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Preface

Due to rise in global population, agriculture and industrialization increase at an
astonishing rate which creates accumulation of pollutants in the environment. Excess
loading of pollutants leads to scarcity of clean water and air as well as disturbances
of soil, thus limiting agricultural productivity and thereby challenging food security.
The key environmental pollutants include agrochemicals, hydrocarbons, heavy
metals, dyes, greenhouse gases, and e-waste causing deterioration of environmental
health. Microorganisms are wonderful gift of the nature and efficiently explored as
the Solution to Pollution.Microorganisms have diverse metabolic activities enabling
them to break down a wide range of organic pollutants and absorb inorganic sub-
stances, which in turn clean up the environment. Eco-restoration of polluted envi-
ronment by microorganisms includes a variety of approaches such as biostimulation,
bioaugmentation, biofilm formation, application of genetically modified microor-
ganisms, and advanced molecular techniques for real-time monitoring of
microorganism-mediated bioremediation. Microorganisms can convert the pollut-
ants into nonhazardous and environmentally safe end products and restore the
environment to its original state in an eco-friendly manner.

The book entitledMicrobial Rejuvenation of Polluted Environment Volume 1 has
a major focus on environmental remediation by exploiting microorganisms for
sustainable eco-restoration of polluted environment. Microorganisms are tiny invis-
ible entities which can utilize almost everything. The book focuses on the role of
different types of microorganisms including bacteria, algae, fungi, and even archea
for mitigation of environmental stress along with a detailed discussion on the
mechanisms of action. It also contains reviews and original research of reputed
scientists to highlight the latest developments in microbiological research, to cope up
with the problem of environmental pollution along with remediation strategies
practiced at various stages for improvement of ecological health. This book will be
a valuable resource for scientists working to develop mitigation strategies for
environmental remediation, will serve as an inspiration and ready reckoner for
students who want to pursue studies pertaining to bioremediation of the environment
making them ready for future challenges, and also will serve as a single-source
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reference covering all categories of microorganisms for bioremediation of different
pollutants in a well-situated and comprehensive package.

Anand, Gujarat, India Deepak G. Panpatte
Anand, Gujarat, India Yogeshvari K. Jhala
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Abstract Several research works have been carried out in the rhizosphere that gives
a clear picture and better understanding of the rhizospheric microbes that avid the
research interests of many scientists. Rhizosphere was found to be the better
environment and hotspot for the microbes for rejuvenation as it is rich in nutrients
needed for the microbial growth. Among the nutrients, root exudates influence the
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root zone by changing the oxidation reduction potential, enhancing the availability
of moisture and nutrients, providing better niche for the growth of plant growth
promoting organisms, producing antibiotics, other secondary metabolites and
growth regulators, microbial interactions, sheltering the microsymbionts, model
system for the study of soil-rhizosphere biology, drought, avoiding soil erosion,
etc. Exploring these rhizospheric microorganisms by unravelling their possible
relationships with plants has launched a new and fascinating area of investigations
in the rhizosphere research. Moreover, the rhizospheric microbes are considered as
bioindicators of soil quality that are affected by much of the pollutant that makes the
soil infertile. Rhizosphere region that harbours abundant microbes can remediate the
polluted soils in a much greener way. Microorganisms and their metabolites like
enzymes were involved in bioremediation process. Hence, bioremediation is a much
auspicious method to overwhelm the pesticide pollution that can surely solve the
problem of pollution in soil.

Keywords Rhizosphere · Microorganisms · Rejuvenation · Bioremediation

1.1 Rhizosphere

Rhizosphere is the nutrient-rich soil region surrounding the root. The term was
coined by Hiltner in the year 1904, and he only introduced the concept of rhizo-
sphere first to describe the narrow zone of soil surrounding the root where microbes
and their populations are stimulated by root activities. This rhizosphere seems to be a
complex environment where the interaction between the plant and the soil microbes
are interdependent and highly interacting. However, the original concept has now
been extended to include the soil surrounding a root in which physical, chemical and
biological properties have been changed by root growth and activity. The discharges
of roots will attract many microbes and help the microbes to colonize around the root
system is known as rhizosphere effect (Hiltner 1904), and he also observed direct
proportional relationship between the population of microorganism around the root
system to the yield. Many microbes such as bacteria, fungi and actinomycetes
rhizosphere include mycorrhizal fungi, PGPR, biocontrol agents, mycoparasitic
organism and antibiotic produces among which many of them play important role
as N fixers, P solubilizers, K mobilizers, etc. are onus for the rhizosphere dynamics.

Rhizosphere also known as the warehouse of microbes where the biochemical
secretions are influenced by the roots. Rhizospheric bacteria help the plants in
various ways through the secretions (Kundan et al. 2015). The composition of the
root exudates varies depending on the plant species and physicochemical properties
that help the plants to attract many microbes (Kang et al. 2010). Three niches were
identified to be the hot spots of root exudates, namely rhizospheric soil, rhizoplane
(surface of the root) and the root itself. These regions were profound to have root
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exudates and can be coined as a fertile zone of the soil. Due to this immense fertility
of the soil, microbes are attracted and helpful for the growth and reproduction.
Among the microbial population, bacterial population is found to be huge and
have the symbiotic or nonsymbiotic relationships, and this microbial community
differs based on the texture of soil (Raynaud et al. 2007; Bulgarelli et al. 2013).

Since root exudate composition changes along the root system, according to
stages of plant development and plant genotypes, the rhizomicrobiome composition
differs accordingly (Bouffaud et al. 2012). In the rhizospheric region, the growth of
plants and microorganisms is mutually influenced by the secreted molecules.

The rhizodeposits referred as exudates of plant roots which include amino acids,
fatty acids, organic acids, plant growth regulators, carbohydrates, putrescine, nucle-
otides, sterols, phenolics, polypeptides, polysaccharides, water soluble sugars, sugar
phosphate esters and vitamins (Uren 2000). Some of the root exudates act as
repellents to microbes and other insects; hence, the nature of exudates depends on
the plant species from which it exuded (Kamilova et al. 2008). Several distinct
groups of microorganisms are found in the rhizosphere, and these were inducing the
growth of plants through the liberation of the above-said chemicals into the rhizo-
sphere (Kundan et al. 2015). Plant growth–promoting rhizobacteria termed as PGPR
also dwell in the rhizospheric environment and promote the activity of plants
through continuous supply of nutrients to crops (Davison 1988), release of phyto-
hormones to manage or reduce the activity of plant pathogens, to improve soil
texture, bioaccumulation, etc. (Ehrlich 1990). As rhizosphere is an exceptionally
nutrient dense region compared to nonrhizosphere, it not only is flourished with root
exudates but also have dead tissues of plants, animals, proteinaceous mucilage
secretions, carbonaceous compounds that obtained from plant roots, etc.

1.2 Niche for Rejuvenation of Soil Microorganisms

As the rhizosphere is the bowl full of essential and important storehouse of organic
nutrients, microbes are invigorated and growing under continuous supply of nutri-
ents. They multiply in an exponential rate and releasing primary and secondary
metabolite that are an added advantage for the plant growth. In addition to the
secreted organic compounds, the organic and inorganic amendments added to the
soil for crop growth also influences the growth of microbes in the rhizosphere region.
Quite interestingly, microbes that lives in the nonrhizosphere region when it faces
deprival of nutrients can sense the availability of nutrients in the rhizosphere and
move towards the rhizospheric region through quorum sensing. These signalling
processes help the Rhizobia to move towards the root tip of leguminous plants (via
detection of the flavonoid signal produced by the plant system), to initiate the
nodulation process in the soil that has low nitrogen concentration.
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Rhizospheric microbes directly or indirectly influence the plant productivity as
their richness in the below ground is the indicator of above-ground wellness in
various environmental conditions. The production of antibiotic compounds bound to
have effect on pathogenic microbes, defence against protozoa, motility, and biofilm
formation.

Several interesting metabolites were produced by these rhizospheric microorgan-
isms such as volatile organic compounds (VOCs) that alter and modulate the crop
growth and involved in signalling process. They help in the long-distance commu-
nication because of its high vapour pressure and small in size that diffused through
water and soil pores. These volatiles also proved to arrest the growth of fungal plant
pathogens.

Several research works have been carried out in the rhizosphere that gives a clear
picture and better understanding of the rhizospheric microbes that avid the research
interests of many scientists. The root exudates influence the root zone by changing
the oxidation reduction potential, enhancing the availability of moisture and nutri-
ents, providing better niche for the growth of PGPR organisms, producing antibi-
otics, other secondary metabolites and growth regulators, microbial interactions,
sheltering the microsymbionts, model system for the study of soil-rhizosphere
biology, drought, avoiding soil erosion, etc.

Science always have two schools of thoughts, crop plants may alter and choose
the microbes needed in the rhizosphere for its own benefit and yield while the other
researches stated that root exudates are kind of products that overflow out of roots,
and further research has to answer postulations.

For growth and reproduction, microbes need water, nutrients, and space that is
enormously available in the rhizospheric region and well utilized for doubling its
population to a greater extent. The primary and the first speech of signals were
exchanged when the seeds start its germination and the seedlings put forth root and
shoot. The developing plant interacts with a wide array of microbes present nearby
and invites through the release of organic materials that act as a driving force for the
development and active growth of microbes. Once after the release of these organic
materials by the root the compounds present in the root were subjected to microbial
attack and make it difficult to separate from the roots. The efficiency of this
exudation is governed by various factors such as nutrient deficiency, temperature,
soil type, light intensity, soil pH, microbial existence, plant species and its develop-
mental stage, etc. (Singh et al. 2006). Even though the rhizosphere is abundant with
all types of nutrients there, the presence and dominance of the individual organism
fluctuate to prove the concept of survival of the fittest. The effect of the root exudates
travels to a certain distance as far as the diffusion and the distribution pattern spreads.
Studies of molecular fingerprints in different root zones showed that the community
composition altered in rhizoplane, emerging roots even in root tips, lateral roots,
older roots, etc.

Alterations in the rhizosphere due to depletion of nutrients cause tidal waves in
the existing population and death, and lysis of bacterial cells occurs. The exponential
growth occurs by the release of nutrients via decay of tissues and cells. Saprophytes
flourish in the rhizospheric soil and do the vital processes of decomposition of

4 M. Gomathy et al.



organic residues and helpful for the nutrient mineralization, turnover processes, and
soil dynamics. Carbon flow and its availability are greatly influenced in the
rhizospheric region as 12–40% of the total amount of carbohydrates prepared during
photosynthesis released into the rhizosphere.

Compared to bulk soil, rhizosphere is the main place where higher amount of
conversion of the extracellular compounds such as glucose to gluconic acid and
2 keto gluconic acid occurs. Pseudomonas sp. can effectively perform the above
conversion to sequester glucose and create a competition over other microbes that
need glucose. Competition happens not only for sugars but also for micronutrients
such as zinc, manganese, molybdenum, iron, copper, etc. The niche of rhizosphere
has phytohormones such as IAA, auxins, cytokinins, and gibberellins secreted by the
plants as well as by the microbes that truly enhances the plant growth and the root
architecture that further increased the production of exudates.

Rhizospheric microbiome very particularly influences the nutrient status of soil
and nutrient uptake of the plants. The best-known miracle doers are known to be the
very famous Rhizobium and AM fungi for its nitrogen fixing and phosphorus
uptake, respectively. These AM fungi are the important symbionts for translocation
of nutrients and minerals, maintaining the soil structure, forming soil aggregates,
suppressing soil-borne pathogens, etc. Rhizospheric microbes also influence the
uptake of many trace elements such as iron, molybdenum, magnesium, boron, etc.
AM fungi has been proven to uptake and enhance the Fe and Zn concentration in
chickpea (Pellegrino and Bedini 2014) and maize (Subramanian and Balakrishnan
2013).

Addition of organic amendments into the soil provides abundant carbon and
nutrients that are readily available to microorganism for its growth. This was
supported by the observation that composting of plant residues with more labile
organic matter resulted in higher soil microbial biomass and respiration (Tejada et al.
2009). Besides, Wu et al. (2013) found that compost additions in soil increased the
microbial biomass and it may be due to the higher availability of nutrients, labile
organic matter, the increased water retention, and aeration (Hu et al. 2011; Duong
et al. 2012; Wu et al. 2013).

1.3 Shaping the Rhizospheric Microbiome

Shaping of the rhizospheric microbiome is an important hot topic in the growing
ómics’ research as they decide many factors of the plant–microbe interaction. During
the developmental stages of plant, the microbial communities prevailing in the
rhizospheric zone, their functions and pathways in which they are undergoing
breakdown of metabolites differ. Barret et al. (2011) have discussed many molecular
approaches for the gene expression pattern in the rhizosphere. Studies on in vivo
expression technology (IVET) revealed that when the microbes are colonizing in the
rhizosphere, different genes and proteins were induced such as the genes for nutrient
absorption and stress response. Whereas some proteins which are involved in
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environmental sensing, metabolic regulation and membrane transport were
expressed in R. leguminosarum. To analyse the specific processes in the rhizosphere,
study of reporter genes were successfully employed by many researchers to find out
the production of antimicrobial compounds, response of bacteria to nutrient avail-
ability (nitrogen, carbon, phosphorus), availability of water and temperature.

To evaluate the actual effect of root exudates on gene expression of microbes,
Mark et al. (2005) studied whole genome transcriptome profiling in P. aeruginosa
and found significant alterations happened due to the root exudates in sugar beet
cultivars. Metaproteogenomic approach was reported byWang et al. (2011) to reveal
the complex interactions of plants and rhizospheric microbiome. MALDI-TOF
analysis reported 189 proteins in the rhizosphere of rice that actually originated
from plants, bacteria, fungi, and other faunas. Interestingly, by applying stable
isotope probing (SIP), scientists found that plant-derived carbon utilized into micro-
bial nucleic acids could be tracked to explore the metabolically active population of
rhizobacteria. Exciting information was obtained when the plants like wheat, maize
and clover exposed to 13CO2� through DNA-SIP technology. Biomarker studies of
phospholipid fatty acids revealed that not only bacteria but also rhizospheric fungi
metabolized remarkable quantities of root exudates and confirmed through 13CO2-
exposed plant study. So the provision of simply degradable root exudates in the
rhizosphere region also invites diversity of fungi to thrive in.

These fungi not only merely present in the rhizosphere, but it changes the
community dynamics by influencing and flourishing especially during flowering
and senescence of potato crop. Drigo et al. (2010) clearly indicated that through
DNA SIP studies that plant assimilated carbon is quickly transferred to AM fungi
that in turn slowly released to the rhizospheric bacterial and fungal communities and
pointed that combined approach in the rhizosphere is always found to be a powerful
tool to get the ultimate crop response.

Nowadays, the population growth and industrialization totally affected the global
ecosystems and 39% of terrestrial biomass (Ellis et al. 2010). Urbanization occupied
the cultivated land that lead scarcity of crop production, to produce more food in a
shorter period. Hence the farmers tend to use agrochemicals to produce high yields
in the small cultivated area. This will happen in developing countries too (Lichtfouse
et al. 2010). In the Green Revolution, the inorganic fertilizers and pesticides were
applied to produce foster food production in a shorter period of time (Shelton et al.
2012).

The liquid wastes from industries have heavy metal contamination that also
affects the soil fertility, water quality, plant growth and overall environmental
degradation and finally causes serious threat to human health (Oves et al. 2012).
In worldwide 22 million hectares of soil are highly affected by chemical pollution
especially in Europe and Asia (Bai et al. 2008). Pollution of ecosystem is the major
and emerging problem in the twenty-first century. A number of methods are avail-
able to meet food requirements without affecting environment, for this purpose
microbes play a vital role to ensure the food security during climatic change
(Timmusk et al. 2017).
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Recently, the agriculture and industries have released lot of chemical wastes as
xenobiotics, which is very harmful to human growth, crops, livestock and wild life.
Various methods like bioremediation offer to destroy the harmful things by using the
natural materials (Fulekar 2014). Bioremediation and phytoremediation are widely
emerging technologies used to eliminate the contaminants from soil and water
(Raskin and Ensley 2000). The microbial products also help to destroy the pollutants
from soil (Vidali 2001). Microbial metabolites like proteins and enzymes are used to
breakdown the contaminants from soil through the mutualistic relationship with the
plants (Fulekar 2014).

1.4 Plant Physiological Effects on Rhizosphere Enzyme
Activity

Root is a major vegetative organ that supply water, minerals and substances essential
for plant growth and development. Roots are believed to be the primary source of the
growth regulators gibberellins and cytokinins, which influence the overall plant
growth and development. The rhizosphere is a unique hotspot in soil from the
viewpoint of microbial ecology, as soil microorganisms are considerably stimulated
by the activity of the roots.

Increased soil temperatures, elevated atmospheric carbon dioxide and more
frequent wetting and drying cycles (water stress) will change microbial community
composition and possibly increase biomass and enzyme activities either directly or
stimulation of plant growth and increases in litter deposition and root exudation. The
climate is changing as the concentrations of CO2 and other greenhouse gases in the
atmosphere increase, resulting in global warming and altered precipitation patterns.
Because the activities of enzymes in natural environments are controlled by both
abiotic factors (e.g. temperature, water potential and pH) and biotic processes
(e.g. enzyme synthesis and secretion), they are likely to be responsive to atmospheric
warming and more frequent and extreme variations in precipitation patterns. These
changes will have important consequences for ecosystem functions such as decom-
position, nutrient cycling and plant microbe interactions, which will ultimately affect
plant growth and productivity.

The study of different hydrolase enzyme activities in the rhizosphere soil and
their changes is important in plant growth and development. Since they indicate the
potential of a soil to carry out specific biochemical reactions, and these hydrolytic
enzymes are important in maintaining soil fertility and plant productivity. Because
plant nutrient uptake occurs through the rhizosphere, the activity of rhizosphere
microbial community is of great importance for plant growth.

Soil enzymes are involved in the catalysis of a large number of reactions
necessary for life processes of microorganisms in soils, decomposition of organic
residues, cycling of nutrients, formation of organic matter and soil structure. These
enzymes include amylase, arylsulphatases, beta glucosidase, cellulase, chitinase,
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dehydrogenase, phosphatase, protease, urease and others, derived from plant, animal
or microbial origins (Gupta et al. 2016). These enzymes can be accumulated,
stabilized and or decomposed in the soil.

Lignin degradation is principally an oxidative process catalysed by enzymes
broadly categorized as phenol oxidases, peroxidases and dehydrogenases. Phenol
oxidases are enzymes that oxidize phenolic compounds using oxygen as an electron
acceptor. Peroxidases have heme prosthetic groups that use H2O2 as an electron
acceptor. With redox potentials up to 1490 mV, they can oxidize lignin linkages
either directly or through redox intermediates such as Mn3+. The third group of
ligninases, the dehydrogenases, are primarily intracellular oxidative enzymes that
transfer hydride groups from a substrate to an acceptor such as NAD+. They are
generally considered substrate-specific but play a key role in the decomposition
process, particularly for bacteria. However, at least a few bacteria,
e.g. Sphingomonas, depolymerize lignin extracellularly using dehydrogenases.
The extracellular oxidative enzymes associated with the degradation of recalcitrant
plant and microbial components include saccharide-oxidizing enzymes such as
glyoxal oxidase, galactose oxidase and glucose oxidase that reduce oxygen to
H2O2 in support of peroxidase activity; and cellobiose dehydrogenase, which
reduces phenoxy radicals, quinones and metal cations, contributing to the supply
of redox mediators.

1.5 Role of Enzymes and Plant Growth Regulators

Plant growth–promoting substances, regulators such as auxins and gibberellins, are
present in root exudates and thus enter the rhizosphere. Auxin is the generic term for
growth substances that typically stimulate cell elongation, while IAA (indoleacetic
acid) is recognized as the principal auxin in plants. The level of auxin is usually
higher in the rhizosphere than in the free bulk soil, a consequence of an increased
microbial population or of accelerated metabolism owing to the presence of root
exudates. A large number of gibberellins have been isolated from bacteria, fungi and
ferns and identified as GA-like substances. The best known GA response is the
stimulation of internode growth.

Microorganisms present in the rhizosphere of various crops appear to have a
greater potential to synthesize and release plant growth substances as secondary
metabolites because of the rich supply of substances, and it is an important factor in
soil fertility. According to several reports, 86% of the bacterial isolates from the
rhizosphere of various plants produced phytohormones such auxins, gibberelins and
kinetin-like substances, but also different hydrolytic enzymes such protease, lipase,
pectinase and amylase.

Acid and alkaline phosphatase activities in wheat rhizosphere were strongly
correlated with the depletion of organic P. Protease activity is involved in the
hydrolysis of N compounds to NH4, using low-molecular-weight protein substrates,
and microorganisms are responsible for breaking down urea into ammonium. Urease
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enzyme is responsible for the hydrolysis of urea fertiliser applied to the soil into NH3

and CO2 with the concomitant rise in soil pH.
In earlier studies on plant growth regulators, the activities of rhizosphere bacteria

including nitrogen fixation, production of cytokinin, auxin or hydrolytic enzymes
such protease, lipase, pectinase and amylase increased the N, P and K uptake of plant
components.

1.6 Common Source of Pollutants in Soil

Soil pollution is one of the worldwide problems, which is caused due to the
assimilation of toxic compounds through the discharge of industrial waste into the
soil, salts due the application of pesticides, herbicides and fertilizers, seepage from
landfills, solid waste and radioactive materials affecting plant and animal growth.

The agriculture mainly depends on main factors, namely organic inputs and
inorganic fertilizers and pesticides. Vehicles also release some major sources like
petroleum hydrocarbons, dioxins and polycyclic aromatic hydrocarbons that affect
soil health. Industrial wastes are disposed through the pits and affect the groundwater
supply.

1.7 Biological Degradation of Pollutants

Microorganisms are omnipresent which are distributed widely because they can
easily grow and multiplied, for their nutritional requirements, they can degrade the
pollutants and wastes for their energy. Biodegradation of pollutants are called as
bioremediation. Some microbes convert, modify and finally utilize the toxics for
their survival (Tang et al. 2007).

Instead of collecting pollutants, bioremediation is a process applied to break
down and transform the heavy molecules in to simple things like less toxic or
nontoxic compounds (Strong and Burgess 2008). Different types of biological
processes include bio-attenuation, biostimulation, bioaugmentation, Bioventing,
Biosparging and biopiles.

1.7.1 Principles of Bioremediation

Bioremediation is defined as the process whereby biological organisms are used to
break down hazardous substances into less toxic or nontoxic substances. Microbes in
the environment are much suited for this purpose to destruct the contaminants by the
secretion of several enzymes, namely oxidoreductases, hydrolases, lyases, trans-
ferases, isomerases and ligases that convert the pollutants into harmless unpolluted

1 Rhizosphere: Niche for Microbial Rejuvenation and Biodegradation of Pollutants 9



products. The microbes involved in bioremediation processes are encouraged, and
the purpose has been improved by the supply of continuous nutrients and other
chemicals which triggered the reaction at optimum conditions (Kumar et al. 2011).
This is a naturally occurring process which encourages the waste products into
carbon dioxide, water and other inorganic compounds that are safe for animals,
plants, human and aquatic living things (Jain and Bajpai 2012). The degradation of
pesticides through bioremediation is an important process to remove dangerous toxic
chemicals and reduce the environmental pollution. Bioremediation is more effective,
eco-friendly and versatile to remove the pesticide from the fertile lands (Finley et al.
2010).

Biostimulation
Biostimulation is the technique of enhanced bioremediation along with
bioaugmentation where specific native of non-native microorganisms are introduced
with an aim to enhance the biodegradation of target compound or serving as donors
of the catabolic genes. In enhanced bioremediation process, the microbial population
in the environment will be stimulated and modified by the addition of various
nutrients such as carbon, phosphorus and nitrogen in the form of organic substrates
(Nikolopoulou and Kalogerakis 2008).

Bio-Augmentation
Bio-augmentation is the process to degrade contamination by adding excess amount
of bacterial inoculum. The soil sediment contains lot of microbes which is adapted to
pollutants. Two percent bioremediated soil is used to facilitate biodegradation of
polyaromatic hydrocarbon compounds (Lamberts et al. 2008).

Bioventing
It is one of the first in situ treatments applied to degrade the oil spills and petroleum
products. The gases and nutrients are applied through the small wells at very low
level air flow rates to minimize the volatilization of petroleum products and hydro-
carbons. Bioventing method induces the aerobic biodegradation in the subsurface
bacteria leads to improve the subsurface bioremediation. Bioventing is the cost-
effective method to clear subsurface contaminants, and also highly effective in
colder and dried areas (Robinson et al. 2011).

Biosparging
In this method, the air is supplied under pressure to the groundwater table to increase
the groundwater oxygen concentrations and to improve the rate of biodegradation of
pollutants using bacteria (Adams and Ready 2003). Biosparging helps to increase the
mixing of saturated zone and thus increase the interaction between the groundwater
and soil. This method is very easy and low cost, requires small diameter injection
point to supply the air to the pollutant areas to reduce the petroleum components
mixed with the groundwater.

It is more effective to reduce petroleum products to the underground storage tank
sites (USEPA 2004). It is very similar to bioventing for the remediation of soils from
heavy metals.
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Biopiles
Biopiles is one of the cleanup techniques where the excavated soil materials are
mixed with hydrocarbons which is treated with biodegradation by oxidation process
by the injection of oxygen. The oxidation process increases the availability of
microbes in soils. The contaminated materials are excavated which is further
mixed with sawdust, sand, compost, nutrients, wood chips, etc. These things
improve the moisture retention, allow the permeability of microbes and stimulate
the biological reactions very fast and to oxidize the hydrocarbons. Biopiles are also
called as compost piles, biomounds, biocells, and bioheaps (Delille et al. 2008).

1.8 Microorganisms and Pollutants

The microorganisms present in the rhizosphere soil can transform the pollutants
from one oxidation state to another. Microbes protect its own structure from metal
toxicity through various mechanisms, namely oxidation, reduction, methylation,
adsorption, etc. Methylation is an important method that play important role in
bioremediation. For example, mercury, bioethylated by a number of bacterial spe-
cies, namely Alcaligenes faecalis, Bacillus pumilus, Bacillus sp., P. aeruginosa and
Brevibacterium iodinium to gaseous methyl mercury. Environmental factors also
play an important role for the growth and activity of microbes to enhance bioreme-
diation (Vidali 2001). The long-term application of pesticides can also promote
biodegrading enzymes in the indigenous microflora, as they serve as a source of
carbon and energy, making the remediation of pesticide contaminated sites easier
(Qiu et al. 2009).

1.8.1 Degradation of Pesticides by Rhizospheric Microbes

Rhizospheric microorganisms are universal scavengers for decaying or recycling the
waste materials into harmless things. It includes bacteria, fungi and actinomycetes
which are able to eliminate the pesticides from the environment (Parte et al. 2017).
Many researchers reported that soil microorganisms such as Burkholderia,
Arthobacter, Aztobacter and Flavobacterium degraded the pesticides (Shi and
Bending 2007). Single microbe can degrade more than one herbicide and pesticide
and also involved in plant growth promotion and zinc and phosphorus solubilization.

Staphylococcus sp. and Bacillus circulans isolated from the surrounding area of
pesticide production industry degraded 72–76% of endosulfan under aerobic and
facultative anaerobic conditions (Kumar and Philip 2007). In the chemical industry,
various chlorinated compounds are used as the industrial solvents and degraded by
Aminobacter and Mesorhizobium sp. by the secretion of enzymes (Osborn et al.
2010). Organophosphorus pesticides were degraded extensively (Singh 2008).
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Acinetobacter sp., Serratia sp., Proteus vulgaris and Vibrio sp. are able to degrade
dichlorvos by the excretion of several enzymes (Agarry et al. 2013).

Pseudomonas species are efficient to degrade profenofos (Malghani et al. 2009),
and Xanthomonas sp. and Pseudomonas sp. were obtained from its source of carbon
and nitrogen from chlorpyriphos and 3,5,6-trichloro-2-pyridinol under in vitro con-
ditions (Rayu et al. 2017). Similarly, B. thuringiensis degrades cyhalothrin and
pyrethroids (Chen et al. 2015).

Pseudomonas putida and Acinetobacter rhizosphaerae degraded organophos-
phate fenamiphos (FEN) and hydrolysed fenamiphosphenol, and both the strains
are obtained C and N from FEN (Chanika et al. 2011). Rhizospheric microbes
exposed to agrochemical environment for quite a longer time become resistant to
that particular environment. Hence, these kinds of microbes are used as bioremedi-
ation of pesticides (Khan et al. 2009). The resistant microbes utilize the pesticides as
their energy source (Reddy et al. 2016).

P. aeruginosa G1, Stenotrophomonas maltophilia G2, B. atrophaeus G3,
Citrobacter amolonaticus G4 and Acinetobacter lowffii G5 are able to degrade the
organochlorine, endosulfan (Ozdal et al. 2016).

Biopesticide activity of Penicillium raistrickii, Trichoderma sp., Aspergillus
sydowii, Penicillium miczynskii, Bionectria sp. and Aspergillus sydowii was studied
using solid and liquid medium at the concentration of 5, 10 and 15 mg of dichloro
diphenyl dichloroethane (DDD). Among the organisms tested, Trichoderma
degraded the pollutant efficiently (Ortega-Gonzalez et al. 2015). In vitro condition
results stated that among the sugar sources tested, glucose was found to be the
preferred source that speeds up the biodegradation process of Sphingobacterium
sp. (Fang et al. 2014).

Fungi are also involved in the degradation of organochlorine pesticides. Siddique
et al. (2003) identified that along with bacteria, fungi also isolated from soil that
degraded 84–91% of isomers of endosulfan. Okeke et al. (2002) isolated Pandoraea
sp. from soil slurry of biodegradation of hydrocarbons. The following fungi such as
P. acanthocystis (90%), P. brevispora (74%), and P. tremellosa (71%) removed the
heptachlor from soil by the hydrolysis and hydroxylation processes (Xiao et al.
2010). Rousidou et al. (2016) identified four oxamyl-degrading bacteria by multi-
locus sequence analysis (MLSA) and found they belong to genus Pseudomonas.
They can also reutilize methylamine as C and N sources that possess methylamine
dehydrogenase enzyme which is similar to carbamate hydrolase gene. He et al.
(2006) isolated Penicillium sp. from herbicide production unit soil sample which
degraded metsulfuron methyl in soil and water.

Several studies showed that several organisms degrade pesticides, herbicides,
organophosphates and carbamates (Dinamarca et al. 2007). Yang et al. (2006)
isolated Stenotrophomonas sp. from solid waste water of organophosphorus pesti-
cide manufacturing unit that degraded chlorpyrifos contaminated soil. Yuanfan et al.
(2010) suggested that genetically modified organism persist the gene mpd, able to
bioremediate multiple pesticides at once. Genetic engineering studies introduced
methyl parathion (MP) degrading gene into Pseudomonas putida X3 which strongly
degraded the soil contaminated with MP and Cd (Zhang et al. 2016). Diuron widely
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used herbicide in sugarcane fields, which is degraded by DP8-1 strain to the level of
99% diuron within 3 days under optimal condition. This strain also degrades the
monuron, isoproturon, linuron, fenuron, metobromuron, chlorbromuron and
chlortoluron (Wang et al. 2018).

Organic Pollutants
Various industries such as textile and dye industries release effluent waste called
persistent organic pollutants (POPs) that affect the environment and human health,
and these complex chemical compounds are named as xenobiotics which is removed
from the environment through microbial degradation (Ahmad et al. 2018).

1.8.2 Dyes

Rhizospheric microbes, especially bacteria can effectively degrade all the xenobi-
otics and industrial wastes (Khalid et al. 2008a, b). Along with bacteria, fungi are
also involved in the degradation of industrial effluents. Bacteria can degrade the dyes
by the process called biosorption through the release of enzymes to digest the
organic pollutants. Researchers identified that industrial effluent containing the dye
called azodyes is degraded by the bacteria via enzymatic degradation or biosorption
or combination of both (Wu et al. 2012). Bacteria are able to degrade the azodyes
with an enzyme azoreductase enzyme, which possess strong bonding properties
(Chen 2006). Several microbes are involved to digests the xenobiotic compounds,
and during these reactions, bacteria can produce hydroxylase and oxygenase
enzymes that act on the intermediate products, released during decolourization of
xenobiotics (Khalid et al. 2009). Many researchers studied that fungi, yeasts and
algae also involved in the digestion of industrial effluents (Olguı  n 2003). During the
biodegradation, several factors (pH, temperature and salts) interfered in the degra-
dation process (Prasad and Rao 2011).

The species of fungi, lignolytic mushroom Lenzites elegans WDP2 can decolor-
ize the dyes viz. Brilliant green 93%, malachite green 21%, and Congo red 99%
reported by Pandey et al. (2018). Paper mill water wastes are biodegraded by
actinomycetes, bacteria and fungi (Hossain and Ismail 2015). Bacillus cereus and
Pseudomonas aeruginosa are identified for degradation and decolourization of the
papermill wastes (Tiku et al. 2010). Pseudomonas putida and Acinetobacter
calcoaceticus are able to decolourize around 80% in the black liquor derived from
the kraft pulp and papermills (Abd El-Rahim and Zaki 2005). Microcystis spp.
removed 70% colour from the papermill effluents within 2 months (Sharma et al.
2014).
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1.8.3 Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs) are originated from anthropogenic activ-
ities, highly organic pollutants and more carcinogens and mutagens. These com-
pounds have influence on the microbial population. PAH assists as energy for
microorganisms, and also it converts ineffective and not as much toxic compounds
by the highly effective and expensive process of biodegradation (Anwar et al. 2016).
PAH contaminations are difficult to degrade and persist in water for longer periods;
hence, it effects the microbial population (Gałązka et al. 2018).

Among the microbes, bacteria is more effective in the degradation of PAHs in
aquatic environments (Johnsen et al. 2005). The bacterial activity is less in soil- or
sediment-based PAHs (Yuan et al. 2001), and in that particular cases, sludge-based
degradation bacteria has to be introduced (Hwang et al. 2003). Dissolution and
vaporization process make the degradable bacteria live than sorption process (Kim
et al. 2007).

Uyttebroek et al. (2007) revealed that PAH degradation is mainly based on the
soil age and its nutrient concentration. Wang et al. (2009) identified that nonspecific
enzymes are not able to degrade the PAHs and remain in the soil for long time. Teng
et al. (2010) studied that dihydriol is an oxygenated intermediate compound that
helps for the degradation of anthracene by the presence of Nocardia, Beijerinckia,
Sphingomonas, Rhodococcus and Paracoccus. Other than bacteria, many aerobic
and anaerobic fungi species are also involved in the degradation of PAHs (Aydin
et al. 2017).

Kadri et al. (2016) observed that many fungal species like Phanerochaete
chrysosporium and Pleurotus ostreatus are able to produce lignolytic enzymes,
namely laccase, Mn peroxidase and lignin peroxidase that degraded the PAH
compounds. Jin et al. (2016) reported that plant growth–promoting rhizobacteria
have the ability to degrade pyrene and other aromatic contaminants.

1.8.4 Microbial Detoxification of Heavy Metals

The entire ecosystem has been contaminated by heavy metals. They are toxic not
only to humans but also to the microorganisms in the soil. Among the microorgan-
isms, mycorrhizal fungi are the only ones which provide a direct link between soil
and root of the crops (Gomathy et al. 2018a, b). Pollutants including heavy metals
are detoxified by microbes in the presence or absence of plant system. Heavy metals
are either beneficial or harmful to microbes (Ayangbenro and Babalola 2017). Some
of the heavy metals like manganese, Fe, nickel, Mg, copper, chromium, cobalt and
Zn are beneficial to microbes during the enzymatic reactions, redox reactions and
stabilization of biomolecules (Bruins et al. 2000). Certain heavy metals like mercury,
lead, antimony, gold, cadmium and silver are not involved in any biological func-
tions and toxic to microbes at high concentrations (Bruins et al. 2000).
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1.8.5 Phytoremediation of Heavy Metals

Phytoremediation is the process where the plants are involved in cleaning up the
contaminants from soil (Ojuederie and Babalola 2017). To speed up the reaction,
scientists discovered that rhizospheric bacteria helped the plants to uptake the heavy
metals in a faster rate (Kuffner et al. 2008). Flavobacterium, Pseudomonas, Strep-
tomyces, Agromyces and Serratia were observed in rhizosphere regions and reported
to absorb Zn and Cd (Ghasemi et al. 2018). ACC deaminase activity in bacteria can
induce heavy metal stress tolerance in crop plants, and also it enhanced the
phytoextraction and phytoremediation in plants. Rodriguez et al. (2008) isolated
four bacterial strains from Ni-contaminated soil based on ACC deaminase activity.

Endophytic bacteria is also involved in the process of metal stress tolerance in
crop plants. Sheng et al. (2008) identified two heavy metal–resistant bacteria,
namely Pseudomonas fluorescens G10 and Microbacterium sp. G16, from the root
of canola plants which grow in Pb-contaminated areas. The microbes mentioned
above were resistant to heavy metals and improved the growth of canola in pot
experiment. Bioremediation is essential for the detoxification of heavy metal–pol-
luted environments and to prevent the toxic effects from the environment and
organisms (Emenike et al. 2018a, b).

1.9 Mycoremediation

Mycoremediation is the term coined by Stamets. It is a kind of bioremediation using
fungi to digests and eliminate the contaminants from the environments followed by
repair or retain the nutrients in the environments. Mycofilteration is the process to
filter the toxic waste and microbes using fungal mycelia by the secretion of enzymes.
Fungal mycelium secrets several enzymes and acids which break the lignin and
cellulose (Stamets 2005). The Mycorrhizal fungi can secrete a protein called
glomalin that stabilized the aluminium occurred in the soil, when planted with
Gmelina plants (Dudhane et al. 2012). Say et al. (2003) revealed that the following
fungi species are identified as they are involved in the mycoremediation process to
recover the plants from pollution. Aspergillus niger, Aureobasidium pullulans,
Cladosporium resinae, Funalia trogii, Ganoderma lucidum, Penicillium spp.
(Loukidou et al. 2003). Aspergillus fumigates is the suitable strain used to remove
Pb(II) ions from the aquatic solution. AM fungi have the wider mycelia network, and
they release glomalin protein that has the ability to sequester all types of heavy
metals and renders a metal-free environment to the root zone (Gomathy et al.
2018a, b). Glomalin protein released by the AM fungi has the ability to sequester
the metals in their cell wall.
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1.10 Cyanoremediation

It is the process to remediate metals in the environment using cyanobacterial or blue
green algae (BGA). This controls the heavy metals using either wild or genetically
engineered cyanobacteria (Yin et al. 2012). This blue green algae help to remediate
the arsenic from the aquatic environments. BGA prefer to remediate the heavy
metals from aquatic and wetland ecosystem (Fiset et al. 2008) especially agricultural
rice cultivated areas (Tripathi et al. 2012).

Deng et al. (2007) studied that green algae Cladophora fascicularis used to
eliminate Pb(II) from waste water. Lee and Chang (2011) estimated the biosorption
capacity of Cyanobacteria species and found Spirogyra and Cladophora removed the
Pb and copper from the aquatic environment. Mane and Bhosle (2012) observed that
Spirogyra showed the maximum biodegradation of metals from the environment Cu
(89.6%), Cr (98.23%), Mn (99.6%), Fe (99.73%), Se (98.16%) and Zn (81.53) and in
case of Spirulina sp. Cr (98.3%), Fe (98.93%), Se (98.83%), Cu (81.2), Se (98.83)
and Zn (79%).

1.11 Factors Affecting Bioremediation

Rhizospheric microbes react on the pollutants through the secretion of various
catalysts based on the wastes. Bioremediation reactions depend on various factors
that include nature of pollutants, chemical concentration of pollutants, physicochem-
ical properties of wastes, environmental characters and availability of microbial
numbers. In the environment, the wastes and biodegradable microbes are not equally
present; hence, for this purpose, controlling and optimizing of bioremediation is the
complex process due to many factors including pollutions, microbial contents and
environmental factors, viz. temperature, pH, soil, electron acceptors, presence and
absence of oxygen and nutrients.

1.12 Conclusion

Studying the rhizospheric microbial diversity in a wide array of plant root system is a
major struggle for research involving plant microbe interactions as it is quite difficult
to answer specific community structures, how the particular community interacting
with other microbes, influence of biotic and abiotic stress conditions and their
alteration towards the rhizospheric microbes, etc. While considering the beneficial
microbes in the root system, it conveys that the root exudates and other nutrients
discussed in this chapter certainly influence the presence of beneficial microbes in
the rhizospheric region and their interaction with the plant system. Rhizospheric
microbes are highly beneficial in nutrient solubilization, mobilization, providing
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plant growth hormones, remediating the soil, improving the soil health, etc.
Rhizospheric microbes are vital in bioremediation process. Further studies have to
explore the molecular mechanisms behind the metal tolerance of many microbes in
the root region. So the role of rhizospheric microbes are inevitable, and they will
rejuvenate themselves by the help of elixir given by the roots, and they will continue
their job of doing wonders and challenge the researchers all over the world to explore
the rhizospheric region.
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Abstract Various pesticides including organochlorines, organophosphates, carba-
mate, pyrethroids, chloronicotinyl etc., are used in agriculture for protection against
plant diseases and insects. Only a fraction of the applied pesticides is utilized in
killing of target pests and the leftover residual pesticides either remains associated
with cereal grains, vegetables, and fruits or may cause environmental pollution. In
addition to the traditional physical and chemical degradation methods, the microbial
degradation method is commonly more efficient and low-cost method used for
pesticide degradation. Microorganisms have been characterized which have the
capability to degrade residual pesticides. The microbes that demolish these pesti-
cides use the pesticides as nutrients and break them down into tiny nontoxic
molecules. Pesticide degrading microbes belong to different microbial groups, i.e.,
bacteria, fungi, actinomycetes, and algae. Bacteria possessing pesticide degradation
capability include Pseudomonas spp., Bacillus spp., Burkholderia, Klebsiella spp.,
Streptomyces, etc. and the fungi include Trichoderma spp., Aspergillus spp.,
Phanerochaete chrysosporium, white rot fungi, etc., whereas algae include
Chlamydomonas and marine Chlorella. Major reactions in pesticide destruction
include mineralization and co-metabolism. Pesticide degradation is influenced by
many factors such as type of pesticide, type of microorganism, temperature, humid-
ity, and acidity in the environment. Plasmid-located genes usually encode many
enzymes and degrade a large number of pesticides. Microorganisms may acquire
pesticide-degradation capabilities in soil through horizontal gene transfer from
degradative plasmids, by modification of substrate specificity, or through altered
regulation of preexisting enzymes. With the progress of molecular biology, the
genetically engineered rhizobacteria may be built to enhance the bioremediation of
pollutants and pesticides. Such recombinant microbial populations may be of
immense value in bioremediation of diverse pesticides from the surroundings.

Keywords Pesticides · Microbial degradation · Mineralization · Co-metabolism ·
Genetically engineered rhizobacteria

2.1 Introduction

Currently, various pesticides are extensively applied in agriculture to target pests,
weeds, and pathogens to protect crops in order to obtain high biomass and yield
productivity (Cycoń et al. 2017; Sindhu et al. 2018). In developing countries,
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synthetic pesticides are widely used to control plant pathogens, weeds, and insect
pests. Most widely used pesticides include phorate, simazine pendimethalin, mala-
thion, glyphosate, carbofuran, chlorpyrifos, endosulfan, diazinon, methyl parathion,
mancozeb, and carbendazim (Moneke et al. 2010). Fifty-seven thousand metric tons
of chemical pesticides was used in India, while only 6340 metric tons of
bio-pesticides was consumed during 2016–2017 (www.ppgs.gov.in/divisions/pesti
cides-monitoring-documentation). Usually, very low fraction (only 10–15%) of the
applied pesticides are utilized in killing of target pests, and the leftover residual
pesticides either leach down in soil or remain associated with grains, vegetables, and
fruits (Sogorb et al. 2004; Jiang et al. 2019), which became a global pollution
problem (Wang et al. 2016a; Rayu et al. 2017). Insecticides, especially organochlo-
rine and organophosphates, enter any fresh water bodies through agricultural run-off
(Karunya and Saranraj 2014). Many recalcitrant pesticides accumulate in the soil and
migrate through the soil, into various environmental components such as air and
surface water, directly or indirectly endangering human health and the environment
(Bisht et al. 2019).

Chlorinated pesticides, especially chloroaromatics, contribute to pollution prob-
lems because of their recalcitrant nature. Therefore, the use of organochlorine
pesticides such as 1,1,1-trichloro-2,2-bis-p-chlorophenylethane (DDT) and lindane
has been banned or drastically reduced in developed countries due to prolonged
persistence, prone to bioaccumulation and toxic to nontarget organisms. Similarly,
endosulfan binds to soil particles and has a relatively long shelf life of 60–800 days.
Recently, these recalcitrant compounds have been replaced by less persistent and
more effective pesticide compounds belonging to chemical classes such as the
organophosphates, carbamates, and synthetic pyrethroids, which are easily biode-
gradable and pose less environmental hazards.

Pesticide use in modern agriculture increases the quantity of pesticide residues in
vegetables, grains, and cereals and the development of pest resistance, which has led
to many problems (Fig. 2.1). Irregular and indiscriminate use of chemical pesticides
in the crop system can contaminate soil, water, and air, as well as reduce soil
microflora and fauna (Mwangi et al. 2010; Martin et al. 2011; Chauhan and Singh
2015). Excess bio-pollution and pesticide residues in the food chain and water have
been found to cause carcinogenesis, neurotoxicity, and reproductive disorders
(Burrows et al. 2002; Prüss-Ustün et al. 2011; Myers et al. 2016). Additionally,
the accumulation of these contaminants in the soil not only adversely affects
microorganisms and populations but also has hazardous effects on human health
(Prashar et al. 2014; Wang et al. 2016a; Walia et al. 2018).

Therapeutic technologies in the remediation of pesticides have been developed
with adaptation, oxidation, catalytic degradation, membrane filtration, and bioreme-
diation treatment as well as a number of physical, chemical, and biological methods
(Smith et al. 2004; Li et al. 2010b; Rani et al. 2017). But microbial-mediated
pesticide diminution is the primary mechanism for remediation and detoxification
of contaminants (Sindhu et al. 2014; Akbar and Sultan 2016; Javaid et al. 2016).
Therefore, soil microbial communities are of great importance due to their multiple
attenuation capabilities (Das and Chandran 2011; Dechesne et al. 2014) (Fig. 2.2).
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Beneficial microorganisms isolated from crop rhizosphere could be exploited to
provide sustainable solutions to agricultural crop production by reducing pesticide
use (Philippot et al. 2013; Sindhu et al. 2017; Sehrawat and Sindhu 2019) or by
degradation of residual pesticides in soil (Sindhu et al. 2014; Huang et al. 2018).
Therefore, the microbial biodegradation or biological catalytic process of organic
contaminants in the soil or crop rhizosphere is of major importance for environmen-
tal restoration (Karigar and Rao 2011; Joutey et al. 2013; Kehinde and Isaac 2016;
Bharagava and Mishra 2018).

In bioremediation process, microorganisms and plants are used as biological
intermediates to eliminate toxic/hazardous organic and inorganic chemicals into
less hazardous compounds (Chandra et al. 2015; Saxena and Bharagava 2016). It
is an environment-friendly and efficient method that can be used as an alternative to
chemical and physical methods (Gilani et al. 2016). Antimicrobial control is an
effective tool for cleaning pesticide-contaminated areas. Toxic chemicals/substances
are converted to low-level toxic substances by the microbial control process (Saez
et al. 2014; Kurade et al. 2016; Pan et al. 2017). The main benefits of microbial
remediation of pesticides are easy multiplication and rapid growth leading to high
microbial population. Under suitable growth conditions (sufficient humidity, mod-
erate or warm temperature, adequate pH, and air circulation), microbial decay can be
improved, leading to complete deprivation of pesticides.

Microbial degradation of pesticides, xenobiotic compounds, and biochemicals
has been broadly reported (McGuinness and Dowling 2009; Porto et al. 2011;
Ladino-Orjuela et al. 2016) to reduce pesticide residues in food and feed (Kadam
and Gangawane 2005; Castillo et al. 2011). Microbes like fungal and bacterial
species break down a variety of pesticide compounds counting phenols, substituted

Fig. 2.1 Adverse outcomes
of excessive pesticide
application on surroundings
and human being’s health
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phenolics, and noxious compounds (Moneke et al. 2010; Castillo et al. 2011). The
commonly used microorganisms for the pesticide bioremediation belong to the
species of Agrobacterium, Azospirillum, Bacillus, Burkholderia, Flavobacterium,
Klebsiella, Mycobacterium, Methylococcus, Pandoraea, Pseudomonas, and Strep-
tomyces (Nakkeeran et al. 2005; Glazer and Nikaido 2007; Rani and Dhania 2014;
Parte et al. 2017; Kumar et al. 2018b). Some fungi that degrade pesticides include
Aspergillus, Candida, Lecanicillum, Penicillium, Rhizopus, Trichoderma, and
Phanerochaete chrysosporium (Mateen et al. 1994; Pimentel 2002; Martins et al.
2017). Bacteria that degrade certain pesticides have not only survived in stressful
conditions of pesticides but have also shown biocontrol activity (Castillo et al. 2011;
Chennappa et al. 2014). For example, the pesticide (methomyl)-degrading bacterial
strains, i.e., Disha A and Disha B isolated from pesticide-infested rhizospheric soil,
were recognized as Bacillus cereus and Bacillus safensis, respectively (Roy and Das
2017). Recent awareness about human health and concern about food safety has
necessitated the characterization of efficient bioremediation agents from soil/

Fig. 2.2 Various kinds of pesticides are sprayed for the control of pathogens and pests. Residual
pesticides are degraded by various microorganisms in the rhizosphere
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rhizosphere. Further, understanding of the involved degradation mechanisms and
enhancing degradation of pesticides by genetic engineering of microbes are essential
for improving soil health and ecosystem performance (Pellegrino and Bedini 2014)
by improving crop productivity in the sustainable agriculture sector.

2.2 Categorization of Pesticides

Pesticides are classified into different categories based on their activity, including
herbicides, insecticides, fungicides, nematicides, rodenticides, and molluscicides
(Rani et al. 2017). Based on the chemical composition, pesticides can be classified
as: (1) organochlorines, (2) organophosphates, (3) carbamates, and (4) substituted
urea. Organophosphates and organochlorines are highly hazardous and persistent
organic pollutants, which are even more dangerous to the environment. Organo-
phosphorus pesticides (OPs), referring to chemical structures and functional groups,
are phosphates, phosphoramides, or phosphorothioates, usually contain P-O, P-N, or
P-S bonds, respectively (Liang et al. 2004; Shaker and Elsharkawy 2015). Twelve
organophosphorus pesticides (OPs) have been listed in the US EPA’s latest Candi-
date Contaminant List (CCL4) (Parker et al. 2017). OPs comprising high mamma-
lian toxicity (Singh et al. 2004) can inhibit the activity of acetylcholine esters
(AChE) (Pino and Peñuela 2011), and prolonged exposure to OPs poses a serious
threat to human health (Wang et al. 2010a, b; Granella et al. 2013). Excessive
consumption of OPs can lead to severe environmental pollution and hazards. The
use of pesticides refers to the practical method by which pesticides are delivered to
their biological targets (e.g. pests, crops or other plants). Introduction of other
synthetic pesticides, organophosphate pesticides in the 1960s, carbamates in the
1970s, pyrethroids in the 1980s, and herbicides and fungicides introduced from the
1970s to the 1980s has been instrumental in pest control and agricultural production
(Table 2.1).

2.3 Pesticides and Their Toxic Effects

To control pests and diseases, farmers are using higher doses of pesticides compared
to the recommended. Most pesticides such as glyphosate, malathion, phorate,
monocrotophos, chlorpyrifos, simazine, pendimethalin, carbofuran, phosphamidon,
diazinon, mancozeb, methyl parathion, and carbendazim (Moneke et al. 2010;
Chennappa et al. 2016) are often applied for the cultivation of agricultural crops.
Organochlorine pesticides explored for pest management consist of dichloro-
diphenyltrichloro-ethane (DDT), aldrin, dieldrin, endosulfan, endrin,
hexachlorocyclohexane (HCH), heptachlor, sodium pentachlorophenate, and toxa-
phene. Different genera of bacteria and fungi can degrade these pesticides. Although
endosulfan and HCH are banned in developed countries, these pesticides are still
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used in developing countries (Niewiadomska 2004; Kadam and Gangawane 2005;
Moneke et al. 2010; Castillo et al. 2011). Extreme use of these chemical substances
directs to microbial unevenness, health risks, and environmental pollution by upset-
ting soil and aquatic habitats. Ultimately, they may cross the human and animal food
chain causing neurotoxicological diseases.

2.3.1 Impact of Pesticides on Environment

When pesticide residues are suspended in the air and spread through the air to other
areas that pose a threat to the surrounding environment, the pesticide effect is caused
by the flow of pesticides. Physical parameters such as weather, temperature, wind
speed, and relative humidity of the area during pesticide use contribute to its spread.
Large amounts of pesticides evaporate as a result of low relative humidity and high
temperature of the location. Some pesticides applied for soil fumigation can synthe-
size volatile organic compounds, which react with other chemicals to form a

Table 2.1 Types of various pesticides commonly used in crop protection

Type of pesticides Name of pesticides

Insecticide Organic
nitrogen

Benzoylphenyl ureas, chlordimeform

Organic
phosphorus

Acephate, azinphos-methyl, bromophos, chlorpyrifos,
coumaphos, diazinon, dimethoate, dioxathion, disulfoto, diazi-
non, ectophos, fenitrothion, fenitrooxon, fonofos, glyphosate,
leptophos, malathion, mathamidophos, parathion, phenthoate,
profenofos, phorate, phosmet, phosphothion, trichloffon,
trichlorfon

Organic
chlorine

Aldrin, chlordane, DDT, dieldrin, dicofol, endosulfan, endrin,
fipronil, heptachlor, lindane, γ-hexachlorocyclohexane

Carbamate Aldicarb, carbaryl, carbofuran, carbosulfan, artap

Pyrethroid Cypermethrin, chlorfenvinphos, deltamethrin, fenvalerate,
flumethrin, permethrin, ivermectin

Insect growth
regulators

Azadirachtin, benzoylphenyl urea, diflubenzuron,
methoxyfenozide, pyriproxyfen, spinosad, tebufenozide

Acaricides Amitraz, coumaphos, dimethoatet, fenpyroximate, formic acid,
menthol, tau-fluvalinate

Herbicide Acetanilides, alachlor, barban, chlorbromuron, hlorophenoxy,
dalapon, diuron, glyphosate, linuron, monuron, neburon,
pendimethalin, pentachlorophenol, propham, salted iron phos-
phorus, swep, 2,4-D, 2,4,5-T

Bactericide Bayleton, blue copper, chlorothalonil, copper hydrochloride,
copper oxychloride, copper sulfate, dithane, dithiocarbamates,
mancozeb, metalaxyl, methyl phosphorus, polytrin, ridomil, rice
blast net, triazoles, thiocarbamates, thiovit

Adapted and modified from Huang et al. (2018)
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contaminant that affects tropospheric ozone. Drops of liquid pesticide sprayed on the
fields will stick to the dust and spread as dust particles.

2.3.2 Impact on Soil and Water

Soil is an important and primary source of pesticide pollution. Extensive application
of pesticides alters the normal metabolism of microorganisms and has detrimental
effects on soil microorganisms and other natural microflora of soil ecosystems
(Chennappa et al. 2019). The occurrence of pesticides in water resources such as
lakes, canals, and rivers has been reported to pose a threat to water bodies. The
causes of pesticide infiltration into water are pesticide flow, percolation through soil,
water flow, accidental spraying or soil erosion when sprayed (Karunya and Saranraj
2014). All of these factors lead to suffocation due to the toxicity of the aquatic biota
and zooplankton.

