to DNA extraction, the digestate
should be centrifuged for 10 min and the supernatant should be decanted. Then, a
certain amount (0.3–0.5 g) of wet weight sludge material is used to extract the DNA
of microbial communities. Thereafter, PCR can be done using 16S rRNA or specific
primers which are provided by the distributor. After obtaining the PCR products,
they are cloned into specific vectors and the vector library has been prepared using
vector cloning methods (Ju and Zhang 2015; Zhang et al. 2019).

7.3.3 Sequencing

Next-generation sequencing (NGS) technologies are competent to perform qualita-
tive and quantitative analysis of microbial communities from different environ-
ments. The analysis is carried out fast and is cheap. The most frequently used
DNA sequencing method is based on the Roche GS FLX454 pyrosequencing
platform (Sun et al. 2016). However, some NGS techniques are based on Illumina
sequencing platform (Zhang et al. 2017), ABI SOLiD™ short-read DNA sequencing

Fig. 7.4 Flowchart of microbial community analysis of anaerobic digesters which is carried out
using metagenomic and bioinformatics approaches

7 Microbial Community Dynamics in Anaerobic Digesters for Biogas Production 151



platform (Sträuber et al. 2016), and ABI analysis reagents coupled with Applied
Biosystems 3130xl (Zhang et al. 2019).

7.3.4 Sequence Analysis

Raw NGS reads are obtained after acquisition of the metagenomic data. The
pretreatment of raw sequences is an overly critical step to attain high quality reads
for downstream analysis. Various bioinformatics tools have been developed to
pretreat the sequences which are Trimmomatic software (Campanaro et al. 2016),
ACE Pyrotag Pipeline (Ho et al. 2014), HMMER (Azizi et al. 2016), MG-RAST
(Wirth et al. 2012), ChimeraSlayer (Martínez et al. 2014), etc. The sequence
pretreatment generally includes (1) removing adapters and linkers, (2) excluding
chimeras and replication, and (3) demultiplexing of barcoded samples and quality
control. UCHIME is the most cited tool to check and remove chimeras from the raw
sequences while MOTHUR and QIIME (http://qiime.org/) are currently the two
most frequently used platforms to denoise the metagenome data(Zhang et al. 2019).

7.3.5 OUT Clustering Analysis

After cleaning the sequences, all sequences are aligned using sequence aligners such
as MOTHUR (Martínez et al. 2014), INFERNAL aligner (Cardinali-Rezende et al.
2016), and ClustalW (Zhang et al. 2019). Subsequently, the aligned sequences are
clustered into operational taxonomic units (OTUs) with average neighboring clus-
tering algorithm via Usearch software or various sequence classifiers like RDP
Bayesian Classifier (Cardinali-Rezende et al. 2016), UCLUST-RDP classifier
(Pope et al. 2013), and MEGA/MEGA5 (Cardinali-Rezende et al. 2016; Rudakiya
et al. 2019).

7.3.6 Diversity Analysis

For investigating the biological richness/diversity of microbial communities in
various biogas-producing systems, the OTUs-based alpha diversity analysis in
terms of Chao1 richness estimator (Chao1), abundance coverage-based estimator
of species richness (ACE), Shannon-Weaver diversity index (Shannon), and
Simpson diversity index (Simpson) can be performed using the MOTHUR package
(Zhang et al. 2019), Rsoftware package with VEGAN library (Oksanen et al. 2007),
and the RDP Pipeline (Cardinali-Rezende et al. 2016). Straightforward calculation
using the given equations to rapidly estimate biological diversity of microbial
communities is a big advantage for various diversity indices. However, the diversity
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indices like Simpson index and Shannon index combine richness and evenness
components into a simple index through a single measure, leading to a loss of
relative roles of other different variables such as potential economic, ecological,
and social importance of individual species (Barrantes and Sandoval 2009).

7.3.7 Taxonomic Composition Analysis

Taxonomic composition analysis is one of the most frequently used bioinformatics
analyses for anaerobic microbial communities. Generally, this analysis can be
performed through two steps: (1) database comparison and filtration and (2) taxo-
nomic classification of sequences. Particularly, sequences are firstly filtered through
a BLAST search against the sequence database which are SILVA database, EzTaxon
database, GenBank NT/NR database, and RDP database (Zhang et al. 2019).

7.3.8 Statistical Analysis

Based on a brief survey of the literature concerning anaerobic microbial community
analysis, the most common multivariate analysis techniques include principal
component analysis (PCA), principal coordinate analysis (PCoA), non-metric
multi-dimensional scaling (NMDS), redundancy analysis (RDA), and canonical
correspondence analysis (CCA) (Barrantes and Sandoval 2009; Khanal 2011; Sun
et al. 2016). The similarity of these multivariate techniques is that each one is
essentially regarded as an ordination analysis, with a basic aim of depicting similar
objects near to each other and dissimilar objects further apart from each other
(Ramette 2007). Generally, these techniques are classified into two groups:
unconstrained ordination analysis (PCA, PCoA and NMDS) and constrained ordi-
nation analysis (RDA and CCA) based on the types of used data sets and computing
methods.

7.4 Factors Affecting AD Process

To operate the AD process effectively, various environmental as well as operational
factors are important for the diversity and abundance of microbial communities.
Important factors such as feedstock characteristics (composition, C:N ratio, particle
size, total solids, etc.), process monitoring (pH, temperature, inhibitors, etc.), type of
bioreactor (suspended growth anaerobic digester, attached growth anaerobic digester,
solid-state anaerobic digester, household anaerobic digester), and process management
(batch or continuous process) are important to achieve higher methane production
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(Nguyen et al. 2019; Rocamora et al. 2019). These factors are discussed as follows
in brief.

In process monitoring factors, pH and temperature of AD process, total solids,
volatile fatty acids, alkalinity, organic acid concentration, chemical oxygen demand,
C:N ratio, hydrogen and ammonia gas content are the major factors. For AD process,
optimal conditions are mainly affected the microbial communities, wherein pH
(6.8–7.4), temperature for mesophilic (35–40 �C) and thermophilic (50–60 �C),
total solids for solid state (15–30%) and liquid state (<15%), total volatile fatty
acids (50–250 mg/L), acetic acid (<1000 mg/L), propionic acid (<250 mg/L), total
alkalinity (1500–3000 mg/L), ratio of volatile fatty acid and alkalinity (0.1–0.2),
carbon to nitrogen ratio (20–40), total ammonia nitrogen (50–1000 mg-N/L), hydro-
gen gas content (<100 ppm), and ratio of chemical oxygen demand to nitrogen to
phosphorous (350:7:1) should be within the range (Nguyen et al. 2019).

7.5 Microbial Communities of Anaerobic Digesters

Microbial communities of different AD process are described as follows:
Anaerobic digester treating the conventional and vacuum toilet flushed blackwa-

ter exhibited the methanation rates were 0.23–0.29 and 0.41–0.48 g CH4-COD/g
feed COD and the COD removal rates were 72% and 89%, respectively (Gao et al.
2019). Archaeal genera in the inoculum and reactors were different in composition
which are Methanospirillaceae, Methanoculleus, Methanospirillum, and
Methanogenium. The enriched bacteria were linked with high ammonia conditions,
including Porphyromonadaceae, Fibrobacteraceae, Ruminococcaceae,
Bacteroidaceae, Clostridiales, etc. (Gao et al. 2019).

Anaerobic digester treating the steam exploded food showed lower methane
yield, however more organic acids like lactic acid, propionic acid, and acetic acid
were produced (Svensson et al. 2018). Microbial community such as Tenericutes
(42%) dominated in frequently fed digester but Firmicutes (31%) was most abundant
in the Daily Fed Digester (Svensson et al. 2018).

Microbial community of anaerobic mono-and co-digesters treating food waste
and animal waste is described by Koo et al. (2019). Methanobacterium beijingense,
Methanobacterium petrolearium, Methanoculleus bourgensis, and Methanoculleus
receptaculi are the major species found in the anaerobic digester. In digester,
32 bacterial genera had relative abundance >0.5% which accounted for 77.1% of
total reads. Fastidiospila (16.4 � 5.2%), Petrimonas (14.7 � 5.1%), Rikenellaceae
RC9 gut group (11.1 � 6.2%), Candidatus Cloacamonas (4.7 � 9.5%),
Christensenellaceae R-7 group (3.5 � 0.9%), Proteiniphilum (3.3 � 2.3%), and
Sedimentibacter (3.0 � 1.0%) were dominant bacteria in anaerobic digester.

Microbial communities of mesophilic anaerobic digesters treating food wastewa-
ter or sewage sludge were shown by Lee et al. (2018). Major methane producing
communities observed are Methanoculleus (78.6 � 17.0%), Methanobacterium
(7.3 � 13.6%), Methanomassiliicoccus (4.1 � 3.9%), Methanomethylophilaceae
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(1.8 � 3.1%), Candidatus Methanoplasma (2.6 � 3.6%), uncultured
Methanosarcina (1.2 � 4.7%), and Methanimicrococcus (0.9 � 2.0%) in anaerobic
digester (Lee et al. 2018).

Microbial communities of mesophilic and thermophilic anaerobic digesters
treating food waste-recycling wastewater were shown by Kim et al. (2018). In the
mesophilic digester, Fastidiosipila, Petrimonas, vadinBC27, Syntrophomonas, and
Proteiniphilum were dominant bacterial genera; they may contribute to hydrolysis
and fermentation. In the thermophilic digester, Defluviitoga, Gelria, and
Tepidimicrobium were dominant bacteria; they may be responsible for hydrolysis
and acid production. In the mesophilic digester, dominant methanogens changed
from Methanobacterium (17.1 � 16.9%) to Methanoculleus (67.7 � 17.8%) due to
the increase in ammonium concentration. In thermophilic digester, dominant
methanogens changed from Methanoculleus (42.8 � 20.6%) to
Methanothermobacter (49.6 � 25.9%) due to the increase of pH (Kim et al. 2018).

Methane production was observed during the bioconversion of rice straw which
is shown by Wachemo et al. (2019). Major bacterial communities observed
Enterobacteriaceae, Clostridiaceae1, Prevotellaceae, and Peptostreptococcaceae.
Archaeal Methanosaeta is dominant among all digester samples. However, the
Methanobacterium is predominant (34.88–59.40%) in samples obtained at late
stages of AD period (Wachemo et al. 2019).

Maximum methane generation rates in dry anaerobic co-digestion of rice straw
and cow manure were found to increase by 30.5 � 2.2%, 20.5 � 1.9%, and
18.7 � 1.8% in the reactors with limonite concentrations of 1%, 5%, and 10%,
respectively. Hydrogen-consuming methanogenesis byMethanofollis was dominant
in the reactors digesting the rice straw and cow manure with added limonite
(Xu et al. 2019).

Microbial communities of thermophilic digester treating the dairy manure were
shown by Lv et al. (2013). Three temperatures (50, 55, and 60 �C) were tested on the
thermophilic digester and 50 �C was found to be the optimal temperature for overall
performance with 31% VS removal and 0.22 L methane/g VS fed.
Methanobacterium and Methanoculleus were the most predominant methanogen
genera which produced the methane gas (Lv et al. 2013).

7.6 Biogas Applications

Biogas produced from AD process comprises methane and carbon dioxide. In
addition to this, some traces of moisture, hydrogen sulfide, ammonia, nitrogen,
and hydrogen gas are detected. In biogas cleaning, majority of unwanted gases
like hydrogen sulfide, hydrogen, nitrogen, and moisture have been eliminated
using various methodologies wherein scrubber and other porous materials have
been used. Biogas upgrading is the enhancement of the methane content by reducing
the carbon dioxide content. After biogas upgradation, methane content is above
90%. The biogas has many different applications depending on its quality. Cleaned
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biogas (CH4 50–75%, H2S< 1000 ppm) is suitable for cooking, burning in boiler, or
generating electricity and heat via CHP units (Nguyen et al. 2019). Upgraded biogas,
often termed biomethane, is more than 95%. It can be injected into natural gas grid
(H2S < 4 ppm) or converted into CNG as transportation fuel (H2S < 16 ppm).
Biogas can also be reformed to produce syngas (mixture of H2 and CO2), which can
be converted into methanol or various liquid fuels using different catalysts via
Fischer–Tropsch process (Munasinghe and Khanal 2011).

7.7 Concluding Remarks

Microbial communities involved in AD process are most phylogenetically and
functionally diverse among different environments. In the last 15 years, substantial
research on the microbial communities of various anaerobic digester is conducted
and concluded that certain methanogen communities produce methane, acetogens
and fermentative bacteria produce acid, and other bacteria assist in the
bio-methanation process. Day by day, many new applications of bioinformatics
technology and tools are emerged, which offer the potential analysis that can be
benefited for the biogas industries (Zhang et al. 2019). In addition to metagenomics,
other omics branches strengthen the microbial diversity data which is also essential
for further and in-depth application of AD process. This use of complementary
techniques will allow the simultaneous identification of phylogeny, interspecies
interactions and function, and improve the operation of anaerobic digesters to fully
utilize their potential as an effective waste management strategy and resource
recovery process, and for the production of high-value products (Vanwonterghem
et al. 2014). However, research is still limited to the bacterial communities and
abundance. Majority of research are focused on the identification of the communities
and metabolites which does not show the actual potential of metagenomics. The
research should focus more on the following areas:

(a) More and precise databases should be created for bacterial identification, so that
identification of bacterial and archaeal communities is error free. It also helps to
identify the bacteria/archaea as majority (above 90%) of them belong to the
unidentified group.

(b) More precise sequencing techniques should be evolved to identify the bacteria
error free with less nucleotide sequence.

(c) More statistical tools and techniques should be created to validate the data
obtained by sequencing.

(d) Utilization of omics approach or integration of multi-omics approach should be
mandatory to obtain perfect and balanced data of AD system (Vanwonterghem
et al. 2014).

(e) Isolation and screening of genes and proteins which are responsible for potential
industrial application should be explored.
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(f) Extraction and purification of industrially important molecules generated during
biogas production should be explored.

(g) After identification of bacteria, more research is needed to integrate these
molecular methods to develop the molecular microbiology for industrial
applications.
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water treatment procedures. The bioremediation of dyes by bioproduced AgNPs was
defined as nanobioremediation (NBR). Among nanomaterials, silver nanoparticles
AgNPs have been focused due to their distinctive properties. Parameters must be
adjusted during AgNPs preparation to increase the percentage of dye removal; these
parameters are particle size, the concentration of silver nanocomposites, effect of
incubation time, pH, and temperature.

Keywords Methylene blue · Azo dyes · Nanobioremediation · AgNPs

8.1 Introduction

Nanotechnology presents a number of potential environmental benefits. This could
be divided into three categories: treatment and remediation, sensing and detection,
and pollution prevention. Besides the applications for soil, groundwater, and waste-
water, a number of nanotechnologies for air remediation are also in development.
Watlington (2005) also as mentioned by Suleiman et al. (2015) wastewater remedi-
ation using nanoparticles is one of the areas of concentration among the various
applications of the nanotechnology.

8.1.1 Effects of Dyes on Health and Environment, Problems
Related Dyes’ Environmental Contamination

The textile dyes significantly compromise the aesthetic quality of water bodies,
increase biochemical and chemical oxygen demand (BOD and COD), impair pho-
tosynthesis, inhibit plant growth, enter the food chain, provide recalcitrance and
bioaccumulation, and may promote toxicity, mutagenicity, and carcinogenicity
(Lellis et al. 2019).

Robinson et al. (2001) one of the essential contaminant to be perceived in waste
water is color which is highly visible and undesirable even in very low concentra-
tions of dyes (Banat et al. 1996). The used water contains various constituents such
as dyes and chemicals which are directly released into the sources of water which
gets contaminated and thus resulting in water pollution (Punnoose and Mathew
2018). Dyes are a major class of synthetic organic compounds used in many
industries especially textiles (Annamalai et al. 2011) which consume about 60% of
total dye production for coloration of different fabrics. Moreover, after the comple-
tion of their use nearly 15% of dyes are washed out. These dye compounds dissolve
in water bodies with a concentration in between 10 and 200 mg/L, which results in
major water pollution worldwide (Gonawala and Mehta 2014). The release of dye
effluents in aquatic systems is chief environmental concern because coloration not
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only decreases sunlight penetration and dissolved oxygen in water bodies, but also
releases toxic compounds during chemical or biological reaction pathway that
affects aquatic flora and fauna (Dutta et al. 2014). Despite its undeniable importance,
this industrial sector is considered one of the biggest global polluters and it consumes
high amounts of fuels and chemicals (Bhatia 2017).

The special emphasis is placed on the enormous use of drinking water in various
operations of its production chain, such as washing, bleaching, dyeing, among others
(Hossain et al. 2018).

The textile industry is spread globally, generating around one trillion dollars,
contributes with 7% of the total world exports and employs around 35 million
workers around the world (Desore and Narula 2018).

The textile industry is responsible for an extensive list of environmental impacts
(Muthu 2017). The textile sludge, on the other hand, reveals problems related to
surplus volumes and unwanted composition, often presenting high loads of organic
matter, micronutrients, heavy metal cations, and pathogenic microorganisms (Bhatia
2017).

The main damages caused by the textile industry to the environment, however,
are those resulting from the discharge of untreated effluents into the water bodies
(Bhatia 2017). The greater emphasis should be attributed to the large amount of
non-biodegradable organic compounds, especially textile dyes (Orts et al. 2018).

The dyes are soluble organic compounds (Mahapatra 2016), especially those
classified as reactive, direct, basic, and acids. They exhibit high solubility in water
making it difficult to remove them by conventional methods (Hassan and Carr 2018).
One of its properties is the ability to impart color to a given substrate (Shamey and
Zhao 2014) because of the presence of chromophoric groups in its molecular
structures.

The color associated with textile dyes not only causes aesthetic damage to the
water bodies (Setiadi et al. 2006), but also prevents the penetration of light through
water (Hassan and Carr 2018), which leads to a reduction in the rate of photosyn-
thesis (Imran et al. 2015) and the dissolved oxygen levels which affect the entire
aquatic biota (Hassan and Carr 2018). The textile dyes also act as toxic, mutagenic,
and carcinogenic agents (Khatri et al. 2018), persist as environmental pollutants and
cross entire food chains providing bio-magnification (Sandhya 2010), such that
organisms at higher trophic levels show higher levels of contamination (Newman
2015). In this sense, special mention should be made to azo-type textile dyes which,
around 15–50%, do not bind to the fabric, during the dyeing process, and are
released into waste water which is commonly used, in developing countries, for
the purpose of irrigation in agriculture (Rehman et al. 2018). The use of these azo
compounds is very negative to soil microbial communities (Imran et al. 2015), and to
germination and growth of plants (Rehman et al. 2018).

The toxins generated by waste dyes from several industrial sectors in water bodies
are hard to evacuate by ordinary water treatment procedures (Partila and El-Hadedy
2020). There are many kinds of dyes used in different industries on the large scale,
among them the Methyl Orange (MO), Methyl Red (MR), and Congo Red (CR) are
of common class because of their ease of application and basic colors (Nithya and
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Ragunathan 2009). Long-term exposures, in particular, bring profound unfoldings to
aquatic biota and to human health, as is the case with complexed metal dyes. This
category of dyes is widely used by the textile industry, given their resistance, and
exhibits half-lives of 2–13 years (Copaciu et al. 2013). Once released in the aquatic
environment, the heavy metal cations can be assimilated by the fish gills, because
they present negative charges, allowing their accumulation in certain tissues (Vargas
et al. 2009). Thus, through the food chain, they can reach the human organs causing
a series of pathologies (Khan and Malik 2018). Another problem associated with
recalcitrant character, which is the damaging of the plant growth and development of
plants, especially to photosynthesis and CO2 assimilation (Copaciu et al. 2013). And
it causes high incidence of bladder cancer, especially benzidine and
2-naphthylamine. The diseases provided by textile dyes comprise from dermatitis
to disorders of the central nervous system (Khan and Malik 2018). The acute toxicity
to textile dyes is caused by oral ingestion and inhalation, especially by exposure to
dust, triggering irritations to the skin and eyes. The latter are the result of the
formation of a conjugate between human serum albumin and the reactive dye,
which acts as an antigen. Tiwari et al. (2016) point to the existence of studies
made in Allium cepa root cells exhibiting chromosomal aberrations. Azure-B, widely
used in the textile industry, is able to intercalate with the helical structure of DNA
and duplex RNA, as it can be partitioned to the lipid membrane of the cells (Li et al.
2014).

It is noteworthy that this dye can reveal cytotoxic effects by acting as a notable
reversible inhibitor of monoamine oxidase A (MAO-A), according to in vitro tests
(Petzer et al. 2012), which is an intracellular enzyme of the central nervous system
(Factor and Weiner 2007) that plays an important role in human behavior
(Di Giovanni et al. 2008). Its potential for enzyme inhibition also concerns gluta-
thione reductase (Paul and Kumar 2013) which plays an essential role in cellular
redox homeostasis (Couto et al. 2016).

The Disperse Red 1 dye is also used by the textile industry and exhibits mutagenic
potential (Chequer et al. 2009). When used in vitro in human lymphocyte and human
hepatoma (HepG2) and when used in vivo, in human hepatocyte imitative cells (Will
et al. 2016), it is capable of increasing the frequency of micronuclei (Fernandes et al.
2015), which are indicative of mutagenic activity at the chromosome level (Duarte
and Rai 2016) which, in the case of humans, constitute a mutagenic event that is key
to the characterization of cancer (Hsu and Stedeford 2010). In its turn, the Disperse
Orange 1 dye exhibits similar mutagenic behavior (Chequer et al. 2009) inducing
DNA damage, found in the Salmonella spp. assays, involving base pair substitution
and frame shift mutations that alter the reading frame. In addition, it has a cytotoxic
effect, with apoptosis, in contact with HepG2 cells (Ferraz et al. 2011).

The textile dyes may offer carcinogenicity, especially those of the azo and nitro
type, and its effects manifest themselves over time (Mondal et al. 2018).

Once present in the bodies of animals or humans, it is enzymatically transformed,
through the action of the intestinal flora, into carcinogenic aromatic amines
(Piatkowska et al. 2018). Especially in the case of azo dyes, carcinogenicity can
be produced by both the dye itself and its own metabolized compounds.
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The Basic Red 9 dye, used in the textile, leather, paper, and ink industries (Duman
et al. 2015), offers carcinogenic potential in humans (Lacasse and Baumann 2012)
and high environmental toxicity (Foguel et al. 2015). It breaks down, under anaer-
obic conditions, into carcinogenic aromatic amines and their disposal in water bodies
has the potential for allergic dermatitis, skin irritation, mutations, and cancer itself
(Sivarajasekar and Baskar 2014). The latter, according to the tests performed on rats,
may comprise local sarcomas and tumors in the liver, bladder (Pohanish 2017),
mammary glands, and hematopoietic system (National Toxicology Program 1986).

The Crystal Violet dye, a member of the cationic triphenyl methane group, shows
a very intense color (Ali et al. 2016) and is responsible for mitotic poisoning, which
is associated with abnormal accumulation of metaphases (Mani and Bharagava
2016) as well as the in vitro clastogenic effects observed in Chinese hamster ovules
(Azmi et al. 1998), which induce chromosomal damage (Newman 2015). This
powerful carcinogenic agent (Bharagava et al. 2018) promotes fish tumors (Mani
and Bharagava 2016), as well as hepatocarcinoma and reticular cell sarcoma in
various organs, such as the vagina, uterus, ovary, and bladder (Littlefield et al. 1985),
hardened gland adenoma and ovarian atrophy in rats. In humans, it is capable of
generating chemical cystitis, irritation of the skin and digestive tract, respiratory and
renal failure, among others (Mani and Bharagava 2016).

The water from industries with potential hazardous organic matters when
discharged into the water bodies causes undesirable effects to the environment,
aquatic life, and human health. So it is necessary to treat waste water prior to their
disposal. Degradation of organic pollutants is a major concern in the present scenario
due to its stability, fastness to sunlight, resistance to degrading agents, or microbial
attack. It is mainly achieved by silver metal nanoparticles synthesized by green route
(Punnoose and Mathew 2018).

CR is highly toxic and carcinogenic anionic dye belonging to a group of azo dyes,
derived from benzylamine. The presence of CR dye in the waste water would be very
harmful to the aquatic environment. An efficient dye degradation has become a
challenging task for environmental engineers as well as scientists. Different methods
have been adopted by scientists for degradation of dyes in effluent which includes
biological degradation, photocatalysis and adsorption tactics, etc. (Xiao et al. 2019).

Environmental remediation of toxic organic pollutants on catalytic reduction has
gained much attention. The discharge of untreated effluents into the aquatic envi-
ronment leads to an unwanted change in ecological balance. Recently, effluents of
organic dyes and nitroarenes have been identified as a new threat because the
unwanted dyes and nitro compounds are toxic to fauna, flora, and humans. Effective
and selective removal of organic dye from water systems is a pressing global issue
for both drinking water and wastewater purification.

Partila and El-Hadedy (2020) reported that the AgNPs polymer was consolidated
and cross-linked by gamma radiation to prevent the dissolution of sodium alginate in
water. This strategy was utilized for adsorption and reduction of two different waste
dyes methylene blue and Fantacell dyes, and found the maximum reduction
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percentage for Fantacell dye was 87%, detected at 45 min, and the maximum
reduction percentage of bromothymol blue was 87%, detected at 150 min.

8.2 Nanobioremediation (NBR)

The removal of environmental contaminants (such as heavy metals, organic and
inorganic pollutants) from contaminated sites using nanoparticles/nanomaterial
formed by plant, fungi, and bacteria with the help of nanotechnology is called
nano-bioremediation. NBR is still a new area but growing rapidly in the field of
nanotechnology. This chapter speculates on biosynthesis of nanoparticles from
plants, bacteria, yeast and fungi and bioremediation of waste dye. The biosynthetic
route of nanoparticle synthesis could emerge as a better and safer alternative to
conventional methods. The area is often referred to as the “Next Industrial Revolu-
tion” (Roco 2005). A combined approach involving nanotechnology and biotech-
nology could overcome this limitation: in which complex organic compounds would
be degraded into simpler compounds (Singh 2010).

Biosynthesis of nanoparticles using microorganisms has emerged as rapidly
developing research area in green nanotechnology across the globe, this is an
alternative for conventional chemical and physical methods. Optimization of the
processes can result in synthesis of nanoparticles with desired morphologies and
controlled sizes (Iravani 2014).

8.2.1 Nanoparticles and Its Unique Properties

As a particle decreases in size, a greater proportion of atoms are found at the surface
compared to those inside. For example, a particle of size 30 nm has 5% of its atoms
on its surface, at 10 nm 20% of its atoms, and at 3 nm 50% of its atoms. As growth
and catalytic chemical reactions occur at surfaces, this means that a given mass of
material in nanoparticulate form will be much more reactive than the same mass of
material made up of larger particles (Lubick and Betts 2008).

To put that scale in another context, the comparative size of a nanometer to a
meter is the same as that of a marble to the size of the earth. In the “bottom-up”
approach, materials and devices are built from molecular components which assem-
ble themselves chemically by principles of molecular recognition. In the “top-down”
approach, nano-objects are constructed from larger entities without atomic-level
control. “quantum size effect” is when the electronic properties of solids are altered
with great reductions in particle size. Diffusion and reactions at nanoscale,
nanostructures materials and nanodevices with fast ion transport are generally
referred to nanoionics (Lubick and Betts 2008).

Materials reduced to the nanoscale can show different properties compared to
what they exhibit on a macroscale, enabling unique applications. For instance,
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opaque substances become transparent (copper); stable materials turn combustible
(aluminum); solids turn into liquids at room temperature (gold); insulators become
conductors (silicon). A material such as gold, which is chemically inert at normal
scales, can serve as a potent chemical catalyst at nanoscales. Much of the fascination
with nanotechnology stems from these quantum and surface phenomena that matter
exhibits at the nanoscale (Lubick and Betts 2008).

It is possible to prepare small molecules to almost any structure. These methods
are used today to produce a wide variety of useful chemicals such as pharmaceuticals
or commercial polymers. These approaches utilize the concepts of molecular self-
assembly and/or supramolecular chemistry to automatically arrange themselves into
some useful conformation through a bottom-up approach. The Watson–Crick base
pairing rules are a direct result of this, as is the specificity of an enzyme being
targeted to a single substrate, or the specific folding of the protein itself. Thus, two or
more components can be designed to be complementary and mutually attractive so
that they make a more complex and useful whole (Edelstein Alan and Cammarata
Robert 1998).

The challenge for nanotechnology is whether these principles can be used to
engineer novel constructs in addition to natural ones (Levins and Schafmeister
2005).

Molecular nanotechnology, sometimes called molecular manufacturing, is a
machine that can produce a desired structure or device atom-by-atom using the
principles of mechano-synthesis. The conventional technologies are used to manu-
facture nanomaterials such as carbon nanotubes, nanoparticles (Lubick and Betts
2008), molecular wire or nanowires (Mihailovic 2009), and switches. They are the
fundamental building blocks for molecular electronic devices. Their typical diame-
ters are less than three nanometers, while their bulk lengths may be macroscopic,
extending to centimeters or more. Nanotechnology is characterized by the use of
very small manufactured particles (<100 nm), called nanoparticles (NPs) or ultrafine
particles. They are more reactive and more mobile in nature. NPs are broadly in two
groups of organic and inorganic nanoparticles. Organic nanoparticles include carbon
nanoparticles (fullerenes) while some of the inorganic nanoparticles include mag-
netic nanoparticles, noble metal nanoparticles (e.g., gold and silver), and semicon-
ductor nanoparticles, e.g., titanium dioxide and zinc oxide (Ruffini-Castiglione and
Cremonini 2009). Smaller particle size enables the development of smaller sensors,
which can be deployed more easily into remote locations. Recently, nanomaterials
(NMs) have been suggested as efficient, cost-effective and environmentally friendly
alternatives to existing treatment materials, in both resource conservation and envi-
ronmental remediation (Dastjerdi and Montazer 2010) and stable with great impor-
tance in wider application in the areas of electronics, medicine, and agriculture
(Kavitha et al. 2013). Although nanoparticles can be synthesized through an array
of conventional methods, the biological route of synthesizing it has advantages
because of ease of rapid synthesis, controlled toxicity, control of size characteristics,
low cost, and eco-friendly approach (Ingale and Chaudhari 2013). Nanoparticles are
extensively used for removal of biological contaminants and chemical contaminants
including organic pollutants (Okhovat et al. 2015) also. Bioremediation of
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radioactive wastes from nuclear power plants and nuclear weapon production, such
as uranium, has been achieved using nanoparticles. Cells and S-layer proteins of
Bacillus sphaericus JG-A12 have been found to have special capabilities for the
cleanup of uranium contaminated wastewaters (Duran et al. 2007). A unique study
on plants suggests that some nanomaterials may inhibit seed germination and root
growth (Lin and Xing 2007).

8.2.2 Silver Nanoparticles

In recent years, silver nanoparticles (AgNPs) have greatly focused the researcher’s
attention because of their important application as antimicrobial, catalytic, textile
fabrics and plastics to eliminate microorganisms (Fouad et al. 2019). They are small
enough to confine their electrons and produce quantum effects. Silver nanoparticles
have distinctive physico-chemical properties, such as high electrical and thermal
conductivity, chemical stability, catalytic activity, and nonlinear optical behavior
(Xu et al. 2006; Tran and Le 2013).

Besides these silver nanoparticles have also been used as antimicrobial agents,
silver nanoparticles used as anti- microbial material and in waste water purification,
etc. (Park 2014; Banerjee et al. 2014).

The biomolecules might be acting as reducing and stabilizing agents. According
to the previous studies, the band appeared in the ranges of the band spectrum
indicates in the spectrum indicates the formation of AgNPs and capped with different
bio-moieties (Sharma et al. 2017).

Among nanomaterials, silver nanomaterials have been focused due to their
distinctive physical, chemical, and biological properties as compared to macroscopic
materials (Dwivedi and Gopal 2010).

Earlier studies reported that nanoparticle synthesized from silver was effective in
enhancing the dye removal (Harsha et al. 2011). Seventy percent decolorization was
achieved by the nanoparticles of both bacteria against the dye Acid Orange 5 and
Black 7984 at 100 and 200 ppm concentration. Similar results were reported by
Modi et al. (2015) where the silver nanoparticles from Bacillus pumills decolorize
Congo red. A slower rate of decolorization was attributed to higher molecular weight
and structural complexity of the dyes (Hu and Wu 2001).

8.3 Factors Affecting Dye Removal by Nanoparticles

8.3.1 Particle Size

Solanum nigrum assisted silver nanocomposites are better in dye removal as com-
pared to Cannabis sativa as the efficiency of dye removal for Solanum nigrum is two
times more as compared to Cannabis sativa; this may be due to small size of
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Solanum nigrum assisted silver nanocomposites, in which the DLS pattern reveals
that silver nanocomposites synthesized by this method have average diameter of
34.13 � 3.10 and 70.93 � 3.57 nm for Solanum nigrum and Cannabis sativa leaf
extract, respectively. The TEM data reveals that biosynthesized silver
nanocomposites are spherical in shape having 5–17 nm for Solanum nigrum and
12–22 nm for Cannabis sativa (Khatoon and Sardar 2017).

8.3.2 Concentration of Silver Nanocomposites

As the concentration of silver nanocomposites increases from 1 to 4 μg/mL, the
efficiency of dye removal increases up to 3 μg/mL and after this the dye removal
efficiency becomes constant. The Solanum nigrum mediated silver nanocomposites
at 3 μg/mL for yellow, blue, and mixture of both the dyes are 68.2%, 77.5%, and
54.23%, respectively, while Cannabis sativa mediated silver nanocomposites at
same concentration are 27.02%, 45.7%, and 25.5% (Banerjee et al. 2014).

8.3.3 Incubation Time

Incubation time has a significant role in synthesis. The results show that absorption
increases up to 2 h for Solanum nigrum and 5 h for Cannabis sativa, after that it is
stable (Khatoon and Sardar 2017).

8.3.4 pH

The maximum dye removal (yellow, blue, and mixture) was obtained at basic pH
that is at pH 9 for both the nanocomposites. This may be due to electrostatic
interaction of dyes with nanocomposites which varies with the change in pH
(Banerjee et al. 2014). The biosynthesized silver nanoparticles are most effective
in dye removal at alkaline pH 9 and at 60 �C. The textile industry effluents have high
pH and temperature which makes these nanoparticles more appropriate in treatment
of these industry effluents, in which the decolorizing efficiency of biosynthesized
silver nanocomposites was investigated up to three cycles (Khatoon and Sardar
2017).
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8.3.5 Temperature

Rise in temperature may also have resulted in a higher mobility of the dye molecules
accompanied by a reduction in the retarding forces and the adsorbent efficiency. By
keeping all other conditions constant, an increase in temperature led to an increase in
the percentage of dye adsorption up to 60 �C. The decrease of dye removal beyond
60 �C may be due to denaturation of biomolecules present on silver nanocomposites
at higher temperature. Finally, the visual observations of dye removal done, when
incubated with Solanum nigrum and Cannabis sativa that assisted silver
nanocomposites at a concentration of 3 μg/mL, pH 9 at 60 �C for 2 h (Khatoon
and Sardar 2017).

8.4 Methods for Production of AgNPs

8.4.1 Physical

Adsorption is the most efficient method for the removal of dyes. Adsorption does not
require an additional pre-treatment step before its application and process does not
result in the formation of any harmful substance (Dabrowski 2001). In ion exchange
treatment of dye-containing effluents, wastewater is passed over the ion exchange
resin until the available exchange sites are saturated (Slokar and Le Marechal 1998)
the polymer was over saturated by AgNPs (Partila and El-Hadedy 2020). Membrane
separation including ultrafiltration, nanofiltration, and reverse osmosis have been
increasingly used recently for the treatment of effluents due to its ease of operation
(Kurniawan et al. 2006).

8.4.2 Chemical

Chemical methods include coagulation or flocculation combined with flotation and
filtration, precipitation–flocculation with Fe(II)/Ca(OH)2, electroflotation, electroki-
netic coagulation, and conventional oxidation methods by oxidizing agents (ozone)
(Pereira and Soares 2003). These chemical techniques are often expensive, and
although the dyes are removed, accumulation of concentrated sludge creates a
disposal problem (Ghoreishi and Haghighi 2003).
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8.4.3 Biological

Traditionally, nanoparticles were produced only by physical and chemical methods.
The need for biosynthesis of nanoparticles arose due to the high cost of physical and
chemical processes. In the search of cheaper pathways for nanoparticle synthesis,
microorganisms and then plant extracts were used for synthesis, where the main
reaction occurring is reduction/oxidation. The microbial enzymes or the plant
phytochemicals with antioxidant or reducing properties are usually responsible for
reduction of metal compounds into their respective nanoparticles (BCC Research
2007). Most of scientists utilized toxic chemicals and also include the use of
enormous energy. This scenario is not economic and causes serious pollution to
environment. Synthesis of nanomaterials using biological entities is gaining atten-
tion because biological methods are less expensive, nontoxic and involve environ-
mentally acceptable procedures (Logeswari et al. 2013). The diversity of
microorganisms is being used as eco-friendly nanofactories for biosynthesis of
nanoparticles. Southham and Beveridge (1996) such as silver, cadmium sulfide,
gold, tin and (Sastry et al. 2003). The biosynthesis of microbial metal nanoparticles
shows several applications including the fields of bioremediation,
bio-mineralization, bio-leaching, and microbial corrosion (Singh et al. 2011).

8.4.3.1 Nanoparticles Produced by Plants and Bioremediation

Green synthesis of nanoparticles by plants is gaining importance nowadays because
of single step biosynthesis process, absence of toxicants, and occurrence of natural
capping agents (Gurunathan et al. 2009). The advantage of using plants for the
synthesis of nanoparticles is that they are easily available, safe to handle and possess
a broad variability of metabolites that may aid in reduction (Manzer et al. 2015).
They proved the biological synthesis of silver nanoparticles using ethanolic extracts
of two medicinal plants, Ocimum sanctum and Artemisia annua leaf extracts. After
exposing the silver nitrate solution to the leaf extracts, the rapid reduction of silver
ions led to the formation of silver nanoparticles in solution. The Ocimum sanctum
and Artemisia annua assisted silver nanoparticles were studied for their potential to
remove phenols, textile dyes, and microbial contaminants from water. The silver
nanoparticles from Ocimum sanctum can catalyze the reduction of 4NP within
20 min in presence of NaBH4. The synthesized nanoparticles can efficiently adsorb
toxic textile dyes (Reactive Blue 4, Reactive Orange 4, and Reactive Red 120) from
aqueous solutions. The nanoparticles show excellent antimicrobial properties and
can be reused repeatedly (Sardar and Khatoon 2016). Silver nanoparticles (AgNPs)
are useful in various fields such as catalysis, optics, biomedical, pharmaceutical, and
sensor technology (Khatoon et al. 2017).

AgNPs were synthesized using Duranta erecta leaves’ extract as a reducing
agent. Organic pollutants were reduced such as 4-nitrophenol (4-NP),
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2-nitrophenol (2-NP), 2-nitroaniline (2-NA), trinitrophenols (TNP) as well as rho-
damine B (RhB) and methyl orange (MO) dyes.

Percentage of dye degradation was estimated by the following formula:

%Decolorization ¼ C0� Cð Þ=C0� 100

where

C0 is the initial concentration of dye solution and
C is the concentration of dye solution after catalytic degradation.

The average size of the AgNPs synthesized is approximately to be ~13 nm
spherical and uniform nature produced during 20 min boiling.

The degradation of methylene blue was noted by color change from the initial first
day deep blue color to light blue at the end of fifth day. Take absorbance value at
660 nm. Of various concentrations of AgNPs, 10 mg was found effectively
degrading the dye at the end of fifth day (75%). Also, the phytosynthesis of
AgNPs was accomplished by using the leaf extract of cynodon dactylon (L.) Pers
and dye degradation, in which the synthesis of AgNPs was confirmed by color
change from pale yellowish reaction mixture to dark brown after 20 min of boiling.
And it showed an absorption peak at 350 nm in UV–visible spectrum corresponding
to the plasmon resonance band of the synthesized AgNPs, the silver nanoparticles
was around 13 nm, AgNPs concentration (10 mg/1000 mL), absorbance at 660 nm
for the dye. The percentage of dye degradation was increased with increasing the
day. Of various concentrations of AgNPs used, dye solution containing 10 mg
AgNPs showed 75% dye degradation after 5 days of incubation at room temperature
(Anjana and Geetha 2019).

The use of plant and plant extract in nanoparticles synthesis is advantageous
compared to microbial based system because it eliminates the intricate process of
maintaining cell cultures (Monda et al. 2011). Nowadays biosynthesized
nanocatalysts are widely used for the efficient removal of dye contaminants. Plant
contains a complex network of metabolites and enzyme that can be used to synthe-
size nanoparticles. The presence of different chemical compounds in plant such as
polyphenols, flavonoids, sterols, triterpenes, reducing sugar like glucose and fruc-
tose, and protein could help produce metallic nanoparticles (Bonnia et al. 2016).
Green synthesized AgNPs were found to be stable for 6 months; this stability may be
due to the presence of phytochemicals present in the leaf extract of C. dactylon
which acts as stabilizing agents (Anjana and Geetha 2019).

The AgNPs are synthesized via the green synthesis method by using extracts of
tomato (T), onion (O), acacia catechu (C), and combined extracts of COT as
reducing and stabilizing agents. The formation of AgNPs synthesized by onion
and tomato extracts showed the well-defined absorbance band at 432 and 450 nm
(Chand et al. 2013).
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8.4.3.2 Nanoparticles Produced by Bacteria and Bioremediation

Alcaligenes faecalis AZ26, Bacillus cereus AZ27, and Bacillus sp. AZ28 were
isolated from effluents of textile industries. These bacterial isolates grew well in
the presence of up to 500 mg/L of Novacron Super Black G (NSB-G) and showed
decolorization of approximately 90% at 200 mg/L of NSB-G after 96 h of cultivation
at 37 �C and pH 8.0 under static condition, which have potential in the biological
treatment of dyeing effluents (Hossen et al. 2019). Synthesize AgNPs using endo-
phytic bacterium Bacillus siamensis strain C1, which was isolated from the medic-
inal plant Coriandrum sativum.

Bacteria are capable of mobilization and immobilization of metals and in some
cases, the bacteria which can reduce metal ions show the ability to precipitate metals
at nanometer scale. Bacteria are considered as a potential “biofactory” for the
synthesis of nanoparticles like gold, silver, platinum, palladium, titanium, titanium
dioxide, magnetite, and cadmium sulfide. The use of bacteria as a source of enzymes
that can catalyze specific reactions leading to inorganic nanoparticles (Iravani 2014).
Extracellular secretion of enzymes offers the advantage of producing large quantities
of nanoparticles, and the further purification of nanoparticles is successfully
achieved by filtering. The special metal binding abilities of the bacterial cells and
S-layers make them useful for technical applications in bioremediation and nano-
technology. The properties of nanoparticles are controlled by optimization of impor-
tant parameters which control the growth condition of organisms, cellular activities,
and enzymatic processes. The large-scale synthesis of nanoparticles using bacteria is
appealing because it does not need any hazardous, toxic, and expensive chemical
materials for synthesis and stabilization processes (Iravani 2014). Immobilization of
AgNPs with polyacrylamide and sodium alginate gave the best results for dye
decolorization, the polymer polymerized by 3Mega gamma rays; as shown by Partila
and El-Hadedy (2020) percentage of decolorization for Fantacell dye was 87%,
detected at 45 min, and the maximum reduction percentage of bromothymol blue
was 87%, detected at 150 min. as a combination of two methods biological and
physical.

8.4.3.3 Nanoparticles Produced by Fungi and Dye Bioremediation

Fungi are the best candidates in the synthesis of metal nanoparticles due to their
ability to secrete large amount of enzymes, high protein contents, its biomass,
economic livability, tolerance, and metal bioaccumulation capability; moreover, a
number of species grow fast and therefore culturing and maintaining them in the
laboratories are very simple (Castro-Longoria et al. 2012; Dhillon et al. 2012).

Also, in addition to monodispersity, nanoparticles with well-defined dimensions
can be obtained using fungi. Compared with bacteria, fungi could be used as a source
for the production of larger amounts of nanoparticles. This is because fungi secrete a
greater volume of proteins which directly translate to higher productivity of
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nanoparticle formation (Mohanpuria et al. 2008). The fungus Aspergillus flavus was
capable of synthesizing extracellular silver nanoparticles (AgNPs) (Vighneshwaan
et al. 2007).

Fusarium oxysporum is known to secrete the nicotinamide adenine dinucleotide
(NADH) enzyme, especially nitrate reductase, which might be responsible for the
bioreduction of Ag+ to Ag� through electron shuttle enzymatic metal reduction
process (Duran et al. 2005). Hamad (2018) reported the extracellular synthesis of
AgNPs by using two filamentous fungi Penicillium citreonigrum Dierckx and
Scopulariopsis brumptii Salvanet-Duval, isolated from east of Lake Burullus. Nithya
and Ragunathan (2011) reported that silver nanoparticle synthesized by Pleurotus
sajor caju can effectively decolorize congo red dye (78%) in 24 h incubation and the
dye was fully decolorized after 35 h incubation.

Bioremediation occurs by biosorption washing water from cotton fabric
processing, by silver nanoparticles (Duran et al. 2010). The process also allowed
recovery of silver leached into the effluent for reutilization, avoiding any effect to the
environment and reducing cost.

8.4.4 Photocatalytic Degradation

Sunlight is an abundantly available natural source of energy which can be conve-
niently exploited for the photodegradation of pollutants (Wang et al. 2014). Dyes can
be degraded in the presence of photocatalyst such as metal nanoparticles; UV
irradiation acts as another source for organic dye degradation by photocatalysts
including TiO2 (El-Kemary et al. 2011) and ZnO. ZnO is unstable due to incongru-
ous dissolution to yield Zn(OH)2 on the ZnO particle surfaces, thus leading to
catalyst inactivation (Bahnemann et al. 1987). Photocatalysts like SnO2, ZrO2,
CdS, MoO3, WO3, RuO2, Co3O4, Cu2O, SiO2, α–Fe2O3, Mn2O3, and Fe3O4 have
shown negligible activity (Han et al. 2004). The photocatalytic activity of these
could be improved under UV and visible illumination by incorporation of metal
nanoparticles of silver, gold, or iron to broaden the absorption of solar radiations
(Anpo 2000).

8.4.5 Reducing Agent

An alternative method for organic dye reduction utilizes the electron donating
capacity of transition metal nanoparticles such as silver, gold, iron, nickel, palla-
dium, and platinum in the presence of reducing agents like LiAlH4, NaBH4, or H2O2.
Silver metal nanoparticles have high efficient catalytic activities because of their
unique properties such as extreme small dimensions, large surface to bulk ratio, large
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dispersivity and ability to transfer electrons between the donor and acceptor electron
relay system (Ghosh et al. 2002). Among these, plant products is the most adopted
method as phytochemicals are the natural resource for the synthesis of metal
nanoparticles, much safer to handle, widely available and ability to act as both
stabilization and reduction agent (Shankar et al. 2004). Azadirachta indica leaves,
Camellia sinensis, Capsicum annuum L., Cinnamomum camphora leaves, Datura
metel, Emblica officinalis fruit, and Ocimum sanctum leaves are few among them
(Krishnaraj et al. 2010).

8.5 Mechanisms of Dye Degradation by Silver
Nanoparticles

It is confirmed that the reduction of silver ion occurred due to different functional
groups: terpenoids, flavones, phenolics, and polysaccharides compounds present
into the plant extracts (Ahmed et al. 2016). Terpenoids and flavonoids compounds
are responsible for the stabilization of AgNPs and also potential constituents of
onion and tomato extracts are responsible for the reduction of silver ion (Akter et al.
2018).

