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Abstract The recent expansion of human industrial activity, including mining,
smelting, and synthetic compounds, has increased the amount of toxic harmful
gases released in the atmosphere, water, and soil which contaminated the environ-
ment directly and indirectly. There has been a significant rise in the levels of heavy
metals (Pb, As, Hg, and Cd) and toxic gases due to their increased industrial usage,
causing a severe concern to public health as well as enviornment. Accumulation of
these heavy metals generates oxidative stress in the body, causing fatal effects to
important biological processes leading to cell death. The ability to prevent and
manage this problem is still a subject of much debate, with many technologies
ineffective and others too expensive for practical large-scale use, especially for devel-
oped and developing nations where major pollution arising. Currently, green tech-
nologies require pressure to develop the management of contaminated sites which
benefit the society directly and indirectly. Bioremediation, is another biological
mechanism of waste recycling in another form which can be used and reused by
other organisms. Therefore, to reduce the potential toxicity of any pollutant in the
environment, by degradation, change, bioremediation is the form of
bio-systems through microbes and plants, by stabilizing these undesirable sub-
stances into less harmful forms.

Keywords Bioremediation · Waste gases · Microbes · Plants · Pollution ·
Nanotechnology

5.1 Introduction

Bioremediation or natural remediation is a cost-effective eco-friendly biotechnolog-
ical process. It includes the utilization of living beings such as plants and micro-
scopic bacteria to remediate and stabilize polluted areas (Anyasi and Atagana 2011;
Perelo 2010; Sharma 2012). In bioremediation, few advances have been acknowl-
edged with the assistance of the different field of molecular biology, microbiology,
environmental engineering, biochemistry, chemical and analytical chemistry, etc.
The process of bioremediation is an alternative to incineration process and use of
catalytic barrier and absorbents. It involves only biological agents such as plants and
microorganisms to change and degrade contaminants into less hazardous or almost
non-hazardous substances (Dua et al. 2002; Park et al. 2011). Different living
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organisms such as bacteria, fungi, yeast, algae, and plants have been used as natural
operators to proficiently bioremediate hazardous pollutants and clean up the envi-
ronment (Vidali 2001; Strong and Burgess 2008). With the increment in the popu-
lation, the demand for food supply has likewise increased. This created pressure on
natural resources. Thereby, farmers are forced for intensive agriculture by utilizing
more and more pesticides to get more yields. But utilization of these pesticides
degrades the texture nature and quality of the soil. Also, excess input of these wastes
had prompted deficiency of clean soil and water and thus diminishing crop yield
(Kamaludeen et al. 2003). So, bioremediation is being used as an effective method to
clean up the environment from these hazardous substances such as hydrocarbons,
organic compounds and solvents, nitrogenous compounds, herbicides, pesticides,
nitrogenous waste gases, and heavy metals (Fig. 5.1) (Park et al. 2011). The
contaminants and the hazardous substances present in the environment act as energy
sources for the microbes and provide energy to carry out their metabolic activities
(Tang et al. 2007). Microorganisms not only play a significant role in regulating the
biogeochemical cycles (Griggs et al. 2013) but also help to sustain clean air by
diminishing environmental pollutants from the environment (Morris et al. 2011)
keeping us healthy. Also, they protect plants from the diseases and help them to
develop and grow (Pineda et al. 2017). A widespread list of the microbes that bring
about bioremediation processes is available (Satyanarayana et al. 2012; Prakash
et al. 2013; Abou Seeda et al. 2017).

Bacteria

Fungi

Plants Green earth

Fig. 5.1 Bioremediation through microbes and plants
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5.2 Need of Bioremediation

Nowadays, environmental pollution is a serious issue for mankind. Remediation
approaches, such as physical and chemical methods, are insufficient to alleviate
contamination issues in view of the constant age of novel recalcitrant toxins because
of anthropogenic exercises. Bioremediation could find a better solution to this issue.
It is an eco-friendly and socially acceptable alternative to conventional remediation
approaches utilizing microbes (Dangi et al. 2018).

5.3 Bioremediation of “Composting” Soils

The dynamic “composting” of soils debased with (poly) aromatic hydrocarbons
(PAHs) and alkanes in combination with critical amounts of composting feedstock
materials is considered as a significant bioremediation treatment approach (Antizar-
Ladislao et al. 2007; Sasek et al. 2003; Semple et al. 2001; Tran et al. 2018). This
approach utilizes the addition of the known amount of compost (or other organic
residues) to defiled soils by improving pH, porosity, oxygen diffusion (Semple et al.
2001), and contaminant desorption (Wu et al. 2013). This is possible as composts are
generally rich in nutrients such as carbohydrates, nitrogen, and phosphorus that are
potentially important in accomplishing an ideal activity of pollutant degraders
indigenous to polluted soils (Komilis and Timotheatou 2011; Sarkar et al. 2005).
Furthermore, compost/manure contains several different microorganism populations
which may degrade organic contaminants present in the environment (Scelza et al.
2007). A few examples of the utilization of “mature” manure for the application of
soil bioremediation can be found in the literature. For instance, Gomez and Sartaj
(2013) used “mature”manure for the bioremediation of total petroleum hydrocarbon
(TPH) from the polluted soil in cold conditions.