2.3.3 Impact of Pesticides on Human Beings

Pesticides applied in agricultural areas enter the human body through inhalation of
dust aerosols and vapors or through oral exposure by ingesting pesticide-
contaminated foods and water. The severity of the pesticide depends on the toxicity
and chemical nature and prolonged exposure to the pesticide. The severity may be
severe with long-term consequences. Severe effects include headache, nausea,
abdominal pain, vomiting, dizziness, respiratory infections, sore throat, allergies,
skin, and eye problems. Long-term outcomes include neurological disorders, repro-
ductive effects, birth defects, fetal death, and other reproductive problems. Cancer-
related complications have also been reported in lymphoma, brain, prostate, liver,
blood, and skin. Pesticides are also known as endocrine disruptors (Aleem et al.
2003; Naik et al. 2007; Martin et al. 2011) because the use of these chemicals can
lead to hormonal imbalances in the body. Furthermore, some of these pesticides are
easily transmitted from nursing mothers to children through breast feeding (Muñoz-
de-Toro et al. 2006). Organophosphates are an important group of neurotoxic
pesticides that act by inhibiting acetylcholine esterase in the central and peripheral
nervous system, resulting in the formation of choline and acetate (Eleršek and Filipič
2011). In addition, the nerves are significantly inhibited, and this suppression can
lead to heart attack, strokes, and eventually death in insects and mammals (Singh and
Walker 2006).

Chlorpyrifos is moderately toxic to humans because it acts on the nervous system
by inhibiting acetylcholine esterase activity (Schuh et al. 2002; Reiss et al. 2012).
There have been reports of genetic and mutagenic effects of chlorpyrifos in humans
(Sobti et al. 1982; Sandal and Yilmaz 2011) and rat (Ojha et al. 2013). Nasr et al.
(2016) reported that chlorpyrifos tends to cause significant oxidative damage in the
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brain and kidney of rat. Recently, Jegede et al. (2017) reported that changes in
temperature affect the toxicity of chlorpyrifos to soil microarthropods. Humans
exposed to methyl parathion have reported headaches, nausea, insomnia, diarrhea,
dizziness, shortness of breath, dizziness, abdominal cramps, excessive sweating, and
mental confusion (Rubin et al. 2002). Toxicity of methyl parathion is associated with
disruption of acetylcholine esterase in mammals, especially in humans and pests
leading to serious health problems (Liu et al. 2016b). Abhijith et al. (2016) reported
that an acute and mild dose of methyl parathion induces significant variations in the
enzymatic profiles of Catla.

Quinalphos is another pesticide that affects acetylcholine esterase resistance and
is also present on the stomach and respiratory system (Yashwanth et al. 2016).
Debnath and Mandal (2000) reported that quinalphos is an environmental
xenoestrogenic insecticide that obstructs with the expression of sex hormones and
lead to abnormalities in mammals. Furthermore, quinalphos is toxic in female
reproduction in certain concentrations (Khera et al. 2016). The presence of
profenofos residues in the soil causes a high environmental risk as it adversely
affects the ecosystem (He et al. 2010; Fosu-Mensah et al. 2016). The presence of
profenofos and its intermediate (4-bromo-2-chlorophenol) in human plasma and
urine has been reported (Gotoh et al. 2001). Profenosios is highly toxic to fish and
invertebrates (Talwar and Ninnekar 2015). Furthermore, samples of metaphase
plates treated with dosages of profenofos showed satellite links, chromatid interrup-
tions, and gaps, and the effect of profenofos on chromosomes was demonstrated
(Kushwaha et al. 2016).

2.3.4 Effect of Pesticides on Natural Biodiversity

Depending on the type of pesticide and the dosage recommended for field applica-
tion, pesticides may have a temporary effect on microbial and enzyme activity. The
changes in number, function, and diversity of soil microorganisms serve as indica-
tors of soil fertility and reflect soil quality (Sharma et al. 2018; Dahiya et al. 2019a).
Ataikiru et al. (2019) investigated the effect of pesticides on soil biochemical
properties on some soils and observed variations in the different enzyme activities
of soils treated with carbofuran and paraquat. Increased dehydrogenase activity in
pesticide-treated soils was recorded. Urease activity was lower than other enzyme
activities. Differences in the organic carbon values of the soil were also observed.
The number of microorganisms gradually increased with the temporary mineraliza-
tion of pesticides and their ability to utilize carbon as energy sources. The population
of Azotobacter was affected by many factors in the soil, and these factors consisted
high consumption of pesticides and chemical fertilizers that are usually used to
control pests and diseases in agricultural crops.
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2.3.5 Effect of Insecticides on Plant Growth Promoting
Attributes

Indole acetic acid (IAA) is produced by different rhizobacterial strains belonging to
Serratia, Bacillus, and Pseudomonas even under exposure stress of residual insec-
ticide but decreased consistently with increasing insecticide concentration among all
bacterial strains (Wani et al. 2005). Ahemad and Khan (2011) reported that substan-
tial IAA was produced by the Klebsiella sp. strain PS19 even when exposed to three
times the recommended dose of insecticides. In addition, Azotobacter species was
found to fix nitrogen, produced hormones IAA, gibberellic acid (GA) and solubi-
lized phosphate in the media containing a variety of pesticides (Chennappa et al.
2014; Gurikar et al. 2016). Castillo et al. (2011) found that endosulfan did not affect
IAA production in Azotobacter chroococcum and very few differences were found.
On the other hand, Asma et al. (2012) reported the effect of endosulfan on IAA
production in Azotobacter and found that even 50 ppm of endosulfan inhibited IAA
production. The effect of pesticides (chlorpyrifos and phorate) on IAA production by
Azotobacter species was observed at different concentrations compared to control
(Chennappa 2016). The highest IAA-producing Azotobacter salinestris
supplemented with 1 mg tryptophan at 1% chlorpyrifos indicated that 1% chlorpyr-
ifos did not affect bacterial growth and function. Significant differences were
recorded in the different isolates at 3% and 5% phorate, and A. salinestris produced
the maximum IAA at 5% phorate (Chennappa 2016). Similarly, Azotobacter species
that are resistant to pesticides isolated from paddy soils produce IAA in media
supplemented with 5% pesticides (Chennappa et al. 2013).

Gibberellic acid (GA) is one more important plant growth substance produced by
plant growth–promoting rhizobacteria (PGPR) of various species, including Azoto-
bacter species. Asma et al. (2012) reported the effect of endosulfan on GA produc-
tion in Azotobacter, and 50 ppm concentration of endosulfan was found to inhibit
GA production. Azotobacter salinestris isolate produced a maximum of GA at 1%
chlorpyrifos (Chennappa 2016). Higher than 1% concentration, chlorpyrifos reduced
the GA production capacity of Azotobacter and also reduced bacterial growth by
20–25%.

Castillo et al. (2011) reported that endosulfan at 2–10 mg L�1 inhibited 94% and
96% of the nitrogenase activity of the Azotobacter chroococcum but
A. chroococcum completely degraded endosulfan. Of the total five isolates, the
highest nitrogen fixation was observed with A. salinestris isolate at 1% phorate
concentration (Chennappa 2016). Moneke et al. (2010) reported that Azotobacter
and other bacterial species, such as Pseudomonas, Escherichia, and Acetobacter,
were tolerant and degraded glyphosate herbicides, and all the isolates were resistant
to 1%, 3%, and 5% pesticides, although the bacterial activity was inhibited compared
to control. Wani et al. (2005) assessed the toxic effects of different types of
pesticides on the solubility of phosphate of 12 bacteria on phosphate, isolated
from various rhizospheric soils such as Serratia, Pseudomonas, and Bacillus.
Among various bacterial cultures, Serratia exhibited the highest phosphate
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solubilization. Klebsiella spp. significantly solubilized inorganic phosphate even in
the presence of recommended and high levels of pesticides (Ahemad and Khan
2011). Azotobacter phosphate solubility was detected at a maximum of 1% chlor-
pyrifos concentration and reduced to 35–40% at high concentration of chlorpyrifos
(Chennappa 2016).

2.4 Microorganisms Involved in Degradation of Pesticides

Pesticides are usually toxic and have a xenobiotic nature. When constantly exposed
to high concentrations of toxic and persistent pesticides, a wide range of soil-
dwelling microorganisms, including bacteria and fungi, may develop the ability to
use pesticides as a source of energy and nutrients. Partial or complete mineralization/
conversion of such pesticides in the soil make them more or less non-toxic than the
parent molecule, leading to bioremediation of such contaminated areas (Alexander
1999). In most cases, high levels of pesticides increase bacterial and fungal
populations, where soil microorganisms utilize pesticides as a source of carbon,
energy, and other nutrients. For example, the pesticide diazinon and herbicide
linuron significantly increased the number of heterotrophic bacteria and fungi in
the soil after 28 days, when the concentration from 15 mg kg�1 soil to 1500 mg kg�1

soil was gradually increased (Cycon and Piotrowska-Seget 2007).
Due to environmental issues such as accumulation of pesticides in food and water

supply, biodegradation has been recognized as a safe, convenient, and economically
viable tool for the cleaning of pesticide-contaminated soils due to low cost, ease of
use, high efficiency, and no secondary pollution (Sindhu 2007; Ning et al. 2012;
Ramu and Seetharaman 2014; Ozdal et al. 2017). Most recalcitrant pesticides are
captivated into the soil and, therefore, are not properly accessible to bacteria due to
intracellular degradation processes. Among microbial species, bacteria, fungi, and
actinomycetes are main pesticide degraders (Table 2.2) have been isolated from soils
either by direct serial dilution method (Fig. 2.3) or by enrichment culture technique
using particular pesticides as substrate.

Several microorganisms that can mineralize organophosphates (OPs) have been
isolated, including bacteria such as Pseudomonas aeruginosa F10B (Das and Singh
2003), Ochrobactrum anthropi B2 (Qiu et al. 2006), Hyphomicrobium spp. MAP-1
(Wang et al. 2010a, b), Agrobacterium sp. Yw12 (Wang et al. 2012), and belonging
to Bacillus, Flavobacterium, Micrococcus, and Pseudomonas (Singh and Walker
2006), as well as fungi Penicillium oxalicum ZHJ6 (Zhao et al. 2010), Fusarium spp.
F1 (Zhao et al. 2009), Aspergillus sydowii PA F-2 (Tian et al. 2016), and Saccha-
romyces (Gao et al. 2011). Another pesticide monocrotophos (MCP) was degraded
by Pseudomonas aeruginosa F10B, and Clavibacter michiganense subsp insidiosum
SBL 11, which used MCP as a source of phosphorus (Das and Singh 2003; Singh
and Singh 2003). MCP can also be degraded by Bacillus megaterium (Bhadbhade
et al. 2002). Aspergillus sydowii PAF-2 has been reported to metabolize 75.31% OP
trichlorofon (100 mg L�1) in 7 days (Tian et al. 2016). Salt-resistant actinomycete
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S. alanosinicuswas found to be highly effective in carbofuran degradation and led to
95% decomposition. It utilized carbofuran as a source of carbon in saline soils
(Chougale and Deshmukh 2007).

Furthermore, some metabolic mediators formed from OPs were highly toxic
compared to their parents (Li et al. 2010a). For example, parathion can be oxidized
to paraoxon, which is more toxic than parathion (Zhang et al. 2000). The biode-
gradable products of dimethoate are highly water soluble, can easily migrate to other

Table 2.2 Microorganisms involved in pesticide degradation

Types of
microbes

Microbial genera and
species

Example of pesticide
degradation References

Bacteria Pseudomonas Aldrin, chlorpyrifos,
coumaphos, DDT,
diazinon, endosulfan,
parathion,
hexachlorocyclohexane,
methyl parathion,
monocrotophos

Verma et al. (2014),
Parte et al. (2017),
Kumar et al. (2018a)

Bacillus Chlorpyrifos,
coumaphos, DDT, diazi-
non, dieldrin, endosulfan,
endrin, glyphosate,
methyl parathion,
monocrotophos, para-
thion, polycyclic aromatic
hydrocarbons

Verma et al. (2014),
Upadhyay and Dutt
(2017), Rani et al.
(2019)

Alcaligenes,
Flavobacterium,
Klebsiella

Chlorpyrifos, endosulfan,
diazinon, glyphosate,
methyl parathion,
parathion

Verma et al. (2014);
Kafilzadeh et al.
(2015), Upadhyay and
Dutt (2017), Osadebe
et al. (2018), John
et al. (2018)

Actinomycetes Micromonospora, Acti-
nomyces, Nocardia,
Streptomyces

Aldrin, carbofuran, chlor-
pyrifos, diazinon

Jayabarath et al.
(2010), Verma et al.
(2014), Briceno et al.
(2018)

Fungus Rhizopus,
Cladosporium, Aspergil-
lus fumigatus, Penicil-
lium, Fusarium, Mucor,
Trichoderma,
Mortierella sp.

Alachlor, aldicarb, atra-
zine, carbofuran, chlor-
dane, chlorpyrifos, DDT,
diuron, endosulfan,
esfenvalerate,
fenitrothion, fenitrooxon,
fipronil, heptachlor epox-
ide, lindane, malathion,
metalaxyl, pentachloro-
phenol, terbuthylazine,
2,4-D

Bending et al. (2002),
Kataoka et al. (2010),
Xiao et al. (2012),
Romero-Aguilar et al.
(2014), Birolli et al.
(2016), Martins et al.
(2017), Parte et al.
(2017), Osadebe et al.
(2018), Spina et al.
(2018)

Algae Chlamydomonas,
diatoms

Phorate, parathion, atra-
zine, fenvalerate, DDT,
patoran

Shehata et al. (1997),
Kabra et al. (2014),
Tang (2018)
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systems such as groundwater and soils causing greater ecotoxicological risks
(Li et al. 2010b). The complete breakdown of pesticides into inorganic components,
water, CO2, and other elements by microorganisms is termed as biomineralization
(Odukkathil and Vasudevan 2013). Most of the pesticides that reach the soil are
biodegradable, but some pesticides are completely resistant to biodegradation and
are called recalcitrant pesticides (Mulchandani et al. 1999).

Fig. 2.3 Characterization of various kinds of microorganisms viz. bacteria, fungi, and algae from
the rhizosphere soil for bioremediation of pesticides
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In the rhizosphere, microbial communities accelerate biodegradation processes
and improve co-metabolism to degrade organic pollutants and pesticides by (1) facil-
itating selective enrichment of biodegrading microorganisms for xenobiotics degra-
dation in root-free soils (Nichols et al. 1997), (2) enhancing metabolism of microbial
growth by secreting natural substrates which depends on the quantity of xenobiotics
(Haby and Crowley 1996), or (3) enriching natural compounds that provoke the
co-metabolism of xenobiotics in specific microorganisms that exhibit genes or
plasmids with degradation functions (Gupta et al. 2016). Thus, the rhizosphere
microorganisms inhibit or tolerate the level of organic contaminants, mainly with
the help of microorganisms linked to metabolic degradation, partially or completely
detoxifying, leading to a decrease in the quality and quantity of contaminants in the
soils (Furukawa et al. 2004; Balcom et al. 2016).

2.4.1 Pesticide Degradation by Bacteria

The biodegradability of microorganisms depends on the physical, chemical, and
microbiological properties of the soil and the chemical properties of the pollutant
(Banat et al. 2000; Van Hamme et al. 2003). Pesticide degradability decreases as
molecular weight and degree of branching increases in pesticide structure. During
degradation processes, bacteria and fungi produce intra- or extracellular enzymes
such as hydrolases, peroxidases, oxygenases, and other enzymes for the degradation
of toxic pesticide molecules (Li et al. 2007; Ortiz-Hernández et al. 2011).
Profenophos, a well-known organophosphate pesticide, is widely used to control
lepidopteron pests of cotton, tobacco, and vegetable crops and is degraded through
hydrolysis by Pseudomonas aeruginosa (Malghani et al. 2009a). Similarly,
P. putida utilized and degraded another organophosphate pesticide, cadusafos,
which is used to control nematode and insect pests (Abo-Amer 2012). Organophos-
phate pesticide, chlorpyrifos was utilized by soil bacterium Providencia stuartii
under in vitro conditions up to a concentration of more than 700 mg L�1 (Rani
et al. 2008). Malathion is a broad-spectrum organophosphate used in agricultural
soils. Acinetobacter johnsoniiMA19 was isolated from malathion-contaminated soil
samples using enrichment culture method. The degradation rates were significantly
improved by the use of sodium succinate and sodium acetate as additional carbon
sources for the degradation of malathion (Shan et al. 2009).

Kafilzadeh et al. (2015) isolated Klebsiella, Acinetobacter, Alcaligenes,
Flavobacterium, and Bacillus form sediments and water samples, which could
degrade endosulfan effectively. Jayabarath et al. (2010) selected 319 actinomycetes
from saline soils in Sangli district (Maharashtra) for carbofuran tolerance, while
Streptomyces alanosinicus, S. atratus, Streptoverticillium album, Nocardia farcinia,
N. amarae, and Micromonospora chalcea could degrade carbofuran pesticide.
Elgueta et al. (2016) used white rot fungi for degradation of atrazine and reported
that growth and consumption of atrazine by fungi reduced the half-life of atrazine to
6 days. Kabra et al. (2014) reported the degradation ability of green microalga

36 A. Sehrawat et al.



Chlamydomonas mexicana to atrazine by accumulating atrazine in cells and subse-
quently degrading it, reaching a degradation rate of 14–36%. There are many other
microorganisms such as Streptomyces spp., Arthrobacter fluorescens, and
A. giacomelloi, Chlorella vulgaris, Chlamydomonas reinhardtii, Clostridium
sphenoides, and S. japonicum UT26, which possessed the potential of degrading
organochlorine insecticides (Boudh et al. 2017; Boudh and Singh 2019).

Endosulfan is another toxic, persistent, and widely used broad-spectrum
cyclodine organochlorine pesticide. Achromobacter xylosoxidans strain C8B was
isolated from the soil, using endosulfan as the only sulfur source, through the
selective enrichment technique (Singh and Singh 2011). This bacterial strain
degraded 94.12% α-endosulfan, 84.52% β-endosulfan, and 80.10% endosulfan
sulfates, respectively, possibly by the formation of dichloro-diphenyl-
trichloroethane (DDT), an organochlorine compound still used in agriculture and
mosquito control in many developing countries. A p,p0-DDT degrading bacterial
strain Staphylococcus haemolyticus was isolated from soil containing DDT residues
in the range of 0.17–9.84 ng g�1 soil and reduced by 37.4% of p,p0-DDT in 10 days
(Sonkong et al. 2008). A Micrococcus strain degraded pyrethroid pesticide
cypermethrin, which yields 3-phenoxybenzoate yield by hydrolysis of ester linkage,
resulting in loss of its insecticidal activity (Tallur et al. 2008). The degradation
product 3-phenoxybenzoate was further metabolized by diphenyl ether cleavage to
give protocatechuate and phenol. Both of which on oxidation by the ortho-cleavage
pathway led to the complete mineralization of cypermethrin. Similarly, Naphade
et al. (2012) isolated five different strains of soil bacteria, namely Pseudomonas
psychrophila, P. aeruginosa, Devosia yakushimensis, Paracoccus chinensis, and
Planococcus rifietoensis. Simazine, the active ingredient of 2-chloro-S-triazene
herbicides, was biodegraded to almost 100% efficiency in 4 days by the
Arthrobacter ureafaciens strain NC isolated from the rhizosphere soil (Błaszak
et al. 2011).

Bromoxinil octanoate (BOO) is a toxic and common herbicide used for control of
annual broad-leaved weeds applied in the maize crop (Cai et al. 2011). Cai et al.
(2011) reported the degradation of these herbicides by the bacterial strain
Acinetobacter spp. XB2 isolated from contaminated soil. The strain XB2 reduced
100 mg L�1 BOO to undetectable levels within 72 h under optimal conditions.
Similarly, broad-spectrum herbicide glyphosate is widely used to control perennial
and annual post-emergent weeds (Duke 2018). Fan et al. (2012) isolated Bacillus
cereus strain from herbicide-contaminated soil, which exhibited potent glyphosate
degradation potential. This strain utilized 94.47% of glyphosate and reduced it to
AMPA, glycosylate, sarcosine, glycine, and formaldehyde through C-P lyase and
glyphosate oxidoreductase activity.

Liu et al. (2010) isolated an Arthrobacter strain T3AB1, which used atrazine as
the only carbon and nitrogen source, from maize field treated with atrazine in
Heilongjiang province. The bacterium degraded more than 99% at 500 mg L�1

atrazine (pH 8.0) within 72 h under optimal conditions. Furthermore, this strain was
found to use other herbicides such as imazamox, imazethapyr, trifluralin, clomazone,
and fomesafen as a single carbon and nitrogen source at a degradation rate of
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12.66–40.54% after 168 h. Besides, Kabra et al. (2014) studied the ability of green
microalgae Chlamydomonas mexicana to degrade atrazine and found that
microalgae accumulate atrazine in cells and then degrading it effectively, reaching
a degradation rate of 14–36%. Another popular herbicide 2,4-dichlorophenoxyacetic
acid (2,4-D) is used in many crops around the world in various crops such as wheat,
rice, corn, sorghum, and sugarcane. World Health Organization has classified this
herbicide as a carcinogen agent of level II toxicity. However, some microbial
species, such as Acinetobacter spp., Serratia marcescens, Stenotrophomonas
maltophilia, Flavobacterium spp., and Penicillium spp., have been reported to be
rapidly consistent with the presence of 2,4-D, with subsequent degradation under
in vitro conditions (Silva et al. 2011).

Polycyclic aromatic hydrocarbons (PAH), a class of hazardous chemicals
containing two or more fused benzene rings in various structural configurations,
are listed as priority pollutants by the U.S. Environmental Protection Agency due to
their carcinogenic, mutagenic, and toxic effects (Poonthrigpun et al. 2006). Ahmad
et al. (1997) characterized Rhizobium meliloti strains in soils contaminated with
aromatic/chloroaromatic hydrocarbons. The rhizobial population was composed of
many phenotypic and genetically diverse strains, and all rhizobial cells are effective
in symbiotic N2 fixation. Another group of ubiquitous PAHs in the environment
includes acenaphthylene and phenanthrene. Acenaphthylene can be completely
degraded by Rhizobium spp. strain CU-A1 in 3 days by the metabolic pathway of
naphthalene-1,8-dicarboxylic acid (Poonthrigpun et al. 2006). On the other hand,
Sinorhizobium spp. C4 was found to use phenanthrene as a single carbon source, and
16 intermediate metabolites involved in this degradation pathway were identified
(Keum et al. 2006). Some toxic aromatic acids as well as hydrodynamic biosynthetic
intermediates (i.e., quinate and shikimate) commonly found in plants and in the
rhizosphere contribute to the growth of different rhizobial species (Parke et al. 1985).
Many free-living rhizobial strains of the genus Agrobacterium, Bradyrizobium,
Rhizobium, and Sinorhizobium have demonstrated the utilization of PAHs, PCBs,
aromatic heterocycles (i.e., pyridine), or other toxic organic compounds
(Poonthrigpun et al. 2006; Tu et al. 2011).

Polychlorinated biphenyls (PCBs) are another class of POPs that differ in the
number of chlorine atoms attached to their biphenyl rings (Passatore et al. 2014). Tu
et al. (2011) demonstrated that Sinorhizobium meliloti strain ACCC17519 degraded
more than 70% of 2,4,40-TCB (PCB28) compared to other rhizobial strains. Aro-
matic toxin produced by the sources of mimosine, Leucaena sp. is toxic to both
bacteria and eukaryotic cells (Awaya et al. 2005). Some Leucaena-nodulating
Rhizobium strains have been reported to utilize mimosine as a source of carbon
and nitrogen (Soedarjo et al. 1995; Soedarjo and Borthakur 1998), indicating the
catalytic ability of rhizobia to use aromatic compounds. Strains of R. meliloti could
utilize 2,4,40-TCB (PCB28) as a sole carbon and energy source under aerobic
conditions, and HOPDA has been identified as a major intermediate during the
biotransformation of 2,4,4-TCB by S. meliloti (Xu et al. 2010; Tu et al. 2011).

Chlorpyrifos is one of the most widely used insecticides to control mosquitoes
(larvae and adults), flies, and various soil, leaf crop, and household pests. Klebsiella
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spp. degraded toxic chlorpyrifos into non-toxic products and increased the microbial
growth along with the improved dehydrogenase activity (John et al. 2018). Diverse
species of Pseudomonas including P. putida, P. aeruginosa, P. stutzeri,
P. nitroreducens, and P. fluorescens isolated from agricultural soils significantly
degraded the chlorpyrifos (Bhagobaty and Malik 2008; Maya et al. 2011; Sasikala
et al. 2012). Similarly, Bacillus aryabhattai effectively degraded parathion as well as
chlorpyrifos at optimal concentrations of 200 mg mL�1 (Pailan et al. 2015). Abra-
ham and Silambarasan (2016) studied the biodegradation of chlorpyrifos and its
by-product TCP by a novel bacterium Ochrobactrum spp. JAS2 isolated from the
rice rhizosphere soil. The mpd gene responsible for the production of organophos-
phorus hydrolase was identified in Ochrobactrum spp. JAS2 (Abraham and
Silambarasan 2016). The engineered Pseudomonas putida MB285 was capable of
completely mineralizing chlorpyrifos by direct biodegradation, and two intermedi-
ates, namely TCP and diethyl phosphate, appeared in the culture medium (Liu et al.
2016a). Rayu et al. (2017) isolated species of Xanthomonas, Pseudomonas, and
Rhizobium from sugarcane farm soils, which showed complete mineralization of
chlorpyrifos (10 mg L�1).

Nair et al. (2015) isolated 12 different bacterial species capable of growing on
quinalphos and three isolates, namely Pseudomonas spp., Serratia spp., and Pseu-
domonas aeruginosa, efficiently degraded quinalphos. In Pseudomonas aeruginosa,
2-hydroxyquinoxaline and phosphorothioic acid were accumulated during
quinalphos degradation (Nair et al. 2015). Gangireddygari et al. (2017) studied the
effect of environmental factors on quinalphos depletion in Bacillus thuringiensis.
The highest quinalphos degradation was achieved by using an inoculum of 1.0
optical density (OD) with an optimum pH (6.5–7.5) and an incubation temperature
of 35–37 �C. Furthermore, the addition of yeast extracts improved quinalphos
degradation rate to some extent. Archana et al. (2018) isolated Bacillus cereus and
Asaccharospora irregularis isolates from contaminated soil from pesticides that
effectively degraded pendimethalin contaminated environment. Meng et al. (2019)
found that an alkaline phosphatase from Bacillus amyloliquefaciens strain YP6 may
cause biodegradation of five broad-spectrum organophosphorus pesticides.

Profenofos was degraded by bacterial strains including Pseudomonas
aeruginosa, P. putida, Burkholderia gladioli (Malghani et al. 2009a, b), Bacillus
subtilis (Salunkhe et al. 2013), and Stenotrophomonas spp. G1 (Deng et al. 2015).
4-Bromo-2-chlorophenol was identified as a major intermediate during profenofos
catabolism, providing a sensitive and accurate biomarker of profenofos degradation
(Dadson et al. 2013). Talwar and Ninnekar (2015) studied profenofos degradation by
free- and immobilized cells of Pseudoxanthomonas suwonensis strain HNM isolated
from pesticide-contaminated soil samples by enrichment technique in sodium
alginate-polyvinyl alcohol and sodium alginate-bentonite clay matrices. Sodium
alginate-bentonite clay immobilized cells showed enhanced degradation rate of
profenofos than freely suspended cells and other matrices (Talwar and Ninnekar
2015). Abdullah et al. (2016) reported that Pseudomonas putida isolate DB17
showed maximum potential for profenofos degradation.
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2.4.2 Algae and Cyanobacterial Degradation

Thengodkar and Sivakami (2010) reported that hydrolysis of the chlorpyrifos pes-
ticide by the secretion of the enzyme alkaline phosphatase by Spirulina platensis led
to production of its non-toxic primary metabolite 3,5,6-trichloro-2-pyridinol. Kabra
et al. (2014) studied degradation of atrazine by the microalgal species
Chlamydomonas mexicana. The carbohydrate content in algae increases, which
proved that C. mexicana can evacuate the pesticides at polluted streams. Pesticide
remediation rate was found to vary depending on algal strain used, nature of
pollutants, and environmental factors such as nutrients, water, pH, salinity, oxygen
tension, temperature, and light intensity. Furthermore, physical and chemical param-
eters such as molecular chemistry, weight concentration, and toxicity have been
shown to have an effect on atrazine degradation (Priyadarshani et al. 2011; Varsha
et al. 2011).

Megharaj et al. (1987) reported the degradation of monocrotophos and
quinalphos (organophosphorus insecticides) over a period of 30 days by Chlorella
vulgaris, Scenedesmus bijugatus, Synechococcus elongatus, Phormidium tenue, and
Nostoc linckia. Anabaena spp. and Aulosira fertilissima were found to metabolize
DDT to DDD and DDE, respectively, by the process of bioaccumulation and
transformation (Lal and Lal 1987). Microalgae degraded the organophosphorus
insecticide methyl parathion and used it as a source of phosphate through a reductive
process (Barton et al. 2004). Chlamydomonas reinhardtii has been shown to be
useful in the bioremediation of prometryne (herbicide)-contaminated aquatic sys-
tems because it can rapidly uptake and catabolize prometryne (Jin et al. 2012).
C. vulgaris accumulated the triazine group of herbicides, while I. galbana and
Dunaliella tertiolecta accumulated atrazine (Weiner et al. 2004).

The endocrine disrupting insecticide, α-endosulfan was converted to endosulfan
sulfate, endosulfadiol, β-endosulfan, endosulfan aldehyde, and endosulfan ether by
Scenedesmus spp. and Chlorococcum spp. at cell densities of 1550 � 106 and
600 � 106 mg L�1 in a defined liquid medium (Sethunathan et al. 2004). Zhang
et al. (2012) reported that Anabaena azotica strain 118 isolated from Chinese rice
soils degraded lindane at a concentration of 0.2 mg L�1. However, exposure to
microalgae to multiple toxic compounds could lead to the development of resistant
species, which may contribute to the degradation of more pesticide contaminants.
Therefore, microalgae species are highly recommended for the ecosystems contam-
inated with lindane pesticide.

2.4.3 Degradation by Fungi

The filamentous nature of fungal growth provides a major advantage over bacteria,
as it helps fungi to effectively propagate in the soil environment. In addition, during
hyphae colonization in the soil, the fungi produce substrate-specific extracellular
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enzymes that are somewhat more tolerant to high concentrations of contaminants
and lead to improved bioremediation (Fragoeiro 2005). Fungi can degrade a wide
variety of pesticides by introducing small structural changes in the molecule. Fungal
bioremediation of pesticides is caused by the release of a mixture of extracellular
enzymes such as laccases, polyphenol oxidases, and lignin peroxidases. Intracellular
enzymes such as reductases, methyltransferases, and cytochrome oxygenase were
also involved in the remediation of organic pollutants and reduced these pollutants to
a lesser or nontoxic form. The biotransformed pesticide was released into the soil,
where it was further degraded by bacteria (Gianfreda and Rao 2004; Slaoui et al.
2007; Bisht et al. 2015; Bisht and Harsh 2017).

Various fungi such as Penicillium (Peng et al. 2012), Aspergillus (Mohamed et al.
2011), and Phanerochaete spp. (Chirnside et al. 2011) showed an effective remedi-
ation of pesticides. Fusarium verticillioides showed the potential to use lindane as a
source of carbon and energy under aerobic conditions (Pinto et al. 2012). Other
fungal strains, viz. Fusarium oxysporum, Lentinula edodes, Penicillium
brevicompactum, and Lecanicillium saksenae, caused the biodegradation of the
pesticides terbuthylazine, pendimethalin, and difenoconazole (Hai et al. 2012).
Ellegaard-Jensen et al. (2014) mineralized the phenyl urea herbicide diuron using
a consortium of fungi and bacteria. Clothianidin was biotransformed by a white rot
fungus Phanerochaete sordida, which converted clothionidin into the non-toxic
metabolite N-(2-chlorothiazol-5-methyl)-N-methyl urea (TZMU) (Mori et al. 2017).

Endosulfan-decomposing aerobic fungal strains were found useful in soil con-
taminated with organochlorine pesticides. For example, Mortierella spp. strains W8
and Cm1–45 caused 50–70% degradation of endosulfan lactone (Kataoka et al.
2010). During endosulfan degradation, diol was initially formed, which was later
converted to endosulfan lactone. Mixed fungal species have more likely to degrade
mixed pesticides such as chlorpyrifos and DDT. Decomposition efficiency was
found to be higher using low mixed insecticide concentrations (Kulshrestha and
Kumari 2010). The efficacy was observed in degradation of DDT and chlorpyrifos at
26.94% and 24.94%, respectively. Under severe conditions, the genus
Sphingomonas yanoikuyae can decompose carbamate and pyrethrin (OPs) in enrich-
ment culture with high efficiency (Ouyang et al. 2008). Gliocladium showed max-
imum potential for degradation of carbofuran (Seo et al. 2005). Trichoderma
harzianum and T. viride showed a high efficiency in the degradation of pyrimicarb
and increased degradation potential when activated charcoal was added (Romeh
2001).

2.5 Factors Affecting Microbial Degradation of Pesticides

The use of pesticides is essential for agricultural production, and hence, many
problems of environmental pollution and health hazards have become increasingly
prominent. Various microorganisms play an important role in the bioremediation of
pesticides. However, the microbial degradation of pesticide residues is limited by a
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number of intrinsic and extrinsic environmental factors. The effect of intrinsic
factors has derived from the structure of the pesticide and the microorganisms.
The physical and chemical parameters of the soil, i.e., organic matter, nutrients,
temperature, pH, humidity, redox conditions, amount, and nature of clay were found
to have a direct impact on the success of bioremediation. Schroll et al. (2006)
investigated the potential of soil moisture in the aerobic microbial mineralization
of certain pesticides, i.e., glyphosate and benzoin ethyl in different soils. They
observed a linear relationship between increasing soil moisture and pesticide
degradation.

2.5.1 Effect of Microbial Species, Metabolic Activity,
and Adaptability

Different species of microorganisms perform different reactions to the same organic
substrate and pesticide degradation products were found to be different, and the
microorganisms showed strong potential for adaptation in pesticide-contaminated
soils (Hugo et al. 2014). Through the adapted process, new intermediate compounds
were discovered to stimulate microorganisms to produce the corresponding enzyme
system or to establish a new enzyme system to degrade the pesticide. Changes in the
functional properties and degradation of the pesticide were the most important
factors (Hussain et al. 2009; Tsai et al. 2011; Zhang et al. 2015).

2.5.2 Effect of Pesticide Structure

The molecular weight, spatial structure, number and type of substituents, substituted
properties, and location were identified to affect the rate and efficiency of microbial
degradation of pesticides (Mahro et al. 2012; Chaw and Stoklas 2013). In general,
the polymer and composite pesticides were more resistant to biodegradation, and the
simpler structure was more easily degradable (Luan et al. 2006). The main route of
phytoremediation on soil contaminated by polycyclic aromatic hydrocarbons
(PAHs) was microbial degradation in the rhizosphere. The number of benzene
rings of PAHs had a great effect on the microbial degradation of PAHs. Two-rings
and tricyclic compounds such as naphthalene, phenanthrene, anthracene, and
fluorene existed in the atmosphere for a short time and microorganisms easily
mineralized these compounds with using PAHs as a sole carbon source. However,
high-molecular-weight four-ring and other multi-ring PAHs were stable in the
atmosphere. However, white rot fungi could degrade these compounds through
metabolism (Acevedo et al. 2011). In general, as the number of benzene rings of
PAHs increased, the octanol/water partition coefficient increased, and the rate of
degradation was decreased.
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Most of the current contaminants or pesticides were synthesized as biologically
diverse organic substances that are not present in nature. They often showed strong
resistance to degradation by microbes. It may be explained that the time it takes for
these compounds to come into nature was so short that not a single microbe has
developed metabolic mechanisms regarding the degradation of such compounds.
Compared to the currently widely used synthetic heterologous substances, the
natural evolutionary process of microorganism was not able to meet the require-
ments of microbial pesticide degradation, because the speed of this process was far
from reaching what the environment and human needed. Therefore, the balance of
the entire ecosystem would be disturbed having a long-term impact (Ye et al. 2018).

2.5.3 Soil Organic Matter

Degradation of herbicides in modified soils with paddy straw, compost and NPK
chemical fertilizer under upland, oxidative-flooded (aerobic-flooded), and reductive-
flooded (anaerobic-flooded) conditions was studied (Kumar et al. 2018b). The crop
residues acted as a source of organic matter and provided nutrients. Paddy straw,
compost, and NPK amendments accelerated the degradation of herbicides under
upland and oxidative-flooded conditions. But in reductive-flooded conditions, her-
bicide degradation was very slow. The degradation of benthiocarb resulted in the
formation of 4-chlorobenzoic acid, desethyl benthiocarb, benthiocarb-sulfoxide, and
4-chlorobenzyl methyl sulfone. Paddy straw amendments increased the amount of
benthiocarb sulfoxide. Under the upland conditions the amount of desethyl
benthiocarb was reduced by paddy straw and compost. The major degradation
product of MCPA was 4-chloro-2-methylphenol, resulting in large amounts of
paddy straw amendments in oxidative-flooded and NPK amendments under upland
conditions (Duah-Yentumi and Kuwatsuka 1980). Boivin et al. (2005) studied the
interaction of pesticides, viz. isoproturon, trifluralin, and atrazine, in relation to the
organic matter of the soil. Singh et al. (2006) studied fenomiphos and chlorpyrifos
for its biodegradation, but could not observe the potential of soil organic matter in
pesticide biodegradation. Fenlon et al. (2007) found that diazinon mineralized in two
types of the organic soils. Gupta et al. (2015) observed that the effect of the organic
substrate content on pesticide’s degradation in composting was greater than that of
the bacterial population when compost was mixed with soil contaminated by PAHs.

2.5.4 Environmental Factors

Temperature, humidity, salinity, pH, nutrition, carbon dioxide, oxygen, substrate
concentration, surfactant, etc. were found to affect pesticide depletion (Martin et al.
2009; Sartoros et al. 2015; Bhattacharya et al. 2006; Munawar 2010). Bacteria or
their enzymes require adequate temperature, pH, and substrate concentration for
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growth and enzymatic function (Nakajima and Shigeno 2014). Furthermore, bio-
chemical reactions depend on the temperature of microbial activities, which having a
direct effect on cell physiology by altering proteins and permeability of the cell
membrane (Alberty 2006). Temperature and humidity were found to affect the
growth, biochemical activity, and reproduction of bacteria (Arbeli and Fuentes
2007; Parmar and Sindhu 2013). Bacteria usually degrade chlorpyrifos and
fenamiphos at temperature of 15–35 �C, but its degradation potential was severely
reduced at low or high temperatures, i.e., 5 or 50 �C (Singh et al. 2006). Siddique
et al. (2002) observed similar results during biodegradation of HCH isomers of soil
slurry. For α- and γ-HCH isomers, the incubation temperature of 30 �C was found
optimum for degradation.

The surfactant can alter the solubility, absorption, and dehydration balance of
PAHs in soils and the interaction between PAHs and soil microorganisms, thereby
altering the bioavailability of PAHs. For example, Yuan et al. (2003) used a way to
reduce the interfacial tension between soil and water to increase the solubility of
PAHs, facilitated the transport of PAHs, and increased the bioavailability of PAHs.
However, due to the toxic effects of surfactants on microbes or the use of non-toxic
surfactants as a microbial growth matrix, the bioavailability of PAHs might be
inhibited. In addition, the effect of surfactants on the bioavailability of different
forms of PAHs in soils was found different, so that surfactant could be added to
increase the solubility of PAHs in the aqueous phase, to promote and improve the
solid phase transfer to the water phase and reduce the bioavailability and surface and
interfacial tension of the matrix (Yuan et al. 2003). Zhu et al. (2015) observed the
degradation and mineralization of biaryl compounds in soil and compost by bacteria
called Ralstonia and Pickettii and found that the nonionic surfactant Tween
80 increases bacterial utilization of biaryl compounds under appropriate soil mois-
ture conditions, such as biphenyl, 4-chlorobiphenyl.

2.6 Removal of Pesticides Through Phytoremediation

Phytoremediation is a comprehensive strategy to isolate or detoxify environmental
pollutants and pesticides using plants and their associated microorganisms (Bhat and
Bhat 2016; Mitton et al. 2016). Plants are capable of degrading or removing metals,
pesticides, explosives, solvent, crude oil, and many industrial contaminants.
Phytoremediation is a clean, cost-effective, environmental-friendly technology, par-
ticularly for the treatment of large contaminated areas. It has been engaged in the
environmental cleaning industry (Macek et al. 2000; Suresh and Ravishankar 2004).

Various mechanisms involved in the phytoremediation process include:
(1) phytotransformation, which reduces toxicity, inactivates, or neutralizes contam-
inants caused by plant metabolism; (2) rhizodegradation which enhances the activity
of soil microorganisms to degrade contaminants by rhizosphere bacteria;
(3) phytoextraction, which absorbs contaminants from the polluted solids and stores
the substances in the plant biomass, with a potential to recover and reuse valuable
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metals, and (4) phytostabilization, which reduces mobility of toxic substances in the
soils, as in the case of mine tailings. Plants that are relatively tolerant of environ-
mental pollutants often remain small in the presence of contaminants and remove
only small amounts per plant. In order to obtain a more efficient degradation of
organic compounds and pollutants, plants must rely on their associated microorgan-
isms (Pilon-Smits and Freeman 2006). Therefore, inoculation with plant growth–
promoting bacteria (PGPB), which have the property of remediation, has been found
to stimulate plant growth, especially under stressful conditions. Growing plant
biomass to microbial inoculants makes phytoremediation a faster and more efficient
process (Glick 2003).

Phytoremediation technique involves the cultivation of pesticide/metal-tolerant
plants having pesticide/metal accumulating ability to remediate the contaminated
area. These plants can accumulate, absorb, and detoxify chemicals from the site
through their metabolic processes. Suresh et al. (2005) reported that Cichorium
intybus and Brassica juncea plants are effective in degradation of DDT and
triazophos (Cheng et al. 2007), chlorpyrifos (Prasertsup and Ariyakanon 2011;
Romeh and Hendawi 2013), methyl parathion (Khan et al. 2011), and atrazine
(Wang et al. 2012). Aquatic plants such as Eichhornia crassipes, Lemna minor,
and Elodea canadensis have been used in water treatment due to high photosynthe-
sis, high growth rate, easy harvesting, and high pollutant absorption rates (Syuhaida
et al. 2014). Pesticide uptake and phytodegradation of pesticides by Eichhornia
crassipes in water resources can be used as a potential, economical, and alternative
biological method (Xia and Ma 2006). However, the removal efficiency of
E. crassipes and P. strateotes for pyrethroids has been observed significantly higher
as compared to organochlorine (Riaz et al. 2017).

Lemna minor and Spirodela polyrhiza were found to remove dimethomorph until
its concentration is highly toxic and inhibit depuration mechanisms (Dosnon-Olette
et al. 2010). Lemna minor has also been reported to decontaminate organic metal
such as heavy metal and pesticides by rhizofiltration (Sasmaz et al. 2017). Acorus
gramineus showed the ability to absorb many OP and OC pesticides (diazinon,
fenitrothion, malathion, parathion, dieldrin, HCB) and remove them from aquatic
ecosystems (Chuluun et al. 2009). Plantago major was found to absorb cyanophos
(Romeh 2014). Acorus calamus has been reported to exhibit great phytoremediation
potential in terms of biomass growth and atrazine removal (Roman et al. 2012).
Azolla caroliniana and Lemna gibba have also been reported to remove atrazine
from the water (Guimarães et al. 2011). Five macrophyte species, namely L. minor,
S. polyrhiza, C. aquatica, C. palustris, and E. canadensis, removed two fungicides
dimethomorph and pyrimethanil from water, and two species L. minor and
S. polyrhiza showed the highest efficiency in removal of fungicides (Dosnon-Olette
et al. 2009).
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2.7 Integrated Remediation Technologies

Plant microbial–associated bioremediation has been used for agricultural soil reme-
diation. Synergistic interactions between plants and microbial population in the
rhizosphere are effective for the degradation of recalcitrant organochlorines (OCs)
(Vergani et al. 2017). Root exudates (amino acids, flavonones, sugars, enzymes,
phenolic compounds, and other organic substances) could increase the bioavailabil-
ity of OCs and microbial activities in the immediate vicinity of the roots (Javorska
et al. 2009). Microbial strains capable of breaking down OCs were widespread in the
rhizosphere soils (Chaudhry et al. 2005). Root exudates were found to increase the
degradation of PAHs with increasing ring numbers (Sun et al. 2010).

2.7.1 Surfactant-Enhanced Bioremediation

Bioremediation alone has not been able to quickly remove persistent and highly
toxic pollutants from farm soil in general (Huang et al. 2017). The use of bioreme-
diation is a secondary step after chemical remediation and was found more effective
in PAH removal than the single approach (Kulik et al. 2006). Surfactant-enhanced
bioremediation (SEBR) is a hopeful technology to improve the bioavailability and
removal efficiency of OCs in agricultural soil (Chirakkara et al. 2016; Wang et al.
2016b). Surfactant increased the partition of OCs to microbial cells and also facil-
itated the transmembrane transportation of OCs into the cells and thus accelerated
intracellular biodegradation (Zhang and Zhu 2012; Li and Zhu 2014; Li et al. 2014).
Different surfactants exerted various effects on the biodegradation of PAHs through
different approaches, such as disrupting bacterial membranes and modifying cell
surface hydrophobicity (Zhang et al. 2013; Ni et al. 2014). Recently, the ring-
hydroxylating dioxygenase (RHDase) and 1-hydroxyl-2-naphthoate dioxygenase
genes (1H2Nase) were found to be induced in the presence of surfactants, which
played a key role in the decomposition of hydrophobic aromatic compounds
(Li et al. 2015). Surfactants were also found to enhance the degradation of DDT
by microorganisms in agricultural soil (Wang et al. 2016c). Therefore, surfactant-
enhanced bioremediation could be a promising technology for addressing combined
organic pollution in agricultural soil.

2.7.2 Enhanced Phytodegradation by Plant Growth
Promoting Bacteria

The rhizosphere has a population of microorganisms that can degrade xenobiotic
substances (Donnelly et al. 1994; Macková et al. 2007; Mendez and Maier 2008;
Sindhu and Sharma 2020). Kuiper et al. (2001) reported that inoculation of effective
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root-colonizing pollutant-degrading bacteria on a suitable crop plant resulted in
improved bioremediation of the pesticide. The niche combination of plant and
microorganisms led to the effective degradation of naphthalene and protected the
grass seeds against the toxic concentrations of naphthalene. In another soil, contam-
inated with creosote, on inoculation of tall fescue (Festuca arundinacea) with
polycyclic aromatic hydrocarbons (PAH) degrading bacteria and PGPB (Pseudo-
monas putida, A. brasilense, and Enterobacter cloacae) substantially increased the
removal rate of PAH (Guo et al. 2018). Large-sized PAH were eliminated in the
presence of these PGPB because these specific bacterial species reduced stress in
plants through ACC-deaminase activity (Huang et al. 2004). Pseudomonas spp. have
been reported to increase the growth of the canola plant and common weed Phrag-
mites australis in the presence of copper or PAH (Reed and Glick 2005; Reed et al.
2005). PGPB degraded 2-chlorobenzoic acid and oil-contaminated soils for growing
Vicia faba and many forage grasses, but no clear relationship between contaminant
disappearance of pollutants and enhanced plant biomass was observed (Siciliano and
Germida 1997; Radwan et al. 2005). The bioremediation potential of legumes
Galega orientalis and its symbiont, Rhizobium galegae, has been assessed in soils
contaminated with benzene, toluene, and/or xylene (BTX). The Galega plants
showed good growth, nodulation, and nitrogen fixation in soils contaminated with
oil or spiked with m-toluate, a model compound representing BTX (Suominen et al.
2000).

Several endophytic bacteria were also found to help host plants overcome
contaminant-induced stress, and resulted in improved plant growth (Correa-Galeote
et al. 2018). During phytoremediation of organic contaminants in soils, plants benefit
more from their endophytes, which have degenerative pathways and metabolic
abilities that are not inherent in the plant. This strategy leads to a more effective
degradation and reduction of phytotoxicity and evaporation of volatile contaminants
(Weyens et al. 2009). For example, tall fescue Festuca arundinacea grass selects the
prevalence of endophytes containing pollutant catabolic genes in an environment
contaminated with different pollutants (hydrocarbons and nitro-aromatics) (Siciliano
et al. 2001). Barac et al. (2009) reported that when remediation reduced BTX below
a detectable level, the ability of the endophytic community in poplar plants to
degrade BTX disappeared. Similarly, inoculation of the Pisum sativum plant with
an endophyte (isolated from poplar), having the capability to degrade the herbicide
2,4-D, increased the removal of 2,4-D from the soil (Germaine et al. 2006).

The excretion of root exudates may also stimulate growth of specific, pollutant-
degrading bacteria in the rhizosphere by secreting phospholipid surfactants (Sindhu
et al. 2017) that make organic pollutants more bioavailable or by releasing secondary
metabolites that induce the expression of genes with organic pollutant-degradation
potential (Pilon-Smits 2005). For example, Rhodococcus species are the most
common group in the rhizosphere of trees, which naturally colonized and improved
a PCB-contaminated site in the Czech Republic (Van der Geize and Dijkhuizen
2004). Barley growing in PAH-contaminated soils has contributed to the growth of
Mycobacterium species capable of mineralizing the PAH (Child et al. 2007). Soils
contaminated with petroleum derivatives generally have high concentrations of
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m-toluate. The rhizosphere of oriental goat’s rue Galega orientalis grown on these
polluted sites showed predominant population of m-toluate degraders Pseudomonas
spp., Rhodococcus, Arthrobacter, Bacillus, and Nocardia (Jussila et al. 2006).

2.8 Mechanisms and Enzymes Involved in Pesticide
Degradation

The remarkable variety and complexity of different pesticide structures and diversity
of pesticide degrading microorganisms belonging to all physiological types indi-
cated that a wide variety of transformation reactions are catalyzed by various
microorganisms in the pesticide degradation. Pesticides and other organic pollutants
in soil and water can be degraded by photolytic, chemical, and biological mecha-
nism. Photolytic degradation can occur when a pesticide molecule is irradiated by
sunlight. Chemical degradation occurs when the molecule is chemically unstable in
the conditions of its environment, whereas biodegradation refers to the transforma-
tion of pesticides by living microorganisms. In nature, biological and non-biological
processes work together to degrade pesticide compounds.

Soil pesticides can be degraded in a variety of ways; traditional methods include
physical, chemical, and physico-chemical degradation, which primarily causes sec-
ondary pollution (Qu et al. 2015; Kaur et al. 2016; Zhang et al. 2017). Recently,
microbial degradation was regularly used as microbes decomposed pesticides into
some smaller molecules, such as CO2 and H2O (Chen et al. 2011; Tang 2018).

Pesticide degradation follows different metabolic pathways depending on the
structure of the pesticide, environmental conditions, and the nature of the microor-
ganisms (Fig. 2.4). The mechanism consists of (1) oxidative transformation medi-
ated by oxidative enzymes (cytochrome P450, peroxidases, and polyphenol

Fig. 2.4 Predominant
transformation reactions
involved in degradation of
various pesticides
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oxidases), (2) hydrolytic transition mediated by hydrolytic enzymes (hydrolases)
that cleaves bonds of substrate by adding hydrogen or hydroxyl group from water
molecules, (3) reductive transformation mediated by reductive enzymes
(nitroreductase) by which removal of anion occurs by reduction, and reductive
dehalogenation is mediated by reductive dehalogenase enzyme (Commandeur and
Parsons 1994; Odukkathil and Vasudevan 2013), and (4) synthetic/conjugation
reactions by which an exogenous or endogenous natural compound is added to the
pesticide to facilitate mineralization.

Three enzymes were involved in the first few stages of the degradation of atrazine
by Pseudomonas spp. strain ADP, which used atrazine as the sole carbon source
(De Souza et al. 1996; Wackett et al. 2002). Most of the catabolic genes encoding
these degradative enzymes were located on the plasmid (Nour et al. 2017; Nayak
et al. 2018). Likewise, biodegradation of 2,4-D is regulated by genes carried on the
plasmid (Don and Pemberton 1985). Studies have shown that mineralization and
co-metabolism were the major mechanisms for further degradation of pesticides and
their by-products (Boivin et al. 2005; Arora et al. 2012; Ye et al. 2018). On
ingestion, inhalation, or absorption dermally, chlorpyrifos may be metabolized by
the enzymes of cytochrome P450 that cause derylation (oxidative ester cleavage) of
the chlorpyrifos and formed 3,5,6-trichloro-2 pyridinol (TCP) and
diethylthiophophate (Komori et al. 1990). Chlorpyrifos degradation mainly leads
to TCP, which is then degraded by bacterial enzymatic oxidation and hydrolytic
reactions (Li et al. 2010b). TCP is broken down via the release of three chlorine
molecules during its sequential dechlorination, in which one oxidation and two
hydrolytic steps 3,6-dihydroxypyridine-2,5-dione (Li et al. 2010b; Ramakrishnan
et al. 2011) were formed.

The degradation of 2,4-dichlorophenoxy acetic acid (2,4-D) was shown to have
two different pathways (Amy et al. 1985). These two degradation pathways were
mediated by Pseudomonas spp. and Alcaligenes spp. isolates, respectively (Amy
et al. 1985). In one way, the sixth carbon is oxidized by the addition of the OH group,
yielding 6-OH-2, 4-D, and followed by removal of acetate, resulting in the formation
of 3,5-dichlorocatechol. In the second path, two carbon side chains are removed,
resulting in glyoxylate and 2,4-DCP. The oxygenases synthesized by Pseudomonas
spp. caused degradation of tetrachlorobenzene to trichlorocatechol by removing HCl
from the compound (Sander et al. 1991). Mono- and dioxygenases were actively
involved in the dehalogenation-mediated degradation of halogen-based pesticides
(Braus-Stromeyer et al. 1993). Peroxidases synthesized by fungi and bacteria were
reported to biodegrade pesticides and their derivatives. For example, the compound
3,4-dichloroaniline was converted to 4,4-tetrachloroazobenzene by peroxidases
produced by soil microorganisms (Bordeleau et al. 1972). The peroxidases secreted
by P. chrysosporium added on chlorine to 2,4-di-, trichlorophenol, 2,4,6-
trichlorophenol and pentachlorophenol at their para positions and formed p-benzo-
quinone (Hammel and Tardone 1988). These peroxidases mineralized 2,4,5-TCP
rapidly. Different reactions and enzymes involved in pesticides degradation are
illustrated in Fig. 2.4.
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2.8.1 Oxidoreductases

Oxidoreductases are a broad group of enzymes that catalyze the transfer of electrons
from one molecule (redundant or electron donor) to another (oxidant or electron
acceptor). Most of these enzymes require additional cofactors to function as electron
donors, electron acceptors, or both. These enzymes have applications in bioremedi-
ation, during which they catalyze the oxidation/reduction reaction by electronically
incorporating molecular oxygen (O2). In these reactions, oxygen is reduced to water
(H2O) or hydrogen peroxide (H2O2).