8.5.1 Catalytic Degradation by Silver Nanoparticles Using
Reducing Agents

The process of dye degradation by silver nanocatalyst through reducing agent like
NaBH4 can be explained by electron transfer mechanism. During degradation, the
catalysis process occurs on the surface region of metals, therefore the surface area
availability will increase significantly and in turn improve the efficiency of the
catalyst (Grogger et al. 2004). The reductant molecules and dye molecules are
probably adsorbed on the large surface of silver nanoparticles without affecting
their activity. When the reducing agent NaBH4 is adsorbed on the nanoparticles, its
reductive potential decreases, as NaBH4 is a strong nucleophile. On the other hand,
when dye molecules get adsorbed on nanoparticles, their reduction potential
increase, as the molecules are electrophilic in nature and hence, when both the
species are adsorbed on nanoparticles they become more negative for NaBH4

molecules and more positive for dye molecule. The biogenic silver nanoparticles
support the “electron shuttling” from the donor to the acceptor molecules and thus
act as an effective substrate for the electron relay process (Pradhan et al. 2002).
During electron transfer reaction, the BH4

� ions are simultaneously adsorbed on the
surface of metal nanoparticles and thus electron transfer occurs from BH4

� ions to
dye through the nanoparticles, resulting in the destruction of the dye chromophore
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structure to form small species such as acetamide, CO2, and H2O, which are less
hazardous than the organic pollutant (Mallick et al. 2006).

8.5.2 Photocatalytic Degradation of Dyes by Silver
Nanoparticles

In the utilization of leaf and calyx extracts of Plumbago auriculata for the biosyn-
thesis of silver nanoparticles (AgNPs), the water-soluble components of the extracts
were responsible for the reduction of Ag+ ions. Stabilization properties of these
particles due to the nature of the capping agent FTIR spectra revealed that the –OH
and –C¼O groups present in the biomolecules were responsible for the stabilization
and reduction of the AgNPs (Singh et al. 2018). The photodegradation of methylene
blue dye by silver nanoparticles from Helicteres isora (Bhakya et al. 2015) and Anas
platyrhynchos (Sinha and Ahmaruzzaman 2015) showed decrease in the absorption
peak at 664 nm in the presence of light. In the proposed mechanism, the excited
surface electron interacts with dissolved oxygen which produced hydroxyl radicals
which helped in the interaction of Ag+ ions with dyes resulting in effective degra-
dation (Kumari et al. 2016). Smaller particle size, large surface area, and capping
phytochemicals effectively reduce the recombination of electrons leading to increase
in the photodegradation efficiency of the biosynthesizedDimoncarpus longan, silver
nanoparticles. The silver nanoparticles acted as a catalyst by lowering the activation
energy (Khan et al. 2016a, b). Absorption peak of the dye decreased with increase in
time of exposure to sunlight (Mendhulkar et al. 2016). The visible light irradiation of
silver nanoparticles promoted electron from valence band to conduction band (Khan
et al. 2016a, b). The excited electrons in the conduction band were scavenged by
lattice oxygen molecules on the surface of the catalyst to form a superoxide radical
anion (O2

�) (Karthik et al. 2017). The newly formed oxygen anions further react
with water to generate many oxidative species which causes dye degradation (Ashok
et al. 2017). Parkia roxburghii (Paul et al. 2015) silver nanoparticles showed
effective degradation of methylene blue and rhodamine B through NaBH4, indicat-
ing that silver nanoparticles caused structural changes and removed chromophore
group from the dye (Paul et al. 2015). The high potential difference among the donor
and acceptor groups made the reaction kinetically unsuitable. The kinetic barrier
could be removed by using silver catalyst that mediates the transfer of electron from
donor (BH4

�) to acceptor molecules (Khan et al. 2016a, b). The probable mecha-
nism of photocatalytic degradation by silver nanoparticles could be attributed to the
surface plasmon resonance effect where the excited surface electrons might interact
with the dissolved oxygen molecules and ultimately produce hydroxyl radicals while
allowing Ag+ ions to interact with the anionic dyes (Kumari et al. 2016).

The photocatalytic mechanism can be related by two parts, namely, photo and
catalysis. The first portion is related to photon absorption. The second portion is
related to surface radical formation and surface reactivity between O2, H2O, and
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organic molecules (Sinha and Ahmaruzzaman 2015). Upon photon absorption by
silver nanoparticles, an electron gains energy and gets excited from valence band
(VB) to conduction band (CB), leaving a positively charged hole in the valence band
(h+VB). The valence band holes react with the chemisorbed H2O molecules to form
reactive species such as OH• radicals. An electron in the conduction band (e–CB) of
the nanoparticles reacts with dissolved oxygen molecules in the reacting medium
and converted into oxygen anion radicals (da Silva and Faria 2003). HO2

• radicals
were generated on protonation of superoxide radical anions O2

•�.The hydroxyl
radicals (OH•) and super oxide radical anions (O2

•�) are powerful oxidizing agents
capable of attacking dye molecules and degrade them into small molecules such as
CO2, H2O, and NH3, which are not particularly toxic.

8.6 Types of Dyes and Its Degradation

8.6.1 Degradation of Methylene Blue

Methylene blue is a model cationic dye employed by industries such as textile
industry for a variety of purposes. It is a heterocyclic aromatic chemical compound
with a molecular formula C16H18CIN3S. It causes eye burn which may be respon-
sible for permanent injury to the eyes of human as well as aquatic animals. It can also
cause irritation to the gastrointestinal tract with symptoms of nausea, vomiting, and
diarrhea. Methylene blue also causes irritation to the skin when in contact with it
(Oliveira et al. 2008). Methylene blue degradation at 664 nm is studied using UV–
vis. spectrophotometer, in the presence and absence of different biogenic silver
nanocatalysts. The color change from blue to colorless leuco methylene blue infers
the complete degradation of dye. Silver nanoparticles act as an electron mediator
between donor (NaBH4) and electron acceptor (methylene blue dye) (Naraginti and
Li 2017). Reduction of dye by NaBH4 without nanocatalyst is not effective and
required months for the degradation. The reduction of dye by sodium borohydride in
the presence of Soymida febrifuga silver nanocatalyst was completed in less than
20 min.

8.6.2 Degradation of Azo Dyes

Methyl orange, methyl red, and Congo red are the commonly used azo dyes in textile
industries and are also used as indicators in various industries. These are highly toxic
and are harmful to plants and human beings. So its effective degradation is a need.
The aqueous solution of methyl orange is orange red in color. The UV–vis. spectrum
of aqueous solution of the methyl orange and methyl red showed strong absorptions
at 465 and 490 nm, respectively. Congo red in water medium shows surface plasmon
resonance bands at 498 and 338 nm (Meena Kumari and Philip 2015). An increase in
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the rate of methyl orange degradation by Punica granatum nanocatalyst with the
help of NaBH4 was observed because of the excellent catalytic activity of
nanoregime particles due to their relative high surface to volume ratios. Catalytic
degradation by the reductant NaBH4 alone results no change in the characteristic
absorption peak at 465 nm even up to 6 h. Addition of green synthesized silver
nanoparticles using Mussaenda erythrophylla into the solution containing dye and
NaBH4 caused a rapid dip in the absorbance peak at 465 nm (Varadavenkatesan et al.
2016). Surface plasmon resonance band showed a blue shift in absorption peak from
465 to 440 nm during the dye degradation due to the surface alterations arising due to
electron relay process (Varadavenkatesan et al. 2016). The catalyzed reaction found
to be faster due to electron relay of silver catalyst from BH4

� ions to the methyl
orange dye. Curcuma longa mediated silver nano showed complete degradation
within 3 min (Vadivu et al. 2017). The degradation of methyl orange and Congo red
not even started by the reducing agent NaBH4 without nanocatalyst. Only after the
addition of silver nanoparticles, catalytic reductive degradation of the dyes com-
menced and completed within 30 min for both dyes. Silver nanocatalyst was the
electron transfer mediator and provided more catalytic sites due to high surface to
volume ratio; Aglaia elaeagnoidea (Manjari et al. 2017) mediated silver
nanocatalysts in the presence of NaBH4 degraded almost 80 and 99% of Congo
red. Degradation in the absence of nanocatalyst is very slow due to the inefficient
transfer of electron from the reductant to the dye which was usually done by the
catalyst (Kolya et al. 2015).

Catalytic reduction of Allura red and Congo red, Eosin Y, Green Pls, Bromo
phenyl blue under visible light was done using NaBH4 in presence of silver
nanoparticles synthesized from Camellia japonica (Karthik et al. 2017),
Dichrostachys cinerea (Paau et al. 2010), and Cirsium japonicum (Khan et al.
2016a, b) extracts, respectively. NaBH4 or sunlight alone is unable to bring about
effective dye degradation. The presence of silver nanoparticles caused enrichment of
the rate of reaction due to its electron relay effect for borohydride ions (Bhuyan et al.
2017).

8.6.3 Degradation of Nitro Compounds

Plant-based metal nanoparticles are effective for the degradation of nitro com-
pounds. Characteristic absorption peaks of o-nitroanilines are at 283 and 412 nm.
In the presence of sodium borohydride, degradation was very slow. Upon the
addition of Indigofera tinctoria mediated nanocatalyst in presence of the reducing
agent, o-nitroaniline was reduced to 1, 2 benzenediamine. Intensity of the charac-
teristic peak of p-nitroaniline at 380 nm decreased and a new peak was formed at
240 nm which indicates the complete conversion of p-nitroaniline to
phenelenediamine (Sunkar et al. 2013). The nanocatalyst took part in the electron
relay (Naraginti and Li 2017). Elephantopus scaber mediated silver nanoparticles
showed effective reduction of 4-nitrophenol, o-nitroaniline, p-nitroaniline by sodium
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borohydride. The aqueous solution of 4-nitrophenol is pale yellow in color and its
UV–vis (Francis et al. 2018). Absorption spectrum showed peaks at 317 and 227 nm
respectively due to n ! π* and π ! π* transitions. Majority of organic pollutants
like nitrophenol and their respective derivatives are chiefly formed during the
production of pesticides, insecticides, herbicides, and synthetic dyes in their indus-
tries (Gangula et al. 2011).

In the presence of NaBH4 as reducing agent, the color of 4-nitrophenol solution
instantly changed to greenish yellow and the absorption maximum at 317 nm was
red shifted to 400 nm due to the formation of 4-nitrophenolate ions in the alkaline
condition caused by the addition of NaBH4 (Kundu et al. 2004). In the presence of
catalyst, peak at 400 nm vanished along with the decoloration of bright yellow color
of 4-nitrophenolate ions and a new peak at 298 nm emerged due to the formation of
4-aminophenol (Joseph and Mathew 2015). The presence of the kinetic barrier due
to large potential difference between donor and acceptor molecules decreased the
feasibility of this reaction (Naraginti and Li 2017). The metal nanoparticles cata-
lyzed this reaction by facilitating electron relay from the donor BH4

� to acceptor
4-nitrophenol to overcome the kinetic barrier. Both BH4

� and 4-nitrophenolate ions
are adsorbed on the catalytic surface (Ajitha et al. 2016). Joseph and Mathew (2015)
capped silver nanoparticles was effective catalyst for the reduction of 4-nitrophenol.
The concentration of NaBH4 stayed practically constant throughout the course of the
reaction. The Hyphaene thebaica, 61 Dillenia indica (Mohanty and Jena 2017), and
Actinidia deliciosa (Naraginti and Li 2017) mediated silver nanoparticles could
facilitate electron transfer from BH4

� ion to the 4-nitrophenol, leading to
4-aminophenol formation. Fast electron transfer occurred in presence of catalyst,
which gave rise to fast reaction process (Mohanty and Jena 2017).
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Abstract Fluoride is one of the major pollutants found in all forms of water in some
concentration. The concentration of fluoride below 1 mg/L has valuable effect on the
tooth and bone health. But excessive fluoride results in the development of life
menacing effects on over all kind of lives in the form of several types of fluorosis.
Thus, there is a pressing need for the removal of the fluoride from industrial
wastewater, surface water, and groundwater. The population of rural India depends
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on groundwater resources which are highly contaminated with fluoride through
leaching. Among all the techniques used, the bioadsorption/bioremoval is found to
be the most developing technique. Over the past few years, the use of biological
adsorbents primed by fruit peels, different parts of trees such as leaf, bark, and the
microbial cell mass has remained of great interest. Removal of fluoride by microor-
ganism involves two basic mechanisms, i.e., bioadsorption and bioaccumulation.
This chapter gives an insight on the statistics of fluorosis, diverse methods adopted
by the various researchers in the field of fluoride removal from water and mechanism
of removal of fluoride.

Keywords Fluoride · Adsorption · Fluorosis · Bioremoval · Bioadsorption ·
Bioaccumulation · SABA

9.1 Introduction

Contamination of groundwater by fluoride has become a global crisis in the twenty-
first century. Large number of people in countries like India, Sri Lanka, China, Rift
Valley countries in East Africa, Turkey, parts of South Africa, Iran, Jordan, Pakistan,
Thailand, and Japan are affected by various types of health disorders due to the
consumption of fluoride contaminated groundwater for drinking purpose. The max-
imum permissible limit of fluoride in drinking water has been set as 1.5 mg/L by
many regulatory authorities like WHO, US EPA, CPCB, etc.

Fluoride enters into groundwater due to dissolution from minerals/rocks like
topaz, fluorite, fluorapatite, cryolite, phosphorite, theorapatite, etc. present at the
aquifer bottom (Murray 1973). It enters the soil through weathering of rocks,
precipitation or waste runoff. Further, a number of industrial processes such as
coal combustion, steel production, and other manufacturing processes (aluminum,
copper, and nickel production, phosphate ore processing, phosphate fertilizer pro-
duction, glass, brick and ceramic manufacturing), etc. also contribute to upgrade
fluoride levels in water.

Various physicochemical processes such as adsorption, ion exchange, electrodi-
alysis, coagulation/precipitation, reverse osmosis, nanofiltration, ultrafiltration, etc.
(Tor et al. 2009; Popat et al. 1994; Meenakshi and Viswanathan 2007; Haron and
Yunus 2001; Sundaram et al. 2008; Chubar et al. 2005; Kabay et al. 2008; Sourirajan
and Matsurra 1972; Simons 1993) have been used for the removal of fluoride from
water. All these processes have their inherent advantages and limitations such as less
efficiency, sensitive operating conditions, production of secondary sludge in appli-
cation. Among the above processes, adsorption is a simple and attractive method for
the removal of metal from the effluents due to its high efficiency, easy handling, and
economic feasibility. Further, agro-based adsorbents are getting more attention
nowadays due to their abundant availability and low cost. Some literature are
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available on the removal of fluoride from water using various agro-based adsorbents
like rice husk ash, neem leaf, peepal leaf, khair leaf, tamarind fruit shell, etc.
(Mondal et al. 2012; Jamode et al. 2004; Sivasankar et al. 2010). In most of these
literature the concentration of fluoride is in between 1.5 and 5 mg/L, normally
available in groundwater. However, industrial wastewater normally contains higher
fluoride concentration (World Bank Group 1998). Fluoride acts as double-edged
weapon, uptake of it up to 1 mg/L has beneficial effects on to the plants, animals, and
human beings. In humans, fluoride exhibits the bone formation, remineralization,
and protection from demineralization of teeth. Fluoride is extremely effective in
protecting cavities and making teeth stronger. However, it is much less effective if
cavities have already formed. According to the National Health Service, the limited
amount of fluoride acts as a nutrient and prevents tooth decay by changing enamel
structure resulting in remineralization and inhibits bacterial action. Fluoride uptake
in limited levels has variable effects on the different species of animals. In cows, the
food supplemented with fluoride results in increase in milk production.

9.2 Severity of the Issues Related with Fluoride

68.84% population of India resides in rural areas and is facing several problems, viz.
food, shelter, drinking water, education, transportation, etc. Groundwater contami-
nation is one of the most important problems facing by rural India’s population. The
groundwater comes from number of sources, such as rainfall and snow. Groundwa-
ter is used for the domestic and industrial purposes. There is a large amount of water
present on the earth even then it is very precious because the whole amount of water
reserves are divided into two parts, marine water which covers the 97.4% of total
water reserves and fresh water which covers only 2.6%. Our all basic needs like
drinking, irrigation, transportation, washing, etc. depend on our freshwater reserves.
But over the past few years, there seems to be a reduction in water quality because of
urbanization, ever growing population, and unskilled utilization of water resources.
India is known as the country of villages. A great part of the human population is
residing in villages. Villagers fulfill their need like drinking, washing, etc. by using
groundwater resources. But since the last few decades, these groundwater resources
have been polluted by various natural and anthropogenic contaminants like heavy
metals, fluoride, arsenic, lead, mercury, etc. Among these, fluoride contamination of
groundwater has now become a major issue in most of the parts of the world because
of its toxic effects. The striking fact about fluoride is that it affects the majority of
children who are living in the contaminated areas. India is among 24 nations which
are suffering from fluoride problem.
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9.3 Statistics of Fluorosis in India

In India, around 20 million people were severely affected by fluorosis and around
40 million are exposed to its risk. The number of people getting affected, the number
of villages, blocks, districts, and states endemic for fluorosis have been steadily
increasing ever since the disease was discovered in India during the 1930s. About
62 million people in India suffer from dental, skeletal, and non-skeletal fluorosis.
Out of these, six million are children below the age of 14 years (Susheela 2001).
Fluorosis is an endemic disease prevalent in 20 states out of the 36 states and Union
Territories of the Indian Republic. In India, 40–70% districts are affected in Bihar,
National Capital Territory of Delhi, Haryana, Jharkhand, Karnataka, Maharashtra,
Madhya Pradesh, Odisha, Tamil Nadu, and Uttar Pradesh (NPPCF 2018). According
to the data available as on 1 January, 2019, on the official site of government of
India, there are nearly more than 15 districts are affected with the fluoride as number
of habitations depicted in pie chart. The fluoride levels of the drinking water in Uttar
Pradesh range from 0.2 to 25.0 mg/L, the maximum level of which is well above the
normal range of 1.5 mg/L as stated by World Health Organization. The apparent
variation in the prevalence of dental fluorosis can be attributed to the source of
drinking water. In most parts of India, groundwater is found to be the major source of
drinking water. Fluoride level depends primarily on the groundwater level; the
deeper the underground level from where the water is derived, the higher the fluoride
level is. The ministry of health & family welfare has identified at least 132 districts in
19 states severely affected by high fluoride content in drinking water, a leading cause
of fluorosis. Uttar Pradesh has 75 districts, Madhya Pradesh 51, Bihar 38, and
Rajasthan 33 districts whose people are at a very high risk of fluorosis (Press release
updated on 17 Jul 2017, on Live Mint). The union health ministry, under its National
Programme for Prevention and Control of Fluorosis (NPPCF), in association with
the ministry of drinking water and sanitation, has started a baseline survey to assess
the actual burden of the disease in identified states. Meenakshi and Maheshwari
(2006) reported that there were 17 states in India affected by fluoride as range of
fluoride found in groundwater is given in Table 9.1.

“Fluoride prevalence was earlier reported in 230 districts of 19 states. As per
present data from ministry of drinking water and sanitation, there are 14,035
habitations (as on 1 April, 2016) from 17 states which are yet to be provided with
safe drinking water. The population at risk based on population in habitations with
high fluoride in drinking water is 11.53 million.” Table 9.2 focused on the assumed
cases of dental and skeletal fluorosis and the survey done by the NPPCF. Some
major statistics given in the subsequent pie charts (Figs. 9.1, 9.2, and 9.3) show the
number of habitations affected by fluoride in India in consecutive years of 2016,
2017, and 2018.

Percentage analysis based on the total no of people examined in community as
well as in school on the basis of data mentioned in Table 9.2 is given in Fig. 9.4.
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9.4 Consequences of High Level of Fluoride on to Human
Beings

Fluoride poisoning and the biological response leading to ill effects depend on the
following factors:

• Excess concentration of fluoride in drinking water.
• Low calcium and high alkalinity in drinking water.
• Total daily intake of fluoride.
• Duration of exposure to fluoride.
• Age of the individual.

Expectant mothers and lactating mothers are the most vulnerable groups as
fluoride crosses the placenta because there is no barrier and it also enters maternal
milk. De-arrangement in hormonal profile either as a result of fluoride poisoning or
as a cause aggravates the disease.

9.4.1 Mechanism of Fluoride Toxicity

There are several mechanisms of fluoride toxicity. Ingested fluoride initially acts
locally on the intestinal mucosa. It can form hydrofluoric acid in stomach which
leads to GI irritation. Fluoride also exerts effects on glucose metabolism. Results
have shown that fluoride exposure may contribute to impaired glucose intolerance.

Table 9.1 Ranges of fluoride in different states of India (Meenakshi and Maheshwari 2006)

S. no. States Range of fluoride concentration (mg/L)

1 Andhra Pradesh 0.11–20.0

2 Assam 0.2–18.1

3 Bihar 0.6–8.0

4 Delhi 0.4–10.0

5 Gujarat 1.58–31.0

6 Haryana 0.17–24.7

7 Jammu and Kashmir 0.05–4.21

8 Karnataka 0.2–18.0

9 Kerala 0.2–2.5

10 Maharashtra 0.11–10.2

11 Madhya Pradesh 0.08–4.2

12 Orissa 0.6–5.7

13 Punjab 0.44–6.0

14 Rajasthan 0.2–37.0

15 Tamil Nadu 1.5–5.0

16 Uttar Pradesh 0.12–8.9

17 West Bengal 1.5–13.0
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Fluoride inhibits Na+/K+-ATPase, which may lead to hyperkalemia by extracellular
release of potassium. Fluorides influence the secretary pathway which leads to the
dental fluorosis.

Several other cellular processes are also affected by the molecular mechanism of
inorganic fluoride. Fluoride can induce oxidative stress, homeostasis, and lipid
peroxidation as well as also alters gene expression and causes cell death.

Redox status: Fluoride alters mitochondria rich cells such as those of the human
kidney.
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Fig. 9.1 Pie chart shows the no of affected habitations in India by fluoride as on first April, 2016
(Ministry of Drinking Water & Sanitation 2016)
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Cellular Respiration: Fluoride inhibits cellular respiration. Fluoride ions bind to
the functional amino acid groups surrounding the active center of an enzyme as in
case of enzyme of glycolytic pathways and Krebs cycle which is sensitive to
fluoride.

Generation of ROS: Fluoride exposure increases the generation of anion super-
oxide (O2

�), increased O2
� concentration, and downstream consequences such as

hydrogen peroxide. Fluoride also increases NO generation. Fluoride inhibits the
antioxidant activity.
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Fig. 9.4 Assumed cases of dental and skeletal fluorosis (% analysis) as reported by NPPCF
(National health profile, 2018)
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Apoptosis: Fluoride induces the apoptosis by elevating the oxidative stress
induced lipid peroxidation, thus causing mitochondrial dysfunction and activation
of downward pathways observed as primary mechanism of cell death in presence of
relatively high fluoride concentrations. Fluoride acts as enzyme inhibitor but fluoride
ions occasionally stimulate enzyme activity (Barbier et al. 2010).

9.4.2 Deficiency by Excess of Fluoride in Human Being

As the fluoride is highly electronegative in nature, it possesses strong affinity for the
positively charged ions. The fluoride present in the drinking water firstly brings
alternations in the tooth as the fluoride replaces tooth enamel hydroxyl group with
fluoride resulting in formation of more stable compound said to be fluorapatite and
get deposited as calcium-fluorapatite crystals. Various types of fluorosis occur due to
excess of fluoride in the body as summarized in Table 9.3 (Dwivedi et al. 2017).

Dental Fluorosis: Disease is generally seen in the children on age group of
5–8 years due to excessive fluoride intake, enamel losses its luster, and fluorosis
characterized by white, opaque areas on the tooth surface and in several forms as
shown in Fig. 9.5. This sometimes results in the development of yellow brown to
black stains and severe pitting of the teeth. Dental fluorosis is caused by continuous
exposure to high concentrations of fluoride during tooth development, leading to
enamel with low mineral content and increased porosity. The critical period for risk
to dental fluorosis is between 1 and 4 years of age. After the age of 8 when
permanent teeth have established, there is lesser risk to dental fluorosis.

Skeletal Fluorosis: Excessive exposure to fluoride can cause a debilitating bone
disease known as skeletal fluorosis as shown in Fig. 9.6. The skeletal fluorosis
occurs in all age group people, i.e., in children as well as adults. Fluoride accumu-
lates in the joints of neck, knee, pelvic, and shoulder bones resulting in difficulty in
movement or walking. The symptoms observed during this disease in very similar to

Table 9.3 Stages of fluorosis in human being

Types of
fluorosis

Responsible range of fluoride in
mg/L (Meenakshi and
Maheshwari 2006) Age Symptoms

Dental
fluorosis

1.0–3.0 Children
(5–7 years)

White opaque area on the tooth
surface

Skeletal
fluorosis

3.0–4.0 Children
(5–7 years)
Adults
(<18 years)

Accumulation of fluoride in the
joints of neck, knee, pelvic, and
shoulder bones

Crippling
fluorosis

4.0–6.0 Children
(5–7 years)
Adults
(<18 years)

Arthritis, sclerosis, Muscle fiber
degeneration, low hemoglobin
level
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the symptoms seen in arthritis or spondylitis which are calcium deposits in bones,
muscle weakness, etc. In the initial stages, known as “pre-skeletal” fluorosis, a
patient may suffer a variety of symptoms in the absence of any detectable bone
charges, including joint pain, joint stiffness, and gastric distress. The absence of
bone charge makes this pre-skeletal phase difficult to diagnose, because the symp-
toms are indistinguishable from common forms of arthritis such as osteoarthritis and
rheumatoid arthritis. Skeletal fluorosis is developed by the disturbance of calcium
metabolism in the formation of bones of the body. It results in softening and
weakening of bones resulting in deformities leading to crippling. It can also aggra-
vate calcium related disorders such as rickets in children and osteoporosis mainly in
adults. For people who are exposed to high fluoride levels for decades, severe cases
of crippling can occur.

Most common symptoms to identify skeletal fluorosis are as

• Severe pain and stiffness in neck, backbone (lumbar region), shoulder, knee, and
hip region. Pain may commence either in 1 or 2 or more joints. Patient has
restricted mobility of cervical and/or lumbar spine and has to turn the whole
body towards that side to see.

• Knock knee/Bow leg (in children, adolescents).
• Inability to squat (advanced stage of skeletal fluorosis).
• Ugly gait and posture (advanced stage of skeletal fluorosis.

Non-Skeletal Fluorosis: Any case with a history of residing in an endemic area
along with one or more of the following health complaints. It is important to identify
non-skeletal fluorosis as it is the earliest sign of fluoride toxicity.

It includes symptoms like gastro-intestinal problems, viz. consistent abdominal
pain, intermittent diarrhea/constipation, bloated feeling, nausea, loss of appetite.

Neurological manifestations like nervousness and depression, tingling sensation
in fingers and toes, excessive thirst, and tendency to urinate frequently (polydipsia
and polyuria) have also been seen in affected persons.

Fig. 9.5 Stages of dental fluorosis

196 S. Dwivedi et al.



Muscular manifestations like muscle weakness and stiffness, pain in the muscle
and loss of muscle power, unable to walk or work have also been seen in affected
persons.

9.4.2.1 Crippling Fluorosis

Crippling fluorosis is the advanced stage of fluorosis resulting in osteoporosis and
bony outgrowths can also occur as shown in Fig. 9.7. Vertebrae may fuse together
and eventually the victim may be crippled. It may even lead to a rare bone cancer—

Fig. 9.6 Stages of skeletal fluorosis
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osteosarcoma and finally spine, major joints, muscles, and nervous system get
damaged.

9.4.2.2 Other Problems

Besides dental, skeletal, and crippling fluorosis, excessive fluoride can result in
muscle fiber degeneration, deformities in RBCs, low hemoglobin levels, excessive
thirst, headache, skin rashes, nervousness, neurological man, etc. A brief of other
effects of fluoride on microbes, aquatic microorganisms, flora and fauna is summa-
rized in Table 9.4.

9.5 Properties of Fluoride and Its Natural Distribution

Fluoride belongs to halogen family, the most electronegative element which is the
ionic form of fluorine and does not occur in the elemental state in nature because of
its high reactivity. In the elemental form, fluorine is a flammable, irritating, and is the
most powerful oxidizing agent known. Fluoride occurs in two forms in nature, viz.
inorganic fluoride and organic fluoride. There are a number of sources from where
fluoride is generally generated and added to the environment. The sources of fluoride
are characterized into two categories: natural sources which include the fluorine
already present in nature and distributed in Earth’s crust, mainly as the minerals,
fluorspar, fluorapatite, and cryolite, and anthropogenic sources which include

Fig. 9.7 Stages of crippling fluorosis
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industrial activities. Other sources include glassworks, exhaust fumes, and the
production of metals (e.g., steel, copper, and nickel), bricks, ceramics, and adhe-
sives. Generally fluoride found in groundwater is naturally occurring from the
breakdown of rocks, soils or weathering and deposition of atmospheric volcanic
particles. Fluoride found in both the forms inorganic and organic. Organic fluoride is

Table 9.4 Effect of fluoride on microbes, aquatic microorganisms, flora and fauna

References
S. no

Effect of Fluoride
on microbes
(Herrera et al.
2009)

Effect of Fluoride
on flora
(Fornasiero 2001)

Effect of fluoride
on fauna (Suttie
1964)

Effect of Fluoride
on aquatic
organisms
(Camargo 2003)

1 Fluoride has low
inhibitory effect
on the nitrifying
bacteria in acti-
vated sludge
process

The effect of fluo-
ride on plants
depends upon a
number of factors
such as the con-
centration, time of
exposure, type and
age of plant, tem-
perature, type of
light and intensity,
composition of the
air, and its rate of
circulation, con-
centrations of the
gas

Young animals are
generally more
susceptible to
harmful or toxic
substances than
older ones

Some of the algae
have high nega-
tive effect at high
level of fluoride.
Rate of respira-
tion of Chlorella
pyrenoidosa was
reduced by 50%
with 570 mg/L
concentration of
fluoride. 25–27%
growth inhibition
was seen in
Amphidinium
carteri and in
Dunaliella
tertiolecta

2 Fluoride presents
inhibitory effects
towards glucose
fermenting
microorganisms

Vital plant pro-
cesses such as res-
piration and
photosynthesis
may be influenced

Acute intoxication
develops local,
affecting the
gastro-intestinal
tract (thirst,
vomiting, abdomi-
nal pain, diarrhea)

Fluoride tends to
accumulate in the
exoskeleton and
bone tissues of
fishes. Toxicity of
fluoride to aquatic
invertebrates
increases with the
increasing level
of fluoride

3 Anaerobic micro-
organisms that uti-
lize propionate and
butyrate were
found to be very
sensitive to fluo-
ride.
Fluoride is the
inhibitor of
pyrophosphatase
in various
microorganisms

Varying degrees of
injury to leaf tis-
sues may occur
until the entire leaf
is affected and it
falls from the plant

Death is attributed
primarily to respi-
ratory paralysis

It exerts poison-
ous effect on the
health of aquatic
animals by
inhibiting the
enzyme activity
and finally
interrupting meta-
bolic process
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present in vegetables, fruits, and nuts as % fluoride concentration shown in Fig. 9.8
and in Table 9.5.

Fluoride does not exhibit any color, taste, or smell when dissolved in water.
Hence, it is not easy to determine it through physical examination. Only chemical
analysis of the water samples can determine the concentration of this ion. The widely
used method for the estimation of fluoride in groundwater sample is colorimetric
SPANDNS (sodium 2-(parasulfophenylazo)-L, 8-dihydroxy-3,6-naphthalene
disulfonate) method. Ion selective electrodes are available to measure fluoride
concentration in water, which can be used both in the field and in laboratory.
Fluoride is one of the important micronutrients in humans which is required for
strong teeth and bones. In humans, about 95% of the total body fluoride is found in
bones and teeth.

Fig. 9.8 Fluoride concentration in mg/kg in different food stuffs

Table 9.5 Fluoride concen-
tration in different food stuffs

Food item Fluoride concentration (mg/kg)

Beef 4.0–5.0

Pork 3.0–4.5

Mutton 3.0–3.5

Fishes 1.0–6.5

Tobacco 3.2–38

Beetle leaf (pan) 7.8–12.0

Rock salts 200.0–250.0

Areca but (supari) 3.8–12.0

Tea 60–112
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9.6 Need of Hour

Due to the detrimental and injurious effects of excess fluoride, there is an urgent
prerequisite of methods for its removal from drinking as well as forms of ground-
water. The methods used for fluoride removal are distillation, membrane separation
processes, precipitation, ion exchange, and adsorption. In distillation water is puri-
fied by boiling it. Ion exchange uses the resins. Precipitation involves chemical
results in precipitate formation and is separated. The membrane filtration supports
the use of membrane for separation such as reverse osmosis and electrodialysis. The
adsorption method complies with the use of physical or the biological adsorbents.
The process removes toxic chemicals such as fluorides, pesticides, phenols, cya-
nides, and organic dyes that cannot be treated by conventional treatment methods.
Most commonly used adsorbent for treatment is activated carbon. Activated carbons
are more effective in the removal of heavy metals and fluorides due to some specific
characteristics that enhance the use of activated carbon for the removal of contam-
inants including heavy metals from water supplies and wastewater. Defluoridation of
water by using various other adsorbents and bioadsorbents also reported in this
paper. Use of bioadsorbents and microorganisms is the cheapest and most reliable
among all methods. Bioadsorbent defined as naturally occurring biomass or spent
biomass or the processing of waste for efficient usage. The use of agro-based
adsorbents (rice husk ash, neem leaf, peepal leaf, khair leaf, tamarind fruit shell,
etc.) and biological microorganisms (bacteria, fungi, etc.) comes under the category
of bioadsorbent. The use of biosorbents came to existence due to their low cost and
high removal efficiencies with no pollutant generation.

9.7 Process and Mechanism

Mainly three types of treatment process are found which are described below. These
methods include physical treatment, chemical treatment, and biological treatment.

9.7.1 Physical Treatment

The physical methods used for the removal of fluoride from drinking water are
divided in the following categories:

9.7.1.1 Membrane Filtration Process

Filtration is the most relied water treatment process to remove particulate material
from water. Coagulation, flocculation, and settling are used to assist the filtration
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process to function more effectively. The coagulation and settling processes have
become so effective that sometimes filtration may not be necessary. However, where
filtration has been avoided, severe losses in water main carrying capacity have
occurred as the result of slime formation in the mains. Filtration is still essential.

These processes involve the use of permeable membrane for the removal process
of number of contaminants. Reverse osmosis (Sourirajan and Matsurra 1972),
ultrafiltration (Guo et al. 2001) nanofiltration, and electrodialysis are membrane
filtration processes which can be used for removal of fluoride. This process occurs
against concentration gradient. This method is highly effective for fluoride removal.
No chemicals are required and at wide pH range. But the process is very expensive in
nature.

Advantages

• No need of chemicals (coagulants, flocculants, disinfectants, pH adjustment).
• Constant quality of treated water in terms of chemicals and microbial removal.
• Simple automation.
• Process and plant compactness.
• Remove nearly all contaminant ions and most dissolved non-ions.
• An activated carbon filter to trap organic chemicals and chlorine, which will

attack and degrade thin film composite membrane reverse osmosis membrane.

Limitations

• Household reverse osmosis units use a lot of water because they have low back
pressure.

• The remainder is discharged as wastewater.
• Large-scale industrial/municipal systems recover typically 75–80% of the feed

water, or as high as 90%.
• Approximately 2.4 L of water containing the fluoride and other chemicals and

minerals are wasted for every 1 L of purified water produced.

9.7.1.2 Adsorption/Ion Exchange Method

In the adsorption method, influent in the form of water is passed through a bed
containing defluoridating material. The material retains fluoride either by physical,
chemical, or ion exchange mechanisms. The adsorbent gets saturated after a period
of operation and requires regeneration. Adsorbents used for removal of various
contaminants include activated alumina, granular activated carbon, bone charcoal,
and synthetic ion exchange resins (Wasewar et al. 2010). This process involves the
passage of water through a contact bed where fluoride is removed by ion exchange or
surface chemical reaction with the solid bed matrix. After operation, a saturated
column must be refilled or regenerated (Feenstra et al. 2007). Recently, amorphous
alumina supported on carbon nanotubes, aligned carbon nanotubes, selective ion
exchanger and an ion exchanger polymeric fiber, based on a double hydrous oxide of
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Al and Fe (Fe2O3Al2O3xH2O), acid type ion exchanger have been assayed for
removal of fluoride from drinking water as well as industrial wastewater
(Alagumuthu et al. 2010 and Popat et al. 1994).

Advantages

• Selective cations exchange may provide economically mean of removing mixed
heavy metals from contaminated water.

• Removal of up to 98% contaminants.
• No wasted water.
• Electricity is not required.
• Flow rate is fast.
• No need for a storage tank.

Limitations

• Capacity of these methods is lessened when used on water supplies with a high
mineral content so it does not remove bacteria, viruses or parasites.

• If resin is not regenerated at proper intervals, contaminants can return to the
water.

9.7.1.3 Distillation

Distillation units can also be used for treating the drinking water. Distillation is a
technique to separate binary or multivalent liquid mixture by the virtue of difference
in their relative volatility. During this process, water is heated to its boiling point and
being separated in the vapor form. At last the vapor is condensed and is ready for use.
There are two types of distillation apparatus used in industries:

• Tray tower.
• Packed tower.

Advantages

• Distilled water is free of dissolved solids.
• It is short time process of purification of water.
• Distilled water is active absorber and when it comes in contact with air, it absorbs

carbon dioxide, making it acidic.

Limitations

• It is expensive.
• It is energy intensive.
• Draws out chemicals and metal contaminants from whatever container it’s

stored in.
• Leaches minerals from your body which can lead to health problems.
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9.7.2 Chemical Treatment

There are many processes available to remove fluoride from contaminated water,
i.e., these methods involve the addition of soluble chemicals to the water. Fluoride is
removed either by precipitation, co-precipitation or by Donnan dialysis (Hichour
et al. 2000). Chemicals include lime used alone or with magnesium or aluminum
salts along with coagulant aids. Treatment with lime and magnesium makes the
water unsuitable for drinking because of the high pH after treatment. The use of alum
and a small amount of lime has been extensively studied for defluoridation of
drinking water. The method is popularly known as the Nalgonda technique,
named after the town in India where it was first used at waterworks level. It involves
adding lime (5% of alum), bleaching powder (optional), and alum
(Al2(SO4)3�18H2O) in sequence to the water, followed by coagulation, sedimenta-
tion, and filtration. A much larger dose of alum is required for fluoride removal
(150 mg/mg F�), compared with the doses used in routine water treatment.

9.7.2.1 Precipitation

Precipitation processes involve addition of chemicals and formation of fluoride
precipitates. Among these are precipitations with calcium and aluminum salts.
Precipitation chemicals must be added daily in batches and precipitation techniques
produce a certain amount of sludge every day (Feenstra et al. 2007).

Advantages

• It is simple to do.
• Cost-effective.
• Does not need great expertise but some skill and practice are required.
• Instruments are easily available.
• It is oldest one and used commonly.

Limitations

• Need skill and practice for effective results.
• Instruments have to be properly calibrated because it will affect the final results
• Reactivity of the elements to be titrated should be well researched since this may

affect the end point.
• Time consuming if done manually.

9.7.2.2 Contact Precipitation

Contact precipitation is a recently reported technique in which fluoride is removed
from water through the addition of calcium and phosphate compounds. The presence
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of a saturated bone charcoal medium acts as a catalyst for the precipitation of fluoride
either as CaF2, and/or fluorapatite. Tests at community level in Tanzania have shown
promising results of high efficiency. Reliability, good water quality, and low cost are
reported advantages of this method.

9.7.3 Biological Treatment

Biological removal and biosorption is an emerging technique for water treatment
utilizing abundantly available biomaterials. Various biosorbents have been devel-
oped for fluoride removal. Among various biosorbents, chitin and chitosan-
derivatives, neem bark, neem leaves, peepal leaves, etc. (Sundaram et al. 2008;
Maheshwari and Gupta 2015; Jamode et al. 2004) have gained wide attention as
effective biosorbents due to their low cost and high contents of amino and hydroxyl
functional groups which show significant adsorption potential for the removal of
various aquatic pollutants. The applicability of chitin and chitosan as adsorbents for
the removal of excess fluoride from drinking water was evaluated (Rangel-Mendez
et al. 2010).

The biosorption can be also classified according to the location where the metal
removed from solution is found:

1. Extracellular accumulation/precipitation.
2. Cell surface sorption/precipitation.
3. Intracellular accumulation.

9.7.3.1 Treatment Using Microorganisms

Conventional and less effective physicochemical methods are being replaced by the
more effective biological methods for example, bioreduction for the fluoride con-
tamination in soil and groundwater by bacteria Shewanella putrefaciens etc., sup-
ports the use of eco-friendly ways for the bioremediation (Chubar et al. 2008). These
bacteria were found very effective in bioremediation of heavy metals and iron. In
present scenario, bioremediation/bio-treatment/bioremoval of contaminants from
wastewater has also proved to be a fresh technology for wastewater treatment
(Mandal et al. 2010).

9.7.3.2 Treatment Using Bioadsorbent

New approaches are discovered to minimize or even eliminate the defects and
disadvantages of the water purification techniques. Bioadsorption is one of the
significant techniques in which fluoride adsorbed onto a membrane, or a fixed bed
packed with bed or other mineral particles. Some low cost and natural materials such
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as zirconium impregnated coconut shell carbon, red mud, ground nut shell carbon,
cashew nut shell carbon, mosambi peels, orange peels, bark of babool, tamarind
shell, peepal leaf powder, pine apple peel, and clays have been used as adsorbents for
removal of fluoride from drinking water. In recent years, considerable attention has
been focused on the study of fluoride removal using natural, synthetic, and biomass
materials such as activated alumina, fly ash, chitosan beads, zeolite, calcite, red mud,
alum sludge, hydrated cement, and acid-treated spent bleaching earth (Gandhi et al.
2012).
Bioadsorbent is defined as the adsorbent prepared using the biological substances
such as different parts of the trees. For example, leaf, bark, fruit peelings, husk like
rice husk, etc. (Jamode et al. 2004; Naiya et al. 2009). Bioadsorbent could be used as
a high potential and biodegradable bioadsorbent to remove anionic compounds such
as reactive dyes from textile industry wastewater. High adsorption capacity, biode-
gradability, biocompatibility, and non-toxicity are among the unique properties of
adsorbents. A brief review has been provided in the following sections.

9.8 Reviews on the Basis of Different Adsorbent/
Bioadsorbent Available for the Removal of Fluoride

Application of adsorption process with commercial available adsorbents as well as
bioadsorbents is gaining momentum in recent years for the removal of fluoride from
water. Hence, literature survey has been carried out on the removal of fluoride from
wastewater with conventional and natural bioadsorbents as discussed below:

Ramanaiah et al. (2007) worked on the removal of fluoride from aqueous phase
using the waste fungus (Pleurotus ostreatus 1804) biosorbent obtained from laccase
fermentation process. Batch sorption studies were performed and followed pseudo-
first-order rate equation. The adsorptive data fitted isothermal data fitted well with
the Langmuir isotherm adsorption model. Fluoride removal aqueous phase pH and
the fluoride uptake were observed to be greater at lower pH. The fluoride sorption
phenomena on fungal biosorbent might be attributed to the chemical type of
interaction. These biosorbents used under batch studies were performed to evaluate
their efficiency for real field application using eight water samples collected from the
fluorosis-affected area.

Mohan et al. (2007) reported that non-viable algal Spirogyra IO1 was studied for
its fluoride sorption potential in batch studies. The results demonstrated the ability of
the biosorbent for fluoride removal. The sorption interaction of fluoride on to
non-viable algal species obeyed the pseudo-first-order rate equation. The intra-
particle diffusion of fluoride molecules within the Spirogyra was identified to be
the rate-limiting step. It was also found that the adsorption isotherm followed the
rearranged Langmuir isotherm adsorption model. Fluoride sorption was dependent
on the aqueous phase pH and the fluoride uptake was greater at lower pH.
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Kumar et al. (2008) investigated the use of thermally activated carbon prepared
from neem (Azadirachta indica) and kikar (Acacia arabica) leaves for the treatment
of fluorinated aqueous solution. In this study, the neem leaves carbon and kikar
leaves carbon were subjected to heating at 400 �C in electric furnace. The adsorbents
of 0.3 and 1.0 mm sizes of neem and kikar leaves carbon were prepared by standard
sieve. The process was carried under batch mode. The effect of pH, adsorbent dose,
and contact time on adsorption efficiency was also studied. The optimum pH was
found to be 6 for both and the optimum dose was found to be 0.5 g/100 mL for ANC
(activated neem leaves carbon) and 0.7 g/100 mL for AKC (activated kikar leaves
carbon). The optimum time was found to be 1 h for both the adsorbents. The
adsorption process followed Freundlich adsorption isotherm. All optimized condi-
tions were used for four natural water samples.

Deshmukh et al. (2009) reported that the batch adsorption studies were under-
taken to assess the suitability of inexpensive adsorbent prepared from agricultural
waste, rice husk. The adsorbent was prepared by chemical impregnation method
followed by physical activation. Static studies have aimed for investigation of
fluoride removal efficiency under the varying conditions of the major parameters
of adsorption, viz. pH, dose of adsorbent, rate of stirring, contact time, and initial
adsorbent concentration, and optimized by batch procedure in the mixture of known
concentration of fluoride solution. The optimum sorbent dose was found to be 10 g/L
by varying the dose of adsorbent from 0 to 16 g/L; equilibrium was achieved in
120 min for the optimum pH. It has been observed that the optimum adsorption takes
place at lower pH by varying pH from 2, 4, 6, 8, and 10. Maximum fluoride removal
was observed to be 75% at optimum conditions. Freundlich as well as Langmuir
isotherms were plotted and constants of isotherms were determined.

Alagumuthu et al. (2010) studied the application of Cynodon dactylon based
thermally activated carbon for fluoride toxicity. The batch adsorption techniques
were followed at neutral pH as the functions of contact time, adsorbent dose,
adsorbate concentration, temperature and the effect of co-anions. The data indicate
that the prepared adsorbent surface sites are heterogeneous in nature and that fits into
a heterogeneous site-binding model. The present system followed the Redlich–
Peterson isotherm as well as Langmuir adsorption isotherm model. Lagergren
pseudo-first-order, pseudo-second-order, intra-particle diffusion and Elovich kinet-
ics were modeled to describe the adsorption rate of fluoride and determined as this
scheme followed pseudo-second-order kinetics. The calculated enthalpy change,
ΔH�, and entropy change, ΔS�, for the adsorption process are +8.725 kJ/mol and
+0.033 J/mol K, respectively, and shows endothermic experience. Instrumental
analysis of XRD, FTIR, and SEM gives the idea about the fluoride binding ability
of adsorbent.

Sivasankar et al. (2010) performed the defluoridation of water using activated
(ATFS) and MnO2-coated (MTFS) tamarind fruit (Tamarindus indica) shell in batch
as well as column manner. In the batch technique, the rate of adsorption studied with
respect to pH, [F]o, and sorbent dose was studied. The adsorption followed pseudo-
first order for ATFS and Ritchie-second order for MTFS. The kinetics data were
found to fit well with Temkin isotherm for ATFS and Langmuir for MTFS. Column
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experiments were carried out under a constant fluoride concentration of 2 mg/L, flow
rate and different bed depths. The capacities of the breakthrough and exhaustion
points increased in the bed depth for ATFS unlike MTFS and the Thomson model
were applied to the column experimental results. The FTIR, SEM, and XRD
techniques are used for sorption characterization. Values of qT for ATFS and
MTFS were found to be 1.032 and 0.954 at bed height 12 cm, respectively.

Abburi et al. (2012) reported that the experiment has been carried out at 23–26 �C
under 7–7.5 pH in the laboratory followed by pH meter. Using Orion Fluoride meter,
all the observed diminutions of concentrations of fluorides at PPM/L have been
reported. This research has been carried out for the welfare of the society which is
being affected by fluorides in not only drinking water but also wastewaters around
the Aksum of Ethiopia. After adding different quantities of adsorbents in all stopper
bottles, these bottles had been vigorously shaken off on certain timings by mechan-
ical machinery. On time intervals, we had different diminutions of fluorides in
different bottles. After adding 10 g of adsorbent in Bottle No.1, it showed the
concentrations of fluorides after 24 h, from 10 to 7.6 PPM. The total quantity of
fluoride inclined to 2.4 PPM on 24 hrs, time interval. The second bottle showed after
24 h time interval as the total quantity of descended fluoride concentration is 3.1
PPM. Similarly bottle No.3, bottle No.4, and bottle No. 5 showed their diminutions
of fluorides at 4.1 PPM, 3.2 PPM, and 6.0 PPM, respectively, after 24 h by adsorbent
of Cordia africana. The 50 g of adsorbent added in bottle No. 5 after vigorous
shaking, and it gives more descending concentration of fluorides.