5.4 Enzymes Used in Bioremediation

Degradation of contaminants from the environment with the assistance of microor-
ganisms is a slow process, which diminishes the achievability of the bioremediation
process in actual practice (Ghosh et al. 2017). In the past few years, to overcome
these limitations, microbial enzymes harvested from their cells have been used to
carry out bioremediation when contrasted with utilizing the whole microorganisms
(Thatoi et al. 2014). Enzymes are proteinaceous biological macro-molecules which
act as a catalyst to carry out a number of biochemical reactions involved in the
pollutant degradation pathways (Kalogerakis et al. 2017). In contrast to microbes,
enzymes are more specific to their substrate and versatile in nature in light of their
smaller size (Gianfreda and Bollag 2002). The process of bioremediation based on
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purified and partially purified enzyme does not rely upon the development of a
specific microorganism in the polluted environment; however, it relies on the
catalytic activity of the enzyme present in the microbes (Ruggaber and Talley
2006). In insufficient nutrient soil, bioremediation can be conceivable by utilizing
a purified enzyme. Enzymatic biotransformation is a safer process as toxic side
products are not produced during the process.

5.5 Bioremediation of Petroleum Hydrocarbons

Microbial bioremediation is a broadly utilized method for treating petroleum hydro-
carbon contaminants from the environment including both terrestrial and aquatic
ecosystems (Abbasian et al. 2015; Varjani and Srivastava 2015). In the last decades,
several research studies based on biodegradation of hydrocarbon pollutants have
been done (Sajna et al. 2015; Varjani et al. 2015; Varjani and Upasani 2016).
Microorganisms are ubiquitous in nature and play a significant role in maintaining
ecosystem balance to develop a sustainable environment (Varjani and Srivastava
2015). Microorganisms such as bacteria, fungi, and algae are accounted for their
capacity to degrade hydrocarbon pollutants (Wilkes et al. 2016). Bacteria are
considered as primary degraders and play a crucial role in degrading petroleum
pollutants from the environment (Abbasian et al. 2015; Meckenstock et al. 2016).
Few examples of bacteria that act as hydrocarbon degraders include Acinetobacter,
Achromobacter, Azoarcus, Micrococcus, Arthrobacter, Brevibacterium,
Flavobacterium, Corynebacterium, Nocardia, Cellulomonas, Marinobacter,
Stenotrophomaonas, Ochrobactrum, Pseudomonas, Vibrio, etc. (Varjani and
Upasani 2016). Besides, fungi that play a crucial role in degrading petroleum
hydrocarbon pollutant include yeast, Candida, Penicillium, Fusarium, Aspergil-
lus, Neosartorya, Amorphoteca, Graphium, Talaromyces, Paecilomyces,
Rhodotorula, Sporobolomyces, Pichia, Yarrowia, Pseudozyma, etc. (Sajna et al.
2015; Wilkes et al. 2016). The essential criteria needed to understand the scope and
strategies of pollutant removal via bioremediation include the understanding of
properties of crude oil, mechanism, the fate of oil, the concerned environment, and
factors that control its rate.

5.6 Bioremediation of Agricultural Waste

Globally, every year, about 38 billion metric tons of organic waste of human,
livestock, and crops are produced. Eco-friendly disposal of this waste from the
environment has become a global priority. Accordingly, in recent years, much
attention has been paid to develop efficient and cost-effective strategies to convert
these nutrient-rich organic wastes into valuable products for sustainable land prac-
tices. With the help of microorganisms and earthworms, this can be achieved. They
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help in the degradation of organic matter by molding to the substrate and altering the
biological activity (Dominguez 2004; Suthar 2007). Several earthworms, such as
Eudrilus eugeniae, Eisenia fetida (Savigny), Perionyx sansibaricus (Perrier), and
Perionyx excavatus (Perrier), have been recognized as detritus feeders and poten-
tially minimize the anthropogenic waste from the various sources (Garg et al. 2006).

5.7 Types of Bioremediation

Bioremediation can be categorized into two types: In situ bioremediation and ex situ
bioremediation (Fig. 5.2) (Marykensa 2011). In situ bioremediation involves treat-
ment of pollutants, e.g., contaminated water or soil at the site of occurrence. In
contrast, ex situ bioremediation involves treatment of pollutants, e.g., contaminated
soil or water once excavated from its initial site (Megharaj et al. 2014).