A fungus Cladosporium cladosporioides was isolated from organophosphate
contaminated soil, which showed the potential to use chlorpyrifos as the sole carbon
source (Gao et al. 2012). The parent chlorpyrifos was first produced by hydrolysis of
3,5,6-trichloro-2 pyridinol (TCP) and diethylthiophosphoric acid (DETP). The
hydrolysis product is further transformed by the breakage of the TCP ring, resulting
in its complete detoxification (Chen et al. 2012). Likewise, Lu et al. (2013) isolated a
bacterial strain called Cupriavidus spp. DT-1 responsible for the degradation of
chlorpyrifos. In the degradation path, chlorpyrifos was first hydrolyzed to TCP,
dechlorinated to 2-pyridinol, respectively, and then to the cleavage of the pyridine
ring and further degradation. The mpd gene, which encodes the enzyme responsible
for chlorpyrifos hydrolysis to TCP, was cloned and expressed in Escherichia coli
BL21. Inoculation of chlorpyrifos-contaminated soil with strain DT-1 reduced
chlorpyrifos and TCP at 100% and 94.3%, compared to 28.2% and 19.9% in
uninoculated soil, respectively.

Oxidases constitute a subclass of oxidoreductase enzymes (Scott et al. 2008). The
products of oxidation reactions often contain anionic hydroxyl or carboxyl sub-
stituents and are more polar and water soluble than parent pesticides. Glyphosate
oxidase (GOX) is the best characterized oxidase involved in pesticide bioremedia-
tion (Scott et al. 2008). Most of the chloroaromatics molecules are converted by
bacteria to chlorocatechol or chloroprotocatechuate, which become the starting
substrate for subsequent reactions involving oxidative cleavage. Monooxygenases
metabolize the xenobiotics by often enhancing their reactivity and/or the water
solubility through the addition of oxygen atom. A two-component flavin diffusible
monooxygenase family (TC-FDM) (Galan et al. 2000) is a monooxygenase that
plays a role in the degradation of environmental pesticide residues. The cytochrome
P450 family is another large group of monooxygenase enzymes that have a wide
substrate range and have been reported to catalyze biochemically recalcitrant
reactions, such as oxidation or hydroxylation of non-activated carbon atoms
(Werck-Reichhart et al. 2000). An example of the use of cytochrome P450 in the
bioremediation of herbicides is cytochrome CYP1A1 (also known as aryl hydrocar-
bon hydroxylase) from mammalian liver, which has been found to degrade atrazine,
norflurazon and chlortoluron (Kawahigashi et al. 2005).
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2.8.2 Hydrolases

Another group of enzymes commonly used in pesticide bioremediation is hydrolases
(Zhongli et al. 2001). The presence of hydrolysable groups in a pesticide or
xenobiotic molecule is an important factor in determining its anaerobic biodegrad-
ability. Hydrolases catalyze the hydrolysis of many major biochemical classes of
pesticides (esters, peptide bonds, carbon–halide bonds, ureas, thiosters, etc.) and
generally function in the absence of redox cofactors (Scott et al. 2008). Esterases are
enzymes that catalyze the hydrolysis of carboxylic esters (carboxyestrases), amides
(amidases), phosphate esters (phosphatases), etc. (Bansal 2012). Many insecticides
(organophosphates, carbamates, and pyrethroids) contain the carboxylic ester com-
ponent, and the enzymes that can hydrolyze this type of ester bond are called
carboxyl-esterases. In this group, phosphotriesterases (PTEs) are one of the most
important classes (Chino-Flores et al. 2012). The first phosphotriestrase was isolated
from Pseudomonas aeruginosa strain MG, and this enzyme showed high catalytic
action against organophosphate pesticides. PTEs are encoded by genes called opd
(organophosphate-degrading), and the opd genes were first characterized in
Flavobacterium strain ATCC 27551 (Latifi et al. 2012). These enzymes distinctively
hydrolyzed phosphorus bonds such as P-O, P-F, P-NC, and P-S, and the hydrolysis
mechanism involved a water molecule at the phosphorus center. This enzyme
showed its potential to eliminate organophosphorus pesticide-contaminated envi-
ronments (Ortiz-Hernandez et al. 2003).

Microbial degradation of organophosphorus compounds by hydrolysis of P-O-
alkyl and P-O-aryl bonds is considered to be the most important step in detoxifica-
tion (Sogorb and Vilanova 2002). Analogous phosphor-monoesterase and
diesterase, which degraded methyl and dimethyl phosphate, respectively, have
been reported in Klebsiella aerogenes (Wolfenden and Spence 1967). Organophos-
phorus hydrolase (OPH) and organophosphorus acid anhydrolase (OPAA) are one
of the most widely studied organophosphorus degrading enzymes (Mulbry and
Karns 1989; Singh et al. 1999). In bacterial enzymes, OPH from P. diminuta has a
wide range of substrate specificity (Manavathi et al. 2005). The highly active OPAA
molecule from Alteromonas undina is composed of a single polypeptide with a
molecular weight of 53 kDa (Cheng et al. 1993). However, another OPAA was
isolated from Alteromonas spp. JD6.5 is composed of 517 amino acids with a
molecular weight of 60 kDa and has been reported to play an important role in
cellular dipeptide metabolism (DeFrank and White 2002).

Other structurally and functionally distinct organophosphorus degradation
enzymes were three unique parathion hydrolases, which were characterized from
Gram-negative bacterial isolates. An exclusive phosphotriesterase has been charac-
terized from Nocardioides simplex NRRL B-24074. Another novel
phosphotriesterase HOCA (Hydrolysis of Caroxone) was isolated from
P. monteilii (Horne et al. 2002a, b). This enzyme is required by the host for
phosphate metabolism and was suggested to originate from phosphodi- or
monoesterase. The enzyme phosphonatase was found capable to degrade
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phosphonates was isolated from B. cereus (La Nauze et al. 1970). One more
interesting enzyme involved in the degradation of phosphonates is C-P lyase refined
from Pseudomonas spp. GLC 11 (Selvapandiyan and Bhatnagar 1994).

Numerous examples of hydrolases with applications in the bioremediation of
pesticide residues include carboxylesterases, phosphotriesterases (Oph and OpdA),
and haloalkane dehalogenases (LinB, AtzA, and TrzN) (Mohn and Tiedje 1992).
Halidohydrolases use water to replace halogens with hydroxyl groups, and this is
affected by the number and types of halogen substituents and by the presence of
unsaturated carbon-carbon bonds. Use of either oxygenases or hydrolases to
dehalogenate pentachlorophenol (PCP) illustrates the potential for microbes to
develop diverse mechanisms for metabolizing such chemicals. A carbofuran
degrading methylotroph strain ER2 initiated the attack on carbofuran by hydrolyzing
the carbamate linkage, producing 7-phenol carbofuran, CO2, and methylamine
(Chaudhary and Ali 1988).

2.8.3 Lyases

In the absence of redox cofactors or water, the enzyme lyase catalyzes the cleavage
of bonds, including carbon-carbon bonds such as pyruvate formate-lyase (PFL)
(Sawers 1998) and carbon bonds with phosphorus, oxygen, nitrogen, halides, and
sulfur. The haloelimination reaction catalyzed by lindane hydrochlorinase is active
against the insecticide hexachlorocyclohexane (Nagata et al. 1993) have been linked
to the aminomethyl phosphonic acid (MPA) is susceptible to lyse-producing bacteria
(Zhang et al. 1999), and the use of MPA as a source of phosphorus by Pseudomonas
putida has been observed (Cook et al. 1978). Arthrobacter sp. GLP-1 and Pseudo-
monas sp. PG2982 degraded glyphosate and produced sarcosine (N-methylglycine)
by C-P lyse activity (Dick and Quinn 1995). Rhizobium meliloti has also been
reported to degrade glyphosate by lyase activity (Park and Hausinger 1995). A
similar pathway has been observed in Arthrobacter atrocyaneus (Pipke and Amrhein
1988) and Flavobacterium sp. (Pipke et al. 1987). Enterobacter cloacae strain K7
possessed C-P lyase activity and degraded glyphosate to sarcosine, which was
subsequently oxidized to glycine (Kryuchkova et al. 2014).

2.8.4 Synthetic Reactions and the Formation of Immobilized
Residues

Synthetic reactions covalently attach pesticide or pesticide transformation products
to other organic molecules. For example, molecules which contain reactive nucleo-
philic groups, amino (-NH2), hydroxyl (-OH), or carboxyl (-COOH) can participate
in these reactions. Usually, all products of synthetic reactions are larger than the
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parent compounds but the mobility and bioavailability of the reaction products are
variable, depending on the size of the molecule to which the residue is attached. For
example, the methylation of the hydroxyl group in PCP by fungi produces a volatile
methoxy derivative, tetrachloroanisole (Cserjsei and Johnson 1972). This is a rare
example of reaction products being much more volatile, and therefore, more mobile
in the environment than the parent compound. Activated transformation products
can react together to form polymers. For example, the hydrolysis of the phenylurea
herbicides produced chlorinated anilines that readily dimerized to form azobenzene
and other condensation products (Bartha and Pramer 1970).

The covalent attachment of pesticide residues to soil humus also effectively
immobilized the pesticide residues to the soil matrix and greatly reduced their
bioavailability and movement through the soil profile. Bound pesticide residues
perhaps may be slowly released during turnover of organic matter. Microbial
population and abiotic mechanisms in soil often transform parent pesticide residues
in humus to intermediate compounds that are subsequently incorporated into soil
organic components, and this phenomenon is often noticed in the case of
polyaromatic hydrocarbons, polychlorinated biphenyls, pentachlorophenol, etc.
(Bossert et al. 1984; Chauhan et al. 2008). Polymerization of various phenolic
compounds was found less toxic after their copolymerization with natural soil
components such as syringic acid (Bollag et al. 1988). Some pesticide residues
could be immobilized to soil organic material via “oxidative coupling.” In this
process, the parent compound is enzymatically transformed by oxidation to a
reactive intermediate, which rapidly reacts with soil organic matter. For example,
laccase and peroxidase enzymes can catalyze the oxidative coupling of oxidized
2,4-dichlorophenol with fulvic acid and humic acids (Nannipieri and Bollag 1991).
It has been suggested that the covalently attached residues are not bioavailable or
mobile and, therefore, are effectively detoxified.

2.9 Genetic Engineering of Microbes to Enhance
Degradation of Pesticides

The production of extracellular enzymes by soil microorganisms can be enhanced by
genetic modification to degrade residual pesticides in the soil (Scott et al. 2008;
Sindhu et al. 2010a; Bass and Field 2011; Riya and Jagapati 2012). Various
measures can be taken to reduce the stress of bacteria that are constantly exposed/
stressed by pesticides available under soil conditions. Various mechanisms involved
in pesticide detoxification include: (1) increasing the copy number of genes that
allow the organism to produce more protective enzymes such as esterases, glutathi-
one transferases, and other oxidases; (2) reducing the number of receptors that bind
to pesticides; and (3) mutating single genes that lead to pesticide resistance. When
different pesticides are used sequentially in the field, bacteria may adapt to or
develop resistance to other pesticides, leading to the development of strains with
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multiple pesticide resistance properties. When adaptation occurs through genetic
mutations, the pesticide-resistant organism may also tolerate other xenobiotic com-
pounds that have mechanisms of action similar to those already exposed to pesti-
cides; such resistance is called cross-resistance.

Genetic engineering of endophytic and rhizospheric bacteria for the degradation
of toxic compounds in the soil is considered to be one of the most promising new
technologies for the remediation of contaminated environmental sites (Divya and
Kumar 2011). To select the appropriate strain for genetic recombination and its
subsequent inoculation into the rhizosphere, three criteria have been recommended:
first, the strain should be stable after cloning, and the target gene should have high
expression; second, the species must be tolerant or insensitive to the contaminated/
toxic compound; and third, these strains may establish and live in specific plant
rhizosphere (Sindhu and Dadarwal 2000; Huang et al. 2004). In general, most
bacteria in the rhizosphere show only limited ability to reduce organic pollutants.
With the development of molecular biology, the genetically engineered rhizobacteria
with the contaminate-degenerating genes are constructed to enhance the
rhizoremediation (Glick 2010).

The microbial PCB-degradation system consists of two main metabolic stages:
(1) anaerobic reduction dechlorination, where PCBs are converted to low chlorinated
congeners; and (2) aerobic breakdown of the biphenyl structure in low-halogenated
congeners (less than five chlorines), resulting in chloro-HOPDA (2-hydroxy-6-oxo-
6-phenylhexa-2,4-dienoate), chlorobenzoic acid, ring opening, and complete miner-
alization (Passatore et al. 2014). The aerobic rhizobial degradation of PCBs is
usually carried out by the oxidative biphenyl pathway encoded by the bph genes,
which include the multicomponent dioxygenase (bphA, E, F, and G), dehydrogenase
(bphB), secondary dioxygenase (bphC), and a hydrolase (bphD) in other bacteria.
Genomic DNAs from Rhizobium and Bradyrhizobium have been found to be
strongly hybridized with the Comamonas testosteroni-derived bphABC gene
probe, suggesting the presence of a similar oxidative degradation system in rhizobia
(Damaj and Ahmad 1996; Ahmad et al. 1997). Molecular mechanisms involved in
the degradation of certain pollutants, such as trichloroethylene (TCE) and PCBs,
have also been studied.

Gong et al. (2016) reported the metabolic engineering of Pseudomonas putida
KT2440 for complete mineralization of methyl parathion. The strain was found
genetically stable, and its growth was not inhibited. Furthermore, engineering of the
strain showed a high degradation of methyl parathion (50 mg kg�1 soil) in soil
samples. In another study, genetically engineered Pseudomonas putida X3 strain
was reported to utilize methyl parathion as the sole source of carbon for growth.
Engineered X3 strain hydrolyzed methyl parathion to p-nitrophenol. However, no
further degradation was observed, which may be due to the absence of p-nitrophenol
degrading genes in the X3 strain (Zhang et al. 2016).

In general, the combination of multiple OP degrading genes causes pesticides to
be converted into intermediate metabolites and eventually into small-molecule and
non-toxic substances (Barman et al. 2014; Acharya et al. 2015). OP-degrading genes
involved in the biodegradation and detoxification of OPs include opd, opdE, mpd
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and opdA (Somara et al. 2002). During microbial degradation of atrazine, the
degrading microbe Citrichoccus spp. strain TT3 possessed the genes trzN, atzB,
and atzC, all of which were involved in the biodegradation process of atrazine (Yang
et al. 2018).

Similarly, genes responsible for the degradation of chlorobenzene acids, other
halogenated pesticides and toxic wastes have been identified. Friello et al. (2001)
successfully produced Pseudomonas, a multiplasmid containing oxidizers of ali-
phatic, aromatic, terpenic, and polyromatic hydrocarbons. Pseudomonas putida that
contained XYL and NAH plasmid, as well as hybrid plasmid derived by the
recombinating components of CAM and OCT developed by conjugation could
degrade camphor, octane, salicylate, and naphthalene (Sayler and Ripp 2000).
Degradation of environmental pollutants by genetically engineered microorganisms
is primarily focused on genetically engineered bacteria using various genetically
engineered technologies, such as modification and substrate specificity by
Comamonas testosteroni strain VP44 (Hrywna et al. 1999). For the degradation of
polychlorinated biphenyls, chromosomally located PCB catabolic genes of
R. eutropha A5, Acromobacter spp. LBS1C1, and A. denitrificans JB1 were trans-
ferred into the heavy metal–resistant strain R. eutropha CH34 by natural conjugation
(Menn et al. 2008).

For heavy metals, Sriprang et al. (2003) introduced Arabidopsis thaliana gene for
phytochelatin synthase (PCS; PCSATt) into the Mesorhizobium huakuii subspp.
rengei strain B3, which established a symbiosis between theM. huakuii subs. rengei
strain B3 and Astragalus sinicus. The gene was expressed to produce phytochelatins,
and it accumulated CD2+, under the control of the bacteroid-specific promoter of the
nifH gene (encoding Fe protein, dinitrogenase reductase) (Sussman et al. 1988).
Finally, the use of genetically engineered microorganism (GEM) strains as an
inoculum during seeding avoids problems related with competition between strains
in mixed culture. However, there is much controversy about the release of such
genetically engineered microbial strains into the environment, so field testing of
these organisms must be delayed until safety and environmental damage issues are
resolved (Wackett 2004).

2.9.1 Adaption and Development of New Degradation
Capabilities

Microorganisms can occupy an infinite variety of niches in the environment because
of their rapid growth rate, large numbers, and small size. The breadth of selective
pressures experienced by these microbes provided them the opportunity to develop
tremendous biochemical diversity. There is an important selective advantage in the
ability to utilize a new substrate in otherwise carbon-limited soils. A number of
microorganisms possess the enzymes required to degrade xenobiotic molecules,
whose structures are apparently foreign to anything previously seen in nature. The
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degree of “foreignness” is actually variable from pesticide to pesticide. There appear
to be no natural counterparts for many pesticide structures, for example, the chlori-
nated hydrocarbons DDT, mirex, and dialdrin. However, some seemingly unusual
structures found in pesticide molecules are also found in nature. For example, soil
fungi can produce large amounts of various halogenated aromatic compounds
(De Jong et al. 1994).

Microorganisms growing at the expense of a xenobiotic (i.e., foreign to nature)
pesticide can frequently be isolated from soil only a few years after the introduction
of the chemical at particular field. Some soils degrade pesticide much more rapidly
after repeated applications, suggesting that some kind of adaption and change in the
properties of the degrading microflora may have taken place. This observation has
prompted speculation that the biodegradation of newly introduced pesticides
becomes possible because of the rapid evolution and selection of catabolic pheno-
types (van der Meer et al. 1992). Enzyme involved in the metabolism of natural
chemicals may have sufficiently low substrate specificity, and they may also attack
xenobiotic analogs. Therefore, pesticides can also be degraded co-metabolically by
enzymes with low substrate specificities. For example, the oxidative lignin-
degrading system of Phanerochaete chrysosporium is remarkably nonspecific and
can also degrade a very wide variety of pollutants (Yadav and Reddy 1993). Under
suitable environmental conditions, all-natural compounds can be catabolized,
because the evolution of biosynthesis of natural chemicals was sufficiently slow to
permit the parallel evaluation of new catabolic functions required for their
degradation.

A number of genetic mechanisms may be involved in the evolution of new
pesticide-degrading capabilities in soil. Microorganisms can in principle acquire
new catabolic capabilities: (1) through the recruitment of genes encoding
pesticide-degrading enzymes; (2) by modification of substrate specificity; and
(3) regulation of preexisting enzymes which have other functions (van der Meer
et al. 1992). Genes encoding various enzymes, which are involved in the degradation
of organic pollutants, are frequently located on the plasmids and sometimes in
transposons (DNA elements able to replicate and insert new copies in the genome).
These mobile genetics elements can be exchanged between microorganisms in soil
and water (Fulthorpe and Wyndham 1992).

2.9.2 Mobilization of Genes to Enhance Catabolic Steps
in Pesticide Degradation Pathway

Genes encoding various enzymes, involved in the degradation of a large number of
pesticides, are located on the plasmids (Table 2.3). For example, the plasmids
contain the genes for degradation of phenoxyalkanoic and thiocarbamate herbicides,
methyl carbamate, and organophosphorus insecticides. Degradative plasmids
(DP) may encode a complete degradative pathway such as those for toluene or
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xylene Tol (pWWO) catabolic plasmid or partial degradative steps such as those for
naphthalene (NAH) to salicylate (SAL) and camphor (CAM). In addition, genes
involved in a catabolic pathway are frequently clustered together, facilitating corre-
lation and transfer among microorganisms. Moreover, genes involved in the degra-
dation of pesticides may evolve in different microorganisms followed by their
assembly on the same plasmid in a single organism through horizontal gene transfer.
There are now evidences indicating that transposable elements cause rearrangement
of genetic material and may be transferred between unrelated strains and ultimately
resulting in the construction of new degradative plasmids (Tan 1999).

The movement and rearrangement of sections of DNA through genetic recombi-
nation or transposition of DNA can modify the regulation and expression of cata-
bolic genes. Success of a catabolic pathway depends upon its catabolic components
and regulatory elements particularly the promoters. Understanding of the behaviors
of such regulatory promoters in and off the field is the prerequisite for engineering of
the catabolic pathways for pesticide bioremediation. Genetic engineering techniques
have been used to construct plasmids that code for the catabolism of halo-aromatic
compounds (Rojo et al. 1987; Ramos et al. 1987). The transmissible nature of genes
specifying dissimilation of xenobiotic compounds may lead to a rapid spread of
degradative capabilities in microbial population, once a degradative plasmid has
evolved.

The transfer of these catabolic plasmids may be involved in the adaption of the
soil microflora and development of enhanced degradation capability. The 2,4-D
degradation encoding plasmid pJP4 was transferred into a wide variety of bacteria
including E. coli, Rhodopseudomonas sphaeroides, A. tumefaciens, Rhizobium spp.,
P. fluorescens, P. putida, and Acinetobacter calcoaceticus (Don and Pemberton
1981). Haugland et al. (1990) reported that mixtures of the herbicides 2,4-D and
2,4,5-T were toxic to P. cepacia strain AC 1100 (2,4,5-T degrader) and Alcaligenes
eutrophus strain JMP134 (2,4-D degrader) due to production of inhibitory metabo-
lites. A derivative of strain P. cepacia AC 1100 was constructed by the transfer of
2,4-D degradative plasmids pJP4 from Alcaligenes eutrophus strain JMP134. The
new strain RHJ1 efficiently degraded mixture of 2,4-D and 2,4,5-T. Such microbial

Table 2.3 Plasmids involved in degradation of chlorinated hydrocarbons

Plasmids Compound degraded Size of the plasmid

181 PKFI 4-Chlorobiphenyl 82 kb

P44204 2-Monochloropropionic acid 53 kb

185pAC21 1,4-Dichloro biphenyl 65 MDa

pAC27 3-Chloro-benzoic acid 110 kb

189 2,4-D 50–150 MDa

190 PCP 80–100 kb

194 Chlorotoluene 72 MDa

196 p401 Fluoracetate 44 MDa

Tol Toluene –

Adapted from Chaudhry and Chapalamadugu 1991
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populations can be of immense value in bioremediation of persistent chlorinated
compounds especially the PHAs and PCBs.

Gottschalk and Knackmuss (1993) designed a mixed culture of Pseudomonas
spp. N31 and B13 that oxidized 4-chloro-2-nitro phenol and its toxic metabolite
4-chlorophenol involving oxygenase of Pseudomonas spp. N31 and
4-chlorocatechol dioxygenase of Pseudomonas spp. B-13, respectively. However,
use of bacterial consortia resulted in the formation of undesirable amount of dark
colored toxic metabolites. The presence of chlro- and methyl-arenes at that site-
induced meta- and ortho-pathways caused misrouting of methyl- and chloro-arenes.
This leads to substrate incompatibilities and production of metabolic dead-end
products, which are toxic to the bacterial cells culminating in the cessation of
mineralization activity.

2.9.3 Modification of Substrate Specificity by Manipulations
of Enzymes

Small modifications to a catabolic gene sequence may alter the properties of the
encoded enzymes. The enzyme substrate specificity or gene transfer specificity can
be altered by substitutions of single base pairs or point mutations. Deoxygenases and
dehalogenases are the two enzymes that have been modified by enzyme bioengi-
neering. By comparison of amino acid sequences and models of tertiary structures of
haloalkane dehalogenases, their active centers were identified and selected as pos-
sible targets for site directed mutagenesis. Erickson and mondello (1993) reported
that biphenyl deoxygenases of Pseudomonas spp. LB 400 possess broad substrate
specificity, whereas the high efficiency of enzyme was reported in
P. pseudoalcaligenes strain KF707. The enzyme showed 95.6% amino acid
sequence similarity in the large subunit, but had different substrate specificities. A
site-directed mutagenesis of four nucleotides that cause a change in these four amino
acid sequences of biphenyls bphA gene (encoding dioxygenase reductase compo-
nent) was performed. It resulted in a novel dioxygenase that combined the broad
substrate specificity of Pseudomonas spp. LB 400 and efficiency of homologous
enzyme from P. pseudoalcaligenes KF 707 to degrade a range of di-, tri- and tetra-
para-substituted polychlorinated biphenyls. Bosma et al. (2002) reported heterolo-
gous expression of haloalkane dehalogenase gene dhaA of Rhodococcus spp. M15-3
by mutating the enzyme at two amino acid levels by Cys 176!Tyr and Tyr
273!Phe (phenylalanine) substitutions. The mutated enzyme was placed under
the control of a constitutive promoter in 2,3-dichloro-1-propanol, employing
Agrobacterium radiobacter AD1. The engineered pathway could completely
degrade TCP (1,2,3-trichlorpropane), a waste product from epichlorhydrin
manufacture.
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2.9.4 Rapid Evolution Through Duplicated Genes

One gene copy can accumulate mutations and yield enzymes with altered properties,
while the other copy of the gene may continue its normal function. A number of
bacterial genes have been used to modify plants genetically and make them resistant
to specific herbicides. For example, the herbicide bromoxynil inhibits photosynthe-
sis and uncouples oxidative phosphorylation. A gene originating from Klebsiella
pneumoniae subspp. ozaenae encoding a bromoxynil-modifying nitrilase was used
to generate bromoxynil-resistant transgenic plants (Stalker et al. 1988). Moreover, in
situ pesticide degradation rates can be manipulated by modifying the soil environ-
ment. For example, the plant rhizosphere can accelerate pesticide degradation
presumably through enhancement of microbial activity via the provision of carbon
in the form of root exudate or modification of O2 concentrations. The organo-
phosphorus insecticides diazinon and parathion were mineralized about twice as
fast in soil containing a bush bean (Phaseolus vulgaris) plant as in soil without a
plant (Hsu and Bartha 1979).

Focht and Reineke (2002) studied application of hybrid bacterium containing
sequences for complete degradation of polychlorinated biphenyls, Aroclor1221 in a
soil microcosm and found that both introduced bacterium and native microbes
remained unaffected. Although these studies demonstrated the potential of geneti-
cally engineered microorganisms in bioremediation of environmentally hazardous
compounds, there is also an example of GEM adversely affecting the indigenous
microbe during degradation of 2,4-D. Short et al. (1992) reported that genetically
engineered P. putida PP301 (pR0103) accumulated 2,4-dichlorophenol in arid soils
affecting an indigenous fungus.

2.9.5 Development of Transgenic Plants with Enhanced
Pesticide Degradation

To minimize the application of pesticides, transgenic plants have been developed,
which express the Bt (Bacillus thuringiensis) toxin. Such transgenic plants have
been released for cultivation in cotton, corn, brinjal, etc. Due to the cultivation of
these transgenic crops, lower amounts of pesticides are applied for control of
pathogens and insects. There is also possibility to develop transgenic plants with
enhanced ability to detoxify persistent organic compounds. To increase the natural
abilities of plants in the removal/detoxification of organic compounds, different
cytochromes have been introduced into plants, which are considered to be respon-
sible for the first phase in plant detoxification. Doty et al. (2000) showed the
enhanced metabolism of halogenated hydrocarbons in transgenic plants containing
mammalian cytochrome P450 2EI. Similarly, overexpression of a basic peroxidase
in tomato (Wevar Oller et al. 2005) resulted in increased phenol phytoremediation,
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thereby supporting the hypothesis that apart from P450 cytochromes, peroxidases
are also involved in the first phase of detoxification.

The development of GM tobacco, which overexpressed glutathione-S-transferase
for the phytoremediation of chloroacetanilide herbicide (Karavangeli et al. 2005),
addresses the second phase in plant detoxification, namely the conjugation of the
activated compound. Similarly, the biodegradation of explosives by transgenic
plants expressing pentaerythritol tetranitrate reductase (French et al. 1999) is the
classic example of the exploitation of a bacterial gene for phytoremediation. In
addition, plants have been constructed that express bacterial enzymes capable of
TNT (trinitrotoluene) transformation and RDX degradation (hexahydro-1,3,5-
trinitro-1,3,5-triazine), an explosive nitroamine widely used in military and indus-
trial applications (Bruce 2007).

The vital missing step in the efficient degradation of hydroxylated PCBs by plant
cells is the opening of the biphenyl ring by the bacterial enzyme encoded by bphC,
which is responsible for the cleavage of hydroxylated PCB derivatives, even those
formed by plants. Francova et al. (2003) reported the generation of tobacco plants
carrying the bphC gene. Subsequent testing of seeds for their ability to germinate in
high concentration of PCB showed significant germination. Besides this, improved
substrate specificity has been achieved by the expression of bacterial biphenyl-
chlorophenyl dioxygenase gene in tobacco (Mohammadi et al. 2007).

2.10 Future Perspectives

Insect pests, pathogenic fungi, and weeds have always responded to the chemical
pesticides sprayed on them by developing resistance (Sindhu et al. 2010b, 2016).
Indeed, repeated use of the same agrochemicals is considered to be the main cause
behind the development of resistance (Miyata and Saito 1984; Heap 2014). On
the contrary, resistance has become the incentive for innovation on their fight against
the enemies of the crops (Jeschke 2016). For instance, widespread pest resistance to
the old organochlorine insecticides was the main reason that led to ban DDT and
cyclodienes. Their replacement with cholinesterase inhibitors was envisaged well
before the sublethal effects on birds of prey were noticed. The search for molecules
with different mode of actions in subsequent years was a necessity to confront
resistance mechanisms among insect pests. Despite this, pest resistance has devel-
oped within a few years of the introduction of the novel neonicotinoids and diamide
insecticides (Uchiyama and Ozawa 2014; Bass et al. 2015). Even more dramatic
change has been the development of resistance against glyphosate by many weeds
due to overuse of this herbicide in genetically modified crop varieties of cotton,
soybean, and maize (Shaner 2000; Beckie and Hall 2014; Dahiya et al. 2019b).

To address the resistance problem, the pesticide chemical industry is looking for
the production of novel chemicals to control the crop pests (Jeschke 2016). In recent
years, huge growth has been noticed in the marketing of neonicotinoids, phenyl-
pyrazoles and diamide insecticides, strobilurin fungicides, and 4-HPPD herbicides
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(Jeschke 2016). There are evidences to demonstrate that the routine application of
insecticides and fungicides have little or no significant increase in today’s crop yields
(Lechenet et al. 2017). The solution to this problem, therefore, is not to add new
chemicals to the already saturated pesticide market but to find different ways of
combating this war against weeds and pests (Owen et al. 2015; Chauhan et al. 2017;
Phour and Sindhu 2019), without affecting the ecosystem resources and services
provided by soil biota and pollinators, which are essential for agricultural produc-
tivity (van Hoesel et al. 2017).

Two types of GM crops have been developed, one for pest control (i.e., Bt-crops)
and the other for herbicide resistance (glyphosate-GM crops). Bt-crops produce the
toxin of Bacillus thuringiensis, which are very effective against caterpillars and
grubs (Hutchison 1999) without damaging natural enemies of the pests (Thomazoni
et al. 2010), thus avoiding the use of insecticide sprays against such pests (Wadhwa
and Gill 2007); however, this has created secondary pests that require the use of
other insecticides. By contrast, glyphosate-GM crops are resistant against this
herbicide, so the farmers can apply glyphosate products without harming the crop
plants. Unfortunately, this has led to an overuse of the herbicides that fostered rapid
development of resistance among various weeds plus contamination of the environ-
ment (Powles 2008; Beckie and Hall 2014; Sindhu and Sehrawat 2017).

2.11 Conclusion

Bioremediation has tremendous potential for the remediation of contaminated soils
infested with pesticides. Rhizosphere microorganisms play an important role in the
degradation of various pesticide residues. A consortium of microorganisms thrives,
which degrades pesticide contaminants into a simple chemical compound that may
be used by the crop plant and reduce the use of chemical pesticides in agriculture.
The continuous degradation of chemicals by enzymatic reactions represents the most
important strategy with high bioremediation efficiency. These biocatalysts may be
formed in large numbers by genetic engineering technology, expression of enzymes,
or indigenous organisms that are used in agriculture to remove pesticides from
contaminated sites. Further research on the biodegradation or biotransformation
mechanisms in plants, bacteria, fungi, or algae is essential to improve bioremediation
strategies. An in-depth study of the microorganisms is needed to excavate the
pesticide degradation process and the mechanisms by which their enzymes are used.
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Chapter 3
Microbial Indicators of Bioremediation:
Potential and Success
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Abstract The human race has been involved in lot many activities on energy
reservoirs, seeking the commercialization of agriculture and swift in industrial
growth apart from mining activities, which has led to environmental pollution by
many folds. There are a number of reasons for this environmental pollution; ingress
of heavy metals into ecosystem, nuclear wastes as part of residue created due to
nuclear energy power stations or atomic research activities, uncontrolled utilization
of pesticides in our farmers, greenhouse gases and hydrocarbons generated due to
various human activities are to name a few of them. If bioremediation activities are to
be carried out successfully, they require a lot of time, but time and again have proved
to be successful. In both ex situ and in situ ways, it is possible to carry out
bioremediation.
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3.1 Introduction

Sustainability on this planet is dependent on the resources which Mother Nature
provides us. However, human has failed in the utilization of the available resources
in a justified and environment friendly manner. Human activities led to the release of
enormous quantities of toxic compounds which include both organic and inorganic.
Deliberated and well-regulated industrial emissions may occur through industrial
emissions or chemical or oil spills which may occur accidentally. These toxic
compounds create irreversible contamination in various ecosystems.

In the recent times, it is well understood that the contaminated sites act as threat
not only for life on the planet but also it has adverse effects on the environment.
Hence, efforts have been made in this direction all over the world in an effort to make
a world better place to live in (Baker and Herson 1994; Kensa 2011; Vidali 2001).

3.2 Bioremediation: A Better Approach

Removal of the contaminated soil and taking it out to a landfill is the conventional
method which is still being used to control the contaminants of an area. Although,
this technique may provide an initial depiction that the problem of contamination is
being solved. But it has the potential of creating even greater risks in the process of
digging the contaminated soil, dealing with the contaminated soil and carrying out
the material to the destination i.e. a selected landfill. The transportation of the
contaminated material may also be quite tedious and may cost hugely financially.
Nowadays, various methods like introduction of contaminants to ignition at extreme
temperature along with several chemical methods are being used effectively to
reduce the contamination levels, but they find a much low acceptability on the
public front due to technical complexity and exposure to contaminants. In this
scenario, bioremediation emerged as an option in terms of destroying or converting
the pollutants into much less harmful ingredients using natural biological activity
(Evanko and Dzombak 1997; Gómez Orea 2004; Kensa 2011; Prasad 2004; Vidali
2001).

The process of bioremediation is an environment and expenditure friendly
approach to retrieve the ecosystems which have been polluted due to human
activities. Bioremediation is a combination of various techniques and methods
which helps in achieving successful results (Abatenh et al. 2017; Azubuike et al.
2016; Verma and Jaiswal 2016).
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George Robinson (US Microbics 2003) is the pioneer for initiating the microbes’
usage for the process of bioremediation. During 1960s, during the incident of oil
spill along the coast of Santa Barbara, California, microbes were used by him. In the
1980s, the usage of bioremediation techniques has considerably increased in the
cases of oil spills as well as hazardous wastes (Shannon and Unterman 1993). Each
ecosystem has a set of native microorganisms which are well acclimatized in the
respective system. The same stands true in the case of soil microbes. These well-
established indigenous soil microbes carry out an extreme important role in which
they perform as the agents of biochemical reactions and enable the transformation of
complex (organic) into smaller (inorganic) compounds. This whole process of
transformation is defined as mineralization. The property of ionic exchange facili-
tates the microbes to get adsorbed to soil particles, as soil particles possess a negative
charge, thus soil and bacteria are held together by ionic bond (Killham 1994).
Microorganisms assist in the process of bioremediation by either destroying or
immobilizing waste materials (Shanahan 2004). The processes of mineralization,
transformation and alteration of the hazardous chemicals are carried out for the
detoxification (Shannon and Unterman 1993). Natural bioremediation was also
being used by several civilizations, but now it is dealt with a scientific, systematic
approach of the same. The reactions which occur in the process of bioremediation
involve the release of energy in the form of redox reaction inside the microbial cell.
Various water bodies, viz. underground water, soil, lagoons etc. can be sanitized by
using various bioremediation methods. The oil spill in the water bodies occurs quite
frequently due to various activities like discharge of crude oil from tankers, plat-
forms near the shore, assembly for drilling and wells, spills of refined petroleum
products (such as gasoline, diesel), bunker fuel spillage and haphazard discharge of
waste oil in the sea (Adams et al. 2015). Most extensive and successful application of
bioremediation was Alaska oil spill cleanup after Exxon oil spill (Boopathy 2000;
Katyayan 2019). Oil contamination creates havoc in a tremendous manner to the
environment. The penetration of oil into sea creatures reduces the ability of insulat-
ing themselves to a great extent, thus making them more susceptible to the temper-
ature fluctuations. Also their ability of keeping themselves buoyant in water reduces
significantly. These alterations make the survival of sea organisms very tough. The
strong smell of oil makes it difficult for babies and mothers to locate each other.
Eventually, babies are left on their own leading to their deaths (Hogan 2008). It even
disables a bird from flying, preventing it from foraging, resulting in dehydration and
metabolic imbalance or escaping from predators. The ingestion of oil leads to
disabled liver and kidney function. It is difficult to protect the birds from dying. It
is suggested that only 1% of birds affected by oil spill are able to survive (Dunnet
et al. 1982). The oil spill is equally harmful for humans too. In 2013, alone, in such
two incidences, water supply for 3000 people was contaminated in Miri, Malaysia.

In 2000, around 80,000 people in Coca, Ecuador, similarly, Springs were con-
taminated in Clark County, Kentucky in 2010. Tourism is also affected adversely
due to contamination, which creates an economic impact (Yang et al. 2009).

The adverse effects of the spilled oil can be easily judged from the fact that once
the oil seeps into soil, the ability to support the growth of the plants is significantly
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reduced. This leads to an increase in the accumulation of the heavy metals causing
adverse effects. Once the heavy metals enter the food chain, they have extreme toxic
effects. It may also damage nerves, liver and bones along with blocking functional
groups of vital enzymes (Moore 1990; Ewan and Pamphlett 1996).

The soils in which contaminants are associated with soil particles and their
presence can also be seen in soil liquids and in the soil atmosphere,
i.e. multiphasic environments, then an interdisciplinary approach has to be consid-
ered (Boopathy 2000).

It is well known that the microorganisms are cosmopolitan due to their amazing
metabolism. Thus, they act as significant solution givers to a wide range of polluted
habitats by carrying out the biodegradation and bioremediation activities, provided
that environmental conditions are suitable for their growth and metabolism (Abatenh
et al. 2017; Azubuike et al. 2016; Verma and Jaiswal 2016). Microorganisms stand
out over other biological tools for the removal of pollutants in various ecosystems,
due to their fast growth and metabolic activities (Demnerovà et al. 2005).

A group of biological mechanisms, which degrades, detoxifies and mineralizes
concentrated pollutants into harmless or significantly less harmful substances, can be
easily utilized by other organisms.

3.3 Criteria for the Selection of Bioremediation Techniques

Pollutants are of various types: agrochemicals, dyes, heavy metals, greenhouse
gases, hydrocarbons, chlorinated compounds, nuclear waste, plastics and sewage.
Depending on the nature of pollutant, ex situ or in situ type of remedial may be
considered (Frutos et al. 2012; Smith et al. 2015).

Before starting off any remediation project, it is extremely essential to check upon
the method or technique based upon the selection and performance criteria. Nutrient
and O2 concentrations, pH and other abiotic factors are included in the performance
criteria, which will ultimately lead the project towards success. There are a vast
variety of bioremediation techniques available, but most of them are concentrated on
remediation on hydrocarbons pollution, since it is the most common type of pollu-
tion (Frutos et al. 2010; Sui and Li 2011; Kim et al. 2014; Firmino et al. 2015;
Abatenh et al. 2017).

Basically, bioremediation is done by the utilization of living organisms. Micro-
organisms, including both bacteria and fungi, are considered most suitable to
degrade the environmental contaminants into less toxic or toxic-free forms. Even
plants with some basic features too can be very useful for carrying out bioremedi-
ation successfully. The selected living organisms may be native to a contaminated
area or they may be introduced to the contaminated area from somewhere else. These
organisms have the ability to transform the contaminant compounds through the
metabolic processes, which enables to convert the pollutants into harmless products.
Bioaugmentation takes place when a set of suitable microbes are brought to the
contaminated site, so as to boost the process of degradation. It is very much essential
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to provide favourable environmental conditions for the proper growth of the micro-
organisms, so that the degradation can be achieved at a faster pace. Ordinarily,
bioremediation systems work under aerobic conditions, so as to permit microbial
organisms to degrade even recalcitrant molecules (Colberg and Young 1995; Strong
and Burgess 2008).

Advantages of Bioremediation

• Bioremediation is generally carried out using normal biological activities (Vidali
2001).

• This technique is low cost and requires low technical assistance (Vidali 2001).
• It also has acquired high public acceptance due to its environment friendly nature

(Vidali 2001).
• When compared with the traditional methods of incineration, bioremediation

methods are much more economical (Colberg and Young 1995).

Disadvantages

• The variety of contaminants on which bioremediation works is quite narrow, viz.
chlorinated organic or high aromatic hydrocarbons are tough contaminants and
are found to be resistant microbial attack. Hence, the process may not be able to
see any degradation reaction, or if it takes place, it may be very slow (Colberg and
Young 1995).

• The process is relatively long, sometimes may even require decades.
• Designing and implementation of a successful bioremediation programme require

experience and expertise.
• The process and factors of bioremediation is not fully understood (Vidali 2001).

3.4 Types of Bioremediation

The location of contaminants plays a very important role in the feasibility of the
bioremediation process. If the implementation of the process is to be done on site,
then the process is called in situ.

Feasibility of bioremediation depends on the location of contaminants.
Approaches for the implementation of bioremediation depend on whether the
impacted soil to be treated is intact in the environment or it is to be excavated for
treatment in an offsite facility. If on site, the term in situ remediation suffices and if
offsite then ex situ terms are used (Kumar et al. 2011; Orji et al. 2012; Hamzah et al.
2013) (Fig. 3.1).
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3.4.1 Biostimulation

The process of biodegradation in soil is dependent on various factors, viz. pH,
temperature, moisture content, oxygen availability, soil properties and quantity in
which contaminant is present (Atagana 2008; Al-Sulaimani et al. 2011; Bundy et al.
2002). In this process, limiting nutrients are added in various forms. Phosphorus,
nitrogen, oxygen and carbon (electron acceptors) are added in the form of molasses
or by optimizing conditions by aeration, etc., which stimulates the growth and
activities of microbes (Elektorowicz 1994; Perfumo et al. 2007; Piehler et al.
1999; Margesin and Schinner 2001; Rhykerd et al. 1999).

This method was considered most suitable or appropriate for remediation of
petroleum pollutants present in soil (Margesin and Schinner 2001). In the process
of biostimulation, bioremediation process would be carried out by the microbes
which are already present in the environment, along with well-established and
distributed within the subsurface environment. The local geology of the subsurface
plays an important role in proper distribution, growth and availability of the addi-
tives. If the subsurface lithology is tight and impermeable due to the presence of tight
clays, etc., then it becomes a hurdle for the additives to spread thoroughly in the
desired area. On the other hand, preferential pathways may be created by subsurface
with fractures which may create advantages for the additives. Nutrients added to the
subsurface may enable the growth of heterotrophic microbes which may not partic-
ipate in the process of degradation; hence, rivalry or antagonism may be created
between the resident micro flora (Adams et al. 2014).

3.4.2 Bioaugmentation

Bioaugmentation is the addition of microbes to supplement the indigenous
populations of microbes. The approach of this process is that if the indigenous
microbial populations present are incapable of degrading the complex mixtures,
then the desired and capable microbes can be added (Leahy and Colwell 1990).
Speed of decontamination is the primary factor for deciding any process, and if it is
slow, then bioaugmentation can be followed (Forsyth et al. 1995). For the required
process of degradation to be carried out successfully, it is essential for the seed
microbes to have the features, viz. conduct the degradation process, genetic stability
and viability should not be altered, should acclimatize in foreign habitats effectively
(Atlas 1984; Goldstein et al. 1985).

Fig. 3.1 Types of
bioremediation
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Depending on the enzymatic capability of the microorganisms, they may be able
to degrade contaminants of various properties (linear, branched or cyclic alkanes,
mono-or polynuclear aromatics). With the assistance of biotechnological techniques,
various studies are being carried out to select the microorganisms with the potential
to degrade the compounds with toxic nature.

Microbial strains or consortia, which are acclimatized to the contamination site,
lead to the successful bioaugmentation. Without the ability to compete with the
indigenous microbes, predators and various abiotic factors of a particular microbe
cannot succeed in carrying out the process of degradation. For the screening of
microbe, it is also important to study the chemical structure and concentration of
pollutants along with the availability of the contaminant to the microorganisms, the
size and nature of microbial population and physical environment (Adams et al.
2015).

There is also a section of degradation which occurs only when oxygen is absent.
Conversion of organic parts of degradable organic solid waste and refuse into biogas
comprises of methane and carbon dioxide and a humus-like material by anaerobic
bacteria like methanogens (methane-producing archeobacteria). This process is
called Dranco process, which has been followed by countries like Brecht, Belgium
and Salzburg, Austria (Katyayan 2019).

Nitrate is removed from water by the introduction of methylotrophic bacteria like
Methylophilus methylotrophus to carry out the process of denitrification (Katyayan
2019). Eutrophication can be prevented by the removal of nitrate from waste water
(Sharma 2016).

With the addition of methanol to bioreactor, growth of methylotrophs can be
enhanced. To biodegrade chlorinated hydrocarbons present in effluents of pesticide
industries, which manufacture DDT, heptachlor, chlordane, etc., bacteria like Pseu-
domonas cepacia are utilized. In Hong Kong, Acetobacter liquefaciens S-1 is used to
treat waste water in textile and dye industries.

Multiple microbial communities are grown in bioscrubbers and biotrickling
filters, to produce multilayered complexes called biofilms. Organic pollutants,
along with gas streams, are passed through biofilms/biofilters, and the pollutants
can be easily degraded. Due to great network area of fungal mycelia, greater surface
area is created, thereby elimination of pollutants is done to a greater capacity. Thus
fungus like Candida tropicalis is used to treat volatile organic compounds in air.
Biofilters are used to eliminate ethanol and isopropyl alcohol, which are released into
air while drying ceramics. The injection of air to stimulate and aerobic degradation
and volatization is called air sparging. The contaminated water is pumped to the
surface and then is reinjected which is called bioventing. Microbes like Thiobacillus
ferrooxidans conduct metal solubilization or leaching to recover Cu, Pb, Zn and Ur
through metal solubilization (Table 3.1) (Katyayan 2019).
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3.4.3 Phytoremediation

The usage of vegetation to eliminate, accumulate, degrade or contain harmful
pollutants from soil or water is called phytoremediation. The origin of
‘phytoremediation’ is from Greek word, ‘phyton’ which means ‘plant’ and Latin
word ‘remedium’, which means ‘to remedy’ or ‘to correct’. Some aquatic vegeta-
tions, viz. Salvinia sp., Lemna sp., Azolla sp. and Eichhnoria sp., sedges, for
instance, Typha latifolia and a few herbaceous and woody flowering plants have
the potential to absorb, abide and accumulate heavy metals and other toxic sub-
stances from soil and water along with concentrating them into roots, stems and
leaves (Adams et al. 2015; Chaney et al. 1997; Dickinson et al. 2009; Ensley 2000;
Mendez and Maier 2008; Prasad 2004; Prasad and Freitas 2003). Thlaspi
caerulescens, the alpine pennycress, if grown on zinc-contaminated soil yields up
to 30–40% zinc. Thus this plant is bio-ore of Zn. Sebertia acuminate (Sapotaceae),
which is native to Caledonia, accumulate 20–25% Ni of its dry weight (Katyayan
2019). Phytoremediation can be divided into six categories:

Enhanced rhizosphere degradation, phytodegration, phytoextraction
(phytoaccumulation), rhizofiltration, phytovolatilization and phytostabilisation.

Table 3.1 List of bacteria used to bioaugmentation

S. No. Contaminant/industry Microorganism

1 Organic solid waste Methanogens

2 Nitrate Methylophilus methylotrophus

3 Chlorinated hydrocarbons Pseudomonas cepacia

4 Waste water from textiles and dye
industries

Acetobacter liquefaciens S-1

5 Volatile organic compounds in air Candida tropicalis

6 Ethanol and isopropyl alcohol Biofilters

7 Oil spills Pseudomonas using recombinant technology

8 Cu, Pb, Zn and Ur Thiobacillus ferrooxidans

9 Cd, Pb Pseudomonas aeruginosa

10 Heavy metals Pseudomonas putida, Arthrobacter viscous,
Citrobacter spp.

11 Radioactive metals (uranium and
thorium)

Rhizopus arrhizus, Penicillium chrysogenum

12 Bioleaching of Zn, Co and Ni from
sulphide rocks

Thiobacillus thiooxidans
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• Phytodegradation (phytotransformation): Certain enzymes, viz. nitroreductases
(degradation of nitroaromatic compounds), dehalogenases (degradation of chlo-
rinated solvents and pesticides) and laccases (degradation of anilines) degrade or
metabolize the organic contaminants or mineralize inside the plant cells. For
example, Populus sp., Myriophyllum spicatum, Algae and stonewart (Katyayan
2019; Rylott and Bruce 2008; Schnoor et al. 1995).

• Phytostabilization (phytoimmobilization): Plant roots reduce the movement of
contaminants (organic or inorganic) off-site.

Root exudates act by precipitating the metals as insoluble forms and thus are
subsequently trapped in the soil matrix. In this manner, the mobilization and
diffusion of contaminants are restricted in the soil, e.g. Haumaniastrum,
Eragrostis, Ascolepis, Gladiolus, Alyssum, Indian mustard (Ali et al. 2013;
Berti and Cunningham 2000; Domínguez et al. 2009; Katyayan 2019; Prasad
2004).

• Phytovolatilization: Some plants have the ability to both absorb and volatilize
certain metals and metalloids. Certain metals like Hg, Se and As can be absorbed
by roots and transformed into non-toxic forms, thereby released into the atmo-
sphere. Se can be absorbed and degraded by Astragalus bisulcatus and Stanleya
pinnata. Plant species like Nicotiana tabacum, Liriodendron tulipifera or Bras-
sica napus for reducing the toxic effect of Hg (Brooks 1998; Katyayan 2019;
Pilon-Smits and LeDuc 2009; Pilon-Smits and Pilon 2000; Poschenrieder and
Barceló 2004; Ruiz and Daniell 2009).

• Phytoextraction (phytoaccumulation, phytoabsorption or phytosequestration): In
this method, plants accumulate metals and radionuclides and transport them to
their harvest, i.e. aerial parts. Application of this technique can be applied to the
metals, viz. Cd, Ni, Cu, Zn, Pb, Se, As etc. and other organic compounds.
Elsholtzia splendens, Alyssum bertolonii, Thlaspi caerulescens and Pteris vittata
are the hyperaccumulator plants which are known to carry out this process, which
are known to store high concentrations of these metals in their aerial plants (this
may vary from 0.01% to 1% dry weight, depending on the metal) (Blaylock and
Huang 2000; Hernández-Allica et al. 2008; Ma et al. 2001; McGrath 1998;
McGrath and Zhao 2003; Pedron et al. 2009; Van der Ent et al. 2013; Xie et al.
2009).

3.5 Parameters Affecting Bioremediation

Many factors combine in such a manner that the process of bioremediation can be
taken care of systematically. The availability of the contaminants to the microbes
possessing degradation abilities along with favourable conditions, viz., soil type,
temperature, pH, O2 or other electron acceptors and nutrient availability is essential
(Abatenh et al. 2017).

Various chemical and physical wastes produced due to numerous human activ-
ities are degraded, removed, altered, immobilized and detoxified from the
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environment, after they are acted upon by bacteria, fungi and plants. Microorgan-
isms work as biocatalysts and help in the process of biochemical and metabolic
reactions that degrade the pollutant in question, although they perform against the
pollutants only if they have support of compounds to help them generate energy and
nutrients for the production of more cells. If the pollutants and microorganisms are
not in contact, then the rate of reaction may slow down to a great extend (Abatenh
et al. 2017).

3.5.1 Energy Sources

Bacteria have the ability of reducing the organic matter to behave as energy sources.
Average oxidation state of carbon decides whether it can act as an energy source for
an aerobic heterotrophic organism.

High oxidation states provide low energy yields, thus the process of degradation
may be slow. There are various factors which are involved and result in the microbial
degradation, viz. biomass concentration, microbial diversity and enzymatic or met-
abolic activities of the microbes. Acclimation period of the microbes are affected by
the physico-chemical characteristics, molecular structure and concentration of the
substrate along with a number of environmental factors like pH, temperature,
moisture content, availability of electron acceptors and carbon and energy sources
(Boopathy 2000).

3.5.2 Bioavailability

The rate of conversion of contaminants by the microbes during bioremediation is
determined by the rate of contaminant uptake and metabolism (Boopathy 2000). The
contaminated explosives would not undergo degradation even in 50 years, if mass
factor is a limiting factor (Boopathy and Manning 1999). Conversion of larger soil
particles into smaller ones by breaking and mixing of the soil particles increases the
surface area to a great extent, hence enhances the degradation rate (Manning et al.
1995). Physico-chemical processes, viz. sorption, desorption, diffusion and dissolu-
tion, decide whether the contaminant is bioavailable or not. If the rate of mass
transfer of contaminants is zero, then the contaminants are not available to the
degrading microbes. This decrease in bioavailability is known as ageing or
weathering (Boopathy and Manning 1999).
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3.5.3 Bioactivity and Biochemistry

The processes in which microbiological processes are carried out is called bioactiv-
ity. The bioactivity can be improved by implying the conditions that can optimize
biodegradation (Blackburn and Hafker 1993). Depending upon the requirement of
the bioremediation, techniques may be configured to achieve the optimal required
rate and adjustments of conditions. The organisms possess a diverse ability to
transfer contaminants, both simple and complex molecules (Boopathy 2000).

3.5.4 Nontechnical Criteria

Along with various technical hurdles, there are also nontechnical norms that affect
the process of bioremediation to achieve the required target of clean environment,
reduced cost when compared under options, contaminants’ residues if any left
should be acceptable from the risk point of view, socially the technique should be
acceptable, regulatory perception should be favourable, time limitations should be
able to meet, the problem of space limitations should also be encountered (Boopathy
2000).

3.5.5 Nonscientific Factors

There are various nonscientific reasons which can hinder the development of
bioremediation technologies as below.

3.5.5.1 Regulatory Factors

Regulations are the basis of any process; these both impel and constraint the process
of bioremediation. The fact that what must be cleaned, how it must be cleaned and
which methods should be used to clean up are decided on the basis of the regulations
(Caplan 1993). There are additional regulations for the usage of genetically
engineered microorganisms (GEMs). The microbes occurring naturally are consid-
ered over GEMs in the present scenario (Boopathy 2000).

3.5.5.2 Research and Technical Factors

Various industrial chemicals like PCBs, pesticides, coal tars, chlorinated solvents
and polynuclear aromatic hydrocarbons are not degraded readily, but funds required
for this research is less. Each bioremediation technique has to be standardized
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particularly for each polluted site, depending on the uniqueness of the polluted site
(Boopathy 2000).

3.5.5.3 Human Resource Factor

Comparatively, bioremediation is a novel technology; hence, this field confronts
lack of trained and experienced human resources. The combination of various
faculties like microbiology, engineering, geology, hydrogeology, soil science and
project management together is followed with a multidiscipline approach to carry
out successful bioremediation programme.

3.5.5.4 Economic and Liability Factor

The complex process of bioremediation does not produce any high value-added
products. This creates a low interest in the R&D process in comparison to other
industrial sectors. The bioremediation techniques are being scrutinized by regulatory
agencies more strictly than conventional technologies. Hence, the operating rules
and regulations for bioremediation projects are much tighter, and performance
standards are quite high. Thus, make the projects difficult to run from a practical
point of view (Boopathy 2000).