Merugu et al. (2013) investigated that fungal biosorbent prepared from Aspergil-
lus nidulans was used for removal of fluoride from water. Calcium and alkali treated
biomass was effective in removal of fluoride. Defluoridation was dependent on the
initial pH of fluoride-containing water and decreased with increasing pH. At pH 4.0
fluoride removal capacity was found to be 29% while it was 14% at pH 8.0. Presence
of chloride and sulfate did not affect fluoride removal while fluoride decreased with
increased bicarbonate concentration. The kinetics of fluoride removal exhibited a
rapid phase of binding for a period of 1.5 h and a slower phase of binding during the
subsequent period.

Shubha Dwivedi et al. (2014) investigated the removal of fluoride by Citrus
Limetta in batch experiment. Batch experiments were conducted to study the impacts
of agitation time and initial fluoride ion concentrations. The adsorption kinetics is
presented well by pseudo-second-order rate equation and the estimated equilibrium
concentration falls within ~6% error limit. Freundlich isotherm gives well prediction
of the equilibrium adsorption (R2¼ 0.996). The specific uptake increases from 0.089
to 1.35 mg/g with the increase in initial fluoride concentration from 1 to 20 mg/L.
Maximum specific uptake obtained from Langmuir isotherm is found to be 1.82 mg/
g. When the initial fluoride concentration is 5 mg/L, the removal efficiency of
mosambi peel is 82.5%, so that the fluoride concentration at the treated water is
below the permissible limit.

Shubha Dwivedi et al. (2014) investigated the removal of fluoride by Ficus
religiosa in batch experiment. Batch experiments were conducted to study the
impacts of agitation time and initial fluoride ion concentrations. The optimum pH
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for the removal of fluoride by the investigated adsorbents is ~7. The optimum
adsorbent dose for the investigated adsorbent is 10 g/L for the removal of fluoride
from water. The optimum temperature for fluoride removal is ~30 �C. Freundlich
isotherm gives well prediction of the equilibrium adsorption (R2 ¼ 0.995). The
specific uptake increases from 0.09 to 1.48 mg/g with the increase in initial fluoride
concentration from 1 to 20 mg/L. Maximum specific uptake obtained from Langmuir
isotherm is found to be 2.24 mg/g. When the initial fluoride concentration is 5 mg/L,
the removal efficiency of peepal leaf powder is 85.7% so that the fluoride concen-
tration at the treated water is below the permissible limit.

Goswami et al. (2015) investigated on the use of leaf powder from neem
(Azadirachta indica) trees for the defluoridation of water. The efficiency of the
sorption of fluoride ion is affected by contact time, pH, and particle size of adsor-
bents. Treated leaf powder was studied at various pH and contact time with aqueous
solutions containing 10 mg F�/L. Results show that these low-cost bioadsorbent
could be fruitfully used for the removal of fluoride over a wide range of concentra-
tions. Treated bioadsorbents were observed to be efficient for the uptake of fluoride
ions between 2.0 and 8.0 pH. Fluoride removal for a given bioadsorbent size
increased with time attaining equilibrium within 1.5 h. The percentage of fluoride
removal was found to be a function of adsorbent particle size and time at a given
initial solute concentration. It increased with time, and higher initial solute concen-
tration decreased with time. The adsorption capacity of treated biosorbents was
studied by varying the particle size. With the largest particle size of 1.4 mm, the
amount of fluoride ions adsorbed was found to be 50%. With smallest particle size of
600 μm for an initial fluoride ion concentration of 10 mg/L, 90% adsorption was
observed. Small particle size provides more active surface area and hence such
results.

Amin et al. (2015) investigated the potential of white rot fungus Pleurotus eryngii
ATCC 90888 for the removal of fluoride in aqueous solution as a function of pH,
initial fluoride concentration, biosorbent dose, temperature, and contact time. Lang-
muir model showed better data interpretation then Freundlich model. The monolayer
biosorption capacity of P. eryngii biomass for fluoride ions was found to be 66.6 mg/
g. Biosorption study was carried out at different varying parameters, viz. pH (2–7),
initial fluoride concentration (5–25 mg/L), and contact time (60–300 min). At
pH 2.0, initial fluoride concentration 5 mg/L, bioadsorbent dose 0.2 g, maximum
fluoride removal, i.e., 97.03%, were achieved.

Koshle et al. (2016) investigated the potential of Trichoderma hezardium for the
removal of fluoride. Study was carried out at different pH ranges, viz. 6.5, 7.5, 8.5,
and 9.5 and initial fluoride concentration varies to 2, 4, 6, and 8 mg/L. Biosorption
studies were carried out at different temperatures, viz. 30, 40, and 50 �C.
Bioadsorbent dose varied as 0.4, 0.6, 0.8, and 1.6 g. Results showed maximum
removal of 38% at adsorbent dose 1.6 g. In this study, adsorption of fluoride on to
fungus bioadsorbent followed the Freundlich isotherm which revealed the hetero-
geneous nature of surface binding sites. The value of Freundlich constant Kf was
found to be 1.14 which shows the greater affinity for fluoride-fungal system.
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Desorption studies indicate 82% desorption achieved. A brief of above discussed
reviews are summarized in Table 9.6.

9.9 Biological Pathways for Fluoride Removal

Mainly two pathways such as bioadsorption on bacterial cell surface and
bioaccumulation in bacterial cells have been proposed for the removal of fluoride
from water using bacterial whole cells (Chubar et al. 2008). Mechanisms of cell
surface sorption are independent of cell metabolism; they are based upon physico-
chemical interactions between fluoride and functional groups of the cell wall. The
microorganism’s cell wall mainly consists of polysaccharides, lipids, and proteins,
which have many binding sites for halides. This process is independent of the
metabolism and metal binding is fast.

Bioaccumulation, in contrast, is an intracellular fluoride accumulation process
which involves dehalogenation and it is mediated only by periplasmic and mem-
brane fractions, not by cytoplasmic fractions of the cells (Picardal et al. 1993). Since
it depends on the cell metabolism, it can be inhibited by metabolic inhibitors such as
low temperature and lack of energy sources. Various processes of bioadsorption as
well as bioaccumulation are shown in Fig. 9.9.

Based on the above prescribed mechanism, three recent researches have been
reported here in sequential order. Removal of fluoride from wastewater based on
simultaneous adsorption and bioaccumulation basically involves two types of mech-
anism, i.e., adsorption and accumulation. The availability of adsorbents increased
the surfaces of liquid-solid phase. Microbial cells, pollutants, enzymes, and oxygen
are adsorbed. Physicochemical reaction is also possible due to surface catalysis on
the surface of adsorbent. Microorganisms like Shewanella putrefaciens and
Actinobacter immobilized to surface of adsorbent bring extracellular biodegrada-
tion/bioaccumulation on adsorbed pollutants. SABA approach enhanced the
removal efficiency of fluoride.

Mohammad and Kumar (2019) worked on the Actinobacter species immobilized
on sweet lemon peel. Actinobacter is a water living microorganism which survives in
wastewater. Microorganism (Actinobacter) immobilized on the surface of sweet
lemon peel. Removal efficiency of fluoride increased from 59.59 to 94.47% in
optimum conditions of contact time (87 h), pH 4.0, and dose 14 g/L for 20 mg/L
initial concentration of fluoride. Simple adsorption process removal efficiency was
59.59% at optimum conditions of contact time (60 min), pH 4.0, and dose 16 g/L.

Shubha Dwivedi et al. (2017) worked on bacteria Shewanella putrefaciens in
bulk phase as well as immobilized phase in batch reactor. Growth of the bacterial
cells, its acclimatization in fluoride media and in under substrate stress has been
investigated. Optimization of process parameters for the removal of fluoride in bulk
phase has been investigated and the performance under optimum condition has been
compared with the simultaneous adsorption bioaccumulation (SABA) process using
Citrus limetta (mosambi peels) and Ficus religiosa (peepal) leaves as adsorbent
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along with the bacteria. The simultaneous adsorption and bioaccumulation (SABA)
process shows maximum fluoride removal capacity followed by bioaccumulation in
bulk phase and adsorption shown in Fig. 9.10. 91.7% removal of fluoride occurred
by bioaccumulation process. Both bioaccumulation and SABA are able to reduce the
initial concentration of fluoride from 20 to below 1.5 mg/L.

Chubar et al. (2008) investigated the sorption of fluoride and phosphate to viable
cells of Shewanella putrefaciens. Here, uptake is measured over a different concen-
tration range. In addition, sorption of the metals was compared to that of two anions
(fluoride and phosphate), and both viable cells and autoclaved cells are used as a
sorbent phase what was rarely done in past. Batch potentiometric titration and
Boehm method were applied to investigations of bacterial surfaces. FTIR absorption
spectra and pH-dependent zeta potentials were similar for the viable and bacterial
cells. Sorption of fluoride and phosphate is not pH dependent, although an initial
addition of acid and base was needed to activate the anion binding sites. Uptake of
fluoride is comparable for viable and killed cells. Its physiological tolerance makes it
a promising microorganism for bioremediation applications in a wide variety of
environments.
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Fig. 9.9 Various processes of bioadsorption as well as bioaccumulation for the removal of halides
by bacterial cell (Dwivedi et al. 2018)
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9.10 Conclusion

One of the highlights of this study is that there is an urgent need to remove fluoride
from groundwater, as it is the vital source of fresh water. According to the statistics
mentioned in above review, more than 15 states are suffering from fluoride in which
Rajasthan and Andhra Pradesh are at more alarming condition. Though several
physical and chemical technologies are available for the removal of fluoride, the
future lies in green technological approach which is undoubtedly the bioadsorption/
bioaccumulation. It is also a well-known fact that physical and chemical technolo-
gies have their own merits and demerits and produce some side effects too, but
bioremoval has no harmful effects on the environment. As discussed in the previous
sections, various bioadsorbents are available that have the capacity to adsorb fluo-
ride. Also some studies focus on microbial removal of fluoride by using microbial
species; certainly it is a more potential route to diminish the level of fluoride in water.
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Abstract The biological wastewater treatment processes include bioremediation of
wastewater which involves aerobic treatment and anaerobic treatment,
phytoremediation of wastewater and mycoremediation of wastewater using technol-
ogies such as activated sludge and biofilm systems. On the other hand, the chemical
wastewater treatment processes include chemical precipitation, ion exchange, neu-
tralization, adsorption and disinfection. Therefore, this chapter intends to provide a
detailed information on the treatment of effluent waste and sewage sludge with
respect to its associated microorganisms and transport activities. In a bid to achieve
this, this chapter will address the various biological waste treatment processes in
relation to the activities or role of microorganisms. Due to the convolute interface
interaction between microbes and material surfaces, the critical review will also
entail taking a cue from microbial transport in alluvial streams in order to understand
the microbial transport in effluent waste (liquid) and sewage sludge (solid).

Keywords Environment · Effluent waste · Sewage sludge · Microorganisms ·
Aerobic treatment and anaerobic treatment · Microbial transport

10.1 Introduction

Wastewater has its origin from several sources including human sewage, animal
wastewater, industrial wastewater, municipal wastewater, domestic wastewaters,
and agricultural wastewaters. The composition of wastewater is about 99.9% water
by mass while the rest contains suspended and dissolved matter (Lin 2007; Gray
2005). The primary purpose of wastewater treatment is to eradicate pollutants that
are delirious to destructive to the marine surroundings. Most of these pollutants that
are organic in nature tend to reduce the dissolved oxygen (DO) demand in the marine
waters as the aerobic microorganisms act on them during their metabolism. Also,
due to the disproportionate vegetal and algal growth in the water bodies as a result of
the release of nutrients such as nitrogen and phosphorus, there is need to design
waste treatment structures to reduce the effect of these pollutants or nutrients using
an effectual and cost-effective technique. Pollutants may be characterized as soluble
or insoluble, organic or inorganic, biodegradable or non-biodegradable, toxic or
non-toxic, biogenic or anthropogenic, etc. However, some pollutant may possess
more than one characteristics.
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Essentially, wastewater largely holds macro- and microscopic organisms and its
treatment undergoes different processes involving physical, chemical and biochem-
ical operations or combinations of these practices dependent on the mandatory
discharge criteria. However, the biochemical operations involve the use of microor-
ganisms to alter noxious waste through enzymatically catalysed biological reactions.
More so, the biological wastewater treatment processes include bioremediation of
wastewater that includes aerobic treatment and anaerobic treatment,
phytoremediation of wastewater and mycoremediation of wastewater using technol-
ogies such as activated sludge and biofilm systems. On the other hand, the chemical
wastewater treatment processes include chemical precipitation, ion exchange, neu-
tralization, adsorption and disinfection (Mohamed 2015).

According to Raeesossadati et al. 2014, the temperature of wastewater plays a
major role in the biological activities of microorganism. Other parameters include
pH, conductivity, saturation level of gases and various form of alkalinity. Physical
characteristics such as colour are influenced by the source of the produced products.
However, the odour is determined by several factors such as the effervescence of
gases and decomposition of organic matter (Metcalf and Eddy 1987). Wastewater
generally comprises components from protein, lipids, carbohydrates, urea and other
traces of organic materials (Jiang et al. 2011). On the other hand, organic materials
are made up carbon, hydrogen and oxygen (Sahu et al. 2013) with the presence of
inorganic mixtures such as chloride, hydrogen and iron.

Wastewater treatment usually involves the initial handling plant in which con-
stituents like fats, grease and solid particle are eradicated. However, the biological
treatment of wastewaters is carried out in static media or suspended growth reactors
with the aid of activated sludge, biofiltration, revolving biological contactors or
modifications of these methods which consequently yields sludge solids as its
effluent. This chapter also addresses the sludge handling which consist of the
coagulating and dewatering of sludge before disposal.

The biological handling of wastewater is centered on the ingestion of biological
material by microorganisms such as bacteria, viruses, algae and protozoa. Thus,
there is need to understand the metabolism for effective control of the process. Of all
the microorganisms, bacteria are the most common microorganisms used in the
handling wastewater. While aerobic bacteria require oxygen in breaking down the
substrate, anaerobic bacteria function in the absence of oxygen and usually occur in
under septic environments like sewers or in sludge tanks where there is limited
oxygen (Environmental Protection Agency 1997). In the biological treatment pro-
cesses, there is a segregation of solid matter and nutrients such as nitrogen and
phosphorus by the microorganisms which grow actually in the reactor. The microbes
consume the carbonaceous matter in the sewers and thus diminish the organic
materials in wastewater (Rosen et al. 1998). One of the merits of adopting the
biological processes include the fact that it is a natural process in which no chemicals
are needed. It is worthy to mention that this practice can also remove both phos-
phorus and nitrogen with concurrent sequestering carbon while producing oxygen
for enhanced Biochemical Oxygen Demand (BOD). In addition, the residue biomass
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can be utilized as an alternative for energy or production of compost fertilizer
(Senthil Kumar and Saravanan 2018).

Most wastewater treatment plants depend on anaerobic microbial treatment
processes. Besides the eradication of contaminants, contemporary concern on anaer-
obic wastewater handling has diverted towards the repossession of resources, for
sustainable creation of bioenergy and biochemical (Angenent et al. 2004). Anaerobic
methods entail system of multifaceted biological and chemical reactions with the
degradation of biological materials in the presence of different microorganisms
resulting in low energy output (Sengor 2019).

Nonetheless, there is an assembly of activated quantity of micro-organisms
capable of steadying the biological matter of waste in the activated sludge process.
Several factors such as micro-organisms, oxygen and food have a great impact on the
operation of the activated sludge method. The quantity of micro-organism present
affects the outcome of the mixed liquor and consequently the inbound wastewater.
As such, the handler needs to offer optimum conditions for the growth of microor-
ganisms. With the aid of a microscope, it was reported that flagellates prevail at low
sludge age when the flocs are dispersed. However, due to low effluent value and
overoxidized sludge, the rotifers and worms overcome at prolonged sludge ages
(Environmental Protection Agency 1997).

This chapter aims to provide a vivid review on the treatment of effluent waste and
sewage sludge regarding its related microorganisms and transport activities. In a bid
to achieve this, this chapter will address the various biological waste treatment
processes in relation to the activities or role of microorganisms. Due to the convolute
interface interaction between microbes and material surfaces, the critical review will
also entail taking a cue from microbial transport in alluvial streams in order to
understand the microbial transport in effluent waste (liquid) and sewage sludge
(solid).

10.2 Modes of Action in Bioremediation of Wastewater

10.2.1 Growth of Microorganism in Effluent

This section elucidates the growth of microorganism (bacteria) with respect to the
contact time with the substrate. Initially, the microorganism starts to absorb the
substrate before undergoing an exponential growth as it uses the readily available
energy for replication and then reaches a limiting growth level. At this limiting level
the growth is static. Due to deficiency of substrate, bacteria start to die off while
some other bacteria forage on the dead cells, resulting to an overall decline in the
mass of the microorganism. This process is referred to as endogenous respiration or
cryptic growth. Thus, biological processes require effective control so as to maintain
the population of the microorganism under unfavourable conditions (Environmental
Protection Agency 1997). In an attempt to understand bacteria growth, the reactants
comprise the organic matter, bacteria, nutrients and oxygen, which combine together
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to yield a product of new bacteria, carbon dioxide, water, residual organic matter and
inorganic matter. Thus, the rate of bio-reaction is strongly affected by certain factors
such as temperature, dissolved oxygen, pH, toxic matter and nutrient content which
when upheld under favourable conditions tends to promote bacterial growth within
the bioreactor. In general, the biological breakdown increases proportionally with
higher temperatures (with typical temperature ranges from 20 to 40 �C). Although,
aeration tanks and percolating filters function at temperature between 12 and 25�C
(Mohamed 2015).

10.2.2 Inhibition of Microorganism

The treatment of the wastewater is reliant on the actions of microorganisms and their
breakdown which can be inhibited by the existence of toxic matter like organic/
inorganic solvents, heavy metals and biocides. The toxicity of industrial effluent
inhibits to microorganisms and this is measured by a drop in the oxygen consump-
tion rate. Parameters such as pH and temperature also impacts the biological activity
in the waste treatment plant (Environmental Protection Agency 1997).

10.2.3 Transport of Microorganism in Sewage Discharge

Kay et al. (2008) claimed that there is little empirical data in the literature on fecal
indicator organism (FIO) concentrations in sewage discharge. However, Kay et al.
(2008) investigated and reported different FIO data: total coliforms (TC), faecal
coliforms (FC) and enterococci (EN) from several types of sewage-related effluent in
the United Kingdom in which the tertiary waste treatment particularly for the
eradication to microbes or fecal indicator organism (FIO). The result shows the
impact the concentration of FIO in sewage effluent for different flow conditions.
According to Tian et al. (2002), Steets and Holden (2003), Kay et al. (2005), Haydon
and Deletic (2006), there is limited research in the development of predictive models
to determine the transport of microbes. However, Walker et al. (1999), Medema and
Schijven (2001), Dorner et al. (2006) and Ferguson et al. (2007) have also reported
the growing interest in this field of area in recent times.

Jamieson et al. (2004) reports that developing a typical model for microbial water
quality watershed scale will go to provide further insight to microbes associated
contaminants. To further shed more light, Jamieson et al. (2004) proffered certain
steps for it to come to fruition. The method comprises the characterization of
different wastes and the allied microorganisms, simulation of microbes from soil
surface to receiving streams and within stream networks. It was reported that the
limitation on the previous microbial water quality watershed scale models is the
assumption that the transport of microorganisms on the earth crust is simply related
with sediment attrition. However, the transport of microbes in sediments stream or
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slurry is convolute by interface interaction between the sediment stream and the
microbes. Thus, there is need to further research on the microbial transport in
effluent waste, sewage sludge and alluvial streams.

10.3 Effluent Waste and Microbial Transport
in Perspective

Wastes occur in different forms and may be broadly traced to humans, animals,
plants, and even non-natural sources. The above assertion is borne out of the very
fundamental characteristics of substances or compounds regarded as wastes by man.
A critical examination of the various forms in which wastes exist as identified above
would reveal that some have remote roots. Ideally, majority of wastes that pose
serious health and environmental concern do not emanate from remote sources but
have strong nexus with human actions and activities.

Wastes date back to creation hence are not really separable from human existence.
However, unmanaged wastes may exert some effects that are worse than the worst
taboos in various sociopolitical jurisdictions regardless of geolocation on earth’s
surface.

Due to the hazards and deleterious effects, wastes may exhibit on humans and its
environment, every government across the globe is in continuous search for
enhanced and safe approaches towards eliminating the dangers posed by wastes.

Among the various categories of wastes, effluent wastes are commonplace. The
reason is not far-fetched. Human activities at every point be it home, industry,
factory, field, etc. do generate some of effluent waste. However, some effluent
wastes may be generated via actions which may not have been contemplated ab
initio as potential channels or players through which effluent wastes could result.
Effluent wastes vary in their composition and degree of harmfulness. Generally, their
toxicity may depend on its sources. Figure 10.1 shows the general categories of
effluent wastes based on sources. Five major sources are identified:

(a) Domestic (with origin from around the home and other residential areas)
(b) Commercial (emanating from commercial and/or industrial settings such as

shops, restaurants and markets)
(c) Industrial (with origin in industrial production enclaves such as factories and

manufacturing plants)
(d) Agricultural effluents, generated during and/or following agricultural operations
(e) Stormwater effluent, a hybrid effluent produced when rainwater comes into

contact with various wastes. Stormwater may contain wastes from differing
sources and may include wastes from all residential houses, commercial envi-
ronments, industrial and agricultural sources.

In addition to other sources, the increasing industrialization and urbanization
activities across the globe especially in developing countries had been noted as the
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key contributors to the generation of effluent wastes (Ghosh 2005; Coles et al. 2012;
Aliyu and Amadu 2017). According to findings, urbanization has the potential to
produce unlimited wastes with resultant critical effects of water bodies and the
environment (Dhania and Rani 2014; McGrane 2016; Shaharoona et al. 2019;
Yuan et al. 2019).

Figure 10.2 shows the various forms the effluents in Fig. 10.1 may take. It is very
evident from the diagram the wide scope effluent waste could take hence the reason
why no country shies away from designing and putting into effect necessary
infrastructure to control these wastes.

Effluent wastes are very significant when compared to other wastes in that they
cover a wider spectrum with varying physicochemical characteristics hence their
heavy impact on the environment (da Rosa et al. 2015; Redouane and Mourad 2016;
Blanco et al. 2019; Venturoti et al. 2019). Characterization of effluent wastes is
important in that it would enhance the deployment of the right infrastructure for
managing such wastes. Figure 10.3 reflects the various characteristics of effluent
wastes. Evaluation of the characteristics of each source of effluent waste enables
decision takers in marshalling the right waste management alternative. Waste man-
agement may involve various machineries including legislations, policies, proce-
dures, guidelines, etc.

In most jurisdictions, mechanisms in the form of policies and guideline exist that
provide framework for handling effluent wastes. Often, these mechanisms categorize

Agricultural
effluents

Commercial
effluents

Industrial effluents

Domestic effluents

Stormwater effluents

Fig. 10.1 Sources of effluent wastes
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wastes and also grant legitimate powers and authority to specific agencies (public/
private) to regulate, control, and manage effluent wastes. The commonest approach
undertaken in managing wastes is treatment. It is interesting to note that waste
treatment in itself has become a challenging task in most large cities. The essence
of treating effluent wastes is to deactivate them hence making them less hazardous to
the environment and human health. Various treatment options are available ranging
from flocculation, biofiltration, adsorption, ion exchange to membrane technology.
While each technology has proved attractive, several factors (such as cost and
sustainability) affect their choice of deployment in effluent waste treatment plants.

In recent times, ecofriendly alternatives of treating effluent wastes have come
under limelight. One of such option is microbial transport. Microbial transport
explores the use of specific microbes as agents of waste treatment.

In the context of effluent waste management, microbial transport involves the
controlled use of microorganisms such as bacteria to enforce biodegradation and
biotransformation of effluent wastes thereby deactivating or detoxifying the wastes.
In other words, controlled quantities of such microorganisms under specific deter-
minable conditions are relayed or relocated from a microbial bank to various sites of
actions where they act on effluent wastes. Microbial transport could aid in reducing
the burden of handling wastes in urbanized and industrial cities as microbes are easy

Domestic effluents

Blackwater

Sullage

Sewage

Scum

Sludge

Chemicals

Fertilizers, pesticides, plant
materials, animal remains, faecal

matter, feeds, etc.

Oils, plant remains,
chemicals

Faecal matter

Soil

Stormwater effluents

Commercial/Industrial
effluents

Agricultural effluents

Fig. 10.2 Various forms of effluents
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to produce and their ubiquity in effluents is another advantage that could be
exploited in the management of such wastes.

10.4 Application of Wastes in Production of Crops
and Foods

The importance of effluent and sludge waste in crop and food production has long
been widely recognized where water supplies are insufficient (National Research
Council 1996). Treated or untreated effluent or sludge waste is widely used in crop
and food production because it is a rich source of nutrients, providing all the
moisture required for crop growth. It has been stated that crops yield higher when
effluent or sludge waste is used for irrigation (Hussain et al. 2002). In addition, the
acceptance of usage of wastes influential and sludge was generally embraced and
implemented in other counties, such as the United States (National Research Council

Biological features

Chemical features

Physical features

Suspended solid 
particles

Characteristic smell

Temperature

Organic compounds e.g. plant and 
animal materials often rich in carbon

Inorganic elements/compounds e.g. 
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and nitrates, etc.

Volume

Bacteria
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Fig. 10.3 Characterization of effluent wastes
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1996) and European countries (Kirchmann et al. 2017), whereas the acceptance and
application of water effluent and sludge was slow due to religious factors in countries
such as Pakistan.

For example, waste effluent is applied to irrigate crops in the United States so as
to avoid nutrient intrusion through sensitive water reception. The beneficial reuse of
this wastewater is therefore more economic and technologically viable than using
advanced technologies for treating wastewater that meet the surface water disposal
requirement (National Research Council 1996).

Effluent was also used in Brazil to supplement wastewater and nutrient treatment
methods associated with savings in mineral fertilizers and high crop yields (Fonseca
et al. 2007). The use of secondary effluents in Botswana has been documented by
Emongor (2006). The effluent waste is used for the processing of food depending on
the components in the waste. Effluent pollution requirements for the constituents are
the same as usual irrigation water.

In India, farmers use even untreated sewage effluents for irrigation purposes as a
cheap alternative for other irrigation solutions when they are needed. In Central
India, the experiment shows that the wastewater effluent saves chemical fertilizer
NPK by 60 kg N, 13 kg P and 25 kg K per hectare per year. In addition, the study
shows that approximately 18 kg N, 7 kg P and 49 kg K of nutrients per hectare per
year could be recovered by waste effluent (Dotaniya et al. 2019).

On the other hand, sludge is a result of wastewater treatment that includes many
wastewater contaminants. The experience with the use of human excrement, sewage
and animal manure in food and crop production was already applied. But it is
associated with its challenges, such as the composition of trace elements and large
amounts of water depending on sludge treatment causing handling difficulties.
Farmers in the United States urged the cost savings of replacing sludges with
chemical fertilizer to be negligible (National Research Council 1996).

Council Directive No. 86/278/EEC regulates the European countries requiring
prior testing and standard sludge and soil components to be applied on agricultural
soil (Mininni et al. 2015). Nevertheless, the country’s national standards were set in
other countries such as Denmark, Germany, Norway, Sweden, Austria and France.
The study shows that 39% of European Union wastewater is recycled into agricul-
ture (Lamastra et al. 2018). The demand, however, varies across the countries of
Europe, whereas some countries like Wallonia, Belgium, Denmark, France, Ireland,
Spain and the UK use less than five per cent of the sludge produced for agriculture in
the other parts of Europe (Lamastra et al. 2018). It may be due to the danger
associated with the components in the sludge waster like heavy metals. For example,
70% of Norway’s total sewage sludge is recycled as fertilizer used in crop and food
production. Officials have set up special monitoring systems for identified pollutants
to ensure that the necessary sludge waste portion levels are maintained to avoid
environmental contamination (Eriksen et al. 2009).

Throughout China, sludge waste is further treated for biochar which is later used
in the production of garlic. The results from biochar cultivation have been shown to
increase significantly in comparison with when used in normal soils (Song et al.
2014).
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10.5 Application of Computerization and Digital World,
Internet of All Things in Bioremediation of Heavily
Polluted Environment

The studies by Dlodlo (2012) revealed that the benefits of Internet of Things (IoT)
applications could lead to sustainable environmental management. On the other
hand, Saha et al. (2017) showcased the use of IoT in the identification of environ-
mental contaminants. However, Toma et al. (2019) explain the use of IoT in smart
emissions control environments. It is necessary to use information technology to
reduce threatening health risks and raise awareness of air pollution exposure
impacts, consequently helping to boost environmental pollution regulation.

In order to test Chromium(VI) removal efficiencies in nanoscale zero-valent iron
cycle, Yu et al. (2014) conducted a study on BP-ANN with input variables including
pH control, dissolved oxygen, initial Chromium(VI) concentrations, oxidation-
reduction potential, contact time and nanoscale zero-valent iron. Three samples
were installed in the nanoscale zero-valent iron batch reactor monitoring variations
in dissolved oxygen, oxidation-reduction potential, and pH and online data was
retrieved. Therefore, the datasets constructed from Chromium(VI) batch removal
experiments were randomly selected as testing and training subsets. It was shown
that the well-trained MLP-NN models provided accurate results, which demon-
strated the capacity to optimize the nanoscale zero-valent iron cycle for removing
Chromium(VI).

Dolatabadi et al. (2018) used a multilayer perceptron neural network 5-7-2 model
and an adaptive neuro fuzzy inference system model to estimate sawdust adsorption
capabilities by simultaneous removal from polluted solution of Copper(II) and Basic
Red 46 (BR46). For the creation of prediction models, experimental data of 50 sam-
ples were used. The studies showed that both the multilayer perceptron neural
network and adaptive neuro fuzzy inference system models had outstanding predic-
tive performance for both copper and dye (R2 values of 0.98–0.99).

In order to optimize removal efficiency using multilayer perceptron neural net-
work, Khandanlou et al. (2016) developed a predictive model for the identification of
optimal values for the adsorption of Lead(II) and Copper(II), with 20 test data. The
assessment of adsorption efficiencies of the artificial neural network training samples
of Lead(II) and Copper(II) at 74.04% was found to be similar to the real value of
75.54% under optimal conditions, indicating that the model could generate accurate
prediction without abundant experimental data.

Nag et al. (2018) have provided the MSME sector with effective and affordable
emission control means. The effect of operating parameters, i.e. aqueous phase pH,
initial cadmium(II) concentration, adsorbent dose, time, temperature of cadmium
(II) ion removal, on these green biomaterial are performed via batch experiments.
The bioremediation process was strongly pH-based, spontaneous and followed
kinetics of the second order. Complex sorption modelling was performed using the
combined genetic algorithm with artificial neural network technique to accurately
predict the efficiency of metal ion removal, and the results obtained are well-
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compatible with the experimental data with the correlation coefficient (R) of
0.97–0.99.

10.6 Application of Microorganism for the Treatment
of Effluent, Liquid and Municipal Wastes

The treatment of effluent, liquid and municipal waste is a procedure wherein
contaminants are detached from the effluent, liquid and municipal waste (Zhao
et al. 2013; Ma et al. 2015; Aigbe et al. 2020). The primary reason for the treatment
of effluent, liquid and municipal wastes, like other environmental contaminants is to
produce wastes that will have no adverse environmental influences; this will in no
doubt assist in mitigating the incessant environmental issues globally (Nwankwo
and Ukhurebor 2019; Nwankwo et al. 2020a, b, c). If these effluent and liquid wastes
are not treated appropriately, the results can be devastating as effluent, liquid and
municipal wastes can cause several environmental consequences, that could lead to
loss of lives of both plants and animals (Adebayo and Obiekezie 2018; Aigbe et al.
2020).

Essentially, chemical and biological effluent, liquid and municipal wastes need to
be degraded before they released in the environment. This degradation process can
efficiently be monitored and controlled by the management of the microbial inhab-
itants in waters thus causing microorganisms to digest the biological or organic
matter. Such water should be disinfected before it is considered suitable for domestic
purposes. It is also advisable to treat underground water before making use of them
domestically or otherwise (Ma et al. 2015; Adebayo and Obiekezie 2018; Aigbe
et al. 2020).

Canler and Perret (2011) identified three major procedures for the treatment of
effluent, liquid and municipal wastes, viz. primary treatment, secondary treatment
and tertiary treatment.

The primary treatment procedure entails the physical separation of effluent, liquid
and municipal wastes to form solid and liquid by means of a settling sink or basin,
after which the effluent, liquid and municipal wastes are at that point moved to the
secondary treatment stage; in this stage the removal of the dissolved organic or
biological composite occur through micro-organisms or microbes application; the
microbes frequently apply aerobic metabolism for the degradation of the biological
or organic matter in the liquid mud. At that point, the tertiary treatment procedure is
required to sterilize the effluent and liquid wastes so that they could be released and
delivered into the environment. As of the solid effluent, liquid and municipal wastes
which are detached during the primary treatment stage are moved into a reservoir of
tank for mud assimilation which comprises anaerobic degradation by means of
micro-organisms (Canler and Perret 2011; Satyanarayana et al. 2012; Zhao et al.
2013; Akpor et al. 2014; Adebayo and Obiekezie 2018).
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10.7 Microbial Processes for the Treatment of Wastes

Apparently, there are several microbial procedures for the treatment of effluent,
liquid and municipal wastes that have been reported and these microbial procedures
can be broadly grouped into two groups, known as aerobic procedure and anaerobic
procedure (Satyanarayana et al. 2012; Kangle et al. 2012; Zhao et al. 2013; Akpor
et al. 2014; Ma et al. 2015; Adebayo and Obiekezie 2018).

10.7.1 Aerobic Procedure

As stated earlier, during the primary treatment procedure, the liquid and solid stages
are detached physically. The liquid stage is treated by exposing the liquid to air in
order for aerobic breakdown (degradation) of the nutrients in a process that is known
as aeration (Satyanarayana et al. 2012; Zhao et al. 2013; Akpor et al. 2014; Adebayo
and Obiekezie 2018). According to Wagner (1996), the two vital microbial pro-
cedures at this phase are nitrification and phosphorous elimination.

Nitrification ensues in two distinct phases; firstly, the ammonium is oxidized to
nitrite by means of “Nitrosomonas spp.” Furthermore the nitrite is oxidized to form
nitrate by means of “Nitrobacter spp.” (Wagner 1996; Satyanarayana et al. 2012;
Zhao et al. 2013; Akpor et al. 2014; Adebayo and Obiekezie 2018). The phospho-
rous elimination phase occurs by a biological process known as improved biological
phosphorous elimination; this procedure is established by the cell embracing phos-
phorous within their compartment as well as the filtration of the biomass (Zou 2013).

10.7.2 Anaerobic Procedure

In the liquid constituent of the effluent, liquid and municipal wastes, denitrification
of bacteria diminishes the nitrate to form dinitrogen gas that can release nitrate from
the effluent and liquid wastes (Chen and Lin 1993; Adebayo and Obiekezie 2018).
Hernon et al. (2006) reported that the solid constituent of the effluent and liquid
wastes which are detached during the primary treatment procedure is fermented
anaerobically by microorganism such as bacteria (Hernon et al. 2006; Kangle et al.
2012; Satyanarayana et al. 2012; Zhao et al. 2013; Akpor et al. 2014; Adebayo and
Obiekezie 2018).
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10.8 Microorganisms for Treatment and Management
of Wastes

Despite the fact that microorganisms could cause some detrimental consequences to
the environment, they however play vital roles in the conservation and preservation
of several environmental progressions both naturally and artificially by performing
some inspiring roles that make human existence more comfortable (Satyanarayana
et al. 2012; Zhao et al. 2013; Ma et al. 2015; Adebayo and Obiekezie 2018).
According to Adebayo and Obiekezie (2018), the foremost of such roles are in the
management of wastes both effluent and liquid wastes as well as municipal wastes.

The appropriate removal and discarding of the capacious wastes that are produced
domestically and industrially by human actions on a daily basis is a great environ-
mental threat globally, as such the government and environmental agencies of any
nation are incessantly in search of the appropriate and improved means for its
management (Adebayo and Obiekezie 2018; Aigbe et al. 2020).

However, several studies have demonstrated that one of the best techniques of
effectively managing this threat is via the use of microorganisms (Satyanarayana
et al. 2012; Zhao et al. 2013; Ma et al. 2015; Adebayo and Obiekezie 2018).

According to Adebayo and Obiekezie (2018), microbes that potentially inhabit
the aerobic organic or biological treatment procedures of wastes are: bacteria, pro-
tozoa, fungi, rotifers, algae and some other complex living organisms.

It has been reported that the development of microorganisms in a given industrial
waste removal technique depends on the following (Satyanarayana et al. 2012; Zhao
et al. 2013; Akpor et al. 2014; Adebayo and Obiekezie 2018):

• The chemical properties of the industrial wastes
• The environmental restrictions of the specific waste technique
• The properties (biological and chemical; biochemical) of the microorganisms

However, microorganisms which are cultivated in a presumed industrial waste
removal technique contribute to its properties generally.

It is therefore imperative to identify the contributions made by each kind of
microorganism to the entire maintenance of the biological or organic wastes if the
waste treatment procedure is to be appropriately planned and operated for almost
effectiveness (Satyanarayana et al. 2012; Zhao et al. 2013; Akpor et al. 2014;
Adebayo and Obiekezie 2018).

10.8.1 Application of Bacteria for the Treatment of Wastes

Bacteria has proven to be one of the foremost biological or organic components in
aerobic procedure for the treatment of effluent, liquid and municipal wastes (McKin-
ney 1957; Satyanarayana et al. 2012; Adebayo and Obiekezie 2018); this is attrib-
uted to the fact that bacteria exhibit various biochemical attributes, which makes it
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possible for them to metabolize the biological or organic composites in such
wastes whether it is liquid waste, municipal wastes, domestic wastes or industrial
wastes (Satyanarayana et al. 2012; Adebayo and Obiekezie 2018)

According to Adebayo and Obiekezie (2018), the development of any specific
kind or species of bacteria depends on the competitivity capability of such bacteria to
attain a portion of the accessible biological or organic constituent in the procedure.

It has been reported that bacterial prevalence would customarily split itself into
two main categories (McKinney 1957; Adebayo and Obiekezie 2018): the bacteria
using the biological ororganic composites in the waste and the bacteria using or
inducing lysis (the breaking down of the molecules into smaller molecules) of the
initial set of bacteria.

The bacteria using the biological or organic composites present in the waste are
the foremost set and they control the properties of the treatment procedure. Studies
have shown that the bacteria whose growth rate is faster and the capability to use
most of the organic or biological matter would prevail (Satyanarayana et al. 2012;
Adebayo and Obiekezie 2018).

The limit of secondary preponderation as rightly reported by Adebayo and
Obiekezie (2018) is dependent on the extent of malnourishment. Reduction of the
biological or organic composite results in death as well as the breakdown of the
molecules of the primary set of bacteria of the preponderate bacteria (Satyanarayana
et al. 2012; Adebayo and Obiekezie 2018).

The release of cellular composites of the bacteria assists the growth rate of the
other bacteria. Subsequently, all biological or organic treatment procedures are
ordinarily over-premeditated as a protection influence, secondary preponderation
would ensue (Satyanarayana et al. 2012; Zhao et al. 2013; Akpor et al. 2014;
Adebayo and Obiekezie 2018). Apart the bacteria’s metabolic properties, the fur-
thermost property is their capability to collect all loose aggregates together (floccu-
late). Aerobic biological or organic waste treatment procedures are subject to
flocculation of the microbes as well as their extraction from the liquid stage for
comprehensive stabilization (Satyanarayana et al. 2012; Zhao et al. 2013; Akpor
et al. 2014; Adebayo and Obiekezie 2018).

Previously, it was alleged that flocculation was instigated by only one kind or
species of bacteria known as Zoogloe ramigeria. However, new research studies
have postulated and revealed that there are several other kinds or species of bacteria
which exhibit flocculation under some certain environmental circumstances
(McKinney 1957; Adebayo and Obiekezie 2018).

The main issues affecting flocculation according to Adebayo and Obiekezie
(2018) are: “the surface charges of the bacteria and their energy level”. Reportedly,
the electrical surface charge of bacteria grown in low concentration organic or
biological waste procedures has been discovered to be less than the value of the
critical charge for auto-accretion which is 0.020 V (Satyanarayana et al. 2012; Zhao
et al. 2013; Akpor et al. 2014; Adebayo and Obiekezie 2018). This implies that
Brownian movement affords adequate energy to withstand the resisting electrical
forces as soon as two bacteria come close to each other and to allow the Van der
Waal forces to preponderate as well as embrace the two bacteria together
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(Satyanarayana et al. 2012; Zhao et al. 2013; Akpor et al. 2014; Adebayo and
Obiekezie 2018). Normally, auto-accretion hardly occurs if the energy level of the
procedure is adequately high to allow the bacteria to tremendously increase as well
as having the swift potential to move spontaneously (motile).

Auto-accretion or flocculation only takes place after when the bacteria do not
have enough energy of motility in withstanding the Van der Waal forces
(Satyanarayana et al. 2012; Zhao et al. 2013; Akpor et al. 2014; Adebayo and
Obiekezie 2018). Once the formation of soft particles suspended in the liquid
(floccule or floc) is in progress, reportedly at this stage according to Adebayo and
Obiekezie (2018), some of the bacteria would perish and break down into smaller
molecule (lysis). An unsolvable fragment in the cell of the bacteria is left, that is
predominantly polysaccharide. The floccule or floc at this stage grows into more
advanced polysaccharide.

10.8.2 Application of Fungi for the Treatment of Wastes

Fungi play a vital part in bringing equilibrium to organic or biological wastes. Like
bacteria, fungi could metabolize virtually all kind of organic composite contained in
industrial wastes (Adebayo and Obiekezie 2018). The fungi have all it takes to
preponderate over other microorganisms like the bacteria. However, they only do so
only under certain unusual environmental circumstances. As a result of the filamen-
tous attribute of some of the fungi contained in industrial wastes makes them
obnoxious because of their inability to form compacted floc and settle without
difficulty. Hence, substantial efforts are used to assure more approving environmen-
tal circumstances for bacteria preponderation than for filamentous fungi preponder-
ation. The filamentous fungi preponderate needed for bacteria at truncated oxygen
strains, at truncated pH as well as at truncated nitrogen (Satyanarayana et al. 2012;
Zhao et al. 2013; Akpor et al. 2014; Adebayo and Obiekezie 2018).

The truncated oxygen strain could be as a result of the truncated oxygen that is
supplied or consequently due to the high biological or organic weight instigating the
quest to surpass the supply. Under condensed oxygen levels, metabolism hardly turn
to carbon dioxide and water; however, it could stop by means of the formation of
biological or organic alcohols, aldehydes as well as acids. If there is insufficient
buffer in the process, the biological or organic acids reduce the pH to a better
approving range for fungi. Consequently, it could be seen that truncated oxygen
strain as well as pH could be interconnected.

Several of fungi develop properly at pH ranging from 4 to 5, whereas limited
bacteria are able to develop properly. Fungi need smaller amount of nitrogen
compared to the amount needed by bacteria per unit mass of protoplasm (McKinney
1957). In wastes with deficient nitrogen, the fungi will be able to synthesize
additional energetic masses of protoplasm from such wastes compared to bacteria
and preponderate. Average number of bacteria is approximately ranged from 10 to
12% of nitrogen, whereas the average number of fungi range from 5 to 6% of
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nitrogen (Satyanarayana et al. 2012; Zhao et al. 2013; Akpor et al. 2014; Adebayo
and Obiekezie 2018). Under usual environmental circumstances, fungi would be
existing and would assist in stabilizing organic matter. Nevertheless, fungi are of
secondary significance and would not preponderate (Akpor et al. 2014; Adebayo and
Obiekezie 2018).

10.8.3 Application of Viruses for the Treatment of Wastes

They are units collected from the “biopolymers”, which are proficient in increasing
and accumulating as fresh virus units inside “living prokaryotic or eukaryotic cells”
(Ivanov 2010). In our surrounding, viruses are significant for the following purposes
(Adebayo and Obiekezie 2018):

• Pathogenic viruses should be detached, reserved or demolished during the pro-
cess of treatment of water and wastewater.

• Viruses of bacteria known as “bacteriophages” could contaminate and degrade
the bacterial cultures in our surrounding.

• “Bacteriophages” could assist in the detection of precise microbial effluence of
environmental waste.

10.8.4 Application of Protozoa for Treatment of Wastes

Protozoa is reportedly one of the simplest living organisms which are contained in
waste disposal processes (Satyanarayana et al. 2012; Zhao et al. 2013; Akpor et al.
2014; Adebayo and Obiekezie 2018). According to study carried out in ascertaining
the stabilization of biological or organic wastes, show that they are accountable for
the reduction the quantity of “free-swimming bacteria”, accordingly, they assist in
the generation of simplified effluent (Satyanarayana et al. 2012; Zhao et al. 2013;
Akpor et al. 2014; Adebayo and Obiekezie 2018). The sequence of protozoa had
extensive due to it observance in biological or organic waste disposal processes
(McKinney 1957). However, there are presently limited explanation of the details for
this sequence (Adebayo and Obiekezie 2018). The sequence of protozoa is
influenced by similar factors which influence the preponderation of any organic or
living species. The category of food as well as the struggle for food have been
reported to be the foremost factors for the determination of the preponderation of
protozoa (Akpor et al. 2014; Adebayo and Obiekezie 2018).

The “Sarcodina” are reportedly found in the treatment processes of waste aero-
bically, this is as a result of the insufficient sufficient food to contend with other
living organisms like bacteria (Adebayo and Obiekezie 2018).

The “Phyto-Mastigophora” subsist slightly longer more than the “Sarcodina”
since they inject soluble biological or organic food. However, they are incapable to
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contend against bacteria as such they are rapidly displaced (Adebayo and Obiekezie
2018).

The “Zoo-Mastigophora” preponderates over the “Phyto-Mastigophora” such
that they are capable of utilizing bacteria as food instead of competing with bacteria
for nourishment. However, the “Zoo-Mastigophora” give way to the “free-swim-
ming Ciliata” which have an improved machinery for obtaining bacteria as well as
other nourishment mechanisms (Adebayo and Obiekezie 2018). As the process
becomes further steady, there are fewer and less “free-swimming Ciliata” (Adebayo
and Obiekezie 2018). However, the process rapidly becomes so steady that the
“stalked Ciliata” cannot attain sufficient energy, so they pass away from the process
(Akpor et al. 2014; Adebayo and Obiekezie 2018).

The sequence of protozoa brings a decent index of firmness for the treatment
process of biological or organic waste. According to Adebayo and Obiekezie (2018),
few numbers of “free-swimming Ciliata” ensue at both a little degree of decontam-
ination ranging from 20 to 40%, while at high decontamination ranging from 75 to
95%. The comparative categories of protozoa and comparative numbers could be
used for any specific for estimating the irregular efficiency of �10%, for any
biological or organic treatment process (McKinney 1957). The protozoa has been
reported to having more intricate metabolic procedures compared to other microor-
ganisms such as bacteria and fungi; this make protozoa more delicate to noxious
organic composites (Adebayo and Obiekezie 2018).

In the processes comprising of noxious organic or biological composites, steady
observations of protozoa could be applied as indicator of the noxious concentration
as well as to caution possible noxiousness to the bacteria that would have been
responsible for stabilizing the organic or biological wastes. Protozoa could as well be
used for the indication of deficits of some crucial elements like nitrogen and
phosphorus. According to Adebayo and Obiekezie (2018), nutrient deficits would
decrease both quantity of species and the quantity of any specific species.