5.7.1 In Situ Bioremediation

In this type of bioremediation, contaminated soil is treated at the site of contamina-
tion where it occurred without its removal and transportation, for example, natural

Fig. 5.2 Types of bioremediation techniques
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attenuation, bio-venting, and bio-sparging. This method is considered as a natural
biogeochemical process.

5.7.1.1 Bioaugmentation

It is the process of speeding up the rate of degradation of contaminants by the
addition of indigenous or exogenous microorganisms to the contaminated sites
containing the target contaminant. The addition of these microbial populations
brings about catabolic activity and enhances the bioremediation process (Andreoni
and Gianfreda 2007).

5.7.1.2 Bioattenuation

It is a set of naturally occurring phenomena used to diminish soil pollutants. It
evacuates the degradation of pollutants with the help of several processes, such as by
indigenous microorganisms, dispersion, chemical transformation, dilution, volatili-
zation, and stabilization of contaminants (Guarino et al. 2017). Petroleum hydrocar-
bons can remain buried in soil for more than 50 years after spillage, despite treatment
naturally using this strategy for remediation of TPH in freezing soil (Mair et al. 2013;
Jiang et al. 2016).

5.7.1.3 Bioventing and Bio-Sparging

It is a type of bioremediation process that utilizes controlled airflow into the
contaminated soil of an unsaturated zone to improve degradation activities of
indigenous microorganisms. Controlled airflow rate guarantees that the contami-
nants get reduced because of microbial degradation instead of volatilization
(Azubuike et al. 2016). Furthermore, bio-sparging is like bio-venting and aids in
the movement of volatile pollutants from a saturated area to an unsaturated area
(Azubuike et al. 2016).

5.7.2 Ex-Situ Bioremediation

It involves the treatment of pollutants away from the site of their occurrence. It
includes excavation and transportation of contaminated soils to a protected and
reliable place for their efficient treatment. On the basis of nature, severity, and
geographical location of the contamination, ex situ bioremediation can be of several
types. This method is a controlled remediation strategy where the treatment condi-
tions can be overseen appropriately. A few investigations have reported the fruitful
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application of ex situ bioremediation methodologies for oil-polluted soil in low
temperatures (Tomei and Daugulis 2013; Jeong et al. 2015).

5.7.2.1 Bio-Pile

In this process where excavated polluted soil is piled temperature and moisture
control and nutrient amendments. The process involves temperature control mech-
anism which keeps up ideal situations even in low temperatures. This successfully
helps to remediate polluted components from the cold environments also (Chemlal
et al. 2012; Whelan et al. 2015).

5.7.2.2 Composting

It is the procedure of converting organic matter into humus-like non-toxic sub-
stances. During the process, active indigenous or augmented microorganisms cata-
lyze the reaction and generate high temperature to optimize microbial activities and
thus bring about degradation of the contaminants as the compost get matured
(Kästner and Miltner 2016). For the successful implementation in low temperature
composting can be equipped with bio-pile facilities (Sanscartier et al. 2009).

5.7.2.3 Land Farming

It is a process in which contaminated soil is spread in a bed and made accessible for
biological treatment. It includes a broad range of environmental conditions, such as
extreme cold and arid soil (Tomei and Daugulis 2013). Presently, for efficient
degradation of pollutants, land farming methods have been improved by incorpo-
rating bioaugmentation and adding fertilizers, water, and surfactants (Jeong et al.
2015).

5.7.2.4 Bioreactor

It is a controlled system involving biological processes that can convert raw mate-
rials into useful products. In this system, a vessel (reactor) is utilized that brings
about bioremediation. Bioreactors can be operated in different feed modes, such as
batch, semi-continuous, and continuous. Besides, several physical (such as pH,
temperature, aeration, and agitation) and biological (such as bacterial inoculums,
nutrients, and substrate) parameters can be controlled in the bioreactor (Tomei and
Daugulis 2013).
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5.8 Phytoremediation

Though the studies were carried out in 1950s, the term “phytoremediation” was
coined in 1991. Phytoremediation is a process that utilizes plants to remove con-
taminants from the environment (Kumar et al. 2011; Sharma and Pandey 2014).
Green plants, such as herbs (e.g., Brassica juncea, Thlaspi caerulescens, and
Helianthus annuus) and woody species (e.g., Salix spp. and Populus spp.), remove
various contaminants (like heavy metals, organic compounds, and radioactive com-
pounds in soil or water) from the environment by accumulating and transporting the
contaminants via translocation (Tahir et al. 2015) (Fig. 5.3).

5.8.1 Rhizodegradation

Rhizodegradation occurs at a radical level of plant in a soil area called rhizosphere
where biodegradation of the organic contaminants takes place. The process occurs
with the help of bacteria, fungi, and yeasts. As root is a rich source of carbon and
nitrogen, they expand the effectiveness of extraction and removal of contaminants
(Leung et al. 2013; Liu et al. 2014).