3.6 Microbial Populations for Bioremediation Processes

Microorganisms are cosmopolitan in nature and are recorded from all possible
environments all around the world. They exist in extreme heat, desert, water and
anaerobic conditions. However, carbon and energy sources remain the essential
requirements. Many microbes can easily adapt to the various harsh and hazardous
conditions. Thus, they can be used to remediate environmental hazards.

3.7 Conclusions

Although techniques used in bioremediation may represent a slow response when
compared to the conventional ones, bioremediation is the technique which would
fully convert the properties of contaminants from the toxic properties to the envi-
ronment friendly properties. It also enables the environmental habitats and habits to
be reused by the human and others.

This may be costly project, but is worth investing when the pollutants can be
eradicated from the system forever. Also there is a lack of professionals who can lead
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the project with not hurdles successfully. The regulations for the use of microbes
have to be amended so that the process can be easily carried out successfully.
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Abstract This chapter addresses the phycoremediation as an alternative treatment
process for the removal of pollutants from water and wastewaters. Simultaneously,
the phycoremediation produces microalgae biomass that is a valuable source of
feedstock. Microalgae are one of the most substantial examples of the biorefinery
concept, since microalgae biosynthesis of high-added-value compounds such as
long-chain polyunsaturated fatty acids, phenolic compounds, sterols, proteins,
amino acids, peptides, vitamins, among others. In addition, microalgae can
degrade/absorb pollutants such as heavy metals, drug residues (antibiotics and
hormones), nitrogen, and phosphorus. Moreover, microalgae increase the degrada-
tion capacity of the local microbiota as bacteria, yeasts, and fungi by supplying them
with oxygen and nutrients. Regarding the crucial current environmental problem
(worldwide), it is essential to develop low-cost technologies that aim to significantly
reduce the environmental impact of manufacturing, in particular, technologies that
are related to integrated processes such as phycoremediation and production of high-
added-value molecules.

Keywords Microalgae · Polluted water · Phycoremediation · Biorefinery

4.1 Introduction

High chemical organic demand wastewaters are inherently produced by industries,
mainly the food industry. These wastewaters have high organic content, thus they
can threaten the environment when disposed improperly, mainly due to eutrophica-
tion, color (it harms aquatic life), and phytotoxicity. Paddy rice, for instance,
generates high volumes of yellowish wastewater (chemical organic demand �
from 400 to 4500 mg/L) (Umamaheswari and Shanthakumar 2019); whereas
swine wastewater (chemical organic demand � 500–60,000 mg/L) and dairy waste-
water (chemical organic demand � 900–38,000 mg/L) (Ansari et al. 2017). In this
sense, phycoremediation (including seaweeds, microalgae, cyanobacteria, and lower
plants) is one of the most promising alternatives for wastewater treatments, since
they are virtually found throughout the earth. In addition, phycoremediation is an
economically viable process that leads to greenhouse gas mitigation, can
bioremediate metals, hydrocarbons, and pesticides and inherently produces high-
added-value molecules (algae biomass) that can be used for multipurpose as
bioenergy (biogas and biofuels), fertilizer, bio-ore for precious heavy metals, phar-
maceuticals, cosmetics, and other valuable chemicals—biorefinery concept (Phang
et al. 2015; Podder and Majumder 2016; Ansari et al. 2019).
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An efficient wastewater treatment (phycoremediation) can be associated with
high-added-value molecules such as fatty acids (long-chain polyunsaturated fatty
acids), phenolics, sterols, proteins including amino acids and peptides, vitamins,
pigments, among others (Andrade et al. 2018). Nevertheless, this remarkable
microalgae potential should be, at least roughly, aligned to technical features of
microalgae species, for instance, Chlorella spp. and Spirulina spp. are well-known
for the protein production (qualitatively), Dunaliella salina for the pigment produc-
tion, whereas Ankistrodesmus spiralis for mycosporine-like amino acids, among
others. Similarly, Yee (2016) prospected microalgae from the generaHematococcus,
Dunaliella, Botryococcus, Chlorella, Scenedesmus, and Nannochloropsis for bio-
diesel production. Selenastraceae, family that includes Monoraphidium spp. and
Ankistrodesmus spp., showed the highest lipid production.

The microalgae biomasses can be used for a wide range of application including
the recovery of high-added-value compounds, antiviral, antibacterial, antifungal,
fertilizer, among others. Nevertheless, microalgae biomasses are mainly used for
the biofuel production, electricity generation, and animal feed.

The application of microalgae biomasses should be aligned to biomass harvesting
and disruption systems. Regarding the most promising methodologies, auto-
flocculation can be useful strategy for biomass harvesting (low-cost, non-toxic,
etc.), and non-mechanical techniques, in particular enzymatic ones, for disruption.

Therefore, phycoremediation is a promising biorefinery process in which waste-
waters (high chemical organic demand values) can be efficiently treated, simulta-
neously, to production of microalgae biomass (high range of valuable molecules).
This chapter aims to put a light on the main key features and drawbacks of
phycoremediation.

4.2 Improper Wastewater Disposal and Its Consequences

Water quality improvement is a global concern (EPA 2004). Water pollution sources
include industrial, domestic, or agricultural wastes, pesticides, fertilizer, urban
development, chemicals, and human activities (Crini and Lichtfouse 2019).

The wastewater treatment is essential to reach high water quality (broad environ-
mental sense). Wastewater can contain huge amounts of nutrients, pathogens,
pharmaceuticals, and heavy metals. The physical, chemical, and biological waste-
water characteristics are related to the effluent sources; however, it is mostly
composed of water, nevertheless it has also solids. More than a decade ago,
researchers highlighted those 1.3 billion L of sewage was discharged directly into
rivers every day without any kind of treatment (Singh et al. 2004).

Discharge of high-nutrient concentration wastewater into water bodies can lead to
undesirable phytoplankton blooms, and consequently eutrophication. Additionally,
recent studies proved that the daily consumption of water containing more than
5 mg/L of nitrate is associated with congenital abnormalities as limb deficiencies or
neural tube defects (Brender et al. 2013; Blaisdell et al. 2019).
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In addition, wastewaters usually contain heavy metals such as Hg, Cd, Zn, Ni, Pb,
Cr, Co, and Cu that have long persistence in the environment. The improper disposal
of heavy metals in water bodies can lead to bioaccumulation by aquatic life and thus
affect the entire food chain (human)—cancer and/or pathogens infection (Gochfeld
2003; Hadzi et al. 2018). In this sense, according to Eggers et al. (2018), there is a
synergism among Pb and/or Cd content in blood and methicillin-resistant Staphylo-
coccus aureus infection. Additionally, studies have shown a positive correlation
between virus infectivity (HAdV and HAV) and iron concentration in water
(Fongaro et al. 2019). Poole (2017) compiled more than 15 studies showing that in
the presence of metals such as Cu and Zn, bacteria develop a resistance mechanism
to these metals and simultaneously resistance to antibiotics.

Untreated wastewater can be a source of potentially pathogenic bacteria and
viruses that can lead to diseases as cholera, diarrhea, and dysentery. These diseases
are of strong concern not only due to the mortality and morbidity but also due to the
high cost to treat patients. Most problems are associated with infection, more
specifically Salmonella typhimurium, Vibrio cholerae, Legionella, Escherichia coli
O157:H7, Campylobacter jejuni, and viruses such as adenovirus, astrovirus, hepa-
titis A and E viruses, rotavirus, norovirus, and enterovirus (Ashbolt 2015; Haramoto
et al. 2018).

Other pollutants that have drawn attention recently are endocrine disruptors such
as antibiotic, antiviral, analgesic, anti-inflammatory, psychiatric drugs, residual
bioactive fractions of medicines, and personal care products (Santos et al. 2010;
Boxall et al. 2012; Tijani et al. 2016). Additionally, many of these compounds have
negative synergistic effects—broad environmental sense (Cizmas et al. 2015; Yu
et al. 2019).

The wastewater treatments of these pollutants, generally, are performed using
physical (sedimentation), chemical (coagulation-flocculation), and biological
methods (activated sludge, nitrification-denitrification) (Kumar and Pal 2015;
Whitton et al. 2015). These steps are sequential commonly: primary, secondary,
and tertiary treatments (Fig. 4.1).

4.3 Wastewater Treatment

Physical-chemical processes, such as coagulation-flocculation, are preliminary treat-
ments that can be applied on sedimentation of suspended solids and organic matters.
After this process, the wastewater still contains considerable organic matter content
(Rao et al. 2012).

The secondary treatment step consists of biological process based on aerobic
and/or anaerobic metabolism of bacteria and/or fungi (biodegradation) (Tran et al.
2013). These processes occur in opened (lagoons) or closed reactors. After this
process, the wastewater passes through disinfection and/or polishing process before
disposal in the environment.

104 W. Michelon et al.



Finally, the tertiary treatment process eliminates potentially pathogenic bacteria
and/or viruses that are not removed with the previous treatment steps (Viancelli et al.
2013). These pathogens are structurally very different from one another (Cervero-
Aragó et al. 2015). The most used methods include chlorination, UV irradiation
(De Sousa et al. 2013), or electrochemical (Ghernaout and Ghernaout 2010; Simas
et al. 2019). However, these processes are costly (Jin et al. 2014; Sun et al. 2016). A
promising biological treatment process is the phycoremediation, since
phycoremediation provides significant benefits such as (a) removal of nutrients,
even those in low concentration; (b) microalgae could be transformed into biofuel,
fertilizer, animal feed, among others (Whitton et al. 2015; Raheem et al. 2015)—
(Fig. 4.2).

Fig. 4.1 Sequential
wastewater treatment

4 Phycoremediation: A Sustainable Biorefinery Approach 105



4.4 Phycoremediation

Microalgae are photosynthetic microorganisms (Pires et al. 2013), ubiquitous in
natural, aqueous environment, as freshwater, marine water, and wastewaters
(agroindustrial and from livestock). The microalgae growth requires carbon, nitro-
gen, phosphorus, and other essential trace elements, as well as light (Barsanti and
Gualtieri 2014). For example, to produce 1 g of microalgae biomass is necessary
mainly carbon (more than 50% of the mass weight), nitrogen (63 mg) and phospho-
rus (9 mg). Other compounds such as lipids, DNA, proteins, carbohydrates vary their
proportion depending on algae species and also the cultivation conditions variation
(Hongyang et al. 2012; Richmond and Hu 2013).

Microalgae have been classified as eco-friendly because they are more efficient
than other methods for CO2 mitigation (Chiu et al. 2009) and also produce high-
added bioproducts such as lipids, biofuel, and enzymes (Wang et al. 2010; Lam and
Lee 2012a). Microalgae have been recommended more than other tertiary processes
for nutrient removal (Wang et al. 2010). In this sense, some microalgae are aligned to
specific wastewater, for instance (items 1, 2 and 3):

1. Some Chlorella species as Chlorella pyrenoidosa can grow in polluted water, in
particular, polluted water contaminated with arsenic either As(III) or As(V).
Podder and Majumder (2016) studied the phycoremediation (arsenic) by
C. pyrenoidosa, in which �81% and 85% of As(III) and As(V) were

Fig. 4.2 Phycoremediation: a sustainable biorefinery approach
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bioremediated, respectively. The highest specific growth rate observed was 0.15/
day.

2. Scenedesmus spp. are green algae (family Scenedesmaceae) commonly found in
freshwater. Scenedesmus spp. are used often related to phycoremediation studies
and also as a source of oil for biodiesel production. Ansari et al. (2019) reported
an interesting data on the application of Scenedesmus obliquus for municipal
wastewater phycoremediation and simultaneous production (w/w of dry weight)
of lipids (26), proteins (28), and carbohydrate (27). In addition, the authors
described an unusual economic analysis of wastewater phycoremediation. It is
worth noting that high specific growth rate of 0.42/day and phycoremediation
yields were obtained as 81% NH4

+, 100% NO3
�, and 94% PO4

3�. Infrared
spectroscopy analysis indicated functional groups as N-H, CH3, CH2, C¼O,
C-N, P¼O, and Si-O on the biomass surface—accumulation of biochemical
elements. When amortization, operating costs (including energy), and environ-
mental benefits were taken into account, the net profit of phycoremediation was
16,885 US$/year.

3. Spirulina spp., in particular Spirulina platensis, can be used specifically for the
phytoremediation of waters polluted by toxic compounds. Compared to other
microalgae genera, Spirulina spp. have low generation time (fast biomass forma-
tion). Some specific metabolites of Spirulina spp. can induce heavy metals
complexion. Other interesting advantage of Spirulina spp. is easier biomass
separation from wastewater, since their vacuoles inflate (as aging), as a result
Spirulina spp. float (Adamia et al. 2018).

Adamia et al. (2018) applied Spirulina platensis for the bioremediation of 2,4,6-
trinitrotoluene—phycoremediation. The authors described that S. platensis adsorbed
�90% of 2,4,6-trinitrotoluene (22.5 ppm) during 15 days, in addition it was
observed that a relative low biomass accumulation decreases. The cultivation
parameters are illustrated in Table 4.1. The lag phase lasted 4 days, whereas the
log phase 13 days and the stationary phase 5 days (0.3 at 750nm). Thus, S. platensis is
an efficient and sustainable tool for the bioremediation of 2,4,6-trinitrotoluene.

Therefore, each microalga has an optimal growth rate, which should be related to
its specific wastewater. Thus, a correlation between yield of phycoremediation and
cultivation conditions is briefly described below (Table 4.1).

Since there is a wide structural diversity of microalgae species and also their
cultivation condition, regarding phycoremediation, some criteria should be taken
into account such as (a) growth rate, (b) key compounds removal rate, (c) cultivation
adaptation, and (d) biomass and/or bioproducts production rate (Arita et al. 2015;
Kesaano and Sims 2014). Phycoremediation should achieve removal rates higher as
56.5%, 68.5% and 90.6% of chemical organic demand, total nitrogen and phospho-
rus, respectively (Wang et al. 2010; Wang and Lan 2011). These nutrients (N and P)
are removed through assimilation; on the other hand, heavy metal removal is
performed through bioaccumulation and biosorption (Jais et al. 2017). Heavy metals
are successfully removed from wastewater by microalgae, since microalgae have a
wide range of polymers on their surface that are negatively charged (functional
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groups carboxyl, hydroxyl), and thus, they bind heavy metal ions as shown in
Table 4.2 (Al-Gheethi et al. 2015).

Regarding pharmaceuticals, their removal is influenced by environmental factors,
for instance when compared to colder seasons, warmer seasons show higher
phycoremediation rate (Matamoros et al. 2015; Gentili and Fick 2017). It is worth

Table 4.2 Phycoremediation: heavy metals

Microalgae Metal
Optimal
pH

Removal maximum
(mg/g) References

Chlamydomonas
reinhardtii

Cd 6 79.7 Bayramoğlu et al.
(2006)

Chlamydomonas
reinhardtii

6 2.9 Bayramoğlu et al.
(2006)

Chlorella sorokiniana 5 192 Akhtar et al. (2003)

Chlorella vulgaris 6.9 2.6 Munoz and Guieysse
(2006)

Chlorella vulgaris 4 85.3 Aksu (2001)

Chlamydomonas
angulosa

Cr 8.2 5.3 Dwivedi et al. (2010)

Dunaliella sp. 2 58.3 Dönmez and Aksu
(2002)

Dunaliella sp. 2 45.5 Dönmez and Aksu
(2002)

Scenedesmus obliquus 2 15.6 Dönmez et al. (1999)

Chlorella sorokiniana 4 58.8 Akhtar et al. (2008)

Chlorella vulgaris Cu 4.5 3.6 Tien et al. (2005)

Chlorella vulgaris 4.5 4.2 Tien et al. (2005)

Scenedesmus obliquus 7 1.8 Yan and Pan (2002)

Spirulina spp. – 100 Doshi et al. (2007)

Chlorella vulgaris Ni 5.25 29.3 Ferreira et al. (2011)

Chlorella vulgaris 5 15.6 Al-Rub et al. (2004)

Scenedesmus obliquus 5 18.7 Dönmez et al. (1999)

Chlamydomonas
reinhardtii

Pb 5 96.3 Tüzün et al. (2005)

Chlorella vulgaris 5.25 131.4 Ferreira et al. (2011)

Scenedesmus
subspicatus

6 38.7 Schmitt et al. (2001)

Phormidium spp. 5 13.6 Wang et al. (1998)

Scenedesmus obliquus Zn 6.5 209.6 Monteiro et al. (2011)

Scenedesmus obliquus 6.5 836.5 Monteiro et al. (2011)

Chlorella vulgaris 5.25 43.4 Ferreira et al. (2011)

Spirulina platensis 5.25 33.2 Ferreira et al. (2011)

Chlorella pyrenoidosa As
(III)

9 81.74 Podder and Majumder
(2016)

Chlorella pyrenoidosa As
(V)

9 85.08 Podder and Majumder
(2016)
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noting that temperature is not the main factor, but higher and longer sunlight
intensity/exposition (warmer seasons) (Khanam and Deb 2016). Additionally, the
removal rate could be species dependent (Escapa et al. 2017), as shown in Table 4.3.
On the other hand, the presence of some compounds such as antibiotics can affect
algae growth and thus phycoremediation rate, for instance, wastewater that contains
residues of tetracycline (an antibiotic) decreases phycoremediation rate, more spe-
cifically higher concentration than 30 mg/L eliminates �94% microalgae (Taşkan
2016; Yang et al. 2013; Xiong et al. 2018).

Conventional techniques for industrial wastewater treatments are composed of
sequential steps that include oxidation, co-precipitation and adsorption, lime treat-
ment, ion exchange resins, membrane, among others. Nevertheless, all of these
techniques have technical drawbacks—toxic residual waste, limited efficiency,
operational difficulty, and high operational cost. In this sense, microbial remediation
processes, mainly those that use microalgae (phycoremediation), are the most
promising alternative technologies—“eco-friendly nanofactories” (Madakka et al.
2019).

Phycoremediation is very versatile. It can be applied for wastewater (carbon,
nitrogen, sulfur, etc., degradation), heavy metals (Cd, Cr, Pb, As, etc.), pharmaceu-
ticals paracetamol, salicylic acid, diclofenac, carbamazepine, acetaminophen, ibu-
profen, ketoprofen, naproxen, carbamazepine, diclofenac, triclosan, diclofenac,
ibuprofen, paracetamol, metoprolol, carbamazepine, trimethoprim, estrone,
ethinylestradiol, etc. Therefore, phycoremediation should be much more explored
scientifically and technologically.

4.5 High-Added-Value Molecules

There is no consensus on the definition of biorefinery. According to IEA (2008),
which is widely used, “Biorefining is the sustainable processing of biomass into a
spectrum of marketable products and energy.” Thus, microalgae bioprocesses are
very much aligned to the biorefinery concept since there is an inherent and simul-
taneous production of high-added-value molecules such as phenolics compounds,
fatty acids (long-chain polyunsaturated fatty acids), sterols, proteins including amino
acids and peptides, vitamins, pigments, among others (Andrade et al. 2018).

4.5.1 Volatile Organic Compounds

Volatile organic compounds are compounds that have a high vapor pressure at room
temperature and can be naturally produced by microalgae, mostly, acids, alcohols,
aldehydes, carbonyls, esters, hydrocarbons, ketones, sulfuric compounds, and ter-
penes (Santos et al. 2016).
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The volatile organic compounds occur in microalgae as a consequence of their
primary metabolism, that is, the availability of carbon, nitrogen an energy supply,
impacting the concentration of secondary metabolites, such as volatile organic
compounds (Papaleo et al. 2013, Dudareva et al. 2013). Even some compounds
such as alcohols, aldehydes, and ketones can be formed by the lipid degradation
(Rzama et al. 1995) or alcohols can be oxidized to aldehydes and then to carboxylic
acids, and ketones may be reacted with the hydroxyl radicals in the air to form
aldehydes (Atkinson et al. 2000; Korpi et al. 2009).

In the recent years, volatile organic compounds, especially the volatile fatty acids
which is usually based on non-renewable petrochemical sources, have attracted
much attention due to the production of bioactive compounds, biodegradable mate-
rials, and energy by microorganisms through dark fermentation, by using volatile
fatty acids as carbon source (Chalima et al. 2017).

The production of volatile fatty acids by using wastes as alternative culture
media, such as food wastes, sludge, and similar biodegradable organic wastes, can
be an alternative to reduce the production cost. Kim et al. (2006), in order to optimize
volatile fatty acid production in dark fermentation, pretreated the raw food waste by
commercial enzymes and thus the authors reported a 3.3 times higher production of
volatile fatty acids.

Microalgae are able to use volatile fatty acids as carbon source producing high-
added-products such as ω � 3 and exopolysaccharides. In this sense, Kim et al.
(2019) studied two processes, anaerobic fermentation (microalgae)—production of
volatile fatty acids, and the cultivation of microalgae using synthetic volatile fatty
acids more specifically acetate, propionate, and butyrate. Then they compared the
yields of volatile fatty acids and their profile. They estimated that around 40% of the
total carbon could be enhanced from the lipid-extracted algae that can be recovered
for the production of algal biomass and an increase in the volatile fatty acids
conversion yield beyond 60% by adopting pretreatment methods.

4.5.2 Fatty Acids

Fatty acids are composed of a carboxylic acid with a long aliphatic chain, which can
be saturated or unsaturated. The long-chain polyunsaturated fatty acids, including
essential fatty acids, play an important role in the brain and central nervous system.

Currently, there is an increasing demand for microalgae cultivation at industrial
scale, mainly as a source of oils for biofuels production. In this sense, Makareviciene
et al. (2019) reported the simultaneous production of Ankistrodesmus sp. oil and its
transesterification using a lipase Lipozyme TL IM. BG 11 was used as a cultivation
medium. The oil content was calculated by using a Soxhlet extraction (hexane). The
authors have optimized the process by surface response methodology, precisely
central composite design. In this sense, the moisture was inversely proportional to
oil extraction and transesterification. The oil transesterification and oil extraction
reached an impressive �98%.
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Thus, microalgae can be a powerful source of oil (biodiesel production). How-
ever, microalgae biosynthesize long-chain polyunsaturated fatty acids in particular
omega-6 family (ω � 6) such as γ-linolenic acid, arachidonic acid, and omega-3
family (ω � 3) as eicosapentaenoic acid and docosahexaenoic acid. These long-
chain polyunsaturated fatty acids are essential fatty acids and also well-known for
their nutraceuticals properties (healthy and disease prevention) (Andrade et al.
2018).

The investigation of the production of essential fatty acids, such as omega 3, 6,
and 9, was studied by Abdo et al. (2015) by using the microalgae species
Chlamydomonas variabilis, Chlorella vulgaris, Haematococcus pluvialis, and Spi-
rulina platensis. The species Chlamydomonas variabilis showed the highest lipid
content (21%) with 29.24% of omega 6, whereas Haematococcus pluvialis showed
the lower lipid content (10%) with 14.83% of omega 6. The species Chlorella
vulgaris and Spirulina platensis showed the presence of omega 3, respectively,
21.17% and 4.9%. Spirulina platensis was the only one that showed the presence
of omega 9 (3.22%). Hence, the species Chlamydomonas variabilis and Chlorella
vulgaris are recommended healthy range.

Considering the biorefinery concept, a recent study evaluated the growth of
Crypthecodinium cohnii, a heterotrophic marine microalga, in the presence of
volatile fatty acids, such as acetic butyric or propionic acids, which are released in
high amounts through the dark fermentation by using biowastes. They also evaluated
the ability of the microalgae to convert volatile fatty acids in high-added-value like
docosahexaenoic acid, the most known omega-3 fatty acids. After 60 h of fed-batch
cultivation, they observed the docosahexaenoic acid content of 29.8% of total fatty
acids (Chalima et al. 2019).

4.5.3 Phenolic Compounds

Phenolic compounds are defined as low-molecular-weight compounds. Their struc-
tures have at least one phenol unit (Rosa et al. 2019; Sánchez-Salgado et al. 2019).

Recent studies are shown that phenolic compounds are produced by photosyn-
thetic organisms (Wilson et al. 2017), and thus, microalgae have drawn attention as a
source of high-value-added molecules. In this sense, Spirulina spp. are the most
commercial sources of microalgae phenolics (Klejdus et al. 2009; Machu et al. 2019;
Kumar et al. 2019). Table 4.4 shows some phenolic compounds obtained from
different species of microalgae.

The humans’ long life is also related to antioxidant-rich feed whose compounds
are produced by photosynthetic organisms (Wilson et al. 2017), and phenolic
compounds are a very important class of antioxidants molecules, such as flavonoids
(isoflavones, flavanones, flavonols, and dihydrochalcones) that can be found in
microalgae (Klejdus et al. 2010). Thus, microalgae molecules can play an important
role in repairing or preventing oxidative damages caused by free radicals
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(antioxidants) or other diseases such as cancer and cardiovascular and neurological
diseases—nutraceutical (Scalbert et al. 2005).

Figure 4.3 shows a wide range of antioxidants compounds of great industrial
interest that can be produced by microalgae.

There are a few studies reported on phycoremediation (wastewaters) and further
the use of its biomass for phenolic compounds production.

A very recent study, based on the biorefinery concept, applied the microalgae for
waste treatment and also for the production of high-added-value molecules, such as
phenolic compounds. Ferreira et al. (2019) used Scenedesmus obliquus for the
treatment of brewery effluent and the use of the biomass to produce phenolic
compounds. Through the subcritical water extraction of the biomass, they investi-
gated the content of phenol and flavonoid, one subgroup of phenols. They found a
range of 0.249–1.016 of gallic acid equivalents/mL extract for phenol and
0.050–0.167 of catechin equivalents/mL extract for flavonoids.

4.5.4 Sterols

Sterols are molecules that contain 27–29 carbon atoms. Among sterols, phytosterol
is mainly found in the cell membranes of plants and also in microalgae. Phytosterols
are one of the most promising sterols, with potential application in functional food
and pharmaceutical industry, since it can be used in healthy diets, or as

Table 4.4 Phenolic com-
pounds from microalgae
(adapted from Sudhakar et al.
2019)

Microalgae Phenolic compounds

Haematococcus pluvialis p-OH benzoic acid
Gallic acid
Syringic acid
Vanillic acid
Protocatechuic acid
Sinapic acid
Ferulic acid
Caffeic acid
Chlorogenic acid

Spongiochloris spongiosa p-OH benzaldehyde
p-OH benzoic acid

Anabaena doliolum 3,4-Dihydroxy benzaldehyde

Spirulina maxima Hydroxy-cinnamic acids
Hydroxybenzoic acids
Kaempferol
Euganol
Chrysin
Galangin
Pinostrobin

Isochrysis galbana Brassicasterol
StigmasterolPavlova lutheri

Skeletonema costatum
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immunomodulatory, anti-inflammatory, anti-hypercholesterolemic, antioxidant,
anticancer, antidiabetic (Xu et al. 2015), or cosmetic-based products (Rajakumar
2018).

Table 4.5 shows some sources of phytosterols, vegetable oil, and microalgae. It is
worth noting that the microalgae oil has similar or higher phytosterols than the
vegetable oils.

Among microalgae, the families Chlorophyceae, Rhodophyceae, and
Phaeophyceae are the main sterol producers (Hernandez-Ledesma and Herrero
2013), and Ahmed et al. (2015) reported, after screening several Australian isolates,
that Pavlova lutheri, Tetraselmis sp. M8, and Nannochloropsis sp. BR2 are the main
phytosterol producers of microalgae.

Yasukawa et al. (1996) studied sterols in Chlorella vulgaris and found ergosterol
peroxide, Prakash et al. (2010) identified the sterols 24-oxocholesterol acetate,

*MAAs – mycosporine-like amino acids
†DMS - dimethylsulphite

Fig. 4.3 Wide range of antioxidants compounds of great industrial interest that can be produced by
microalgae.MAAs mycosporine-like amino acids, DMS dimethylsulfite (Sansone and Brunet 2019)

Table 4.5 Sources of phytosterols

Source of phytosterols Content (g/kg) References

Corn oil 8.09–15.57 Piironen et al. (2000)

Wheat germ oil 19.7

Rice bran oil 32.25

Microalgae oil 7–34 Ryckebosch et al. (2014)
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ergost-5-en-3β-ol, cholest-5-en-24-1,3-(acetyloxy)-3β-ol in the species Isochrysis
galbana, Francavilla et al. (2012) described ergosterol and 7-dehydroporiferasterol
in Dunaliella tertiolecta, whereas Hetta et al. (2014) found campesterol, stigmas-
terol, and β-sitosterol in the Spirulina platensis, and those sterols showed bioactivity
as anticancer, antituberculosis, neuromodulatory, and antimicrobial, respectively.

In the meantime, the potential of microalgae as sources of phytosterols remain to
be fully explored in terms of phycoremediation.

4.5.5 Proteins, Amino Acids, and Peptides

Microalgae may represent innovative sources of proteins, amino acids, and peptides
due to their high contents of those compounds. In view of the demand for food and
the increase of the global population, microalgae have been proposed as a sustain-
able solution due to their high production of protein, essential amino acids, and
peptides (Koutra et al. 2018).

Microalgae cell contains approximately 45% of protein, and its contents and the
profile of amino acid depend on species and growth conditions (Soto-Sierra et al.
2018). Table 4.6 shows the protein content of some microalgae species and the main
amino acids identified.

Protein is one of the main nutrients that will be in short supply in the future
(Bleakley and Hayes 2017), and microalgae is an alternative source, rich in protein,
in terms of content and quality of its composition.

The dietary guidelines specified the ingestion of high-quality protein. However,
the quality of proteins can vary depending on the availability of essential amino acids

Table 4.6 Phenolic compounds from microalgae (adapted from Sudhakar et al. 2019)

Microalgae Protein Amino acids References

Chlorella
vulgaris

57.25% Isoleucine, leucine, phenylalanine,
and valine

Shim et al. (2008)

Isochrysis aff.
galbana

13% Glutamate, aspartate, histidine,
methionine, tryptophan, cysteine, and
hydroxyl-proline

Brown and Jeffrey
(1992), Dörner et al.
(2014)

Nannochloropsis
sp.

45.2% Arginine, lysine, leucine, asparagine,
glutamic acid, alanine, glycine and
valine

Valente et al. (2019)

Porphyridium
cruentum

23.5% Aspartic acid, threonine, serine,
glutamic acid, glycine, alanine, cys-
teine, and valine

Becker (2007), Hempel
and Maier (2012), Safi
et al. (2014)

Spirulina
platensis

53% Leucine, valine, isoleucine, phenylal-
anine, tyrosine, Methionine, cysteine,
and tyrosine

Becker (2007)

Tetraselmis sp. 64% Leucine, asparagine, glutamine, gly-
cine, proline, lysine, valine, and
serine

Schwenzfeier et al.
(2011)
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and the digestibility, and thus, the dietary could be considered in terms of essential
amino acids instead of total protein (Wolfe et al. 2016). It is worth mentioning that
protein from microalgae, alternatively to the animal protein, is rich in essential
amino acids that the human body cannot synthetize. Table 4.7 shows the essential
amino acid profile of some of the most well-known microalgae species.

The main amino acids found in higher concentration levels in microalgae are
aspartic acid and glutamic acid (MacArtain et al. 2007). On the other hand, in most
of the microalgae species, the essential amino acids tryptophan and lysine are often
limited (Dawczynski et al. 2007; Volkmann et al. 2008), leucine and isoleucine are at
low concentrations (Dawczynski et al. 2007; Mišurcová et al. 2014), and cysteine is
often even undetectable (Kakinuma et al. 2001).

Bioactive peptides are a sequence of specific amino acids that have health benefits
such as antioxidative, antihypertensive, appetite suppression, hypocholesterolemic,
antimicrobial, among others (Korhonen and Pihlanto 2006) and high nutritional
value (Hayes 2013), whose main source is the milk proteins (Saito 2008), but also
were identified in microalgae (Harnedy and Fitz Gerald 2011).

To obtain protein and amino acids from microalgae, it is necessary to carry out the
disruption of the microalgae cell wall. Similarly, to obtain bioactive peptides,
enzymatic hydrolysis should be carried out (González-López et al. 2010; Kim and
Wijesekara 2010).

In this sense, Chlorella vulgaris and Chlorella ellipsoidea showed antioxidant
peptides (Sheih et al. 2010; Ko et al. 2012). Chlorella pyrenoidosa presented
anticancer peptides such as Chlorella pyrenoidosa antitumor polypeptide (CPAP)
(Wang and Zhang 2013) and anti-inflammatory peptides, such as Chlorella
11-peptide (Shih et al. 2013).

Spirulina platensis showed anticancer peptides as polypeptide Y2 (Zhang and
Zhang 2013) and the peptides (Leu-Asp-Ala-Val-Asn-Arg and Met-Met-Leu-Asn-
Phe) which have also anti-inflammatory and anti-atherosclerosis properties (Vo and
Kim 2013; Vo et al. 2013).

4.5.6 Vitamins

Vitamins are organic molecules that are essential in small quantities for good
functioning of the metabolism of the organisms.

Microalgae appear as a valuable source of vitamins such as A, B1, B2, B6,
B12, C, E, biotin, folic acid, and pantothenic acid (Villarruel-López et al. 2017)
and can be easily used for humans as a supplement food.

Chlorella genus is a very rich source of vitamins such as vitamin B1, B2, B3, B5,
B6, E, and K, and also, but in minor quantities, folic acid, biotin, inositol, choline,
and vitamin B12 (Rani et al. 2018). Spirulina is known as a source of vitamin A, B1,
B2, and B12. Tetraselmis suecica is an excellent source of vitamin B1, B3, B5, B6,
and C, and Dunaliella tertiolecta are rich in vitamin B2 and B12 (Fabregas and
Herrero 1990).
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Vitamin K1, majority produced by chemical synthesis, is essential for blood
coagulation and bone health (Russell and Suter 2015; Yaegashi et al. 2008). Tarento
et al. (2018) studied seven species of microalgae and found that the richest in vitamin
K1 is Anabaena cylindrica, reaching up to 200 μg/g on a dry-weight, which is
around six times more than traditional vitamin K1 sources (spinach and parsley).

Tarento et al. (2019) described the scale-up (50 L photobioreactor) for the
synthesis of vitamin K1 by Anabaena cylindrica, and they reach 330 μg/L on
dry-weight, which means ten times more than rich dietary sources.

The influence of cobalt chloride salt in vitamin B12 production by Chlorella
vulgariswas investigated by Jalilian et al. (2019), and they found 173.32 μg/100 g of
dry biomass with 2.5 μMof the salt, which means around 12%more than the control.

Tossavainen et al. (2018) studied the potential of the consortium composed by
Euglena gracilis and Selebastrum sp. to grow in aquaculture wastewater and then to
produce tocopherol (vitamin E). They showed that the aquaculture wastewater can
be used to increase the microalgae biomass and, due to the reduction in terms of
nutrients and carbon organic dissolved, also to treat this wastewater. Additionally,
the vitamin E content (total tocopherol) was superior to common plant oils, holding
up to 1358 μg/L, depending on the type of aquaculture wastewater used.

4.5.7 Pigments

Natural pigments are colored compounds that have anti-cancer, anti-oxidative, and
antihypertensive properties, enabling its application food industry, pharmaceutical
industry, cosmetics industry, and textile industry (Mobin et al. 2019). Presenting
higher content of pigments than some plants (Koyande et al. 2019), microalgae can
contain pigments such as carotenoids (orange), xanthophylls (yellowish shade),
phycobilins (red or blue), and chlorophylls (green) (Villarruel-López et al. 2017).

The most important class of pigments are the carotenoids. Carotenoids can be
divided into carotenes, molecules containing only oxygen and carbon, and xantho-
phylls, which are carotene oxidized (Soares et al. 2019).

There are more than 400 already known carotenoids, nevertheless only
β-carotene, astaxanthin, lutein, zeaxanthin, lycopene, and bixin are commercially
available (Suganya et al. 2016).

The content of carotenoids in microalgae is around 0.1–2% dwt (Suganya et al.
2016). However, the environmental parameters can influence the carotenoid com-
position of microalgae (Mobin et al. 2019). Haematococcus pluvialis, under stress
condition, such as salt stress, elevated temperature, heterotrophic media, among
others, can accumulate up to 2–3% dwt of astaxanthin (Rao et al. 2007; Sarada
et al. 2002).

Soares et al. (2019) identified and quantified major carotenoids in nine microalgae
species and found that Desmodesmus protuberans, Desmodesmus denticulatus var.
linearis, and Chlamydomonas planctogloea are lutein productors, and Coelastrum
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sphaericum and Parachlorella kessleri are good for astaxanthin production.
Table 4.8 shows the contents of carotenoids from each studied microalga species.

Among the microalgae, Chlorella genus is one of the major sources of chloro-
phyll pigment which can provide health benefits such as healing of sores, ulcers,
hemorrhoids, regulation of menstruation, helpful in hemophilia, and improves
diabetes and asthma (Rani et al. 2018).

Kulkarni and Nikolov (2018) studied a selective extraction of carotenoids and
chlorophylls from Chlorella vulgaris, and they identified lutein and chlorophyll
(a and b), respectively 5.4 mg/g dry mass and 15.4 mg/g dry mass.

Regarding astaxanthin pigment, the green microalgaeHaematococcus pluvialis is
one of its most important biological sources (Cuellar-Bermudez et al. 2015),
representing around 90% of total carotenoids (Borowitzka 2013), and Fig. 4.4
shows the metabolic pathway of astaxanthin production from β-carotene in the
microalgae.

In addition, in many applications that were already cited, microalgae can also be
used in aquaculture products, for instance, as feed for salmon (Spolaore et al. 2006).

4.5.8 Polysaccharides

Polysaccharides are polymeric carbohydrate molecules that are commonly applied in
food industry (Andrade et al. 2018) which can present anti-inflammatory, antiviral,
anticancer, and antioxidant properties (Dufossé et al. 2005; Herrero et al. 2005;
Sheng et al. 2007).

Similar to pigments, stress conditions can influence the biosynthesis of the poly-
saccharides, in this case increasing its content (Dufossé et al. 2005).

Pugh et al. (2001) identified three polysaccharides from Spirulina platensis,
Aphanizomenon flos-aquae, and Chlorella pyrenoidosa: immulina, immunon, and
immurella, respectively. Comprising between 0.5% and 2% of the microalgal dry
weight, those polysaccharides are between 100 and 1000 times more active than that
are currently used for cancer immunotherapy.

Bernaerts et al. (2018) studied the cell wall–related polysaccharides of ten
microalgae species (Arthrospira platensis, Chlorella vulgaris, Diacronema lutheri,
Tisochrysis lutea, Nannochloropsis sp., Odontella aurita, Phaeodactylum
tricornutum, Porphyridium cruentum, Schizochytrium sp., and Tetraselmis chuii)
with potential as functional food ingredients. They observed that Arthrospira
platensis and Chlorella vulgaris are mainly composed of proteins and polysaccha-
rides. The polysaccharides correspond to 10% of the biomass and containing uronic
acid and sulfate groups that provide anionic characteristics. Table 4.9 shows the
characteristics of the monosaccharide and uronic acid composition in cell wall
polysaccharides of microalgae.

For many years, Nostoc genus microalgae have been used as food and medicine.
Its composition rich in polysaccharides provides a very good resistance to several
environmental stresses, as oxidative stress. Li et al. (2018) isolated a polysaccharide
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nostoglycan from Nostoc sphaeroides and demonstrated that this compound is
capable of reducing the reactive oxygen species and also can inhibit the growth of
numerous tumor cells.

Thus, polysaccharides have a great potential to be applied in food and pharma-
ceutical industries.

Fig. 4.4 Metabolic pathway of astaxanthin in the microalgae Haematococcus pluvialis. Enzymes
are 1: 4,40-ketolase, 2: 4,40-ketolase, 3: 303-hydroxylase, 4: 303-hydroxylase (Cuellar-Bermudez
et al. 2014)
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4.6 Drying and Disruption Techniques

Photoautotrophic microalgae usually have a low concentration of biomass (0.5–4 g/
L, dry basis) suspended in a large volume of water (Chatsungnoen and Chisti 2016).
Thus, biomass harvesting is a process that involves the separation of microalgae
from the water media, where it is considered successful when achieving up to 20% of
solids at the end of the process (Kadir et al. 2018). The harvesting can be performed
using solid–liquid separation processes, such as physical, chemical, and biological
methods (Fig. 4.5). However, the disadvantages of these techniques are related to the
high cost, the high energy consumption, and the long extraction period (Wang et al.
2015). On the other hand, autoflocculation can occur similarly to bioflocculation,
having the advantages of being a low-cost method, with no cell damage, non-toxic to
microalgae biomass, high separation efficiency; the disadvantages are related to the
occurrence of alterations in cellular composition or microbiological contamination
(Christenson and Sims 2011; Zhou et al. 2012). After harvesting, the microalgae
biomass needs to be submitted to a disruption process to obtain the bioproduct for
subsequent application.

After the separation, to obtain the bioproduct for subsequent application, the
microalgae cell biomasses need to be disrupted (intracellular molecules). Currently,
a variety of cell disruption processes are available. In general, they can be catego-
rized into mechanical and non-mechanical techniques of microalgal cellular disrup-
tion (Fig. 4.6). Cell wall destruction by a nonspecific technique is usually achieved
by mechanical forces such as solid-shear forces (Yap et al. 2015), liquid-shear forces
(Halim et al. 2012), energy through waves (Zheng et al. 2011), and currents (Goettel
et al. 2013). Non-mechanical methods frequently involve cell lysis with chemical
compounds (Kim et al. 2016) or enzymatic agents (Zheng et al. 2011). These
methods are considered more advantageous than mechanical processes since cells
are often only perforated or permeabilized rather than being shredded. Chemical and
enzymatic methods depend on selective interaction of the cell wall or membrane

Centrifugation

Gravity sedimentation

Filtration

Flotation

Electricity assisted techniques

Physical

Chemical

Harvesting techniques

Biological

Flocculation and coagulation

Bioflocculation and autoflocculation

Fig. 4.5 Separation methods applied on microalgae harvesting processes
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constituents that changes the cell boundary layer, to permit extraction of bioproducts
(Günerken et al. 2015; Show et al. 2015).

4.7 Application of Microalgae Biomass

In addition to the benefits generated in the effluent polishing processes, the biomass
produced at the end of the process has been receiving special attention currently,
serving as raw material for several biotechnological products, and makes them very
attractive for bioprospecting and potential exploitation of byproducts (Cheng et al.
2019). For example, the bioethanol and biogas production, as a protein source for
human and animal nutrition, antimicrobial products, antioxidant, antitumoral, and
anti-inflammatory features (Rizwan et al. 2018). Furthermore, microalgae biomass
can be pyrolyzed to produce sequestered carbon in the form of biochar, which holds
value as a soil enhancer, aiming to recover of nutrients (Kruse and Hankamer 2010;
Wang et al. 2013) (Table 4.10).

4.8 Conclusion

Phycoremediation is one of the most promising alternatives for wastewater treat-
ments. Phycoremediation leads to lower cost of microalgae cultivation. Microalgae
are composed by many high-added-value molecules including volatile organic
compounds, fatty acids, phenolic compounds, sterols, proteins, amino acids and
peptide, vitamins, pigments, polysaccharides, among others. After
phycoremediation, these molecules can be purified (biorefinery approach). In addi-
tion, the microalgae biomasses can also be used for a wide range of applications such
as bioenergy—biogas and biofuels, fertilizer, pharmaceuticals, cosmetics, and
bio-ore for precious heavy metals, among others. Therefore, phycoremediation is a
sustainable biorefinery approach.

Conventional chemical solvents

Conventional mechanical pressing

Cell homogenization

Sudden depressurization

Microwave assistance

Electric pulse

Ultrasonic assistance

Supercritical fluids

Biological enzymes

Acids

Nanoparticles

Non-mechanical Mechanical

Cell
Disruption

Techniques

Fig. 4.6 Microalgae cell disruption methods for bioproducts recover
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Table 4.10 Applications of microalgae biomass harvested from phycoremediation

Microalgae Applications References

Chlorella vulgaris
Chlorella vulgaris

Biofuel Biodiesel Alam et al. (2019)

Wong et al. (2017)

Nostoc linckia Biohydrogen Mona and Kaushik
(2015)

Scenedesmus sp. Ren et al. (2019)

Scenedesmus obliquus Bioethanol Ho et al. (2017)

Spirulina Tourang et al.
(2019)

Chlorella sp. Biogas Dębowski et al.
(2017)

Scenedesmus spp. Perazzoli et al.
(2016)

Dunaliella tertiolecta Bio-oil Shuping et al.
(2010)

Chlorella protothecoides Miao and Wu
(2004)

Chlorella vulgaris Biochar Wang et al. (2013)

Spirulina sp. Chaiwong et al.
(2013)

Scenedesmus Electricity
production

Microbial fuel
cell

Rashid et al. (2013)

Scenedesmus and Chlorella vulgaris Cui et al. (2014)

Spirulina platensis Animal feeding Ruminants Kulpys et al. (2009)

Spirulina platensis El-Sabagh et al.
(2014)

Spirulina and Chlorella Swine Furbeyre et al.
(2017)

Chlorella spp. Baňoch et al. (2013)

Chlorella vulgaris Poultry Oh et al. (2015)

Spirulina Bonos et al. (2016)

Spirulina platensis Rabbits Peiretti and Meineri
(2008)

Schizochytrium sp. Mordenti et al.
(2010)

Haematococcus pluvialis and
Dunaliella salina

Others Antiviral Santoyo et al.
(2012)

Porphyridium sp. Huleihel et al.
(2001)

Pseudokirchneriella subcapitata Antibacterial Yang et al. (2008)

Spirulina platensis Abedin and Taha
(2008)

Chlorella vulgaris Antifungal Ghasemi et al.
(2007)

Scenedesmus quadricauda Abedin and Taha
(2008)

Isochrysis sp. Antioxidant Goiris et al. (2012)

(continued)
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Abstract Cyanobacteria (BGA) are prokaryotic photoautotrophs capable of doing
photosynthesis and nitrogen fixation simultaneously. The nitrogen fixing blue green
algae are well documented for their efficiency of keeping the rice fields fertile.
Cyanobacteria is a versatile organism possess different mechanisms to adapt to a
broad range of environmental factors. Cyanobacteria are unique microorganisms
which occupy and predominate diversified habitats as a result of many general
characteristics; some cyanobacteria are like bacteria and others unique to higher
plants. Agricultural productivity is greatly enhanced through cyanobacterial
biofertilizer technology. The adverse effects of different uses of chemical fertilizers,
pesticides and agrochemicals lead to a reduction in soil productivity and environ-
mental quality. As a substitute for chemical fertilizers, and to bioremediate the
problem soils caused by various agrochemicals, cyanobacteria are economically
viable and sustainable technology in modern agriculture. Cyanobacteria are also
recognized as an important agent in the stabilization of soil surfaces by different
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mechanisms which are prominent agents in the process of aggregate formation and
increase in soil fertility. This chapter deals with the ability of cyanobacteria and their
mechanisms on reclamation of wide range of problem soils such as saline, alkaline
and acid soils.

Keywords Cyanobacteria · Photoautotroph · Bioremediation · Problem soils ·
Economical

5.1 Introduction

Soil pollution is a serious issue due to extensive industrialization and agrochemical
practices. These pollutants render harmful effects to humans, crop plants and
animals, causing ecological changes leading to a collapse in natural biodiversity.
Reclamation of these contaminated soils for better life habitation is always an
intriguing factor in the minds of scientists all over the world. Many physical and
chemical conventional methods were enforced to remove and reduce the soil con-
taminants, but they were remarked with certain drawbacks and risks. Scientists in
search of eco-friendly and feasible approaches resulted in the evolution of bioreme-
diation. Application of microorganism to eliminate the anthropogenic and
non-anthropogenic contaminants from soils was widely studied, especially the role
of bacteria and fungi. However, bioremediation not only limited to the use of
bacteria and fungi, but the positive impact of cyanobacteria in remediation is
currently getting more attention. Cyanobacteria are often called blue-green algae,
which is a prokaryote that belongs to bacteria. Rather than the presence of chloro-
plast, it is no way related to eukaryotic algae. Among the prokaryotes, cyanobacteria
were noted with degradation nature of versatile contaminants and other benefits;
hence with the help of modern scientific approach, cyanobacteria could be adapted
as a new strategic technique to overcome soil-related problems.

5.2 Why Cyanobacteria?

The soil-related problems include (1) excessive usage of agrochemicals, (2) heavy
metal contamination and (3) alkalinity and salinity. The ability of cyanobacteria to
withstand extreme conditions made it a superordinate one in a prokaryote.
Cyanobacteria can also develop in hypersaline and alkaline condition, tolerate
xerophilic conditions, desiccation and high temperature and affirm high metal
concentration. However, cyanobacteria are excluded from acidic environments at
pH below 5 (Rampelotto 2013).
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5.3 Agrochemicals

5.3.1 Pesticides

Pesticides were widely used in agricultural ecosystem which include herbicide,
insecticide, nematicide, molluscicide, piscicide, avicide, rodenticide, bactericide,
insect repellent, animal repellent, antimicrobial and fungicide. These pesticides
were used in order to reduce the yield loss due to pest organisms. As the pest
organism gets resistance, the excessive usage of pesticides to protect crop plants
was encountered. In adverse, it has serious impact on farmers’ health, human on food
consumption, contamination of air, soil and water, non-target and beneficial organ-
ism and soil fertility (Aktar et al. 2009). In the current scenario, although the usage of
chemical pesticides was reduced and replaced with eco-friendly management tools,
the residues in the soil still remain without proper degradation (Gupta and Dikshit
2010). Application of cyanobacteria as bioremediation approach for contaminated
soil would reduce contaminant residues as well as improve soil fertility.

Cyanobacteria have the natural ability to degrade most of the pesticides, and
Kuritz and Wolk (1995) acknowledge that Anabaena sp. and Nostoc ellipsosporum
could naturally degrade lindane (g-hexachlorocyclohexane) and also studied that the
genetic engineering results in increased lindane degradation of these cyanobacteria.
In addition to lindane, engineered cyanobacteria were evidenced to degrade chlori-
nated pollutant 4-chlorobenzoate. Similarly, degradation of lindane residue by
Oscillatoria, Synechococcus, Nodularia, Nostoc, Anabaena, and Microcystis were
also reported (El-Bestawy et al. 2007). Detoxification of endosulfan pesticide by
Anabaena species were reported (Lee et al. 2003). Utilization of organophosphorus
pesticide malathion as phosphorous source was reported in Anabaena oryzae,
Nostoc muscorum and Spirulina platensis, which results in biodegradation of mal-
athion. In the presence of malathion, a significant increase in biomass was also noted
in these cyanobacterial strains (Ibrahim et al. 2014). Anabaena sp. and Nostoc
sp. were able to detoxify the organophosphorus pesticide Fenamiphos through
hydrolysis and oxidation approach. Hydrolysis of Fenamiphos leads to stable
non-toxic products while oxidation gives the products which are toxic to aquatic
invertebrates (Cáceres et al. 2008).

Glyphosate is a common organic phosphorus herbicide used all over the world
and sold in the market name ‘Round-up’. Accumulation of glyphosate and its
degradation product aminomethylphosphonic acid (AMPA) in several environments
has been identified which results with consequences like emergence of antibiotic-
resistant microorganisms and shift in microbial community composition of soil,
plants and animal guts (Van Bruggen et al. 2018). Basically, cyanobacteria grow
well in excess phosphorous condition in order to fix nitrogen and has the ability to
accumulate phosphorous. Cyanobacteria could break down glyphosate using alka-
line phosphatase enzyme and utilize it for metabolism process, and the mechanism
has been studied in Nostoc sp. L. ACN 101 and Westiellopsis sp. L. ACW
101 (Balakumar and Ravi 2001). Tolerance to glyphosate was reported in
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cyanobacterial species Synechocystis PCC 6803 and Anabaena variabilis ATCC
29413 (Powell et al. 1991). Next to glyphosate, atrazine is a commonly used
nitrogen-rich herbicide which inhibits the photosynthesis of weed plants. Atrazine
is only weakly adsorbed to soil particles during treatment and thus leaves the field
mainly as runoff water. Moreover, they can migrate from upper soil surface to lower
ground and reach underground water. Hence, it pollutes soil as well as water.
Atrazine basically inhibits photosystem II (PSII) in many plant species, algae and
cyanobacteria. Novel atrazine-resistant gene has been identified in naturally occur-
ring cyanobacteria, but they lack degradation and catabolism mechanism. However,
trace amount of ammonia compounds was identified in cyanobacteria tank treated
with atrazine (Sajjaphan et al. 2002).

Cyanobacteria not only degrade and accumulate pesticides in soils but also
replace that use by their potential bioactive compounds. Cyanobacteria were able
to produce a wide variety of bioactive compounds which possess antagonistic
activity against competitive organisms. Hence, these bioactive compounds can be
commercially utilized for pest and disease management in agriculture. Novel metab-
olites from Fischerella sp. were found to have insecticidal activity against larval
grazers (Becher and Jüttner 2006). Ethanolic extract of Nostoc carneum showed
insecticidal activity against cotton leafworm Spodoptera littoralis, and the crude was
found to comprise of fatty acids and terpenes. Extracellular metabolites of Nostoc
muscorum and Oscillatoria sp. reduce the severity of purple blotch disease of onion
caused by Alternaria porri through its antifungal activity, and their metabolites were
mostly comprised of phenols and alkaloids. Precisely the most prevalent compounds
in their filtrates were identified to be beta ionone, norharmane and α-iso-methyl
ionone, and other trace compounds were piperazine derivatives, isocyclocitral,
α-trans-sequicyclocitral, phytol, oleic acid, methyl palmitate, linoleic acid methyl
ester, myristic alcohol and palmityl chloride (Abdel-Hafez et al. 2015). Antagonistic
activity of two commercially available cyanobacterial compounds, viz. oligo-mix
and weed-max on root rot fungal pathogens Alternaria solani, Fusarium solani,
F. oxysporum, Rhizoctonia solani, Sclerosium rolfsii, Sclerotinia sclerotiorum, and
S. minor, was tested individually and also co-inoculated with antagonistic
bio-control agent. Under both the situations, it showed efficient growth suppression
of fungal pathogens (El-Mougy and Abdel-Kader 2013).

5.3.2 Chemical Fertilizers

Chemical fertilizers are used to enhance the plant growth and yield in farm fields.
Massive application of fertilizers leads to several soil-related problems such as soil
acidification, ground water pollution and depletion in soil microorganism. In gen-
eral, soil possess tremendous amount of natural nutrients, and it is sufficient to have
good plant growth. Plant could not uptake all forms of nutrients, there are certain
nutrient kind present in unavailable form. Clever utilization of nutrients present in
farm soil will reduce the risk of soil contamination. Microbes are used as

144 K. G. Sabarinathan et al.



biofertilizers, and many cyanobacteria are potentially used as nitrogen fixer and
phosphate solubilizer (Rai 2006; Sahu et al. 2012).

Excessive use of nitrogen fertilizer is a major reason for soil acidification which
leads to soil deterioration. Plants generally uptake nitrogen in the form of ammonia,
but excessive use of ammonia-based nitrogen fertilizers such as ammonium nitrate,
ammonium sulphate, monoammonium phosphate, and diammonium phosphate than
adequate level increases the soil pH through the conversion of ammonia into nitric
acid (Wallace 1994). Instead of chemical fertilizers, nitrogen fixing microbes can be
employed to eliminate ammonia residues in soil. Generally, nitrogen fixers use
nitrogenase enzymes to fix atmospheric nitrogen into ammonia in soil. All
heterocystous and many non-heterocystous cyanobacteria are capable of fixing
atmospheric nitrogen. Anabaena and Nostoc sp. are the model organism for
heterocyst-based nitrogen fixing cyanobacteria (Kumar et al. 2010). Anabaena
azollae symbiotic relation is the most commonly known nitrogen fixing symbionts,
especially in irrigated rice fields.