10.9 Conclusion and Future Recommendation

This chapter has provided a detailed information on the use of handling of effluent
waste and sewage sludge with respect to its accompanying microorganisms and
transport activities. The various types of techniques utilized in their management
were also provided most especially the application of beneficial microorganisms.
The application of genetic engineering and mutation could lead the generation of
novel strains that could be used for the management of effluent waste and sewage
sludge. The application of these techniques need to be performed on a larger scale
especially when tested on a field trial. There is a need to adopt the application of
cheap agricultural waste resources for the mass production of these beneficial
microorganisms.
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Abstract The liberation of numerous organic and inorganic chemicals derived from
numerous industries, such as tanneries, textiles, agro-based industries, pharmaceu-
ticals, and petrochemicals, has been identified to produce several pollutants that
could constitute several hazards to the environment and humans. Different types of
technology and processes such as advanced oxidation techniques physical and
chemical processes are utilized for the management of these contaminants. However,
there are several drawbacks associated with these techniques, and the majority of the
end products are also poisonous in nature. Hence, there is a need to identify
sustainable and eco-friendly techniques that could lead to the maintenance of a
cleaner environment which is economical feasible, non-poisonous, and without
any adverse effect. The utilization of these beneficial microorganisms has been
identified as a sustainable biotechnological technique that could lead to the mainte-
nance of a healthy environment. These microorganisms portend capability to reduce
these contaminates into non-toxic components. Therefore, this chapter intends to
provide detailed information on the application of beneficial microorganism for the
achievement of environmental sustainability. Special emphasis was laid on some
specific examples of sustainable biotechnology techniques that could lead to the
maintenance of a cleaner environment. The different types of beneficial microor-
ganisms are also highlighted.

Keywords Microorganism · Environment · Sustainability · Bioremediation · Eco-
friendly · Health · Hazards

11.1 Introduction

Environmental pollution is linked to the action of anthropogenic activities and
natural sources, which might be linked to the availability as well as persistence of
numerous pollutants that are toxic in nature (Adetunji et al. 2020; Adetunji et al.
2019; Adetunji et al. 2018a, b, c, d, e; Adetunji et al. 2017a, b, c, d). Numerous
decontamination technologies and processes have been identified over the years in
order to achieve a high level of sustainability for effective bioremediation of the
environment (Doble and Kumar 2005; Gavrilescu and Macoveanu 1999, 2000;
Khan et al. 2004).

Most of the actions employed for the maintenance of environmental sustainability
possess the capability to continue with a lower long-term influence on the environ-
ment, which are determined for a non-impact objective by placing a higher priority
on economic and social factors (Gavrilescu 2011).
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It has been discovered that sustainable development and sustainability are two
different multifaceted concepts that possess numerous definitions, which might
indicate the way the concept could be effectively used (Gavrilescu 2011; WCED
1987). Hence, sustainability was defined in a report compiled by the World Com-
mission on Environment and Development as “the capability needed for the demand
of the present capability, without conceding the future cohorts that would come
across their own requirements”. Moreover, the World Bank also defines sustainabil-
ity as “the condition or a process that could preserve the environment indetermi-
nately without advanced dwindling of the esteemed qualities of the external or
internal system in which the process could take place based on the condition that
need to be overcome” (Holdren et al. 1995).

The process involved in the reduction of the environmental footprint entails air
emissions, ecological impacts, materials, greenhouse gases (GHGs), land, waste,
water as well as the application of the eco-friendly and biodegradable materials that
are protected by the “green” characteristics (Hurst 2010). Also, a sustainable reme-
diation could be compared to a green remediation, because it entails the reduction of
environmental impacts at minimum cost, decreases GHG emissions, as well as
promotes some sustainable practices that could lead to the reduction in cost, and
these could enhance social acceptability (Hurst 2010).

Furthermore, it has been identified that green and sustainable remediation entails
a wider range of economic impacts, as well as social and environmental remediation
procedures (Reddy and Adams 2010). This indicates that green and sustainable
remediation discourses the defence of human health together with the maintenance
of a cleaner environment, as well as the reduction of the numerous side effects that
could affect the environment (Ellis and Handley 2009; Reddy and Adams 2010;
USEPA 2008).

Biotechnology tools have been identified as a process that involves the applica-
tion of living organisms for a successful achievement of more sustainable products
that could lead to the maintenance of a cleaner environment. The application of
biotechnology has been identified as a sustainable process when compared to the
conventional chemical synthesis of products. This is due to the fact that they are
environmental friendly, as the synthetic techniques portend the capacity to pollute
the environment. Chen et al. (2005) clearly define environmental biotechnology as
the application of microorganisms for effective enhancement and maintenance of
quality in the environment. Therefore, this chapter intends to provide detailed
information on the application of beneficial microorganism for the achievement of
environmental sustainability. Special emphasis has been given to some specific
examples of sustainable biotechnology techniques that could lead to the maintenance
of a cleaner environment. The different types of beneficial microorganism are also
highlighted.
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11.2 Specific Examples of Microorganisms for Attainment
of Environmental Sustainability

11.2.1 Bioremediation

Bioremediation of wastes, also known as biotreatment, is a subdivision of biotech-
nology that employs the use of living organisms especially microorganisms/
microbes such as bacteria for the removal of impurities, contaminants, pollutants,
and/or chemical toxins from the environment (soil and water in particular). Biore-
mediation is used for the cleansing of environmental complications arising from
petroleum/oil spills and/or groundwater pollution from industries and other sources
(Abatenh et al. 2017; Adams et al. 2015; Couto et al. 2014; Jain and Bajpai 2012;
Das and Chandran 2011).

According to Adams et al. (2015), microorganisms are well known for their
capability to disintegrate a massive array of organic or biological composites and
absorb or engross inorganic constituents. Presently, microorganisms have been used
for the treatment of pollution/contamination and the process is termed bioremedia-
tion. As reported by the United States Environment Protection Agency (USEPA),
bioremediation activities during the year 2018 has recovered about 1507 sites
(Adams et al. 2015). Bioremediation made use of microorganisms for the reduction
of pollution/contamination by means of biological degradation or breakdown of
contaminants/pollutants into non-noxious constituents/materials. This process could
either encompass aerobic or anaerobic microbes that habitually use degradation
process as a source of energy (Abatenh et al. 2017).

Bioremediation techniques or procedures are mainly grouped into three catego-
ries, viz. (Jain and Bajpai 2012):

(a) In situ land treatment for soil and groundwater.
(b) Biofiltration of the air.
(c) Bioreactors (which are mostly involved in water treatment).

Bioremediation can be viewed as:

• A biotechnological field where microorganisms and other living organisms
eradicate contaminants or pollutants from the environment (soil, water, and air).

• A conventionally used procedure for cleaning oil/petroleum spills or/and con-
taminated or polluted groundwater.

• A means of “in situ” at the polluted or contaminated sites, or “ex situ” means
away from the polluted or contaminated sites. This may be essential if the weather
or climate is so cold for sustaining the microbial action, or if the soil is over dense
for even distribution of nutrients. Ex situ bioremediation may entail exhuming or
excavating and cleaning the soil directly above the ground, and this could add
substantial costs to the procedure.

Bioremediation depends on the stimulation in the development of certain micro-
organisms that exploit pollutants or contaminants such as petroleum/oil, solvents,
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and pesticides for various sources such as food and energy. These microorganisms
translate the pollutants and contaminants into small quantities of water and other
non-toxic gases like carbon dioxide and nitrogen (Abatenh et al. 2017; Jain and
Bajpai 2012). Bioremediation involves the combination of appropriate temperature,
nutrients, and foods. The deficiency of these essential components could prolong the
cleansing procedure of the pollutants or contaminants (Jain and Bajpai 2012;
Macaulay 2014; Adams et al. 2015). Some conditions that are not suitable for
bioremediation procedure could be enhanced by the addition of some environmental
alterations, such as molasses, vegetable oil, or simple air. These alterations enhance
the conditions for microorganisms to flourish, thus accelerating the achievement
procedure (Adams et al. 2015). The bioremediation procedure could take several
months or years to complete, depending on some parameters such as the extent of the
contaminated or polluted region, the concentration of pollutants or contaminants,
temperature, density of the soil, and whether the bioremediation procedure will take
place in situ or ex situ (Jain and Bajpai 2012; Macaulay 2014; Adams et al. 2015;
Abatenh et al. 2017).

11.2.2 Benefits of Bioremediation

Bioremediation provides several benefits compared to other clean-up procedures. By
relying exclusively on natural procedures, it is a comparatively green technique that
reduces impairment to the ecosystems (Adams et al. 2015; Abatenh et al. 2017).
Habitually, bioremediation takes place underground, where alterations and micro-
organisms could be impelled, so as to eliminate pollutants or contaminants in
groundwater and soil. Subsequently, bioremediation does not disturb neighbouring
locations as compared to other clean-up procedures (Abatenh et al. 2017).

Bioremediation procedure generates comparatively few injurious by-products,
primarily as a result of the fact that the pollutants or contaminants are transformed
into water and other harmless gases such as nitrogen and carbon dioxide (Adams
et al. 2015; Abatenh et al. 2017). Also, bioremediation is less expensive than most
clean-up procedures, as it does not need extensive instruments or efforts.

11.3 Bioremediation in Soil

Industrially, soils could be polluted or contaminated through various sources, such
as spill from petroleum/oil, chemicals, or/and heavy metals accrual from industrial
emanations (Adams et al. 2015; Abatenh et al. 2017; Aigbe et al. 2020). Agricul-
turally, soils could be polluted or contaminated owing to the use of pesticides and
other chemicals used for agricultural activities or by means of the heavy metals that
are contained within agricultural products (Couto et al. 2014; Abatenh et al. 2017;
Aigbe et al. 2020). Also, bioremediation has been used for effective bioremediation

11 Recent Trends in Utilization of Biotechnological Tools for Environmental. . . 243



of heavily polluted environment where 2012 Olympics games was performed (Couto
et al. 2014; Abatenh et al. 2017). Bioremediation was used for the cleansing of about
1.7 million cubic metres of severely contaminated soil to turn this brownfield
location into one comprising sports infrastructure bounded by about 45 ha of wildlife
habitats. Groundwater contaminated with ammonia was cleaned by means of a novel
bioremediation procedure that saw archaeal microorganisms breaking down the
ammonia into innocuous nitrogen gas (Couto et al. 2014; Macaulay 2014; Abatenh
et al. 2017). The rehabilitated and transformed park marked the London 2012
Olympic Games as well as the Paralympic Games as the “greenest” and most
sustainable games ever held; this was made possible by bioremediation procedures
(Couto et al. 2014; Macaulay 2014; Abatenh et al. 2017).

While some soil cleansing procedures entail the introduction of new microorgan-
isms, biostimulation procedures upsurge natural degradation procedures by inspiring
the development of microorganisms that are previously existing (Adams et al. 2015).
Natural or ordinary biodegradation procedures could be restricted by several factors,
such as nutrient accessibility, temperature, or nature of soil moisture content.
However, biostimulation procedures overcome these restrictions, providing micro-
organisms with the resources required, which upsurges their proliferation and results
in improved rate of degradation (Das and Chandran 2011; Adams et al. 2015;
Burghal et al. 2016).

Cleansing of oil/petroleum-contaminated soil is an illustration of where stimulat-
ing microbial development could be used for good outcome (Das and Chandran
2011; Adams et al. 2015; Burghal et al. 2016). Some research studies have revealed
that poultry droppings could be used as a biostimulating agent, offering nitrogen and
phosphorous to the process which enhances the natural development rate of oil/
petroleum-degrading bacteria. Processes like these could demonstrate cost-effective
and more eco-friendly alternatives to existing chemical treatment opportunities (Das
and Chandran 2011; Adams et al. 2015; El-Borai et al. 2016; Burghal et al. 2016).

11.4 Bioremediation in Air

Air is contaminated by a diversity of volatile and explosive organic or biological
composites formed by a series of industrial procedures (Jain et al. 2010, 2011;
Abatenh et al. 2017). While organic or chemical cleansing has been applied for the
cleansing of gases emitted from funnels, chimneys, or pipes, the newer procedure of
biofiltration has been of great assistance for the cleansing of industrial gases. This
technique encompasses passing contaminated air over a disposable matrix
encompassing microbes that degrade pollutants into products that are non-toxic
such as water, carbon dioxide, or salts. Presently, biofiltration is one of the biological
organic procedures available for the remediation of airborne contaminants (Jain et al.
2010, 2011; Abatenh et al. 2017).
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11.5 Bioremediation of Water

In some advanced western countries accessibility to clean, drinkable water and
contemporary public health (sanitation) is something they do not handle with levity.
Nevertheless, there are millions of persons especially in developing countries
involved in the task to produce clean, drinkable water and contemporary public
health (sanitation) is like a luxury (Demnerova et al. 2005; Aigbe et al. 2020).

From reports from the World Health Organization (WHO), it is estimated that
about 842,000 persons die annually as a result of diseases (such as diarrhoea) caused
by contaminated water. According to WHO, several of such deaths can be prevented
by providing drinkable and potable water as well as appropriate contemporary public
health sanitation. Approximately, 2.6 billion persons are deficient in any contempo-
rary public health sanitation, with more than 200 million tons of industrial and
human waste which are not treated annually (Adams et al. 2015; Abatenh et al.
2017).

Sewage treatment plants are the major and further most imperative bioremedia-
tion inventiveness in most part of the world especially developed countries (Adams
et al. 2015). For example, in the United Kingdom, about 11 L of wastewater are
collected and treated daily (Adams et al. 2015). Major ingredients of raw sewage are
organic matter, suspended solids, phosphorus, and nitrogen. Wastewater circulated
in a treatment plant is aerated so as to make oxygen available to bacteria that degrade
organic material and contaminants. Microorganisms consume the organic pollutants
and bind the less soluble portions, which could then be filtered off; the noxious
ammonia is reduced to non-toxic nitrogen gas and is released into the atmosphere
(Adams et al. 2015).

11.6 Influence of Microbes on Bioremediation of Wastes

Microbes are generally circulated on the biosphere; this is as a result of their
inspiring metabolic capability as well as their capability to grow without difficulties
under diverse environmental circumstances (Abatenh et al. 2017).

The nourishing adaptability of the microbe’s community is another aspect for the
exploitation for biodegradation of contaminants by means of bioremediation.
According to Tang et al. (2007), microbial bioremediation is based on the capability
of some variety of microorganisms to translate, change toxic contaminants to acquire
energy, and also generate biomass in the progression. The process of bioremediation
is a microbiologically efficient procedure, which degrades, breaks down, or trans-
mutes pollutants to less noxious, essential, and composite forms by the collection
and storage of the pollutants. The microbes which are basically the biological agents
of bioremediation are known as “bioremediators”; distinctive leading examples of
bioremediators are archaea, bacteria, and fungi (Strong and Burgess 2008; Abatenh
et al. 2017).
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Bioremediation entails the degradation, removal, alteration, immobilization, or
detoxification of several physical and chemical wastes in the form of liquid, solid, or
gases from the environment by means of the action of microbes such as bacteria,
fungi as well as some other organism like plants. Microbes take part in this procedure
by means of their enzymatic trails performance as “biocatalysts” and ease the
development of the biochemical reactions for the degradation of the anticipated
contaminant. The microbes perform these actions by accessing several composites
that assist them in the generation of energy and nutritional substances for the
development of more cells.

The effectiveness of any bioremediation procedure is influenced by some factors
as well as the chemical attribute and concentration of the contaminants
(El Fantroussi and Agathos 2005; Abatenh et al. 2017). The environmental physi-
cochemical features and their accessibility to the microbes also influence bioreme-
diation procedure (El Fantroussi and Agathos 2005; Abatenh et al. 2017).

The rate at which microbes carry out degradation is influenced by interaction
nature of the microbes and contaminants as well as their environmental distribution,
nature of the microorganisms, and contaminants. The monitoring, management, and
optimization of bioremediation procedures are intricate processes, resulting from
several factors. As reported by Abatenh et al. (2017), these factors include but not
limited to the following:

• The presence of microbial inhabitants which are proficient for the degradation of
the contaminants.

• The accessibility of pollutants to the microbial inhabitants.
• Environmental factors such as the kind of soil, the temperature range, pH value,

existence of oxygen or additional electron acceptors, and available nutritional
components.

11.7 Biological Influences on Bioremediation Procedures

Biological factors influence the degradation of organic composites as a result of the
competition among microbes for inadequate carbon sources, unfriendly relations
among microbes, or the predation of microbes by protozoa and bacteriophages. The
rate at which the pollutants get degraded is habitually dependent on the concentra-
tion of the pollutant and the quantity of available “catalysts”. Hence, the quantity of
“catalyst” signifies the number of organisms which are capable of metabolizing the
pollutant and the quantity of enzymes(s) generated by each of the cell (Abatenh et al.
2017).

The countenance of the specific enzymes by the cells could surge or reduce the
pollutant degradation rate. Additionally, the level of contaminant, metabolism spec-
ification by enzymes, their “affinity” for the pollutant as well as the accessibility of
the required pollutant will also contribute. The foremost biological influences as
reported by Boopathy (2000), Madhavi and Mohini (2012), and Abatenh et al.
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(2017) are “mutation, horizontal gene transfer, enzyme activity, interaction (compe-
tition, succession, and predation), its own growth until critical biomass is reached,
population size and composition”.

11.8 Environmental Influences on Bioremediation
Procedures

The metabolic physiognomies of the microbes as well as the physicochemical
physiognomies of the targeted pollutants are the foremost possible interactive
determinant during the procedure. However, this effective foremost possible inter-
action is regulated by environmental circumstances of the location. The microbial
development and action are influenced by the pH value, temperature conditions,
moisture content, soil structure, soluble nature of the water, available nutritional
substances, site physiognomies, chemical reactions and available oxygen as well as
inadequate technical expertise in this field, and physicochemical bioavailability of
contaminants. This physicochemical bioavailability of the contaminants are pollut-
ant concentration, category, solubility, chemical structure, and noxiousness
(Madhavi and Mohini 2012; Adams et al. 2015; Abatenh et al. 2017). According
to Adams et al. (2015), these factors regulate the kinetics of the degradation
procedure.

Biodegradation could take place under a high pH range of 6.5–8.5, which is
normally ideal for biodegradation in water (aquatic systems) and land (terrestrial
systems). Moisture or humidity affects the rate of contaminants metabolism.
According to Cases and de Lorenzo (2005), it is as a result of its influence on the
type and quantity of soluble constituents which are present and the osmotic pressure
as well as the pH range of the environment. Several authors have reported various
categories of microbes and the composites used for bioremediation procedures, some
of selective ones are summarized in Tables 11.1, 11.2, 11.3, and 11.4 as revised from
Abatenh et al. (2017).

Heavy metals hardly degrade or breakdown biologically, but vicissitudes could
take place in the nuclear structure of some metals. They can however be converted
from one form to another by oxidation or by some biochemical reactions. Never-
theless, bacteria have been proven effective for some heavy metals’ bioremediation.
According to Abatenh et al. (2017), most microbes have the capabilities to shield
themselves from heavy metal harmfulness by means of some mechanisms, such as
“adsorption, ingestion, methylation, oxidation and reduction reactions”. Microbe’s
ingestion of heavy metals is by means of bioaccumulation procedure (active) and/or
by means of adsorption procedure (passive). Microbial methylation is a vital proce-
dure in bioremediation of heavy metals; the methylated composites are normally
unstable. For instance, Jaysankar et al. (2008) reported that Mercury, Hg (II), could
be biomethylated by means of diverse bacterial types such as “Alcaligenes faecalis,
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Table 11.1 Microbes used for oil bioremediation

Microbes Composites References

Fusarium sp. Oil Hidayat and
Tachibana
(2012)

Alcaligenes odorans, Bacillus subtilis, Corynebacterium
propinquum, Pseudomonas aeruginosa

Oil Singh et al.
(2013)

Bacillus cereus A Diesel oil Maliji et al.
(2013)

Aspergillus niger, Candida glabrata, Candida krusei, and
Saccharomyces cerevisiae

Crude oil Burghal et al.
(2016)

B. brevis, P. aeruginosa KH6, B. licheniformis, and
B. sphaericus

Crude oil El-Borai et al.
(2016)

Pseudomonas aeruginosa, P. putida, Arthrobacter sp., and
Bacillus sp.

Diesel oil Sukumar and
Nirmala (2016)

Pseudomonas cepacia, Bacillus cereus, Bacillus coagulans,
Citrobacter koseri, and Serratia ficaria

Diesel oil,
crude oil

Kehinde and
Isaac (2016)

Table 11.2 Microbes involved in dyes bioremediation

Microbes Composites Authors

B. subtilis strain NAP1, NAP2,
NAP4

Oil-based based paints Phulpoto et al. (2016)

Myrothecium roridum IM 6482 Industrial dyes Jasinska et al. (2012,
2013, 2015)

Pycnoporus sanguineous,
Phanerochaete chrysosporium, and
Trametes trogii

Industrial dyes Jasinska et al. (2015)

Penicillium ochrochloron Industrial dyes Shedbalkar and Jadhav
(2011)

Micrococcus luteus, Listeria
denitrificans, and Nocardia
atlantica

Textile azo dyes Hassan et al. (2013)

Bacillus spp. ETL-2012, Pseudo-
monas aeruginosa, Bacillus pumilus
HKG212

Textile dye (remazol black B),
sulfonated di-azo dye, reactive
red HE8B, RNB dye

Maulin et al. (2013),
Yogesh and Akshaya
(2016), Das et al.
(2015)

Exiguobacterium indicum,
Exiguobacteriumaurantiacums,
Bacillus cereus, and Acinetobacter
baumannii

Azo dye effluents Kumar et al. (2016)

Bacillus firmus, Bacillus macerans,
Staphylococcus aureus, and Klebsi-
ella oxytoca

Vat dyes, textile effluents Adebajo et al. (2017)
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Bacillus pumilus, Bacillus sp., P. aeruginosa, and Brevibacterium iodinium to
gaseous methyl mercury”.

11.9 Forms of Bioremediation Procedures

Presently, we have various forms of techniques of wastes treatment by means of
bioremediation procedures. The foremost bioremediation techniques are
“biostimulation, bioattenuation, bioaugmentation, bioventing, and biopiles”.

Table 11.3 Microbes used for some heavy metals

Microbes Composites References

Saccharomyces cerevisiae Heavy metals,
lead, mercury, and
nickel

Chen and Wang (2007),
Talos et al. (2009), Infante
et al. (2014)

Cunninghamella elegans Heavy metals Tigini et al. (2010)

Pseudomonas fluorescens and, Pseudomo-
nas aeruginosa

Fe2+, Zn2+, Pb2+,
Mn2+, and Cu2

Paranthaman and
Karthikeyan (2015)

Lysinibacillus sphaericus CBAM5 Cobalt, copper,
chromium, and
lead

Peña-Montenegro et al.
(2015)

Microbacterium profundi strain Shh49T Fe Wu et al. (2015)

Aspergillus versicolor, A. fumigatus,
Paecilomyces sp., Paecilomyces sp.,
Trichoderma sp., Microsporum sp.,
Cladosporium sp.

Cadmium Soleimani et al. (2015)

Geobacter spp. Fe (III), U (VI) Mirlahiji and Eisazadeh
(2014)

Bacillus safensis (JX126862) strain (PB-5
and RSA-4)

Cadmium Priyalaxmi et al. (2014)

Pseudomonas aeruginosa, Aeromonas sp. U, Cu, Ni, Cr Sinha et al. (2011)

Aerococcus sp., Rhodopseudomonas
palustris

Pb, Cr, Cd Sinha and Paul (2014), Sinha
and Biswas (2014)

Table 11.4 Potential biological agents for bioremediation of pesticides-contaminated environment

Microbed Composites References

Bacillus, Staphylococcus Endosulfan Mohamed et al.
(2011)

Enterobacter Chlorpyrifos Niti et al. (2013)

Pseudomonas putida, Acinetobacter
sp., Arthrobacter sp.

Ridomil MZ 68 MG, Fitoraz
WP 76, Decis 2.5 EC,
malation

Mónica et al. (2016),
Hussaini et al. (2013)

Acinetobacter sp., Pseudomonas sp.,
Enterobacter sp., and Photobacterium
sp.

Chlorpyrifos and methyl
parathion

Ravi et al. (2015)
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11.9.1 Biostimulation

This form of bioremediation procedure is by means of the injection of some specific
nutritional substances into the location which could be soil or groundwater for the
stimulation of the activity of indigenous microbes. This technique focuses more on
the stimulation of indigenous or microbes (fungus and bacteria) inhabitants that exist
naturally, primarily by providing fertilizers and some nutritional supplements as well
as trace minerals. After which, this provides other environmental necessities such as
“pH, temperature, and oxygen” that would assist to accelerate the metabolism rate
and trail (Kumar et al. 2011; Adams et al. 2015; Abatenh et al. 2017). According to
Abatenh et al. (2017), the existence of little quantity of contaminants could as well
serve as stimulants by revolving the operons meant for bioremediation enzymes.
This type of premeditated trail in most cases unstained additional nutritional sub-
stances and oxygen to assist the natural microbes. These nutritional substances are
the fundamental part of life and assist the microbes in the generation of other basic
necessities such as cell biomass and energy as well as enzymes that breakdown the
contaminants. However, phosphorous, nitrogen, and carbon are all required for this
process (Madhavi and Mohini 2012; Abatenh et al. 2017).

11.9.2 Bioattenuation

This is the natural attenuation, which involves the annihilation of contaminant
concentrations from the environment. Abatenh et al. (2017) reported that it normally
places within biological procedures which could sometimes include aerobic and
anaerobic biodegradation, plant and animal ingestion, as well as some physical
tendencies such as “advection, dispersion, dilution, diffusion, volatilization, and
sorption/desorption”. It also includes some chemical reactions such as “ion
exchange, complexation, and abiotic transformation”. Moreover, it has been
observed that natural attenuation also involved some process such as intrinsic
remediation or biotransformation of heavily polluted environment (Mulligana and
Yong 2004). According to Li et al. (2010), whenever the environment is contami-
nated with some constituents, they could naturally clean up by the following:

1. Microbes that exist in soil and groundwater apply some chemical composites for
nourishment. These chemical composites could modify them into water and
innocuous gases, as soon as they entirely digest the chemical composites.

2. Chemical composites can stick or sorb to soil, which holds them in place. This
does not clean up the chemicals, but it can keep them from polluting groundwater
and leaving the site.

3. When the contamination is transmitted via soil and groundwater, it could com-
bine with uncontaminated water and this will cause a reduction dilution of the
contamination.
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4. Several chemical composites, such oil and diluents or solvents, could dissolve,
which implies that they could change from one state to another like liquids to
gases or vice versa within the soil. If these substances in the soil dissolve in the
air, sunlight could extinguish them. If the natural attenuation is not fast or
complete in time, bioremediation would need to be improved by means of
biostimulation or bioaugmentation.

11.9.3 Bioaugmentation

This is another technique of biodegradation which involves the addition of contam-
inant degrading microbes to enhance the biodegradative dimensions of natural
microbial inhabitants on the contaminated regions. This is done to swiftly increase
the growth rate of the natural microbe inhabitants as well as to improve the
degradation procedure that favourably accommodates the contaminated areas. In
this technique, collection of the microorganisms is from the remediation areas, and
these microorganisms are cultured separately, genetically improved, and brought
back to the location (Niu et al. 2009). This procedure involves the addition of
engineered microorganisms so as to swiftly and completely eradicate composite
contaminants. Furthermore, genetically modified microbes have proven to have the
ability which could upsurge the degradative efficacy of several environmental
contaminants; this is as a result of having various metabolic outline that could
change into less intricate and innocuous end products (Malik and Ahmed 2012;
Alwan et al. 2013; Gomez 2014). Natural microbial species are reportedly not that
fast in breaking down some composites, to facilitate the speed; such natural microbes
should be genetically modified by mean of “DNA manipulation”; genetically
engineered microbes could be applied in this regard (Sayler and Ripp 2000; Thapa
et al. 2012).

11.9.4 Genetically Engineered Microbes

These are microbes whose genetic constituents have been previously altered by
means of genetic engineering procedures, stimulated by natural or artificial genetic
exchange among microbes and it is mostly called “recombinant DNA technology”.
Genetic engineering has enhanced the utilization and eradication of hazardous
wastes under laboratory circumstances by generating genetically modified organ-
isms (Jain et al. 2011). Genetically engineered microorganisms are obtained by
“genetic recombination of DNA techniques or by natural genetic material exchange
between organisms”. Currently we are able to supplement the appropriate gene for
the production of some enzymes which could degrade some contaminants (Jain et al.
2010, 2011). This technique has demonstrated some great potential for bioremedi-
ation applications in “the soil, groundwater, and stimulated sludge environments”,
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demonstrating improved degradative abilities encompassing several chemical
contaminants.

There are presently several opportunities for the improvement of degradative
performance using genetic engineering approaches as we can see in “the rate-
limiting steps known as metabolic pathways” which could be genetically deployed
to produce enhanced degradation rates, or entirely “new metabolic pathways” that
could be merged into “the bacterial strains” for the previously degraded recalcitrant
composites.

For creation of genetically engineered microbes, four basic approaches are carried
out:

(a) The alteration of the enzyme specificity as well as the enzyme affinity.
(b) The creation and regulation of the trail.
(c) The development, monitoring, and management of the bioprocess.
(d) The application of the bioaffinity and bioreporter sensor for chemical sensing,

reduction of the toxicity as well as evaluation of the end point.

The required genes of the microbe are present on a single chromosome but the
genes stipulating the enzymes which are required for the catabolism reactions of
some of these unstable composites are present on plasmids which are drawn in the
catabolism reaction. Consequently, genetically engineered microbes could be used
efficiently for biodegradation and also represent future research frontier with wide
consequences (Kulshreshtha 2013; Abatenh et al. 2017).

Also, the benefits of using the genetically engineered microbes in contaminated
environment entail high catalytic effectiveness with the use of little quantity of cell
mass and are eco-friendly while it has some limitations such as the low survival rates
of cells in some cases. At some instant, there could be a delay in the growth and
composites degradation process, periodic discrepancy and some other abiotic factors
could also cause the instability, and this could cause direct and indirect effect on the
association of the microbial action. It could also introduce some external modified
strain to the settings, making it inactive and could cause several antagonistic effects
on the physical, structural, chemical, and functional properties of the microbial
inhabitants’ configuration and existence.

11.9.5 Bioventing

This technique has to do with the uttering of oxygen via the soil in order to enhance
the growth of natural or the introduced microorganisms such as bacteria and fungus
in the soil via the provision of oxygen to existing microorganisms present in soil.
Efficient aerobically degradable composites get degraded in the presence of little
airflow rates due to the provision of oxygen for the sustenance of microbial actions.
Oxygen is mostly provided by means of direct air injection to the remaining
adulteration in soil via wells. By this means, adsorbed fuel residuals are biodegraded
as well as unstable composites are biodegraded as vapours and slowly move by
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means of biologically active soil. Contemporary bioremediation of crude oil con-
taminated in the soil has been demonstrated by several researchers by the application
of bioventing (Lee et al. 2006; Agarry and Latinwo 2015).

11.9.6 Biopiles

This technique involves the treatment of contaminated soil by the excavation of the
contaminated soil with “aerobically remediable hydrocarbons”. Biopiles could also
be called “biocells, bioheaps, biomounds, and compost piles”. They are applied for
the reducing concentrations of petroleum contaminants in the excavated soils during
the biodegradation process. This procedure entails that air is provided to the biopile
structure via piping and pumps air into the pile under “positive pressure” or by
drawing air via the pile under “negative pressure” (Delille et al. 2008). The microbial
activity is enhanced through microbial respiration that results in the degradation of
adsorbed petroleum pollutant at a higher rate (Emami et al. 2012).

11.10 The Future of Bioremediation

Microbes play a significant role in bioremediation procedure; at the moment, it is an
evolving research area that requires appropriate attention because microbes are
eco-friendly and auspicious valuable inherent substance for the mitigation and
management of environmental contaminations and hazards that have incessantly
threatened human existence. Microorganisms serve as the crucial alternative solution
for overcoming these challenges by means of bioremediation. Although bioremedi-
ation is not a new procedure, nevertheless, as our acquaintance of the causal
microbial reactions grow, the capability to apply them to our benefit upsurges
(Cydzik-Kwiatkowska and Zielińska 2016; Dadrasnia et al. 2017; Hamza et al.
2016). Normally, bioremediation involves a smaller amount of resources and energy
compared to the conventional or traditional technology. Also, bioremediation does
not accrue harmful by-products as waste. Bioremediation has methodological and
cost benefits, even though the procedure normally takes more time compared to the
conventional or traditional procedures.

Bioremediation could be channelled to the needs of the contaminated location in
question, and the precise microorganisms required for the degradation or breaking
down of the contaminant are encouraged by choosing the restraining factor required
for the promotion of their development. This channelling could be further enhanced
by means of biological or organic synthetic tools of microorganisms’ pre-adaptation
in environmental pollution to which they remain included.

Environmental contamination or pollution is a threat not only to human health but
also could cause serious environmental damages to other living organisms, wildlife
as well as globe sustainability. Impairment to the soils affects food production and
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safety. Bioremediation has been recognized as a sustainable tool for effective
reduction and removal of pollution or contamination water as well as to ensure a
non-toxic air, and maintenance of soil to be in good physical and healthy shape for
upcoming generations.

11.11 Biomonitoring

Biological monitoring “is the measurement and assessment of agents or their
metabolites either in tissues, secretes, excreta, espied air or any combination of
these to evaluate exposure and health risk compared to an appropriate reference”.
According to Berlin et al. 1984, this definition was from “the seminar of 1980, which
was jointly sponsored by the European Economic Community (EEC), National
Institute for Occupational Safety and Health (NIOSH) and Occupational Safety
and Health Association (OSHA)”. Monitoring is a monotonous, consistent, and
precautionary activity which is intended to lead, if required, to counteractive activ-
ities; it ought to not be confused with investigative diagnostic measures (Hamza
et al. 2016).

Biological monitoring belongs to one of the three vital tools for preventing
diseases and infections as a result of noxious agents that are present in the occupa-
tional/industrial or overall environment. The other two are environmental monitor-
ing and health surveillance.

The categorization in the potential growth of such infection or disease is source,
exposed chemical agent, internal dose, biochemical or cellular effect (reversible),
health effects, and infection or disease (Berlin et al. (1984).

When noxious or harmful constituents such as chemicals from the industry are
present in the environment, it pollutes and infects food, air, water, or even living
organisms when they come in contact with the body (Dadrasnia et al. 2017). The
quantity of noxious agents in these media is normally assessed and evaluated by
means of environmental monitoring. Due to the absorption, circulation (distribu-
tion), metabolism (breakdown process), and emission (excretion), precise internal
quantity of the noxious agent that is the net or remaining quantity of a contaminant
absorbed in or passed through the microorganism over a precise time interval is
efficiently brought to the body and becomes noticeable in fluids context of the body
(Cydzik-Kwiatkowska and Zielińska 2016; Dadrasnia et al. 2017; Hamza et al.
2016). Consequently upon its interaction with a receptor in the critical organs
(which are under precise situations of exposure, displays the initial or the further-
most significant adverse consequence), biochemical and cellular proceedings ensue.
Both the internal quantity absorbed and the produced biochemical and cellular
effects could be quantified by means of biological monitoring (Cydzik-Kwiatkowska
and Zielińska 2016; Dadrasnia et al. 2017; Hamza et al. 2016).

According to the 1980 seminar of EEC/NIOSH/OSHA, health surveillance is “the
periodic medico-physiological examination of exposed workers with the objective of
protecting health and preventing disease” (Berlin et al. 1984).
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Both biological monitoring and health surveillance are portions of a continuum
that involves the measurement and quantification of agents or their metabolites in the
body by way of assessment and evaluation of biochemical as well as the cellular
consequences, for detecting the indications of initial reversible consequence of the
critical organ. However, detecting reputable and established infection or disease is
not within the scope of these assessments and evaluations.

11.11.1 Goals of Biological Monitoring

There are basically two categories of biological monitoring, viz. (Cydzik-
Kwiatkowska and Zielińska 2016; Dadrasnia et al. 2017; Hamza et al. 2016):

(a) Monitoring of exposure
(b) Monitoring of consequence

The main purpose of biological monitoring of exposure is to measure and
evaluate the amount of health hazard by assessing and evaluating the internal amount
intake; this is done so as to achieve approximate value of the biologically or
organically active body problem of the contaminant in question. The rationale
behind this is to make sure that the exposure of employee or members of staff of
such industry does not exceed the levels capable of causing adverse effects (Cydzik-
Kwiatkowska and Zielińska 2016; Dadrasnia et al. 2017; Hamza et al. 2016). It is
adverse in the sense that there is a damage of functional capacity, a diminished
capability to compensate for further stress, a diminished capability to sustain
homeostasis (a steady state of equilibrium), or an improved vulnerability to other
influences of the environment (Cydzik-Kwiatkowska and Zielińska 2016; Dadrasnia
et al. 2017; Hamza et al. 2016).

Biological monitoring of consequences is expectedly for the purpose of identi-
fying initial and reversible modifications which advance in the critical organ, and
which can simultaneously detect persons with indications of adverse health conse-
quences (Cydzik-Kwiatkowska and Zielińska 2016; Dadrasnia et al. 2017; Hamza
et al. 2016). Consequently, biological monitoring of consequences signifies the
major device for the health surveillance of employees or workers.

11.11.2 Major Monitoring Devices in Biomonitoring

Biological monitoring of exposure is built on the determination of indicators of
internal amount intake of the contaminants by means of measuring the following
(Cydzik-Kwiatkowska and Zielińska 2016; Dadrasnia et al. 2017; Hamza et al.
2016):
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• The quantity of the contaminants, to which an individual is exposed to.
• The quantity of contaminants that are available in the same fluids content of

the body.
• The concentration of explosive biological or organic composites in alveolar air.
• The biologically or organically effective amount of intake of composites which

have generated adducts to “DNA” or other bulky particles and which conse-
quently have a possible genotoxic consequence.

Biological monitoring of consequences is achieved via the determination of
indicators of consequence, that is, those that could detect initial and reversible
modifications. This method can offer an indirect approximation of the quantity of
chemical bound to the locations of action and provides the opportunity for the
assessment and evaluation of functional modifications in the critical organ in an
initial stage (Refs).

Some examples of the application of this method are:

1. The inhibition of pseudo-cholinesterase by organophosphate insecticides,
2. The inhibition of δ-aminolaevulinic acid dehydratase (ALA-D) by inorganic

lead, and
3. The increased urinary excretion of d-glucaric acid and porphyrins in subjects

exposed to chemicals inducing microsomal enzymes and/or to porphyrogenic
agents (e.g. chlorinated hydrocarbons).

11.11.3 Benefits of Biological Monitoring

For constituents that apply their harmfulness after entering living organisms, bio-
logical monitoring offers a more intensive and targeted assessment and evaluation of
health hazard than those of environmental monitoring and management.

Biological or organic parameters reflecting the internal amount of intake bring a
proper systemic understanding of the adverse effects when compared to any envi-
ronmental measurement procedure. Biological monitoring provides several benefits
when compared to environmental monitoring and management procedure. Particu-
larly, biological monitoring permits the assessment and evaluation of the following:

• Exposure over a prolonged period.
• Exposure on account of worker mobility in the employed environment.
• Absorption of a constituent by means of several routes, as well as the skin.
• Complete exposure as a consequence of diverse sources of effluence; both work-

related and non-work-related.
• The amount of a constituent absorbed by an individual depending on influences

other than the level of exposure, like the physical effort needed by the occupation,
ventilation, or weather/climate.

• The amount of a constituent absorbed by an individual depending on individual
influences that could influence the toxic kinetic of the noxious agent in the living
organism, such as sex, age, genetic features, or functional state of the body part
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(organ) where the noxious constituent experiences biotransformation and
abolition.

11.11.4 Limitations of Biological Monitoring

Notwithstanding these benefits, biological monitoring still accounts for some sub-
stantial limitations. The following are the furthermost substantial limitations of
biological monitoring:

• The quantity of possible constituents which could be monitored biologically or
organically is at present still somewhat small.

• In the circumstance where there is a severe exposure, biological monitoring needs
valuable information only for exposure to constituents that are swiftly metabo-
lized, for instance, aromatic diluents or solvents.

• The consequence of biological or organic indicators has not been evidently
distinct.

• Usually, biological or organic indicators of internal amount of intake allow
assessment and evaluation of the extent of exposure, but do not provide infor-
mation that will assist adequately for the measurement of the definite quantity
present in the critical body part (organ).

• Frequently, there is no information of possible interference in the metabolism of
the constituents being monitored by other exogenous constituents to which the
living organism is concurrently exposed in the place of work and the environment
in general.

• Inadequate knowledge of the associations existing between the degrees of envi-
ronmental exposure and the degrees of the organic or biological indicators on the
one hand, and between the degrees of the organic or biological indicators and
possible health consequences on the other hand.

• The quantity of biological or organic indicators for which biological or organic
exposure indices (BEI) occur at present is somewhat limited. Supplementary
information is needed to ascertain whether a constituent, currently known is not
capable of instigating an adverse consequence, could in future be revealed to be
detrimental.

• Biological or organic exposure indices habitually signify a degree of an agent that
is most probable to be detected in a specimen collected from a healthy person who
has been exposed to the contaminant to the same level as a person with an
inhalation exposure to the threshold limit value (TLV) time-weighted average
(TWA).
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11.11.5 Essential Information for the Development
of Procedures and Measures for Choosing
Biological Tests

The following are some of the basic conditions for programming organic or biolog-
ical monitoring:

• Toxicokinetics: Information about the metabolism of the exogenous constituent
living organisms.

• Toxicodynamics: Information about the modifications that ensue in the critical
organ.

• Presence of indicators.
• Presence of appropriate and accurate investigative procedures.
• Opportunity of using available and accessible biological or organic samples on

which the indicators can be quantified.
• Presence of intake-effect and intake-response relationships as well as information

of these relationships.
• Prognostic validity (the extent to which the variable under contemplation envis-

ages the circumstances as it actually is) of the indicators. The validity is deter-
mined by combining the sensitivity and specificity. If the assessment possesses a
lofty sensitivity, this implies that it will give limited incorrect negatives; if it
possesses lofty specificity, it will give limited incorrect positives.

11.12 Conclusion and Future Recommendation
to Knowledge

This chapter has provided comprehensive information on the application of benefi-
cial microorganism for the maintenance of a cleaner environment as well as detailed
information on the application of beneficial microorganism for the achievement of
environmental sustainability. Special emphasis was laid on some specific examples
of sustainable biotechnology techniques that could lead to the maintenance of a
cleaner environment. The different types of beneficial microorganism were also
highlighted. Hence, there is a need to perform the application of these bioremedia-
tion techniques on a larger scale, most especially on field trial by placing more
emphasis on the environmental outcomes of the end products. There is a need to
identify some unique microorganisms that have not been exploited in the environ-
ment through the application of metagenomics as well as to identify necessary gene
that regulates the bioremediation activities that could lead to the maintenance of a
cleaner environment. There is a need to intensify more effort on some novel
biomimetic practices and bioremediation that could lead to more effective sustain-
able environmental management, which might be applied for the sustainable
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treatment of polluted soil, groundwater, recalcitrant chemicals, contaminated air, and
surface water.