Fig. 5.3 Process of phytoremediation
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5.8.2 Phytoextraction

It is an in situ strategy used for the treatment of contaminated soils (Alì et al. 2013;
Van Oosten and Maggio 2014). Phytoextraction involves absorption of contami-
nants via roots and then their transportation and accumulation in shoots and leaves
(Mahar et al. 2016; Sreelal and Jayanthi 2017). Plants engaged with this procedure
should ideally have the ability to accumulate contaminants and produce high
biomass.

5.8.3 Rhizofiltration

Rhizofiltration comprises biodegradation of organic and inorganic pollutants from
the surface water, groundwater, or wastewater via adsorption of pollutants on the
roots or around the root area (Zhang et al. 2009). This strategy is applied for the
removal of heavy metals from the soil (Susarla et al. 2002) as they are maintained at
the root level, and further, these elements will be harvested. The plants that are used
in this process are tolerant of metal. They have a high absorption surface and tolerate
hypoxia (e.g., Salix spp., Populus spp., Brassica spp.).

5.8.4 Phytodegradation

During phytodegradation, organic contaminants, after assimilation by the root
framework, are degraded by the enzymatic activity, or they will be consolidated
into the plant tissues (Alì et al. 2013; Sharma and Pandey 2014; Van Oosten and
Maggio 2014). The enzymes that carry phytodegradation include peroxidase,
dehalogenase, nitroreductase, nitrilase, and phosphatase (Winquist et al. 2013;
Deng and Cao 2017).

5.8.5 Phytovolatilization

In this process, the contaminants are absorbed from the roots of the plant, transported
through the xylem, and discharged into the atmosphere from the aerial parts of the
plant in less toxic forms. The process can be applied to contaminants present in the
soil, sediment, or water, particularly for organic contaminants like trichloromethane,
tetrachloroethane, and tetrachloromethane (San Miguel et al. 2013) and for some
high-volatile metals such as Hg and Se (Wang et al. 2012; Van Oosten and Maggio
2014).
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5.8.6 Phytostabilization

The method is valuable for the treatment of Cd, Cu, Pb, As, Cr, and Zn (Zhao et al.
2016; Yang et al. 2016). The advantage of this technique consists of the changes of
soil chemical composition induced by the presence of the plant itself, and such
changes can facilitate the absorption or cause the precipitation of metals on the roots
(Zhang et al. 2009). This process decreases contaminant versatility, avoiding move-
ment into the groundwater and lessen the bioavailability in the food chain (Alì et al.
2013; Sharma and Pandey 2014).

5.8.7 Bioremediation of Industrial Pollution by Plants

Air pollution means “the presence of harmful or toxic substances in the atmosphere,
which adversely effects on both living and non-living things.” Main air pollutants
are sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matters (PMs), volatile
organic compounds (VOCs), and ground-level ozone (O3) (Archibald et al. 2017).
Bioremediation is an effective method because of its cheaper cost in comparison to
different physicochemical techniques (Cheng et al. 2012; Philp et al. 2005).
Exchange of gases is required by autotrophic plants for their survival; during this
process, gaseous pollutants can be adsorbed/absorbed (Gawronski et al. 2017).
Different policies, strategies, and models have been implemented or proposed for
the removal of air pollution (Macpherson et al. 2017).

5.9 Remediation of Particulate Matters

PMs are the most hazardous pollutants in developing countries. The physical
characteristics of leaves such as stomata, leaf shape, and trichomes or hairs signif-
icantly affect the collection of PM. More accumulation of PM2.5 was reported in
needle leaves than broader leaves (Terzaghi et al. 2013; Chen et al. 2017). Trichomes
of the leaf have been demonstrating to high PM2.5 accumulations. Accumulation of
PM2.5 was positively correlated with the density of trichomes of leaves and some
plant with maximum hairs such as Broussonetia papyrifera, Ulmus pumila, and
Catalpa speciosa were able to collect high PM2.5 than those plants which have few
hairs (Chen et al. 2017). Teper (2009) observed that needles of Pinus sylvestris
accumulate 18,000 particles of mineral mm�2. In Hedera helix, upper leaves
received approximately 17,000 particles mm�2 (Ottele et al. 2010). Nowak et al.
(2014) showed that trees present in the cities are responsible for the removal of fine
particles from the atmosphere, which improved the quality of air and human health
also. It is already demonstrated that outdoor plants can phytoremediate aerosol PM
(Sæbø et al. 2012). In the period of 3 years, Popek et al. (2013) investigated that
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13 woody species captured the sum amount of PMs ranging from 7.5 mg/cm2

through Catalpa bignonioides to 32 mg/cm2 through the leaves of Syringa meyeri.