Similarly, non-heterocystous cyanobacteria were also reported to fix nitrogen in
soil. The important nitrogen fixing genera are Gloeocapsa, Gloeothece, Cyanothece,
Synechococcus, Synechocystis, Lyngbya, Symploca, Oscillatoria and
Trichodesmium. Nitrogen fixation by non-heterocystous cyanobacteria under aero-
bic condition is an amazing fact as nitrogenase is irreversibly inhibited by oxygen,
non-heterocystous cyanobacteria utilize diverse mechanism to fix nitrogen, the
intracellular location of nitrogenase and the supply of ATP, reductant and carbon
skeletons to support N2 fixation. Moreover, they fix during dark period (Gallon and
Stal 1992).

Apart from nitrogen fixation, under anaerobic condition, cyanobacteria also
reduce the free ammonia content in soil through denitrification and anaerobic
ammonia oxidation process (Chen et al. 2012). Moreover, over heterocyst
cyanobacteria are able to recognize the presence and absence of nitrogen source.
In the absence of nitrogen source like nitrate or ammonia, it forms heterocyst in
between 10 and 20 vegetative cells for nitrogen fixation. While in the presence of
ammonia or nitrate, it just forms a long filament containing stretch of hundred
photosynthetic vegetative cells (Kumar et al. 2010). Thereby, cyanobacteria could
perform the combined activity of diazotrophic bacteria and denitrifying bacteria,
hence relevantly replace the usage of ammonia fertilizers in farm lands.

Many reports have been made on mineral phosphate solubilization by
cyanobacteria. Phosphorus is highly essential for nitrogen fixation by cyanobacteria,
hence they generally withstand under excess phosphorus condition. Under phospho-
rus limitation condition, they undergo mineral phosphate solubilization. Common
mechanism involved in solubilization are organic acid production and enzyme
activity. Phosphate solubilization ability of two diazotrophic cyanobacteria,
Westiellopsis prolifica and Anabaena variabilis, was assessed, and it was found
that among many organic acids, phthalic acid plays the major role in phosphate
solubilization (Yandigeri et al. 2011). Anabaena was reported with phosphate
solubilization by using phosphatase enzyme under phosphorus-deficit condition
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(Natesan and Shanmugasundaram 1989). Cyanobacteria could replace the nitrogen
and phosphate fertilizer efficiently.

5.4 Heavy Metal Contamination in Soil

Heavy metals are naturally present in biosphere, hydrosphere, lithosphere and
lithosphere. Due to urbanization and industrialization, heavy metals have been
included in almost all materials that are used in day-to-day life and result in
anthropogenic activity. Improper disposal of heavy metals leads to soil and water
contamination while irrigation of such contaminated water further affects the agri-
cultural ecosystem. Apart from irrigation, pesticides and herbicides also serve as a
source of heavy metal contamination (Li et al. 2019a). Consumption of heavy metal–
contaminated food results in neurotoxicity, carcinogenesis, cell damage and loss of
cellular functions in humans (Engwa et al. 2019). Microbial bioremediation has
different processes which include bioaccumulation, bioleaching, biosorption, bio-
transformation and biomineralization, and the principle behind this process includes
binding, immobilization, oxidation, transformation and volatizing of heavy metals
(Verma and Kuila 2019).

Cyanobacteria has a major role in bioremediation of heavy metals. Photosynthetic
organism generally requires metals which act as cofactors for several metabolism
and in turn maintains metal homeostasis. Role of copper, nickel, cobalt, zinc, iron,
manganese and magnesium in cyanobacterial metabolism was clearly studied;
hence, the cyanobacteria undergo accumulation and transformation of heavy metals
for their metabolism, thereby reduce the heavy metal contaminants in soils (Huertas
et al. 2014). Biosorbent capability of Fe, Ni, Cr, Cd and Zn by Nostoc sp. was
reported. Similarly, adsorption of Cr and Cu by Spirulina sp. and Spirogyra sp. was
also studied (Igiri et al. 2018).

Waste effluents from industries include large amount of heavy metals. EPS
producing microorganisms are used to remove heavy metal contents as the EPS
are negatively charged molecules which act as biosorption of heavy metals. Further
on extraction of EPS from effluents removes the heavy metals, thus the effluents are
heavy metal free. Unique feature of cyanobacterial EPS is complex polysaccharide
with more than six monomer types, which results in versatile EPS production. Hence
the cyanobacterial EPS can used to remove or accumulate heavy metals in contam-
inated soil and water (Bhunia et al. 2018). Nostoc muscorum isolated from polluted
water was reported with the potential to remove Zn2+, and it is evidenced that the
negative charge of hydroxyl, carbonyl, alcohol, amine, phosphoryl, sulfhydryl and
carboxyl on surface of EPS is produced by Nostoc muscorum (Diengdoh et al. 2017).
Consortium of algae with Spirulina platensis showed effective bioremediation in
waste water and agricultural drainage water containing organophosphorus pesticide
malathion and heavy metals, viz. nickel, lead and cadmium (Abdel-Razek et al.
2019).
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5.5 Reclamation of Alkaline and Saline Soil

Alkaline and saline soil sets an unfavourable condition for plant growth; hence,
reclamation of such soil could increase the cultivation area, thereby increasing the
crop production. Cyanobacteria could tolerate and thrive on high pH and saline
condition and thus promote plant growth under unfavourable conditions.

Merely, the agricultural soils are in the different physiochemical combined state
of alkaline, saline, abundant nutrients, rich cations and a high percentage of organic
matter. Diversified heterocyst and non-heterocyst cyanobacterial species occupy
different kinds of agricultural soil condition. Spirulina platensis and Spirulina
maxima were reported to thrive in alkaline lakes of Africa and Mexico at pH ranging
from 8.0 to 11.0, which made them cyanobacterial monospecies devoid of other
cyanobacteria. Thus, these cyanobacteria could be used in alkaline agricultural soil
to improve fertility (Alghanmi and Jawad 2019; Habib 2008).

Salinity is one of the most prevalent agricultural problems in the arid and semi-
arid regions of the world, affecting approximately 1 billion ha of land (Latef and
Chaoxing 2011). Estimations indicate that increased salinization of arable land will
result in 30% land loss within the next 25 years, and up to 50% within the next
40 years (Porcel et al. 2012). High salt depositions in the soil generate a low water
potential zone in the soil, making it increasingly difficult for the plant to acquire both
water and nutrients. In Tamil Nadu, 4.7 lakh ha is salt-affected saline soil in which
2.0 lakh ha is alkali soil confined to inland. The ESP of soils range between 26 and
45. In general, higher sodicity (>15%) leads to severe structural degradation due to
high degree of dispersion of clay particles. The basic physiology of high salt stress
and drought stress overlaps with each other. Therefore, salt stress essentially results
in a water-deficit condition in the plant and takes the form of a physiological drought
(Mahajan and Tuteja 2005). Most of the crops, commonly used for food production,
are sensitive to salinity stress and vary in their response to salt stress tolerance
(Flowers and Colmer 2008). Among cereals, rice (Oryza sativa) is the most sensi-
tive, while barley (Hordeum vulgare) is regarded as the most tolerant. Bread wheat
(Triticum aestivum) is comparatively more tolerant than durum wheat (Triticum
turgidum ssp. durum). High salt concentrations lead to a decline in soil fertility by
adversely affecting the soil microbial flora, including nitrogen-fixing cyanobacteria
and therefore further decreasing rice productivity.

Cyanobacteria are capable of not only surviving but thriving in conditions which
are considered to be inhabitable, tolerating desiccation, high temperature, extreme
pH and high salinity with high sodicity, illustrating their capacity to acclimatize to
extreme environments. Until recently, the responses of cyanobacteria to salinity
stresses were poorly documented as compared to heterotrophic bacteria and
phototrophic eukaryotic algae. These organisms evolved about 3000million years ago
and are considered to be the primary colonizers of the inhospitable ecosystems. The
physiological aspects for the adaptation of cyanobacteria to high salinities include
(a) synthesis and accumulation of osmoprotective compounds, (b) maintenance of
low internal concentrations of inorganic ions and (c) expression of a set of salt-stress

5 Cyanobacteria-Mediated Bioremediation of Problem Soils 147



proteins. Cyanobacterial biofertilizers have been reported to be very useful in
ameliorating various physico-chemical properties of marginal soils, and the EPS
produced by the cyanobacteria seems to play an important role (Nisha et al. 2007).

The high sodium content in the soils leads to clogging of clay particles and reduce
the soil porosity in turn reflect on plant respiration and absorption of nutrients. The
extracellular polysaccharides excreted by cyanobacteria had been reported to be
responsible for binding of soil particles, thus leading to the formation of a tough and
entangled superficial structure that improves the stability of soil surface and protects
it from erosion. Certain cyanobacteria have been found not only to grow in saline
ecosystems but also to improve the physiochemical properties of the soil by
enriching them with carbon, nitrogen and available phosphorus. The potential
impact of these organisms on agriculture through their use as soil conditioners,
plant growth regulators and soil health ameliorators has been well-recognized. The
mechanism used by cyanobacteria to reclaim the saline soils are active export of ions
through K+/Na+ channels and Na+/H+ antiporters, extracellular polymeric substance
(EPS) production, the accumulation of compatible solutes, defence enzyme pro-
ductions, phytohormone production and nitrogen fixation (Li et al. 2019b).

Consortia of EPS-producing cyanobacteria results in the improvement of growth
in rice, maize and wheat under salt stress. It was found that the salt stress increases
the EPS production and showed significant removal of Na+ ions from solution thus
reduces the negative effect of salt concentration on crop plants (Arora et al. 2010).
Gene expression of salt stress related proteins were profiled in Synechocystis
sp. strain PCC 6803. It was found that genes responsible for PSI, PSII,
phycobilisomes, and synthesis of compatible solutes, such as ion homeostasis
were expressed well under salt-stressed condition and positively correlated with its
physiological process (Arora et al. 2010).

Desertification is another serious soil deterioration challenge for agriculture.
Desert soils are generally not suitable for cultivation due to less water activity and
abiotic stress factors. Inoculation of cyanobacteria in such lands could reverse the
state to crop cultivation. Through the formation of biological soil crust (BSC), it is
possible to restore the semi-arid and arid soils for agricultural practice. Biological
soil crust is a consortium of cyanobacteria, algae, fungi, bacteria, liches and mosses.
Such BSC plays an important role in stabilizing and predominantly colonizing desert
soil by increasing the quality of nutrients and moisture (Rossi et al. 2017). Though
the cyanobacteria forms BSC and retrieve the arid soils, it is a retard process. Hence
a novel technique was presented by Park et al. (2017), where cyanobacteria were
integrated with biopolymers and tackifiers such as polyvinyl alcohol (PVA) and
Tacki-Spray (TKS7) chemicals and added to the soils. As a result, it improves the
soil aggregation and pave the way for BSC formation. Beyond this, it promotes
cyanobacteria growth.

Cyanobacterial species were identified in different arid regions were reported
Chroococcidiopsis sp. from hyper arid zone, Chloroflexi sp. and Microcoleus
vaginatus from arid zone, Microcoleus vaginatus, Nostoc punctiforme and
Chroococcus sp. from semiarid zone and Chloroflexus sp. from dry sub-humid
zone (Perera et al. 2018). Apart from plant growth promotion, desert cyanobacteria
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were noted with industrial value products. Nodularia sphaerocarpa PUPCCC 420.1
from cold desert of Himachal Pradesh, India has the ability to produce
Phycobiliprotein pigment which is used as food colourant (Kaushal et al. 2017).
Chroococcidiopsis sp. from hyper-arid zone of Atacama Desert could produce
Scytonemin pigment under stress conditions which is yellow-green ultraviolet
sunscreen pigment. Similarly, Calothrix and Scytonema from Wadi Al-Khoud in
Muscat was reported with scytonemin pigment production (Abed et al. 2018; Vítek
et al. 2017). Carotenoid production by Chroococcidiopsis sp. from the eastern edge
of the Qubqi desert, Negev desert, Israel was studied (Baqué et al. 2013).

Application of cyanobacteria has an immense role in paddy field. Paddy field
contributes fairish amount of greenhouse gases, resulting in global warming. The
important gases are carbon dioxide, methane and nitrous oxide and are mainly due to
microbial activity in rice fields. Cyanobacteria in flooded condition enhance the
oxygen concentration by photosynthetic activity, thereby create aerobic condition in
rice rhizosphere which may consequently cut down the methane emission by
methanogens. However, improves the activity of methanotrophs which could pos-
sibly utilize the methane source. Additionally, cyanobacteria fix atmospheric carbon
dioxide during the oxygenic photosynthesis process. Apart from methane reduction,
it reduces the nitrous oxide emission from the field. Inordinate use of nitrogen
fertilizer in flooded fields results in emission of nitrous oxide gas, contrastingly
deployment of cyanobacteria fixes nitrogen in the rice fields. Overall, cyanobacteria
crucially reduce the greenhouse gas emission from rice fields. Consortium of
cyanobacteria and methanotrophs can be an innovative strategy to for an
eco-friendly rice cultivation (Prasanna et al. 2002; Singh et al. 2016).

5.6 Conclusion

Soil and water are indispensable natural resources for our domesticated food pro-
duction systems based on animals and plants. Desirable physiochemical properties
and biological activity decides the better agricultural ecosystem. Increase in popu-
lation and climatic factor increases the usage of agrochemicals, but poor farmers
were unable to afford for this. However, agrochemicals have results in deterioration
of ecosystem. Cyanobacteria in this circumstance can be efficient for improving soil
organic carbon matter and also enhances nitrogen and phosphorus availability to
crop plants. Cyanobacterial mat or colonies in alkaline and saline soils accumulate
ions and create suitable environment for plant growth. However, cyanobacteria
under unfavourable condition improves nutrient availability and produce phytohor-
mones. While in desert soil agriculture, it improves water activity and soil aggrega-
tion for a better cultivation. Cyanobacteria are excellent bioremediatory which
effectively accumulates and degrades agrochemicals, xenobiotics and heavy metals
in soils. Apart from soil treatments, bioremediation of industrial waste water by
cyanobacteria increases the irrigation source for agriculture and also supports during
drought season. Cyanobacteria are the rice source of bioactive compound production
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which potentially acts as biocontrol agents against pest and diseases. Considering the
decrease in soil health and productivity caused by increased human activity, pre-
serving environmental sustainability is the challenge ahead. Utilization of multifar-
ious beneficial properties of cyanobacteria is highly necessary for healthy and
efficient agriculture and environmental sustainability. Having understood their
importance, a number of key issues relating to the exploitation of cyanobacteria
have to be addressed immediately. In future, genome editing/engineering will play
an essential role in bettering the economical utilization of cyanobacteria for soil-
related problems.
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Abstract Soil remediation is a term that involves a numerous processes designed to
get rid of contaminants like hydrocarbons (petroleum and fuel residues), heavy
metals, pesticides, cyanides, volatiles, or semi-volatiles from soil. Remediation is
required to control the pollution in soil, water, and air that can consequently benefit
commercial cultivation or for wild flora and fauna. AM fungi are ubiquitous in soil
habitat and form beneficial symbiosis with the roots of angiosperms and other plants.
Their life cycle is often obligate in nature. So, use of mycorrhiza in mycoremediation
techniques has generated many productive and long needed studies that examine the
exact mechanisms that are at work. This chapter includes a review of basic remedi-
ation techniques and methods for soils and their limits and benefits for environment.
We also discussed the uses of mycorrhiza for phytoremediation processes and
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observed that more research is needed in order to fully understand the mechanisms of
VAM fungi.

Keywords Anthropogenic pollution · Bioremediation · Degradation · Fungi ·
Phytoremediation

6.1 Introduction

In the third report of Royal Commission on Environmental Pollution U.K., the term
“Pollution” is defined as the introduction of hazardous matter by human being into
the environment that is liable to cause hazardous impact on living organism, damage
to structure or amenity, or interference with legitimate uses of the environment
(Appannagari 2017). Pollution can be broadly classified as natural pollution and
man-made pollution or anthropogenic (Negev et al. 2010). In case of natural
pollution, nature pollutes the environment through different activities like earth-
quakes, floods, drought, and cyclones, but in case of anthropogenic pollution, human
beings spread pollution in air/water/land/food through their different activities like
generation of toxic gasses, percolate waste in water and land, and producing
radioactive compounds from nuclear reactor. The main pollutants produced by
anthropogenic activities that drastically affect the environment are (Anand 2013;
Holliger et al. 1997) polyaromatic hydrocarbons (PAHs) (Deshmukh et al. 2016),
polychlorinated biphenyls (PCBs) (Akcil et al. 2015), polychlorinated dibenzo-p-
dioxins (PCDDs) (Passatore et al. 2014), polychlorinated dibenzofurans (PCDFs)
(Megharaj et al. 2014), heavy metals, etc. (Verma et al. 2016b; Das and Chandran
2010).

In the present scenario, the pollution caused by heavy metals is the primary
concern around the world because heavy metal toxicity in the environment is a
serious threat to the health of animals, plants, and humans (Ayangbenro and
Babalola 2017). Contaminants of heavy metals cannot be degraded by chemical,
physical, or biological processes. Hence, only level of toxicity is reduced
(Chaturvedi et al. 2015). Heavy metal is dumped in environment through various
modes like disposal of industrial metals waste and mining activity, etc. In the
presence of heavy metal, soil properties are adversely affected. When high concen-
tration of heavy metal such as Pb, Cd, Zn show reduced level of eco-friendly
microbes like phosphorous solubilizing bacteria and nitrogen fixing bacteria
(Fliessbach et al. 1994; Giller et al. 1998; Verma et al. 2016b) and affect the soil’s
physical properties like pH, temperature, and chemical properties like organic
matter, clay mineral, and inorganic ion content (Baath 1989; Giller et al. 1998).
Usually, copper, nickel, zinc, manganese, and iron present in trace amounts as
natural constituents are harmless, but overlimiting the percentage has toxic effects
on plants and animals as it gets accumulated in the food chain (Panda and Choudhary
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2005). Among all the heavy metals, cadmium, arsenic, lead, chromium, and mercury
explore chief pollutants worldwide (Bempah et al. 2011). Figure 6.1 shows the
spreading of heavy metal on the earth.

Toxic metals affect plants, animals, and microorganisms in different way through
change in the metabolism processes of the organism (Verma et al. 2017). The
development of different approaches and the method for elimination of toxic metal
from the contamination site are a great matter of soil remediation importance to
eliminate contamination from different location (Verma and Verma 2017) because
pollution destroys ecosystems quality and pattern of land uses (Burlakovs and
Vircavs 2011). Heavy metals decrease the fertility of soil as well as the natural
eco-friendly microbes occurring (Directive 2008; Chandrakar et al. 2012).

6.1.1 Effect of Heavy Metal Toxicity on Plants

Different types of heavy metals show diverse effect on plant, which depends on
concentration and types of metal (Verma et al. 2016a). Baker (1981) reported that
these plants are able to tolerate these metals via three mechanisms, namely (1) exclu-
sion: restriction of metal transport and maintenance of a constant metal concentration
in the shoot over a wide range of soil concentrations; (2) inclusion: metal concen-
trations in the shoot reflecting those in the soil solution through a linear relationship;
and (3) bioaccumulation: accumulation of metals in the shoot and roots of plants at
both low and high soil concentrations.

Kibra (2008) recorded soil contaminated with 1 mgHg/kg reduced length of rice
plants. Hg-contaminated soil also reduced the tiller and panicle formation. Soil
contaminated with Cd 5 mg/L reduced shoot and root growth in wheat plants
(Ahmad et al. 2012). Heavy metal also reduced plant mineral nutrition, photosyn-
thetic activities, and reduced activity of some enzymes (Kabata-Pendias 2001).
Nolvak et al. (2013) concluded that in the presence of Pb, soil productivity was
decreased, and also vital processes of plants like photosynthesis, mitosis, and water
absorption with toxic symptoms of dark green leaves, wilting of older leaves, stunted
foliage, and brown short roots are also affected. Jayakumar et al. (2013) recorded
that 50 mgCo/kg metal concentrations in soil increase nutrient content of tomato
plants compared with the control. On the other hand, when concentrations were

Fig. 6.1 Presence of heavy metal in environment
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increased 100–250 mgCo/kg, plants show lower nutrient contents. Similar results
were observed in radish and mung bean, when 50 mgCo/kg of heavy metal present in
soil increase plant growth as well as physiochemical properties, whereas reductions
were recorded at 100–250 mgCo/kg of heavy metal present in soil concentration
(Jayakumar et al. 2008, 2007). Enhancement in growth of cluster beans has also been
reported at lower (25 mg/L) Zn concentration of the soil solution, and opposite
results were observed when the concentration of Zn (50 mg Zn/L) was increased
(Manivasagaperumal et al. 2011). Nicholls and Mal (2003) reported that the mixture
of Pb and Cu at high (1000 mg/kg each) and low (500 mg/kg) concentrations
resulted in a rapid and complete death of the leaves and stem of Lythrum salicaria.
Some related data are shown in Table 6.1.

6.1.2 Effect of Various Heavy Metals on Fungi

Heavy metals can alter major mechanisms of fungi. Due to metal toxic effect, many
biological important molecules were unfunctional, for example, reaction of enzyme,
transfer of nutrients and ions, the dislocation and/or exchange of essential metal ions,
structural change, denaturation and inactivation of biomolecule, and interruption of
cell function and organellar membrane integrity (Ochiai 1987). Fungi and metal
show broad spectrum toxic interaction at every aspect of metabolism, development,
and differentiation may be affected, depending on the individual, types of metal,
concentration, and soil properties (Ross 1975; Gadd 1986; Gadd and White 1989).
We all know that heavy metals are essential for the cultivation of filamentous fungi
on synthetic media. Fungal continuous existence generally depends on different
characteristics: biochemical and structural properties, physiological and/or genetical
adaptation, morphological changes, and environmental alteration, availability, and
toxicity (Gadd and Griffiths 1978; Gadd 1992a). Metal resistance is a word which
means organisms have the ability to grow in the presence of metal by means of a
mechanism produced in direct response to the metal species consumed, e.g.,
metallothionein or γ-glutamyl peptide synthesis (Mehra and Winge 1991). “Metal
tolerance” depends on intrinsic properties and/or environmental modification of
toxic metal (Gadd 1992b, c, 1993). Intrinsic properties include permeability of cell
walls, extracellular biomolecule (polysaccharide), and secretion of metabolite,
which help in detoxification of the metal species by binding or precipitation.
However, distinctions are complicated in many cases because of the participation
of several direct and indirect physico-chemical and biological mechanisms in sur-
vival. Biological mechanisms are altered (including extracellular precipitation, com-
plexation and crystallization, transformation of metal species by oxidation,
reduction, methylation, and dealkylation, biosorption to cell walls, pigments, and
extracellular toxicity) for fungal survival (as distinct from environmental modifica-
tion of toxicity). Some related data are shown in Table 6.2.
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Table 6.1 Effect of heavy metal toxicity on plants

S. No.
Heavy
metal Toxic effect on plant Reference

1 As Reduced seed germination; decrease
height of seedling; it also reduced area
of leaf and dry biomass production
that effect fruit yield. The other effect
of heavy metal are stunted growth and
chlorosis

Marin et al. (1993), Cox et al. (1996),
Abedin et al. (2002), Barrachina et al.
(1995)

2 Cd Reduced seed germination; lower
plant nutrient content; decrease shoot
and root length; Cd accumulation in
plant part

Jiang et al. (2001), Wang et al.
(2007), Yourtchi and Bayat (2013)

3 Co Plant nutrient content decrease; anti-
oxidant enzyme activities were
decreased; decrease concentration of
plant sugar, starch, amino acids, and
protein content; reduction in height
(shoot, root) and leaf area; decrease in
chlorophyll content

Jayakumar et al. (2013), Jayakumar
et al. (2008), Jayakumar et al. (2007)

4 Cr Reduced height of plant (shoot and
root); reduction in plant nutrient
acquisition; decreased rate of germi-
nation; reduction of plant biomass

Sharma and Sharma (1993), Panda
and Patra (2000), Moral et al. (1996),
Nematshahi et al. (2012)

5 Cu Cu concentration increased in plant
root; root malformation and reduc-
tion; plant death; decreased biomass
and seed production; root growth
inhibited

Cook et al. (1997), Kjer and
Elmegaard (1996), Sheldon and
Menzies (2005)

6 Hg Reduction in plant length; formation
of tiller and panicle decreased; yield
reduced; Hg concentration increased
in shoot and root of seedlings; germi-
nation percentage decreased;
flowering decreased; fruit weight
reduced; chlorosis

Du et al. (2005), Shekar et al. (2011)

7 Mn Mn concentration increased in plant;
reduced shoot and root length; chlo-
rosis; decrease photosynthetic content
(chlorophylls a and b); relative growth
rate decreased; O2 evolution activity
decreased; decline plant growth

Arya and Roy (2011), Asrar et al.
(2005), Doncheva et al. (2005),
Shenker et al. (2004)

8 Ni Chlorophyll content reduced and sto-
matal conductance; reduction in
enzyme activity which affected Cal-
vin cycle and CO2 fixation; reduced
plant nutrient; decrease in shoot yield;
chlorosis; decreased root growth

Sheoran et al. (1990), Khalid and
Tinsley (1980), Pandolfini et al.
(1992), Barsukova and Gamzikova
(1999), Lin and Kao (2005)

9 Pb Decreased seed germination percent-
age; plant growth inhibited; plant
biomass decreased; plant chemical

Hussain et al. (2013), Kabir et al.
(2009), Moustakas et al. (1994)

(continued)
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6.1.3 Effect of Heavy Metal on Invertebrates

Metal concentrations in invertebrates showed considerable variation between indi-
vidual species. Scientists observed that earthworms, oribatid mites, and carabid
beetles and low in springtails, centipedes, and spiders have higher metal

Table 6.1 (continued)

S. No.
Heavy
metal Toxic effect on plant Reference

content reduced; area of leaf and
number of leaves decreased; inhibi-
tion of plant height; decrease in plant
biomass; enzyme activity decreased
which affected CO2 fixation

10 Zn Seed germination percentage
decreased; reduction in plant length
and biomass; photosynthesis content
decrease, carotenoid, sugar, starch,
and amino acid content; variation in
structure of chloroplast; accumulation
of Zn in plant leaves; decrease in plant
nutrient content; reduced efficiency of
photosynthetic and energy conversion

Manivasagaperumal et al. (2011),
Doncheva et al. (2001)

Table 6.2 Effect of various heavy metals on fungi

S. No. Metal Fungal sp. Increase activity
Decrease
activity Reference

1 Cd Aspergillus flavus Total RNA, aflatoxin,
O-methylsterigmatocystin

None Cuero et al.
(2003)

2 Cr Agrocybe praecox None Enzyme
production

Hartikainen
et al. (2013)

3 Cu Aspergillus flavus Total RNA, aflatoxin,
O-methylsterigmatocystin

None Cuero et al.
(2003)4 Fe

5 Zn Coniothyrium sp. None Enzyme
production
on ABTS
malt
extract agar
plates

Hartikainen
et al. (2012)

Sordaria sp.,
Pyrenophora sp.,
Alternaria sp.,
Chaetomium sp.,
Fusarium sp.,
Epicoccum sp.,
Gliocladium sp.,
Mortierella sp.,
Cylindrocarpon sp.

Enzyme production on
ABTS malt extract agar
plates

None
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concentration. Metal accumulating capacity is not depended on trophic level
(Straalen et al. 2001). Primary producer first consumes heavy metal and then
accumulates in invertebrates that live in soils (Schipper et al. 1996). In ecotoxico-
logical studies, invertebrates are mostly used due to their distribution, diversity,
abundance, play important role in biogeochemical cycle, represent first tropic level,
and close contact with soils (Heikens et al. 2001; Zaitsev and Straalen 2001;
Migliorini et al. 2004). For example, Gramigni et al. (2013) recorded toxic heavy
metal (Zn, Ni, Mn, Cd, and Pb) accumulated in ants (Crematogaster scutellaris)
intestines, Zn accumulated specifically in Malpighi tubules, and low Zn concentra-
tions were found in fat tissue. Heavy metals are accumulated at specific target organ
in invertebrate. Spiders (P. amentata, L. triangularis,M. segmentata, A. diadematus,
and A. marmoreus) had higher bioaccumulation of heavy metals (Cu, Zn, and Cd) in
their hepatopancreas and gonads (Wilczek and Babczyńska 2000). Some other
heavy metals like Ni, Pb, and Cd did not bioaccumulate specifically in target organs.
Some related data are shown in Table 6.3.

6.2 Remediation Techniques

Remediation is defined in terms of procedures used to clean up, mitigate, or avoid to
release pollutant into the environment in order to protect animals and plants
(Marques et al. 2009). Nowadays, many types of remediation techniques and
approaches are available. But the selection of remediation approaches depends on
the physical properties of soil, type of contaminant, feasibility of contaminant
isolation, handling intensity, economic value, etc. (Wuana and Okieimen 2011).
Hence, on the basis of the above conditions, remediation process is broadly classified
into the following groups.

6.3 Types of Remediation Technology

There are three options where remediation can take place.

6.3.1 On the Basis of Site

In this process, the treatment of contaminated soil or water in the dump site is known
as in situ bioremediation (Abramovitch et al. 1999a, b). The treatment of contami-
nated soil or water once it has been dug out of the site at which it was present is
known as ex situ bioremediation (Gomes et al. 2013) (Figs. 6.2 and 6.3). In addition,
remediation techniques are also performed as a “singular method approach” or, in
combined with other procedure, as part of a “multiple method approach.”
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6.3.2 On the Basis of Separation Method

6.3.2.1 Physical Method

In this method, only contaminants are separated from the site, degradation does not
takes place (Bento et al. 2005; Gong et al. 2005), and posttreatment requirements for
proper treatment are water solutions, solvents, or vegetable oils. Like regeneration of
the solvent by distillation (Khodadoust et al. 1998), UV-degradation (Isosaari et al.
2001, 2005) or adsorption of contaminants by activated carbons (Ahn et al. 2007),
through soil replacement method, dilutes the concentration of heavy metal(loid)s in
soil and increases soil fertility (Yao et al. 2012). High-temperature treatment is used
for the removal of heavy metal(loid)s from contaminated site (Mallampati et al.
2015) which leads to the formation of vitreous material. In vitrification, some
metallic species (along with Hg) can be volatilized under excessive temperature

Table 6.3 Effect of heavy metal on invertebrates

S. No. Metal Invertebrata Increase activity Decreases activity Reference

1 Cd Phormia regina Mean percent pupa-
tion, stage specific
death

Mean % emergence,
pupae death

Nascarella
et al.
(2003)

Pupae death, stage
specific death

Mean % pupation,
mean % emergence

Nascarella
et al.
(2003)

Eisenia fetida Catalase (CAT),
sodium dismutase
(SOD)

None Nascarella
et al.
(2003)

None CAT, SOD Zhang
et al.
(2009)

2 Cu Folsomia
candida

Survival None Ardestani
and Van
Gestel
(2013)

3 MeHg Caenorhabditis
elegans

Expression of gluta-
thione S-transferases
(gst-4): GFP (green
fluorescence protein)

Heat shock proteins
(hsp-4):GFP,
metallothioneins
(mtl-1):GFP and
mtl-2:GFP

Helmcke
and
Aschner
(2010)

4 Ni Eisenia fetida Microbial biomass
carbon, soil basal
respiration

Dehydrogenase
activity

Giovanetti
et al.
(2010)

None Urease (UA) and
dehydrogenase
activity

Xia et al.
(2018)

5 U Eisenia fetida Natural red retention
time, DNA breaks

Toxicity factor Giovanetti
et al.
(2010)DNA breaks
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that ought to be accrued for disposal or remedy. In soil electrokinetic remediation
processor, electric field gradient of appropriate intensity is established on two facets
of the electrolytic tank containing saturated infected soil. Combinations of electro-
kinetic remediation techniques were also used:

1. Combined remediation by electrokinetic microbe method (Yu et al. 2009)
2. Electrokinetic-chemical dual remediation techniques (Vocciante et al. 2016)
3. Joint remediation by electrokinetic oxidation/reduction (Yang et al. 2015)
4. Phytoremediation coupled with electrokinetic (Mao et al. 2016)
5. Electrospun polyacrylonitrile nanofiber membrane with electrokinetics (Peng

et al. 2015)
6. Electrokinetic remediation coupled with permeable reactive barrier (Rosestolato

et al. 2015).

6.3.2.2 Chemical Method

Oxidation, reduction, and neutralization techniques are used for remediation of
pollutant. The oxidation state of the metal can change through the loss of electrons
called chemical oxidation reaction (Collins et al. 2009; Roach et al. 2009). Examples
of commercially available oxidizing agents for chemical reaction are potassium
permanganate, hydrogen peroxide, hypochlorite, lime, apatite chlorine gas, and
Fenton’s reagent (Masten and Davies 1997; Scanferla et al. 2009; Collins et al.
2009; Venalainen 2011). By adding electrons, the oxidation state of metals is
changed and the reaction is called reduction reactions (Evanko and Dzombak
1997). Chemical remediation is rather a costly process, and some chemicals may
react with soil and altered the soil capacity to promote plant growth.

Fig. 6.2 Type of remediation technology
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6.3.2.3 Biological Method

Microorganisms (MO) and plants are used to degrade harmful contaminants, and this
process called biological treatments. The beneficial effect of plant roots is dual:
firstly—root execrations can provide energy for microorganisms, secondly—the
presence of roots can alter the physical and chemical conditions in polluted soil in
a manner that promotes microbial degradation (Malachowska-Jutsz and Kalka
2010).

But the above two techniques, physical and chemical methods, of bioremediation
have some limitation or other side effect on environment. The selection of any
method might rely upon the form of pollutant to be remediated, the proposed use
of the contaminated area, required time periods and money (Chibuike 2013). But
biological method is a unique system used for the elimination and/or recovery of
contaminant from spoiled environments. The technique utilizes microorganisms and
plants, or their products, to recover spoiled environments to their original condition
(Tak et al. 2013; Mani and Kumar 2014). These methods are eco-friendly and cheap
for the elimination/recovery of toxic metal, when compared to the conventional
chemical and physical techniques, which are often more costly and unsuccessful,
especially for low metal concentrations (Akcil et al. 2015; Verma and Verma 2016).

6.4 Importance of Biological Method

Biotechnology has amazing capability to cater for the need and holds hope for
environmental safety, sustainability, and manageable (Hatti-Kaul et al. 2007;
Azadi 2010). Therefore, bioremediation and phytoremediation are also an applica-
tion of biotechnology (Koenigsberg et al. 2005). Because, they are able to metabo-
lize, immobilize, or absorb toxic compounds from the surrounding. However,
principal benefits of systems are that they are much less dangerous to surroundings
with minimum or no through-products (Dowling and Doty 2009).
Hyperaccumulators are plants that are able to accumulate, degrade, or render less
poisonous pollutants present in ecosystem such as soils, water, and air.
Bioaccumulation of Cs was observed by Lasat et al. (1998). In case of bioremedi-
ation, the consortia or microbial (bacteria and fungi) processes are used to degrade
and detoxify environmental toxins (Dixit et al. 2015; M’rassi et al. 2015). This
method has been used for decontamination of different horizon of soils and different
types of water body (freshwater and marine) (Baker et al. 1994). It has positive
effects upon soil composition and fertility. Another biological method of heavy
metal removal is phytoremediation. Plants are used in phytoremediation techniques
to remove, sequester, and/or detoxify toxic from polluted soil (Meagher 2003;
Raskin et al. 1997). The method is completely cost-effective, green technology,
and efficiently eliminate contaminants like metals, hydrocarbons, and chlorinated
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solvents from soil (Susarla et al. 2002; Jadia and Fulekar 2008; Zhang et al.
2010a, b).

6.5 Role of Fungi in Bioremediation

Biological remediation for the removal of heavy metal fungi plays an important role
because they can chiefly bloom in the soils, and they have the capacity to grow in
different type of weather like in unfavorable condition multiplied through dispersion
of spores in the air and also maintaining the biogeochemical cycle (Eom et al. 2000).
Fungi have the ability to secrete multiple enzyme and makes fungi potential for
bioremediation as well as phytoremediation at various sites. So this type of remedi-
ation is also called mycoremediation. Successful treatments have been carried out on
industrial wastewater sludge (Zeyayllah 2009), petroleum hydrocarbons (Prince
et al. 2003), dyes (Mohsin et al. 2013), paper and pulp effluents (Afroz and Singh
2014), and mine land (Verma et al. 2016b). Much literature is available in the
scientific society that fungi have capacity to survive everywhere as well as capable
to modify or detoxify environmental pollutant and other anthropogenic pollutants
including mining waste, nondegradable agriculture waste, industrial discharge,
human hair, and petroleum product (Deshmukh et al. 2016). The utilization of
Arbuscular mycorhizal fungi is a boon for the scientists as it not only causes
sequestration of heavy metals but also enhances the nutrient content of soil (Barea
et al. 2005). AMF are vital components of soil diversity of microorganisms because
of increased yields, crops quality, flowering, fruiting, increased chances of survival
of seedlings, reduced percentage of disease occurrence, more tolerance to drought,
salinity, temperature, amplified utilization of NPK, and reduced erosion in soil. In
environment different types of fungi are present, but VAM play an essential role in
the removal of heavy metal from the different sites.

6.6 What Is VAM Fungi?

Mycorrhizal fungi show mutual beneficial symbiosis relationship between fungi and
roots of plants (Sieverding 1991).

Two types of mycorrhiza are known today: ectomycorrhiza fungi and
endomycorrhiza fungi. Fungi can absorb macro and micronutrients (N, P, K,
Ca, S, Cu, and Zn) from the soil and transfer them to connected plants (Tinker and
Gilden 1983). Mycorrhizal hyphae have the capacity to degraded bulky biomole-
cules into smaller molecules like N or P (George et al. 1995). Hyphae have the
capacity to increase root surface area and absorbed nutrients from up to 12 cm away
from the root surface (Cui and Caldwell 1996; Pacovsky 1986; Manjunath and Habte
1988). AM fungi also absorb non-motile nutrients from the soil and transfer them to
host plants, as well as harmful heavy metal ions also absorb, help in inter plant
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relocation of nutrients and altered plant–water relationship (Smith and Read 1997).
AM fungi in plant increase chlorophyll number in leaves, increased disease tolerance
capacity, tolerance against parasites, improved water stress mechanism and salinity,
and heavy metal toxicity (Bethlenfalvay 1992). AM fungi also help in the develop-
ment of soil aggregates and soil conservation (Miller and Jastrow 1992). Assimila-
tion and transfer of nitrogen from ammonium can also enhance biomass production
in soils with low nutrients (K, Ca, and Mg) (Liu et al. 2002). Role of VAM fungi was
shown in Fig. 6.3.

6.7 Role of VAM Fungi in Bioremediation

Mycorrhiza and plant show mutual relationship, and due to this, they help to
immobilize heavy metal. In this process, both plant and mycorrhiza play a vital
role in the removal of toxic metal and detoxification in plant cell as well as in VAM.
Mycorrhiza cannot survive without a plant; hence, mycorrhizal remediation tech-
niques are also called modified form of phytoremediation that utilizes the advantage
derived from mycorrhizal fungi. In mycorrhizal remediation, some
phytoremediation techniques such as phytoextraction and phytostabilization were
utilized. Mycorrhizal remediation shows faster results as compared to
phytoremediation because fungal hyphae cover larger area (Gao et al. 2010).
Rufyikiria et al. (2004) recorded mycorrhizal remediation decrease transfer of
contaminants from roots to the shoots of plants. AM fungal spore can survive in
the soil up to 6 years (Nguyen et al. 2012); hence, they easily replicate and help in the
growth of any crop planted on the soil. Thus, mycorrhizal remediation certifies the
quick growth of vegetation on remediated soils.

6.7.1 Process of Detoxification

In different metabolic reactions, plants secrete chelating agents like histidine and
organic acids in soil. These chemicals bind to heavy metals, which are present in soil.
Plasma membrane has selective transportation capacity, as well as active and passive
transportation system; through transportation system, specific and nonspecific
metals are transported also from the pores of the plasma membrane (Fig. 6.4).

In intracellular detoxification, plant cells produced chelating agents like
phytochelatins and metallothionein which have high affinity for heavy metals.
Plant cells also secrete organic acids, amino acids, and specific metal chaperons.
These secretary molecules react with heavy metals and form a complex structure.
Heavy metal complex structures are exported from cytoplasm to tonoplast and then
finally to vacuole. Heavy metal complex compounds are stored in vacuole, inside
endoplasmic reticulum, and chloroplast (Briat and Lobreause 1997) (Fig. 6.5).
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Host plants improve their nutritional status with the help of arbuscular mycorrhi-
zal fungi by absorbing phosphorus, essential nutrients, and water. AM fungi secrete
different types of proteins called glomalin which bind with toxic heavy metal to form
a complex, and this complex binds with plant cell wall (Wright et al. 1996; Gadkar
and Rillig 2006; Rillig and Mummey 2006; Gonzalez Chavez et al. 2004; Cornejo
et al. 2008; Meier et al. 2012). Further heavy metal complexes are transported in the
hyphae of the fungus (Preger et al. 2007). Plant cells secrete chelating agents like
phytochelatins and metallothinein, and organic acids, amino acids, and specific
metal chaperons have high affinity for heavy metals (Curaqueo et al. 2011). Later,
molecular studies have observed that the structure of some protein molecule is a
homolog of certain heat-shock proteins (Gadkar and Rillig 2006), which in general
are related to environmental stresses. Nowadays, different types of VAM fungi were
used for sequestration of heavy metal, and the data are shown in Table 6.4.

VAM fungi absorbed heavy metals from the soil in the process of
phytostabilization and phytoextraction. AM fungal strain Glomeromycota is present
in soil and absent in host plant. Generally, AM fungal spores and hyphae show
response for heavy metals. A specific concentration of heavy metal affects the
germination and growth of hyphae (Shalaby 2003). Gohre and Paszkowski (2006)
assumed that plant and fungal vacuoles have similar structure, which are involved in

Fig. 6.4 Detoxification process occurs in soil
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storing of toxic heavy metal compounds and give additional detoxification mecha-
nism for host plants.

The previous studies done by many workers have reported two methods of
phytoremediation:

1. Phytoextraction (removal of heavy metals through plants)
2. Phytostabilization (Chaney et al. 1997; Garbisu and Alkorta 2001; Lasat 2002;

Ernst 2000; Azaizeh et al. 1995; Baker and Brooks 1989; Kinnersley 1993;
Welch 1993; Salt et al. 1995; Ghosh and Singh 2005).

Phytostabilization This method reduces the mobility of heavy metals in soil
(Blaylock et al. 1999), for example, decreasing wind-blown dust, reduced soil

Table 6.4 Name of AM fungi used for bioremediation

S. No.

Name of
Heavy
Metal Name of AM fungi Name of plants References

1 Cadmium
(Cd)

Glomus mosseae; Glo-
mus spp.; Gigaspora
sp.; Glomus
intraradices; Suillus
bovinus; Rhizopogon
roseolus;
G. constrictum; AMF

Trifoliumsub
terraneum; Allium
porrum; Zea mays L.;
Trifolium repens;
Bean; Hordeum
vulgare; A. capillaries

Joner and Leyval
(2001), Weissenhorn
et al. (1993), Vivas
et al. (2003), Guo
et al. (1996), Tullio
et al. (2003), Liao
et al. (2003), Lingzhi
et al. (2014), Souza
et al. (2013),
GilCardeza et al.
(2014)

2 Zinc (Zn) Glomus mosseae; Glo-
mus intraradices; Glo-
mus constrictum;
G. ambisporum;
G. scutellospora;
G. dipurpurescens;
G. fasiculatum; Glo-
mus claodeum; AMF

Lygeum spartum;
T. subterraneum;
Solanum nigrum;
Andropogon gerardii;
Festia rubra

Diaz et al. (1996),
Joner (2000), Paula
et al. (2006),
Weissenhorn et al.
(1994), Cornejo et al.
(2008), Dueck et al.
(1986)

3 Nikel (Ni) Gigaspora species;
Glomus tenue;
G. macrocarpum

Berkheya coddii;
maize; bean

Turnau et al. (2006),
Guo et al. (1996)

4 Copper
(Cu)

Glomus intraradices;
AMF

Zea mays;
A. capillaries; Trifo-
lium repens; Coreopsis
drummondii, Pteris
vittata; Oenothera
picensis

Liao et al. (2003),
Chen et al. (2007),
Cornejo et al. (2017),
Cornejo et al. (2008)

5 Mercury
(Hg)

AMF Nauclea orientalis Hanna et al. (2014)

6 Lead (Pb) AMF;
G. macrocarpum

Lygeum spartum Vodnik et al. (2008),
Diaz et al. (1996)

7 Aluminum AMF Seguel et al. (2015,
2016a, b)
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erosion, and reducing pollutant solubility or bioavailability to the food chain
(Radziemska et al. 2007). Solubility of metals in soil is decreased by the addition
of soil amendments (organic matter, phosphates, alkalizing agents, and biosolids).
Plant roots accumulate the contaminants and reduce the mobility of contaminants.

Phytoextraction Phytoextraction is the extraction of dangerous elements or com-
pounds from soil or water with the help of plants. Hyperaccumulators of plants are
used for phytoextraction method that absorbed extremely large amounts of heavy
metals (Garbisu and Alkorta 2001). Absorption of heavy metal is completed by
following five steps:

1. The metal must dissolve in some chemical (rhizospheric chemical).
2. The heavy metal is absorbed by plant root.
3. The plant must chelate the metal to protect itself and increase the mobility of the

metal (this can also happen before the metal is absorbed).
4. Chelated metal is stored at safe place.
5. Finally, the plant recovers the damages caused during transportation and storage

(Suman et al. 2018). Systems that transport and store heavy metals are the most
critical systems in a hyperaccumulator. Sometimes, heavy metals are stored in
leaves by hyperaccumulators.

Stored heavy metals were digested by the phytoremedation process like
phytotransformation (Chaudhry et al. 1998; Broyer et al. 1972; Malone et al.
1974). In this method, plants also decrease toxicity and sequester the xenobiotics.
The trinitrotoluene phytotransformation method has been widely studied, and a
transformation pathway has been projected (Subramanian et al. 2006). Other biore-
mediation techniques are phytovolatilization (Lewis et al. 1966; Terry et al. 1992;
Banuelos et al. 1993a, b; Wilber 1980; Suszcynsky and Shann 1995; Brooks 1998b),
phytodegradation or rhizoremediation (Hoagland et al. 1994; Jacobsen 1997;
Zablotowicz et al. 1994), and bioaugmentation (Fig. 6.6; Table 6.5).

6.8 Factors Responsible for Remediation

1. Type of soil: Uptake and tolerance of heavy metal depend on physiochemical
properties of soil and soil microbes.

2. Gene expression: In legume plants, appearance of phytochelatin synthase gene
(PCS1) also increased the heavy metal accumulation (Zhang et al. 2010a, b; Xu
et al. 2014).

3. pH: The active uptake of cations via plasma lemma of roots includes H+ excretion
while anion uptake involves OH� or HCO3� excretion (Bolan et al. 1991). In
symbiotic association with rhizobia, plants accumulate most of their N through
N2 fixation method. In this process, legume plants consume more cations than
anions and discharge more H+ ions from roots to soil and create acidic environ-
ment for the rhizosphere and bulk soil (Zhao et al. 2009). HM mobility and
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availability totally depend on environmental factors as well as soil pH (Zhao et al.
2009). When soil pH is low, it could significantly increase the heavy metal
concentrations in both the shoots and roots of plants.

4. Intercropping: Intercropping with legume tree shows higher efficiency for the
removal of heavy metal. However, precaution is essential in screening of suitable
legume neighbor plants because nitrogen fixing legume plants produced acid in
variable amount; hence, pH of soil is altered (Tang and Chen 1999).

5. Transportation: Combination of heavy metal and mycorrhiza is known to affect
acquisition and distribution of macronutrient in plants (Bati et al. 2014; Allen and
Shachar-Hill 2009). Heavy metal concentration blocks ion absorption at the cell
membrane and struggle for ion binding legends on the cell wall (Małkowski et al.
2005; Godbold and Kettner 1991), which show negative effect on plant nutrient
uptake from soil. Uptake of phosphorus by non-mycorrhizal plants is by the direct
pathway via Pi transporters in the epidermis, while AMF-associated plants can
acquire phosphorus through root epidermal cells as well as phosphorus trans-
porters in hyphae of mycorrhizal fungi (Smith et al. 2011; Tang and Chen 1999).
Subramanian and Charest (1999) reported that the hyphae of VAM fungi were
capable to consume and transfer inorganic nitrogen efficiently from soil to plant
roots.

6. Legume plant: Legume plants show root–root interactions or root–AMF–root
interactions (Teste et al. 2014). Association of legume plants, neighbors plant,
and AM fungi increase the uptake of nitrogen and phosphorus as well as enhance
plant heavy metal resistance, because the excess phosphorus simply create meta-
stable compounds with toxic heavy metals (Andrade et al. 2004) and drastically
reduce the bioavailability of heavy metals.

Fig. 6.6 Process of bioremediation by using plant and VAM fungi

170 P. Verma et al.



T
ab

le
6.
5

P
ro
ce
ss

of
bi
or
em

ed
ia
tio

n
by

us
in
g
pl
an
t

S
.N

o.
A
pp

lic
at
io
n

P
ro
ce
ss

M
ed
ia

C
on

ta
m
in
an
ts

P
la
nt

D
is
ad
va
nt
ag
e

1
P
hy

to
de
gr
ad
at
io
n

A
qu

at
ic
an
d
te
rr
es
tr
ia
l

pl
an
ts
ta
ke

up
,s
to
re
,

an
d
bi
oc
he
m
ic
al
ly

de
gr
ad
e
se
le
ct
ed

or
ga
ni
c
(N

ew
m
an

et
al
.

19
98

)

S
oi
l,
gr
ou

nd
w
at
er
,

la
nd

fi
ll
le
ac
ha
te
,l
an
d

ap
pl
ic
at
io
n
of

w
as
te

w
at
er

H
er
bi
ci
de
s
(a
tr
az
in
e,

al
ac
hl
or
);
ar
om

at
ic
s

(B
E
T
X
);
ch
lo
ri
na
te
d

al
ip
ha
tic
s
(T
C
E
);

nu
tr
ie
nt
;
am

m
un

iti
on

w
as
te
(T
N
T
,R

D
X
)

P
hr
ea
to
ph

yt
e
tr
ee
s

(p
op

la
r,
w
ill
ow

,c
ot
to
n

w
oo

d,
as
pe
n)
;
gr
as
se
s

(r
ye
,B

er
m
ud

a,
so
r-

gh
um

,f
es
cu
e)
;

le
gu

m
es

(c
lo
ve
r,

al
fa
lf
a,
co
w
pe
as
)

2
P
hy

to
ex
tr
ac
tio

n
or

ph
yt
oa
cc
um

ul
at
io
n

or
ph

yt
oa
bs
or
pt
io
n

or ph
yt
os
eq
ue
st
ra
tio

n

U
pt
ak
e
of

co
nt
am

i-
na
nt
s
fr
om

so
il
in
to

ro
ot
s
or

ha
rv
es
ta
bl
e

sh
oo

ts
(S
al
t
et
al
.

19
95

)

S
oi
l,
br
ow

nfi
el
ds
,

se
di
m
en
ts
(B
ro
ok

s
19

98
a)

M
et
al
s
(P
b,

C
d,

Z
n,

A
s,
C
u,
C
r,
S
e,
U
)w

ith
E
D
T
A
ad
di
tio

n
fo
r
P
b,

se
le
ni
um

,i
no

rg
an
ic
s,

ra
di
on

uc
lid

es
(K

um
ar

et
al
.1

99
5)

S
un

fl
ow

er
;
In
di
an

m
us
ta
rd
;
ra
pe
se
ed

pl
an
ts
,b

ar
le
y,

ho
ps
;

cr
uc
if
er
s;
se
rp
en
tin

e
pl
an
ts
;
ne
ttl
es
,d

an
de
-

lio
ns
;
al
ys
su
m
,b

ra
s-

si
ca
,t
he
la
sp
i
(C
or
ni
sh

et
al
.1

99
5)

M
et
al

hy
pe
ra
cc
um

ul
at
or
s

ar
e
ge
ne
ra
lly

sl
ow

gr
ow

in
g,

an
d

bi
op

ro
du

ct
iv
ity

is
ra
th
er

sm
al
l
an
d
sh
al
-

lo
w

ro
ot

sy
st
em

.
P
hy

to
m
as
s
af
te
r
pr
o-

ce
ss

m
us
tb

e
di
sp
os
ed

of
f
pr
op

er
ly

(B
an
ue
lo
s
et
al
.1

99
9)

3
R
hi
zo
de
gr
ad
at
io
n

P
la
nt

ex
ud

at
es
,r
oo

t
ne
cr
os
is
,a
nd

ot
he
r

pr
oc
es
se
s
pr
ov

id
e

or
ga
ni
c
ca
rb
on

an
d

nu
tr
ie
nt
s
to

so
il
ba
ct
e-

ri
a
gr
ow

th
by

tw
o
or

m
or
e
or
de
rs
of

m
ag
ni
-

tu
de
.E

xu
da
te
s
st
im

u-
la
te
de
gr
ad
at
io
n
by

m
yc
or
rh
iz
al
fu
ng

ia
nd

m
ic
ro
be
s.
L
iv
e
ro
ot
s

ca
n
pu

m
p
ox

yg
en

to

S
oi
l,
se
di
m
en
ts
,l
an
d

ap
pl
ic
at
io
n
of

w
as
te

w
at
er

O
rg
an
ic
co
nt
am

in
an
ts

(p
es
tic
id
es
)
ar
om

at
ic

an
d
po

ly
nu

cl
ea
r
ar
o-

m
at
ic
hy

dr
oc
ar
bo

ns
su
ch

as
P
A
H
s,
pe
tr
o-

le
um

hy
dr
oc
ar
bo

ns
,

T
N
T
,p

es
tic
id
es

P
he
no

lic
s
re
le
as
er
s

(m
ul
be
rr
y,

ap
pl
e,

O
sa
ge

or
an
ge
);
gr
as
se
s

w
ith

fi
br
ou

s
ro
ot
s
(r
ye
,

fe
sc
ue
,B

er
m
ud

a)
;

aq
ua
tic

pl
an
ts
fo
r

se
di
m
en
ts

(c
on

tin
ue
d)

6 VAM: An Alternate Strategy for Bioremediation of Polluted Environment 171



T
ab

le
6.
5

(c
on

tin
ue
d)

S
.N

o.
A
pp

lic
at
io
n

P
ro
ce
ss

M
ed
ia

C
on

ta
m
in
an
ts

P
la
nt

D
is
ad
va
nt
ag
e

ae
ro
be
s
w
hi
le
de
ad

ro
ot
s
m
ay

su
pp

or
t

an
ae
ro
be
s

4
P
hy

to
vo

la
til
iz
at
io
n

(E
ra
kh

ru
m
en

20
07

)
V
ol
at
ili
za
tio

n
by

le
av
es
;
pl
an
ts

ev
ap
ot
ra
ns
pi
ra
te
m
et
al

(F
re
es
to
ne

20
06

;
S
m
it

et
al
.2

00
9)

S
oi
l,
gr
ou

nd
w
at
er
,

la
nd

fi
ll
le
ac
ha
te
,l
an
d

ap
pl
ic
at
io
n
of

w
as
te

w
at
er

(T
em

pe
rt
on

et
al
.2

00
7)

H
er
bi
ci
de
s
(a
tr
az
in
e,

al
ac
hl
or
);
ar
om

at
ic
s

(B
E
T
X
);
ch
lo
ri
na
te
d

al
ip
ha
tic
s;
am

m
un

iti
on

w
as
te
(T
N
T
,R

D
X
)

(B
au
m
ei
st
er

an
d

C
al
la
w
ay

20
06

)

P
hr
ea
to
ph

yt
e
tr
ee
s

(p
op

la
r,
w
ill
ow

,c
ot
-

to
nw

oo
d,

as
pe
n)
;

gr
as
se
s
(r
ye
,B

er
m
ud

a,
so
rg
hu

m
,f
es
cu
e)
;

le
gu

m
e
(c
lo
ve
r,
al
fa
lf
a,

co
w
pe
as
)

T
he

co
nt
am

in
an
t
or

a
ha
za
rd
ou

s
m
et
ab
ol
ite
s

m
ig
ht

ac
cu
m
ul
at
e
in

ve
ge
ta
tio

n
an
d
be

pa
ss
ed

on
in

la
te
r

pr
od

uc
ts
su
ch

as
fr
ui
t

or
lu
m
be
r.
L
ow

le
ve
ls

of
m
et
ab
ol
ite
s
ha
ve

be
en

fo
un

d
in

pl
an
t

tis
su
es

(A
dl
er

19
96

)

5
P
hy

to
st
ab
ili
za
tio

n
P
la
nt

co
nt
ro
l
pH

,s
oi
l

ga
se
s
an
d
re
do

x
co
n-

di
tio

ns
in

so
il
to

im
m
ob

ili
ze

co
nt
am

i-
na
nt
s,
hu

m
ifi
ca
tio

n
of

so
m
e
or
ga
ni
c
co
m
-

po
un

d
is
ex
pe
ct
ed

(A
lk
or
ta
et
al
.2

00
4)

S
oi
l,
se
di
m
en
ts
,

m
et
al
,g

ro
un

dw
at
er

P
b,
C
d,
Z
n,
A
s,
C
u,
C
r,

S
e,
U
,h

yd
ro
ph

ob
ic

or
ga
ni
cs

(P
A
H
,P

C
B
,

D
D
T
,D

ie
ld
ri
n)

P
hr
ea
to
ph

yt
e
tr
ee
s
to

tr
an
sp
ir
e
la
rg
e

am
ou

nt
s
of

w
at
er

(h
yd

ra
ul
ic
co
nt
ro
l)
;

gr
as
se
s
to

st
ab
ili
ze

so
il

er
os
io
n

O
ft
en

re
qu

ir
es

ex
te
n-

si
ve

fe
rt
ili
za
tio

n
or

so
il
m
od

ifi
ca
tio

n
us
in
g
am

en
dm

en
ts
,

lo
ng

te
rm

m
ai
nt
e-

na
nc
e
is
ne
ed
ed

to
pr
ev
en
t
le
ac
hi
ng

(P
ra
sa
d
20

04
).