References

Abatenh E, Gizaw B, Tsegaye Z, Wassie M (2017) The role of microorganisms in bioremediation-a
review. Open J Environ Biol 2(1):38–046

Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and
bioaugmention: a review. Int J Environ Bioremediat Biodegrad 3:28–39

Adebajo SO, Balogun SA, Akintokun AK, Lasisi AA (2017) Decolourisation of Reactive Dyes
Using Bacterial Isolates Recovered from Textile Effluent in Lagos State 6(61):101–105

Adetunji CO, Oloke JK, Pradeep M, Jolly RS, Anil KS, Swaranjit SC, Bello OM (2017a)
Characterization and optimization of a rhamnolipid from Pseudomonas aeruginosa C1501
with novel biosurfactant activities. Sustain Chem Pharm 6(2017):26–36. https://doi.org/10.
1016/j.scp.2017.07.001

Adetunji C, Oloke J, Kumar A, Swaranjit S, Akpor B (2017b) Synergetic effect of rhamnolipid from
Pseudomonas aeruginosa C1501 and phytotoxic metabolite from Lasiodiplodia
pseudotheobromae C1136 on Amaranthus hybridus L. and Echinochloa crus-galli weeds.
Environ Sci Pollut Res 24(15):13700–13709. Published by springer. Index in Scopus and
Thomson Reuther’s. https://doi.org/10.1007/s11356-017-8983-8

Adetunji CO, Oloke JK, Prasad G, Akpor OB (2017c) Environmental influence of cultural medium
on bioherbicidal activities of Pseudomonas aeruginosa C1501 on mono and dico weeds. Pol J
Nat Sci 32(4):659–670

Adetunji CO, Oloke JK, Prasad G, Abalaka M, Irokanulo EO (2017d) Production of phytotoxic
metabolite using biphasic fermentation system from strain C1136 of Lasiodiplodia
pseudotheobromae, a potential bioherbicidal agent. Not Sci Biol 9(3):371–377. https://doi.
org/10.15835/nsb9310082

Adetunji CO, Oloke JK, Osemwegie OO (2018a) Environmental fate and effects of granular pesta
formulation from strains of Pseudomonas aeruginosa C1501 and Lasiodiplodia
pseudotheobromae C1136 on soil activity and weeds. Chemosphere 195(2018):98–107.
https://doi.org/10.1016/j.chemosphere.2017.12.056

Adetunji CO, Oloke JK, Prasad G (2018b) Effect of Carbon-to-Nitrogen ratio on eco-friendly
mycoherbicide activity from Lasiodiplodia pseudotheobromae C1136 for sustainable weeds
management in organic Agriculture. Environ Dev Sustain:1–14. https://doi.org/10.1007/
s10668-018-0273-1

Adetunji CO, Oloke JK, Mishra P, Oluyori AP, Jolly RS , Bello OM ( 2018c). Mellein, a
dihydroisocoumarin with bioherbicidal Activity from a New Strain of Lasiodiplodia
pseudotheobromae C1136. Beni-Suef Univ J Basic Appl Sci https://doi.org/10.1016/j.bjbas.
2018.06.001

Adetunji CO, Oloke JK, Prasad G, Bello OM, Osemwegie OO, Mishra P, Jolly RS (2018d)
Isolation, identification, characterization and screening of Rhizospheric bacteria for herbicidal
activity. Org Agric J Org Agric 8:195–205. Published by Springer. https://doi.org/10.1007/
s13165-017-0184-8

Adetunji CO, Adejumo IO, Oloke JK, Akpor OB (2018e) Production of phytotoxic metabolites
with bioherbicidal activities from Lasiodiplodia pseudotheobromae Produced on different
agricultural wastes using solid-state fermentation. Iran J Sci Technol Trans Sci 42(3):1163–
1175. https://doi.org/10.1007/s40995-017-0369-8

Adetunji CO, Oloke JK, Bello OM, Pradeep M, Jolly RS (2019) Isolation, structural elucidation and
bioherbicidal activity of an eco-friendly bioactive 2-(hydroxymethyl) phenol, from

11 Recent Trends in Utilization of Biotechnological Tools for Environmental. . . 259

https://doi.org/10.1016/j.scp.2017.07.001
https://doi.org/10.1016/j.scp.2017.07.001
https://doi.org/10.1007/s11356-017-8983-8
https://doi.org/10.15835/nsb9310082
https://doi.org/10.15835/nsb9310082
https://doi.org/10.1016/j.chemosphere.2017.12.056
https://doi.org/10.1007/s10668-018-0273-1
https://doi.org/10.1007/s10668-018-0273-1
https://doi.org/10.1016/j.bjbas.2018.06.001
https://doi.org/10.1016/j.bjbas.2018.06.001
https://doi.org/10.1007/s13165-017-0184-8
https://doi.org/10.1007/s13165-017-0184-8
https://doi.org/10.1007/s40995-017-0369-8


Pseudomonas aeruginosa (C1501) and its ecotoxicological evaluation on soil. Environ Technol
Innov 13(2019):304–317. https://doi.org/10.1016/j.eti.2018.12.006

Adetunji CO, Oloke JK, Phazang P, Sarin NB (2020) Influence of eco-friendly phytotoxic metab-
olites from Lasiodiplodia pseudotheobromae C1136 on physiological, biochemical, and ultra-
structural changes on tested weeds. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-
07677-9

Agarry S, Latinwo GK (2015) Biodegradation of diesel oil in soil and its enhancement by
application of bioventing and amendment with brewery waste effluents as biostimulation-
bioaugmentation agents. J Ecol Eng 16:82–91

Aigbe UO, Onyancha RB, Ukhurebor KE, Obodo KO (2020) Removal of fluoride ions using
polypyrrole magnetic nanocomposite influenced by rotating magnetic field. RSC Adv 10
(1):595–609

Alwan AH, Fadil SM, Khadair SH, Haloub AA, Mohammed DB et al (2013) Bioremediation of the
water contaminated by waste of hydrocarbon by use Ceratophyllaceae and Potamogetonaceae
plants. J Genet Environ Resour Conserv 1:106–110

Berlin A, Yodaiken RE, Henman BA (1984) Assessment of toxic agents at the workplace. Roles of
ambient and biological monitoring. In: Proceedings of the international seminar, Luxembourg,
8–12 December 1980

Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67
Burghal AA, MJA N, Al-Tamimi WH (2016) Mycodegradation of crude oil by fungal species

isolated from petroleum contaminated soil. Int J Innov Res Sci Eng Technol 5:1517–1524
Cases I, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of

success and failure and what we have learned from them. Int Microbiol 8:213–222
Chen C, Wang JL (2007) Characteristics of Zn2+ biosorption by saccharomyces cerevisiae. Biomed

Environ Sci 20:478–482
Chen W, Mulchandani A, Deshusses MA (2005) Environmental biotechnology: challenges and

opportunities for chemical engineers. AICHE J 51(3):690–695
Couto N, Fritt-Rasmussen J, Jensen PE, Højrup M, Rodrigo AP et al (2014) Suitability of oil

bioremediation in an Artic soil using surplus heating from an incineration facility. Environ Sci
Pollut Res 21:6221–6227

Cydzik-Kwiatkowska A, Zielińska M (2016) Bacterial communities in full-scale wastewater
treatment systems. World J Microbiol Biotechnol 32(4):1–8

Dadrasnia A, Usman MM, Lim KT, Velappan RD, Shahsavari N, Vejan P, Mahmud AF, Ismail S
(2017) Microbial aspects in wastewater treatment – a technical review. Environ Pollut Prot 2
(2):75–84

Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an
overview. Biotechnol Res Int 2011:1–13

Das A, Mishra S, Verma VK (2015) Enhanced biodecolorization of textile dye remazol navy blue
using an isolated bacterial strain Bacillus pumilus HKG212 under improved culture conditions.
J Biochem Technol 6:962–969

Delille D, Duval A, Pelletier E (2008) Highly efficient pilot biopiles for on-site fertilization
treatment of diesel oil-contaminated sub-Antarctic soil. Cold Reg Sci Technol 54:7–18

Demnerova K, Mackova M, Spevakova V, Beranova K, Kochankova L et al (2005) Two
approaches to biological decontamination of groundwater and soil polluted by aromatics
characterization of microbial populations. Int Microbiol 8:205–211

Doble M, Kumar A (2005) Biotreatment of industrial effluents. Elsevier–Butterworth–Heinemann,
Oxford

El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal
and site remediation? Curr Opin Microbiol 8:268–275

El-Borai AM, Eltayeb KM, Mostafa AR, El-Assar SA (2016) Biodegradation of industrial
oil-polluted wastewater in Egypt by bacterial consortium immobilized in different types of
carriers. Pol J Environ Stud 25:1901–1909

260 C. O. Adetunji and K. E. Ukhurebor

https://doi.org/10.1016/j.eti.2018.12.006
https://doi.org/10.1007/s11356-020-07677-9
https://doi.org/10.1007/s11356-020-07677-9


Ellis DE, Handley PW (2009) Sustainable remediation white paper - integrating sustainable,
principles, practices and metrics into remediation projects, remediation. Wiley, New York

Emami S, Pourbabaee AA, Alikhani HA (2012) Bioremediation principles and techniques on
petroleum hydrocarbon contaminated soil. Tech J Eng Appl Sci 2:320–323

Gavrilescu M (2011) Sustainability. In: Moo Young M, Webb C (eds) Comprehensive biotechnol-
ogy, vol IV, 2nd edn. Wiley, Chichester, pp 95–923

Gavrilescu M, Macoveanu M (1999) Process engineering in biological aerobic waste – treatment.
Acta Biotehnol 19:111–145

Gavrilescu M, Macoveanu M (2000) Attached – growth process engineering in wastewater treat-
ment. Bioprocess Eng 23:95–106

Gomez SM (2014) Optimization of field scale biopiles for bioremediation of petroleum hydrocar-
bon contaminated soil at low temperature conditions by response surface methodology (RSM).
Int Biodeterior Biodegradation 89:103–109

Hamza RA, Iorhemen OT, Tay JH (2016) Advances in biological systems for the treatment of high-
strength wastewater. J Water Process Eng 10:128–142

Hassan MM, Alam MZ, Anwar MN (2013) Biodegradation of textile azo dyes by bacteria isolated
from dyeing industry effluent. Int Res J Biol Sci 2:27–31

Hidayat A, Tachibana S (2012) Biodegradation of aliphatic hydrocarbon in three types of crude oil
by Fusarium sp. F092 under stress with artificial sea water. J Environ Sci Technol 5:64–73

Holdren JP, Daily GC, Ehrlich PR (1995) The meaning of sustainability: biogeophysical aspect. In:
Munasinghe M, Shearer W (eds) Defining and measuring sustainability: the biogeophysical
foundation. World Bank, Washington, DC

Hurst C (2010) Green and sustainable remediation of contaminated sites. AMEC, Atlanta
Hussaini S, Shaker M, Asef M (2013) Isolation of bacterial for degradation of selected pesticides.

Bull Environ Pharmacol Life Sci 2:50–53
Infante JC, De Arco RD, Angulo ME (2014) Removal of lead, mercury and nickel using the yeast

Saccharomyces cerevisiae. Revista MVZ Córdoba 19:4141–4149
Jain PK, Bajpai V (2012) Biotechnology of bioremediation- a review. Int J Environ Sci 3:535–549
Jain PK, Gupta V, Gaur RK, Bajpai V, Gautama N, Modi DR (2010) Fungal enzymes: potential

tools of environmental processes. In: Gupta VK, Tuohy M, Gaur RK (eds) Fungal biochemistry
and biotechnology. LAP Lambert Academic Publishing AG and Co. KG, Germany

Jain PK, Gupta VK, Bajpai V, Lowry M, Jaroli DP (2011) GMO’s: perspective of bioremediation.
In: Jain PK, Gupta VK, Bajpai V (eds) Recent advances in environmental biotechnology. LAP
Lambert Academic Publishing AG and Co. KG, Germany

Jasinska A, Rózalska S, Bernat P, Paraszkiewicz K, DługonSki J (2012) Malachite green decolor-
ization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium
roridum. Int Biodeterior Biodegrad 73:33–40

Jasinska A, Bernat P, Paraszkiewicz K (2013) Malachite green removal from aqueous solution
using the system rapeseed press cake and fungus Myrothecium roridum. Desalin Water Treat
51:7663–7671

Jasinska A, Paraszkiewicz K, Sip A, Długonsk J (2015) Malachite green decolorization by the
filamentous fungus Myrothecium roridum – mechanistic study and process optimization.
Bioresour Technol 194:43–48

Jaysankar D, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine
bacteria highly resistant to mercury. Mar Biotechnol 10:471–477

Kehinde FO, Isaac SA (2016) Effectiveness of augmented consortia of Bacillus coagulans,
Citrobacter koseri and Serratia ficaria in the degradation of diesel polluted soil supplemented
with pig dung. Afr J Microbiol Res 10:1637–1644

Khan MA, Hsain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J
Environ Manag 71:95–122

Kulshreshtha S (2013) Genetically engineered microorganisms: a problem-solving approach for
bioremediation. J Bioremediat Biodegrad 4:1–2

11 Recent Trends in Utilization of Biotechnological Tools for Environmental. . . 261



Kumar A, Bisht BS, Joshi VD, Dhewa T (2011) Review on bioremediation of polluted environ-
ment: a management tool. Int J Environ Sci 1:1079–1093

Kumar S, Chaurasia P, Kumar A (2016) Isolation and characterization of microbial strains from
textile industry effluents of Bhilwara, India: analysis with bioremediation. J Chem Pharm Res
8:143–150

Lee TH, Byun IG, Kim YO, Hwang IS, Park TJ (2006) Monitoring biodegradation of diesel fuel in
bioventing processes using in situ respiration rate. Water Sci Technol 53:263–272

Li CH, Wong YS, Tam NF (2010) Anaerobic biodegradation of polycyclic aromatic hydrocarbons
with amendment of Iron (III) in mangrove sediment slurry. Bioresour Technol 101:8083–8092

Macaulay BM (2014) Understanding the behaviour of oil-degrading micro-organisms to enhance
the microbial remediation of spilled petroleum. Appl Ecol Environ Res 13:247–262

Madhavi GN, Mohini DD (2012) Review paper on – parameters affecting bioremediation. Int J Life
Sci Pharm Res 2:77–80

Maliji D, Olama Z, Holail H (2013) Environmental studies on the microbial degradation of oil
hydrocarbons and its application in Lebanese oil polluted coastal and marine ecosystem. Int J
Curr Microbiol Appl Sci 2:1–18

Malik ZA, Ahmed S (2012) Degradation of petroleum hydrocarbons by oil field isolated bacterial
consortium. Afr J Biotechnol 11:650–658

Maulin PS, Patel KA, Nair SS, Darji AM (2013) Microbial degradation of textile dye (Remazol
black B) by Bacillus spp. ETL-2012. J Bioremediat Biodegrad 4:1–5

Mirlahiji SG, Eisazadeh K (2014) Bioremediation of uranium by Geobacter spp. J Res Dev 1:52–58
Mohamed AT, El Hussein AA, El Siddig MA, Osman AG (2011) Degradation of oxyfluorfen

herbicide by soil microorganisms: biodegradation of herbicides. Biotechnology 10:274–279
Mónica P, Darwin RO, Manjunatha B, Zúñiga JJ, Diego R et al (2016) Evaluation of various

pesticides-degrading pure bacterial cultures isolated from pesticide-contaminated soils in Ecua-
dor. Afr J Biotechnol 15:2224–2233

Mulligana CN, Yong RN (2004) Natural attenuation of contaminated soils. Environ Int 30:587–601
Niti C, Sunita S, Kamlesh K (2013) Bioremediation: an emerging technology for remediation of

pesticides. Res J Chem Environ 17:88–105
Niu GL, Zhang JJ, Zhao S, Liu H, Boon N et al (2009) Bioaugmentation of a 4- chloronitrobenzene

contaminated soil with pseudomonas putida ZWL73. Environ Pollut 57:763–771
Paranthaman SR, Karthikeyan B (2015) Bioremediation of heavy metal in paper mill effluent using

pseudomonas spp. Int J Microbiol 1:1–5
Peña-Montenegro TD, Lozano L, Dussán J (2015) Genome sequence and description of the

mosquitocidal and heavy metal tolerant strain Lysinibacillus sphaericus CBAM5. Stand Geno-
mic Sci 10:1–10

Phulpoto H, Qazi MA, Mangi S, Ahmed S, Kanhar NA (2016) Biodegradation of oil-based paint by
bacillus species monocultures isolated from the paint warehouses. Int J Environ Sci Technol
13:125–134

Priyalaxmi R, Murugan A, Raja P, Raj KD (2014) Bioremediation of cadmium by bacillus safensis
(JX126862), a marine bacterium isolated from mangrove sediments. Int J Curr Microbiol App
Sci 3:326–335

Ravi RK, Pathak B, Fulekar MH (2015) Bioremediation of persistent pesticides in rice field soil
environment using surface soil treatment reactor. Int J Curr Microbiol Appl Sci 4:359–369

Reddy KR, Adams JA (2010) Towards green and sustainable remediation of contaminated sites. In:
Sixth international congress of environmental geotechnics, New Delhi, India

Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for biore-
mediation processes. Curr Opin Biotechnol 11:286–289

Shedbalkar U, Jadhav J (2011) Detoxification of malachite green and textile industrial effluent by
Penicillium ochrochloron. Biotechnol Bioprocess Eng 16:196–204

Singh A, Kumar V, Srivastava JN (2013) Assessment of bioremediation of oil and phenol contents
in refinery waste water via bacterial consortium. J Pet Environ Biotechnol 4:1–4

262 C. O. Adetunji and K. E. Ukhurebor



Sinha SN, Biswas K (2014) Bioremediation of lead from river water through lead-resistant purple-
nonsulfur bacteria. Glob J Microbiol Biotechnol 2:11–18

Sinha SN, Paul D (2014) Heavy metal tolerance and accumulation by bacterial strains isolated from
waste water. J Chem Biol Phys Sci 4:812–817

Sinha SN, Biswas M, Paul D, Rahaman S (2011) Biodegradation potential of bacterial isolates from
tannery effluent with special reference to hexavalent chromium. Biotechnol Bioinformatics
Bioeng 1:381–386

Soleimani N, Fazli MM, Mehrasbi M, Darabian S, Mohammadi J et al (2015) Highly cadmium
tolerant fungi: their tolerance and removal potential. J Environ Health Sci Eng 13:1–9

Strong PJ, Burgess JE (2008) Treatment methods for wine-related ad distillery wastewaters: a
review. Biorem J 12:70–87

Sukumar S, Nirmala P (2016) Screening of diesel oil degrading bacteria from petroleum hydrocar-
bon contaminated soil. Int J Adv Res Biol Sci 3:18–22

Talos K, Pager C, Tonk S, Majdik C, Kocsis B et al (2009) Cadmium biosorption on native
Saccharomyces cerevisiae cells in aqueous suspension. Acta Univ Sapientiae Agric Environ
1:20–30

Tang CY, Criddle CS, Leckie JO (2007) Effect of flux (trans membrane pressure) and membranes
properties on fouling and rejection of reverse osmosis and nano filtration membranes treating
perfluorooctane sulfonate containing waste water. Environ Sci Technol 41:2008–2014

Thapa B, Ajay Kumar KC, Ghimire A (2012) A review on bioremediation of petroleum hydrocar-
bon contaminants in soil. Kathmandu University. J Sci Eng Technol 8:164–170

Tigini V, Prigione V, Giansanti P, Mangiavillano A, Pannocchia A et al (2010) Fungal biosorption,
an innovative treatment for the decolourisation and detoxification of textile effluents. Water
2:550–565

USEPA (2008) Green remediation: incorporating sustainable environmental practices into remedi-
ation contaminated sites, EPA 542-R-08-002. USEPA, Washington, DC

WCED (1987) Our common future. Oxford University Press, Oxford
Wu YH, Zhou P, Cheng H, Wang CS, Wu M (2015) Draft genome sequence of Microbacterium

profundi Shh49T, an Actinobacterium isolated from deep-sea sediment of a polymetallic nodule
environment. Genome Announc 3:1–2

Yogesh P, Akshaya G (2016) Evaluation of bioremediation potential of isolated bacterial culture
ypag-9 (pseudomonas aeruginosa) for decolorization of sulfonated di-azo dye reactive red
HE8B under optimized culture conditions. Int J Curr Microbiol Appl Sci 5:258–272

11 Recent Trends in Utilization of Biotechnological Tools for Environmental. . . 263



Chapter 12
Artificial Intelligence and Internet of Things
in Instrumentation and Control in Waste
Biodegradation Plants: Recent
Developments

Kingsley Eghonghon Ukhurebor, Wilson Nwankwo,
Charles Oluwaseun Adetunji, and Ayodeji Samuel Makinde

Contents

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
12.2 Application of Artificial Intelligence and Internet of Things in Waste Biodegradation 268
12.3 Biodegradation as Alternative Waste Management Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 269
12.4 Control of Biodegradation Processes Using Artificial Intelligence Technologies

and Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
12.5 Specific Examples of Artificial Intelligence and Internet of Things for Waste

Biodegradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
12.6 Advantages and Disadvantages of Artificial Intelligence and IoT in Instrumentation

and Control in Waste Biodegradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
12.7 Conclusion and Future Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Abstract In recent times, millions of researches have been directed to exploring the
potentials of Artificial Intelligence (AI) and Internet of Things (IoT). With enhanced
capabilities offered through the integration of artificial intelligence, big data, and the
cloud, the future might be descending into a new era defined and determined by
artificial intelligence and Internet of Things. Across various jurisdictions and socio-
political systems, the perspective on artificial intelligence technologies is rapidly
converging. Vladimir Putin, the Russian President, in a statement published on
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4 September 2017 by the Verge, had stated unequivocally that “Artificial intelli-
gence is the future and that the nation that leads in artificial intelligence research
would certainly dominate in global affairs.” Thus, it appears that every facet of
governance including environmental management is very likely to be redefined by
artificial intelligence and allied technologies. In today’s traditional and highly
urbanized cities, waste management has remained a matter of great concern among
decision makers and public sector operatives. In the past, a number of traditional
approaches such as incineration, concentration and subsequent deposition in land-
fills, recycling, gasification, etc. had been employed but are becoming increasingly
unsustainable owing to side-effects they pose ranging from secondary pollution,
diseases and epidemics, high cost of maintenance, climate change, etc. The quest for
sustainable, safer, and eco-friendly alternatives coupled with current advances in
nanotechnology, biotechnology, artificial intelligence and internet of things, soft
systems such as biodegradation plants that utilize microbial agents under controlled
conditions, have become a more prospective alternative compared to customary
channels. This chapter adopts a swift narrative and analytical approach in articulat-
ing the critical and recent advances in the exploitation of artificial intelligence and
internet of things technologies in the design, deployment, and management of waste
biodegradation plants.

Keywords Artificial Intelligence · Internet of things · Biodegradation · Wastes ·
Techniques

12.1 Introduction

Wastes generation will be an inevitable aspect of human endeavor, as long as we
continue to make use of the various natural resources for the development and
advancement of our societies. Nevertheless, the techniques and means by which
we dispose, monitor, control, and manage these wastes is another issue entirely.
Several studies have reported that there are adverse influences of these wastes that
are customarily generated via agricultural and industrial activities as well as some
domestic activities (Aigbe et al. 2020; Hamza et al. 2016; Mittal 2011; Sneha 2015;
Zhang et al. 2014; Cydzik-Kwiatkowska and Zielińska 2016; Meerbergen et al.
2016; Dadrasnia et al. 2017). As a result of these adverse influences of these
domestic, agricultural, and industrial wastes, which are contributing to several
environmental and climatic problems as well as telecommunication challenging
issues (Ukhurebor and Umukoro 2018; Ukhurebor and Azi 2019; Ukhurebor et al.
2019, 2020a, b; Ukhurebor and Nwankwo 2020), there has been continuous effort to
find the most appropriate and suitable as well as eco-friendly techniques that will not
contribute further to the challenges ensuing from these wastes. Several conventional
or traditional techniques were initially employed for disposing, monitoring,

266 K. E. Ukhurebor et al.



controlling, and management of these wastes but some of these conventional or
traditional techniques were found to be inappropriate, unsuitable, and non-eco-
friendly (Zhang et al. 2014; Cydzik-Kwiatkowska and Zielińska 2016; Meerbergen
et al. 2016; Dadrasnia et al. 2017; Adebayo and Obiekezie 2018). However, of recent
the use of microbial treatment processes for the wastes has attained increasing
consideration due to its capability and high proficiency compared to conventional
techniques (Adebayo and Obiekezie 2018; Zhang et al. 2014; Cydzik-Kwiatkowska
and Zielińska 2016; Meerbergen et al. 2016; Dadrasnia et al. 2017). Customarily,
these wastes could be categorized into two broad groups, viz. biodegradable (recy-
clable) wastes and non-biodegradable (non-recyclable) wastes (Adebayo and
Obiekezie 2018; Ansari 2011; Ivanov 2010).

The biodegradables wastes are also known as “biowastes.” They are those wastes
that are generated either via domestic, agricultural, or industrial activities, that can be
broken down in a process known as decomposition by means of microorganisms
(Adams et al. 2015; Adebayo and Obiekezie 2018; Zhang et al. 2014; Cydzik-
Kwiatkowska and Zielińska 2016; Meerbergen et al. 2016; Dadrasnia et al. 2017).
Supposedly, they are reported to barely constitute a main source of contamination to
the environment for a lengthened period (Adebayo and Obiekezie 2018).

These biodegradable wastes, even with their capability to undertake degradation
without much effort via the use of microorganisms within a short period of time, are
also faced with some constraints. Such limitations are the budding aggressive aroma
and irritation defects to the environment when compared to the non-biodegradable
wastes as well as their ability in instituting the environment with several healthy
pathogenic microbes which can infect fresh food produce (Adebayo and Obiekezie
2018; Waites et al. 2011; Zhang et al. 2014; Cydzik-Kwiatkowska and Zielińska
2016; Meerbergen et al. 2016; Dadrasnia et al. 2017).

The non-biodegradable wastes are those wastes that are habitually not broken
down or degradable by means of microorganisms. This implies that such wastes
require other measures for their disposal, monitoring, controlling, and management
(Waites et al. 2011; Adebayo and Obiekezie 2018; Zhang et al. 2014; Cydzik-
Kwiatkowska and Zielińska 2016; Meerbergen et al. 2016; Dadrasnia et al. 2017).

Appropriate disposal, monitoring, controlling, and management of domestic,
agricultural, and industrial wastes as well as other environmental contaminants
will assist greatly in the reduction or elimination of the incessant adverse environ-
mental influences on all living organisms as well as supports economic, environ-
mental and agricultural sustainability development and enhanced the quality of our
well-being generally (Ezeonu et al. 2012; Nwankwo and Ukhurebor 2019; Aigbe
et al. 2020; Nwankwo et al. 2020a, b, c).

Undoubtedly, several techniques that have been developed for the proper dis-
posal, monitoring, controlling, and management of both the biodegradables and
non-biodegradables wastes have yielded some potential solutions. These various
techniques are geared toward the achievement of quality standards that will ensure
environmental protection and sustainability. In order to have a proper understanding
and control procedures of wastes treatment techniques, it is necessary and paramount
to comprehend the role that is carried out by microbes’ community and structure that
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are involved in these treatment procedures. However, the biodegradation procedure
which has been considered one of the most suitable in terms of cost-effectiveness
and eco-friendly can be enhanced by the application of Artificial Intelligence
(AI) and Internet of Things (IoT) in the instrumentation, control monitoring and
management of wastes (Zhang et al. 2014; Cydzik-Kwiatkowska and Zielińska
2016; Meerbergen et al. 2016; Dadrasnia et al. 2017; Waites et al. 2011; Adebayo
and Obiekezie 2018).

Hence, this chapter will attempt to give a comprehensive account on the appli-
cations of Artificial Intelligence and Internet of Things for the control, monitoring,
and management of biological or organic wastes by means of biodegradation
technique in plants and the recent developments and future advancement in order
to have an inclusive understating of microbial features needed in the control,
monitoring, and management of biological or organic wastes so as to exploit its
numerous benefits and advantages in attaining the much anticipated environmental
sustainability and eco-friendly environment.

12.2 Application of Artificial Intelligence and Internet
of Things in Waste Biodegradation

Since its birth of artificial intelligence in 1958 at Darmouth College, artificial
intelligence has undergone a series of excellent developments and has emerged not
only a discipline but also a suite of technologies and machineries that have inspired
other technologies (Ramos et al. 2013; Serdeczny et al. 2017; Ye et al. 2020).
Artificial intelligence is rapidly changing the trend and schemes in all socioeco-
nomic, biological, biochemical, medical as well as political climes (Ramos et al.
2013; Serdeczny et al. 2017; Ye et al. 2020). Several governments across the globe
are sponsoring artificial intelligence researches, as it is evident that the future control
of socioeconomic activities and governance are more probably affected in all
respects by this influential technology called artificial intelligence (Ramos et al.
2013; Serdeczny et al. 2017; Ye et al. 2020). From manufacturing, production,
agriculture, biological, medical to business and finance, artificial intelligence has
gained a weighty foothold and more subsectors are being remodelled and refined by
artificial intelligence (Ramos et al. 2013; Serdeczny et al. 2017; Ye et al. 2020).

Artificial intelligence finds very useful application in controlled system platforms.
In recent times, platforms whether hardware or software are simply intelligent or
unintelligent depending on whether or not some level of artificial intelligence
algorithms or functionalities are incorporated into the platform (Ramos et al. 2013;
Serdeczny et al. 2017; Ye et al. 2020). As decision makers and public operatives
contend with the challenges of governance, platforms that could assist in providing
solutions to socioeconomic challenges usually emerge the center of focus.

In urban areas in some West Africa nations such as Lagos (Nigeria), Accra
(Ghana), and Lomé (Togo), waste management is a serious business for any
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responsive government. It is commonplace to have agencies with legitimate man-
dates directed toward ensuring that the society is not bedevilled by the menace of
waste accumulation in and around the environment (Adewuyi et al. 2014; Ola-Adisa
et al. 2015; Kofoworola 2016; Omole et al. 2016; Ogunmakinde et al. 2019). In
Lagos (Nigeria), for instance, the Lagos Waste Management Authority (LAWMA),
a public agency conducts all tasks around waste management within the geograph-
ical environment of Lagos State. In such agency, various units and divisions exist
that undertake periodic process re-engineering to ensure that as the society evolves
into a megacity, sophisticated platforms are deployed to cater for such challenges
especially in the realm of waste management. Though, in various quarters, LAWMA
has been tagged an efficient and proactive agency, it is however not uncommon to
notice the several challenges it faces in ensuring the timely management of wastes.
Solid waste disposal by the agency is by way of routine collection and transportation
to dumpsites (Omole et al. 2016; Ogunmakinde et al. 2019). The agency operates
eight dumpsites scattered across various locations. These sites present some awful
sights to anyone who visits such locations. The effectiveness of the agency’s pro-
grams is marred by the growing population, which are not in any dimension
proportional to the infrastructure managed by the agency. The pattern in Lagos is
similar to what obtains in many urban cities in developing countries especially in
sub-Saharan Africa.

12.3 Biodegradation as Alternative Waste Management
Approach

Biodegradation involves the application of biological agents especially microbes
(viruses, protozoa, bacteria, fungi, algae) to the reduction of waste burden in the
environment. Biodegradation is one silent eco-friendly and sustainable approach to
management of liquid wastes and a range of solid wastes. Often, the agents of
degradation, i.e., microbes, are derived from the waste itself making the entire
process a consistent and continuous cycle that could be sustained without incurring
heavy running expenses (Abatenh et al. 2017; Adams et al. 2015; Couto-Mendoza
et al. 2014; Jain and Bajpai 2012; Das and Chandran 2011).

However, in biodegradation processes, specificity and precision are very impor-
tant factors in that attention is paid to specific microbes in precise quantities, right
combinations or microbial dosing, and specific optimal conditions. Such conditions
are not limited to temperature, luminosity, pH, reduction-oxidation potentials, etc. of
the bioreactor tank. Without strict adherence to such considerations, efficiency
and/or efficiency in the entire process becomes doubtful. Accordingly, to meet
such specificity requirements, a controlled environment would offer the best results.

Bioremediation made use of microbes for the reduction of contamination by
means of biological or organic degradation or breakdown of contaminants into
non-noxious constituents/materials. This process could either encompass aerobic
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or anaerobic microbes that habitually use this degradation or breakdown as a source
of energy (Emami et al. 2012; Abatenh et al. 2017).

In major applications, the targeted goal is to ensure that the interaction of those
specific microbes and the host environment does not create an additional burden on
the entire degradation process. Good ethical principles would demand that prior to
implementing such projects, the decision makers ought to be fully acquainted as to
the efficacy of each selected bacteria because the rate of biodegradation across
different species vary and this is also affected by prevailing environmental
conditions.

For instance, prior to utilizing nitrobacter in bioreactors, the project designers
ought to conduct an in-silico modelling of the ecosystem to reasonably understand
the interaction between the microbes and specific elements and/or compound
contained in the wastes, e.g., Cl–, Br–, NH3, N2, Mn2+, H2O, Fe

2+, etc. Understand-
ing anaerobic and anaerobic processes would entail good knowledge of
bio-physicochemical conditions, growth kinetics (of microbes), substrate utilization,
and synthesis of products. The complexity of these processes entails sophisticated
models (Ramachandran et al. 2019).

Bioremediation techniques or procedures are mainly grouped into three catego-
ries, viz. (Asira 2013; Jain and Bajpai 2012):

• In situ land treatment for soil and groundwater.
• Biofiltration of the air.
• Bioreactors (which is mostly involved in water treatment).

Bioremediation can be viewed as:

• It is biotechnological field where microorganisms and other living organisms
eradicate contaminants or pollutants from the environment (soil, water, and air).

• It is conventionally used to clean oil/petroleum spills or/and contaminated or
polluted groundwater.

• It could be by means of “in situ” at the site of the pollution or contamination, or
“ex situ” away from the site of the pollution or contamination. This may be
essential if the weather or climate is so cold for sustaining the microbe action, or if
the soil is overdense for even distribution nutrients. Ex situ bioremediation may
entail exhuming or excavating and cleaning the soil directly above the ground,
and this could add substantial costs to the procedure.

Bioremediation depends on the stimulation in the development of certain micro-
organisms that exploit pollutants or contaminants such as petroleum/oil, solvents,
and pesticides for various sources such as food and energy. These microorganisms
translate the pollutant contaminants into small quantities of water and other
non-toxic gases like carbon dioxide, nitrogen, etc. (Abatenh et al. 2017; Emami
et al. 2012; Jain and Bajpai 2012).

Bioremediation involves the combination of the appropriate temperature, nutri-
ents, and foods. The deficiency of these essential components could prolong the
cleansing procedure of the pollutants or contaminants (Jain and Bajpai 2012;
Macaulay 2014; Adams et al. 2015). Some conditions that are not suitable for
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bioremediation procedure could be enhanced by the addition of some environmental
alterations, such as molasses, vegetable oil, or simple air. These alterations enhance
the conditions for microorganisms to flourish, thus accelerating the achievement
procedure (Adams et al. 2015). The bioremediation procedure could take several
months or years to complete, depending on some parameters such as the extent of the
contaminated or polluted region, the concentration of pollutants or contaminants,
temperature, density of the soil, and whether the bioremediation procedure will take
place in situ or ex situ (Jain and Bajpai 2012; Macaulay 2014; Adams et al. 2015;
Abatenh et al. 2017).

Microbes are generally circulated on the biosphere; this is as a result of their
inspiring metabolic capability as well as their capability to grow without difficulties
under diverse environmental circumstances (Abatenh et al. 2017).

The nourishing adaptability of the microbe’s community is another aspect for the
exploitation for biodegradation of contaminants by means of bioremediation; this
according to Tang et al. (2008) is based on the capability of some variety of
microorganisms to translate, change, and apply toxic contaminants so as to acquire
energy and also generate biomass in the progression. The process of bioremediation
is a microbiological efficient procedural action which are use to degrade, breakdown,
or transmute pollutes to less noxious essential and composite forms by the collection
and storage of the pollutants. The microbes which are basically the biological agents
of bioremediation are known as “bioremediators”; distinctive leading examples of
bioremediators are archaea, bacteria, and fungi (Strong and Burgess 2008; Abatenh
et al. 2017).

Bioremediation entails the degradation, removal, alteration, immobilization, or
detoxification of several physical and chemical wastes both in the form of liquid,
solid, or gases from the environment by means of the action of microbes such as
bacteria, fungi as well as some other organism like plants. Microbes take part in this
procedure by means of their enzymatic trails performance as “biocatalysts” and ease
the development of the biochemical reactions for the degradation of the anticipated
contaminant. The microbes perform these actions by accessing several composites
that assist them in the generation of energy and nutritional substances for the
development of more cells.

The effectiveness of any bioremediation procedure is influenced by some factors
as well as the chemical attribute and concentration of the contaminants
(El Fantroussi and Agathos 2005; Abatenh et al. 2017). The environmental physi-
cochemical features and their accessibility to the microbes also influence bioreme-
diation procedure (El Fantroussi and Agathos 2005; Abatenh et al. 2017).

The rate at which microbes undergo degradation is influenced by interaction
nature of the microbes and contaminant as well as their environmental distribution
nature of the microorganisms and contaminants. The monitoring, management, and
optimization of bioremediation procedures is an intricate process, resulting from
several factors. As reported by Abatenh et al. (2017), these factors include but not
limited to the following:
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• The presence of microbial inhabitants which are proficient for the degradation of
the contaminants.

• The accessibility of pollutants to the microbial inhabitants.
• Environment influences such as the kind of soil, the temperature range, the pH

value, the existence of oxygen or additional electron acceptors, and the available
nutritional components.

12.4 Control of Biodegradation Processes Using Artificial
Intelligence Technologies and Internet of Things

Artificial intelligence provides enormous tools for modelling, simulation, and vali-
dation of the potentials of specific microbes in biodegradation processes (Ruan et al.
2017). Not only are they valuable tools for modelling, they are also part of an
integrated system in the waste processing cycles owing to intelligent interventions
they offer in control and monitoring especially in system that are subject to uncer-
tainties. Vox Creative (2018) notes that machine learning, robotics, internet of
things, drones, etc. offer potential and unaided technologies that could enable the
society achieve better results on understanding, monitoring, and control of waste
degradation processes and other aspects of waste management.

The following applications have been employed in biodegradation in waste
treatment:

(a) Use of artificial neural networks to predict the efficiency of bacteria in dislodging
pollutants from wastewater (Ye et al. 2020).

(b) Optimization of environmental conditions.
(c) Intelligent control in aerobic phase of waste treatment (Ye et al. 2020).
(d) Detection of the progress of the aerobic stage vis-à-vis optimization of the

reactor as against the conventional fixed timing that is susceptible to inaccuracies
owing to uncertainties in biological processes (Ramos et al. 2013).

(e) AI-driven biosensors have been deployed for online and off-line sensing and
control of uncertain parameters in environmental installations and wastewater
plants (Sanders 2008; Sinha and Kaur 2019; Mao et al. 2019). Various sensors
have been deployed for AI operations and they include:

• Pressure sensors
• Biosensors
• Velocity sensors
• Position sensors
• Flow sensors
• Optical sensors
• Temperature sensors
• Current and voltage sensors
• Gage and force sensors
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• Gas sensors
• Chemical sensors
• Torque and strain

Biosensors are highly relevant in modern waste treatment. Sensors generate
huge data, which could be used to control decision-making in these plants. IoT
provides a formidable platform for relaying such data in real time to enable the
control of mission-critical installations.

Several biosensors are appropriate in the design and deployment of treatment
plants for biodegradation of liquid, gaseous, and solid wastes. Their deployment
is not restricted to pre-treatment phases (in bioreactors and sedimentation tanks)
but also in the post-treatment phases. Feedback from these sensors to the control
software platforms is reasonably processed using AI tools such as fuzzy logic
and neural networks. Table 12.1 presents some of these sensors.

(f) Estimation of concentrations of pollutants and monitoring performance of
microbes in treatment plants.

12.5 Specific Examples of Artificial Intelligence
and Internet of Things for Waste Biodegradation

Saminathan et al. (2019) present an automated municipal scrapper based on IoT that
can automatically isolate dumped waste to create more recyclable material. They are
developing an intelligent bin that can be configured to transmit information on waste
biodegradation.

AI-based intelligent software is designed by Sottara et al. (2007) to recognize
events analyzing the profiles of certain available signals, such as pH, and dissolved
oxygen, allowing the process to maximize performance and detecting potential
shortcomings. The authors demonstrate also how a decentralized network of experts
who are managers and consultants to run an urban wastewater treatment plant fed

Table 12.1 Biosensors used in artificial intelligence-controlled biodegradation plants

Sensor Reference parameters Deployment

Amperometric sensors Biochemical Oxygen Demand
(BOD)

Water/wastewater treatment
plants

Microbial BOD BOD Biodegradation plants/fermen-
tation processes

Fuel cell BOD, pH, COD, temperature,
organic content, etc.

Biodegradation plants/waste
treatment

Geobacter-enriched
biofilm BOD

BOD Biodegradation plants/waste
treatment

Urease Chromium ion Industry effluent, heavy metal
detection

Alkaline phosphatase Concentration of toxic chemical Heavy metal detection
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with real sewage on an SBR pilot scale could be used with the various AI technol-
ogy. In addition, the system is trained to remember an acceptable collection of
reference signals, which are given context using Bayesian confidence techniques,
via a SOM neural network.

Huang et al. (2017) suggest a smart hybrid approach to effectively modelling and
simulating the biodegradation cycle of dimethyl phthalate in an anaerobic/anoxic/
oxic wastewater process based on a fluid wavelet neural network. The proposed
hybrid intelligent model will derive dynamic behavior and complex interrelation-
ships from various water quality variables through self-learning and the memory
capacities of neural networks, the management of ambiguity of fuzzy logic, the study
of local information of wavelet transformations, and the global search for genetic
algorithms.

Nasr and EL Shahawy (2016) studies the electrocoagulation method for the
treatment of wastewater from an olive mill using bipolar aluminum electrodes.
Surface response methodology and adaptive neurofuzzy inference system were
used to study the effect on the removal of the chemical oxygen demands by
operational parameters. The predicted chemical oxygen demand efficiency of
40.4% was close to the experimental outcome with a deciding coefficient
r2 ¼ 0.92 at the predictable status of initial pH 4, current density 83 mA cm�2,
and an electrolyte period of 20 min. Tests of the adaptive neurofuzzy inference
method showed that the order of operating parameters influencing the removal of
chemical oxygen needs was pH > current density > electrolysis time. This research
shows that the neurofuzzy adaptive infusion system can be used as a tool to explain
the factors that affect the process of electrocoagulation.

12.6 Advantages and Disadvantages of Artificial
Intelligence and IoT in Instrumentation and Control
in Waste Biodegradation

In order to enhanced the effectiveness and the process involved in the maintenance
of high level of cleaning process in the environment. Most of these techniques are
built on IoT and artificial intelligence which are adequately executed and carried out.

The major objective of incorporating smart cities constitutes a major goal of
developing and developed countries. The incorporation of data access networks,
IoT, geographic information systems, combinatorial optimization and their execu-
tion by the action of electronic engineering have been identified to play a crucial role
in the waste management of a particular city through the application of necessary
organization scheme (Reyes-Gutiérrez et al. 2015).

The application of IoT integrated trash cans has persuaded the capability of the
can to sense and disseminate all the collected data most especially from the trash
volume back to the server most especially through the application of internet. The
application of graph theory optimization methodology and related algorithms have
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enabled the data to be processed for effective dynamic as well as effective manage-
ment of wastes.

The application of these techniques through the application of this techniques
could lead to the discovery of innovative solutions for the achievement of smart
cities. This system entails the application of geographic information systems, the
application of graph theory optimization, and the incorporation of machine learning.

The utilization of sensor has been identified for the dissemination of trash volume
data back to the server which is then utilized in the treatment and for effective
stimulation of the process involved in cleaning. This could also play an effective role
toward the maintenance of a cleaner environment (Adetunji et al. 2017, 2018,
2019a, b, 2020; Adetunji and Adejumo 2017, 2018, 2019). The merits of this
approaches are that it gives a guarantee that the trash is cleared properly before it
become filled to the bream and also guarantee that unwanted trash pickup wherever
they cannot be filled. The application of open date is recognized to be the initiator of
big data analytics which could improve with cyber systems (Smith et al. 2013).

The incorporation of sensor most especially the weight sensors and temperature
sensors together with the metal detectors are utilized for the categorization of the
reusable, biodegradable, and recyclable (Reyes-Gutiérrez et al. 2015). The addition
of microcontroller plays a crucial role in the regulation of some components such as
memory, economic cost, minimal power consumption, and processing.

The application of artificial intelligence enables the collation of data, the utiliza-
tion of statistical evaluation in the appraisal of necessary rates involved in the filling
of the trash as well as the necessary routes that needs to be followed most especially
through the help of cleaning team. The timing involved in the gathering of data from
the trash can accentuate on the locations to be given priority most especially during
the various period of the day.

Some possess the potential to visualize regular filling of the trash cans in the
evening while the other late in the nights. Moreover, it allows the application of
location such as house, school, and offices which are in greater needs of cleaning
when compared to open field that involves minimal human interaction. The moment
the artificial intelligence is boosted to the system, the numerous routes are well stated
and optimized depending on the timing as well as the corresponding needs (Sinha
et al. 2014).

The utilization of optimization methodology and artificial intelligence enables the
system to utilize the data recorded to minimize the transportation expenses involved
in the time and the cost through directing the best routes involved in the emptying of
the filled trash can. This process is normally optimized bearing in mind the time and
driving distance. The finalization of the optimization results in directing the driver
the best route to be followed most especially with improved GPS location services
(Kim et al. 2005).
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12.7 Conclusion and Future Recommendations

This chapter has provided a detailed information on swift narrative and analytical
approach in articulating the critical and recent advances in the exploitation of
artificial intelligence and internet of things technologies in the design, deployment,
and management of waste biodegradation plants. The application of artificial intel-
ligence and internet of things in instrumentation and control in waste biodegradation
plants will ensure innovation of simple techniques that are sustainable, safer, and
eco-friendly alternatives coupled with current advances in nanotechnology, biotech-
nology, artificial intelligence and internet of things, soft systems such as biodegra-
dation plants that utilize microbial agents under controlled conditions, have become
a more prospective alternative compared to customary channels. There is a need for
the government and policy maker at numerous countries to adopt the application of
artificial intelligence and internet of things in instrumentation and control in waste
biodegradation plants. There is a need to train students and scientists on the
significance of this technology. This will go a long way toward the maintenance of
a cleaner environment.
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Bioremediation of Polythene and Plastics
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Abstract Pollution caused by plastics is one of the greatest threats to the environ-
ment. This is because of their non-degradability, persistence, and recalcitrant nature.
This contamination can result to severe health and ecological pressures to humans.
Specifically, microplastics which are of great concern have been associated to cause
instant death when consumed by aquatic organisms. The use of physical and
chemical methods to degrade plastic wastes has been denounced, consequence of
the increase in environment concerned problems they emanate. Therefore, there is a
need to search for a sustainable remediation technique that will preserve the constit-
uents of the ecosystem without any ecological and health risks issues. Recently, the
biological breakdown (biodegradation) of plastic employing bacteria and fungi had
increased prominence. Due to their efficiency, cost-effectiveness, environmental
friendly and sustainability they portend. They do this by the secretion of metabolites
such as polyhydroxyalkanoate depolymerases, which aids in the plastics breakdown.
In view of this, this chapter intends to screen the potentials of some polythene and
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plastic degrading microorganisms from marine sediment and water, evaluate the
degradation, environmental fate and risk implications of polythene and plastic in
marine environment, and highlight the role of microbes in the degradation of
synthetic polythene and plastics in marine sediment and water. We recommend
that effective disposal measure method should be put in place such as provision of
waste bins that distinguish biodegradable wastes from non-biodegradable ones. This
will pave a sustainable way of wastes conversion and leaching in marine environ-
ment. There is also a need to employ the services of well-engineered native micro-
organisms that will play active roles in the remediation of microplastics when the
other options fail.

Keywords Bioremediation · Microplastics · Marine plastics · Sediments ·
Microbes · Sustainable remediation

13.1 Introduction

Plastics are artificial and semi-artificial materials that can be remade into various
shapes and forms such as polyvinyl chloride, polyurethane, polytetrafluoroethylene,
polystyrene, polypropylene, polyethylene, polyethylene terephthalate, polycarbon-
ate, and nylon that are utilized in our daily living.

Basically, these plastic constituents are excavated from natural gas, crude oil, and
coal. However, their monomer and polymer chain structures consist of chloride,
nitrogen, hydrogen, oxygen, and carbon. Recent data have shown that about one
hundred and forty (140) million tons of plastics are generated by industries globally
every year, where higher quantities of them are leached as wastes into the ecosystem
(Shimao 2001). Thirty (30) percentage of these tons is utilized as chemicals,
detergents, cosmetics, pharmaceuticals and for packaging foodstuffs (Sangale et al.
2012). About 64% of artificial plastics is made of polyethylene derived from
polyethylene with high molecular weight and hydrophobic level (Vatseldutt and
Anbuselvi 2014). Globally, about 500 billion to one trillion polythene materials are
produced, with great amount accumulated in the environment (land and water). This
provokes serious environmental concern. About 10% of wastes generated from
municipal globally have been accredited to polythene, packaging plastics. Nonethe-
less, only 5% of the wastes are recycled while the rest are buried underground and
take about 100 years to break down naturally, without the influence of microbes
(Barnes et al. 2009).

Pollution caused by plastics is one of the greatest threats to the environment. This
is because of their non-degradability, persistence, and recalcitrant nature (Mukherjee
and Chatterjee 2014). This contamination can result to severe health and ecological
pressures to humans. Specifically, microplastics which are of great concern have
been associated to cause instant death when consumed by aquatic organisms
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(Krueger et al. 2015; Acampora et al. 2017). When serious death does not ensue, the
microplastics residues in the gastrointestinal system of the aquatic biota are being
transferred along the food chain to cause adverse chronic impact along with the
trophic level of feeding. However, Pathak and Navneet (2017) and Moharir and
Kumar (2019) in their studies recounted that most plastics that are recalcitrant can be
partially digested or metabolized by some specific species or strains of degrading
fungi and bacteria. For example, Ideonella sakaiensis a microbe isolated from
landfill, has been proven to efficiently degrade PET (polyethylene terephthalate).
Evidences of the degradation of HDPE (high-density polyethylene) and PE (poly-
ethylene) are still under study (Joo et al. 2018; Zampolli et al. 2018).

The use of physical and chemical methods to degrade plastic wastes has been
denounced, consequence of the increase in environment concerned problems they
emanate. Recently, the biological breakdown (biodegradation) of plastic employing
bacteria and fungi had increased prominence. Due to their efficiency, cost-
effectiveness, environmental friendly and sustainability they portend. They do this
by the secretion of metabolites (polyhydroxyalkanoate depolymerases) which aids in
the plastics breakdown (Mukherjee and Chatterjee 2014). Abiotic factor combined
with the bacterial consortia also aid in the fragmentation, depolymerization, assim-
ilation, and mineralization of plastic wastes in the environment into tiny droplet
materials, monomers, dimers, oligomers, molecules, water, methane, nitrogen, and
carbon dioxide (Mueller 2005).

Some specific strains used in the degradation of plastic wastes since the 1970s are
of the genus Aspergillus, Penicillium, Moraxella, Nocardia, Brevibacterium, Strep-
tomyces, Streptococcus, Staphylococcus, Pseudomonas, and Bacillus (Jones et al.
1974; Pegram and Andrady 1989; Krueger et al. 2015).

However, more studies are still required to ascertain specific microbes that are
involved in the degradation of plastics. This chapter intends to X-ray the bioreme-
diation of polythene and plastics using specific beneficial microorganisms, the
screening of polythene and plastic degrading microorganisms from marine sediment
and water, the role of microbes in the degradation of synthetic polythene and plastics
in marine sediment and water and the environmental, health implications and fate in
the degradation of polythene and plastic by microorganisms in marine environment.

13.2 Screening of Polythene and Plastic Degrading
Microorganisms from Marine Sediment and Water

Delacuvellerie et al. (2019) screened the potential impacts of Alcanivorax
borkumensis on plastic degradation in marine plastisphere (plastic environment).
The authors stated most plastic wastes are released mainly on land that about 32% of
the plastics fate are in the ocean. This can elicit serious health and ecological
influence in the hydrosphere. The results of the 16S rRNA micro-biome sediment
and surface water profiles showed that there were significant bacterial biofilms and
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plastic relationship with indications of Bacteroidetes and Gamma proteobacteria
individually. The findings from the study established that the plastic environment
and the bacterial consortia had distinct ecological niche. The structure of the
microorganism conglomerates was fundamentally plastic hooked on. Microbes in
the genus such as Arenibacter and Marinobacter, are able to breakdown PET and
LDPE. In conclusion, the authors suggest the utilization of Alcanivorax borkumensis
as the best candidate in the breakdown of plastic wastes from petroleum source.
More so, they are able to form dense biofilms on low-density polyethylene (LDPE)
which is the reason for their active potentials.