5.10 Remediation of VOCs

The elimination of pollutants was plant-mediated; therefore, the expulsion of VOCs
by the absorption of plants is through the process of normal gas exchange or
absorption and adsorption with the help of plant surface (Omasa et al. 2002; Yoo
et al. 2006; Ahmad et al. 2019). A hypothetical process involves aerial plant parts for
the absorption of VOCs, where they can possibly enter through the Kelvin cycle, and
eventually convert into amino acids through the metabolic process (Peterson et al.
2016). VOCs can undergo storage, excretion and degradation inside the plant system
(Weyens et al. 2015).

5.11 Remediation of Other Harmful Gases

The concentration of atmospheric CO2 has increased rapidly in recent decades.
Contribution of CO2 represents more than 50% of the total warming potential in
all greenhouse gases (Cox et al. 2000). In the present scenario, the continuous
change of climate is creating a series of problems for future generations. Various
chemical and biological technologies have been introduced to remove CO2 from the
atmosphere. Many researchers have confirmed over the past few decades that plants
extract CO2 by photosynthesis (Torpy et al. 2018). Through many researches, it has
been investigated that vegetative surfaces have the potential to reduce NO2

(Chaparro-Suarez et al. 2011). Some plants can be survived in SO2-polluted envi-
ronment (Chung et al. 2010). From the air, O3 can be removed through chemical
reactions which react with reactive compounds, especially mono-terpenes that rely
upon the vegetation (Di Carlo et al. 2004). Various diterpenoid organic compounds
which are semi-volatile are released from the trichomes of leaves responsible for the
removal of O3 (Jud et al. 2016).

5.12 Microbial Remediation of Air Pollution and Soil

Generally, bioremediation is a process which uses the microorganisms to convert or
degrade contamination into nontoxic products (Antizar-Ladislao 2010). Microor-
ganisms such as fungi and bacteria are also responsible for bio-transforming or
biodegrading pollutants into less toxic and non-toxic materials, called as microbial
biodegradation (Ward et al. 1980; Ma et al. 2016). Microorganisms in the form of
heterotrophs present almost everywhere, including plant shoot and roots. It has been
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reported that both shoots and roots are used to remediate the pollutants from the air
(Weyens et al. 2015; Gawronski et al. 2017). However, a small credit has been
granted to microbial activity. Bioremediation depends on the ability of microbes to
breakdown the organic pollutants in the existence of optimal conditions of the
environment and an adequate supply of nutrients and electron receiver (Adams
et al. 2015). It should be emphasized that a soil treatment technique is not only
aimed at reducing the concentrations of pollutants but also restoring the quality of
soil (Epelde et al. 2010; Barrutia et al. 2011; Pardo et al. 2014). The optimum
temperature typically means high levels of microbial action, which in turn possibly
prioritizes increased metabolism of organic pollutants (Goiun et al. 2013).

Over the last several decades, many studies have been investigated that the
microbial farming system responsible for the decrease of CO2 from the atmosphere
(Raeesossadati et al. 2014; Fernández et al. 2012). Microalgae have gained increas-
ing interest with the recycling of CO2 and bioremediation because of its potential to
grow on non-agricultural lands and in saltwater. Weyens et al. (2010) used
engineered endophytes to decrease the toxic metals and organic pollutants from
polluted environments by phytoremediation. Various researchers have identified the
possibility of epiphytic and endophytic microbiota, which reside on the leaves and
shoots (and it is known as the phyllosphere) to remove VOCs (Khaksar et al. 2016;
Sandhu et al. 2007). In addition to leaves of the plant, rhizospheric microbes also
contribute to the depletion of VOCs from the internal environment (Llewellyn and
Dixon 2011). Popek et al. (2015) demonstrated that trees and shrubs, forming a
biofilter on the path of PM flow, have reduced the amount of PM about 50% that
accumulates on the foliage of distant trees in the park. Sulfur oxidizing bacteria like
Paracoccus and Begiatoa are capable of reducing sulfur compounds such as hydro-
gen sulfide (H2S) to inorganic sulfur and thiosulfate to form sulfuric acid (H2SO4)
(Pokoma and Zabranska 2015).

5.13 Role of Nanotechnology in Bioremediation
of Industrial Air Pollution

Due to rapid urbanization, industrialization and increasing population pressure, are
the major concerns that poses environmental pollution and human risks. Environ-
mental pollution caused by a release of several air pollutants such as CO, chloro-
fluorocarbons, volatile organic compounds, hydrocarbons, and nitrogen oxide from
the industries as well as other sources poses a human risk to several incurable
disorders (Khan et al. 2014; Das et al. 2015; Krug 2009). Bioremediation is an
eco-friendly, sustainable and economical approach that effectively restores polluted
environments by utilizing microorganisms, by breaking down or transforming
harmful to less toxic or non-lethal format. Meanwhile, living agents are utilized in
the process of bioremediation to clean up the contaminated habitat/site, e.g., bacteria
and fungi. Besides, these biomediators’ advancements in science and technology
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gave birth to several new nanobiotechnological techniques. Nanotechnology refers
to the pattern, characterization, formulation, and utilization of structures by changing
shape and size at the nanometer scale (Hussain and Hussain 2015; Danish and
Hussain 2019). But, due to the vast diversity of pollutants, no single bioremediation
technique could serve as a “silver bullet” to recover the polluted environments.