7
P
hy

to
tr
an
sf
or
m
at
io
n

S
or
pt
io
n,

up
ta
ke
,a
nd

tr
an
sf
or
m
at
io
n
of

co
n-

ta
m
in
an
ts

(S
ub

ra
m
an
ia
n
et
al
.

20
06

)

O
rg
an
ic
s,
in
cl
ud

in
g

ni
tr
oa
ro
m
at
ic
s
an
d

ch
lo
ri
na
te
d
al
ip
ha
tic
s

T
re
ss

an
d
gr
as
se
s

172 P. Verma et al.



6.9 Conclusion

The pollution of soils with heavy metals symbolized a worldwide ecological prob-
lem of great concern. Conventional methods for metal-contaminated soils are usu-
ally very costly and regularly induce undesirable effects on physico-chemical
properties of soil and biological activity. Chemical methods have many drawbacks
in the elimination of contaminants because they generally utilize chemical catalysts,
and applying them in larger polluted sites is complicated. Physical remediation
methods can totally eliminate heavy metal(loid)s from infected soil but can cause
negative effect in nature and are highly expensive. The utilization of microbial
cultures which destroy or alter heavy metal to less toxic compounds has become
gradually more famous in recent years. Bioremediation is a biological mechanism of
recycling wastes into another form that can be used by other organisms. Mycorrhizal
fungi can enhance nutrient uptake and also have degradation capacities for heavy
metal. Maximum research on fungal bioremediation has been carried out on labora-
tory. So further work is required to account the natural variables and increase their
applicability in large-scale polluted fields. This chapter may further contribute to the
substantial potential offered by fungal diversity in various habitats and their biore-
mediation potential.
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Abstract Fungi have competence to degrade hazardous contaminants by excreting
the enzymes and other metabolites which decrease the risk associated with the
toxicants and heavy metals. Furthermore, they have capability to form the mycelial
networks which influence the remediation process. In fungal kingdom, ascomycetes,
basidiomycetes, deuteromycetes, and zygomycetes are the major fungi which are
mainly involved in the remediation process. These fungi can degrade wide array of
hazardous contaminants such as heavy metals, pesticides, nitroaromatics, endocrine
disrupting chemicals, antibiotics, and polycyclic aromatic hydrocarbons. This chap-
ter also describes different strategies like utilization of multi-omics tools, screening
the fungal isolates, genetic modification, and development of consortia for multiple
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pollutants. Thus, different strategies can enhance the rate of degradation or trans-
formation of metabolites which can be further utilized for the large-scale application
of myco-remediation.

Keywords Bioremediation · Dyes · Fungi · Heavy metals · Pesticides · Polycyclic
aromatic hydrocarbons

7.1 Introduction

Vast numbers of fungi (more than 1.5 million species) inhabit on the Earth, living on
the soil and rocks, under the soil and/or associated with different plant bodies.
Fungal kingdom comprises single cellular and multicellular fungi that are spread
all over the world wherein four major phyla are divided, namely chitridiomycetes,
zygomycetes, ascomycetes and basidiomycetes (Hibbett et al. 2007). Generally,
fungal decay types mainly categorized into three parts based on their type of
degradation that comprises white rot, brown rot, and soft rot (Rudakiya and Gupte
2017, 2019a). Fungi can convert various organic and inorganic contaminants
wherein dyes, metals, polycyclic aromatic hydrocarbons, and phenols are included.
Fungal kingdom possesses more than 1 lakh known species which are capable
enough to degrade the hazardous contaminants. Among these fungi, Ascomycetes,
Basidiomycetes, and subphylum mucoromycotina are the potential degraders of the
contaminants; however, other fungi are very few times reported for the bioremedi-
ation (Fig. 7.1).

Brown Rot Fungi Brown rot fungi show the effective degradation of cellulose and
hemicellulose in lignocelluloses, but the degradation of lignin is limited. It is caused
by majority of ascomycetes and some of basidiomycetes (Schwarze 2008). As brown
rot fungi favor the degradation of carbohydrates such as cellulose and hemicellulose,
the decayed wood shows the brittle nature. Fomitopsis pinicola and Laetiporus
sulphureus are the example of typical brown rot (Schwarze et al. 2003).

Soft Rot Fungi Soft rot decay is generally caused by Ascomycetes and
deuteromycetes fungi (Raberg et al. 2009). Compositional study shows that lower
methoxy content of wood lignin is observed in soft rot decay (Rabinovich et al.
2004). Ligninolytic enzymes presented in soft rot fungi are not efficient to degrade
the guaiacyl lignin; however, they can efficiently attack on the syringyl lignin and
degrade it efficiently (Nilsson et al. 1989).

White Rot Fungi Fungi causing the white rot mainly belong to Basidiomycetes and
Ascomycetes. Traditionally, the term “White rot” is used to describe the type of
wood decay, wherein wood has a bleached appearance as majority of lignin is
degraded by the fungi, and the remaining mass is made up of cellulose and
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hemicellulose that are white in color (Garg and Chandel 2012; Kamei et al. 2012).
On the contrary, the rate of degradation of lignin and cellulose is relative which can
vary based on the fungal species, degradation condition, and wood types (Schwarze
2004). White rot fungi are subdivided into two types based on the degradation time
of lignin which are selective delignification and simultaneous rot.

Since last three decades, fungi have been investigated for the degradation of
broad spectrum organic contaminants. They were also exploited for the degradation
of organic contaminants, including dyes, PAHs, TNT, pesticides, PCBs, chlorinated
hydrocarbons, and other toxic organic compounds (Gupte et al. 2016; Patel et al.
2016; Gahlout et al. 2017; Shankar and Nill 2015; Khambhaty et al. 2015). Fungi are
efficient remediation agent of organic contaminants than bacteria due to the efficient
extracellular nonspecific ligninolytic enzyme system, which can degrade various
hazardous contaminants (Christian et al. 2005). In addition, some white rot fungi and
their enzymes are utilized to synthesize the bioactive compounds, which have
potential anticancer, anti-HIV, antimicrobial, and antifungal activities (Mikolasch
and Schauer 2009; Kudanga et al. 2017).

7.2 Fungal Components

7.2.1 Enzymes

White rot fungi secrete a wide array of enzymes in order for the degradation of
lignocellulosic biomass, which comprise the ligninolytic, hydrolytic, and accessory
enzymes.

7.2.1.1 Lignin Degrading Enzymes

White rot fungi produce various ligninolytic enzymes in large amounts which secrete
externally. The enzymes are laccase, lignin peroxidase, Mn peroxidase, and versatile
peroxidase (Li et al. 2018). The role of these enzymes in fungi is presented in
Table 7.1.

7.2.1.2 Laccase

Laccases are benzenediol:oxygen oxidoreductases (EC 1.10.3.2) and these enzyme
belongs to the of multicopper oxidases and blue oxidases (Rudakiya et al. 2020). It
was first discovered in the Japanese lacquer tree Rhus vernicifera. Thereafter, laccase
has been found in various plant species, insects, bacteria, and fungi (Rudakiya and
Gupte 2019b). Fungi belonging from basidiomycete phylum are the most efficient
laccase producers, some of the fungi are as follows: Coriolopsis polyzona, Trametes
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Table 7.1 List of enzymes that assist the biomass degradation and their mechanism of action

Enzyme Mechanism of action Reference

Lignin degrading enzymes

Laccase
(1.10.3.2)

It catalyzes the oxidation reactions that lead to the free
radical formation which can be intermediate substrates

Li et al.
(2018)

Mn peroxidase
(1.11.1.13)

It acts only on the phenolic structures of lignin Kinnunen
et al. (2017)

Lignin peroxidase
(1.11.1.14)

It reacts in the presence of hydrogen peroxide with
catalysis of the oxidative depolymerization of
non-phenolic lignin, β-O-4 non-phenolic lignin, and
phenolics

Houtman
et al. (2018)

Versatile peroxidase
(1.11.1.16)

It oxidizes the substrates of Mn peroxidase and lignin
peroxidase

Kinnunen
et al. (2017)

Cellulose degrading enzymes

Endoglucanase
(3.2.1.4)

Random catalysis of internal cellulose chain by releas-
ing cellulose subunits, i.e., cellobiose and cello-
oligosaccharides

Pamella et al.
(2017)

Exoglucanase
(3.2.1.91)

Catalysis of cellulose chains specifically at terminal part
by releasing the cellulose subunits

Parafati et al.
(2017)

β-Glucosidase
(3.2.1.21)

Catalysis of cellulose subunits which release the glucose
and other metabolites

Boudabbous
et al. (2017)

Hemicellulose degrading enzymes

α-L-
Arabinofuranosidase
(3.2.1.55)

Catalysis of terminal α-L-arabinofuranoside which can
be converted into α-L-arabinosides

Bastos et al.
(2018)

α-D-Glucuronidase
(3.2.1.131)

Catalysis of α-1,2 glycosidic bond of hemicellulose
which converts into D-glucuronic acid, 4-O-methyl-D-
glucuronic acid, and D-xylose

Manavalan
et al. (2015)

Acetyl xylan esterase
(3.1.1.72)

Catalysis with deacetylation reaction of xylans and xylo-
oligosaccharides

Komiya et al.
(2017)

β-xylosidase
(3.2.1.37)

Catalysis of xylobiose which convert the D-xylose Bastos et al.
(2018)

Endo xylanase
(3.2.1.8)

Catalysis of β-1,4-xylan which convert xylose Manavalan
et al. (2015)

Ferulic acid esterase
(3.1.1.71)

Catalysis of COOH- bonds of feruloyl-polysaccharide
which converts into ferulic acid and polysaccharide

Manavalan
et al. (2015)

Accessory enzymes

Cellobiose dehydro-
genase
(1.1.99.18)

It reduces aromatic radicals preventing
repolymerization, demethoxylation, or hydroxylation of
nonphenolic lignin and reduction of precipitated MnO2

Ma et al.
(2017)

Aryl-alcohol oxidase
(1.1.3.7)

Aromatic alcohols oxidized to aldehydes, which gener-
ates the H2O2

Houtman
et al. (2018)

Glyoxal oxidase
(1.2.3.15)

Glyoxal oxidized to glyoxylic acid, which produces the
H2O2

Manavalan
et al. (2015)

Oxalate decarboxyl-
ase (4.1.1.2)

It degrades the oxalic acid and converted into CO2 Manavalan
et al. (2015)
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hirsuta, Trametes ochracea, Trametes villosa, Trametes versicolor, Lentinus
tigrinus, Trametes gallica, Cerrena maxima, and Pleurotus eryngii (Ruiz-Duenas
et al. 2013; Munir et al. 2015). Possible roles of laccase in fungi are in pigment
formation, lignin degradation, and detoxification (Kim et al. 2008a, b).

7.2.1.3 Peroxidases

Lignin peroxidases (LiPs) are glycoproteins of approximately 30–50 kDa with pI
ranging from 3.2 to 4.0. It oxidizes the most phenolic compounds through the
generation of phenoxy radicals. Mn peroxidases are glycosylated proteins with pI
ranging from 4.2 to 4.9 and molecular masses ranging from 45 to 47 kDa (Kirk and
Cullen 1998). Mn peroxidase shows the catalytic cycle which is similar to lignin
peroxidases. The reaction involves two-electron oxidation of the heme by H2O2,
which is further carried out by reduction of two electrons to the native enzyme
(Hatakka 1994). Versatile peroxidase is the enzyme which comprises the heme
component with peroxidase activity with hybrid molecular structure of lignin per-
oxidase and Mn peroxidase. It was first described from the white rot fungus
Pleurotus eryngii (Martinez et al. 1996).

7.2.1.4 Cellulose Degrading Enzymes

Cellulases or cellulose degrading enzymes from ascomycetes or basidiomycetes are
categorized into three enzymes which are endoglucanase, exoglucanase, and
β-glucosidases. The mechanism of action of all cellulolytic enzymes is shown in
Table 7.1.

Cellulases are the enzymes which act on the cellulose in sequential manner which
degrade or depolymerize step by step. Terminology for each enzyme: endoglucanase
is endo-1,4-β-glucanase (E.C.3.2.1.4), exoglucanase is exo-1,4-β-D-glucanase
(E.C.3.2.1.176), and β-glucosidase is β-D-glucoside glucohydrolase (E.C.3.2.1.21).
First, the endoglucanase enzyme catalyzes the reaction with cellulose which cleaves
the glycosidic bonds that forms the long chains of the different oligo- and/or
disaccharides. Furthermore, the other enzyme called exoglucanase acts on the long
chain of the oligomers which also acts on the either reducing or nonreducing ends.
Finally, β-D-glucoside glucohydrolase catalyzes the reaction wherein oligo- or
disaccharides are involved and convert into glucose subunits. The glucose molecules
are directly used for the fungal growth and metabolism (Rudakiya 2019; Narra et al.
2020).

7.2.1.5 Hemicellulose Degrading Enzymes

Hemicellulases are the major group of enzymes which catalyze the degradation of
hemicellulose. Specifically, endo-xylanase, β-xylosidase, α-glucuronidase, α-L-
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arabinofuranosidase, acetyl xylan esterase, and ferulic acid esterase are the enzymes
which degrade the xylan components. All enzymes act in the sequential manner to
degrade the hemicellulose to xylose (Shallom and Shoham 2003; Satyanarayana
et al. 2019).

7.2.2 Exopolysaccharides

Various biotechnological applications are mainly focused on the natural and bio-
polymers which have huge demand in the market. Various fungi produce the
extracellular polymeric substances such as exopolysaccharides (EPS) which have
huge demand in recent times. Various types of polysaccharides are produced by
plants which are cellulose, starch, and pectin. Likewise, algae produce the agar,
alginate, and carrageenan type of polysaccharides which have huge biotechnology
demand. Bacteria also produce the dextran, alginate, gellan, xanthan gum, and
pullulan which are commonly used as food additives for their gelling, stabilizing,
or thickening properties. Polysaccharides comprise higher capacity for the chelation
and entrapment of hazardous contaminants (Kumar et al. 2007). Increasing interest
to resolve the environmental issues and its production using green or environmental
friendly procedures leads to the production of such substances that are mainly
important for the global market for microbial products to about 250 billion US
dollars by 2016. This carbohydrate product is the metabolite which secrete by the
fungi on the cell surface which plays a critical role in various industries. EPS gained
attention in the pharmaceutic industries due to their involvement in various biolog-
ical mechanisms such as signal transduction, adhesion, infection, and immune
response (Sutherland 2002; Kumar et al. 2007). Microbial polysaccharides are the
polymer which comprises higher molecular weight. It is generally presented at
lipopolysaccharides or capsular polysaccharides (Taylor and Roberts 2005).

An important distinction of polysaccharide is based on their charge properties;
they may be naturally anionic and neutral. Microbial EPS like xanthan,
phosphomannan and alginate belong to anionic group while EPS like levan,
scleroglucan, pullulan, and dextran belong to neutral group. Some polysaccharides
have anionic properties, and they contain acidic groups, such as carboxyl, phosphate,
or sulfate. The diversity of various EPS produced by microorganisms is often
stressed. At present, a considerable number of bacteria, lactic acid bacteria (LAB),
higher basidiomycetes, lower filamentous fungi and yeasts from different ecological
niches are known for their ability to synthesize EPS in nature as well as in laboratory
culture system. Important EPS is produced by various fungi which is shown in
Table 7.2.

Polysaccharide that comprises single glucose subunits is called as glucans
(Murray et al. 2002). These types of carbohydrates include the glycogen, cellulose,
and dextran. General formula of these polysaccharides are (C6H12O5)n (Duchon
1985). Other polysaccharides called β-glucans, β-1,3-D-glucans, or β-1,4-D-glucans
are generally present in higher plants.
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Natural products, i.e., β-glucan are generally utilized for several centuries. Coun-
tries such as China and Japan utilize the EPS to obtain the antioxidant and anticancer
compounds. The fungi used for the medicinal purpose is now utilized in pharma-
ceutical industries. Fungi show favorable dietetic properties with respect to their low
fat and caloric value and high levels of proteins, minerals, and certain polysaccha-
rides (Borchers 1999).

7.2.3 Organic Acids

Fungi are known to secrete the organic acids in high amounts, which are mainly
oxalic acid, citric acid, malic acid, gluconic acid, etc. Among them, oxalic acid is the
most commonly produced in fungi and is thought to play an essential role in wood
degradation, lignin degradation, plant pathogenesis, and metal transformation
(Dutton and Evans 1996; Gadd 1999). Oxalic acid, a simplest dicarboxylic acid,
has greater ionic strength than that of acetic acid. It is produced as a secondary
metabolite from glyoxylate cycle. Oxalic acid typically occurs in di-hydrate form
with molecular formula C2H2O4 � 2H2O. It reduces the viscosity of cellulose and
hemicellulose, lowers the pH (Rhee et al. 2012), and provides H2O2, which increases
the accessibility of cellulose fibers to cellulases (Kim et al. 2008a, b).

The biosynthesis of oxalic acid mostly originates from intermediates of the
tricarboxylic acid (TCA) cycle and the glyoxylate cycle, which are involved in the
hydrolytic cleavage of oxaloacetate to oxalate and acetate by oxaloacetase
(EC 3.7.1.1) (Dutton and Evans 1996). Several white rot fungi oxidize the
glyoxylate and convert to oxalate using glyoxylate oxidase (Dutton et al. 1993).
Degradation of oxalic acid is mainly caused by oxalate decarboxylase, oxalate
oxidase, Mn peroxidase system, and lignin peroxidase system. Oxalate oxidase
cleaves the oxalic acid using atmospheric oxygen and converts into the carbon
dioxide and hydrogen peroxide. Oxalate decarboxylase degrades the oxalic acid to
formic acid and carbon dioxide. In Mn peroxidase system, Mn(III) is reduced using
oxalic acid and converted into Mn(II) by forming the two molecules of carbon
dioxide (Fig. 7.2). Similarly, veratryl alcohol is reduced using oxalic acid and
converted into reduced form of veratryl alcohol by forming the two molecules of

Table 7.2 List of
exopolysaccharides produced
by the fungi

Exopolysaccharide Fungi

Pullulan Aureobasidium pullulans

Scleroglucan Sclerotium glutanicum

Schizopyllan Schizophyllum commune

Lentinan Lentinula edodes

Grifolan Grifola frondosa

Pleuran Pleurotus ostreatus

Krestin Coriolus versicolar

Ganoderan Ganoderma lucidum
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carbon dioxide in lignin peroxidase system. So, oxalic acid plays a crucial role in
regulating the level of oxalate concentrations inside the fungal cells (Dutton et al.
1993; Mäkelä et al. 2002; Arnstadt et al. 2016).

Oxalic acid is organic di-acid, which is the most oxidized carbon compound after
carbon dioxide. It is a strong acid and has the ability to form complex metals, which
result to precipitate the insoluble metal oxalate. However, the metal oxalate forma-
tion depends on the metal and chemical conditions (Arnott 1995; Gadd 1999).
Oxalates are generally crystalline or amorphous in nature, and its solubility lie
between 10�5 and 10�15. Production of oxalic acid by white rot fungi causes the
metal mobilization from solid metal substrates which can be proceeded by acidolysis
and complex formation or metal immobilization which can form the insoluble
oxalate minerals. Produced oxalate minerals have central role in several
geomicrobiological processes, and they have been applied for the various biotech-
nological applications (Gadd et al. 2014; Gadd 2017).

7.2.4 Reactive Oxygen Species (ROS)

White rot fungi secrete the ligninolytic and cellulolytic enzymes which participate in
the lignocellulose degradation; however, the activity of enzymes is hampered due to

Fig. 7.2 Pathway for the synthesis and degradation of oxalic acid observed in white rot fungi
(adapted from Dutton et al. 1993; Mäkelä et al. 2002) (i ¼ oxaloacetase; ii ¼ glyoxylate oxidase;
iii¼Mn peroxidase; iv¼ Lignin peroxidase; v¼ oxalate decarboxylase; and vi¼ oxalate oxidase)
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their large size. So, fungi have to secrete smaller radicals which are the primary
agents to start the degradation process, wherein reactive oxygen species play an
important role in initiating the wood decay. There are three types of ROS, which
includes hydroxyl radical (OH•), peroxyl radicals (ROO•), and superoxide radicals
(O2

•�). The role of ROS in lignin degradation is shown in Table 7.3. Various white
rot fungi show the production of OH• radicals before producing the lignocellulolytic
enzymes (Barr et al. 1992; Kutsuki and Gold 1982; Tanaka et al. 1999). Among
ROS, OH• radicals are very reactive that causes the cleavage of lignin by reducing
the aliphatic Cα-H and by adding to aromatic rings (Hammel et al. 2002). Mn
peroxidases of white rot fungi act on the unsaturated fatty acids, which generates
OH• and ROO• (Moen and Hammel 1994). However, superoxide radical does not
play any role in the degradation of lignin units, but it produces H2O2 via dismutation
(Gierer et al. 1994).

7.2.5 Other Molecules

White rot fungi also produce the low molecular weight chelators, which are able to
penetrate into the cell wall. For instance, G. trabeum produces low molecular weight
peptide that cleaves the cellulose into short fibers (Wan and Li 2012). Fungi also
produce various organo-halogen metabolites, which are mainly chlorinated anisyl
metabolites (CAM) and chlorinated hydroquinone metabolites (CHM). CAM serves
as substrates for aryl alcohol oxidase that is responsible for the H2O2 production. On
the contrary, some of the CHMs serve as a substrate for lignin peroxidase (de Jong
and Field 1997).

7.3 Remediation of Hazardous Toxicants

Due to the secretion of enzymes and other metabolites, fungi have been employed to
mineralize and/or degrade the hazardous contaminant as they have wide range of
lignocellulolytic enzymes that act on the contaminants. Fungal enzymes have been
applied to degrade the polycyclic aromatic hydrocarbons (PAHs), chlorinated

Table 7.3 Production and mechanism of action of ROS by white rot, brown rot, and soft rot fungi

ROS Mechanism of action Reference

OH• Radicals cleavage the β-O-4, the nonphenolic lignin
hydroxylation causes the phenolics metabolite formation,
demethoxylation, Cα-oxidation of nonphenolic structures

Hildén et al. (2000),
Hammel et al. (2002)

ROO• These radicals cleave the Cα–C3 and β-O-4 which metabo-
lite the nonphenolic lignin

Hammel et al. (2002)

O2
�• It produces the hydrogen peroxide via dismutation, Mn2+

oxidation to Mn3+
Gierer et al. (1994)
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phenols, azo dyes, bisphenol A, pesticides, aflatoxin B1, imiprothrin, triclosan, and
diclofenac (Rudakiya and Pawar 2014; Rudakiya et al. 2019). List of degraded
compounds by fungi have been shown in Fig. 7.3.

Fungi mainly utilizes the organic pollutants to degrade it, wherein they initially
use carbohydrates and proteins for the growth which is further used under
contaminant-stressed condition. Furthermore, the fungus metabolizes the organic
compounds and cleaves the initial aliphatic or aromatic compounds which comprise
volatile organic compounds. Initially, contaminant is degraded by the extracellular
enzymes, organic acids, or hydroxyl radicals which is further followed by intracel-
lular enzymes. Intracellular enzymes such as P450 monooxygenase enzymes oxidize
the cyclic structure of the organic oxidative coupling. The reaction proceeds for the
further mineralization and converted into mineralized compounds (Fig. 7.4) (Harms
et al. 2011; Rudakiya and Pawar 2013a, b, 2017; Rudakiya 2018).

Fig. 7.3 Fungal remediation of different toxicants by biomass, organic acids, enzymes, and other
metabolites
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Fungal cell wall comprises various proteins, fatty acids, and carbohydrates that
comprise certain functional groups in which COOH-, NH3-, and PO4- groups are
involved in the metal chelation. In addition to that, white rot fungi and brown rot
fungi produce extra polymeric substances such as exopolysaccharides in the envi-
ronment which is effective to binding of various toxicants, metal chelation, reduction
of heavy metals, and tolerance to metals. Anionic property of exopolysaccharides
carries out the electrostatic interactions with heavy metals (Shah et al. 2018). Some
fungi show the efficient biosorption efficacy with different heavy metals (Rudakiya
et al. 2018).

7.4 Strategies to Improve Bioremediation Technology

Bioremediation technology has been improved by using various tools and tech-
niques which can be considered as its strategies. Fungi can do biomineralization,
biosorption, biodegradation, biotransformation, bioconversion, bioaugmentation,
biostimulation, biodeterioration, bioleaching, biovolatization, biomagnification,
and bioaccumulation to degrade or remediate various hazardous contaminants and
heavy metals. Figure 7.5 shows that these strategies can be used for the remediation
of hazardous contaminants.

Based on the above discussion, following strategies should be carried out to
remediate various hazardous contaminants.

1. Screening strategy: Screening of fungal isolates is required to achieve higher
degradation efficiency.

Fig. 7.5 Various bioremediation strategies that can be employed by fungi
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2. Optimization strategy: Optimization of culture conditions like C and N sources,
surfactants using single factorial, and statistical optimization should be carried
out to increase degradation.

3. Co-culture strategy: Microcosm or growing two or more fungi together is the
best way to achieve the higher degradation.

4. Genetic modification strategy: Modification and expression of gene to another
organism and overexpression of gene within the same organism are known as
molecular modification strategies to increase the bioremediation process. Fig-
ure 7.6 depicts the whole process wherein fungal DNA as well as RNA is isolated
and expressed in the other organisms or overexpressed in the same organisms to
increase enzyme production which ultimately leads to higher degradation.

5. Multi-omics strategy: This work can be done by isolating bacteria, genome,
gene, and proteins from environmental samples by performing metagenomics,
metatranscriptomics, and metaproteomics analysis. So, the potential gene and/or
protein can be used for bioremediation process.

7.5 Conclusion

Fungi have been employed to remediate the hazardous toxicants for four to five
decades wherein various white rot basidiomycetes can utilize and metabolite the
toxicants which can further convert into non-toxic form. So, the strains can be

Fig. 7.6 Bioremediation of hazardous contaminants can be influenced by modifying the gene and
expressing it into other organisms. Sometimes overexpression of gene can be done to increase the
enzyme activity which influences to the bioremediation
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utilized for the commercial treatments for the remediation of dyes, metals, and other
hazardous toxicants. Many studies show that the bacteria and fungi can efficiently
remediate the contaminants when they are processed together, i.e., microcosm under
in vitro and under in situ conditions. However, more work is focused on the various
pesticides, polycyclic aromatic hydrocarbons, and dyes which are present in soil and
water which has to be remediated. Still, it is quite surprising that few studies were
conducted to address this aspect wherein degradation of multiple hazardous con-
taminants were focused for remediation using fungi (Gouma et al. 2014). In addition
to this, metagenomics, metatranscriptomics, and metaproteomics should be used to
isolate and explore new genes, proteins, and enzymes that can be useful for the
bioremediation.
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Abstract Soil pollution generally causes huge losses in the world’s agricultural
output, and therefore, soil pollution control is essential in agriculture crop production
system. For soil pollution management, we usually reduce the use of chemical
fertilizers, manures, and pesticide, reuse the domestic waste product materials such
as glass containers, plastic bags, paper, and cloth, and recycle the materials such as
some kinds of plastics and glass cane, but their indiscriminate use causes environ-
mental problems and human health hazards. Moreover, the continuous use of those
products without safe disposal leads to soil pollution. Thus, bioremediation of soil
pollution is an alternate eco-friendly method for soil pollution management, in
which plant growth–promoting rhizobacteria are used in alleviating the contami-
nated soil. Many rhizosphere microorganisms including Azotobacter spp., Pseudo-
monas aeruginosa, Glomus spp., Acaulospora spp., Scutellospora spp.,
Streptomyces spp., Klebsiella spp., Lysobacter spp., Rhizobium leguminosarum,
Burkholderia spp., Diaphorobacter nitroreducens, Planomicrobium chinense,
Promicromonospora spp., Mesorhizobium spp., Psychrobacillus psychrodurans,
Pantoea spp., Arthrobacter spp., and Variovorax spp. have been found as plant
growth–promoting rhizobacteria. These PGPR have been found to bioremediate the
polluted soil by using various types of mechanisms such as through siderophore
production, phosphate solubilization, biological nitrogen fixation, production of
1-aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing, signal
interference and phytohormone production, exhibiting antifungal activity, produc-
tion of volatile organic compounds, and induction of systemic resistance, promoting
beneficial plant-–microbe symbioses. Thus, there are immense possibilities for
identifying other growth-promoting rhizobacteria that could help in bioremediation
of polluted soil as well as promote sustainable agriculture.

Keywords Bioremediation · Soil pollution · Plant growth–promoting rhizobacteria ·
Siderophore production · Sustainable agriculture

8.1 Introduction

Soil is the most wondrous gift of nature to human society, it is a part of an ecosystem,
it is the substance existing on the earth’s surface, which grows and develops plant
life (Terzaghi and Peck 1996), it performs a wide range of functions (Jury and Roth
1990) and renders a number of environmental services that connect it with the
human society or in another word soil is essentially a natural body of mineral and
organic constituents produced by solid material recycling, during a myriad of
complex processes of solid crust modifications, which are closely related to the
hydrological cycle (Mirsal 2008). The soil is contaminated by several pollutants
which are also known as soil pollutants, and this phenomenon are called as soil
pollution, i.e., the occurrence of the chemical or other substances in the soil at a
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concentration higher than normal causes adverse effects on non-targeted organism.
Soil pollution often cannot be directly evaluated, constructing it a hidden hazard
(Rodríguez-Eugenio et al. 2018). The status of the World’s Soil Resources Report
(SWSR) identified soil pollution as one of the main soil threats affecting global soils
and the ecosystems services provided by them. The main anthropogenic or manmade
(Brookes 1995) sources of soil pollution are the chemicals used in or produced as
byproducts of industrial activities (Vorobeichik et al. 2012), domestic (Nyenje et al.
2013), livestock (Zhang et al. 2012a, b), municipal wastes (Ali et al. 2014), agro-
chemicals (Wimalawansa and Wimalawansa 2014), and petroleum-derived products
(Pinedo et al. 2013). These chemicals are released to the environment accidentally
(Kim et al. 2018; Awad et al. 2011), for instance, from oil spills or leaching from
landfills, or deliberately, as is the case with the use of fertilizers and pesticides,
irrigation with untreated wastewater, or land application of sewage sludge. Soil
pollution also results from atmospheric deposition from smelting (Zhang et al.
2012a, b; Gunawardena et al. 2013), transportation (Wiłkomirski et al. 2011),
spray drift from pesticide applications, and incomplete combustion of many sub-
stances as well as radionuclide deposition from atmospheric weapons testing and
nuclear accidents. Recently, new types of pollutants are developed such as pharma-
ceuticals, endocrine disruptors, hormones and toxins, among others, and biological
pollutants, which include bacteria and viruses (Rodríguez-Eugenio et al. 2018)
called micropollutants in soil. All these types of soil pollution need to be remediated
by the development of a novel and science-based method, which includes a newly
emerging method, i.e., bioremediation.

Bioremediation is an ecofriendly and an efficient method, in which live microor-
ganism and its products can be utilized for the alleviation of environment contam-
ination (Ojuederie and Babalola 2017). These processes facilitate to crop
reestablishment on treated soil. Microorganisms such as plant growth–promoting
rhizobacteria (PGPR) and plants employ various mechanisms for the bioremediation
of polluted soils (Chibuike and Obiora 2014), and it has been suggested to play a
significant and vital role in alleviating the toxicity in different contaminated soils
(Khan et al. 2009; Jayabarath et al. 2009; Cardón et al. 2010; Cetin et al. 2011). Use
of PGPR strains with many properties, like metal resistance/reduction ability (Joseph
et al. 2007; Kumar et al. 2008; Wani and Khan 2010) and capacity to facilitate plant
growth through variable mechanisms in contaminated soils (Khan et al. 2009), is
considered enormously important for the attainment of the bioremediation program.

8.2 Soil Pollution

Soil pollution includes disturbance of major ecosystem services provided by soil. It
can also adversely affect the yield of plants due to toxic levels of contaminants. It can
be defined as a chemical or a substance out of place and/or present at a higher than
the normal concentration that has adverse effects on any non-targeted organism
(Rodríguez-Eugenio et al. 2018). The main anthropogenic sources of soil pollution
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are the excessive use of chemicals in agricultural (S. Savci 2012), domestic waste
(Nyenje et al. 2013), livestock and municipal wastes (Ali et al. 2014), agrochemicals
(Wimalawansa and Wimalawansa 2014), and petroleum-derived products (Pinedo
et al. 2013). Soil pollution also results from atmospheric deposition from smelting
(Gunawardena et al. 2013) and transportation (Begum et al. 2011). Generally, there
are two types of soil pollution, which is natural and manmade soil pollution, which
includes former factory sites, inadequate waste and wastewater disposal,
uncontrolled landfills, excessive application of agrochemicals, spills of many
types, etc. Soil pollution can be divided into six types based on the source of
pollutant (Fig. 8.1).

Fig. 8.1 Types of soil pollution based on sources of soil pollution
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8.3 Impact of Soil Pollution

Soil pollution adversely affects the plants, animals, and humans health (Lu et al.
2015). Those persons who directly or indirectly inhaled or ingested the soil pollutant
may lose the general health or face health problem in the form of diseases such as
high lead blood levels in children, arthralgia, osteomalacia, and excessive cadmium
in urine (Zhang et al. 2012a, b). However, children are very sensitive to exposure to
soil pollutants or contaminants, whenever they come in close contact with the
contaminated soil by playing in the ground; then the pollutant may affect those
children, and due to this, they suffer from asthma or allergenic-related problems
(Heinzerling et al. 2016) as well as adults also affected. Humans living near the
polluted soil are facing health-related problems such as migraines, nausea, fatigue,
skin disorders, and even miscarriages, and those people who are exposed to soil
contamination for a longer period of time are suffering from cancer, leukemia,
reproductive disorders, kidney and liver damage, and central nervous system failure
(Mishra et al. 2015). Soil pollution is considered a big problem globally with respect
to decreasing soil fertility and productivity, so the microbial activity including PGPR
helps to cope up with such kind of situation; for example some PGPR have the
ability to grow in the polluted soil by utilizing various kinds of pollutants or form the
energy through the degradation of the pollutants present in the soil, so the application
of such kind of PGPR in a timely manner in the soil helps to alleviate soil pollution
by the process of bioremediation (Pilon-Smits 2005).

8.4 Bioremediation

Bioremediation includes the use of living organisms and their products, to remove
contaminants from soil (USEPA 2012; Leung 2004) or to transform high toxic into
less toxic forms (Memon and Schröder 2009). Certain microorganisms are involved
in bioremediation of polluted environment. Maximum bioremediation processes
utilize native microbial species including plant growth–promoting rhizobacteria
(PGPR) (Khan et al. 2009), fungi (Zaidi et al. 2011), actinomycetes (El-Syed et al.
2011), algae (Huq et al. 2007), or plants (Marchand et al. 2010) which can be helpful
in reclamation of the soil at optimum level.

According to Zaidi et al. (2012), bioremediation can be divided into two catego-
ries, which is in situ and ex situ bioremediation. In situ bioremediation includes the
utilization of microorganism for the treatment of the hazardous chemicals in the soil
and surface or subsurface waters while ex situ bioremediation requires diggings of
contaminated soil or pumping of groundwater to facilitate microbial degradation; it
has some disadvantages. So, in situ bioremediation method is considered more
superior than ex situ bioremediation because it does not need digging of the
contaminated soil as well as low-cost technology of contaminated soil
bioremediation.
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8.5 Techniques of Bioremediation Treatment

Rajendran and Gunasekaran (2019) described eight categories of bioremediation
treatment of contaminated soil environment (Fig. 8.2).

8.5.1 Bioaugmentation

Bioaugmentation technique is an in situ process of bioremediation of contaminated
soil. In this process, the contaminated soil is treated with the microbial culture, which
has immense properties of remediation of the soil through the various biological
mechanisms. The microbial activity totally depends on the congenial environmental
condition (Zaidi et al. 2012; Vidali 2001).

Fig. 8.2 Techniques of bioremediation for treatment of contaminated soil environment
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8.5.2 Biomineralization/Biocrystallization

In this technique, microbes generate the ligands which cause the precipitation of
heavy metals as biomass-bound crystalline deposits.

8.5.3 Biostimulation

Biostimulation technique includes the stimulation of the indigenous microbes
present in the contaminated soil by employing the necessary nutrients required.
Necessary nutrients may supply through the mineral application as well in the
form of manure, compost, etc.

8.5.4 Bioattenuation

This technique includes monitoring the process of natural degradation to ensure the
decrease of the contaminant with time at the relevant sampling point is done.

8.5.5 Bioventing

It is an in situ bioremediation technique which is a relatively passive technique. In
this method oxygen is supllied to the soil in order to stimulate aerobic soil microbial
growth and degradation activity. It works for simple hydrocarbons and can be used
where the contamination is deep under the surface (Vidali 2001). The monitoring
difficulty is there (Zaidi et al. 2012).

8.5.6 Biofilters

Biofilters technique includes the use of microbial stripping columns to treat air
emissions. The microbes generally break the toxic substances into a non-toxic
compound e.g., carbon dioxide (CO2), water (H2O), and salts.

8.5.7 Bioreactors

This process involves the use of a container/reactor for the treatment of the liquid or
slurries. The advantage of the bioreactors is rapid degradation kinetics, optimized
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environmental parameters, enhanced mass transfer, and effective use of inoculants
and surfactants. It is a relatively expensive technique that limits its use in bioreme-
diation program, e.g., slurry reactor and aqueous reactor (Zaidi et al. 2012; Vidali
2001).

8.5.8 Composting

It is a type of ex situ and cost-efficient bioremediation program. It is the process of
the aerobic and thermophilic treatment in which contaminated soil is mixed with a
bulking agent. The development of a rich microbial population and the elevated
temperature are a characteristic of composting (Vidali 2001). The extended treat-
ment time is the limitation of the composting (Zaidi et al. 2012).

8.5.9 Land Farming

It is a simple type of ex situ and cost-efficient bioremediation technique in which
contaminated soil is excavated and spread over a prepared bed and intermittently
plowed until contaminants are degraded (Vidali 2001) or it is a solid-phase treatment
system for contaminated soil or maybe in constructed soil treatment cell. The space
requirement is the limitation of land farming (Zaidi et al. 2012).

8.6 Plant Growth-Promoting Rhizobacteria

Plant growth-promoting rhizobacteria (PGPR) are a group of bacteria living in the
soil in association with plant roots and are known to enhance the plant growth
through a variety of direct and indirect mechanisms (Asad 2017) (Fig. 8.3). Direct
mechanisms include nitrogen fixation, phosphate solubilization, potassium solubili-
zation, phytostimulation, siderophore production which limits the Fe activity
(Bhattacharyya and Jha 2012), heavy mineral uptake by plants (Ma et al. 2011),
etc. while indirect mechanisms include antibiotics production, chitinase and
glucanase activity, induced systemic resistance against plant diseases which is
termed as systemic resistance, exopolysaccharide production, phytoremediation
(Nadeem et al. 2014), etc. The PGPR facilitate plant growth under stressful envi-
ronmental conditions by producing some key enzymes such as ACC-deaminase,
chitinase, and rhizobitoxine exopolysaccharides.
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8.7 Role of Plant Growth–Promoting Rhizobacteria
(PGPR) in Bioremediation of Polluted Soil

Plant growth–promoting rhizobacteria (PGPR) are the rhizosphere bacteria that can
facilitate the plant growth under polluted environment by various mechanisms or
they can help in bioremediation of polluted soil (Patel et al. 2016) which can
improve the plant growth by siderophore production (Sayyed et al. 2013), phosphate
solubilization (Ahemad and Khan 2010), biological nitrogen fixation (Yadegari et al.
2010), production of 1-aminocyclopropane-1-carboxylate deaminase (ACC)
(Gontia-Mishra et al. 2017), quorum sensing (Podile et al. 2014) signal interference
and phytohormone production (Cassán et al. 2014), exhibiting antifungal activity
(Ingle and Deshmukh 2010; Shobha and Kumudini 2012), production of volatile
organic compounds (Santoro et al. 2015), induction of systemic resistance
(Annapurna et al. 2013), promoting beneficial plant–microbe symbioses
(Bhattacharyya and Jha 2012), it could detoxify the contaminated environment
sequestration of the metal ions inside the cell (Antony et al. 2011), biotransforma-
tion—transformation of toxic metal to less toxic forms (Cheung and Gu 2007;
Shukla et al. 2009), adsorption/desorption of metals, etc. (Mamaril et al. 1997;

Fig. 8.3 Mechanism of action of plant growth-promoting rhizobacteria (PGPR) in bioremediation
of polluted soil
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Johnson et al. 2007) (Fig. 8.4). It is considered extremely important for the success
of the bioremediation program. Some examples of plant growth–promoting
rhizobacteria and target pollutant with their mechanism to improve plant growth
under polluted environment are listed in Table 8.1.

8.8 New Emerging Technologies of Bioremediation

In recent years, there are several new technologies that gained much attention to
overcome the negative impact of the contaminants in the soil, leading to improve-
ment in reliability, cost efficiency, and speed of bioremediation (Rayu et al. 2012).
The old method of bioremediation which is microbes based is considered slower due
to environmental conditions such as soil structure and moisture. New emerging tools
based on advanced engineering technology of bioremediation provide much reli-
ability to improve the performance of the bioremediation process. This new tech-
nique ranges from mere monitoring and advancement of inherent bioremediation to
novel ideas of genetically engineering the functional genes for bioremediation
application. Some of the new important tools are as follows:

Fig. 8.4 Schematic representation of different mechanism followed by plant growth-promoting
rhizobacteria (PGPR) during bioremediation of polluted soil
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8.8.1 Metagenomics

Metagenomics include phylogenetic analysis of soil microbial flora (Daniel 2005)
for creating soil-based metagenomics library. It promises a continuous source of
pollutant-degrading genes for increased efficiency and utility of transgenic
(microbes and plants) technologies for direct use in bioremediation program (Daniel
2005). This technology also facilitates the mass production of the degrading
enzymes from uncultivable bacteria for improvement of enzymatic remediation
technology. By this technique, we can produce a marketable product based on
bioremediation gene/enzyme product from uncultivable microbes (Rayu et al.
2012). For example, thermostable pyrethroid hydrolyzing enzyme could be used in
the detoxification of pyrethroids (Fan et al. 2012), a novel gene responsible for the
degradation of 3,5,6-trichloro-2-pyridinol; a persistent and toxic metabolite of the
insecticide chlorpyrifos was isolated (Math et al. 2010) from cow rumen and gene
products for remediation including biphenyl-degrading genes (Sul et al. 2009).

8.8.2 Metabolic Engineering

Metabolic engineering includes the improvement of cellular activities by manipula-
tions of enzymatic, transport, and regulatory functions of the cell with the use of
recombinant DNA technology (Nielsen 2001). By this technique, we can combine
analysis of the metabolic pathway and other pathways that can help to improve
cellular properties by designing and implementing rational genetic modifications
(Koffas et al. 1999). This type of metabolic pathway analysis is rapidly becoming
one of the significant features of bioremediation, e.g., Pseudomonas putida degrades
chloro- as well as methylo-aromatics; the combination of tod and tol pathways in
P. putida can increase biodegradation rate of benzene, toluene, and p-xylene (Rayu
et al. 2012).

8.8.3 Protein/Enzyme Engineering

Improving the stability, substrate specificity, and kinetic properties of proteins/
enzymes can be engineered (Dombkowski et al. 2014). It can be done to fine-tune
enzymes for desired substrate specificities and stereo-selectivity. This method helps
to modify the active site volume and topology of cytochrome P450cam enhanced the
catalytic activity of the enzyme (Kumar 2010; Holloway et al. 1998). Another
modification is the incorporation of multiple binding sites within a single peptide,
for binding of the co-factors and other small molecules, can enhance the catalytic
power of the enzyme; this is found to bioremediate the metal wastes (Pazirandeh
et al. 1998).

218 M. K. Chitara et al.



8.9 Factor Affecting the Bioremediation

The bioremediation of the polluted environment is a complex process which is
influenced by certain factors such as microbial factors including growth until critical
biomass is reached, mutation and horizontal gene transfer, enzyme induction,
enrichment of the capable microbial populations, and production of toxic metabo-
lites; environmental factors include depletion of preferential substrates, lack of
nutrients, inhibitory environmental conditions viz soil, temperature (Chitara et al.
2017), pH, O2 and nutrients; substrate factor includes too low concentration of
contaminants, chemical structure of contaminants, toxicity of contaminants, and
solubility of contaminants; biological aerobic vs anaerobic process factor includes
oxidation/reduction potential, availability of e-accepters, and microbial population
present in the site; growth substrate vs co-metabolism factor includes type of
contaminants, concentration, alternate carbon source present, and microbial interac-
tion (competition, succession, and predation); physico-chemical bioavailability of
pollutants include equilibrium sorption, irreversible sorption, and incorporation into
humic matters, and some of the mass transfer limitations are O2 diffusion and
solubility, diffusion of nutrients, and solubility/miscibility in/with water (Boopathy
2000). The microorganisms are cosmopolitan in nature which can be isolated from
everywhere such as at subzero temperatures, extreme heat, desert conditions, in
water, with an excess of oxygen, and in anaerobic conditions, with the presence of
hazardous compounds or on any waste stream (Boopathy 2000). The microbes
utilize the energy source and carbon source and other biological systems. These
microbes can be used to remediate environmental hazards. Joshi (2018) divided the
microbes into two groups viz. aerobic and anaerobic groups as follows:

8.9.1 Aerobic

This group includes those microbes which exist in the presence of oxygen (Rayu
et al. 2012), e.g., Pseudomonas, Alcaligenes, Sphingomonas, Rhodococcus, and
Mycobacterium. These bacteria are helpful in bioremediation of polluted soil and
are reported to degrade pesticide and hydrocarbon both as well as alkenes
compounds.

8.9.2 Anaerobic

This group includes those microbes which exist in the absence of oxygen (Rayu et al.
2012); for example ligninolytic fungi such as the white-rot fungus Phanaerochaete
chrysosporium have the ability to degrade an extremely diverse range of persistent or
toxic environmental pollutants, such as Acromobacter, Alcaligenes, Arthrobacter,
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Bacillus, Acinetobacter, Corneybacterium, Flavobacterium, Micrococcus, Myco-
bacterium, Nocardia, Pseudomonas, Vibrio, Rhodococcus, and Sphingomonas spe-
cies (Gupta et al. 2001; Kim et al. 2007; Jayashree et al. 2012); these bacteria are
helpful to use in the bioremediation of polychlorinated biphenyls (PCBs) in river
sediments, dechlorination of the solvent trichloroethylene (TCE) and chloroform.

8.10 Advantages of Bioremediation

According to Vidali (2001), the advantages of bioremediation of the polluted soil are
as follows:

• It is a natural process so it is perceived by the public as an acceptable waste
treatment process for contaminated material such as soil.

• It conserves the natural properties of soil.
• It utilizes energy from sunlight for performing its activity.
• It helps in increasing microbial biomass in the rhizosphere.
• It is useful for the complete destruction of a wide variety of contaminants.
• The end products of treatment are usually harmless which are usually CO2, H2O,

and cell biomass.
• It is a low-cost application or less expensive than other technologies.

8.11 Limitations

Plant growth–promoting rhizobacteria play a significant role in bioremediation of
polluted soil program. The success of these programs solely depends upon the
activity of PGPR and those need optimum environmental conditions for their growth
and colonization. But recently, the climate change influences the environment; due
to this, the PGPR performance disturbs or gets changed (Compant et al. 2010).
Therefore, climate change may also affect the microbial population present in the
soil surface, subsurface, and plant-associated communities (Drigo et al. 2009).
Climate change affects all the metabolic process, i.e., crop or plant physiology and
metabolism are affected; for example, in plants the production of amino acid
(tryptophan) decrease, which also results in the decrease in the production of IAA,
which disturbs the vegetative growth and root proliferation of the plant (Kravchenko
et al. 2004). The high temperature may also hamper the growth of plant and
physiology together, they are likely to lead to changes in the configuration, abun-
dance, or activity of plant-associated microbial communities. Consequently,
population of microorganisms known for their valuable effects on plant health or
growth might also be reduced, in terms of exhibiting their desirable properties and
colonization capacity under certain environmental conditions (Compant et al. 2010).
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8.12 Future Prospects

For the past few decades, the researchers are giving more attention to the manage-
ment of soil pollution caused by various chemicals or other substances only. The
bioremediation of polluted soil serves as one of the best ways to manage the polluted
soil. This approach utilizes the plant growth–promoting rhizobacteria (PGPR) whose
activity is influenced by climate change. So, the success rate of PGPR is highly
associated with climate, so it is important to understand the plant growth patterns
along with its surrounding environment before the application of PGPR especially
for a particular given set of conditions. Therefore, it is needed to identify a specific
PGPR strain for a particular region for ensuring their better performance and
effectively facilitate the bioremediation of polluted soil under changing climate
conditions.
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Chapter 9
Utilization of Microbial Biofilm
for the Biotransformation
and Bioremediation of Heavily Polluted
Environment
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Abstract It has been observed that beneficial microorganisms play a crucial role in
the biodegradation of waste pollutants and natural organic compounds through
numerous catabolic pathways which enable these strains to persist in numerous
environments. The application of biofilm has been identified as a sustainable bio-
technological approaches that could be applied for effective management of heavily
contaminated environment. Biofilms are defined as the self-produced extra poly-
meric matrices that comprise sessile microbial community where the cells are
characterized by their attachment to either biotic or abiotic surfaces. These extra
cellular slime natured covers enclose the microbial cells and protect from various
external factors. The components of biofilms are very vital as they contribute
towards the structural and functional aspects of the biofilms. Microbial biofilms
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comprise major classes of macromolecules like nucleic acids, polysaccharides, pro-
teins, enzymes, lipids, humic substances as well as ions. Therefore, this chapter
intends to provide an overview on the application of biofilm for the biotransforma-
tion and bioremediation of heavily polluted environments. The modes of action of
these biofilms derived from these beneficial microorganism were also highlighted in
detail.

Keywords Biofilm · Environment · Contaminants · Bacteria · Macromolecules ·
Biotransformation and bioremediation

9.1 Introduction

Bioremediation has been identified as an eco-friendly approach through which toxic
substances are rendered harmless substances majorly from the air, water, and soil
through the application of microorganisms (Alexander and Loehr 1992; Prasad and
Prasad 2012). This has been highlighted as a sustainable environmental approaches
because it prevents all the health and environmental hazards associated with the
synthetic treatment or some other conventional methodology used for the remedia-
tion of polluted environments (Vidali 2001). The typical examples of bioremediation
has been highlighted for the treatments of the following such as explosives, xeno-
biotic compounds, petroleum products, heavy metals, aromatic hydrocarbons, jet
fuels, pesticides, crude oil, herbicides and radionuclides (Gaur et al. 2014).

The application of beneficial microorganisms most especially bacterial and the
application of modern techniques for their improvement for the generation of
genetically modified strains have enabled their wider application for the bioremedi-
ation of heavily polluted environments. Moreover, some other microorganisms such
as fungal, actinomycetes and yeast are utilized for the removal of pollutant from the
environment (Mishra and Malik 2014; Cerniglia 1997; Balaji et al. 2014). It has been
observed that beneficial microorganisms play a crucial role in the biodegradation of
waste pollutants and natural organic compounds through numerous catabolic path-
ways which enable these strains to persist in numerous environments (Bouwer and
Zehnder 1993; Bruins et al. 2000). Some of these beneficial microorganisms are
extremophiles in nature, and they could withstand heavy metal polluted, acidic
contaminated soil or environment or radioactive environment. It has been observed
that there are several factors or conditions that enhance the process of biodegradation
(Prince 2000). The usage of beneficial microorganisms has been highlighted in the
maintenance environment (Adetunji et al. 2017, 2018, 2019a, b, 2020; Adetunji and
Adejumo 2017, 2018, 2019).

Most of these biodegradation processes involve the application of enzymes for
their bioremediation of heavily polluted compounds into non-toxic substances such
as water and carbon dioxide (Das and Dash 2014). The stages involved in the
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metabolic pathways necessitate the movement of electron from electron donors to
electron acceptors. It has been observed that the electron donor serves as substrates
and food for these microorganisms that could biodegrade but are normally restricted
in a non-polluted site. However, it has been stated that in polluted environment the
liberation of an organic electron donor may enhance microorganisms to strive for
any available acceptors to restore the balance of the system.

There are two types of bioremediation which depend on the location of the
contaminant treatment. If the methods to adopt involves in situ bioremediation, the
pollutant samples are treated in the original place of pollution but in ex situ
remediation, management of pollutants takes place typically off-site (Vogt and
Richnow 2014; Jorgensen 2007). It has been observed that in situ bioremediation
has several advantages which includes reduction on the cost of transportation and
disruption of sites. Moreover, it has been observed that optimization of chemical and
physical conditions might hasten the process of biodegradation by bacteria most
especially when supplemented by nutrients. Another effective way of biodegrada-
tion is to apply genetically engineered microorganisms which can modulate the
pathways for enhanced biodegradation of heavily polluted environment (Singh
et al. 2011; Hedlund and Staley 2001; Nakajima-Kambe et al. 2009).

Also, indigenous bacterial communities have been recognized to possess the
potential to metabolize any available heavy metals, and persistent organic pollutants
into a lesser toxic constitutes. The presence of limited nutrient and lack of adequate
access to these contaminants prevents these process involved in the reduction of
these pollutant available in the environment (de Lipthay et al. 2003; Petrie et al.
2003). It has been observed that biofilm and free-living planktonic bacteria could
metabolise toxic and pollutants in the environment. Some factors such as reduction
in protection, low bioavailability of the pollutants and reduced metabolic activity
might result in improper transformation mainly by planktonic bacteria (von Canstein
et al. 2002).