Divyalakshmi and Subhashini (2016) isolated and screened some microbes
sourced from different soil environments and their degradation capacity on polyeth-
ylene in MSM (mineral salt medium). After incubation at 37 �C for 30 days, the
results showed an extreme weight depreciation (13.6%) of the polyethylene. The
results of the Fourier Transform Infrared (FTIR) analysis indicated chemical varia-
tions in the polyethylene properties because of the degradation activities of the
microbes. The results of the 16S rRNA micro-biome performed on the Fourier
Transform indicated that the most active microbes were strain KX344032 (Staphy-
lococcus arlettae) out of the 32 isolated and 12 screened strains investigated. In
conclusion, the authors suggested that for shortening period of degradation of
plastics, the isolation of vigor genes from Staphylococcus arlettae for plastic degra-
dation might give way for an enhanced biotechnology of recombinant DNA.

It is a known fact that polythene and plastic wastes disposed in the environment
indiscriminately pose a serious ecological problem. However, the degradation of
these wastes by microbes has also been in the forefront in sustainable environmental
management. Usha et al. (2011) tested and screened some microbes and fungi
sourced from refuse soil in the degradation of polyethylene and plastics. Results
obtained after two, four, and 6 months incubation periods showed that the population
of actinomycetes, fungi, and heterotrophic microbial counts in the polythene and
plastics, range as follows: 72.54 � 104 and 64.75 � 104, 44.32 � 102 and
35.62 � 102, and 62.71 � 104 to 56.52 � 104 correspondingly. It was observed
that the degradation of the plastics was associated to the various actinomycetes,
fungi, and bacterial species; Streptomyces, Aspergillus flavus, Aspergillus nidulans,
Staphylococcus sp. Bacillus sp., and Pseudomonas. The results obtained from the
efficiency of the bacteria breakdown revealed that 28.42% of plastics and 37.09% of
polythene were broken down by the strain of Pseudomonas after the 6-month
incubation period. While 35.78% of plastics and 46.16% of polythene wastes were
degraded by the fungi strain Streptomyces, the finding from the study showed that
Streptomyces had more degrading potentials on polythene and plastics when related
to other strains of fungi and bacteria.

It is known facts over the last decade that the impacts of plastic on marine
community, especially the benthic region have established environmental and gen-
eral problems. Currently, studies have been focusing on the propensity of microor-
ganisms’ growth on plastic surfaces (plastisphere) as well as their toxicological
impacts on marine lives. Jacquin et al. (2019) in a review looked at the biodegrada-
tion and colonization of marine plastic-polluted community (plastisphere) by
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microorganisms and their ecotoxicological impacts. The issues of the influence of
microbial consortia on the degradation of plastics in marine environment were
discussed. The influence of plastic on marine microbe’s communities was also
established. The authors also recounted the influence of biofilms on the superficial
region of plastics as well as their potential function as carriers of dangerous organism
and plastic debris. A detailed view on how microbes partake in the breakdown of
marine plastic as well as their importance in standard protocol tests for breakdown of
marine plastics was discussed. Some specific examples of marine polymer degrada-
tion by microbes and metabolic pathways were highlighted. The authors stated that
no current evidence of the pathogenicity of microbes in humans and animals as it
pertain to plastic consumption in the oceans has risen so far based on the proclivity
of plastic wastes being alleged as portfolio for invasive species. They reported that
an improved understanding on the issues that pervade the microbial role in plastic
degradation and plastisphere should be put into cognizance. In conclusion, the
authors stated that an integration of the scientist (biologists, chemists, and physicists)
need to collaborate in order to answer the problems environment faced as well as the
reverberation in the society. Mores so, assessment of research gaps is pertinent in
other to forestall future ecorestoration.

Urbanek et al. (2018) in a review looked at the degradation of plastics by plastic
microbes in marine habitat that is very cold. The authors recounted that man-made
plastics constitute the major human debris in the earth’s crust. That changes as a
result from plastic influence in marine ecosystem can destabilize the water resources,
energy, and food. Hence, plastic pollution currently has resorted to sharp dramatic
changes in a global scale. However this problem permeate, there have been several
methods that these plastic impact on the environment can be reduced. The utilization
of microorganisms to degrade plastic waste has been in the vanguard of biotechno-
logical approaches specifically in cold regions. They reported that microbes can be
isolated from cold marine environment to degrade plastic in situ. In the justification
of this context, the authors nevertheless stated that the relationship between microbes
and plastic wastes in cold environment are yet to be ascertain immensely. However,
current knowledge of the breakdown of plastic wastes in cold environment was
discussed. Highlights of some advantages of the isolation of specific microbes
employed in the degradation and elimination of marine plastic wastes were itemized.
In conclusion, the authors stated that in as far as the biofouling consortia of microbes
are not well understood, there should be an urgent clarion call to study microbes and
plastic wastes in the arctic marine ecosystem as well as human influence on the
environment because the plant and future depend on our sole responsibility. Without
this, the natural ecosystem might be depleted and microbes will not be able to adapt
to the irreversible corruption of the environment by plastic wastes.

Different consortia of microbes in aquatic environment usually live in colonies.
This consortia usually colonize plastic remains (plastisphere) which are gotten from
fossil fuels. The degrading impact of bacteria (coerce hydrocarbon-degrading forms)
alongside with biofilm has been proven to be efficient in plastic wastes decontam-
ination. Erni-Cassola et al. (2019) isolated, tested and screened coastal marine
seawater microbes in the colonization and the breakdown of polyethylene. The
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results from the 16S rRNA protein sequence showed a positive relative abundance
enrichment of non-weathered (5.8%) and weathered (3.7%) polyethylene after about
2 day incubation period of the coastal water as compared to the controls (0.6%).
However, there was a decrease in the relative abundance of the matured biofilms
(<0.3%) after a 9 day incubation period. Associates of the genus Aestuariibacter and
Roseobacter strongly improved the microbes in the primary stage of colonization
with the percentage mean of 1.8 and 26.9 respectively in the consortia. This might be
as a result of the presence of small chains of oxidization emanated from the
weathering process. The findings from their study showed that the breakdown of
plastic materials depends on the level the colonized consortia that enriched by the
early coerce hydrocarbon-degrading microbes. They concluded that collective
non-hydrolyzable plastic larger chains (polymers) might not aid as basis of carbon
advance plastispheres which is gotten from the depletion and weathering of labile
substrates.

Marine sediment has been seen of recent as deposit or trash can of many residual
contaminants. Artificial microplastics polyethylene of size greater or equal to 5 mm
has been reported to impact on both pelagic and benthic microcosms. Harrison et al.
(2014) tested and screened the potential impact of selected rapid microorganisms in
the degradation and colonization of microplastics polyethylene in marine sediment
consortia. After a 14 day assessment period of the bacterial and marine microcosm of
the LDPE (low-density polyethylene) in the sediment, the result obtained using a
CARD-FISH (catalyzed reporter deposition fluorescence in situ hybridization)
revealed that the microbial connection on the LDPE around the sediment improved
in the richness of 16S rRNA protein sequence genes on day 7. The results of the
T-RFLP (terminal-restriction fragment length polymorphism) showed a rapid med-
ley of linked microbial consortia whose composition and structure varied consider-
ably from those sourced from the immediate sediment environment. More so, the
terminal-restriction fragment length polymorphism analysis showed a sequence of
the conjunction of the low-density polyethylene linked communities from the varied
sediment at the end of the studied regime or experiment (14 days). The findings from
their study showed that the 16S rRNA protein sequence genes confirmed the perfect
dominance of microbes (Colwellia and Arcobacter) in the sediment-polyethylene
communities, amounting to a sum percentage of 84–93 of the sequences. In addition,
the connexion of strains Colwellia in the sediment-LDPE was also collaborating by
the catalyzed reporter deposition fluorescence in situ hybridization. In conclusion,
the authors stated that since Colwellia and Arcobacter have been used to degrade
hydrocarbons in recent studies, they suggested the enlistment of hydrocarbonoclastic
microorganisms such as Colwellia and Arcobacter in the degradation of marine
microplastics as perfect candidates in marine pelagic and benthic ecorestoration of
pollutants.

Over the last four and half decades, microplastics marine ecosystem has been
known to be transporters of microbial consortia. However, their connection with
marine microorganisms has recently showed the poor paucity in literatures related to
their biodegradability utilization. Oberbeckmann and Labrenz (2019) in a review
looked at the role, adaptation, and diversity of coastal bacteria consortia on
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microplastics degradation. Their research objectives focused on the breakdown of
microplastics in marine environment, the pathogenic and vector role of bacteria from
the genus Vibrio, and the plastisphere/biofilms relationship with already established
plastics. Nonetheless, the deduction from recent literatures established the degrada-
tion potentials and relationship between particles from microplastics and microbes as
well as their influence in the marine ecosystem. The authors recounted that this
relationship of the microbial eating plastics and the microplastics appear to belong to
an adaptable migrant that do not discriminate between the artificial and natural
surfaces of any media. Therefore, the microplastics do not cause any hazard when
compared to natural particles found in higher aquatic biota, but however, possibly
harboring disease-causing microbes. In other vein, they represent a level of marine
recalcitrant materials that play no supporting function to unicellular metabolism as
well not relevant to animals and humans in the top food chain. Because of the poor
bioavailability of microplastics in the marine environment, the efficiency of
microbes in the total degradation of them cannot be significantly resourceful,
because of the amount of plastics generated day in day out, human time-scale factors,
and degree of degradability. In conclusion, the authors recommend alternative
methods in reducing plastic inputs in coastal water bodies and enhanced biotechno-
logical in vitro methods in microplastics degradation.

Vague et al. (2019) isolated and screened Pseudomonas and associated biofilms
in the degradation of PET (polyethylene terephthalate) and related plastic chains.
The authors recounted that in landfills and coastal waters, there have been a
resounding increase of plastic wastes. They noted some positive lipase Bacillus
(two) and Pseudomonas (three) strains as part of the assemblages in the degradation
of PET in marine environment. The authors reported that when the positive bacterial
consortia were placed alongside with the control (E. coli) during the incubation
period under ultraviolet radiation, there was a high propensity of degradation of
LDPE, HDPE, and PET (low-density polyethylene, high-density polyethylene, and
polyethylene terephthalate) and carbon was the major source of wastes. However, in
the results of the spectroscopy, there was an observed superficial degradation of the
PET as well as molecular vibrations by the bacteria and associated biofilms. This
was also consonant with the observation from the SEM (scanning electron micro-
scope), spotting an induced preliminary plastic degradation stage. The authors in
their findings found out that some strains of Pseudomonas were able to degrade
LDPE rapidly. In conclusion, they suggested further advance screening of lipase
positive bacteria in other to harness hidden potentials for future PET and related
plastics chain degradation.

The fate of the devastating nature of plastic in the aquatic environment cannot be
overemphasized. Polypropylene and polyethylene are the most common plastics
found in oceanfront and superficial region of aquatic ecosystem sourced from
benthic sediment, cellulosic fibers waste treatment, and polyester. Icon et al.
(2018) did a review of the degradation of aquatic plastics by microbes as well as
their occurrence and physicochemical features. The authors stated three major
reasons why plastics are missing on the superficial layer of the ocean is because of
the level of seepage and buildup of floating and non-floating polymers along river
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banks, sediments, and sewage treatment tanks. Secondly, the relaxation or settling of
floating and non-floating polymers in the deepest part of the sea. And thirdly,
disintegration of the floating and non-floating polymers into minute particles. They
stated that some separation techniques may represent a bigger and more stable
particles which require an enhanced method in capturing full size of different ranges
of litter of plastics. The authors stated further that fragments of microplastics are
neutrally stable and therefore are probably scattered in water bodies both vertically
and horizontally. Eventually, it will take a longer time to successively and possibly
biodegrade plastics; this reason is based on the amount of plastic litters in different
environmental sections.

It is a known fact that plastic wastes in aquatic bodies can impede biological
process. Brunner et al. (2018) isolated and tested the capability of some fungi strains
isolated from floating debris sourced from shoreline in an aquatic body in the
degradation of plastic wastes. The authors recounted that these fungi strains have
the potential to degrade complex cellulose lignin such as C-polymers. This clarion
call has opted the need for them to be used in the degradation of plastic wastes which
have similar polymeric structures. They isolated and tested over 100 plastic
degrading fungi, of which, one of them belongs to the species Oomycota and was
spotted out to be a very good degrader. The results from the biodegradation test of
the fungi on the polyurethane and polyethylene showed that four strains out of which
one was plant pathogen (Leptosphaeria sp.) and the other three were saprophytes
(Penicillium griseofulvum, Xepiculopsis graminea, and Cladosporium
cladosporioides), were able to degrade polyurethane, while no strains of fungi
were unable to break down polyethylene. Further assessment revealed that a part
of the four degrading fungi, two saprotrophic strains (Marasmius oreades and
Agaricus bisporus) showed more potential to break down polyurethane. It was
also observed from their study that ectomycorrhizal and wood-saprotrophic fungi
were the key polyurethane degraders. The findings from their study showed that the
saprophytes have well-enhanced enzymes for degradation process. In conclusion,
the authors recommend saprotrophic fungi as candidate for polyurethane degrada-
tion in aquatic environment.

Pathak and Navneet (2017) in a review looked at the recent state of microbial
degradation of plastic polymers. The authors recounted the indiscriminate use of
artificial polymers and the increased ineptness of the environmental control of water
and land pollution. Plastics being one of the most widely used polymers in house-
hold, agriculture, and industrial packaging have been shown not to degrade easily,
they stated. This recalcitrant polymers can take hundreds of years to be broken down
by natural process. However, recent biotechnological approach using microbes has
been employed in the degradation of plastic wastes within the shortest period of
time. The distribution and occurrence of microorganisms in the degradation of
artificial and natural polymers were discussed. The exploitation of enzymes gener-
ated by some biological control messengers as instrument of plastic degradation was
highlighted. The authors recounted that fungal and bacterial species are well-known
biological messengers found in the environment that have the capability to degrade
both artificial and natural polymers. Specific examples of them are Butyrivibrio
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fibrisolvens, Clostridium thermocellum, Comamonas acidovorans, Rhodococcus
ruber, Streptomyces setonii, Streptomyces badius, Pseudomonas stutzeri, and Pseu-
domonas aeruginosa for the bacterial species. And Mucor rouxii, Pycnoporus
cinnabarinus, Fusarium lini, Aspergillus flavus, and Aspergillus niger for the fungal
species. However, Pseudomonas aeruginosa has been reported as one of the effec-
tive microbes that degrades polymer through the formation of biofilm with the aid of
alginate-like quorum detecting motion and chemicals system. They stated that strain
CA9 (Pseudomonas aeruginosa) has been recounted to degrade LDPE and strain
AKS2 (Pseudomonas aeruginosa) has been reported to form biofilms in the degra-
dation of LDPE, thereby increasing the superficial hydrophobicity by 26% as well as
the hydrolytic action by 31%. Pseudomonas stutzeri has been recounted to degrade
high molecular weight polyethylene glycol (PEG) of about 4000–20,000 g. Strains
75Vi2 and 252 (Streptomyces setonii and Pseudomonas stutzeri), respectively, were
reported to be more in effect against treating heat degraded plastics. More so, they
stated that Rhodococcus rubser degrade and colonize polyethylene by producing
hydrolytic chemical substances and biofilms as well as enhancing the peroxidant
essences which makes it susceptible to both photochemical mineralization and in
vitro thermal processes. Strain TB-35 (Comamonas acidovorans) has been reported
to be valuable for the degradation of polyurethane-polyester via polyurethane (PUR)
enzymatic hydrolysis activity and production of esterase using structural genetically
material (pudA). They reported the action of the following fungi Mucor rouxii,
Pycnoporus cinnabarinus, Fusarium lini, Aspergillus flavus, and Aspergillus niger.
That Aspergillus niger manufactures acetyl xylan esterase which functions with the
blend of endo-xylanase for an effective breakdown of xylan. Aspergillus flavus and
Aspergillus niger, respectively, have been reported to be useful for the fast miner-
alization of average units of monomers. A. flavus has been recounted to active
polythene degrader as well as strain NRRL 1835 (A. flavus). F. lini and
P. cinnabarinus have been recounted to produce dehydratase for the degradation
and biotransformation of PVA (polyvinyl alcohol) to H2O and CO2. In conclusion,
the authors recommend that further works should be carried out on the evaluation
and screening of different unharnessed microbes and fungi for the utilization of
polymer breakdown.

13.3 Degradation, Environmental Fate, and Risk
Implications of Polythene and Plastic in Marine
Environment

About 350–400 shedload of plastics are generated annually in marine and terrestrial
ecosystem, of which they are poorly recycled. In today’s environmental watch, it has
become clearer that the adverse health and ecological influence of plastics in the
biosphere of animals and humans has compromised environmental safety standards.
Danso et al. (2019) in a review looked at the biotechnological and environmental

13 Bioremediation of Polythene and Plastics Using Beneficial Microorganisms 289



standpoints of microbial breakdown of plastics. The authors stated that current
biotechnological approach using beneficial microorganisms; fungi and bacteria in
degrading such recalcitrant pollutants are employed. The issues of enzymatic activity
secreted by microbes on PET and PUR (polyethylene terephthalate and polyure-
thane) were discussed in detail. The authors stated that previous reports only stated
the consortia of microbes and their additives degrading chemicals, there has been
paucity in the enzymatic action on high structural weight polymers like polyethyl-
ene, ether-based polyurethane, polypropylene, polyvinylchloride, polyamides, and
polystyrene. In sum, these polymers accounted for 80% of the yearly plastic
manufacturing. They also highlighted the core importance of some enhanced vari-
ation of enzymes as well as the microbial activity on the above stated polymers. In
conclusion, they reported that black material, proteins, and worldwide metagenomes
of microbes not yet cultured can bridge the gap of these enhanced variations. That
only this new biocatalysts and enhanced microbes can cause fast recycling and
degradation of huge majority of natural and human made plastic polymers.

Hayden et al. (2013), in a review, looked at the environmental consequences of
plastic degradation by microbes with special focus on polyethylene terephthalate
(PET). The authors recounted the natural resistance of plastics to degradation, its
ever accumulation to the environment and the health attendant and risk concerns.
The present state of awareness as it relates to biodegradation of plastic polymers was
discussed. The authors highlighted some problems linked to plastic contamination in
the coastal environment with special features on the degradability, commercial
production, and properties of PET. The adsorption and accumulation of PET in a
coastal environment as well as the hazardous impacts to coastal wildlife were
discussed. The authors stated that presently, only three main plastic discarding
techniques (recycling, incineration, and landfill) is invoked. They highlighted their
drawbacks and demerits. They recommend an eco-friendly approach using benefi-
cial bacteria and fungi to degrade PET. This method has been proven to be effective
and sustainable. It does not generate environmental wastes that are toxic. The fate of
the pollutants is well known. In conclusion, the authors recommend extensive
research in the area of plastic biodegradation and enhancement of the metabolic
capabilities of microbes.

Due to the durability of plastics in the environment and poor recycling, there is an
urgent call to address the probable life and ecosystem threat posed with it. WWTPs
(Wastewater treatment plants) have been linked as one of the source points of the
release of plastic into the ecosystem. Okoffo et al. (2019) in a review looked at the
fate, quantification, and occurrence of treated plastic wastes plants in the environ-
ment. A compressive analysis of the present knowledge on the contamination of
plastic via influent into the wastewater treatment plants, source apportionment of
sludge from sewage, effluents and influents occurrences as well as the various
techniques employed in their usage were discussed. In addition, the route of transfer
and fate of plastics from wastewater treatment plants into the terrestrial and aquatic
ecosystem was also argued. The authors recounted some research gaps such as
quantification, identification, and healthy systematic methods that will bridge recent
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research works. They advocated research harmonization via improved techniques
such as the utilization of nano-size plastics.

Billions of tonnes (6.3 billions) of wastes from plastics are released globally,
which about 9–12% are either incinerated or recycled. Due to the rise of human
population, day in and year in, the generation and utilization of plastics are accom-
panied by serious environmental wastes as well as ecosystem degradation. Alabi
et al. (2019), in a review, looked at the environmental and public health impacts of
wastes from plastics as well as their disposal methods. The effects of plastic wastes
on the soil, water, and air were looked on to. Different disposal techniques, lethal
chemical composition of plastics and various types of plastics fabrication were
highlighted. The authors also recounted the public and health impacts associated
with plastic contamination. The lists of some economical consumable materials of
plastics (phenanthrene, dichlorodiphenyl dichloroethylene, polychlorinated
biphenylethers, nonylphenol, brominated flame retardants, bisphenol, heavy metals,
and phthalates) used in water flasks, food wrapping materials, and medical devices
which are noxious were stated. The authors opined that eight million tonnes of
plastics wastes are discharged into marine ecosystem which ultimately affect the
aquatic life forms therein. That when there is intense exposure of plastics to high
temperature, it can result to leaching of noxious chemical wastes into water, drinks,
and food. The authors in conclusion suggested that for proper health and environ-
mental safety, governmental agencies should prohibit the use of noxious chemicals
such as BPA and phthalates in the manufacture of plastic consumables that are in
straight contact with children, beverages, water, and food through
environmental laws.

Globally, plastic production has reached over 300 million tons annually. It has
been also reported that for over five decades, the pollution of the marine ecosystem
by plastic has risen greatly. Currently, rapid plastic production commercially has
skyrocketed due to the rise in human needs fingered to population and technological
boom. Serious concern has been geared towards the risks, both health and ecological
pose by plastic wastes to coastal wildlife. Law (2017) in a review looked the
pollution of the coastal environment by plastics and its attendant risks both ecolog-
ical and health to life forms. The issues of influences of plastic to the coastal
ecosystem, fate of plastics, their distribution and source apportionment were
highlighted and discussed. The ever increasing indication of plastics in the marine
ecosystem and their significant impact on the marine environment were also
discussed in detail. In conclusion, the authors suggested the implementation of the
point source 3Rs (reduce, reuse, and recycle) techniques in decreasing the potential
ecological and health risks already foreseen in the coastal environment for a sus-
tainable prevention of life forms and ecosystem structures.

Ilyas et al. (2018) did a review of the probable significant threat caused by plastic
wastes and the attendant threat posed on the marine coastal ecosystem. The authors
recounted the ecological imbalance brought as a result of plastic wastes in the
aquatic environment. That plastics do not degrade naturally in the environment, as
a recalcitrant pollutant it poses a serious environmental threat. The authors highlight
some systematic protocols to curb plastic wastes threat. Various disposal methods,
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management, the influence of wastes from plastics, and their environmental fate in
the natural ecosystem, were highlighted and discussed. In conclusion, the authors
suggested some five key methods for managing wastes from plastics such as
translation into useable materials, degradation by fungi and bacteria, burning in
incinerator, and disposal by landfill and recycling.

13.4 Role of Microbes in Degradation of Synthetic
Polythene and Plastics in Marine Sediment and Water

One of the major environmental pollution in marine environment has been linked to
the increase in the rate of plastic wastes. It has been stated that some plastic that
could be degraded by microorganisms could be referred to as eco-friendly in nature
with numerous utilization in packaging industries. Jumaah (2017) evaluated the rate
of breaking down of plastic material for a period of 1 month using submerged
fermentation. The microorganism discovered that was related with degradation
effectiveness includes two gram negative and three gram positive bacteria. The
microorganisms detected with high potential for plastic degradation are Pseudomo-
nas putida, Bacillus subtilis, Bacillus amylolyticus, Pseudomonas fluorescens, and
Bacillus firmus. It was discovered that the effectiveness of microorganisms with high
potential for plastic degradation when performed in the submerged fermentation
techniques include Pseudomonas putida which showed a high capability that it
could break down plastic containing materials with a period of 1 month (30% weight
loss/month) in comparison with Bacillus subtilis (22% weight loss/month). Their
work indicated that Pseudomonas putida possess a greater potential to degrade
plastic when compared to other microorganisms isolated during this study.

Begum et al. (2015) isolated beneficial soil bacteria that could be found in
polluted soil samples. The authors discovered that Pseudomonas alcaligenes and
Desulfotomaculum nigrificans were the two isolates found in the plastic contami-
nated area after they were subjected to biochemical and morphological characteri-
zation. The author assessed the biodegradation effectiveness of Pseudomonas
alcaligenes and Desulfotomaculum nigrificans when performed in polythene bag.
The result obtained indicates that Pseudomonas alcaligenes was detected to be more
active in terms of biodegradation of polythene bag when compared to
Desulfotomaculum nigrificans during the period of 30 days. Moreover, it was
discovered that the high level of increment in the incubation period led to increase
in weight loss of polythene bag.

Trivedi et al. (2016) wrote a comprehensive review on the significance of
microorganisms and their role in the production of bioplastic. Several microorgan-
isms have been identified as several sources of bioplastic production and they could
be utilized for the degradation of plastics. However, the production of bioplastic has
been shown to be more expensive than the synthetic plastic because it possesses
numerous benefits when compared with them. Several number of microorganisms
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are utilized for breaking down of plastic and they also play a critical role in the
production of bioplastics. It has been stated that member of the public have a greater
preference to biopolymer produced by beneficial microorganism which is presently
gaining public acceptance.The authors also highlighted the role of beneficial micro-
organisms in the degradation of plastic as well as in the production of plastic.

Microplastics show a world global distribution and have been discovered in also
most all level of the marine environment. Microplastics have been highlighted as a
dangerous portion of a degraded plastic and could lead to suffocation of hundreds of
marine species. Moreover, it has been discovered that microplastic could lead to the
movement of non-indigenous marine species to different area which could constitute
threat to food web and marine biodiversity. They could be dangerous because they
possess the capability to build up poisonous substances on their surface which could
serve as a hazard which could affect the ecosystem with numerous health challenges.
Hence, the evaluation of the status, influence, and implementation of necessary
action that could lead to their prevention are necessary. In view of the aforemen-
tioned, Ogunola and Palanisami (2016) wrote a comprehensive review of the
prevalence of microplastics in the marine environments that were performed by
evaluating the literature pooled from several scientists that have performed extensive
work in this regard.. The authors emphasized on novel methodology for removal and
enumerating microplastics from marine matrices though, it is a complex and enor-
mous job in resolving the challenges of microplastics in the ocean, selected meth-
odologies were also explained by the authors.

Microplastics have been identified to spread rapidly in sediment and marine
environment and possess the potential to settle in the sediments. The authors stated
that over 100 manuscripts were written for a period of 50 years with the following
aims: (1) to establish holistic evaluation of possible adverse effect of microplastic to
marine environment, (2) to deliberate the incidence and global distribution of
microplastics in sediments, (3) to assess the current microplastic extraction method-
ology. The authors also proposed the need to perform some further research and
determine that there is an urgent need for a standardized methodology, incorporated
reporting units, and more accurate influence evaluation.

Plastic polymers are extensively used in industry and agriculture and play a
crucial role in the daily utilization of human being because they are cost-effective
and they are easy to use.

It has been highlighted that polyethylene has several adverse effects on human
and animal health, most especially when they settle down in environment because
they could not degrade easily most especially under natural condition. Ren et al.
(2019) isolated Enterobacter sp. D1 from the guts of wax moth (Galleria mellonella)
which was later utilized for the biodegradation experiment. It has been stated that
several pollution could be linked to plastic polymer most especially polyethylene
which has adverse effect on human and animal health because of their high avail-
ability in the environment. This might be linked to the fact that they could not be
easily degraded in a natural environment. The result obtained indicated that there
was presence of microbial colonies development around a polyethylene film after
14 days of culturing most strain D1. Moreover, cracks, roughness, and depressions
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were observed on the exterior of polyethylene film when subjected to atomic force
microscopy and scanning electron microscopy. The presence of function groups
available after the biodegradation was evaluated using Fourier transform infrared
spectroscopy which indicated the presence of ether groups and carbonyl functional
groups. Moreover, the presence of other chemical constituents was detected by
liquid chromatography-tandem mass spectrometry which shows the presence of
acids, alcohols, and esters. The bioproduct or chemical constituents might be linked
to the oxidation reaction which happened on the surface of polyethylene film most
especially with strain D1. Their study indicated that strain D1 possess the capability
to be utilized for the biodegradation of polyethylene.

It has been stated that there is increase in the buildup of plastic most especially
from polystyrene and polyethylene terephthalate which constitute increase in eco-
logical disturbance as a result of massive utilization in everyday of mankind.
Therefore, in order to mitigate against this ecological threats there is a need to isolate
beneficial microorganisms that could biodegrade plastic mainly from garbage soil,
garden soil, soil near petrol pump, forest soil, and mangrove soil. Their study
showed that there was loss in weight of polystyrene and polyethylene terephthalate
most especially garbage soil and garden soil in comparison to other soil in terms of
Gram positive coccobacillus, Gram negative cocci, Gram negative rod shaped
bacillus, Gram positive cocci (in clusters) in garden soil and Gram negative cocci
(in singles) in garbage soil. Moreover, the polystyrene and polyethylene terephthal-
ate were broken down by the following bacteria Aspergillus niger, Pseudomonas
aeruginosa, Streptococcus pyogenes, Bacillus subtilis, Staphylococcus aureus. Fur-
thermore, it was also stated that Bacillus subtilis exhibited the highest percentage
loss in weight of polystyrene most especially by Bacillus subtilis when cultured
inside Bushnell Hass and Nutrient and Bushnell Hass broth, whereas in the case of
PET, percentage loss in the weight was maximum by Pseudomonas aeruginosa in
Bushnell Hass broth, Bacillus subtilis in Nutrient broth, and Aspergillus niger in
Rose Bengal broth.

The high rate in the level of polyethylene waste building up in the environment
has led to enhanced ecological challenges. It has been realized that polymer of
ethylene constitute a major part of our daily requirement used in various activities.
They are utilized in different sectors for numerous applications such as wrapping of
foods, consumer products, and packaging materials. It has been stated that the
request for these synthetic polymers has risen to 500 billion to 1 trillion tonnes
which constitutes what are utilized globally. The structure of these synthetic plastics
entails high molecular hydrocarbons with complex structures which could not be
degraded easily.

Several findings have shown that the application of biodegradation could be used
for the mitigation of these all aforementioned environmental challenges. In view of
these, Senthilkumar et al. (2016) wrote a comprehensive review on the isolation of
beneficial microorganisms that possess the capability to degrade synthetic polymer
from the soil. These soil bacteria possess the capability to degrade these polymers
through the help of enzymes and the cloning of genes for biodegradation. Typical
examples of such enzymes include manganese peroxides and lignin peroxidase. The
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authors suggested that there is a need to still isolate some other soil microorganisms
that possess the capability to degrade numerous plastics and polymers most espe-
cially from various sources.

Kumar et al. (2016) established that six various types of packaging plastics with
various composition in their starch (low-density polyethylene [LDPE], 10, 20 30, 40,
and 50% of LDPE starch) were utilized for degradation experiment in collaboration
with microorganism in compost reactor. The experiment was performed in a small
scale bioreactor which entails two degraded samples in compost and soil. The result
obtained indicated that in the compost bioreactor, the weight loss in 50% starch-
blended low-density polyethylene was 10.06% and was 0.0343% for pure low-
density polyethylene on day 65. It was later revealed that the biodegradability of
all the commercial plastic in the soil was detected that they could biodegrade
low-density polyethylene. The rate of the outcome observed showed that the degra-
dation was estimated to be around 19.8% on day 100 while the loss in tensile
strength was 81.24% on day 97. Moreover, the percentage elongation also decreased
by 13.70% and 68.27% on day 71 and 100, respectively, while the total organic
carbon was reduced by 13.70 and 68.27% on day 71 and 100, respectively.

Kathiresan (2003) performed an experiment on the degrading potentials of
microbes sourced from mangrove soil on polythene and plastics. The rate of
biodegradation of plastic cups and polythene bags was performed after 2, 4, 6, and
9 months of incubation in the mangrove soil. It was detected that level of biodeg-
radation of the polythene bags was enhanced up to 4.21% in 9 months when
compared to than that of plastic cups (up to 0.25% in 9 months). Moreover, it was
detected that the rate of microbial count in the plastic material degraded by these
microbes was recorded up to 55.33 � 102 per gram for fungi and 79.67 � 104 per
gram for total heterotrophic bacteria. The microbial species that were detected that
possess the potential to degrade these synthetic material were identified as eight
fungal species of Aspergillus, two Gram negative bacteria, and five Gram positive
bacteria. Examples of such species that were isolated include two species of fungi
(Aspergillus glaucus and A. niger), Streptococcus, Micrococcus (Gram +ve),
Moraxella, and Staphylococcus.

The effectiveness of these microorganisms in the biological degradation of these
polythene and plastic was assessed in shaker cultures. It was stated that Pseudomo-
nas species degraded 20.54% of polythene and 8.16% of plastics in 1-month period.
Among the fungal species, Aspergillus glaucus besmirched 28.80% of polythene
and 7.26% of plastics in 1-month period. Their study indicated that the microorgan-
ism isolated during this study could be used for the bioremediation of heavily
polluted environment.

It has been highlighted that synthetic polymers are one of the pollutants that
constitute high rate of anthropogenic pollutants of the terrestrial ecosystems, lentic
and marine environment. These synthetic polymers most especially microplastic
possess that capability to affect various natural processes such as natural food webs,
wildlife, ecosystem, human health, and the environment. The application microor-
ganism has been identified as a sustainable means of remediating a heavily polluted
environment with synthetic plastic. It was stated that numerous microorganism
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possess the capability to biodegrade many polymers through the process of oxidation
or enzyme hydrolysis. It has been further proven that microorganisms portend that
capability to degrade plastic and have been validated to be highly recalcitrant even
under environments known to enhance microbial degradation. In view of the afore-
mentioned, Krueger et al. (2015) wrote a comprehensive review on the recent
knowledge on the application of microbiological techniques that could be utilized
for the biodegradation of synthetic plastic. Additionally, the authors established the
analytical defies regarding the estimation of plastic biodegradation as well as
restrictions likely that could prevent effective biodegradation pathways.

Plastic has been identified as one of the highly persistent pollutants that couldn’t
biodegrade easily. It also proves to be resistant to the attack of most microorganisms
and remains non-degradable. Their buildup in the environment could be hazardous
which could lead to numerous environmental challenges. Biodegradation has been
identified as the chemical and physical alteration induced on any material by any
environmental factors such as heat, wind, and light together with the action of any
biological agents such as fungi and bacteria. Therefore, in view of the aforemen-
tioned, Muthukumar and Veerappapillai (2015) wrote a review on the application of
numerous bacteria and their application for the bioremediation of plastic when
exposed to different environment. The authors stated that the bioremediation of
plastic using non-conventional techniques could guarantee a future free of several
hazards due to microplastic and plastics, most especially those used in packaging
and commercial polymers, which are the most abundant form of plastic wastes.

It has been highlighted that petroleum-based plastic pollution has been recog-
nized as worldwide environmental challenges which persist for several decades. This
has led to buildup of plastics and microplastics in the aquatic environment. There-
fore, the application of cheaper and sustainable techniques should be put in place for
effective biodegradation of these synthetic plastics. It has been highlighted that
polystyrene (PS) wastes which is a recalcitrant plastic polymer are among the list
of heavy pollutants that constitute a lots of hazards to mankind. Therefore, the
application of bioremediation has been highlighted as a sustainable and effective
and cheaper means for the bioremediation of polystyrene. Therefore, since 1970 the
role of microbial biodegradation on polystyrene most especially when mixed with
manure, sludge, soil, and trash has been highlighted but the result obtained is very
slow. Yang et al. (2018) describe the effectiveness of microorganisms in the
biodegradation of polystyrene. Their study established that the application of larvae
of yellow mealworms (Tenebrio molitor linnaeus) has been shown to be an effective
bioremediation technique.

The utilization of mealworms has been established to possess the potential to
degrade polystyrene foam as food and poses the potential to break them down and
mineralized into carbon iv oxide through microbe-dependent activities within the gut
in less than the 12–15 h gut retention time. Their study infers that mealworms could
be utilized as a potential and sustainable tool for the biodegradation and bioremedi-
ation of plastic.

Cole et al. (2011) in a review extensively looked at microplastics as one of the
major marine pollutants. The sources, nomenclature, and properties of microplastics
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were discussed. The routes and methods of detection were evaluated. The temporal
and spatial variations of microplastics were highlighted as well as their influence to
the biological organisms and physical and chemical constituents in the marine
ecosystem. The authors stated that the rate of microplastic abundance in the marine
and coastal fringes cannot be quantified. That health risk via the ingestion of this
pollutant (hydrophobic or additives forms) in aquatic biota can facilitate acute or
chronic situations and even cause trophic influence across the food chains. In
conclusion, they stressed possible research areas for both legislators and scientist.

Chemically synthesized plastics are utilized in our everyday activity as human
being and they have been recognized as a source of anthropogenic debris entering
the earth’s ocean. It has been highlighted that the ocean could be a source of
significant and necessary resources such as energy, food, and water. They are also
recognized as the major means of international trade and the main stabilizer of the
climate. It has been stated that the alteration in the marine ecosystem constitute the
major reasons for the various anthropogenic effects which include contamination by
plastic. Although it has been highlighted that the biodegradation of plastic has
become very difficult, there is a need to minimize all the highlighted environmental
challenges associated with it. The utilization of microorganisms has been recognized
as a powerful tool that could be used for effective biodegradation of these plastic. In
view of the aforementioned, Urbanek et al. (2018) wrote a comprehensive review on
potential microorganisms that possess the capability to biodegrade plastic and
plastic–microorganism interactions in cold marine habitats. Furthermore, the authors
highpointed the merits of microorganisms obtained from this environment for
eradicating plastic waste from ecosystems.

It has been stated that majority of the microplastic detected in the ocean could be
linked to the assemblage due to microorganisms which has been observed for almost
45 years.

Hence, only the function of the microbial relationship with microplastic in the
marine ecosystem has been studied widely. In view of this, Oberbeckmann and
Labrenz (2020) wrote a comprehensive review by carrying out investigation
regarding microplastic extensively in three fields which entail: (1) The formation
of plastic-specific biofilms which could also be called plastisphere (2) Enhancement
of pathogenic bacteria, predominantly members of the genus Vibrio, together with a
vector function of microplastics (3) The breaking down of microplastic by microor-
ganism majorly in the marine environment. There is also a need to provide more
insight on the relationship between microplastic and microorganisms. The popularity
of microorganisms developing on microplastics appears to belong to opportunistic
colonists that do not differentiate between artificial and natural surfaces. Conse-
quently, microplastic doesn’t pose any higher risk when compared to the natural
particles to higher life forms by hypothetically protecting pathogenic bacteria.
Moreover, it has been observed that microplastic available in the ocean constitutes
recalcitrant substances for microorganisms that are inadequate for the maintenance
of prokaryotic metabolism which could not be broken down by the action of
microorganisms in any period of time relevant to human society. The author also
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suggests that necessary precaution should be put in place to prevent microplastics
from entering the environment.

The utilization of polyethylene has been highlighted to increase day by day and
recycling it has become a great challenge. It has been highlighted that almost
500 billion to 1 trillion polythene are made of bags that are used in different parts
of the world. It has been stated that polythene has a longer durability and might take
a longer time for its breaking down up to 1000 years. In view of this aforementioned,
Sangale et al. (2012) did a review of the biodegradation of pollution, which was later
grouped into the following: (1) the extent of pollution does to polythene; (2) to reveal
the cost implication of the methodology; (3) to highlight probable microorganism
that could biodegrade polyethylene; (4) to establish the modes of action of these
biodegrading microorganisms; (5) to point out the techniques utilized for the bio-
degradation of polythene; (6) to elucidate the evaluation of polythene degradation by
proficient microbes; (7) to highlight numerous compounds or constituents that are
derived after polythene has been subjected to the process of degradation process;
(8) to analyze level of the toxicity level of the products of the degraded polythene,
and (9) to deliberate the upcoming features of polythene degradation.

The increase in the utilization of plastic has increased tremendously since the
mid-twentieth century, as a source of pollutant for the contamination of the envi-
ronment. The high rate of spreading of the plastic to the marine and terrestrial
environment showed that they are major geological indicator of the anthropocene,
as a distinctive striatal component. Moreover, it has been stated that high level of
microplastic is now increasing on a high level of widespread marine sedimentary
deposits in both shallow- and deep-water settings. Also, it has been stated that
biological and physical processes play a crucial role in the breaking down of plastic
towards the formation of microplastic. These microplastics have a means of entering
into the food chain via the ‘fecal express’ route from the surface to the seafloor. In
view of this, Zalasiewicz et al. (2016) wrote a review on the significance of
microplastic as a pollutant in the marine environment. Plastic is majorly found in
the sedimentary deposits and they increased to larger amount to several folds over
the next few decades. They will remain to be moved into the sedimentary cycle over
approaching millennia as provisional stores—landfill sites—are eroded. Plastics
previously allow fine time determination within anthropocene deposits through the
expansion of their dissimilar types and through the artifacts (“techno fossils”) they
become shaped into, and numerous of these may have long-term safeguarding
effectiveness when buried in strata.

Muhonja et al. (2018) carried out the biochemical and molecular characterization
of low-density polyethylene bacteria and fungi isolated from Dandora dumpsite,
Nairobi. The authors isolated 10 fungi and 20 bacteria using 18S rDNA and 16S
rDNA, respectively. The fungal strain that showed the maximum biodegradation
potentials on low-density polyethylene was Aspergillus oryzae strain A5, while the
bacterial strain that showed maximum biodegradation was Brevibacillus borstelensis
strain B2,2, and Bacillus cereus strain A5,a respectively. These microorganisms
were later subjected to screening of their potential for their capability to generate
extracellular esterase and laccase. Aspergillus oryzae strain A5,1 exhibited the
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highest presence of esterase (14.33 mm), while Aspergillus fumigatus strain B2,2
exhibited the highest presence of laccase (15.67 mm). The alkane hydroxylase-
encoding genes were evaluated for using primer AlkB 1 which was used in the
amplification of the fragment of size 870 bp while only four out of the bacterial strain
showed a positive result for the presence of the gene. The optimum temperature that
enhances the biodegradation capability of the tested isolated was found at 30 �C.
Their result also shows that the presence of alkane esterase, hydroxylase, and lactase
showed that they represent the major molecular basis for the biodegradation of
low-density polyethylene. The authors also suggested that there is a need to perform
further investigation of some other microorganisms that has capability to be utilized
for biodegradation purposes most especially when combined with the process of
bioaugumentation.

13.5 Conclusion and Further Recommendation to Study

This chapter has provided thorough facts on the bioremediation of polythene and
plastics using beneficial microorganisms. Comprehensive facts of the screening of
polythene and plastic degrading microorganisms from marine sediment and water,
the degradation, environmental fate and risk implications of polythene and plastic in
marine environment and the role of microbes in degradation of synthetic polythene
and plastics in marine sediment and water were highlighted. There is a necessity for
environmentalist, engineers, scientist and associated environmental fields to come
together to address the clarion call of wastes reduction, recycling, and reuse. This
will in a great extent reduce the plastics as well as the minute forms (microplastics)
from source generation points. More so, effective disposal measure method should
be put in place such as provision of waste bins that distinguish biodegradable wastes
from non-biodegradable ones. This will pave a sustainable way of wastes conversion
and leaching in marine environment. There is also a need to employ the services of
well-engineered native microorganisms that will play active roles in the remediation
of microplastics when the other options fail.
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Chapter 14
Recent Advances in the Application
of Genetically Engineered Microorganisms
for Microbial Rejuvenation
of Contaminated Environment
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Abstract Globally, it has been recognized that pollution preclusion constitutes
more economical and environmental challenges. Several types of research over the
years have fingered uncontrolled human activities as the major cause of environ-
mental pollution. The role of indigenous microbial consortia in the bioremediation of
such heavily polluted soils has been reported but with several challenges. However,
the application of genetically modified organisms developed from the wild-type or
the indigenous strains will go a long way in the determination of the general success
during in situ bioremediation program as well as their active role in the reuse or
recycling in pollution prevention. Therefore, this chapter intends to discuss recent
advances in the application of genetically modified microorganism and their role in
the biodegradation of a heavily polluted environment with activated sludge, syn-
thetics chemicals, petroleum hydrocarbon, heavy metal, etc. The mode of action
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through which this genetically modified microorganism performs its role was also
highlighted. The advantages and demerits of genetically modified microorganisms
were also highlighted. The future recommendation that could promote the accept-
ability and effectiveness of genetically modified microorganisms was also discussed.

Keywords Genetically modified organisms · Environment · Microorganisms ·
Modes of action

14.1 Introduction

Organisms whose genetic constituents have been improved with the use of cell or
gene technology are called genetically modified organisms (GMOs). The genes of
microorganisms were the first to be transformed or modified in the laboratory (Melo
et al. 2007). These GMOs are currently used in different fields, especially in food
science and medicine (Leader et al. 2008). Today, with more improvement in the
recombinant DNA of microorganisms, the metabolic capacities have been harnessed
and explored in more innovative ways, such as in textiles and paper industries and
the degradation of environmental concerned pollutants. So, it is pertinent to have a
proper understanding on both the microbes and the process (bioremediation) so as to
effectively harness their hidden potentials. Many microbes such as yeast, bacteria,
and fungi play a pivotal role in bioremediation. This process is of different forms, but
the end material of degradation (carbon dioxide) is similar. Several microorganisms
including fungi, bacteria, and yeasts are involved in the biodegradation process.
Organic materials have been established to possess the capacity to become degraded
anaerobically (without O2) and aerobically (with O2) by microbes (Mrozik et al.
2003; Das and Chandran 2011; Pramila et al. 2012).

However, bioremediation, which is a biological process of the degradation and
removal of pollutants from the environment by microbes, through the action of the
secretion of metabolic enzymes has been identified as one the cheapest, green, and
safe alternative tool in environmental rejuvenation or eco-restoration of contami-
nated environment. Still, microbes lack some level of efficiency in the removal of
wastes or any noxious compound in any system. This entire process is rather
dawdling, which might cause contaminants to amass in the ecological or biological
community. The amassed residues of the pollutants might pose a latent health risk
(s) to the ecological or biological community. Heavy metals and pesticides which are
one of the most recalcitrant pollutants are typical in this context. Their ecological
role has generally lowered the diversity and metabolic activities of living cells, and
highly noxious to fauna and flora (Perpetuo et al. 2011). Moreover, microbes have
several pathways they applied in the reduction of highly toxic nature of most
pollutants; how toxic compounds are taken up by microbial cells (bio-sorption),
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and the process through which toxic compounds are accumulated in the body cell of
microbes (bio-adsorption or bioaccumulation) correspondingly.

It has been discovered that several elements portend the capability to influence the
way microbes can degrade pollutants effectively. Typical examples of such factors
include phosphorus and nitrogen sources, pH, temperature, humidity, and ionic
balance. These factors have spurred various researches on the persistence, compe-
tition, and survival of GMOs in the natural ecosystem in which they are introduced
and the likely ecological and health risks that may pervade their usage.

This chapter discusses extensively important GMOs that could be applied for
bioremediation, a general overview of the molecular proteomics and genomics of
microorganism used for bioremediation and specific review on GMOs used for
bioremediation and their modes of actions during bioremediation of contaminants.
The merits and demerits of GMOs in the ecorestoration of heavily polluted environ-
ments were also highlighted. Recommendations for future research will also be
highlighted.

14.2 Application of Omics Techniques
for the Biodegradation of the Polluted Environment

The utilization of omic techniques and systems biology has given rise to novel
algorithms and computational tools that can pave way for a better understanding of
the biological activities and reactions that occur with and outside the cell of
microorganisms during the degradation of pollutants (Bouhajja et al. 2016). The
utilization of the 16S rRNA technique has been applied in the characterization of
microbes that have the efficiency to degrade xenobiotic substances (Shapir et al.
2007; Chakraborty et al. 2012).