5.13.1 Role of Nanotechnology in the Remediation of Toxic
Gases Released from Industries

It produces novel materials with unique properties having small scale and high
surface/volume ratio. These properties enable researchers to develop highly detailed
and precise nanosensor appliances that significantly monitor environmental pollu-
tion. Besides, nanomaterials not only replace toxic material with a safety one but also
react with impurity and degrade it into a non-lethal product (Falahi and Abbasi 2013;
Chirag 2015; Ngo and Van de Voorde 2014). Also, coating technology involving
nanostructures is also used to clean up such pollutants that show resistance as they
possess self-cleaning features. Remediation using nanotechnology reduces air pol-
lution in three different ways, namely adsorption of contaminants by using nano-
absorptive materials, deterioration of contaminants by using nanocatalysis, and
filtration/separation of contaminants by using nanofillers.

5.13.1.1 Nano-Adsorptive Materials

Nano-adsorbent could be used to clean up air pollution. Carbon nanostructures (e.g.,
fullerene, carbon nanotubes, graphene, and graphite) that have been used for indus-
trial applications due to their high selectivity, affinity, and capacity (Bergmann and
Machado 2015) are used as adsorbents to clean up air pollution. The addition of
different functional groups to these nanostructures provides new receptive exterior
sites or structure bonds for adsorption, making the process more effective by
maximizing the adsorption volume of the system (Gupta and Saleh 2013; Wang
et al. 2013). For example, the surface of CNTs with generous amine groups provides
multiple chemical sites for CO2 adsorption which makes CNTs ingest more CO2

gases at low-temperature range (20–100 �C) and thus helps to reduce greenhouse
gases from the environment (Su et al. 2009). Similarly, fullerene and graphene also
speed up the process of adsorption to reduce greenhouse gases (Dong et al. 2015;
Petit and Bandosz 2009).
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5.13.1.2 Nanocatalyst Materials

The degradation of pollutants by utilizing semiconductor materials improves
photocatalytic remediation by increasing surface area resulting in enhanced reaction
efficiency (Özkar 2009). For example, the photocatalytic properties of titanium
dioxide nanoparticles (TiO2) are efficient to convert atmospheric contaminants
such as nitrogen oxides and other pollutants into less toxic species (Shen et al.
2015). Further, TiO2 nanoparticles are also used as an antibacterial agent. Besides,
TiO2 other nanocatalysts include nanogold-based catalysts (Singh and Tandon
2014), ZnO photocatalyst (Yadav et al. 2017), and bismuth oxybromide (BiOBr)
nanoplate microsphere catalysts (Ai et al. 2009).

5.13.1.3 Nanofilters

Another approach for cleaning up air pollutants is the use of nanostructured sheets
that have poured small abundance to separate contaminants from the source. Now-
adays, nanofiber-coated filter media are used to filter air pollutants such as dust at
industrial plants (Muralikrishnan et al. 2014). Bioaerosols, aerosols of biological
origin such as viruses, bacteria, and fungi, are also air pollutants that cause many
diseases such as allergies and infections. In this regard, silver nanoparticles and
copper nanoparticles filters are extensively used in air filtration technology as
antimicrobial agents (Lee et al. 2010).

5.14 Heavy Metals (HMs) in the Environment

Environmental pollution is one of the major challenges in modern human welfare
(Ali and Khan 2017). Environmental contaminations and pollutants caused by heavy
metals are a threat to the environment and are of serious concern (Alì et al. 2013;
Hashem et al. 2017). Rapid industrialization and urbanization have caused contam-
ination of the environment by heavy metals, and their rates of mobilization and
transport in the environment have greatly accelerated since the 1940s (Khan et al.
2004; Merian 1984). Their natural sources in the environment are weathering of
metal-containing rocks and volcanic eruptions, while industrial emissions, mining,
smelting, and agricultural activities like the application of pesticides, phosphate, and
other inorganic fertilizers are prominent anthropogenic sources.

According to Csuros and Csuros (2002), heavy metal is defined as “metal with a
density greater than 5 g/cm3 (i.e., specific gravity greater than 5).” The term “heavy
metals” is often used as a group name for metals and semimetals (metalloids) that
have been associated with contamination and potential toxicity or ecotoxicity
(Duffus 2002). Very recently, we have proposed a broader definition for the term,
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and heavy metals have been defined as “naturally occurring metals having an atomic
number greater than 20 and an elemental density greater than 5 g�cm�3

”.