It has been observed that some bacterial community possess the capability to
biodegrade, neutralize and play active role in the mineralization of numerous
xenobiotic compounds in wastewater-activated sludge (Byrns 2001; Bertin et al.
2007). The application of biofilm has been identified as a sustainable and effective
means of detoxification of pollutant in the environment, and they also play a crucial
role in the protection of microbial diversity as well as enhance the increase in their
population (Boon et al. 2003; Accinelli et al. 2012).

The genus Dehalococcoides have been recognized for their potential to produce
biofilm with high application in the biofilm reactor community for the bioremedia-
tion of dechlorination of trichloroethene (Chung et al. 2007). Guezennec et al.
(2012) reported that the inactive oxidation of arsenic and iron by biofilms was
effective at gold-quartz mining sites while Williams et al. (2013) wrote that biofilm
in the tube could reduce the level of selenium concentration in the tubes having
nutrients. Also, Pool et al. (2013) also highlighted the significance of biofilm
enzymes and their application in the coal mine drainage regions when applied as
biomarkers for stream water quality.
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Therefore, this chapter intends to provide an overview on the application of
biofilm for the biotransformation and bioremediation of heavily polluted environ-
ments. The modes of action of these biofilms derived from these beneficial micro-
organism were also highlighted in detail. Moreover, further suggestion and
recommendations that could facilitate the application of biofilm derived from ben-
eficial microorganisms are also discussed in detail.

9.2 Application of Microbial Biofilm for Biotransformation
of Contaminants

Edwards and Kjellerup (2013) in a review looked at the utilization of biofilms in the
biotransformation and bioremediation of some environmental and health priority
contaminants, pesticides, heavy metals, special body care products, pharmaceuticals
and pesticides. The authors stated that the longest ever industrial pollution, which
affect every facet of the environment for several decades, has an unlimited toll in the
lives of living organisms therein. These several mitigation approaches have been put
into place. However, the use of a more efficient, sustainable approach-microbes
(bio-films), is needed for a cleaner environment. These beneficial microbes are well
known for the shear stress, chemical detoxification and eco-protection. The authors
suggested that biofilms can be used as a bioeco-marker for studying of polluted
rivers, streams, lake drainage systems, etc. to ensure water quality and the protection
of aquatic biota.

Saba et al. (2018) tested and evaluated the biosorption and biotransformation
potentials of Exiguobacterium on As (arsenic). The authors used the biofilm and
planktonic methods of growth in the analysis of the As transformation and the
HPLC-ICP-MS for the biosorption. The results of the biological controlled experi-
ment revealed that the bacteria in the planktonic media were able reduce about
3.73 m/mol of AS5+ into AS3+ from a synthetic wastewater effluent after 48 h
incubation period. While the results of the biosorption showed that the biomass of
the biofilms and planktonic media were 29.4 mg/g and 25.2 mg/g, respectively. The
arsenic biosorption process showed that the stress level after 3 days was significantly
impacted and as against the control at P< 0.05. The authors in conclusion stated that
native arsenic resistance microbe E. profundum PT2 was established for biosorption
and biotransform arsenic in both the biofilms and planktonic media. That it should be
considered as a good candidacy for the eco-restoration of pollutants in the ecosystem
because it is green and cost-effective for the purpose it is designed for.

Agrawal and Kumar (2015) did a review of the bacterial alteration of xenobiotic
composites as a clean-up process in an ecosystem. The authors opined that xenobi-
otic composites are tough recalcitrant materials set off from various environmental
outputs (natural and man-made), found in the ecosystem, which have resulted to
global worry because of the attendant health risks (tetragenotoxicity,
mutagenotoxicity, and carcinogenotoxicity) they pose. Microbial biofilms have

230 C. O. Adetunji and O. A. Anani



been shown to degrade toxins in the ecosystem. The utilization of microbial biofilm
metabolites will exhibit the potential in degrading xenobiotics using different path-
ways. The mode of interaction is based on specific enzymes found in the microbial
biofilm genes that aid in the biotransformation of the xenobiotic components The
authors in conclusion recommend bacterial biofilms as a potential biotransformation
agent of xenobiotic compounds.

Mitra et al. (2013) evaluated and tested the biotransformation of fluoranthene by
an intertidal derived biofilm bacteria (Cunninghamella elegans). The results of the
biological controlled experiment showed that the transformation of fluoranthene by
the microbe was more by 22-fold, the growth of the biofilm was more by threefold,
and the genetic expression of the cytochrome-P450 was more by 2.1-fold when
grown in 2% PMMA-CCF biofilm media as compared to the planktonic media. The
entire biological transformation was improved with 10% of sevenfold inoculum. The
total converted metabolites, biofilm and cytochrome-P450 genetic materials were
3.5-fold, 3-fold and 1.9-fold, respectively.

In general, the biofilm production was relatively more which allowed the
utilisation of fluoranthene based on the exopolysaccharides formed in the bacterial
genome which also lead to improved efficiency.

Murphy and Casey (2013) did a review of the biotransformation of
organofluorine by catalyst microbial biofilms. The authors recounted the role of
microbial biofilms in terms of its stability and resistance to xenobiotic substances.
On the basis of this, they are metabolically vigorous for a longer time. These
characteristics make biofilms very difficult in treating under clinical conditions
and, however, utilize for the catalytic bioremediation of toxicants.

Yang et al. (2011) evaluated and tested the biological transformation of arsenic
(As) and selenium (Se) by aggregation strains of biofilms. They stated that AS and
Se are elements of environmental concern when release into the ecosystem, because
of the potential ecological and health risks importance. Communities of microor-
ganisms or biofilms can use as to transform these toxic metals to less noxious forms
such as arsenite and selenite. The results of their study indicated a biotransformation
of As to arsenite and selenium to selenite at the K region of XAS (X-ray absorption
spectroscopy). An MXF (micro X-ray fluorescence) united with a confocal laser
scanning microscopy (CLSM) showed a highly restricted region of condensed Se
strain microbial biofilm. The findings from their study showed that the microbial
biofilm was able to sequester as well as detoxify As and Se. In conclusion, the impact
and fate of As and Se in an aquatic environment can be determined by the role of
microbial biofilms.
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9.3 Application of Microbial Biofilm for Bioremediation
of Heavily Polluted Environment

Mohapatra et al. (2019) did a review of the probable utilization of microbial bacterial
biofilm for the degradation of noxious dye and heavy metal–polluted environment.
The authors recounted the environmental degradation associated with the release of
noxious dyes and heavy metals in the environment was biota live. The emergence of
biofilms, which is green and cost-effective intermediated bioremediation technique
can be utilized in the remediation of dye and heavy metals in any media. This green
cellular sticky matrix has high forbearance property against antibiotics, organic
pollutants and strong chemicals apart from dye and heavy metals. They also have
higher resistance ability against certain environmental factors such as nutrient level,
water current, temperature, salinity, and varied pH levels. They do this by the
possession of parallel inheritable factor and chemo-taxis actions that enable them
to accomplish their basic metabolic wants. This is very important for bioremediation
purpose and utilization.

Ayangbenro and Babalola (2018) did a review of the schemes used in the
bioremediation of metals and metalloids using different microbial polymer methods
such as biofilms. The authors stated that the conventional means of remediation of
pollutants lead to the generation of a lot of waste which might propound series of
health and ecological issues. The use of bioremediation techniques such as biofilms
has been chosen as a perfect choice in the mitigation of environmental concern
pollutants. The reason is because of its eco-friendly nature and low economic cost
attached to its usage. More so, they do not generate extra wastes during the
decontamination process. Instead, any waste generated are re-utilized into the
degradation chain to generate more energy for the entire bio-process. The metabolite
generated by the extracellular microbes aid in the decontamination of the metals and
metalloids and lessen the noxious level in any media they are introduced. These
metabolites or biopolymers have been known to possess different chemicals that
show selective potentials to metals and metalloids decontaminations.

Maksimova (2014) did a review of the biotechnological approaches of bacterial
biofilms. The authors pointed out that bacterial biofilms can be utilized as a
bio-catalysis in the treatment of waste waters as well as the remediation of contam-
inants in benthic regions of aquatic bodies. They are able to do this because they are
self-regenerating and self-immobilizing and possess a level of tolerance to noxious
chemicals based on the enzymatic activities on the substrate. In conclusion, the
authors resounded that it is important that bacterial biofilms form numerous spores
so that they can bio-transform usable products after biodegradation. They suggested
that bacterial biofilms can serve as a promising tool not only for the bioremediation
of sewages but also in food productions, pharmaceutical production, and
bioenergetics.

Meliani and Bensoltane (2016) tested and evaluated the bioremediation potentials
of biofilm Pseudomonas strain on heavy metal. The authors recounted that biofilm
microbes have been known to be important in managing environmental stress,
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especially heavy metal pollution. That Pseudomonas spp. is well utilized as a
bioremediation tool for heavy metal clean-up. The results of the biological controlled
experiment as compared to the control, showed a greasy thick film layer structure
which indicated the degradation of lead and zinc by the mass of Pseudomonas
biofilms strains. The results from the antbiogram indicated that the biofilms of
Pseudomonas were resistant to antibiotics and were significant at P < 0.05;
r ¼ 0.73 and more correlated with each other like the metal resistant, which were
not significant at P> 0.05; 0.31. The findings from their study revealed that biofilms
have the latency to undergo environmental stress and as well able to retain a positive
ecological niche even with an upsurge of the heavy metal contents in the biological
media. Astonishingly, in the growth phase of the biofilm, the stationary phase was
more resilient to the heavy metal impact than the log phase. The authors also noticed
that there was no real evidence that connects heavy metal resilient in the biofilms
based on the data analysis carried on it.

Meliani and Bensoltane (2014) tested and evaluated the potential of augmentation
of Pseudomonas biofilms and biosorption strains (P. aeruginosa, P. putida and
P. fluorescens) on hydrocarbon degradation. The authors recounted the importance
of biofilm and biosorption degrading Pseudomonas with the combination of plank-
tonic microbes as special alternative tool for the biodegradation of hydrocarbons
blends (cyclohexane, benzene, xylene, and gasoline) as well as their resistance to
environmental stress. The results of the evaluation of the production of siderosphore
biofilm development showed that all the strains were able to manufacture
biosurfactant mixtures that enable them to tolerate the aromatic compounds (xylene
and benzene) treated with it. Their results in the degradation of gasoline indicated
that P. aeruginosa was able to show high resilient to gasoline unlike cyclohexane
and benzene. While P. fluorescens was able to degrade benzene and xylene unlike
P. putida that was unable to germinate under the presence of benzene. In all the
assessment of biodegradation of hydrocarbon blends by strains of Pseudomonas,
there was no significant difference as well as positive correlation between the strains
and the environmental stressors at P > 0.01; r ¼ �0.94. However, an undeviating
negative correlation was observed between the cell hydrophobicity and the E24 at
r ¼ �86 and r ¼ �93, respectively. The authors in conclusion underscore the
importance of the utilization of Pseudomonas biofilm strains in the biodegradation
of environmental concerned pollutants.

Mangwani et al. (2016) did a review on the conformity in bioremediation using
microbial biofilms. The authors stated that eco-restoration is a prerogative of the
management of polluted environment. The conventional methods are too expensive
in combating pollution, apart from that, they do not do a total cleanup of
the contaminant. Residues are still left in the source regions of contamination. The
utilization of microbial biofilms is in the increase—a bioremediation tool for the
probable cleaning of toxins in the environment. Biofilms microbes provide an
environmentally sustainable green ecological niche (microenvironment) for an
effective bioremediation process. This is because these native microbes are highly
resistant to ecological stress and cost-effective. Conglomeration of biofilms in an
ecosystem offers a platform for many water-hating noxious compounds. However,
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they are controlled by QS (quorum sensing)-α-hydroxyketones, diffusion signalling
factors, autoinducer-2, peptides, and acyl homoserine lactones main cell message
process, which aid in the signalling of metabolite molecules. The alteration of the
genetic materials of the QS can aid in controlling certain characters (chemotaxis,
motility, catabolic gene expression, horizontal gene transfer, exopolysaccharide
manufacturing, and biosurfactant synthesis) that are important in the utilization of
the biofilms in environmental management of pollution. The authors in summary
stated that QS can be utilized via the fabrication of the QS signals can be used for the
fabrication of assembled biofilms which will improve kinetic degradation of envi-
ronmental concerned pollutants.

Singh et al. (2006) did a review of the environmental implication of biofilms in
the bioremediation of pollutants. The authors recounted that biofilms are known for
the treatment of obstinate chemicals because of their aptitude to restrain toxic
compound and their high matrix microbial dry mass. This entire process is facilitated
by the microbial biofilm genome in the aggregated strains. This also spurs the
microbes to be resistant and have high chemotaxis potential towards increase in
concentration of the pollutants. In summary, the authors recommend several
approaches to be employed in boosting the efficiency of strains of microbial
biofilms. An enhanced microbial strain will optimize the population growth and
vigour varieties of the community of microbes towards severe environmental
stressors.

Turki et al. (2017) tested and evaluated the efficiency of biofilms towards the
remediation and purification of contaminants in wastewater as well as the charac-
terization of the microbial community therein. The authors discovered the following
strains of microbes: Pantoea agglomerans, Cronobacter sakazakii, and
Enterobacter agglomerans in the wastewater samples. A further analysis on the
sample revealed that the community of Salmonella was not impacted by the RB
system. Again, the use of C254-UV is inactivated, which revealed that the commu-
nity of the bacterial had different resilient results in a secondary treated wastewater
chamber. There was no identification of Salmonella sp. at 1440 milliwatts per square
centimeter (mW/cm2) dose. The result obtained showed that there was no presence
of Salmonella in the sample. The authors recommend the utilization of Pantoea
agglomerans, Cronobacter sakazakii, and Enterobacter agglomerans as indicators
and microbial biofilms for biodegradation of wastewater pollutants.

Farber et al. (2019) tested and evaluated the bioremediation and bioaugmentation
of synthetic diesel polluted soil using aggregations of microbial biofilm combined
with wood wastes. The authors recounted that bioaugmentation is an alternative to
bioremediation, which assist in boosting the community of microorganisms that
have the potential in degrading soil pollutants such as diesel. The aggregation of the
soil degrading microbes were cultivated on a wood waste that was pre-treated with
plasma that was designed to increase the microbial-diesel degrade levels. The results
of the study showed that the biofilm capacity of the wood-plasma got to a level of
0.53 � 0.02 OD 540 nm on day 7 when compared to the non-treated wood waste
(0.34 � 0.02). A degradation rate of 9.3 mg and 7.8 mg at day 1 respectively were
noticed in the plasma untreated and treated biofilms in the synthetic polluted diesel at
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0.15% g/g. Though, a degradation rate of 5.7 mg/day was observed in the soil treated
with planktonic microbes. The soil samples were subjected to a temperature of 50 �C
and varied pH levels to ascertain if they will influence the rate of biofilm degrada-
tion, the results showed no significant impact. The findings from this study indicated
that the major resistant strains of microbial biofilms families were
Sphingomonadaceae and the Xanthomonadaceae. The authors in conclusion stated
that being the first study, the utilization of pretreated plasma wood wastes are the
best candidate for the bioremediation of contaminated soil especially diesel
polluted soil.

Piacenza et al. (2017) did a review of the bioremediation of tellurium (Te) and
selenium (Se), chalcogen metals using consortium microbial biofilms. They
recounted that the chalcogens are cosmopolitan natural toxic earth metals which
can be made available in the ecosystem via human activities. The upsurge of these
chalcogens in the environment may contaminate sediments, soils and water, thereby
hindering the life therein. However, those organisms that will survive will
bioaccumulate it and transfer it along the food chain. In other cases, they might
bioconvert or biomethylate these residue toxicants in them, which is a strategy for
sustainability, bringing about an eco-friendly and safer ecosystem. Of recent, many
technological breakthroughs have been made with the utilization of chalcogen-
oxyanions combined to give rise to valuable nanomaterials that are currently useful
in the fields of bio-engineering, optoelectronics and biomedicine.

It has been highlighted that microplastic (MP;<5 mm) is responsible for the high
contamination of aquatic environment. Their presence in the aquatic environment
has been highlighted as a sources of adverse influence against some biota. Research
on microlitre influences is frequently built on spherical and virgin polymer particles
as model MP. It has been discovered that benthic and pelagic environment surfaces
are usually dominated by microorganisms that developed into biofilms. The role of
such biofilm on the microplastic and their fate in the environment. In view of the
aforementioned, Rummel et al. (2017) wrote a comprehensive review on the phys-
ical relationship of early establishment on plastic surfaces and their reciprocal effect
on the weathering processes as vertical movement as well as sorption and their
eventual liberation by microplastic. Moreover, probable ecological influence of
biofilm development on microplastic such as potential detrimental influence of
microplastic, trophic transfer of microplastic are practically unknown. It has been
documented that there is an interesting fact that biofilm–plastic relationship has the
potential to stimulate the impact and fate of microplastic through alternation of the
physical features of the particles. Therefore, it has become a necessity to have a
better knowledge on the relationship and enhance the ecological importance of
current laboratory evaluation by triggering field conditions in which microbial life
constitutes a major driver involved in the driving of biogeochemical processes.

Biofilms are defined as the self-produced extra-polymeric matrices that comprise
sessile microbial community where the cells are characterized by their attachment to
either biotic or abiotic surfaces. These extracellular slime-natured cover encloses the
microbial cells and protects from various external factors. The components of
biofilms are very vital as they contribute towards the structural and functional
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aspects of the biofilms. Microbial biofilms comprise major classes of macromole-
cules like nucleic acids, polysaccharides, proteins, enzymes, lipids, humic sub-
stances as well as ions. The presence of these components indeed makes them
resilient and enables them to survive hostile conditions. Different kinds of forces
like the hydrogen bonds and electrostatic force of attraction are responsible for
holding the microbial cells together in a biofilm, and the interstitial voids and the
water channels play a significant role in the circulation of nutrients to every cell in
the biofilm. The current review adds a note on bacterial biofilms and attempts to
provide an insight on the aspects ranging from their harmful effects on the human
community to their useful application. The review also discusses the possible
therapeutic strategies to overcome the detrimental effects of biofilms.

Edwards and Kjellerup (2013) wrote a comprehensive review in the application
of biofilm together with different nutrient cycling of the microbiome for the
ecorestoration of polluted environment. The authors laid special emphasis on some
specific pollutant such as toxic minerals, heavy metals, hydrocarbons, personal care
products and pharmaceuticals. Moreover, it was highlighted that most industrial
process led to the discharge of numerous pollutants which led to the pollution of
sediment and other surrounding aquatic environment. There are several efforts that
have been put in place for the bioremediation of heavily polluted environment. It has
been stated emphatically that the application of local bacterial community possesses
the potential to be utilized for the bioremediation of tenacious organic contaminants
and oxidizing heavy metal pollutants. One of the major challenges that has been
discovered in the bioremediation of the aquatic environment is that most of these
pollutants are not easily accessible for easy clean up due to nutrient restrictions in the
environment. Therefore, the application of biofilm communities has been
highlighted as a biotechnological tool for the supply of necessary genetic exchange,
beneficial structure, necessary nutrients as well as the prevention from exposure to
environmental stress due to chemical and shear stress as well as prevention from
predators. Biofilms have also been applied as a biomarkers for the evaluation of
stream water quality derived from mine drainage. The structure and durability of
biofilm with numerous arrays of metabolic and structural features make communities
attractive actors in biofilm-mediated ecorestoration resolutions and ecosystem
observation.

9.4 Modes of Action Involved in the Application of Biofilms
Derived from Microorganisms for the Remediation
of Contaminated Sites

The application of biofilm for the in situ ecorestortion of polluted environment may
be carried out frequently. It has been observed that the process involved in the
natural attenuation depends on the natural process without the utilization of genet-
ically modified microorganisms through the application of some beneficial important

236 C. O. Adetunji and O. A. Anani



microorganism for the purpose of ecorestoration. The application of biofilm pro-
duced by beneficial microorganism in the soil could be utilized for the biotransfor-
mation of some heavy pollutant into a lesser component without any presence of
hazardous compounds. The process of natural attenuation incorporation with some
favourable conditions could facilitate the biodegradation, transformation and immo-
bilization and their eventual detoxification into lesser compounds without the input
of human beings (Sayler et al. 1995). Moreover, the passive remediation process
necessitates the availability of microorganism present in the biofilm for continual
degradation of contaminant in the environment, and this process might take a longer
period of time.

The presence of some essential nutrients such as phosphorus compounds and the
presence of oxygen and air might enhance the process of biodegradation of pollut-
ants through the process referred to as biostimulation. The natural attenuations may
be evaluated at definite times (Vogt and Richnow 2014; Jorgensen et al. 2010). It has
been observed that the application of natural attenuation bioremediation techniques
is the best strategies for the ecorestoration of heavily polluted sites such as petroleum
hydrocarbon sites (Rittmann 2004). This could also be referred to as monitored
natural attenuation. Also, bioenhancement and bioaugmentation depend on the
addition of specific application of some beneficial microorganisms or their consortia
for bioremediation of heavily contaminated environment (Tyagi et al. 2011). More-
over, this process might require the application of nutrients and substrates which
might facilitate this process. The microbial populations merging from highly con-
taminated sites also play a crucial role in the biodegradation of heavily polluted sites.
These microorganisms could be stored in the laboratory environment which could
subsequently be applied for the treatment of heavily polluted soil. It has been
highlighted that the process of bioaugmentation techniques could be utilized for
the bioremediation of heavily polluted environment most especially in the situation
where the local population of microorganism did not possess adequate biodegrada-
tion efficiency. This might also lead to the development of biofilm which play
several crucial role in the biodegradation of polluted environment. The stages
involved in the process of bioaugmentation may be evaluated utilizing biomarkers
based on luc or gfp to evaluate and monitor the biodegradation effectiveness of the
inoculated microbes (Jansson et al. 2000).

The process of bioaugmentation may also be enhanced through the application of
genetically engineered methodology or through the techniques that enhances the
concentration of nutrients or the biostimulation techniques, air venting and persis-
tence of microbes.

The process of biostimulation stimulates electron donors and acceptors, nutrients,
substrates, in order to support the action of microorganisms that could play a crucial
role in the biodegradation of polluted environment (Morgan and Watkinson 1989).
The two effective techniques that has been highlighted for the ecorestoration of
petroleum hydrocarbon oil and the improvement of nitrification performance were
biostimulation and bioaugmentation (Grace Liu et al. 2011; Abeysinghe et al. 2002).

Furthermore, the air venting techniques involve the pumping of air into the
heavily contaminated sites that are available below the soil surface to enhance the
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aerobic microbial community and enhances the development of biofilm. It has been
highlighted that polluted soil did not possess necessary endogenous microbial
degrading population or the availability of necessary conditions that could stimulate
the process of biodegradation that might be subjected to ex situ remediation fre-
quently in a reactor.

It has been highlighted that in engineered systems, biofilms are applied in a
bioreactor in an inert support. The biofilm bioreactor is utilized for biochemical
conversion and biosorption of contaminants most especially from municipal waste-
water, heavy metals, industrial wastewater and petroleum hydrocarbon (Boon et al.
2002). The bioreactor based on the application of biofilms is applied for the
commercial bioremediation of industrial wastewaters for decades (Qureshi et al.
2005; Bryers 1993).

Some of the merits of biofilm reactors when compared to conventional treatment
processes includes decreased interruption in the bioreactor, enhanced concentration
and retention of biomass for long periods of time, better tolerance to harsh pollutants,
improved volumetric biodegradation capability, improved metabolic action, large
mass transfer area and improved process flow rates. It has been discovered that in
industrial set up, the biofilm reactors are utilized in situation where some free-
floating microorganisms do not possess the capability to generate adequate biomass
or the biomass could not be retained for a longer period for effective volumetric
conversion. This happens when the microorganism growth is slower most especially
in the suspensions or when diluted feed streams are utilized in bioreactors. More-
over, in a typical biofilm reactor, there is a need for support medium for development
and adhesion of microbes.

9.5 Different Types of Biofilm Bioreactors

There are different types of biofilm bioreactors which entails biofilm airlift suspen-
sion batch reactors, expanded granular sludge blanket, continuous stirred tank,
fluidized bed, trickle bed, air-lift reactors and up flow anaerobic sludge blanket
(Qureshi et al. 2005; Bryers 1993; Rosche et al. 2009; Singh et al. 2006). Biofilm
reactors can be utilized for the bioremediation of off-site or applied for the nearby
contaminated sites. A packed bed reactor is typical designed based on the common
biofilm with solid supports that are arranged together with biofilm to give adequate
supports between the liquid and the biomass. A packed bed reactor entailing a
biofilm mercury-resistant strains has been adequately utilized for the ecorestoration
of mercury (Wagner-Dobler 2003).

Trickle-bed biofilm bioreactor is another type of biofilm-based reactor used for
the treatment of wastewater. Some of the examples of materials used as media in this
type of reactor include ceramics, plastics and rock where the biofilm could develop.
In trickle-bed biofilm bioreactor, waste water normally settles down from the top
through the distribution system over the biofilm surface held on a fixed media.
Normally, the pollutant available in the water will be metabolized as it passes
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through the biofilms. During this process, oxygen may be supplied downwards or
upwards which might eventually diffuse through the water to reach the biofilms. The
next generation of suspended solids available in trickle-bed biofilm bioreactor
necessitates a liquid–solid separation through a clarifier. It has been observed that
the presence of biofilms in dome reactor may not have enough feed in some areas
and may led to decrease in productivity.

Moreover, it has been observed that the fluidized-bed reactor works based on the
coating of beads inside a column with biofilms in which polluted water is pumped
upwards and allows the biofilm beads to be suspended during the ecorestoration of
polluted water (Shieh and Keenan 1986). This constitutes the major difference
between these types of bioreactor and fixed-bed reactor where the media is not
suspended. The solids are suspended by flow of gas or liquid at some certain
velocity. The application of fluidization allows biofilms to develop on a very big
surface area to generate a larger biomass. Oxygen is normally supplied through the
application of oxygenator or through the bottom of the reactor. The fluidized-bed
reactor is applied for the treatment of streams polluted with inorganic and organic
compounds (Shieh and Keenan 1986; Denac and Dunn 1988; Kumar and Saravanan
2009; Costley and Wallis 2001).

Also, it has been observed that rotating biological contactors or modified types of
rotating biological contactors are normally applied for the bioremediation of heavily
polluted environment majorly wastewater treatment by decreasing biochemical
oxygen demand or chemical oxygen demand as well as their high application during
the process of denitrification and nitrification (Costley and Wallis 2001; Eker and
Kargi 2008, 2010). Rotating biological contactors applied a thin biofilm produced
from aerobic microorganisms grown on a bio-discs or rotating cylinder. This work is
based on the principle of lowering the disc into the partially submerged effluents and
gradually rotating the disc so that the biofilm microorganisms are slowly exposed to
effluents and air present, and this allows the biofilm on the disc to enhance the rate of
biodegradation of the pollutants. They are also utilized for the bioremediation of
PAH, heavy metals, volatile organic compounds and degradation of dyes (Eker and
Kargi 2008, 2010; Abraham et al. 2003; Jeswani and Mukherji 2012).

Membrane biofilm reactor generate oxygen or pressurized air through the gas
permeable membranes to the joined biofilms developed on the membrane exterior.
This type of bubble-free, enormous movement of oxygen disallows the stripping of
volatile organic compounds, greenhouse gasses and foaming when an adjuvant such
as surfactant is applied. This is normally utilized for the remediation of high oxygen
demanding wastewater. The membrane normally serves as a support for the devel-
opment of biofilms. It has been observed that hydrogen-based membrane biofilm
reactor works basically based on the delivery of hydrogen to the biofilm entailing
autotrophic bacteria which possess that capability to oxidize hydrogen and utilize
electron donor to numerous pollutants such as nitrate and chlorate (Sarayu and
Sandhya 2012; Rittmann 2006; Nerenberg and Rittmann 2004). Some other type
of reactor includes methane-fed membrane biofilm reactor which is normally utilized
for the removal of pesticides and nitrates from polluted water (Modin et al. 2008).
Also, it could be utilized for the biodegradation of polychlorinated hydrocarbons
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(Fathepure and Vogel 1991). This type of bioreactor enables the bioconversion
processes to take place in spate stages. Concurrent denitrification and nitrification
take place due to the availability of anoxic and aerobic biofilms available in the novel
air-lift internal loop biofilm bioreactor (Zhang et al. 2013).

The other bioreactor is intensified biofilm-electrode reactor which utilized the
application of heterotrophic and autotrophic denitrification for the removal of nitrate
from polluted groundwater (Zhao et al. 2011). The biofilm reactors are utilized for
precipitation of metals such as zinc, copper at the interface of biofilms using
sulphate-reducing bacteria entrap (White and Gadd 1998, 2000; Smith and Gadd
2000). Several studies have been performed through adequate optimization of some
special conditions that could enhance the usage of biofilm for effective bioremedi-
ation of polluted environment (Hosseini et al. 2013; Lin and Hsien 2009; Moreno-
Andrade et al. 2009). The application of simulation and modelling studies have been
performed to optimize the best biodegradation condition that could enhance and
facilitate the process of ecorestoration (Coelhoso et al. 1992; Masic and Eberl 2014;
Martin et al. 2015).

9.6 Conclusion and Further Recommendation
for Further Study

This chapter has provided a detailed information on the application of biofilm for the
bioremediation and biotransformation of heavily polluted environment. Detailed
information of the modes of action and the types of biofilm produced by different
microorganism has been highlighted. There is a need for several scientists from
interdisciplinary field such as civil engineering, soil science and applied microbiol-
ogy to collaborate on the best approach that could facilitate the application of biofilm
for the bioremediation of contaminated environment. The application of strain
improvement for the generation of genetically modified strain should be encouraged
for the production of enhanced biofilm with enhanced bioremediation activity.
Another improved approach that need to be built on entails the application of
DNA embracing catabolic genes that enable biodegradation of particular contami-
nants. This will facilitate the process of natural transformation and bioremediation.
Moreover, the application of genetically modified microorganisms with high poten-
tial for biodegradation of numerous pollutants such as genetically modified micro-
organisms while horizontal movement of genes with high biodegradation especially
from genetically modified microorganisms to the members of biofilms pollution
should be encouraged to facilitate the process of ecorestoration. Furthermore, the
cloning of gene that could improve the synthesis of biosurfactant and chemotactic of
genetically modified microorganisms can improve the process of bioremediation.
There is a need to also perform more research on the reengineering of secreted
proteins in biofilm matrix and their wider application for the bioremediation of
recalcitrant pollutants, heavily polluted environments and their synergetic effect
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with biofilm derived from other microorganisms on their consortium for the
phytoremediation and bioremediation of xenobiotic compounds.

References

Abeysinghe DH, De Silva DGV, Stahl DA, Rittmann BE (2002) The effectiveness of
bioaugmentation in nitrifying systems stressed by a washout condition and cold temperature.
Water Environ Res 74:187–199

Abraham TE, Senan RC, Shaffiqu TS, Roy JJ, Poulose TP, Thomas PP (2003) Bioremediation of
textile azo dyes by an aerobic bacterial consortium using a rotating biological contactor.
Biotechnol Prog 19:1372–1376

Accinelli C, Sacca ML, Mencarelli M, Vicari A (2012) Application of bioplastic moving bed
biofilm carriers for the removal of synthetic pollutants from wastewater. Bioresour Technol
120:180–186

Adetunji CO, Adejumo IO (2017) Nutritional assessment of mycomeat produced from different
agricultural substrates using wild and mutant strains from Pleurotus sajor-caju during solid state
Fermentation. Anim Feed Sci Technol 224:14–19. https://doi.org/10.1016/j.anifeedsci.2016.12.
004

Adetunji CO, Adejumo IO (2018) Efficacy of crude and immobilized enzymes from Bacillus
licheniformis for production of biodegraded feather meal and their assessment on chickens.
Environ Technol Innov 11:116–124. https://doi.org/10.1016/j.eti.2018.05.002

Adetunji CO, Adejumo IO (2019) Potency of agricultural wastes in Pleurotus sajor-caju biotech-
nology for feeding broiler chicks. Int J Recycl Org Waste Agric 8:37. https://doi.org/10.1007/
s40093-018-0226-6

Adetunji CO, Oloke JK, Prasad G, Akpor OB (2017) Environmental influence of cultural medium
on bioherbicidal activities of Pseudomonas aeruginosa C1501 on mono and dico weeds. Pol J
Nat Sci 32(4):659–670

Adetunji CO, Adejumo IO, Afolabi IS, Adetunji JB, Ajisejiri ES (2018) Prolonging the shelf-life of
‘Agege Sweet’ Orange with chitosan-rhamnolipid coating. Hortic Environ Biotechnol 59
(5):687–697. https://doi.org/10.1007/s13580-018-0083-2

Adetunji CO, Oloke JK, Bello OM, Pradeep M, Jolly RS (2019a) Isolation, structural elucidation
and bioherbicidal activity of an eco-friendly bioactive 2-(hydroxymethyl) phenol, from Pseu-
domonas aeruginosa (C1501) and its ecotoxicological evaluation on soil. Environ Technol
Innov 13:304–317. https://doi.org/10.1016/j.eti.2018.12.006

Adetunji CO, Afolabi IS, Adetunji JB (2019b) Effect of Rhamnolipid-Aloe vera gel edible coating
on post-harvest control of rot and quality parameters of ‘Agege Sweet’ Orange. Agric Nat
Resour 53:364–372

Adetunji CO, Oloke JK, Phazang P, Sarin NB (2020) Influence of eco-friendly phytotoxic metab-
olites from Lasiodiplodia pseudotheobromae C1136 on physiological, biochemical, and ultra-
structural changes on tested weeds. Environ Sci Pollut Res 27:9919. https://doi.org/10.1007/
s11356-020-07677-9

Agrawal N, Kumar A (2015) An environmental cleanup strategy - microbial transformation of
xenobiotic compounds. Int J Curr Microbiol App Sci 4(4):429–461

Alexander M, Loehr RC (1992) Bioremediation review. Science 258:874
Ayangbenro AS, Babalola OO (2018) Metal (loid) bioremediation: strategies employed by micro-

bial polymers. Sustainability 10(9):3028. https://doi.org/10.3390/su10093028
Balaji V, Arulazhagan P, Ebenezer P (2014) Enzymatic bioremediation of polyaromatic hydrocar-

bons by fungal consortia enriched from petroleum contaminated soil and oil seeds. J Environ
Biol 35:521–529

9 Utilization of Microbial Biofilm for the Biotransformation and Bioremediation. . . 241

https://doi.org/10.1016/j.anifeedsci.2016.12.004
https://doi.org/10.1016/j.anifeedsci.2016.12.004
https://doi.org/10.1016/j.eti.2018.05.002
https://doi.org/10.1007/s40093-018-0226-6
https://doi.org/10.1007/s40093-018-0226-6
https://doi.org/10.1007/s13580-018-0083-2
https://doi.org/10.1016/j.eti.2018.12.006
https://doi.org/10.1007/s11356-020-07677-9
https://doi.org/10.1007/s11356-020-07677-9
https://doi.org/10.3390/su10093028


Bertin L, Capodicasa S, Occulti F, Girotti S, Marchetti L, Fava F (2007) Microbial processes
associated to the decontamination and detoxification of a polluted activated sludge during its
anaerobic stabilization. Water Res 41:2407–2416

Boon N, De Gelder L, Lievens H, Siciliano SD, Top EM, Verstraete W (2002) Bioaugmenting
bioreactors for the continuous removal of 3-chloroaniline by a slow release approach. Environ
Sci Technol 36:4698–4704

Boon N, Top EM, Verstraete W, Siciliano SD (2003) Bioaugmentation as a tool to protect the
structure and function of an activated-sludge microbial community against a 3-chloroaniline
shock load. Appl Environ Microbiol 69:1511–1520

Bouwer EJ, Zehnder AJ (1993) Bioremediation of organic compounds- putting microbial metab-
olism to work. Trends Biotechnol 11:360–367

Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment.
Ecotoxicol Environ Saf 45:198–207

Bryers JD (1993) Bacterial biofilms. Curr Opin Biotechnol 4:197–204
Byrns G (2001) The fate of xenobiotic organic compounds in wastewater treatment plants. Water

Res 35:2523–2533
von Canstein H, Kelly S, Li Y, Wagner-Döbler I (2002) Species diversity improves the efficiency of

mercury-reducing biofilms under changing environmental conditions. Appl Environ Microbiol
68:2829–2837

Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and
future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333

Chung J, Krajmalnik-Brown R, Rittmann BE (2007) Bioreduction of trichloroethene using a
hydrogen-based membrane biofilm reactor. Environ Sci Technol 42:477–483

Coelhoso I, Boaventura R, Rodrigues A (1992) Biofilm reactors: an experimental and modelling
study of wastewater denitrification in fluidized-bed reactors of activated carbon particles.
Biotechnol Bioeng 40:625–633

Costley SC, Wallis FM (2001) Bioremediation of heavy metals in a synthetic wastewater using a
rotating biological contactor. Water Res 35:3715–3723

Das S, Dash HR (2014) Microbial bioremediation: a potential tool for restoration of contaminated
areas. In: Das S (ed) Microbial biodegradation and bioremediation. Elsevier, Oxford, pp 1–21

Denac M, Dunn IJ (1988) Packed- and fluidized-bed biofilm reactor performance for anaerobic
wastewater treatment. Biotechnol Bioeng 32:159–173

Edwards SJ, Kjellerup BV (2013) Applications of biofilms in bioremediation and biotransformation
of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Appl
Microbiol Biotechnol 97:9909–9921. https://doi.org/10.1007/s00253-013-5216-z

Eker S, Kargi F (2008) Biological treatment of 2, 4-dichlorophenol containing synthetic wastewater
using a rotating brush biofilm reactor. Bioresour Technol 99:2319–2325

Eker S, Kargi F (2010) COD, para-chlorophenol and toxicity removal from synthetic wastewater
using rotating tubes biofilm reactor (RTBR). Bioresour Technol 101:9020–9024

Farber R, Rosenberg A, Rozenfeld S, Benet G, Cahan R (2019) Bioremediation of artificial diesel-
contaminated soil using bacterial consortium immobilized to plasma-pretreated wood waste.
Microorganisms 7(11):497. https://doi.org/10.3390/microorganisms7110497

Fathepure BZ, Vogel TM (1991) Complete degradation of polychlorinated hydrocarbons by a
two-stage biofilm reactor. Appl Environ Microbiol 57:3418–3422

Gaur N, Flora G, Yadav M, Tiwari A (2014) A review with recent advancements on
bioremediation-based abolition of heavy metals. Environ Sci Process Impacts 16:180–193

Grace Liu PW, Chang TC, Whang LM, Kao CH, Pan PT, Cheng SS (2011) Bioremediation of
petroleum hydrocarbon contaminated soil: effects of strategies and microbial community shift.
Int J Biodeteriorat Biodegrad 65:1119–1127

Guezennec AG, Michel C, Joulian C, Dicto MC, Battaglia-Brunet F (2012) Treatment of arsenic
contaminated mining water using biofilms. In: Interfaces against pollution, ffhal-00691189

Hedlund BP, Staley JT (2001) Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon
(PAH)-degrading marine bacterium. Int J Syst Evol Microbiol 51:61–66

242 C. O. Adetunji and O. A. Anani

https://doi.org/10.1007/s00253-013-5216-z
https://doi.org/10.3390/microorganisms7110497


Hosseini KE, Alavi MR, Hashemi SH (2013) Evaluation of integrated anaerobic/aerobic fixed-bed
sequencing batch biofilm reactor for decolorization and biodegradation of azo dye acid red 18:
comparison of using two types of packing media. Bioresour Technol 127:415–421

Jansson JK, Björklöf K, Elvang AM, Jørgensen KS (2000) Biomarkers for monitoring efficacy of
bioremediation by microbial inoculants. Environ Pollut 107:217–223

Jeswani H, Mukherji S (2012) Degradation of phenolics, nitrogen-heterocyclics and polynuclear
aromatic hydrocarbons in a rotating biological contactor. Bioresour Technol 111:12–20

Jorgensen KS (2007) In situ bioremediation. Adv Appl Microbiol 61:285–305
Jorgensen KS, Salminen JM, Bjorklof K (2010) Monitored natural attenuation. Methods Mol Biol

599:217–233
Kumar TA, Saravanan S (2009) Treatability studies of textile wastewater on an aerobic fluidized

bed biofilm reactor (FABR): a case study. Water Sci Technol 59:1817–1821
Lin YH, Hsien TY (2009) Kinetics of biodegradation of phenolic wastewater in a biofilm reactor.

Water Sci Technol 59:1703–1711
de Lipthay JR, Tuxen N, Johnsen K, Hansen LH, Albrechtsen HJ, Bjerg PL, Aamand J (2003) In

situ exposure to low herbicide concentrations affects microbial population composition and
catabolic gene frequency in an aerobic shallow aquifer. Appl Environ Microbiol 69:461–467

Maksimova YG (2014) Microbial biofilms in biotechnological processes. Appl Biochem Microbiol
50:750–760. https://doi.org/10.1134/S0003683814080043

Mangwani N, Kumari S, Das S (2016) Bacterial biofilms and quorum sensing: fidelity in bioreme-
diation technology. Biotechnol Genet Eng Rev 32(1-2):43–73. https://doi.org/10.1080/
02648725.2016.1196554

Martin KJ, Picioreanu C, Nerenberg R (2015) Assessing microbial competition in a hydrogen-based
membrane biofilm reactor (MBfR) using multidimensional modelling. Biotechnol Bioeng 112
(9):1843–1853

Masic A, Eberl HJ (2014) A modelling and simulation study of the role of suspended microbial
populations in nitrification in a biofilm reactor. Bull Math Biol 76:27–58

Meliani A, Bensoltane A (2014) Enhancement of hydrocarbons degradation by use of Pseudomo-
nas biosurfactants and biofilms. J Pet Environ Biotechnol 5:1. https://doi.org/10.4172/2157-
7463.1000168

Meliani A, Bensoltane A (2016) Biofilm-mediated heavy metals bioremediation in PGPR Pseudo-
monas. J Bioremed Biodegrad 7:370. https://doi.org/10.4172/2155-6199.1000370

Mishra A, Malik A (2014) Novel fungal consortium for bioremediation of metals and dyes from
mixed waste stream. Bioresour Technol 171:217–226

Mitra S, Pramanik A, Banerjee S, Haldar S, Gachhui R, Mukherjee J (2013) Enhanced biotrans-
formation of fluoranthene by intertidally derived Cunninghamella elegans under biofilm-based
and niche-mimicking conditions. Appl Environ Microbiol 79(24):7922–7930. https://doi.org/
10.1128/AEM.02129-13

Modin O, Fukushi K, Yamamoto K (2008) Simultaneous removal of nitrate and pesticides from
groundwater using a methane-fed membrane biofilm reactor. Water Sci Technol 58:1273–1279

Mohapatra RK, Behera SS, Patra JK, Thatoi H, Parhi PK (2019) Potential application of bacterial
biofilm for bioremediation of toxic heavy metals and dye-contaminated environments. In: New
and future developments in microbial biotechnology and bioengineering: microbial biofilms:
current research and future trends in microbial biofilms. Elsevier, Amsterdam. https://doi.org/
10.1016/B978-0-444-64279-0.00017-7

Moreno-Andrade I, Buitron G, Vargas A (2009) Effect of starvation and shock loads on the
Biodegradation of 4-chlorophenol in a discontinuous moving bed biofilm reactor. Appl
Biochem Biotechnol 158:222–230

Morgan P, Watkinson RJ (1989) Hydrocarbon degradation in soils and methods for soil
biotreatment. Crit Rev Biotechnol 8:305–333

Murphy CD, Casey E (2013) Biofilm-catalysed transformation of organofluorine compounds. Chim
Oggi 31(3)

9 Utilization of Microbial Biofilm for the Biotransformation and Bioremediation. . . 243

https://doi.org/10.1134/S0003683814080043
https://doi.org/10.1080/02648725.2016.1196554
https://doi.org/10.1080/02648725.2016.1196554
https://doi.org/10.4172/2157-7463.1000168
https://doi.org/10.4172/2157-7463.1000168
https://doi.org/10.4172/2155-6199.1000370
https://doi.org/10.1128/AEM.02129-13
https://doi.org/10.1128/AEM.02129-13
https://doi.org/10.1016/B978-0-444-64279-0.00017-7
https://doi.org/10.1016/B978-0-444-64279-0.00017-7


Nakajima-Kambe T, Ichihashi F, Matsuzoe R et al (2009) Degradation of aliphatic–aromatic
copolyesters by bacteria that can degrade aliphatic polyesters. Polym Degrad Stab
94:1901–1905

Nerenberg R, Rittmann BE (2004) Hydrogen-based, hollow-fiber membrane biofilm reactor for
reduction of perchlorate and other oxidized contaminants. Water Sci Technol 49:223–230

Petrie L, North NN, Dollhopf SL, Balkwill DL, Kostka JE (2003) Enumeration and characterization
of iron (III)-reducing microbial communities from acidic subsurface sediments contaminated
with uranium (VI). Appl Environ Microbiol 69:7467–7479

Piacenza E, Presentato A, Zonaro E, Lampis S, Vallini G, Turner RJ (2017) Microbial-based
bioremediation of selenium and tellurium compounds. Intechopen, London. https://doi.org/10.
5772/intechopen.72096

Pool JR, Kruse NA, Vis ML (2013) Assessment of mine drainage remediated streams using diatom
assemblages and biofilm enzyme activities. Hydrobiologia 709:101–116. https://doi.org/10.
1007/s10750-012-1440-2

Prasad MN, Prasad R (2012) Nature’s cure for cleanup of contaminated environment-a review of
bioremediation strategies. Rev Environ Health 27:181–189

Prince RC (2000) Bioremediation. Kirk-Othmer encyclopedia of chemical technology. John Wiley
& Sons, New York, NY

Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS (2005) Biofilm reactors for industrial
bioconversion processes: employing potential of enhanced reaction rates. Microbiol Cell Fact
4:24

Rittmann BE (2004) Definition, objectives, and evaluation of natural attenuation. Biodegradation
15:349–357

Rittmann BE (2006) The membrane biofilm reactor: the natural partnership of membranes and
biofilm. Water Sci Technol 53:219–225

Rosche B, Li XZ, Hauer B et al (2009) Microbial biofilms: a concept for industrial catalysis? Trends
Biotechnol 27:636–643

Rummel CD, Jahnke A, Gorokhova E, Kühne D, Schmitt-Jansen M (2017) Impacts of biofilm
formation on the fate and potential effects of microplastic in the aquatic environment. Environ
Sci Technol Lett 4:258–267. https://doi.org/10.1021/acs.estlett.7b00164

Saba, Andreasen R, Li Y, Rehman Y, Ahmed M, Meyer RL, Sabri AN (2018) Prospective role of
indigenous Exiguobacterium profundum PT2 in arsenic biotransformation and biosorption by
planktonic cultures and biofilms. J Appl Microbiol 124:431. https://doi.org/10.1111/jam.13636

Sarayu K, Sandhya S (2012) Rotating biological contactor reactor with biofilm promoting mats for
treatment of benzene and xylene containing wastewater. Appl Biochem Biotechnol
168:1928–1937

Sayler GS, Layton A, Lajoie C et al (1995) Molecular site assessment and process monitoring in
bioremediation and natural attenuation. Appl Biochem Biotechnol 54:277–290

Shieh W, Keenan J (1986) Fluidized bed biofilm reactor for wastewater treatment. In: Bioproducts.
Springer, Berlin, pp 131–169

Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14
(9):389–397

Singh JS, Abhilash PC, Singh HB et al (2011) Genetically engineered bacteria: an emerging tool for
environmental remediation and future research perspectives. Gene 480:1–9

Smith WL, Gadd GM (2000) Reduction and precipitation of chromate by mixed culture sulphate
reducing bacterial biofilms. J Appl Microbiol 88:983–991

Turki Y, Mehri I, Lajnef R, Rejab AS, Khessairi A, Cherif H, Ouzari H, Hassen A (2017) Biofilms
in bioremediation and wastewater treatment: characterization of bacterial community structure
and diversity during seasons in municipal wastewater treatment process. Environ Sci Pollut Res
24:3519–3530

Tyagi M, da Fonseca MM, de Carvalho CC (2011) Bioaugmentation and biostimulation strategies
to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241

Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

244 C. O. Adetunji and O. A. Anani

https://doi.org/10.5772/intechopen.72096
https://doi.org/10.5772/intechopen.72096
https://doi.org/10.1007/s10750-012-1440-2
https://doi.org/10.1007/s10750-012-1440-2
https://doi.org/10.1021/acs.estlett.7b00164
https://doi.org/10.1111/jam.13636


Vogt C, Richnow HH (2014) Bioremediation via in situmicrobial degradation of organic pollutants.
Adv Biochem Eng Biotechnol 142:123–146

Wagner-Dobler I (2003) Pilot plant for bioremediation of mercury-containing industrial wastewa-
ter. Appl Microbiol Biotechnol 62:124–133

White C, Gadd GM (1998) Accumulation and effects of cadmium on sulphate-reducing bacterial
biofilms. Microbiology 144:1407–1415

White C, Gadd GM (2000) Copper accumulation by sulfate-reducing bacterial biofilms. FEMS
Microbiol Lett 183:313–318

Williams KH, Wilkins MJ, N’Guessan AL, Arey B, Dodova E, Dohnalkova A, Holmes D, Lovley
DR, Long PE (2013) Field evidence of selenium bioreduction in a uranium-contaminated
aquifer. Environ Microbiol Rep 5:444–452

Yang SA, John R, Lawrence B, George DW, Swerhone B, Ingrid J, Pickering AC (2011)
Biotransformation of selenium and arsenic in multi-species biofilm. Environ Chem 8
(6):543–551. https://doi.org/10.1071/EN11062

Zhang C, Wang L, Yan N, Zhang Y, Liu R (2013) Air-lift internal loop biofilm reactor for realized
simultaneous nitrification and denitrification. Bioprocess Biosyst Eng 36:597–602

Zhao Y, Feng C, Wang Q, Yang Y, Zhang Z, Sugiura N (2011) Nitrate removal from groundwater
by cooperating heterotrophic with autotrophic denitrification in a biofilm–electrode reactor. J
Hazard Mater 192:1033–1039

9 Utilization of Microbial Biofilm for the Biotransformation and Bioremediation. . . 245

https://doi.org/10.1071/EN11062


Chapter 10
Microbes: A Novel Source
of Bioremediation for Degradation
of Hydrocarbons

Mridul Shakya, Poonam Verma, Sunil Kumar, and Sardul Singh Sandhu

Contents

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
10.2 Mechanism of Oil Degradation by Microorganism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

10.2.1 Degradation of Oil and Hydrocarbon by Bacteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
10.2.2 Biodegradation of Oil and Petroleum by Fungi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
10.2.3 Biodegradation of Oil and Petroleum by Algae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
10.2.4 Biodegradation of Oil and Hydrocarbons by Actinomycetes . . . . . . . . . . . . . . . . . 255

10.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Abstract In our daily life, the demand for liquid petroleum products is increasing
day by day. Crude oil-derived hydrocarbons, the largest group of environmental
pollutants found worldwide, pollute our environments severely. Oil or hydrocarbons
cause drastic impacts on living organisms. The many reports about their toxicity
emphasize the ultimate need to remove them from marine and terrestrial environ-
ments. For cleaning up pollution by these hydrocarbons, bioremediation seems to be
the most acceptable and economically justified method. Bioremediation is consid-
ered one of the most sustainable cleanup techniques, but its potential has not been
fully expressed in the field because it operates too slowly to meet the immediate
demands of a given location. The process of bioremediation is carried out by various
microorganisms. Therefore, in this review, we present information about methods of
oil degradation by such microorganisms as bacteria, fungi, algae, and actinobacteria.
These microbes can help degrade oil or hydrocarbons. This review presents the
unique characteristics of oil-degrading microbes. In addition, it is a starting point for
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wider debate about the limitations and possible improvements of currently employed
hydrocarbon bioremediation strategies.

Keywords Hydrocarbons · Degradation · Microorganisms

10.1 Introduction

At the present time, petroleum and its constituent hydrocarbons are widely used as
the main energy source in the industrial, transport, and domestic sectors (Varjani and
Upasani 2016; Arulazhagan et al. 2010). However, use of these hydrocarbons pro-
duces a number of harmful chemical substances that widely affect human beings and
the environment. The effectiveness of these substances depends upon the composi-
tion, concentration, and biological state of the affected organism at the time of
contamination and also on such environmental factors as temperature (Obire and
Ayanwu 2009).

In our environment, toxic components of hydrocarbons are released by transport,
vehicle factories, thermal plants, oil spills, pipelines, oil well leakages, diesel
stations, and contamination by vehicle garages (Costa et al. 2012). The petroleum
hydrocarbons are categorized into two broad divisions, aromatic and aliphatic
compounds. The simple aliphatic and aromatic compounds are degraded in the
environment, but because of their complex structure, the large aliphatic and aromatic
constituents of petroleum hydrocarbons are not degraded (Hasanuzzaman et al.
2007). Therefore, different strategies and approaches are used to degrade these
hydrocarbons, broadly categorized into three groups: physical, chemical, and ther-
mal approaches (Adnan et al. 2018). All these methods are very costly, and the
chemicals required further greatly affect our environment. In the thermal process,
large amounts of heat are generated that affect both the flora and fauna of a specific
area (Ezeji et al. 2007).

Fig. 10.1 Microbes that degrade oil
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Therefore, the preferred method for degradation of hydrocarbons is biological
treatment because of reliability, feasibility, and the high potential for eco-friendly
degradation. The biological methods are very simple to use and require low energy
for operation. A variety of microorganisms can be used for the process in in vitro as
well as in in vivo conditions (Fig. 10.1). Different types of microorganisms—
bacteria, fungi, algae, and yeasts—degrade the hydrocarbons in a green revolution
for removing hazardous contaminants from the environment (Zhang et al. 2013;
Rahman et al. 2003). Native microorganisms have great potential for degradation as

Fig. 10.2 Process of bioremediation

Fig. 10.3 Mechanism of oil degradation
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compared to others because of the specific metabolic pathways that metabolize the
oil content.