The application of proteomic, metabolomic, and transcriptomic has been identi-
fied to play a crucial role in the biodegradative potential of bacterial hosts (Sohn et al.
2010). A typical illustration could be found in the fluxomic evaluation used on
P. PutidaKT2440 where it was discovered that the effective carbon source pathways
could release NADPH, which supports and enhances resistance to oxidative stress
(Chavarría et al. 2013; Nikel and de Lorenzo 2013). Examination of transcriptomic
data uncovered the significant portion of the P. Putida genome (�20%) that could be
differentiated when the cells are grown on diverse substrates and emphasized the role
of a collection of global regulators (Kim et al. 2013). Winsor et al. (2016) stated that
215 Pseudomonas genomes were completed and 3133 drafted that are present in the
Pseudomonas Genome Database (http://www.pseudomonas.com/), which is one of
the most holistic genomic databases that is devoted to a single bacterial genus.

Moreover, the complete genomic sequences presently available for other benefi-
cial microorganisms that could biodegrade pollutants such as Cupriavidus necator
JMP134 and Acidovorax sp. strain KKS102 contain 300 genes associated with
catabolism of aromatics (Lykidis et al. 2010; Ohtsubo et al. 2012). Oleispira
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antarctica, Alicycliphilus denitrificans strains BC and K601, which are soil
degrading microorganisms, have been fingered to possess significant genes that
have the capacity to adapt, degrade hydrocarbon, and prevent oil spills in the
environment that are cold (Kube et al. 2016).

Bacteria possessing the capability to convert oil-derived aromatics and alkanes
into biomass were detected and characterized using metagenome sequencing of the
DNA derived from the stable-isotope-probing experiments (Damborsky and
Brezovsky 2014; Gutierrez et al. 2013). The consortium roles of the following
bacteria such as Rhodospirillales, Cycloclasticus, Alteromonas, and Alcanivorax
assisted in the biodegradation of oil spill degradation of a complex mixture which
consists of almost 1000 compounds. The application of metagenomic approaches
also gives a proper understanding of the dynamics and composition of consortia
involved in the biodegradation of polycyclic aromatic hydrocarbons in soils
(Guazzaroni et al. 2013). The natural broken-down form of chlorinated ethenes
available in the polluted groundwater (Adetutu et al. 2015).

Some databases such as MicroScope (www.genoscope.cns.fr/agc/microscope/
home/) and NCBI genome database (https://www.ncbi.nlm.nih.gov/genome/) con-
tain several genomic sequences of numerous potential microorganisms that possess
the capability to degrade pollutant (Vallenet et al. 2010). It provides a holistic avenue
for the comparative evaluation and annotations of almost 6000 microbial genomes
out of which 100 were manually curated for accuracy.

14.3 Application of Engineering Genetic in Microorganism
for Bioremediation of Heavily Contaminated
Environment

The recent advances in protein engineering have provided new opportunities to
move towards the wider application of genetically engineered microorganisms to
play a crucial role as “designer biocatalysts” in which some biodegradation path-
ways or the enzyme derived from microorganisms utilized for some of these
activities. Several studies have been performed to established that microorganisms
and their metabolites could be applied for bioremediation of heavily polluted
environment (Adetunji et al. 2017, 2018, 2019a, b, 2020; Adetunji and Adejumo
2017, 2018, 2019). Timmis and Piper (1999) also highlighted several available
opportunities that permit the enhancement of utilizing microorganisms for numerous
biodegradation opportunities using genetically engineered microorganisms.

Masai et al. (1995) stated that the enzyme 2,3-dihydroxy biphenyl
1,2-dioxygenase derived from strain RDC1 (etbC-encoded) of Rhodococcus when
cultivated on ethylbenzene having the largest substrate specificity of any meta-
cleavage dioxygenase which have been identified as Rhodococcus strains.

Hauschild et al. (1996) discovered that genes bphC and etbC present in
Rhodococcus strain RHA1 cultivated on biphenyl or ethylbenzene have been
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observed to enhance the spectrum of PCB substrates when encoded by the expres-
sion of two 2,3-dihydroxy biphenyl 1,2-dioxygenases. Chen and Mulchandani
(1998) stated that a gene that regulates the process of deamination of
de-ethylatrazine, de-isopropylatrazine, and dechlorination was moved from
R. Corallines to Rhodococcus TE1. This led to the total degradation of atrazine to
cyanuric acid through the recombinant Rhodococcus.

Fujita et al. (1995) reported that the presence of the phenol hydroxylase gene
isolated from Pseudomonas putida BH with the recombinant Escherichia coli
possesses the capability to proficiently degrade trichloroethylene. Yee et al. (1998)
tested and evaluated the rhizoremediation potential effects of P. fluorescens on
trichloroethylene. Moreover, Hauschild et al. (1996) observed that genes derived
from catechol 2,3-dioxygenase and phenol hydroxylase were cloned and that their
manifestation was established under many conditions in Alcaligenes eutrophus
JMP134. The manifestation of the gene(s) encoding phenol hydroxylase was
detected with the possible potential for oxidative removal of TCE. It was observed
that the cloning of the tod gene encoding toluene dioxygenase inside Deinococcus
radiodurans which stimulates the bacterium to play a crucial role in the oxidization
of 3,4-dichloro-1-butene, indole, toluene, and chlorobenzene. It was discovered that
the engineering of D. radiodurans enhances the process of bioremediation which
entails mixed wastes containing both organic solvents and radionuclides (Lange
et al. 1998).

Erb and Wagner-Dobber (1993) stated that genetically engineered pseudomonad
portends the capacity to improved degradation of a mixture of phenols when
performed at laboratory scale using a sewage plant fed with chemicals containing
4-methyl phenol and chlorophenols, respectively. They also stated that microbiota
can prevent the effects of the pollutants on the sewage tank by guaranteeing the
up-keep. Some scientists from the University of Tennessee in cooperation with Oak
Ridge National Laboratory recently perform a bioremediation field evaluation uti-
lizing a genetically modified strain of P. Fluorescens strain HK44 (Sayler et al.
1999; Ripp et al. 2000). It was discovered that strain HK44 possesses the capability
to sense the presence of a contaminant in an environment by reacting to it through
bioluminescence signaling to be applied as an online tool for the evaluation and
assessment of the eco-restoration process (Sayler and Ripp 2000). Table 14.1 shows
the details of genetically engineered microorganisms used in bioremediation.

14.4 Genetically Engineered Microorganisms Used
for Bioremediation

Abatenh et al. (2017) did a review of the utilization of microbes in the biodegrada-
tion of pollutants. The authors reported that microbes are important elementary tool
to stop or reduce environmental degradation as a result of pollution. These microbes
are used as bioremediation agents because of the astonishing qualities they have:
strong metabolic activities, ability to withstand environmental stress, great genetic
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Table 14.1 List of genetically engineered microorganisms reported for bioremediation

SN Lists of GMOs Role

Contaminated
compounds used
for References

1 Fungi Bioremediation Polycyclic aro-
matic hydrocar-
bons (PAHs)

Atagana (2009) and
Kang (2014)

2 Rhizobium sp., Rhodococcus
erythropoli

Bioremediation Polychlorinated
biphenyl (PCBs)

Damaj and Ahmad
(1996) and Kang
(2014)

3 Sphingonomas, Pseudomo-
nas, Burkholderia, Bacillus,
and Agrobacterium

Bioremediation Polycyclic aro-
matic hydrocar-
bons (PAHs) and
phenanthrene

Aitken et al. (1998)
and Kang (2014)

4 Fomitopsis palustris,
Pleurotus ostreatus,
Coriolus versicolor,
Pycnoporus sanguineus, and
Pseudomonas spp.

Bioremediation Polycyclic aro-
matic hydrocar-
bons (PAHs)

Arun et al. (2008)
and Kang (2014)

5 Clostridium acetobutylicum
and Acetobacterium
paludosum

Bioremediation Hexahydro-1,3,5-
trinitro-1,3,5-tri-
azine (RDX)

Sherburne et al.
(2005) and Kang
(2014)

6 Rhizobium meliloti and
strain B-14 (Enterobacter)

Bioremediation Chlorpyrifos Kang (2014)

7 Pseudomonas spp. Bioremediation Atrazine Kang (2014)

8 Rhodopseudomonas
palustris and Aerococcus
spp.

Bioremediation Cd, Cr, and Pb2+ Mohamed et al.
(2011) and Sinha
and Biswas (2014)

9 Aromona spp. and Pseudo-
monas aeruginosa

Bioremediation Cr, Ni, cu, and U Sinha et al. (2011)

10 Strains RSA-4, PB-5, and
JX126862

Bioremediation Cd Priyalaxmi et al.
(2014)

11 Geobacter sp. Bioremediation U (VI) and Fe
(III)

Mirlahiji and
Eisazadeh (2014)

12 Cladosporium sp.,
Microsporum,
Terichoderma,
Paecilomyces sp.,
Paecilomyces sp., A.
fumigatus, and Aspergillus
versicolor

Bioremediation Cd Soleimani et al.
(2015)

13 Strain shh49T Bioremediation Iron (Fe) Wu et al. (2015)

14 Strain CBAM5 Bioremediation Pb, Cr, cu, and co Peña-Montenegro
et al. (2015)

15 Pseudomonas aeruginosa
and Pseudomonas
fluorescence

Bioremediation Cu2+, Mn2+, Pb2
+, Zn2+, and Fe2+

Paranthaman and
Karthikeyan (2015)

16 Cunninghamella elegans Bioremediation Ni, hg, and Pb2+ Tigini et al. (2010)

(continued)
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Table 14.1 (continued)

SN Lists of GMOs Role

Contaminated
compounds used
for References

17 Saccharomyces cerevisiae Bioremediation Ni, hg, and Pb2+ Chen and Wang
(2007), Talos et al.
(2009) and Infante
et al. (2014)

18 Serratia ficaria, Citrobacter
koseri, Bacillus coagulans,
Bacillus cereus, Pseudomo-
nas cepacia

Biodegradation Crude and diesel
oils

Kehinde and Isaac
(2016)

19 Bacillus sp., Arthrobacter
sp., P. putida, and pseudo-
monas aeruginosa

Biodegradation Diesel oil Sukumar and
Nirmala (2016)

20 B. sphaericus,
B. licheniformis, strain KH6

(P. aeruginosa), and
B. brevis

Biodegradation Crude oil El-Borai et al.
(2016)

21 Saccharomyces cerevisiae,
Candida krusei, Candida
glabrata, and Aspergillus
niger

Biodegradation Crude oil Burghal et al.
(2016)

22 Bacillus cereus Biodegradation Diesel oil Maliji et al. (2013)

23 Pseudomonas aeruginosa,
Corynebacterium
propinquum, Bacillus
subtilis, and Alcaligene
sodorans

Biodegradation Oil Singh et al. (2013)

24 Fusarium sp. Biodegradation Oil Hidayat and
Tachibana (2012)

25 Photobacterium sp.,
Enterobacter sp., Pseudo-
monas sp., and
Acinetobacter sp.

Biodegradation Methyl parathion
and chlorpyrifos

Mulligana and
Yong (2004)

26 Arthrobacter sp.,
Acinetobacter, and Pseudo-
monas putida

Biodegradation Decis 2.5 EC,
malation, Fitoraz,
and Ridomil MZ
68 MG

Mónica et al. (2016)
and Hussaini et al.
(2013)

27 Enterobacter Biodegradation Chlorpyrifos Niti et al. (2013)

28 Bacillus, Staphylococcus Biodegradation Endosulfan Mohamed et al.
(2011)

29 Klebsiella oxytoca, Staphy-
lococcus, Bacillus
macerans, and Bacillus
firmus

Biodegradation Textile effluents
and vat dyes

Jaysankar et al.
(2008) and Adebajo
et al. (2017)

30 Acinetobacter baumannii,
Bacillus cereus,
Exiguobacterium
aurantiacum,
Exiguobacterium indicum

Biodegradation Azo dye effluents

(continued)
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ability that is retained in the population and high nutritional qualities. They stated the
process involved in the bioremediation of hazardous and waste materials as degra-
dation, eradication, and immobilization/detoxification. Besides, they itemized vari-
ous bioremediation techniques (bioattenuation, biopiles, bioaugmentation, and
biostimulation) that are currently applied in the degradation of pollutants in the
environment. However, each technique has its own merits and demerits based on its
utilization. For microbes to be efficient in their biological role in the ecosystem, they
must be able to tolerate the level of abiotic and biotic factors influencing them. In
conclusion, the authors stated that bioremediation is a very attractive and fruitful
alternative for recuperating, managing, cleaning, and decontaminating environmen-
tal pollutants. The action of microorganisms on wastes and hazardous compounds
will be more effective if the environmental factors allow their activity and growth.
The merits of using microorganisms surpassed their demerits.

Kang (2014) did a review on the elimination of natural pollutants using
phytoremediation and bioremediation processes. The authors recounted the ecolog-
ical and health impacts of dangerous organic contaminants to the environment and
humans at large. They also stressed that the application of biotechnology using
phytoremediation and bioremediation processes is the best natural method in
decontaminating wastes in the environment. Hence, they are green, cheap to pur-
chase, and sustainable in usage. The benefits of their usage surpassed what is
obtainable from conventional methods. In conclusion, the authors recommend
both the biological degrading processes as promising biotechnology for environ-
mental sustainability. Moreover, to expand on their utilization, the technology must

Table 14.1 (continued)

SN Lists of GMOs Role

Contaminated
compounds used
for References

31 Strain HKG12 (Bacillus
pumilus), Pseudomonas
aeruginosa, and strain ETL-

2012 (Bacillus spp.)

Biodegradation RNB dye and
sulfonated di-Azo
dye reactive red
HEBB

Shah et al. (2013),
Das et al. (2015),
and Yogesh and
Akshaya (2016)

32 Nocardia atlantica, Listeria
denitrificans, Micrococcus
luteus

Biodegradation Textile Azo dyes Hassan et al. (2013)

33 Penicillium ochrochloron Biodegradation Industrial dyes Shedbalkar and
Jadhav (2011)

34 Trametes trogii,
Phanerochaete
chrysosporium, and
Pycnoporus sanguineus

Biodegradation Industrial dyes Yan et al. (2014)

35 Strain NAP1, NAP2, and
NAP4 (B. subtilis)

Biodegradation Oil-based paints Jasińska et al.
(2012)
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be couturier to the level of pollutants, the site of application, and the indigenous
locality. In conclusion, they recommend that further study should be done on the
biological activities of plant and microbial remediators. The role of a specific DNA
of the microbes and plants that are involved in the transport of specific contaminants,
uptake, and metabolism should also be looked into to be utilized for successful
eco-friendly biotechnology. However, there is great latency in the field of biotech-
nology. With the increase of substance and effective management from governmen-
tal bodies, there may be novel breakthroughs via research and pilot studies on
phytoremediation and bioremediation.

Urgun-Demirtas et al. (2006) in a review critically evaluate the bioremediation
potentials of GMOs on contaminants. The authors stated some important aspects of
utilizing GMOs such as enzyme affinity and specificity and the improvement of new
strains that have desirable qualities. A typical example is the genetic engineering of a
microbe using the red blood cell (VHb). This engineered microbe can be utilized for
the decontamination of polyaromatic hydrocarbons (PAHs) under low oxygen state.
This will enhance the decontamination of polluted sites where bacteria cannot thrive
under oxygen limiting environment. This is because some bacteria need oxygenated
enzymes (oxygenases) for the mineralization of some natural pollutants on site.
Notwithstanding the enormous merits of this, there are a series of worries that
their application for the bioremediation process might cause serious environmental
and health risks via gene transmission. In conclusion, they proposed the genetic
enhancement of native microbial species to increase the efficiency of
bioremediation.

Das and Chandran (2011) did a review of the bioremediation of pollutants in
petroleum hydrocarbon compounds. They recounted that most neurotoxic and car-
cinogenic impacts are a source of hydrocarbon contaminants. Conventional methods
(chemical and mechanical) used in the degradation of hydrocarbon pollutants are too
expensive and not environmentally friendly. An alternative approach (bioremedia-
tion) serves as a promising biological tool because of the enormous benefits derived
from its utilization: cheap, green, non-noxious, and the ability to totally mineralize
(biodegrade) pollutants into cell protein, inorganic compounds, water, and carbon
dioxide. Specific microbes in soil and water have been known to have the potential in
decontaminating hydrocarbon pollutants. In conclusion, the authors recommend the
utilization of GMO microbes as the first tier in the decontamination or clean-up of
hydrocarbon pollutants in soil and water because of the significant potential it
possesses.

Price and Cotter (2014) did a pilot survey of the contagion episodes linked to
GMOs from 1997 to 2013. Since the introduction of GMOs in 1996 into cultivated
land, there has been a great concern that native plants (non-GMOs) can become
contaminated by the recombinant engineered DNA. A total of 396 incidences were
documented from 1997 to 2013, in the survey piloted in 63 countries. The results of
their pilot survey showed that Oryza sativa (rice) has the highest contaminated level
from GMO occurrences regardless of that genetically modified rice has not yet been
commercialized anywhere in the world. The major incidences occurred from two
clear illicit rice-contaminated scenarios: BT63 rice from China and LLRICE from
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the USA (75% contamination level). Zea mays (maize) accounted for about 25% of
the polluted episodes while Brassica napus (oilseed rape) and Glycine max (soya
bean) had roughly 10% of the contaminated incidents. However, several biological,
ecological, and economic factors such as the level of international trade, a descrip-
tion of the nature of food, the biology of the plant, and the span of acre cultivated,
might have influenced the degree of the contamination. The authors in conclusion
stated that GMO contamination can ensure self-reliance from commercialization. A
typical case is pawpaw, maize, and grass in Thailand, Mexico, and the USA,
respectively, which is still ongoing. Other special cases are pharmaceutical produc-
ing genetically modified and Bt10 maize crops. GMO contamination relies solely on
both besieged observing regimes and routine which might not be consistent from one
nation to the other, even in the European Union. They recommend that a rapid
assessment should be done at field trials before commercialization. This will hinder
the transfer of the genetic line of the modified organisms.

Liu et al. (2019) did a review on the alleviation of the contaminated environment
of GMOs as well as the present challenges and prospect standpoints. The authors
stated that environmental toxic wastes are increasing due to the global increase in
population and technological boom. These have generated a lot of chemical residues
in the biosphere which might be carcinogenic and hazardous to life in water, land,
and air. The physical and conventional chemical means of decontamination of
wastes in the ecosystem have been proven to be inefficient for waste-chemical
degradation. However, a sustainable approach using a biological approach (biore-
mediation), a less noxious, social acceptance, and eco-friendly method has received
a significant level of acceptability for the abatement and mitigation of pollutants in
the environment. The authors looked at the merits derived from GMOs when utilized
in the degradation of pollutants like agrochemicals, phenazines, PCBs, PAHs, heavy
metals, and artificial dyestuff. However, the ecological and health risk associated
with the genetic exchange of materials with the microbes at the site of actions has
been one of the limitations and challenges faced in the applications. The authors in
conclusion propose that an integrated ecological, biological, and microbiological
association should go alongside the methodology of the engineering designs to attain
a desirable and effective in situ remediation process without a trace of recombinant
bacteria contamination. Besides, the introduction of protoplast fusion and plasmid
technical know in the breeding of GMOs will serve as a pivotal stand view for future
bioremediation processes.

Benjamin and Ashok (2016) did a review on the mode of action for the
bioremediative capability of GMOs. The authors recounted that the application of
conventional method in the remediation of wastes and hazardous compounds in the
ecosystem has failed in so many aspects like the generation of the more noxious
compound, the complication of the biological process, and very expensive to
employ. An environmental welcoming biological method, bioremediation, has
been chosen as the best candidate for the natural decontamination of wastes and
hazardous wastes because it is cheaper and more effective in environmental clean-
up. The authors recommend an integrated method between bioremediation and
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GMOs, to fathom their correlation for effective management of pollutants at the
sites.

Wastewater effluents obtained from metal refineries and mines have been
highlighted to be contaminated with heavy metal ions which could eventually
constitute environmental and health hazards. The application of conventional tech-
nologies has been recognized for the removal of heavy metal ions, but there are
several disadvantages such as ion exchange resins are manufactured from
unsustainable nonrenewable resources, chemical precipitation produces activated
carbon and sludge waste. The utilization of biomass derived from some beneficial
microorganisms has been identified as an alternative for the bioremediation of
heavily contaminated metal ion present in an environment. Precisely,
bioaccumulation has been identified as a natural biological process where microor-
ganisms could be utilized to sequester metals and proteins available in the intracel-
lular space, for specific utilization in various cellular processes such as stabilizing
charges on the biomolecules, cell signaling, and enzyme catalysis. However, the
application of genetic engineering and recombinant expression enables improved
sequestration and uptake of heavy metal ions.

Because of the aforementioned, Diep et al. (2018) wrote a comprehensive review
on the application of bioaccumulation that could be utilized for bio-extractive
applications which entail the absorption and recovery of heavy metal ions for
downstream purification as well as the process of refining instead of disposal. The
authors also validated various import-storage systems into a biochemical framework
and pointed out significant effort that could prevent all the highlighted limitation that
could affect a greater result especially at the industrial level while gaps and other
future recommendation that could promote the process of bioaccumulation.

14.4.1 Application of Recombinant Bacteria for Metal
Removal

The application of recombinant bacteria in the removal of certain metal from heavily
polluted water has been established. This includes the application of genetically
engineered E. coli which has been acclimatized to possess the capability to express
metallothionein which is a metal-binding protein and Hg2+ transport system as well
as possess the capability to build up 8 μmole Hg2+/g cell dry weight. It has been
observed that the presence of chelating agents such as Ca2+, Na+, and Mg2+.

14.4.1.1 Significant of Genetically Modified Biosorbents
in the Eco-Restoration of Polluted Environment

The application of genetic engineering has been applied for the enhancement of
beneficial microorganisms in a way to enhance some intrinsic potentials and adapt-
abilities to numerous environmental conditions (Bae et al. 2000; Majáre and Bülow
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2001). It has been observed that virgin biosorbents normally do not have specificity
in the metal binding which may induce problems in the recovery and especially the
process of reuse of certain metal of high significance. Therefore, the utilization of
genetic engineering could enhance the level of specificity and build up potentials of
microbial cells for the effective restoration of the heavily polluted environment
(Pazirandeh et al. 1995). The application of genetic engineering could also assist
in the production of microbial biomass especially from the fermentation process. In
the bioprocess, several nucleic acids and amino acids are generated on an industrial
scale. It has been observed that some strains react and are sensitive to the presence of
metals with enhanced generation of cysteine-rich peptides which entails
metallothioneins (MTs), phytochelatins (PCs) (Mehra and Winge 1991), and gluta-
thione (GSH) (Singhal et al. 1997). They all possess the capability to combine with
metal ions biologically, in inactive forms (Bae et al. 2000).

It has been highlighted that the overexpression of MTs in bacterial cells will lead
to the improvement of metal accumulation as well as strategic enhancement in the
rate of metal build-up and microbial-based biosorbents for the eco-restoration of the
heavily polluted environment (Pazirandeh et al. 1995). The presence of intracellular
expression of MTs may obstruct the reuse of biosorbents because it possesses the
capability to prevent the release of the build-up metals (Gadd and White 1993).
However, Chen and Georgiou (2002) infer that these challenges could be overcome
through the manifestation of MTs on the cell surface.

Sousa et al. (1996) evaluated the probable introduction of MTs into accommo-
dating site 153 of the LamB sequence. It was observed that the manifestation of
hybrid protein on the cell surface vividly improved the whole-cell build-up of
cadmium. The presence of this manifestation or the presence of proteins on the
surface offers an alternative method for the preparation of cost-effective affinity
adsorbents. The application of PCs in the same way in comparison to MTs has been
recommended (Bae et al. 2000). PCs are cysteine-rich peptides, with short size, and
they possess a general structure (γGlu-Cys)nGly (n ¼ 2–11). One of the merits of
PCs, when compared to MTs, includes exceptional structural features, predomi-
nantly the incessantly recapping γGlu-Cys units. Moreover, it has been noted that
PCs possess a more enhanced metal-binding capability which is based on a cysteine
basis when compared to MTs (Mehra and Mulchandani 1995). Conversely, the
growth of overexpressing PC organisms necessitates a comprehensive understand-
ing of the mechanisms applied in the production and chain elongation of these
peptides.

Numerous biosorbents, demonstrating metal-binding peptides on the cell super-
ficial, have been efficaciously engineered. An example of this entails a repetitive
metal-binding motif, having (Glu-Cys)nGly (Bae et al. 2000). These peptides
resemble the structure of PCs but with little difference in the peptide bond that
joins the cysteines and the glutamic acids. It was discovered that phytochelatin
analogs were available on the outer surface of the bacterial cell which enhances
the build-up of 20-fold (Bae et al. 2001) and Cd2+ and Hg2+ by 12-fold (Bae et al.
2000).
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The application of E. coli has been recognized as a recombinant bacterium that
possesses an enhanced metal absorption capacity because the bacteria has an
enhanced surface area per unit of cell mass which assists in the uptake of more
metal from solutions (Chen and Wilson 1997). Moreover, it has been observed that
the system has its own advantages when compared to Gram-negative bacteria (Malik
et al. 1998; Samuelson et al. 2000). The process of translocation occurs only through
one membrane. During the process of translocation, the Gram-positive bacteria are
more rigid with minimal sensitivity to stress because of the presence of a thick cell
wall that can encircle the microbial cells, which enable the process of bio-adsorption
to be more feasible (Kelemen and Sharpe 1979). Samuelson et al. (2000) also utilize
Staphylococcus carnosus strains and recombinant Staphylococcus xylosus with a
surface-exposed chimeric protein. It was revealed that the two strains of
Staphylococcaceae possess the capability to enhance nickel-binding potentials
which might be linked to the introduction of the H1 or H2 peptide into their surface
proteins. This showed that genetically engineered biosorbents may be utilized in the
separation of pollutants from toxins and other contaminants from heavily contami-
nated solutions.

14.4.1.2 Modes of Action Utilized by Genetically Engineered
Microorganisms for the Bioremediation of Heavily
Contaminated Environment

The application of biostimulation and bioaugmentation has been identified as the
technique utilized for the rapid bioremediation of heavily polluted sites. Several
tremendous signs of progress had been made in the late 1970s and early 1980s where
the bacterial gene responsible for the encoding catabolic enzymes for bioremediation
of compounds were identified, cloned, and characterized and used for the
eco-restoration of the heavily polluted environment (Cases and de Lorenzo 2005).
A genetically modified microorganism (GMM) and genetically engineered micro-
organism (GEM) could be defined as microorganism whose genetic material has
been changed utilizing genetic engineering approaches stimulated by a regular
genetic exchange between microorganisms. This approach is referred to as recom-
binant DNA technology. The application of genetically engineered microorganisms
has special applications for eco-restoration of activated sludge, groundwater, soil,
and the heavily polluted environment with synthetics chemicals (Sayler and Ripp
2000).

The specific effort has also been considered on the application of biosafety and
risk assessment especially when genetically modified microorganisms are utilized
for the bioremediation of polluted soil (Cases and de Lorenzo 2005). The following
five potential modes of action that govern the process of genetically modified
microorganisms for the bioremediation of heavily polluted environment.

1. Alteration of enzyme affinity and specificity.
2. Construction of necessary pathway and their regulation.
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3. Bioprocess improvement, observing, and control.
4. Bioaffinity.
5. Use of bioreporter sensor for toxicity decrease, chemical sensing, and endpoint

evaluation (Menn et al. 2008).

14.4.1.3 Genes Responsible for Bioremediation Process in Genetically
Engineered Microorganisms

Molecular biology has been able to provide more insight on the application of tools
that could be used to optimize the biodegradation potentials of microorganisms,
through the pool of catabolic segments sourced from them (Ramos et al. 1994).
Several genes have been identified to be responsible for the biodegradation of a
heavily contaminated environment that consists of halogenated pesticides, toxic
wastes, chlorobenzene acids, and toluene. It has been highlighted that every com-
pound required a particular plasmid for the bioremediation. These plasmids are
grouped into (1) NAH plasmid which reduces naphthalene; (2) OCT plasmid
which reduces hexane, octane, and decane; and (3) CAM plasmids that decompose
camphor and XYL plasmid which reduces xylene and toluene (Ramos et al. 1994).
The capability of the genetically modified microorganisms to degrade toxic com-
pounds and hydrocarbon has been highlighted by Markandey and Rajvaidya (2004).
They utilize multiplasmid-containing Pseudomonas strain that could oxidize
terpenic, aliphatic, aromatic, and polyaromatic hydrocarbons. Moreover, the pres-
ence of XYL and NAH plasmid together with a hybrid plasmid from the recombi-
nation parts of CAM and OCT derived through the process of conjugation showed
that they could biodegrade naphthalene, camphor, salicylate, and octane (Sayler and
Ripp 2000). It was also observed that they possess the capability to grow on crude oil
because it could metabolize hydrocarbon more proficiently when compared to
another plasmid (Markandey and Rajvaidya 2004).

Moreover, P. putida has been highlighted as a microorganism that possesses the
capability to degrade several chemical compounds such aspKF439 (for salicylate
toluene), TOL (for toluene and xylene), pAC 25 (for 3-chlorobenzoate), and RA500
(for 3,5-xylene).

It was observed that plasmid WWO of P. putida which belongs to the sets of
plasmids which is referred to as TOL plasmid. It has been observed that molecular
approaches through sheer genetic engineering and plasmid breeding could lead to
the generation of microbes with enhanced catalytic potential that could play an active
role in the biodegradation of a heavily polluted environment (Sayler and Ripp 2000).

Typical examples of the genetic engineering technologies utilized by genetically
engineered microorganisms include alteration of substrate specificity by
Comamonas testosterone VP44 and changes in pathway (Hrywna et al. 1999). In
this regard, Alcaligenes eutrophusAE104 (pEBZ141) was applied for the removal of
chromium available in industrial waste (Srivastava et al. 2010) while the application
of recombinant photosynthetic bacterium, Rhodopseudomonas palustris, was
applied to remove mercury (Hg2+), and metallothionein for Hg2+ removal was
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available in heavy metal wastewater (Xu and Pei 2011). Moreover, the following
microorganisms possess the capacity to break down polychlorinated biphenyls such
as A. denitrificans JB1, Achromobacter sp. LBS1C1, and R. eutropha A5 which
were discovered to possess chromosomally located PCB catabolic genes that were
transferred into a heavy metal–resistant strain R. eutropha CH34 using natural
conjugation (Menn et al. 2008).

The utilization of rhizospheric and endophytic bacteria for the biodegradation of
toxic compounds available in the soil represents a new technology for the
eco-restoration of heavily contaminated sites (Divya and Deepak Kumar 2011).
Three procedures are involved in the selection of a suitable strain for gene recom-
bination and inoculation into the rhizosphere. First, the probable strain must be
stable after the process of cloning, and the targeted gene must possess a high
expression; second, the strain must be insensitive and tolerant to pollutant, and
third, the stains must be able to survive in some certain specific plant rhizosphere
(Huang et al. 2004).

Glick (2010) stated that numerous bacteria available in the rhizosphere possess
the limited capability to break down organic pollutants but the application of
molecular biology through the application of genetically engineered rhizobacteria
which possess the capability to break down pollutants because of the presence of
contaminant-degrading gene are constructed for rhizoremediation. A typical exam-
ple of these molecular modes of action involved the breakdown of some contami-
nants which include polychlorinated biphenyls and trichloroethylene.

Sriprang et al. (2003) inserted the Arabidopsis thaliana gene which is responsible
for phytochelatin synthase (PCS; PCSAt) intoMesorhizobium huakuii sub sp. rengei
strain B3 which later establish a robust symbiosis between Astragalus sinicus and
M. huakuii subsp. rengei strain B3. The gene was inserted to perform some specific
function such as the build-up of Cd2+, produce phytochelatins, and regulation of
bacteroid specific promoter gene (Sussman et al. 1988). Moreover, there is a need to
factor in some biosafety issues and many field trials before the eventual release of
genetically engineered microorganisms into the environment. This will go a long
way in resolving several ecological damages (Wackett 2004).

14.4.1.4 Disadvantages of Genetically Engineered Microorganisms
in the Eco-Restoration of Polluted Environment

The application of genetic engineering has led to the production of many useful
strains that possess a huge capability to break down contaminants in a bioreactor or a
petri dish. However, the translation of these techniques on a larger scale is a very big
problem especially in situ bioremediation practices (Sayler and Ripp 2000). It has
been observed that some of these strains possess little action during the field trial.
The application of equivalent methods has been applied to established that recom-
binant genes play an active role in the biodegradation of a heavily contaminated
environment. Moreover, some strains are fast grower with high biodegradative
capability. However, they could build up a high level of biomass which could affect
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the rate of their bioremediation potentials. The alternative route to this involves the
application of potential strain that could exhibit a very high catalytic potential with
the lowest of cell mass. The manifestation of biodegradation genes can be preciously
separated with the application of starvation promoters or stationary phase promoters
(Matin 1994).

Furthermore, the recent development in the utilization of recombinant DNA
technologies has surfaced the manner for hypothesizing “suicidal genetically
engineered microorganisms” (S-GEMS) that could mitigate the predicted hazards
and eventual achievement of a cleaner environment. Also, some protozoa have been
identified to engulf and prevent the growth of the introduced recombinant or bacteria
beyond a certain level (Iwasaki et al. 1993; Foster et al. 2002). On the whole, there is
a need to evaluate the effectiveness of a strain with necessary in situ catalytic activity
for the biodegradation of pollutants which must be carried out on a larger scale in the
field. Moreover, there is a need to establish the risk associated with engineered
bacteria. This will go a long way in their establishment as a potential bioremediation
tool for the treatment of a heavily polluted environment (Sayler and Ripp 2000; Ripp
et al. 2000). There is also a need to develop some other stains apart from B. subtilis,
E. coli, and P. putida, as an engineered microbe for their application as an effective
bioremediation tool. Conversely, the persistence of the genetically engineered bac-
teria in complex environmental conditions is still to be addressed in light of state-of-
the-art outcomes (Singh et al. 2011).

14.5 Conclusion and Future Recommendations

This chapter has provided a detailed information about the application of genetically
engineered microorganisms for the eco-restoration of the heavily polluted environ-
ment such as activated sludge environments, groundwater, and soil, and detailed
information was provided on their utilization for the bioremediation of polluted
environment with heavy metal and several synthetics chemicals. The application of
omic and system biology in the enhancement was also highlighted in detail while the
mode of action through which these genetically engineered microorganisms perform
their biodegradative activity was also established. There is a need to carry out several
field trials such as long-term field release studies to validate all the laboratory-based
experimental data. The biosafety precaution and safety of genetically engineered
microorganisms need to be establishing before their eventual release.
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Abstract Industrial wastewater creates major environmental trouble if released
without proper treatment. Large volumes of water contaminated with various indus-
trial and anthropogenic activities can produce hazardous effects on the environment
and the living organisms. Various industries discharge toxic materials, heavy metals,
and anions into the environment that considerably enhanced the deterioration of
environment, flora, and fauna, and significantly pose threats to the ecosystem. These
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noxious materials cause serious health issues, if they surpass the acceptable limit in
water. There is a big challenge to remove toxic pollutants from water and wastewa-
ter. Some traditional methods such as coagulation, chemical precipitation, carbon
adsorption, oxidation, ion exchange, evaporations, and membrane processes are
found to be helpful in the treatment of wastewater. However, these methods are
unlikable from both environmental and cost-effective viewpoints because these
require utilizing chemical compounds, huge energy and also do not degrade the
complete range of pollutants. Therefore, novel and more effective treatment methods
of removing toxic compounds from water and wastewater needed to be develop. In
this regard, the efforts have been made toward bioremoval applications and its
efficiency for the removal of hazardous materials from water and wastewater by
using microorganisms. Among all treatment methods introduced above, the biolog-
ical treatment method is a proficient, inexpensive, simple, and environment friendly
process for treating pollutants. Use of microbial technology in the treatment of
pollutants gained a momentum of efficient degradation ability, simple technical
operation, lower process time, low energy requirements, no secondary pollution,
and long-term viability.

In this chapter, we are aimed to make comprehensive description about microor-
ganisms and their effectiveness on the removal of various hazardous materials which
are released from different industrial effluents.

Keywords Microbial technology · Toxic pollutants · Cyanide · Heavy metals ·
Sewage · Enzymatic treatment

15.1 Introduction

Environmental pollution has been increasing in the past few decades due to
increased human activities on unsafe agricultural practices, energy reservoirs, and
rapid industrialization. The increasing pollution of water resources by hazardous
industrial wastewater poses a critical ecological trouble (Giraldo and Moreno-
Piraján 2010). Most hazardous contaminants like phenol, cyanide, fluoride, xenobi-
otics, and heavy metals are commonly toxic and carcinogenic doer, including
discharges from different industries such as chemical, pharmaceutical, paint, agri-
cultural, herbicides, pesticides, plastics, pulp and paper mills, textile, coal refineries,
dying, petrochemical, etc. When these toxic materials are released from industrial
effluents into the water tributary, it makes a serious threat to the human population,
aquatic life, flora, and fauna. Today, humans are affected by the devastating envi-
ronment and polluted water became a greater issue of concern. In general, from
about 1970 to 1990s, treatment of wastewater concentrated on the reduction and
elimination of floatable and suspended material, removal of BOD, and the abolition
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of disease-causing pathogens from wastewater. From 1990, due to improved tech-
nical knowledge and scientific awareness, treatment of industrial effluents has started
to believe on the environmental issues and the health concerns associated to haz-
ardous and potentially lethal substances released into the water and environment
(Rajasulochana and Preethy 2016). However, the early treatment objectives remain
applicable at present, but currently the essential level of treatment has improved
extensively and further treatment principles and goals have been added. In this
regard, key pursuits were taken throughout the world, to achieve more effective
and prevalent methods for the improvement in the quality of wastewater treatment.
For this, the efforts should be done on an increased understanding and facts about the
adverse effects on the environment due to the hazardous industrial effluents dis-
charge in water bodies.

There are various treatment techniques available in the removal of hazardous
contaminants from industrial wastewater such as physical and chemical processes,
i.e., adsorption, ion exchange, coagulation, precipitation, evaporation, chemical
oxidation, reverse osmosis, membrane processing, and electrochemical treatment
(Bakkaloglu et al. 1998; Matsumotto et al. 2007a, b; Hamdan and El-Naas 2014; Lin
et al. 2014). However, some treatment techniques have given very positive results
but they are disapproved due to the high processing cost and unfavorable in the
environmental point of view. Scarcity of clean water has become more common,
therefore environmental regulations has become stricter day by day. Hence, there is a
need to search for a sustainable, reliable, eco-friendly, cost-effective solution that
could prevent environmental pollution and challenges. Considering the high treat-
ment cost and eco-unfriendly methods, the extensive work has been done on the
recent advancement in the bioremoval techniques using microorganisms with the
ultimate goal being to effectively restore polluted environments in an inexpensive
and environment friendly manner. The microorganisms used to eliminate and
recover harmful or valuable metals from industrial wastewaters has grabbed atten-
tion in the recent past due to improved performance, low cost of raw materials, and
availability (Ahluwalia and Goyal 2007, b; Benaissa and Elouchdi 2007; Bunluesin
et al. 2007, b). Microorganisms act an important role in the environmental outcome
of hazardous compounds and toxic metals with a diversity of mechanisms carrying
out transformations between insoluble and soluble forms. These mechanisms are
essential parts of real biogeochemical cycles and are of possible for both in situ and
ex situ biological treatment processes for liquid and solid wastes (Gadd 2000).
Researchers have developed and designed different bioremediation techniques;
however, according to nature and/or type of contaminants, various microbial species
are found to be capable to remove toxic materials from industrial wastewater and
restore polluted environments. The present chapter describes the neoteric mecha-
nisms of contaminants removal from wastewater and effectiveness of microbial
transformations of contaminants through bioremediation and biotechnological
approach.
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15.2 Major Toxic Pollutants Their Sources and Effects
on Environment and Human Beings

From many years it has been observed, the inappropriate disposal of industrial
wastewater becomes a foremost trouble and a prime concern to both industrialists
and government. The wastewater produced from industrial activities and domestic
comprise the key sources of the natural water pollution. Following is the major toxic
pollutants which are released from various industrial effluents.

15.2.1 Heavy Metals

Heavy metals are one of the most stable metallic elements discharge from industrial
waste, having a comparatively high density, i.e., more than 5 g/cm3 and are toxic
even at low concentrations.

As we know that human activities and wrong industrial discharge practices are the
major cause of heavy metal production, pollution, and causative to disease as well as
poverty on a worldwide level. Depending on the exposure of heavy metals, it can be
noxious to human health (Costa et al. 2006). The metalloids and metals that pollute
water and most frequently occur in environment comprise mercury, arsenic, chro-
mium, lead, zinc, uranium, selenium, silver, nickel, gold, and cadmium. Some of
them are recognized micronutrients, such as iron, cobalt, zinc, chromium, copper,
iodine, manganese, molybdenum, and selenium, while they are crucial for the
synthesis of certain biomolecules. Industrial wastewater containing heavy metals
include automobile exhaust, acid mine drainage, effluent from storage batteries and
the manufacturing and too little use of pesticides, fertilizers, and loads of others. The
metallurgical industries to make batteries such as lithium, lead, and Ni-Cadmium
batteries leads to the environmental pollution. Smelters and factories that practice
enormous quantities of metals may also be cause of metal pollution via smoke
stacks.

Arsenic is also one of such highly toxic contaminant, which have utmost threats
to the microorganisms and human beings. It is expected that approximately ten
million people suffer from high arsenic menace worldwide (Li et al. 2014; Essadki
et al. 2009). Arsenic is occurring natively in a large quantity in the Earth’s crust and
in little amounts in rock, soil, air, and water. The normal concentration of arsenic in
the continental crust is 1–2 mg/kg. The mean concentration of arsenic in igneous
rocks ranges from 1.5 to 3.0 mg/kg, while in sedimentary rocks it ranges from 1.7 to
400 mg/kg. Around one-third of the arsenic in the atmosphere comes from natural
sources (NIH and CGWB 2010). Volcanic activity is the most significant natural
source of arsenic. Another most important natural source is the arsenic-containing
vapor that is produced from solid or liquid forms of arsenic salts at low temperatures.
The rest two-third arsenic comes from anthropogenic sources which include the
major industrial processes such as metal smelting, coal-fired power plants, mining,
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burning of fossil fuels and that provide arsenic pollution to water, air, and soil (NIH
and CGWB 2010). Arsenic pollution in groundwater was reported in the Ganga-
Brahmaputra fluvial plains in India and Padma-Meghna fluvial plains in Bangladesh.
In India, the groundwater arsenic pollution was earliest surfaced from West Bengal
in 1983, many other States, namely, Punjab, Uttar Pradesh, Bihar, Jharkhand,
Assam, Manipur, and Rajnandgaon village in Chhattisgarh state have chronically
been exposed to arsenic contamination in groundwater beyond the permissible limit
of 50 μg/L. The arsenic menace in India has been recently reported, according to the
data available as from April 2016 to April 2018, the state-wise several habitations
influenced by arsenic pollution in ground water is shown in Fig. 15.1 and the number
of affected habitations by heavy metals is depicted in Fig. 15.2 (Ministry of Drinking
Water and Sanitation 2019).

15.2.1.1 Effect of Heavy Metals

Pollution by heavy metals generates several harmful outcomes, which affect micro-
organisms, human health as well as flora and fauna (Chakraborty et al. 2013; Ilyina
et al. 2003). Among heavy metals, lead is one of the most hazardous elements which
affects the pregnant women and children.

The World Health Organization (WHO) declares that there is no identified level
of lead exposure that is considered safe, and lead poisoning in childhood is linked to
cognitive impairment, aggressive offense in adulthood, and loss of financial produc-
tivity (Landrigan et al. 2017). Arsenic, cadmium, lead, and mercury are listed among
the ten chemicals of foremost public concern by the WHO for their promising to be
carcinogenic and impose severe organ injury (Tchounwou et al. 2012). The heavy
metals guidelines for drinking water by the World Health Organization (WHO) are
given in Table 15.1. Arsenic affected people suffering from different deadly diseases
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are being reported. Arsenic groundwater pollution has distant getting consequences
including its ingestion via food chain which are in the form of social chaos, health
risks, and socio-economic disintegration. Several kinds of skin traits and other
arsenic toxicity were identified from hyperkeratosis, melanosis, dorsal, keratosis,
keratosis, and non-pitting edema to gangrene. Arsenicals have been associated with
cancers of the bladder, lung, and skin (Ng et al. 2003). Arsenic expands its toxicity
by deactivating up to 200 enzymes, particularly those concerned in cellular energy
pathways and DNA synthesis and repair. Severe arsenic poisoning is linked primar-
ily with nausea, vomiting, abdominal pain, and severe diarrhea. Peripheral neurop-
athy and encephalopathy are reported due to arsenic toxicity. Persistent arsenic
toxicity results in multisystem disease (Ratnaike 2003). The lethal impacts of
some heavy metals, as they do not have any biological role, stay present in a few
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Table 15.1 The World Health Organization (WHO) standards for the most hazardous heavy
metals in drinking water

S. no. Heavy metals Max. acceptable conc. (WHO)

1 Arsenic 0.01 mg/L

2 Zinc 5 mg/L

3 Cadmium 0.003 mg/L

4 Magnesium 50 mg/L

5 Calcium 50 mg/L

6 Mercury 0.001 mg/ L

7 Silver 0.0 mg/L

8 Lead 0.01 g/L
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or the other form risky for the human being and its exact performance. Occasionally
they work as a pseudo element of the body whereas at certain times they may still
intervene with metabolic routes. Some metals, like aluminum, can be removed
through elimination procedures, whereas some metals get accumulated in the body
and food chain, showing a chronic character. Metal toxicity depends upon the
absorbed quantity, the mode of exposure and level of exposure, i.e., acute or chronic.
This can lead to diverse disorders and can also consequence in extreme damage
because of oxidative stress induced by free radical formation. Heavy metal ions have
a strong electrostatic attraction and high binding affinities with the similar sites that
essential metal ions usually bind to in different cellular structures, causing destabi-
lization of the structures and biomolecules (DNA and RNA, enzymes of cell wall),
therefore inducing replication fault and subsequent hereditary genetic disorders,
mutagenesis, and cancer (Perpetuo et al. 2011). Unlike organic pollutants, the
hazardous heavy metals cannot be biodegraded and accumulate in living organisms,
causing critical diseases and disorders (Liu et al. 2014), but they can change their
chemical properties through a unexpected array of mechanisms.

In order to combat over heavy metals menace, various remedial actions and
research studies have been encouraged and applying mostly in highly contaminated
areas, even as in other areas, where they are inadequate.