5.14.1 Heavy Metals: Essential and Non-essential

Regarding their roles in biological systems, heavy metals are classified as essential
and non-essential. Essential heavy metals are important for living organisms and
may be required in the body in quite low concentrations, but non-essential heavy
metals have no known biological role in living organisms. Examples of essential
heavy metals are Mn, Fe, Cu, and Zn, while the heavy metals Cd, Pb, and Hg are
toxic and are regarded as biologically non-essential (Ramírez 2013; Jović et al. 2012;
Rahim et al. 2016; Türkmen et al. 2009). The heavy metals Mn, Fe, Co, Ni, Cu, Zn,
and Mo are micronutrients or trace elements for plants. They are essential for growth
and stress resistance as well as for biosynthesis and function of different biomole-
cules such as carbohydrates, chlorophyll, nucleic acids, growth chemicals, and
secondary metabolites (Appenroth 2010). Either deficiency or excess of an essential
heavy metal leads to abnormalities or diseases in organisms. However, the lists of
essential heavy metals may be different for different groups of organisms such as
plants, animals, and microorganisms. It means a heavy metal may be essential for a
given group of organisms but nonessential for another one. The interactions of heavy
metals with different groups of organisms are much complex (Chalkiadaki
et al. 2014).

5.15 Sources of Industrial Wastes in the Environment

Sources of heavy metals in the environment can be natural, geogenic/lithogenic, and
anthropogenic. The natural or geological sources of heavy metals in the environment
are weathering of metal-bearing rocks and volcanic eruptions. The global trends of
industrialization and urbanization on Earth have led to an increase in the anthropo-
genic sharing of heavy metals in the environment (Nagajyoti et al. 2010). The
anthropogenic sources of heavy metals in the environment are mining and industrial
and various agricultural activities. These metals (heavy metals) are released during
mining and extraction of different elements from their respective ores. Heavy metals
released to the atmosphere during mining, smelting, and other industrial processes
return to the land through a dry and wet deposition. Discharge of wastewater such as
industrial effluents and domestic sewage add heavy metals to the environment.
Application of chemical fertilizers and combustion of fossil fuels also contribute to
the anthropogenic input of heavy metals in the environment. Regarding contents of
heavy metals in commercial chemical fertilizers, phosphate fertilizers are particu-
larly important.
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In general, phosphate fertilizers are produced from phosphate rock (PR) by
acidulation. In the acidulation of single superphosphate (SSP), sulfuric acid is
used, while in acidulation of triple superphosphate (TSP), phosphoric acid is used
(Dissanayake and Chandrajith 2009). The final product contains all of the heavy
metals present as constituents in the phosphate rock (Mortvedt 1996). Commercial
inorganic fertilizers, particularly phosphate fertilizers, can potentially contribute to
the global transport of heavy metals (de López Carnelo et al. 1997). Heavy metals
added to agricultural soils through inorganic fertilizers may leach into groundwater
and contaminate it (Dissanayake and Chandrajith 2009). Phosphate fertilizers are
particularly rich in toxic heavy metals. The two main pathways for the transfer of
toxic heavy metals from phosphate fertilizers to the human body are shown below
(Dissanayake and Chandrajith 2009):

(a) Phosphate rock⟶fertilizer⟶soil⟶plant⟶food⟶human body.
(b) Phosphate rock⟶fertilizer⟶water⟶human body.

5.15.1 Human Exposure to Industrial Wastes and Heavy
Metals

Humans are exposed to toxic heavy metals in the environment through different
routes including ingestion, inhalation, and dermal absorption. People are more
exposed to toxic metals in developing countries. Generally, people have no aware-
ness and knowledge about exposure to heavy metals and their consequences on
human health, especially in developing countries (Afrin et al. 2015). They may be
exposed to heavy metals in the working place and in the environment. Human
exposure to toxic chemicals in the working place is called occupational exposure,
while exposure to such chemicals in the general environment is called
non-occupational or environmental exposure. Workers are exposed to heavy metals
in mining and industrial operations where they may inhale dust and particulate
matter containing metal particles. People extracting gold through the amalgamation
process are exposed to Hg vapors. It has been reported that welders with occupa-
tional prolonged exposure to welding fumes which had significantly higher levels of
the heavy metals Cr, Ni, Cd, and Pb in blood than the control have shown increased
oxidative stress (Mahmood et al. 2015). Cigarette smoking is also a principal source
of human exposure to Cd (Järup 2003) and other toxic heavy metals present in the
tobacco leaves.