15.2.2 Fluoride

Fluoride is the 13th most copious element present in the earth’s crust. It is the
elemental form, fluorine is a flammable, irritating, and is the most powerful oxidiz-
ing agent. There are number of sources from where fluoride is generally generated
and added to the environment. The sources of fluoride are characterized into two
categories; natural sources which includes the fluorine already present in nature and
disseminated in Earth’s crust, mostly as the minerals fluorspar, fluorapatite, and
cryolite (Mamilwar et al. 2012). Sivasankar (2016) and Tebutt (1983) have described
the profusion of fluorine in earth’s crust as 0.05–0.1% (500–1000 mg/kg) and
300 mg/kg respectively. Studies reported the concentration of fluorine may differ
from 100 to 1000 mg/kg in the three rock types (igneous, sedimentary, and meta-
morphic rocks) (Sivasankar 2016). Fluoride exists in igneous and sedimentary rocks,
mainly in carbonated-type sedimentary and phosphate beds of volcanic layers.
Geochemistry, mineralogical composition of rocks and level of alteration of sedi-
ments direct the concentration of fluoride in groundwater (Sivasankar 2016). A huge
range of fluoride-containing minerals have been recognized these include sellaite
[MgF2], fluorite or fluorspar [CaF2], cryolite [Na3AlF6], fluorapatite [3Ca3(PO4)2Ca
(F,Cl2)], apatite [CaF2�3-Ca3(PO4)], topaz [Al2SiO4(F,OH)2], fluormica (phlogopite)
[KMg3(Si3Al)O10(F,OH)2], biotite [K(Mg,Fe)3AlSi3O10(–F,OH)2], epidote
[Ca2(Al2Fe

3+)(SiO4)(Si2O7)O(OH)], amphibole such as tremolite
[Ca2Mg5Si8O22(OH)2], and hornblende [(Ca,Na)2(Mg,Fe,Al)5(Al,Si)8O22 (OH)2],
mica, clays, villuanite, and phosphorite can be given as outstanding examples
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(Sivasankar 2016; Datta et al. 1996; Mohapatra et al. 2009; Kundu and Mandal
2009). The other source of fluoride is anthropogenic which includes industrial
activities. Moreover, several industrial procedures as coal combustion, steel produc-
tion, and other manufacturing processes like aluminum, nickel and copper produc-
tion, phosphate fertilizer production, phosphate ore processing, glass, brick and
ceramic manufacturing, etc. also contribute to enhance fluoride levels in water.
Organic fluorine is present in vegetables, fruits, and nuts. Concentrations of fluoride
are found almost in all types of natural waters. Sea water contains about 1 mg/L
whereas lakes possess concentration of less than 0.5 mg/L. In ground water, con-
centration of fluoride depends on the nature and regularly contacts with ores, rocks,
and minerals; as a result, high fluoride concentration may yield in groundwater
(Jacks et al. 2005; Vithanage and Bhattacharya 2015; Kumar et al. 2016; Raghav and
Kumar 2018; Ali et al. 2019; Kimambo et al. 2019). The contamination of fluoride
and its related diseases has been reported in many countries including Kenya,
Ethiopia, Libya, Algeria, Benin, Cameroon, Egypt, Ghana, Ivory Coast, Malawi,
Morocco, South Africa, Nigeria, Rwanda, Sierra Leone, Sudan, Tanzania, Togo,
Tunisia, Uganda, Zimbabwe, China, India, Indonesia, Iran, Pakistan, Saudi Arabia,
South Korea, Turkey, Yemen, Argentina, Brazil, Estonia, Sweden, UK (England and
Wales), Norway, USA, Canada, and Mexico (Yadav et al. 2013; Kimambo et al.
2019). The problems associated to fluoride contamination are more severe in various
states of India like Rajasthan, Andhra Pradesh, Odisha, Haryana, Punjab, Uttar
Pradesh, Gujarat, Maharashtra, Karnataka, and Tamil Nadu (Meenakshi et al.
2008; Arlappa et al. 2013; Ali et al. 2018). State/Union territories wise number of
fluoride contaminated habitations with population is reported by the states in IMIS of
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the government of India (Ministry of Drinking Water and Sanitation 2019) are
shown in Fig. 15.3. Though, from various studies, an approximate estimate of
overall daily fluoride exposure in a moderate climate would be around 0.6 mg per
adult per day in a region in which no fluoride is present in to the drinking water and
2 mg per adult per day in a fluoridated area (WHO 1984).

15.2.2.1 Effect of Fluoride

Critical, high-level exposure to fluoride can lead to abdominal pain, nausea and
vomiting, seizures and muscle spasms and excessive saliva. The WHO guideline
limit for fluoride in drinking water is 1.5 mg/L (Fawell et al. 2006). CPCB (Central
Pollution Control Board) India sets the limit of fluoride for different forms of water
which are 2.0 mg/L for inland surface water, 15 mg/L for public sewers and marine
coastal areas. Fluoride toxicity and the biological response leading to ailing effects
depend on various factors such as high concentration in drinking water, low calcium
and excess alkalinity in drinking water, total daily intake of fluoride, duration of
exposure to fluoride, and age of the individual. Expectant mothers and lactating
mothers are the most vulnerable groups as fluoride crosses the placenta because there
is no blockade and it also enters maternal milk. Derangement in hormonal profile
either as a result of fluoride poisoning or as a cause increases the disease. However,
fluoride defends teeth from decay by demineralization and remineralization, but
excess of fluoride can lead to dental fluorosis or skeletal fluorosis, which can damage
bones and joints. Since the fluoride is highly electronegative in nature, it possesses
strong affinity for the positively charged ions. The fluoride present in the drinking
water firstly brings alternations in the tooth as the fluoride replaces tooth enamel
hydroxyl group with fluoride resulting in formation of more stable compound said to
be fluorapatite and get deposited as calcium-fluoropatite crystals. Some of the algae
have high negative effect at high level of fluoride. Rate of respiration of Chlorella
pyrenoidosa was reduced by 50% with 570 mg/L concentration of fluoride. Many of
the aquatic animals like fishes and invertebrates directly take up fluoride from water.
Fluoride tends to accumulate in the exoskeleton and bone tissues of fishes. Toxicity
of fluoride to aquatic invertebrates increases with the increasing level of fluoride. It
exerts poisonous effect on the health of aquatic animals by inhibiting the enzyme
activity and finally interrupting metabolic process (Camargo 2003).

15.2.3 Cyanide

Cyanide is also one of the most hazardous nitrogenous compounds, and it occurs in
environment by both natural and anthropogenic sources. In First World War,
cyanide has been used as chemical weapon. Hydrogen cyanide vapor has been
applied to fumigate ships and buildings. Although some organisms synthesize
cyanide, there are about 3000 plants species, animals, microbes, and fungi that
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contain cyanide. Various food crops (cassava, lima beans, and corn), forages (alfalfa,
sorghum, and Sudan grasses) and horticulture plants (ornamental cherry and laurel)
produce cyanogenic glucosides that are stored in plant vacuoles and during hassle
situation or when the plant tissues are damaged they are released as nitrogen source.
In general HCN is produced by the plant as a defense mechanism against herbs.
Various algae like Cyanobacteria, Chlorella valgaris, Scenedesmus and Nostoc
muscorum (Gurbuz et al. 2004, 2009) bacteria like Chromobacterium violaceum
and certain Pseudomonas species (Fairbrother et al. 2009) and fungi like Actinomy-
cetes and Tricholoma produce and metabolize cyanide. In bacteria normally HCN is
produced during transition stage of growth and in fungus when fruiting bodies are
formed or during damaged or stress condition as a mechanism to provide nitrogen
and carbon source (Ezzi and Lynch 2005). In animals arthropods also produce HCN
(Barclay et al. 1998; Gupta et al. 2010). Cyanide enters into water stream from
different industrial activities, such as mining (extraction of metals such as gold and
silver), electroplating and metal finishing, steel tempering, automobile parts
manufacturing, photography, pharmaceuticals, synthesis of acrylic plastics, organic
nitriles, nylon, paints, dyes, drugs, and chelating agents and coal processing units
(Monser and Adhoum 2002; Aksu et al. 1999; Patil and Paknikar 2000; Dwivedi
et al. 2016b, c). Besides that, cyanide has also been produced in the jewelry and
metal industries which in turn lead to the generation of wastes having high cyanide
concentrations. The release of cyanide from industries worldwide has been estimated
to be more than 14 million kilogram per year (Dwivedi et al. 2011). The extraction of
gold from a mine is called cyanidation process, this process showed the result higher
than 20% of worldwide cyanide production (Mudder and Botz 2004). The process of
leaching the cyanide compound will lead to the production of extensive range of
metal–cyanide complexes in the overall cyanidation reaction. During cassava
processing in industries, abundance of natural cyanoglucosides released from the
roots of cassava is hydrolyzed enzymatically to form cyanide which is frequently
discharged in waste (Balagopalan and Rajalakshmy 1998). Cyanide is discharge into
the environment from agriculture practices also by the application of nitrile pesti-
cides such as bromoxynil and chlorothalonil. Bromoxynil (3,5-dibromo-4-
hydroxybenzonitrile) is used as a post-emergence herbicide for the control of
diseases of broad leaf crops (Grover et al. 1997).

15.2.3.1 Effect of Cyanide

Global industrial exploitation of cyanide is calculated to be 1.5 million tons per year,
and professional exposures account for a considerable number of cyanide poisonings
(Cummings 2004). Assimilation of cyanide can also result in either acute poisoning
(including death) or chronic poisoning to human beings and animals (Dwivedi et al.
2016b, c). Acute cyanide exposure results primarily in central nervous system,
cardiovascular, and respiratory effects; thyroid function abnormalities also have
been noted in people who are chronically exposed to cyanide. Cyanide is a leading
metabolic inhibitor by inactivation of respiration due to its firm binding to
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cytochrome C oxidase. In this process, electron transport chain is seized by the
cyanide by binding with the iron ion in terminal electron acceptor cytochrome C
oxidase as a result of rapidly declining respiration rates and ATP synthesis in
mitochondria is inhibited (Gupta et al. 2010).

An acute cyanide exposure influences mainly the CNS, firstly producing stimu-
lation, which may be followed rapidly by depression. Stimulation of peripheral
chemoreceptors makes improved respiration, while stimulation of the carotid body
receptors slows the heart rate. These early changes are frequently transient and may
be followed by hypoventilation progressing to apnea and myocardial depression.
The outcome is hypotension and shock, which are rapidly fatal if untreated. Because
of the brain’s vulnerability to cyanide, electrical activity may cease even as the heart
is still beating. Predominance of anaerobic metabolism within a cyanide-poisoned
cell induces a decrease in the ATP/ADP ratio and therefore changes energy-
dependent procedures such as calcium homeostasis. Disruption in calcium regula-
tion with resultant changes in neurotransmitter releases can change the electrical
movement in the brain and may be a significant factor in the manifestation of
cyanide-induced neurotoxic effects such as tremors and convulsions. Delayed onsets
Parkinson-like syndromes have been expressed after severe cyanide poisoning as
well as after carbon monoxide poisoning, involving that the basal ganglia are
susceptible to the neurotoxic effects of both agents. With acute inhalation of HCN
gas, death may take place within seconds. Usually, fish and other aquatic life are
killed by cyanide concentrations in the microgram per liter range (part per billion),
whereas bird and mammal deaths result from cyanide concentrations in the milli-
gram per liter range (part per million). Inhalation of 270 ppm hydrogen cyanide
results lethal effects on humans immediately (Larsen et al. 2005). Cyanide has also
been associated with syndromes affecting the central nervous system in animals
(Kaewkannetra et al. 2009). Skin contact with cyanide salts can result in burns,
which allow for enhanced absorption of cyanide through the skin. The amalgamation
of cyanide salts and acid, as utilized in electroplating, results in the release of cyanide
gas, which can lead to fatal inhalational exposures. Splashes of cyanide solutions can
result in dermal as well as mucosal absorption (Sullivan and Krieger 2001;
Megarbane et al. 2003). Considering the lethal impacts of cyanide, the acceptable
limits of cyanide in drinking and surface water have been fixed by regulatory bodies.
According to Indian standard (CPCB), a minimal national standard (MINAS) limit
for cyanide in effluent is 0.2 mg/L for drinking water. USEPA (US Environmental
Protection Agency) standard for cyanide in drinking and aquatic-biota waters are
200 and 50 ppb, respectively (Young and Jordan 2004; USEPA 1985). To protect the
environment and our water resources, cyanide containing wastewaters must be
treated before being discharged into the environment.
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15.2.4 Phenol

Phenol is a naturally occurring organic compound with hydroxyl (OH) group sub-
stitution on a benzene ring (Gayathri and Vasudevan 2010). This structure provides
phenol its aromatic nature and also permits it to form the phenolate ion in aqueous
solution. Though phenol occurs naturally (during the decomposition of organic
materials and as a constituent of coal tar) its existence in the environment is mainly
the result of human activities. Phenol is most frequently manufactured from the
oxidation of cumene (also known as isopropylbenzene), however it can be produced
from chlorobenzene and toluene, and from the distillation of petroleum. Phenol is
generally used in the manufacture of bisphenol A, phenolic resins, caprolactam,
alkyl, and chlorinated phenols. Phenol is also utilized in the production of synthetic
fibers such as nylon, and in the production of algaecides and fungicides. Phenol also
has antibacterial properties and therefore it is extensively used in pharmaceutical
products such as ointments, ear and nose drops, disinfectant, antiseptic agent, and in
medicinal products such as mouth washes, throat lozenges, and cough drops
(Darisimall 2006). Phenol is one amid the most prevalent chemical and pharma
pollutants, owing to its toxicity even at lower concentrations and formation of
substituted compounds during oxidation and disinfection processes. Due to its
extensive uses, phenol has been identified in at least 595 of 1678 National Priorities
List (NPL) hazardous waste sites in the United States (HazDat 2006). There are
several malpractices done by individuals, which are responsible for the release of
phenol into the environment. The most imperative source of phenol discharges is the
use of phenolic resins as binding materials in insulation products, chipboard, paints,
and casting sand molds (used by metal foundries), pharmaceuticals, textile wood,
dying, pulp mill, petrochemical (Fleeger et al. 2003; Mukherjee et al. 1990, 1991).
Phenol discharges can also take place from vehicle exhaust (where it is present as a
component and a breakdown product of benzene via hydroxyl radical initiated
reactions), wood pulp manufacture, cigarette smoke, and in landfill leachate. As a
result, aquatic lives also suffer including fish or other animals are subjected to these
pollutants (Shalaby et al. 2007).

15.2.4.1 Effect of Phenol

Phenol pollution represents a menace against natural environment and also to human
health (Hori et al. 2006). When phenol is available in the aquatic environment, the
consumption of fish food, mean weight, and fertility are considerably reduced (Saha
et al. 1999). Disclosure of fish to unusual sorts of pollutants (heavy metals, industrial
effluents, and pesticides) effect several biochemical alterations in blood parameters.
Phenol, especially in high concentrations, is an irksome and corrosive substance,
making mucosal membranes targets of toxicity in humans and animals. Victims due
to ingestion of phenol have been reported (Boatto and Carta 2004; Tanaka and Kita
1998). expected toxic oral doses of phenol in adults fluctuate usually, from 1 g
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(14 mg/kg, assuming an adult body weight of 70 kg) to as much as 65 g (930 mg/kg,
assuming an adult body weight of 70 kg) (Bruce and Neal 1987; Deichmann and
Keplinger 1981). Direct effects of phenol on the environment include depletion of
ozone layer, impact on the earth’s heat balance, lower visibility and adding acidic air
pollutants to the atmosphere (Jame et al. 2010).

15.2.5 Dyes

Dyes are chemicals which combine with material and impart color to that material.
The color of a dye is because of the presence of chromophore group. They are
broadly used to color the substrate like leather, textile fiber, paper, hair, fur, wax,
plastic material, a cosmetic base and food stuff. Based on chemical structure of
chromophore there are 20–30 different groups of dyes. Azo (monoazo, diazo, triazo,
polyazo), anthraquinone, phthalocyanine, and triarylmethane dyes are the most
significant groups (Mohammad 2005). The majority of industrial important azo
dyes belong to the following classes: acid dyes, basic dyes, direct dyes, disperse
dyes, mordant dyes, reactive dyes, and solvent dyes. Dyes contain at the minimum
one nitrogen-nitrogen (N¼N) double bond, nevertheless many different structures
exist. For example, in the azo dyes, monoazo dyes have only one N¼N double bond,
while diazo and triazo dyes contain two and three N¼N double bonds, respectively.
The azo groups are commonly linked to benzene and naphthalene rings. These side
groups are essential for forwarding the color of the dye, with several different shades
and intensities being feasible (Zollinger 1991).

Textile industry is one of the major water consumers in the world that creates the
wastewater including several unmanageable agents like dye, dying aid, and sizing
agents. A considerable amount of these dyes enter to the environment through
contaminated water and create a high level of environmental contamination leading
to severe health hazards. Around 10,000 different dyes and pigments are utilized by
industries and over 0.7 million tons of synthetic dyes are produced yearly, world-
wide (Rafi et al. 1990). In the removal of textile wastewater, color is really important
because of the attractive deterioration as well as the impediment of diffusion of
dissolved oxygen and sunlight into natural water bodies. The textile industry dis-
cards about 50% of the textile azo dyes in free state to be discharged in the factory
effluent and ultimately to the nearby environment. Azo compounds comprise the
leading and the most diverse group of synthetic dyes and are broadly used in a
number of industries such as food, textile, cosmetics, and paper printing (Maulin
2013).

15.2.5.1 Effect of Dyes

The uncontrolled expulsion of the effluents from the textile industries includes toxic
chemicals such as azo dyes and reactive dyes which negatively affect the natural
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resources, soil fertility, and aquatic organisms and disturb the integrity of the
ecosystem by changing the pH, raising the biochemical oxygen demand (BOD)
and chemical oxygen demand (COD), and critically affecting water quality (Mester
and Tien 2000; Puvaneswari et al. 2006). Toxic compounds of azo dyes freely mix
with water bodies and enter into aquatic organisms through food chain and finally
reach to human beings and cause physiological disorders such as hypertension,
sporadic fever, renal damage, and cramps (Fang et al. 2004; Asad et al. 2007).
Most of the azo dyes are water soluble and easily gets absorbed through skin contact
and inhalation leading to the threat of cancer and allergic reactions, an irritant for the
eyes and permanent blindness also, if inhaled or consumed. The dyes containing
effluents cause serious environmental pollution. Therefore, industrial effluents
containing different dyes particularly azodyes must be treated before discharging
into the environment to remove the dye toxicity from textile effluents.

15.3 Treatment Techniques

It is expected that around 1.1 billion people globally drink unsafe water. The World
Bank estimates that 21% of the communicable diseases, in India, are water-borne.
Keeping in wits the havoc of environmental problem, many physicochemical tech-
niques have been proposed for the treatment of toxic pollutants which are released
from the industrial effluents. These include adsorption on different matrix or mate-
rials, electrolysis, oxidation, ion exchange, reverse osmosis, coagulation, alkaline
breakdown, chlorination, photolysis, precipitation, electro-oxidation, photo degra-
dation, and membrane filtration (Wang and Chen 2009; Dwivedi et al. 2014;
Matsumotto et al. 2007a, b). All these physical or chemical methods are really
expensive and result in the production of huge quantities of sludge and other
unwanted materials, which generates the secondary stage of land and water pollu-
tion. Thus, cost-effective and safe removal of the toxic pollutants is still a vital
problem. Hence, providing sustainable and affordable solutions to tackle this men-
ace is a need of the hour.

Bioremediation with microorganisms has been recognized as a cost-effective and
environment friendly alternative for disposal of industrial effluent. By using the
biological materials including living and nonliving microorganisms, toxic materials
or precious metals from industrial effluents can be removed and recovered. In fact,
biological methods have gained recognition over the years due to increased perfor-
mance, availability, and low cost of raw materials (Ahluwalia and Goyal 2007, b;
Bunluesin et al. 2007, b). Microorganisms such as algae, fungi, and yeasts are able to
effectively accumulate heavy metals from their external environment (Pan et al.
2007).

In recent years, several studies have focused on various microorganisms which
are able to degrade and accumulate toxic pollutants from industrial effluents. A wide
range of microorganisms are reported in Table 15.2 to be capable of removing
hazardous materials from industrial effluents.
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Table 15.2 Microorganisms are capable to remove toxic materials from industrial effluents

S. no. Microorganism
Pollutants/heavy
metals References

1 Pseudomonas chlororaphis, Azotobacter
vinelandii

Cu He et al. (2010)

2 Bacillus cereus, Psychrobacter sp. Ni Ma et al. (2009)

3 Escherichia coli Cr (VI), Cd(II),
Fe(III) and Ni(II)

Quintelas et al.
(2009)

4 Alcaligenes faecalis, Gallionella ferruginea,
Leptothrix ocracia, Pseudomonas putida, Pseu-
domonas arsenitoxidans

Arsenic Mondal et al.
(2008)

5 Aerococcus sp., Rhodopseudomonas palustris Pb, Cr, Cd Sinha and Paul
(2014)

6 Shewanella putrefaciens Fluoride Dwivedi et al.
(2016d)

7 Rhizopus arrhizus Zinc Sag and Kutsal
(2007)

8 Pseudomonas putida 2,4-
dichlorophenol

Ullhyan and
Ghosh (2014)

9 Alcaligenes sp. Phenol Indu and
Shashidhar
(2004)

10 Pseudomonas putida Phenol Der and Hum-
phrey (1975)

11 Pseudomonas spp. Fluorobenzoate Goldman
(1972)

12 Bacillus subtilis Acid blue 113 Gurulakshmi
et al. (2008)

13 Pterocladia capillacea Hexavalent
chromium

El Nemr et al.
(2011)

14 Enterobacter agglomerans Methyl Red Keharia and
Madamwar
(2003)

15 Aspergillus ochraceus Reactive blue 25 Parshetti et al.
(2006)

16 Streptomyces ipomoea Orange II Molina-
Guijarro et al.
(2009)

17 Bacillus cereus Potassium
cyanide

Dwivedi et al.
(2016a)

18 P. arcularius KCN Ozel et al.
(2010)

19 P. pseudoalcaligenes NaCN Huertas et al.
(2010)

20 Citrobacter sp. K, Zn,
Cu-cyanide

Patil and
Paknikar
(2000)
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15.4 Bioremoval Mechanism of Toxic Materials

Generally two types of mechanisms involve in remediation of toxic materials, first is
the bioremediation and other is bioaccumulation. Bioremediation is a pollution
control technology that uses natural biological species to catalyze the degradation
or transformation of various toxic chemicals to less harmful forms while in
bioaccumulation soluble materials or metals are actively transported through the
cell membrane and accumulated within the cells as solid particles or in vacuoles.

15.4.1 Heavy Metals

Since heavy metals are nonbiodegradable, removal of contaminants from industrial
effluents is quite challenging. Bioremediation is employed in order to transform
toxic heavy metals into a less harmful state using microbes or its enzymes to clean-
up polluted environment (Abbas et al. 2014; Okoduwa et al. 2017). Microorganisms
take up different mechanisms to interact and survive in the presence of metals. In
response to metals in the environment, microorganisms have developed ingenious
mechanisms of metal resistance and detoxification. The mechanism involves several
procedures, together with ion exchange, electrostatic interaction, surface complex-
ation, redox process and precipitation (Yang et al. 2015). Microorganisms can
decontaminate metals by valence conversion, volatilization, or extracellular chem-
ical precipitation. Microorganisms have negative charge on their cell surface because
of the presence of anionic structures that empower the microbes to bind to metal
cations. The negatively charged sites of microbes involved in adsorption of metal are
the hydroxyl, alcohol, phosphoryl, ester, sulfhydryl, sulfonate, thiol groups and
amine, carboxyl group (Gavrilescu 2004).

15.4.1.1 Biosorption and Bioaccumulation Mechanism

Sorption process has been extensively used to remove toxic metals from wastewater
using microorganisms and low cost adsorbents such as agriculture wastes and
activated carbon developed from agriculture wastes. Biosorption can be carried out
by living or dead cells biomass as passive uptake through surface complexation onto
the cell wall and surface layers (Fomina and Gadd 2014). The uptake of heavy
metals by microbial cells through biosorption mechanisms can be classified into
metabolism-independent biosorption, which generally occurs on the cells exterior
and metabolism-dependent bioaccumulation, which includes sequestration, redox
reaction, and species-transformation methods (Vijayaraghavan and Yun 2008;
Godlewska-Zyłkiewicz 2006). Bioaccumulation depends on a variety of physical,
chemical, and biological mechanisms (Fomina and Gadd 2014). The biosorption can
also be classified according to the pollutant characteristics and the location where the
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metal removed from solution is found extracellular accumulation/ precipitation, cell
surface sorption/precipitation and intracellular accumulation. Extracellular seques-
tration is the accumulation of metal ions by cellular components in the periplasm or
complexation of metal ions as insoluble compounds. Copper-resistant Pseudomonas
syringae strains produced copper-inducible proteins CopA, CopB (periplasmic pro-
teins), and CopC (outer membrane protein) which bind copper ions and microbial
colonies (Cha and Cooksey 1991). Bacteria can expel metal ions from the cytoplasm
to grab the metal within the periplasm. Zinc ions can cross from the cytoplasm by
efflux system where they are accumulated in the periplasm of Synechocystis PCC
6803 strain (Thelwell et al. 1998). Iron-reducing bacterium such as Geobacter spp.
and sulfur reducing bacterium like Desulfuromonas spp. are capable of reducing
toxic metals to less or nontoxic metals. G. metallireducens is an anaerobe having the
capability of reducing manganese (Mn), from lethal Mn (IV) to Mn (II), and uranium
(U), from toxic U (VI) to U (IV) (Gavrilescu 2004). Intracellular sequestration is the
complexation of metal ions by various compounds in the cell cytoplasm. The
concentration of metals within microbial cells can result from interaction with
surface ligands followed by slow transport into the cell. The ability of bacterial
cells to accumulate metals intracellular has been exploited in practices, predomi-
nantly in the treatment of effluent treatment. Cadmium-tolerant Pseudomonas putida
strain possessed the ability of intracellular sequestration of cadmium, copper, and
zinc ions with the help of cysteine-rich low molecular weight proteins (Higham et al.
1986). Also, intracellular sequestration of cadmium ions by glutathione was revealed
in Rhizobium leguminosarum cells.

Mondal et al. (2008) reported some of the bacteria having arsenic removal
capability: Alcaligenes faecalis, Agrobacterium tumefaciens, Bacillus subtilis,
Bacillus indicus, Corynebacterium glutamicum, Desulfovibrio desulfuricans,
Gallionella ferruginea, Leptothrix ocracia, Pseudomonas putida, Pseudomonas
arsenitoxidans, Ralstonia pickettii, Thiomonas ynys1, Acidithiobacillus
ferrooxidans, Ralstonia eutropha, etc. Among the above bacteria Ralstonia
eutropha and Pseudomonas putida have arsR and arsC gene in their plasmid.
Presence of arsR and arsC gene in bacterial strain makes them capable for producing
ArsR protein and arsenate reducing enzyme respectively. ArsR protein selectively
captures As(III) whereas arsenate reducing enzyme reduces As(V) to As(III) which
is further captured by ArsR protein. Mondal et al. (2008) reported that arsenic
removal efficiency of Ralstonia eutropha MTCC 2487, Pseudomonas putida
MTCC 1194, and Bacillus indicus MTCC 4374 from simulated acid mine drainage
are ~67%, 60%, and 61%, respectively. Industrial heavy metals containing waste-
water treatment by using algal biomass is also a new approach. Soltmann et al.
(2010) were immobilized the algal biomass Macro (Fucus) and Micro algae (spiru-
lina, etc.) on different types of silica sols. The efficiency of the immobilized biocers
was tested for absorbance of nickel, chromium, copper, and lead in drinking water.
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15.4.2 Fluoride Bioaccumulation Mechanism

Mainly two pathways such as bioadsorption on bacterial cell surface and
bioaccumulation in bacterial cells have been proposed for the removal of fluoride
from water using bacterial whole cells (Chubar et al. 2008). Mechanisms of cell
surface sorption are independent of cell metabolism; they are based upon physico-
chemical interactions between fluoride and functional groups of the cell wall. The
microorganism’s cell wall mainly consists of polysaccharides, lipids, and proteins,
which have many binding sites for halides. This process is independent of the
metabolism and metal binding is fast. Bioaccumulation, in contrast, is an intracellu-
lar fluoride accumulation process which involves dehalogenation and it is mediated
only by periplasmic and membrane fractions, not by cytoplasmic fractions of the
cells. (Picardal et al. 1993) Since it depends on the cell metabolism, it can be
inhibited by metabolic inhibitors such as low temperature and lack of energy
sources.

15.4.3 Cyanide Biodegradation Mechanism

Biodegradation of cyanide compounds may take place through various pathways.
Generally degradation of cyanide is induced by the presence of cyanide in the media
which is followed by conversion of cyanide into carbon and nitrogen. Various
researchers have described various organisms, which use different pathways for
cyanide degradation (Dubey and Holmes 1995). Some times more than one pathway
can be applied for cyanide biodegradation in some organisms (Mufaddal and James
2002). Five general pathways as reported in literature for the biodegradation of
cyanide, these are: hydrolytic pathway, oxidative pathway, reductive pathway,
substitution/transfer pathway, and syntheses pathway (Sexton and Howlett 2000).
First three pathways are degradation pathways in which enzymes catalyze the
conversion of cyanides into simple organic or inorganic molecules and converts it
to ammonia, methane, CO2, formic acid, and carboxylic acid. Last two pathways are
for the assimilation of cyanide in the microbe as nitrogen and carbon source (Baxter
and Cummings 2006). All these pathways depend on the cyanide tolerance mech-
anism in microbes and that process is used to dissociate the cyanide metal complexes
or for chelating metals (Gupta et al. 2010).

15.4.3.1 Hydrolytic Pathway

Hydrolytic pathway of cyanide degradation is catalyzed by various enzymes present
in microbial system, such as cyanide hydratase, nitrile hydratase, cyanidase, and
nitrilase (Ebbs 2004; Kwon et al. 2002; Baxter and Cummings 2006). First two
enzymes have specific substrate and directly hydrolyze and cleave the carbon–
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nitrogen triple bond to form formamide, and the last two convert it to ammonia and
carboxylic acid, which are utilized in their metabolic activity (Gupta et al. 2010).
Cyanide compounds are degraded by the following enzymes through different
reactions as discussed below (Ebbs 2004):

Cyanide Hydratase

Cyanide hydratase is primarily a fungal enzyme; the most frequently encountered
cyanide conversion takes place through this inducible enzyme, resulting in the
formation of formamide, which subsequently decomposes to carbon dioxide and
ammonia by another enzyme formamide hydratase (FHL).

HCN þ H2O ! HCONH2 ð15:1Þ

This enzyme belongs to the family of lyases, specifically the hydrolyases, which
cleaves carbon-nitrogen bonds. The systematic name of this enzyme class is form-
amide hydrolyase (cyanide-forming). Other names in common use include formam-
ide dehydratase, and formamide hydrolyase. This enzyme participates in
cyanoamino acid metabolism (Gupta et al. 2010). Cyanide hydratase was first
partially purified by Stemphylium loti and is highly conserved between species
(Barclay et al. 2002).

Cyanidase

Cyanidase is also known as cyanide dihydratases. It comprises a group of bacterial
enzymes that are available in Pseudomonas stutzeri AK61, Alcaligenes xylosoxidans
subsp. Denitrificans DF3, and Bacillus pumilus C1 (Meyers et al. 1993; Ingvorsen
et al. 1992). Cyanide dihydratases readily convert cyanide to relatively nontoxic
formate directly as shown below:

RCNþ H2O $ RCOOHþ NH3 ð15:2Þ

Nitrile Hydratase

Primarily aliphatic nitriles can be effectively degraded by nitrile hydratases. Nitrile
hydratases convert cyanides to their corresponding amides as shown in following
reaction:

R� CNþ H2O ! R� CONH2 ð15:3Þ
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The nitrile hydratase, isolated by Pseudonocardia thermophila shows high activ-
ity compared to other microorganism known for the production of nitrile hydratase,
i.e., Rhodococcus rhodochrous, Pseudomonas, Corynebacterium, Klebsiella, and
Rhizobium. Some new bacterial strains, Pseudomonas putida MA113 and Pseudo-
monas marginales MA32, containing nitrile hydratases was isolated from soil
samples by an enrichment procedure. This isolated microbe could tolerate up to
50 mM cyanide and also has broad substrate range small substrates like acrylonitrile,
nitriles with longer side chains and even nitriles with quarternary alpha-carbon
atoms. Pseudomonas putida MA113 and Pseudomonas marginales MA32 were
used as a whole cell biocatalyst for the hydration of acetone cyanohydrin to a
hydroxylisobutyramide, which is a precursor of methacrylamide (Nawaz et al.,
1989). Nitrile hydratase are composed of two types of subunits, α and β, which are
not related in amino acid sequence. Nitrile hydratase exist as αβ dimers or α2 β2
tetramers and bind one metal atom per αβ unit (Gerasimova et al. 2004).

Nitrilase

Nitrilase enzymes catalyze the hydrolysis of nitriles to carboxylic acids and ammo-
nia, without the formation of “free” amide intermediates.

R� CNþ 2H2O ! R� COOHþ NH3 ð15:4Þ

Nitrilases are involved in biosynthesis of proteins and there posttranslational
modifications in plants, animals, fungi, and certain prokaryotes. The structure of
nitrilases is usually inducible enzymes composed of one or two types of subunits of
different size and number, and these subunits of nitrilase self-associate to convert the
enzyme to the active form. Nocardia sp. nitrilase was reported to be induced by
enzonitrile (Goldhust and Bohak 1989). Acetonitrile has been used as an inducer for
the formation of nitrilase in Fusarium oxysporum (Collins and Knowles 1983).

15.4.3.2 Oxidative Pathway

In oxidative pathway, cyanide conversion involves oxygenolytic conversion to
carbon dioxide and ammonia. This pathway requires NADPH to catalyze this
degradation pathway. Microorganisms which prefer cyanide conversion by this
pathway also require additional carbon source with cyanide. There are two types
of oxidative mechanism involving three different enzymes:

1. Cyanide monooxygenase and cyanase.
Cyanide monoxygenase (Ebbs 2004; Raybuck 1992) converts cyanide to

cyanate which is further catalyzed by cyanase, resulting in the overall conversion
of cyanate to ammonia and carbon dioxide as given in the following reaction.
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HCN� þ O2 þ 2Hþ þ NADPH ! CNO� þ NADPþ 2H2O

#
CNO� þ 3Hþ þ HCO3

� ! NH4
þ þ 2CO2

ð15:5Þ

2. Cyanide dioxygenase
This oxidative pathway utilizes cyanide dioxygenase to form ammonia and

carbon dioxide directly (Ebbs 2004).

HCN þ O2 þ 2Hþ þ NADPH ! NADHþ CO2 þ NH3 ð15:6Þ

Immobilized cells of P. putida can effectively use oxidative pathway to produce
ammonia and carbon dioxide (Chapatwala et al. 1998). The cyanide degradation in
three white rot fungi, Trametes versicolor ATCC 200801, Phanerochaete
chrysosporium ME 496 and Pleurotus sajor-caju, were achieved by an oxidative
reaction that results in the end products of ammonia and CO2.

15.4.3.3 Reductive Pathway

The reductive pathways of degradation of cyanide are generally considered to occur
under anaerobic conditions. This pathway is mediated by an enzyme nitrogenase.
The enzyme utilizes HCN and produce methane and ammonia as end product.

HCN þ 2Hþ þ 2e� ! CH2 ¼ NHþ H2O ! CH2 ¼ O ð15:7Þ

CH2 ¼ NHþ 2Hþ þ 2e� ! CH3 � NHþ 2Hþ þ 2e� ! CH4 þ NH3 ð15:8Þ

K. oxytoca is able to degrade cyanide compounds to methane and ammonia
through this path.

15.4.3.4 Substitution/Transfer Pathway

The activity of this pathway involves cyanide assimilation and usably this tends to
increase the growth of the microorganism by providing extra nitrogen source and
preventing it from cyanide toxicity. There are two types of enzymes that catalyze
cyanide assimilation through this pathway such as rhodanese and mercaptopyruvate
sulfurtransferase. Both enzymes are widely distributed in living organisms and
catalyze the formation of pyruvate and thiocyanate from mercaptopyruvate (Burton
and Akagi 1971; Roy and Trudinger 1977). Rhodaneses are extremely conserved
and prevalent enzymes presently regarded as one of the mechanism evolved for
cyanide detoxification. In vitro rhodaneses catalyze the irreversible transfer of a
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sulfur atom from a suitable donor (i.e., thiosulfate) to cyanide, leading to formation
of less toxic sulfite and thiocyanate. The enzyme activity is modulated by phosphate
ions and divalent anions that found to interact with the active site (Bordo et al. 2001).

Thiosulfateþ cyanide ! sulfiteþ thiocyanate ð15:9Þ

Rhodaneses has been also recognized in a variety of bacterial species including
Escherichia coli (Cipollone et al. 2004), Azotobacter vinelandii (Ezzi et al. 2003),
and several species of Thiobacillus.
The second enzyme mercaptopyruvate sulfurtransferase belongs to the family of
transferases specifically the sulfurtransferases, which transfer sulfur-containing
groups. The systematic name of this enzyme class is 3-mercaptopyruvate: cyanide
sulfurtransferase. This enzyme participates in cysteine metabolism. It catalyzes the
following chemical reactions:

HSCH2COCOO
� þ E $ CH2COCOO

� þ ES step1ð Þ ð15:10Þ

ESþ CN� $ Eþ SCN� step2ð Þ ð15:11Þ

3-mercaptopyruvate is converted to thiosulfate by the two-step reaction as men-
tioned above. In step 1 (ES) the enzyme-sulfur intermediate is formed and in step
2 intermediate reacts with cyanide to E (mercaptopyruvate sulfurtransferase) and
thiocyanide (Gupta et al. 2010).

15.4.3.5 Syntheses Pathway

This pathway is also a cyanide assimilation pathway by using enzyme
β-cyanoalanine synthase and γ-cyano-α-aminobutyric acid synthase. It involves
the synthesis of amino acid, β-cyanoalanine, and γ-cyano-α-aminobutyric acid by
using amino acid residues as precursor that react with cyanide compounds.
β-Cyanoalanine synthase is believed to play the important role in the removal of
endogenous cyanide and is produced at highly active growth period in the microbe
(Nagahara et al. 1999). This enzyme belongs to the family of lyases, specifically the
class of carbon–sulfur lyases. The systematic name of this enzyme class is L-cysteine
hydrogen-sulfide-lyase (Miles 1986). The growth of Bacillus megaterium is by
converting cyanide to β-cyanoalanine and then to asparagines (Dunnil and Fowden
1965). β-Cyanoalanine synthase is induced by various amino acids as serine,
cysteine, asparagines, etc. Cyanide produced by C. violaceum can first convert
cyanide to β-cyanoalanine then into asparagine as shown in reaction below (Fowden
and Bell 1965).
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HCN
Cysteineð Þ

þ HS� CH2CH NH2ð ÞCOOH ! H2Sþ NC� CH2CH NH2ð ÞCOOH
# β‐cyanoalanineð Þ
H2NCO � CH2CH NH2ð ÞCOOH
Asparagineð Þ

ð15:12Þ

γ-Cyano-α-aminobutyric acid synthase is alternative pathway for cyanide assim-
ilation. This pathway requires pyridoxal phosphate for function and induced by
glutamate or glysine. Ones this γ-Cyano-α-aminobutyric acid is synthesized it is
slowly converted to amino acid glutamate. A thermophilic and cyanide ion tolerant
bacterium, Bacillus stearothermophilus CN3, isolated from a hot spring in Japan,
was found to produce thermostable γ-Cyano-α-aminobutyric acid synthase.

15.4.4 Phenol Biodegradation Mechanism

For the biodegradation of phenol, the presence or absence of molecular oxygen plays
a crucial role. In general, phenol can be transformed both under aerobic and
anaerobic conditions. Two types of metabolic reactions can take place in the aerobic
degradation step meta and ortho degradation pathways. In microbial degradation of
phenol under aerobic conditions, the degradation is initiated by oxygenation in
which the aromatic ring is initially monohydroxylated by a mono oxygenase phenol
hydroxylase at a position ortho to the pre-existing hydroxyl group to form catechol.
This is the main intermediate resulting from metabolism of phenol by different
microbial strains. Depending on the type of strain, the catechol then undergoes a
ring cleavage that can occur either at the ortho position therefore initiating the ortho
pathway that leads to the formation of succinyl Co-A and acetyl Co-A or at the meta
position thus initiating the meta pathway that leads to the formation of pyruvate and
acetaldehyde. Leonard and Lindley (1998) have described the biodegradation or
metabolism of phenol by Pseudomonas cepacia, Pseudomonas putida, Pseudomo-
nas pickettii, and Alcaligenes eutrophus respectively via the meta cleavage pathway,
while Paller et al. (1995) described the biodegradation of phenol by Rhodotorula
rubra, Trichosporon cutaneum, and Acinetobacter calcoacetium, respectively
through the ortho cleavage pathway.

An anaerobic degradation of phenol is based on the similarity with the anaerobic
benzoate pathway proposed for Paracoccus denitrificans (Williams and Evans
1975). In this pathway phenol is carboxylated in the para position to
4-hydroxybenzoate which is the first step in the anaerobic pathway. Here the enzyme
involved is the 4-hydroxybenzoate carboxylase. The anaerobic degradation of sev-
eral other aromatic compounds has been shown to include a carboxylation reaction.
Carboxylation of the aromatic ring in para position to the hydroxyl group of o-cresol
resulting in 3-methyl 4-hydroxybenzoate has been reported for a denitrifying
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Paracoccus like organisms, in addition to methogenic consortium was later shown to
travel a verity of phenolic compounds including o-cresol, catechol and ortho halo-
genated phenols through para carboxylation followed by dehydroxylation.

15.4.5 Dyes Biodegradation Mechanism

The use of microbes and their enzymatic treatment method for the complete decol-
orization and degradation of textile dyes from their effluent is advantageous in many
ways like being cost-effective, less sludge forming, environmentally friendly, yield-
ing nontoxic end products and less water consumption. The effectiveness of micro-
bial decolorization depends on the adaptability and activity of the selected
microorganisms. Several pure cultures of bacteria have been reported to decolorize
azo dyes under aerobic condition. A bacterial strain Klebsiella sp. VN-31 was
reported to decolorize monoazo dye RY107 and RR198 in 72 and 96 h, respectively;
the diazo dye RB5 and triazo dye DB71 were decolorized by the same culture in
120 and 168 h, respectively (Franciscon et al. 2009). Similarly, Wang et al. (2009)
reported decolorization of Reactive Red 180 (200 mg/L) by Citrobacter sp. (CK3)
within 36 h of incubation. The mechanism of bacterial degradation of dyes involves
various oxidoreductive enzymes which utilize these complex xenobiotic compounds
as substrates and convert them to less complex metabolites. Most of the bacteria
having the dye degradation mechanism are generally obtained from actual sites of
dye disposal or from real textile effluents. The bacterial decolorization of dyes is
being facilitated by various reductive enzymes such as azoreductase, NADH-DCIP
reductase, and MG reductase and oxidative enzymes like lignin peroxidase and
laccase (Kalme et al. 2007; Kalyani et al. 2009). The process of bacterial azo dye
degradation consists of two stages. The first stage involves the reductive cleavage of
the dyes’ azo bond (–N¼N–), resulting in the formation of aromatic amines, that is
usually colorless but potentially hazardous. The second stage involves degradation
of the aromatic amines under aerobic conditions. Azo dye reduction with the help of
azoreductase under anaerobic conditions, involves transfer of four-electrons (reduc-
ing equivalents), which proceed through two stages at the azo linkage and in each
stage two electrons are transferred to the azo dye, which acts as a final electron
acceptor resulting in dye decolorization. The resulting intermediate metabolites are
further degraded aerobically or anaerobically. The presence of oxygen usually
inhibits the azo bond reduction activity since aerobic respiration may dominate
utilization of NADH; therefore hindering the electron transfer from NADH to azo
bonds (Chang et al. 2004). Anaerobic bio-reduction of an azo dye includes three
different mechanisms as illustrated by earlier investigators namely: direct enzymatic
reduction, indirect/mediated reduction, and chemical reduction (organic and inor-
ganic compounds). A direct enzymatic reaction or a mediated/indirect reaction is
catalyzed by biologically regenerated enzyme cofactors or other electron carriers.
The azo dye chemical reduction can also result from purely chemical reactions with
biogenic reductants like sulfide. These azo dye reduction mechanisms have been
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exposed to be intensely accelerated by the addition of various redox-mediating
compounds, such as anthraquinone-sulfonate (AQS) and anthraquinone-disulfonate
(Guo et al. 2007).

15.5 Advances on Removal of Toxic Industrial Effluents

Removal of hazardous metals and other toxic compounds from industrial effluent
through biological process has gained substantial attention in the last few decades.
However, only a small part of these studies employed growing microbial cells that
keep multiple mechanisms of metal sequestration and consequently may hold better
metal uptake capacities. With the advancement in genetic engineering, microbes are
engineered with desired characteristics such as ability to tolerate highly toxic
materials and metal stress, over expression of metal-chelating proteins and peptides
and metal accumulation capability. Frederick et al. (2013) has reported to genetically
engineered microorganisms are able to produce trehalose and found it to reduce
1 mM Cr (VI) to Cr (III). Genetically engineered microorganism such as
Chlamydomonas reinhardtii produced significant increase in tolerance to Cd toxicity
and its accumulation (Ibuot et al. 2017). Genetically engineered microbes for heavy
metal remediation involve the use of Escherichia coli (E. coli ArsR (ELP153AR)) to
target As(III) and Saccharomyces cerevisiae (CP2 HP3) to target Cd2+ and Zn2+

(Kostal et al. 2004; Vinopal et al. 2007). Corynebacterium glutamicum was genet-
ically modified using over expression of ars operons (ars1 and ars2) to decontam-
inate As-contaminated sites (Mateos et al. 2017).

Immobilization of cells improves the degradation rate by preventing washing of
cells and it also increases the cell density. The immobilization technique was used by
Kowalska et al. (1998). They used ultrafiltration membranes made of polyacronitrile
and carried out simultaneous degradation of cyanides and phenol using
Agrobacterium radiobacter, Staphylococcus sciuri, and Pseudomonas diminuta.
The efficiency of phenol and cyanide biodegradation was dependent on transmem-
brane pressure. The immobilization technique was earlier studied by Babu et al.
(1992) where immobilized cells of P. putida were able to degrade sodium cyanide as
a sole source of carbon and nitrogen. Various immobilization matrixes are available
like granular activated carbon (GAC), alginate beads, zeolite, which has shown very
high efficiency and improved degradation rate (Babu et al. 1992; Chapatwala et al.
1998; Dursun et al. 1999). Among the commercial available matrixes, various agro-
based materials have been widely reported for their ability to remove different toxic
contaminants from water and wastewater (Moussavi and Khosravi 2010;
Sahranavard et al. 2011; Gonen and Serin 2012; Dwivedi et al. 2016a, b). Simulta-
neous adsorption and biodegradation (SAB) is the most recent development in
cyanide removal. Dwivedi et al. (2016d) reported high removal efficiency using
Bacillus cereus immobilized on almond shell in SAB process. One novel study has
proposed a transcription-based assay for monitoring the biodegradation of both
simple and metal cyanides (Barclay et al. 2002). The gene encoding cyanide
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hydratase (chy) in F. solani has been sequenced and primers utilized in reverse
transcription-polymerase chain reaction (RT–PCR) to demonstrate transcription of
this gene. The chy gene from F. solani displays significant homology to the
corresponding cyanide hydratase gene from Gloeocercospora sorghi,
F. lateritium, and Leptosphaeria maculans. This observation implies that the assay
could be utilized in different contexts, provided that expression of the chy gene can
be conclusively linked with activity of cyanide hydratase. This assay could provide
an important tool to site managers, regulators, and industries that generate cyanide
wastes (Ebbs 2004).

Extensive research continues to be carried out on toxic contaminants removal
from industrial wastewater. In this regard, enzymatic treatment taking motivation
from biological treatment uses a biocatalyst, an enzyme, to carry out a transforma-
tion on toxic compounds that leads to their removal from wastewater. The microbial
enzymatic treatment method is a new treatment technique for the degradation of
toxic pollutants from industrial effluents, and this process can have significant
advantages (including cost-effectiveness, easy to harvest, readily mobilizable and
simply downstream process) over conventional physical and chemical treatments.
Recent research trends on nanoparticle-microbial enzyme conjugates are also highly
efficient to remove the azo dye from textile waste within a few minutes. But
unfortunately, due to some gap between academia and industry, these methods
remain only limited up to laboratory and its industrialization is still a challenge.

15.6 Conclusion

Microorganisms are an extremely potential bioremediation tool for industrial efflu-
ents and related pollutants. The use of microorganisms provides a cost-effective,
efficacious, and eco-friendly alternative over the traditional techniques for the
degradation of toxic industrial effluents. The uptake of heavy metals by microor-
ganisms take place through bioaccumulation is an active process and through
adsorption, it is a passive process. Metal-resistant microorganisms in immobilized,
consortium and alone have given better efficiency in metal removal, however the
immobilized form could have more chemosorption sites to absorb heavy metals.
Enzymatic treatment has also proven to be an effective method to remove contam-
inants from industrial wastewater. Improvements have been seen in enzymatic
treatment to overcome low efficiencies and high operational costs of conventional
techniques. The future prospect looks promising on microbial genetic technologies
and the advancement of using biofilms, nanomaterials, and nanocomposites which
could be attained by immobilization and optimization process. Therefore, additional
efforts should be made toward genetically modified microbes and microbial fuel cell
(MFC) in the bioremediation of heavy metals and other toxic materials from the
industrial effluents.
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