Ingestion of heavy metals through food and drinking water is a major exposure
source for the general human population. Industrialization, urbanization, and rapid
economic development around the globe have led to intensification in industrial and
agricultural activities. Such activities may cause contamination of water, air, and
soils with toxic heavy metals. Growing human foods in heavy metal-contaminated
media lead to bioaccumulation of these elements in the human food chains, from
where these elements ultimately reach the human body.
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5.15.2 Bioaccumulation and Biomagnification of Heavy
Metals in the Human Food Chains

Humans are omnivorous, they may be exposed to toxic heavy metals through
different food items such as fish, cereals, and vegetables. Contamination of
these heavy metals in freshwater bodies such as rivers, lakes, and streams leads to
bioaccumulation in freshwater fish, while such contamination in agricultural lands
leads to bioaccumulation in agricultural crops. Contamination of human food chains
with toxic heavy metals poses a threat to human health. Certain examples from the
twentieth century have shown that such contamination is a serious issue for human
health. Minamata disease (MD) and itai-itai disease both in Japan were caused by
the consumption of Hg-contaminated fish and Cd contaminated rice, respectively.
Figure 5.4 depicts the transfer of heavy metals from contaminated fish to humans.

Although biomagnifications of heavy metal is a controversial issue in metal
eco-toxicology, numerous studies have reported biomagnifications of heavy metal
in certain food chains. In the case of biomagnifications of these metals in food
chains, organisms at higher tropic levels in the food chains are at greater risk. Higher
concentrations of trace metals in organisms of higher tropic levels as a result of
biomagnifications can pose a health risk to these organisms or to their human
consumers (Barwick and Maher 2003). To protect human health from the harmful
effects of toxic heavy metals, human food chains should be constantly monitored for
bioaccumulation and biomagnifications of heavy metals. However, nondestructive

Fig. 5.4 Transfer of HMs from freshwater fish to humans in the human food chain
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sampling techniques and use of environmental biomarkers should be opted to avoid
loss of biota due to analysis. Furthermore, in order to avoid contamination of food
chains with heavy metals, untreated municipal and industrial wastewater should not
be drained into natural ecosystems such as rivers and farmlands (Balkhair and
Ashraf 2016).

5.15.3 Toxicity of Heavy Metals

Although some heavy metals, called essential heavy metals, plays an important role
in biological systems, they are generally toxic to living organisms depending on the
dose and duration of exposure. It is a well-known fact in toxicology that “excess of
everything is bad.” Nonessential heavy metals (Cd, Pb, and Hg) and metalloids (As,
etc.) may be toxic even at quite low concentrations. Essential heavy metals are
required in trace quantities in the body but become toxic beyond certain limits or
threshold concentrations. For some elements, the window of essentiality and toxicity
is narrow. Heavy metals have been reported to be carcinogenic, mutagenic, and
teratogenic. They cause the generation of reactive oxygenic species (ROS) and thus
induce oxidative stress. Oxidative stress in organisms leads to the development of
various diseases and abnormalities. Heavy metals also act as metabolic poisons.
Heavy metal toxicity is primarily due to their reaction with sulfhydryl (SH) enzyme
systems and their subsequent inhibition, e.g., those enzymes involved in cellular
energy production (Csuros and Csuros). The reaction of heavy metal (M) with
glutathione (GSH), (which is an important antioxidant in the body). Here, the
metal replaces H atoms from SH groups on two adjacent glutathione molecules.
The combination of these two glutathione molecules leads to the formation of strong
bond with the metal that deactivates them for further reactions:

2 glutathione + metal ion (M2+) ⟶M (glutathione)2 + 2H+ (3)

5.15.4 Effects of Toxic Heavy Metals on Human Health

Heavy metals Cd, Pb, Hg, and As deplete the major antioxidants of cells, particularly
antioxidants and enzymes having the thiol group (-SH). Such metals may increase
the generation of reactive oxygen species (ROS) like hydroxyl radical, superoxide
radical, and hydrogen peroxide. Increased generation of ROS can devastate the
inherent antioxidant defences of cells and lead to a condition called “oxidative
stress” (Ercal et al. 2001). Heavy metals, including Cd, Pb, and Hg, are nephrotoxic,
especially in the renal cortex (Wilk et al. 2017). The chemical form of heavy metals
is important in toxicity. Mercury toxicity largely depends on Hg speciation
(Ebrahimpour et al. 2010). Relatively higher concentrations of toxic heavy metals,
i.e., Cr, Cd, and Pb, and relatively lower concentrations of the antioxidant element
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Se have been found in cancer and diabetes patients compared to those in the normal
subjects in Lahore city, Pakistan (Salman et al. 2011). We all should be aware of the
potential hazards and keep in mind that studying them before applying anything in
nature is one of the main challenges of future studies. New technologies are being
invented throughout the year and developed/modified especially in the field of
science, which can help us understand all processes better and use them very
accurately in the field of bioremediation can do. Therefore, research in this area is
very promising.

5.16 Conclusion

Day by day, increasing pollution threatens our health and damages the environment,
affecting the sustainability of wildlife and our planet. Damage to our soil affects our
ability to grow food, as summarized in our policy report on the subject of food
security. Bioremediation can help reduce and eliminate the pollution we generate by
providing clean water, air, and healthy soil for our generations to come.
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