Crude oil is composed of several compounds, including aliphatic, aromatic, and
polycyclic aromatic hydrocarbons (PAH) and also sulfur-, oxygen-, and nitrogen-
containing compounds. PAH compounds are toxic and may be carcinogenic. High
concentrations of such pollutants, by their poisonous and carcinogenic nature, can
affect cellular metabolism (Tanti et al. 2009). The biodegradation of petroleum
hydrocarbons may be contained by considering many factors. An essential limiting
factor in the biodegradation of polluted soils is often the low bioavailability and
solubility of the hydrocarbons. Crude oil is one of the most significant pollutants in
the environment, able to cause extreme damage to human beings and ecosystems.
Excessive oil concentration causes serious problems in our body such as liver or
kidney disorders, visible harm to bone marrow, and an increased risk of cancer
(Mishra et al. 2001). The use of microorganisms in degradation of petroleum and its
products has been established as a green, cost-effective, flexible, and environmen-
tally sound remedy. The search for effective and green strategies of oil removal from
polluted infected sites has intensified in recent years because the microbial cleanup
of untreated oil spills is a slow process (Grangemard et al. 2001). In microbial

Table 10.1 List of hydrocarbon- or oil-degrading bacteria

Sample no. Bacteria Degradation Reference

1 Pseudomonas Hydrocarbons Leahy and Colwell (1990)

2 Acinetobacter Hydrocarbons Adebusoye et al. (2007)

3 Alcaligenes Hydrocarbons Floodgate (1995)

4 Vibrio Hydrocarbons Leahy and Colwell (1990)

5 Flavobacterium Hydrocarbons Adebusoye et al. (2007)

6 Achromobacter Hydrocarbons Floodgate (1995)

7 Micrococcus Hydrocarbons Leahy and Colwell (1990)

8 Nocardia Hydrocarbons Adebusoye et al. (2007)

9 Corynebacterium Hydrocarbons Floodgate (1995)

10 Pseudomonas stutzeri n-Tetradecane Adel et al. (2012)

11 Bacillus thuringiensis n-Tetradecane Abou-Shanab et al. (2016)

12 Bacillus pumilus n-Tetradecane Awad et al. (2011)

13 Bacillus cereus n-Tetradecane Bayoumi et al. (2010)

14 Pseudomonas sp. Hydrocarbons Brito et al. (2006)

15 Marinobacter sp. Hydrocarbons Akpoveta et al. (2011)

16 Alcanivorax sp. Hydrocarbons Juhasz and Naidu (2000)

17 Microbulbifer sp. Hydrocarbons Bishnoi et al. (2008)

18 Sphingomonas sp. Hydrocarbons Snape et al. (2001)

19 Micrococcus sp. Hydrocarbons Lloyd and Cackette (2001)

20 Cellulomonas sp. Hydrocarbons Chaillan et al. (2004)

21 Dietzia sp. Hydrocarbons Akpoveta et al. (2011)

22 Gordonia sp. Hydrocarbons Bishnoi et al. (2008)
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remediation, organization of numerous microbes present in the soil can degrade a
wide range of oily sludge (Barathi and Vasudevan 2001).

Oil spills affect many species of plants and animals within the surrounding areas
as well as humans. The search for green and powerful approaches to defining the rate
and overall extent of biodegradation of waste lubricating oil in soils or contaminated
sites has intensified in current years (Umar et al. 2013). Microorganisms can
metabolize oil much as humans convert their food into energy or power. The soil
is the habitat of many organisms, so any changes or variations in soil may further
destroy our environment. The impact of an oil spill is enrichment of the soil-
degrading microbial populations. No single microorganism has been observed to
completely degrade a petroleum hydrocarbon molecule, but particular species or
traces of equal species may be capable of degrading concentrations of oil hydrocar-
bons (Facundo et al. 2001). Species of Pseudomonas are known for their capability
of hydrocarbon degradation (Jewetz et al. 1999) (Fig. 10.2).

10.2 Mechanism of Oil Degradation by Microorganism

The biodegradation of hydrocarbons by microorganisms in nature has four main
steps (Fig. 10.3).

In the first step, pollutants of petroleum are emulsified by surfactant secreted by a
microorganism. Then, the surface of the microorganism adsorbs the entire emulsified
petroleum hydrocarbon. Now, the petroleum hydrocarbon, which is adsorbed onto
the surface of the cell membrane, enters the cell membrane through active transport
or passive transport, endocytosis. In the last step, the petroleum hydrocarbon enters
into the cell, and undergoes an enzymatic reaction that causes its degradation
(Li et al. 2019).

10.2.1 Degradation of Oil and Hydrocarbon by Bacteria

Different species of bacteria are widely used to biologically degrade petroleum
hydrocarbons and also to help remove oil spills by degradation (Abou-Shanab
et al. 2016). Many studies have shown that bacteria can degrade hydrocarbons
such as asphaltenes (phenols, ketones, esters, porphyrins, fatty acids), resins (carba-
zoles, sulfoxides, pyridines, quinolines, amides) (Steliga 2012), and aliphatics,
aromatics, and resins (carbazoles, sulfoxides, pyridines, quinolines, amides)
(Table 10.1). The bacterial strains Pseudomonas fluorescens, P. aeruginosa, Bacil-
lus subtilis, Bacillus sp., Alcaligenes sp., Acinetobacter lwoffi, Flavobacterium sp.,
Micrococcus roseus, and Corynebacterium sp. isolated from polluted areas in
Nigeria were observed for degradation of crude oil (Adebusoye et al. 2007).

Petroleum bioremediation is completed by microorganisms that can utilize hydro-
carbons as a source of energy (Rosenberg et al. 1998). These bacteria are ubiquitous
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in nature and able to degrade numerous hydrocarbons including short-chain, long-
chain, and numerous aromatic compounds, including PAHs. These compounds have
low solubility in water. Thus, as the first step in hydrocarbon degradation entails a
membrane-bound oxygenase, it is important for microorganisms to be in direct
contact with the hydrocarbon substrates. One biological approach to accomplish
contact between the microorganisms and water-insoluble hydrocarbons is emulsifi-
cation of the hydrocarbon. Therefore, it is not unexpected that microorganisms
growing on petroleum typically produce emulsifiers. These surfactants assist to
disperse the oil and to detach the bacteria from the oil droplets after utilizable
hydrocarbon has been depleted (Ron and Rosenberg 2002).

10.2.2 Biodegradation of Oil and Petroleum by Fungi

Crude oil is a primary source of profits for Iraq, which is certainly one of the most
important international oil producers and exporters, ranked nearly fourth interna-
tionally in terms of oil reserves. Incidental spills of crude oil and frequent illegal
disposal of oil wastes lead to serious damage to environments. Cleaning up oil
contaminants is a priority project for the restoration of our natural environment.

Table 10.2 List of oil- or hydrocarbon-degrading fungi

Sample no. Fungus Degradation References

1 Aspergillus flavus Petroleum oil Adekunle and Oluyode (2002)

2 A. niger Petroleum oil Bartha and Atlas (1997)

3 Mucor Petroleum oil Battelle (2000)

4 Rhizopus Petroleum oil Nwachukwu (2000)

5 Talaromyces Petroleum oil Ojo (2005)

6 Penicillium Hydrocarbons Ahmad et al. (2016)

7 Amorphoteca Hydrocarbons Throne-Holst et al. (2007)

8 Candida Hydrocarbons Farag and Soliman (2011)

9 Fusarium Hydrocarbons Al-Nasrawi (2012)

10 Neosartorya Hydrocarbons Jawhari (2014)

11 Mycotypha Hydrocarbons Okafor et al. (2009)

12 Rhizopus Hydrocarbons Mittal and Singh (2009)

13 Botrytis Hydrocarbons Joshi and Pandey (2011)

14 Polyporus sp. Crude oil Kristanti et al. (2011)

15 Amorphoteca sp. Hydrocarbons Jones et al. (2001)

16 Neosartorya sp. Hydrocarbons Chaillan et al. (2004)

17 Paecilomyces sp. Hydrocarbons Ramasamy et al. (2014)

18 Talaromyces sp. Hydrocarbons Wang et al. (1998)

19 Graphium sp. Hydrocarbons Balaji et al. (2014)

20 Popularia sp. Oil Sandhu et al. (2016)

21 Geotrichum sp. Oil Sandhu et al. (2016)
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Chemical, physical, and thermal strategies are available but these methods are very
costly and require site recovery. Several physicochemical and biological methods
have been assessed for treating oil-contaminated environments (Ezeji et al. 2007).
Organic treatment is desired for physicochemical strategies for reasons of its feasi-
bility, reliability, and capability to achieve high elimination efficiency with low
price. Other reasons include the simplicity of its low-power layout, creation, oper-
ation, and use; biodegradation of hydrocarbons is a cost-effective method compared
to chemical methods (Liu et al. 2013). In a biological technique, microorganisms can
use hydrocarbons as their sole energy and carbon source and degrade them instead of
gathering them at every other level (Zhang et al. 2015). Biological treatment may
have an advantage over physicochemical treatment in the removal of spills because it
affords crucial biodegradation of oil parts through microorganisms, is a “green”
alternative for treating risky contaminants without environmentally degrading
effects, and may be cheaper than other strategies (Zhang et al. 2011). Diverse
microorganisms, including bacteria, algae, yeasts, and fungi, can degrade hydrocar-
bons. Indigenous microorganisms with particular metabolic capacities have a con-
siderable role in the biodegradation of crude oil (Rahman et al. 2003). Rahman et al.
(2002) suggested that bacterial consortia isolated from crude oil-infected soils have
the potential to degrade crude oil fractions. In addition to bacteria, fungi are one of
the best oil-degrading organisms. Numerous studies have identified many fungal
species able to use crude oil as their sole source of energy, including
Cephalosporium, Rhizopus, Paecilomyces, Torulopsis, Pleurotus, Alternaria,
Mucor, Talaromyces, Gliocladium, Fusarium, Rhodotorula, Cladosporium,
Geotrichum, Aspergillus, and Penicillium (Jawhari 2014). Hanafy et al. (2017)
observed that the Aspergillus and Penicillium isolated from oil-contaminated sites
close to the Red Sea within the Yanbu region have been extremely useful in crude oil
degradation. Using fungi as a means of bioremediation gives a powerful alternative
for cleansing the environment of contaminants (Hanafy et al. 2017). Data are shown
in Table 10.2.

10.2.3 Biodegradation of Oil and Petroleum by Algae

Natural contamination has been stated to be the most significant issue affecting the
world (Reyes et al. 2016). One of the main causes of environmental pollution is
hydrocarbon contamination in soil and water (El-Sheekh et al. 2013). Unrefined
petroleum, also called dark gold, is the most significant asset in industrialized
nations; however, its handling and transport can cause genuine ecological contam-
ination and interfere with many populations of organisms (Xaaldi et al. 2017). Many
recorded data attest to the real genuine harm brought about by oil slicks in ecosys-
tems and to marine creatures, silt, higher-level organisms, fish, coral reefs, avian
species, reptiles, and surface water bodies (Afshar-Mohajer et al. 2018). When oil is
spilled in the ocean or other waterways, it creates a film that decreases the proportion
of daylight reaching the underwater world, which affects the process of
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photosynthesis. Additionally, total petroleum hydrocarbon (TPH), a natural toxin in
the Earth, is poisonous for all human beings and numerous other organisms (Lee
et al. 2015). Polycyclic aromatic hydrocarbons (PAHs) are the most lethal compo-
nents of unrefined petroleum and are related to cancer-causing agents (Duran and
Cravo 2016). Bioremediation suggests the utilization of living organisms and their
biochemical apparatus to debase or change poisons into less dangerous forms, which
has been demonstrated to be a powerful, confined, and more affordable technique
(Sharma et al. 2018). In any case, a limitation of the bioremediation procedure with
microorganisms is the accessibility of supplements, for example, nitrogen and
phosphorus, which influences the speed of oil degradation (Ron and Rosenberg
2014), although advances in atomic innovations on recombinant DNA have permit-
ted the hereditary improvement of numerous organisms and support the speed of
remediation. The fundamental segments of raw petroleum are naphthenes,
asphaltenes, waxes, pavements, aromatic hydrocarbons, tars, and other unstable
mixes, for example, benzene, toluene, ethylbenzene, and xylene. Many mixes, for
example, pyrene, benzo(a)pyrene and chrysene, are cancer causing, mutagenic, and
teratogenic (Sammarco et al. 2013). Numerous microorganisms, including a few
types of microalgae (Monoraphidium braunii, Chlamydomonas reinhardtii, Chlo-
rella sp.), parasites (Trametes versicolor, Pleurotus eryngii, Phanerochaete
chrysosporium), and bacteria (Pseudomonas aeruginosa, Rhodococcus
erythropolis), have catabolic pathways for the debasement of contaminants (Sharma
et al. 2018). Algal growth is fundamental in seagoing biological systems and in light
of the fact that they are essential markers, are important in the trophic chain,

Table 10.3 List of oil- and hydrocarbon-degrading algae

Sample
no. Algae Degradation References

1 Amphora sp. Crude oil Kvenvolden and Cooper (2003)

2 Prototheca zopfii Crude oil and
hydrocarbons

Aditi et al. (2015)

3 Porphyridium sp. Petroleum waste Vidyashankar and Ravishankar
(2016)

4 Microcoleus sp. Hydrocarbons Yakimov et al. (2007)

5 Agmenellum sp. Petroleum waste Walker et al. (1975)

6 Anabaena sp. Hydrocarbons Cerniglia et al. (1980)

7 Coccochloris sp. Hydrocarbons Bibi et al. (2017)

8 Nostoc sp. Hydrocarbons Lohitesh et al. (2013)

9 Cylindretheca sp. Petroleum waste Srivastav et al. (2013)

10 Aphanocapsa sp. Hydrocarbons Shankar and Suneetha (2013)

11 Chlorella sp. Petroleum waste Rath et al. (2012)

12 Chlamydomonas
sp.

Crude oil Venkata Gopichand et al. (2013)

13 Ulva sp. Hydrocarbons Lohitesh et al. (2013)

14 Petalonia Crude oil and
hydrocarbons

Aditi et al. (2015)
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providing oxygen and natural substances to other living things. Chlorella vulgaris is
a significant species because it adsorb an assortment of natural pollutants (Kong
et al. 2010), so the development of microalgae in wastewater treatment is spreading
widely for the disposal of supplements, control of physical substance parameters, as
feedstock for the generation of biofuel, and expulsion of phenol and polycyclic
aromatic compounds, because of its high adsorption limit, bioaccumulation, bio-
transformation, and biodegradation (He et al. 2016). For this reason, it was proposed
here to determine the capability of biodegradation of unrefined petroleum by the
microalgae Chlorella sp. (Deimer et al. 2018). Data are shown in Table 10.3.

10.2.4 Biodegradation of Oil and Hydrocarbons by
Actinomycetes

The tragic history of soil and water pollution by way of oil spillage from the oil
industry, tankers, offshore systems, related pipelines, garage tanks and wells, and
unlawful oil bunkering has caused essential environmental and fitness defects in
oil-structured countries (Ordinioha and Brisibe 2013). Pollution through crude oil,
inclusive of oil spills and toxic wastes, is a persistent struggle that has prompted
serious threats to human fitness with issues regarding the viability and productive-
ness of ecosystems (Okoh and Trejo-Hernandez 2006). Mechanical and chemical
techniques for the remediation of hydrocarbon-polluted surroundings are frequently
costly and technologically complex. Increasing attention has been paid to the
growing innovative era for cleaning up this contaminant, with bioremediation
being a completely useful method (Vidali 2001). There are many herbal and natural

Table 10.4 List of oil- and hydrocarbon-degrading actinomycetes

Sample
no. Actinobacteria Degradation References

1 Actinoplanes Oil Cappuccino and Sherman
(2002)

2 Nocardia Hydrocarbons George et al. (2011)

3 Streptomyces Oil Rahman et al. (2002)

4 Streptosporangium Hydrocarbons Rifaat and Yosery (2004)

5 Rhodococcus Oil George et al. (2011)

6 Nocardia Hydrocarbons Watanabe et al. (2002)

7 Gordonia Oil Essien and Udosen (2000)

8 Dietzia Oil Beerka and Steinbuchel (2000)

9 Micromonospora Hydrocarbons George et al. (2011)

10 Actinomyces octodloyts Petroleum
Hydrocarbons

11 Saccharomyces cerevisiae
(yeast)

Petroleum
Hydrocarbons
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microorganisms that thrive on the decomposition of those toxic compounds. Usage
of microorganisms for cleanup efforts, referred to as bioremediation, has been shown
to be a successful method for the cleanup of marine regions suffering from oil spills
(Coulon et al. 2006). Bioremediation strategies are currently receiving favorable
exposure as low-cost and promising environmentally friendly technologies for the
remediation of crude oil hydrocarbons without difficulty. Biodegradation of crude
oil and derived aromatic hydrocarbons in marine sediments has been reported (Jones
et al. 2008). The maximum fast and complete degradation of general organic
pollution is introduced under cardiac conditions and the biodegradation system is
mediated by unique enzyme structures (Das and Chandran 2011). Extracellular and
intracellular assault of organic pollution by microbes through oxidation is catalyzed
by peroxidases and oxygenases. The cleanup of toxic natural compounds through
numerous microorganisms and fungi takes place through oxidative coupling medi-
ated via oxidoreductases together with peroxidases (Karigar and Rao 2011).
Microbes derive power via power-yielding biochemical reactions mediated by
these enzymes to cleave chemical bonds and help transfer of electrons from a
reduced natural substrate (donor) to some other chemical compound (acceptor).
For this reason, it is essential to analyze the function and organization of enzymes
for crude oil biodegradation. Actinobacteria have several characteristics that are vital
for surviving in extreme situations, including dry environments and nutrient lack,
and produce biosurfactants that boost contaminant bioavailability and facilitate the
manner of biodegradation (Beilen and Funhoff 2005): these promote the prevalence
of Actinobacteria in pristine and hydrocarbon-polluted soil (Quatrini et al. 2008).
Consequently, it is important to observe crude oil biodegradation of actinobacterial
isolates, particularly from oil-contaminated sites (Table 10.4).

10.3 Conclusion

Bioremediation is the main natural mechanism that can cleanse petroleum and oil
pollutants from the environment. This process uses microscopic organisms such as
bacteria, fungi, algae, and actinomycetes that live in soil and consume oil or
hydrocarbons. A number of factors influencing degradation have been identified to
reduce the toxicity of oil contamination in the environment by removing, degrading,
or transforming contaminants. Therefore, successful bioremediation treatment
requires understanding of those factors.
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Abstract Petroleum oil, a naturally occurring limited resource, is in high demand
globally and has led to the extensive drilling, storage, and international transporta-
tion. The past decades have seen several spills and seepage of crude oil resulting
from accidents. Petroleum oil, which occurs as crude oil, is a complex and variable
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mixture of hydrocarbons, comprising saturates, aromatics, resins, and asphaltenes in
varying proportions. Due to the toxicity and recalcitrant nature of petroleum hydro-
carbons, crude oil pollution is currently considered a global environmental hazard.
While a variety of mechanisms (physical and chemical) are used to tackle such
accidental exposures, they are costly and have inherent limitations that may affect
the ecological balance. Thus, microbial biodegradation of petroleum hydrocarbons
has been generating increasing interest as a cost-effective method that causes the
least damage to the ecological balance. Hydrocarbonoclastic microbes, both bacteria
and fungi have been isolated from contaminated sites and are investigated for their
degradation potential. While bacteria have the advantage of fast turn over, they are
limited in that most species are able to utilize only a limited and often narrow range
of hydrocarbons. Fungi, on the other hand, are intrinsically harder and appear to be
more versatile in their utilization of petroleum hydrocarbons. The main challenges in
use of microbial biodegradation to tackle pollution are complete removal of all the
hydrocarbon components and obtaining adequate efficiency in the process. The need
to improve the degradation potential by microbes continues to drive the exploration
for new isolates, as well as the more recent interest in investigation of microbial
consortia. Use of microbial consortia requires an understanding of their individual
requirements as well as the interactions between them.

Keywords Bioremediation · Petroleum hydrocarbon · Crude oil · Microbial
consortia · Biofilm · Alkane hydroxylase · Monooxygenase

11.1 Introduction

Petroleum (crude oil) is a naturally occurring raw oil derived from buried biomass
over millions of years as a result of natural weathering processes such as thermal
decay and the intense pressure at the buried depths. Crude oil occurs in large
reservoirs in limited locations as a dark yellowish, brownish, or even greenish
viscous liquid, the color depending on the distinct chemical constituents. Petroleum
comprises a complex and varying mixture of hydrocarbons that fall into four broad
chemical fractions: saturates (alkanes), polyaromatic hydrocarbons (PAH), resins,
and asphaltenes, which may occur in various proportions depending on the location,
depth, and the age of the oil (Varjani 2017).

Petroleum products represent a primary energy source and an important industrial
raw material for people and recent years has seen an increased use of these products.
Crude oil is extracted by drilling and then refined by distilling to produce various
products. Petroleum products thus include crude oil as well as a variety of crude oil–
derived products such as petrol and diesel. They are also incorporated into numerous
products such as refrigerator parts.
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The increased use of petroleum products has also led to increased environmental
pollution by petroleum. Crude oil is transported across the oceans as well as overland
in ships or through pipelines. Inadvertent spills and seepage of petroleum products
during storage tanks and transportation is a leading cause of environmental pollution
of both aqueous and terrestrial environments. Over the years has witnessed several
accidental spills; The Prestige oil tanker wrecked northwest of Spain in 2002
released 40,000 tons of oil (Pérez-Cadahía et al. 2007). The Deepwater Horizon
(DwH) oil spill in April 2010 in the Gulf of Mexico, which occurred as a result of an
explosion, released ~4.9 million barrels of crude oil into the Gulf of Mexico before it
was capped in about 3 months. The spilled oil which spread ~450 miles along the
coastline of the Gulf of Mexico is considered to be one of the worst environmental
disasters in the US history (Bell and Gutierrez 2019).

Petroleum hydrocarbons (PH) are recalcitrant environmental pollutants and are a
global hazard, due to its persistent nature and toxicity of certain fractions. It causes
widespread damage to all forms of life, both aquatic and terrestrial animals, from
microbes to fish as well as whales and birds. Damage may be direct or indirect via the
food chain.

While several methods for decontamination including physical and chemical
have been used over the years, investigation of microbial biodegradation of crude
oil has been an area of interest for several decades. There has been a renewed interest
in recent years due to multiple reasons such as increase in oil spills and increased
awareness regarding environmental pollution and the general interest toward use of
green technologies.

Various species of bacteria, fungi, cyanobacteria, and algae are known to be
capable of utilizing petroleum hydrocarbons. Among them, bacteria are considered
the most active agents in bioremediation (Varjani 2017). However, no single bacte-
rial species has been reported to date, which has the capacity to degrade all the
fractions in crude oil.

The need for increased efficiency in the biodegradation process continues to drive
the exploration of novel strains with capacity for PH degradation. The general
strategy is based on screening for indigenous microbes from sites of contamination.
Recent isolations of individual bacteria as well as mixed consortia have been
reported by several investigators in various parts of the world (Al-Dhabaan 2019;
Chettri and Singh 2019; Perera et al. 2019; Wang et al. 2019a).

The degradation of petroleum hydrocarbons by microbes can be observed as a
three-step process—initially the microorganism needs to have access to the hydro-
carbon molecules. Here, the solubility of the molecules or other capacities for
gaining access such as secretion of biosurfactants play an important role. The
compounds then need to be adsorbed to the cell surface and transported to the cell
interior followed by enzymatic degradation and metabolism.
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11.2 Chemical Components of Crude Oil

Natural crude oil is a complex and variable mixture of organic chemicals. Generally,
four main classes have been identified. They are:

1. Aliphatics (mostly saturates)
2. Aromatics
3. Resins
4. Asphaltenes

The mixtures frequently also contain significant percentages of polar molecules
such as nitrogen, oxygen, and sulfur as well as trace metals such as copper,
vanadium, iron, and nickel (Hegazi and El-Gayar 2017).

1. Aliphatics/Saturates
A majority of the aliphatics present in crude oil are saturates, generally

comprising linear alkanes. A much smaller percentage of unsaturated aliphatics
may also be present.

Among the alkanes, as mentioned above, the majority are linear alkanes (n-
alkanes) ranging from <C8 to C30 and above, while some branched alkanes
(iso-alkanes) such as pristine and phytane and cycloalkanes (naphthenes) such as
cyclohexane and cyclopentane may also be present.

The linear alkanes can be divided into four groups based on molecular weight
(Varjani 2017).

<C8 gaseous alkanes
C8–C16 low molecular weight alkanes
C17–C28 medium molecular weight alkanes
>C28 high molecular weight alkane

They are also subdivided into four fractions (F1–F4) based on human and
environmental risk (Varjani 2017).

F1 C6–C10 Volatile fraction

F2 C11–C16 Semi-volatile

F3 C17–C34 Non-volatile

F4 C35+ Lowest volatility and solubility

2. Aromatics
The aromatics frequently present in crude oil are essentially of two types:

(a) Monocyclic aromatic hydrocarbons:
Benzene, toluene, ethylbenzene, and xylene (BTEX)

(b) Polycyclic aromatic hydrocarbons (PAH):

Naphthalene (two rings)
Phenanthrene, anthracene (three rings)
Pyrene, chrysene (four rings)
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Fluoranthene, benzo(a)pyrene (five rings)
The four- and five-ringed molecules are considered as high molecular

weight polyaromatic hydrocarbons.

3. Resins
Resins (pyridines, quinolines, carbazoles, sulfoxides, and amides) (Leahy and

Colwell 1990) are aromatic compounds with long alkyl chains and are rich in
polar functional groups (N, S, O as well as trace metals Ni, V, and Fe). They form
an amorphous solid which is soluble in linear alkanes such as n-heptane and n-
pentane.

4. Asphaltenes
These are high molecular weight compounds having polycyclic clusters,

substituted with varied alkyl groups. These are also rich in polar functional
groups and are dispersed in saturates and aromatics as colloid. They are soluble
in light aromatic hydrocarbons such as benzene and toluene. Phenols, fatty acids,
ketones, esters, and porphyrins fall into this category (Leahy and Colwell 1990).

11.3 Petroleum Hydrocarbons as an Environmental
Pollutant: Biological Effects of Contamination

Petroleum hydrocarbons are persistent pollutants that cause extensive damage to the
ecosystem. Due to their widespread use and accidental release into open systems
such as oceans and waterways, they are considered a global environmental hazard.

Pollution of the terrestrial environment, namely soil, occurs during oil drilling
and accidental damage to overland pipelines. Transport of petroleum oil is generally
through the aquatic medium; oceans, seas, and bays, by either ship or underwater
pipelines. Accidental spillage of oil during transport through water conduits occur
due to technical failures. Although sporadic, they are increasing in frequency with
the increase in global utilization. The impact of such spillage is significant, due to the
open mobile nature of the systems. The oil disperses on the water surface and due to
its viscosity, forms a slick on the surface causing great damage to aquatic life. It cuts
off the exchange of gasses at the air-water surface and depending on the thickness
and viscosity, may affect penetration of sunlight into the water (Freitas et al. 2016).
This would impede photosynthesis and respiration, with disastrous consequences on
the food chain.

The effect of petroleum hydrocarbon contamination, either aquatic or terrestrial,
is alteration of the natural dynamic balance of the ecosystem. While some species
may be lethally affected, it may also result in enrichment of species with capacity for
utilizing hydrocarbons. Either way, efficient mechanisms for restoration of the
ecological balance is therefore crucial.

The damage to the ecosystem may be direct, due to toxicity of some petroleum
fractions. The BTEX and PAH compounds are known carcinogens and may be
teratogenic (Pérez-Cadahía et al. 2007; Costa et al. 2012). Also, they may
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contaminate the food chain as a result of bioaccumulation, affecting even humans far
from the site of contamination (Ite and Ibok 2019).

Petroleum hydrocarbons in the environment undergo “weathering.” This interac-
tion with the environment may be physical (such as dispersion), physicochemical
(such as evaporation, dissolution, and sorption), as well as chemical (photo oxida-
tion, auto-oxidation) and biological (such as natural catabolism of polluting hydro-
carbons by plants and microbes) and has been reviewed recently (Truskewycz et al.
2019).

Volatilization—The lighter aromatics (BTEX) and other simple ringed aromatics
are generally volatile and therefore frequently separate from the more complex
fractions, enhanced by increasing environmental temperatures. Alkanes �C8 are
completely evaporated while C9–C12 are partially evaporated in experimental flasks
containing 1% crude oil in aqueous medium (Perera et al. pers. comm.)

Dissolution—Solubility in aqueous environment decreases as aliphatic chain
length or number of rings in aromatics increase. However, the presence of polar,
non-hydrocarbon components will increase the solubility.

Sorption—Sorption of petroleum hydrocarbon (PH) fractions on to oil particles
may occur by various mechanisms such as diffusion into nanopores or bond forma-
tion with organic matter in the soil. Solubility of the hydrocarbon fractions also
affects sorption to soil (Truskewycz et al. 2019).

Dispersion—Oil spills in water spread and tends to form a viscous slick, cutting
off oxygen and nutrients to the aquatic microbes and animals, thus affecting the
ecosystem. Large masses of oil are generally not easily degraded by microbes due to
restricted accessibility, owing to the hydrophobic nature of the oil. However, oil in
water may also form emulsions as a result of wind and waves and due to microbial
secretion of biosurfactants. This is an important process as it increases the accessible
surface area, enhancing uptake of the hydrocarbons by microbes.

Unlike aquatic oil spills where the oil is dispersed horizontally on the surface of
the water, in terrestrial oil spills, the movement of oil is vertical into the soil. Such
infiltration hinders the evaporation of volatile hydrocarbons, which can be toxic to
microorganisms (Leahy and Colwell 1990).

11.4 Microbial Biodegradation of Petroleum Hydrocarbons

Both physical and chemical methods for remediation of petroleum hydrocarbon
pollution, particularly oil spills are used. However, they have limitations, both
cost-wise as well as toxicity—particularly with the use of chemical emulsifiers.
Bioremediation thus provides an alternative “green” mechanism for tackling this
issue.

Natural biodegradation of petroleum hydrocarbons is carried out primarily by
bacteria and fungi. Numerous species and strains that demonstrate varying capacities
for utilization of hydrocarbons have been identified and continue to be identified.
Microbes may use these for the production of energy or biomass. Biodegradation is

268 S. Jayasena and M. Perera



thus the complete or partial mineralization of environmental organic contaminants,
largely by microorganisms. Thus, biodegradation represents a natural mechanism
through which contaminating petroleum hydrocarbon contaminants can be removed
from the environment.

Petroleum hydrocarbons vary in their susceptibility to microbial degradation,
generally being the highest for low molecular weight alkanes, lowest for polycyclic
aromatics (PAH), and asphaltenes, the latter being the least susceptible (Das and
Chandran 2011; Ite and Ibok 2019). However, this may be contradicted, depending
on the strain of microbe present in the environment and other factors that affect
degradation (Tables 11.1 and 11.2).

While a vast number of microbes, especially bacteria that have the ability to
degrade petroleum hydrocarbons to varying degrees have been isolated, each species
or strain is capable of utilizing only a specific, and often narrow, range of hydrocar-
bons. No bacteria that are capable of degrading the entire range of compounds in
crude oil have been reported, although a few notable strains with a wide range have
been isolated (Wang et al. 2011). A recent article reports the use of a thermophilic,
bio-emulsifier-producing strain of Aeribacillus pallidus which demonstrated the
ability to utilize short chain alkanes as well as some aromatics at 60 �C (Tao et al.
2019). Fungi on the hand appear to be more versatile and demonstrate a wider
capacity, although they have a slower turnover compared to bacteria.

The renewed interest in green technology to manage petroleum pollution con-
tinues to drive the search for newer, more efficient, and more versatile microbes with
a capacity to overcome the main challenges of bioremediation of petroleum hydro-
carbons (PH), obtaining high efficiency of degradation and complete degradation of
all the components of crude oil.

The tables below summarize a selection of microbes investigated, either singly or
as consortia, for the degradation of petroleum hydrocarbons, specifying the substrate
used and the efficiencies obtained for biodegradation.

11.5 Uptake of Hydrocarbons by Microbes

11.5.1 Chemotaxis

Some bacteria such as Pseudomonas have been shown to use chemotaxis to reach the
hydrocarbon molecules, and expression of related proteins has been reported to be
upregulated when cultured in crude oil at 500 mg/L. However, under very high
concentration of crude oil (20,000 mg/L), it was found that chemotaxis was
inhibited, while the secretion of an emulsifier was increased (Wang et al. 2019b).
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Table 11.2 Fungal biodegradation of petroleum hydrocarbons

Microorganism

Hydrocarbon
(initial
concentration)

Growth
conditions Rate of degradation References

Penicillium
simplicissimum YK

n-Alkanes
C30–C40
[0.10% (w/v)]

Two branched
alkanes (pristane
and squalene) 5%
(w/v) and Plysurf
A210G 0.001%
(w/v) (dispersant)
14 days

26–51% Yamada-
Onodera
et al. (2002)

Aspergillus niger Crude oil
(C11–C30)
[1%
(v/v) ¼ 1.2 g/
100 mL]

29 �C, 60 days;
flasks shaken
manually at regu-
lar intervals to
allow adequate
mixing and
homogeneity of
the contents

nC17/pristine and
nC18/Phytane ratios
decreased from the
initial value of
2.510 and 7.289 to
0.132 and 0.474

Mittal and
Singh
(2009)

Fusarium solani and
Rhodotorula glutinis

Pyrene
(40 mg/L)

27 �C for
20 days, in a
rotary shaker at
140 rpm, in
darkness

F. solani 68%
R. glutinis 63%

Romero
et al. (2002)

Aspergillus
sp. RFC-1

Crude oil,
naphthalene
(NAP), phen-
anthrene
(PHE), and
pyrene (PYR)
(20 mg L)

30 �C and
120 rpm, 7 days

Crude oil ¼ 60.3%
NAP ¼ 97.4%
PHE ¼ 84.9%
PYR ¼ 90.7%

Al-Hawash
et al.
(2018b)

A. niger,
A. fumigatus
Fusarium sp.,
P. funiculosum

Crude oil on
agar plates
[2% (w/w)]

25 �C
28 days

95% with A. niger
90% with commu-
nity of A. niger and
A. fumigatus
70% with commu-
nity of A. niger,
A. fumigatus,
P. funiculosum, and
F. solani

Flayyih
Hassan and
Flayyih
Hasan
AI-Jawhari
(2014)

Aspergillus niger,
A. fumigatus, Peni-
cillium
xingjiangense,
Mucor racemosus,
Rhodotorula sp.

Polycyclic
aromatic
hydrocarbons
(PAHs) degra-
dations in
engine oil

Shake-flask cul-
ture (180 rpm),
10% (v/v) engine
oil, and 0.1%
(v/v) Tween
80, at 25 �C for
28 days

A. niger (79.3%);
P. xingjiangense
(73.7%);
A. fumigatus
(71.7%) and
M. racemosus
(69.1%)

Chukwura
et al. (2016)

Trichoderma
viridae,
Varicosporium
elodeae

Crude oil (1%) 15 days, room
temperature

Trichoderma viridae
(66.2%)
Varicosporium
elodeae (40%)

Olukunle
and
Oyegoke
(2016)

(continued)
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Table 11.2 (continued)

Microorganism

Hydrocarbon
(initial
concentration)

Growth
conditions Rate of degradation References

Aspergillus oryzae,
A. niger, Penicillium
commune

Crude oil (1%) 0.1% (v/v) of
Tween 80
30 �C 14 days

A. oryzae 99%
A. niger 54%
P. commune ¼ 48%

El-Hanafy
et al. (2017)

(set-up 1), Aspergil-
lus sp.
(set-up 2), Rhizopus
sp.
(set-up 3), Aspergil-
lus sp. + Rhizopus
sp.

Crude oil
(0.5%)

28 days Control 4.80%
Set-up 1 29.10%
Set-up 2 26.32%
Set-up 3 48%

Wemedo
et al. (2018)

Penicillium citrinum
NIOSN-M126,
Aspergillus flavus
NIOSN-SK56S22

Crude oil
(13.35% w/v)

28 �C on a rotary
shaker at 80 rpm
for 23 days

P. citrinum NIOSN-
M126 total crude
oil ¼ 77% and the
individual n-alkane
fraction ¼ 95.37%;
A. flavus NIOSN-
SK56S22 ¼ 62%

Barnes
et al. (2018)

Aspergillus sp.
RFC-1

Hexadecane
(1%)

30 �C and
130 rpm for
10 days

86.3% Al-Hawash
et al.
(2018b)

Penicillium
sp. RMA1 and
RMA2

Crude oil 1%
(v/v)

14 days of incu-
bation at 30 �C

Penicillium
sp. RMA1 ¼ 57%
Penicillium
sp. RMA2 ¼ 55%

Al-Hawash
et al.
(2018a)

Aspergillus terreus,
A. sulphureus,
Mucor globosus,
Fusarium sp., Peni-
cillium citrinum,
Bacillus sp.,
Enterobacteriaceae,
Pseudomonas sp.,
Nocardia sp., Strep-
tomyces sp.,
Rhodococcus sp.

Crude oil
0.1 mL spread
on the agar
plates

30 �C for bacteria Rhodococcus iso-
lates were more
active than fungi in
n-alkane biodegra-
dation
In addition to
medium chain n-
alkanes, fungi uti-
lized one or more of
the aromatic hydro-
carbons studied,
while bacteria failed
to do so
Rhodochrous
KUCC 8801 in
3 days—85%; in
5 days—93%

Sorkhoh
et al. (1990)

Aspergillus terreus,
Fusarium solani,
Pleurotus ostreatus,
Trametes villosus,
Coriolopsis rigida

Soil contami-
nated with
10% crude oil

26–35% in 90 days
Higher reduction for
A. terreus was
observed

Colombo
et al. (1996)
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11.5.1.1 Bioavailability

A key factor that determines the efficiency of utilization of oil pollutants by microbes
is the bioavailability. Mainly due to the hydrophobic nature of the hydrocarbons,
their aqueous solubility is low, thus limiting their bioavailability. In general, as their
molecular weight increases, the bioavailability of hydrocarbons decreases. As the
enzymes that metabolize hydrocarbons are present within the cells and are rarely
secreted, the molecules need to be taken up and transported to the cell interior. Thus,
microbes that have a capacity for biodegradation of petroleum hydrocarbons have
invariably developed a mechanism to obtain access to these oils and for their uptake
into the cell interior.

Essentially three pathways of uptake have been identified, whereby bacteria are
observed to gain access to petroleum hydrocarbons (Hua and Wang 2014): (1) aque-
ous solubilization of hydrocarbons, (2) pseudo-solubilization through secretion of
biosurfactants, and (3) direct contact with large oil droplets.

Water-soluble aromatics and short-chain hydrocarbons which are more soluble in
the aqueous phase in comparison to the longer length molecules are the most
accessible to microbes and more easily taken up than the less soluble ones.

11.5.2 Biosurfactant Production by Microbes

Many microbes that have the capability of degrading hydrocarbons however have
been shown to secrete biosurfactants. Biosurfactants are able to reduce surface
tension and increase solubility through emulsification and in essence, pseudo-
solubilization, thereby increasing the chance of direct contact between the bacteria
and oil droplets.

A variety of microbes have been found to secrete biosurfactants; Pseudomonas
aeruginosa is among the best-known biosurfactant producing, hydrocarbon-
degrading Gram-negative bacteria (Das and Chandran 2011) that produces
rhamnolipids (a glycolipid surfactant) (Abdel-Mawgoud et al. 2009).
P. aeruginosa DS10-129, an indigenous strain isolated from diesel oil and gasoline
contaminated sites, has been reported to produce rhamnolipid biosurfactants
(Varjani and Upasani 2017). Other species of Pseudomonas, namely P. putida and
P. chlororaphis have also been reported to produce glycolipid type biosurfactants
(Das and Chandran 2011).

Bacillus sp. has been reported to produce “surfactins” (Whang et al. 2008), with
B. subtilis being considered to be the most prominent in surfactin production.
Additionally, B. amyloliquifaciens, B. licheniformis, B. pumilus, and B. mojavensis
have also been reported to produce surfactins (Marti et al. 2014; Li et al. 2016;
Uttlová et al. 2016). Acetinetobacter venetianus RAG has been reported to produce a
lipopolysaccharide biosurfactant (Fondi et al. 2016). Mycobacterium sp. and
Rhodococcus erythropolis are known to produce trehalose lipids (White et al.
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2013; Kügler et al. 2015). The yeast Candida sp. has been reported to produce
another group of promising biosurfactants which are sophorolipids (Elshafie et al.
2015).

As apparent from the above, biosurfactants produced by microbes are chemically
variable compounds; however, all these emulsifying agents are naturally amphi-
pathic molecules, having both a hydrophobic moiety and a hydrophilic moiety. The
hydrophobic component may comprise fatty acid chains of 10–18 carbons or pro-
teins or peptides with hydrophobic side chains. The hydrophilic components are
often esters, hydroxyl, phosphate, carboxylate, or carbohydrate groups. These have
the ability to emulsify the petroleum oil, producing micro-droplets.

The rhamnolipids produced by Pseudomonas sp. are composed of rhamnose
sugars attached to one or two beta hydroxy fatty acids (Abdel-Mawgoud et al.
2009). Surfactin is an anionic, cyclic lipopeptide-type biosurfactant, comprising a
heptapeptide chain (LLDLLDL), linked to a hydroxyl fatty acid (Peypoux et al.
1999). A Rodococcus sp. of marine origin has been reported to produce an extra-
cellular trehalolipid biosurfactant in the presence of a hydrophobic substrate (White
et al. 2013).

A recently reported thermophillic strain of Aeribacillus pallidus (strain SL-1) was
shown to produce a bio-emulsifier which was composed of a mixture of polysac-
charides and proteins, with the latter providing the major emulsifying function.
Being thermophillic, this strain has applications in bioremediation at temperatures
around its optimal temperature of 60 �C (Tao et al. 2019).

It has also been suggested that bacteria may show adaptation to the low bioavail-
ability of hydrophobic carbon sources by changing the hydrophobicity of their cell
surface. Mycobacterium sp. LB50IT was shown to grow to confluency as a biofilm
on solid anthracene, a poorly water-soluble carbon source, when provided as the sole
carbon source. However, a similar biofilm/confluent growth was not observed when
glucose was provided as an additional carbon source. The anthracene-grown cells
were found to be more hydrophobic and more negatively charged compared to
glucose grown cells. The authors concluded that biofilm formation and attachment
may be an adaptation to optimize substrate bioavailability (Wick et al. 2002).

11.5.3 Transmembrane Transport

After adsorption of the hydrocarbon to the cell surface, its uptake into the cell may be
by passive or active methods. Both simple and facilitated diffusion as well as energy
utilizing active transport mechanisms have been reported (Hua and Wang 2014).

In Gram-negative bacteria, several outer membrane (OM) proteins have been
shown to transport petroleum hydrocarbons into the cell interior. The E. coli FadL
(fatty acid degradation protein L) (Van Den Berg 2005) and OmpW (Outer mem-
brane protein W) (Hong et al. 2006), as well as the FadL subfamily proteins TodX
(Toluene dioxygenation X) from Pseudomonas putida and TbuX (Toluene
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m-monooxygenation X) protein from Ralstonia bickettli (Hearn et al. 2008) have
been shown to facilitate the diffusion of small hydrocarbons.

Virtuallly all outermembrane proteins involved in such transport are beta barrel
proteins having an even number (between 8 and 24) of beta strands and have been
classified as porins (Hua and Wang 2014).

Microorganisms have been shown to store the transported hydrocarbon in intra-
cellular inclusion bodies (Mishra and Singh 2012).

11.6 Metabolic Pathways and Molecular Basis
of Hydrocarbon Degradation

Several pathways for degradation and utilization of petroleum carbon energy by
microbes have been identified, both aerobic and anaerobic. For bacteria, many of the
metabolic pathways have been elucidated and commonly involves oxidation, reduc-
tion, hydroxylation, and dehydrogenation (Varjani 2017).

Aerobic biodegradation represents the more commonly utilized method for deg-
radation of hydrocarbons by microorganisms and has been widely investigated. The
microbes overcome the low reactivity of n-alkanes by an initial oxidation reaction
using molecular oxygen. Three possible peripheral pathways have been identified;
terminal oxidation, which is probably the most commonly used, subterminal oxida-
tion, and ω-oxidation. Oxidation of the n-alkane via monooxygenases converts the
alkane into its respective fatty alcohol. This is then further oxidized to the
corresponding aldehyde using alcohol dehydrogenase and aldehyde dehydrogenase,
and then to a fatty acid. The fatty acids are then conjugated to Coenzyme A and then
enter the beta oxidation pathway, finally forming acetyl CoA, which is then used for
intermediary metabolism by the organism (Wentzel et al. 2007).

Degradation of aromatic pathways require different metabolic pathways. The
saturated aromatic ring is cleaved through hydroxylation. As their molecular weight
increases, along with loss of aqueous solubility, they become increasingly
re-calcitrant. These, when degraded to smaller units, are completely oxidized via
the TCA cycle.

Linear alkanes are degraded via several enzyme types, among which the alkane
hydroxylases play a prominent role. Several classes of alkane hydroxylases have
been found in microorganisms (Wang et al. 2011).

1. Soluble non-heme di-iron monooxygenase (degradation of C1–C5 n-alkanes)
2. Membrane-bound particulate copper-containing enzyme (degradation of C1–C5

n-alkanes)
3. Membrane-bound n-alkane hydroxylases (AlkB) (degradation of C6–C16 n-

alkanes)
4. Membrane-bound cytochrome P450 enzymes (e.g.: Cyp52, Cyp153) (degrada-

tion of C6–C16 n-alkanes)
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Pathways for degradation of longer chain alkanes are less clear, although a few
genes, namely ladA and almA have been identified. The ladA encodes a
monooxygenase that is responsible for terminal oxidation of alkanes >C16, first
identified in Geobacillus thermodentrificans (Feng et al. 2007). The almA encodes a
flavin-binding soluble monooxygenase that is responsible for degradation of C32
and longer alkanes (Li et al. 2008; Wentzel et al. 2007).

It has been reasonably well established that the alkane hydroxylase encoded by
alkB gene is a key player in hydrocarbon degradation pathways. AlkB is a
rubredoxin-dependent enzyme, and often both genes are found close together
when present. Both the alkB gene and the alcohol dehydrogenase have been reported
to be induced during hexadecane degradation in several bacterial species;
Rodococcus sp. NJ2 (Mishra and Singh 2012) and Geobacillus sp. (Tourova et al.
2018).

Analysis of the genomes of several Geobacillus strains using degenerate PCR
primers (Tourova et al. 2018) has shown the presence of multiple alkB genes that
encode the alkane-1 mono-oxygenase. The alkB genes in Geobacillus appear to be
located on a plasmid and are thought to have been transferred to Geobacilli from
Rhodococci or other related microbe (Tourova et al. 2018).

Another recently reported Pseudomonas aeruginosa strain (DN1) was found to
contain multiple alkane biodegradation systems, namely two homologs of alkB
(alkB1 and alkB2), a cyp153 homolog and two homologs of alm-like gene (almA1

and almA2). The strain demonstrated efficient (>85%) degradation of crude oil
containing alkanes ranging from C8 to C40. Contrary to current knowledge that
the alkB system is adapted for degradation of alkanes up to C16, in this strain the
alkB genes were found to be upregulated in the presence of longer alkanes, C20 and
C32 (Li et al. 2019).

The Dietzia sp. DQ12-45-1b has both alkB (coding for alkane monooxygenase)
and cyp153 genes (coding for P450 alkane hydroxylase of the cytochrome Cyp153
family), and their induction was detected. It was capable of utilizing a wide range of
n-alkanes (C6–C40), aromatic compounds, and crude oil as the sole carbon source
for growth (Wang et al. 2011).

Peroxygenase secreted by Agrocybe aegerita has been shown to catalyze with
high efficiency, the hydroxylation of linear alkanes at the 2-position and 3-position
using H2O2 as a co-substrate, as well as the regioselective monooxygenation of
branched and cyclic alkanes. However, the peroxygenase appeared to lack activity
on long-chain alkanes (>C16) and highly branched alkanes (e.g.,
tetramethylpentane) (Peter et al. 2011).

Fungi (and some bacteria also) have been reported to use the cytochrome P450
family genes for initiating the degradation of petroleum hydrocarbons. Cytochrome
P450 protein isolated from microsomal membrane fractions of Candida maltosa has
been shown to be involved in the hydroxylation of hexadecane. Analysis of inter-
mediates of n-hexadecane oxidation led to the conclusion that mono-terminal attack
was predominant, whereas di-terminal oxidation proceeded as a minor reaction
(Blasig et al. 1988).
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The halotolerant yeast, Debaryomyces hansenii contains two distinct cyp450
family alkane hydroxylase genes, which showed 60% amino acid homology to the
cyp52A3 gene of C. maltosa (Yadav and Loper 1999) (Table 11.3).

Several genes responsible for degradation of the aromatic fractions of crude oil
have also been reported and are listed in Table 11.4. The genes for degradation of
toluene and xylene in P. putida have been demonstrated to be present in the TOL
plasmid (Worsey and Williams 1975), and a gene with similarity to E. coli fadL
(pWW0 XyIN) was also found to be present in the TOL plasmid, which was involved
in xylene uptake (Kasai et al. 2001).

Analysis of global proteomic changes during degradation of petroleum hydro-
carbons in Pseudomonas aeruginosa P6 cultured in 500 mg/L or 20,000 mg/L crude
oil as the carbon and energy source revealed 63 differentially expressed proteins that
were associated with cellular pathways related to petroleum biodegradation. This

Table 11.3 Genes identified for the degradation of alkanes

Genes Organism References

alkB geo-1 to alkB geo-8
(8 homologs) alkane-1 mono-
oxygenase

Geobacillus sp. Tourova et al. (2018)

alkB-geo1, alkB-geo 4, alkB-geo
6

Geobacillus stearothermophilus
MH-1

Liu et al. (2009)

Rubredoxin (2 homologs) Geobacillus stearothermophilus
MH-1

Liu et al. (2009)

Cytochrome p450 family P. aeruginosa Wang et al. (2019b)

cyp52-E3, cyp52-M1, cyp52-N1 Starmerella bombicola (yeast) Huang et al. (2014)

cyp52 Trichoderma harzianum (filamen-
tous fungi)

Del Carratore et al.
(2011)

Cytochrome C P. aeruginosa Wang et al. (2019b)

ladA Geobacillus thermodentrificans
NG80-2

Feng et al. (2007)

ladA Geobacillus toebii 1024
Geobacillus sp. 1017

Tourova et al. (2016)

almA1, almA2 P. aeruginosa DN1 Li et al. (2019)

Table 11.4 Genes identified for the degradation of aromatics

Genes
Type of aromatic
compound degraded Organism References

Tbu gene cluster
(tbuA1, tbuU, tbuB, tbuV, tbuC)

BTEX, meta cleavage
Toluene-3-
monooxygenase

P. pickettii
PKO1

Byrne et al.
(1995)

Tmo BTEX degradation P. pickettii
PKO1

Byrne et al.
(1995)

Nar gene clusters (narAa, narAb
naphthalene dioxygenase)

Naphthalene
degradation

Rhodococcus
opacus R7

Di Gennaro
et al. (2010)

Phn PAH degradation Burkholderia
sp.

Tittabutr et al.
(2011)
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study provides strong support for the concept that microorganisms use different sets
of genes for the utilization of the petroleum hydrocarbons depending on its concen-
tration in its environment (Wang et al. 2019b).

The downregulation of several chemotaxis related proteins at high concentrations
of crude oil may indicate that, at these concentrations, chemotaxis may be inhibited
in P. aeruginosa, although at lower concentrations, it uses chemotaxis to locate the
hydrocarbon molecules. The concentration of hemolysin (UniProt ID: W1MWQ1), a
bio-emulsifier produced by P. aeruginosa was also found to increase >3-fold at the
higher concentration of crude oil (Wang et al. 2019b).

11.7 Strategies for Bioremediation

Bioremediation is a process whereby biological degradation processes are utilized to
eliminate, attenuate, or transform organic contaminant and pollutants to mainly
carbon dioxide, water, and biomass, in order to mitigate risks (Ite and Ibok 2019).
Microbial bioremediation represents the most “eco-sensible” strategy for the
removal of petroleum hydrocarbon contamination, being the most economical
mechanism as well as the method which causes the least damage to the ecosystem.
It is therefore considered an environmentally sustainable “green” approach for
tackling oil pollution.

Bioremediation strategies may be carried out in situ (decontamination process is
effected at the site of contamination) or ex situ (contaminated material is removed
from the original position to a treatment plant, on site or at another location).

11.7.1 Use of Microbial Consortia

As individual bacterial species or strains often do not have the required genetic/
metabolic diversity to degrade the entire spectrum of components in crude oil, the
general strategy is to use microbial consortia comprising several different species, or
mixed consortia of bacteria and fungi, to achieve complete degradation. It has been
proposed that microbial consortia used in bioremediation efforts should be tailored
to suit the particular condition of the contaminated site as well as the polluting
hydrocarbon classes. Such a strategy may also require the introduction of different
microbial consortia at different stages of the remediation process to ensure complete
removal of hydrocarbon contaminants (Truskewycz et al. 2019).

Knowledge of the microbes’ capacities for biodegradation and the interaction
between the organisms is important for developing optimally functioning bioreme-
diation systems. In microbial communities, individual species may interact with each
other in a synergistic relationship that produces a cocktail of bioactive compounds,
which may include oxidative and hydrolytic enzymes that have been implicated in
processing of various hydrocarbon fractions. Perera et al. (2019) reported a naturally
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occurring, biofilm-forming Bacillus-Aspergillus community which demonstrated
synergistic behavior when grown on hexadecane or crude oil (Perera et al. pers.
comm.), as the sole source of carbon, where the degradation percentage by the
biofilm was higher within the test period than achieved by the sum of the degradation
by individual organisms.

Conversely, some other combinations of microbes may interact antagonistically;
e.g., Burkholderia, Paraburkholderia, and Thauera were found to have negative
correlations in activated sludge during petroleum hydrocarbon degradation, while
Burkholderia, Paraburkholderia and Luteibactor, as well as Flavobacerium and
Aquabacterium were found to have positive mutual correlations (Cui et al. 2019).

Careful selection of microbial species is therefore warranted in developing a
system for biodegradation.

11.7.2 Immobilization of Microbes

Immobilization of microbes is an important technology in bioremediation strategies
as it helps to maintain a high biomass. In open mobile systems such as oceans, the
hydrocarbanoclastic microorganisms may be lost from the site due to dispersion and
the free flow of water. Immobilization techniques are used to retain the microbes at
the site of contamination and have many added advantages such as providing a
suitable protective microenvironment for the survival of microorganisms as well as
allowing cell reuse, thus reducing costs. They have also been shown to provide
resistance to toxic chemicals, pH, temperature, etc. and provide genetic stability of
the microorganisms (Bayat et al. 2015).

Supportive carriers for immobilization are of two types, namely organic and
inorganic. Organic carriers may be natural or synthetic. Examples of natural carriers
include agar, agarose, and chitin while acrylamide, polyurethane, polyvinyl, and
resins are some synthetic carriers that are used for immobilization. Inorganic carriers
may be compounds like clay, activated charcoal, or ceramics (Bayat et al. 2015).

Various techniques are used to immobilize microbes onto the carriers. Recent
research (Chen et al. 2017) comparing free bacterial consortia with immobilized
consortia has shown that immobilization by embedded techniques improve the crude
oil degradation efficiency. A recent study tested the use of cinnamon and peanut
shells to embed and immobilize diesel degrading Pseudomonas YT strain (Fu et al.
2019). Their study indicated that cinnamon shells were more suitable for immobi-
lization. A sodium alginate-calcium chloride (calcium alginate) biocarrier has been
used and performance improved with the addition of activated carbon in the embed-
ding (Chen et al. 2017).

Naturally formed biofilms as previously reported (Perera et al. 2019) may also
prove to be an useful alternative where ex situ remediation is carried out in a
remediation plant.
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11.7.3 Biostimulation and Bioaugmentation

Biostimulation is a method to stimulate the metabolic capacity of the indigenous
microbial flora of the contaminated site and thus enhance the degradation capabil-
ities by provision of adequate aeration, nutrients, moisture, etc. Bioaugmentation
refers to the improvement of the metabolic capacity of the microbial flora at the
contaminated site by the introduction of active microbial communities. Either single
strains or mixtures of strains may be introduced (Ite and Ibok 2019). Several studies
have demonstrated that both biostimulation and bioaugmentation improve the bio-
degradation capability of weathered contamination sites.

A recent study compared biostimulation with nitrogen and phosphorous verses
bioaugmentation with native hydrocarbanoclastic microbes in contaminated soil.
The study revealed that improved biodegradation rates were obtained with
biostimulation, after 12 weeks test period. Bioaugmentation resulted in changes to
microbial composition, with the inoculated microbes quickly becoming predominant
with consequent reduction in microbial diversity (Wu et al. 2019). These results
indicate that reduction in biodegradation rates in a site that contained native petro-
leum hydrocarbon (PH) biodegraders may be associated with nutrient insufficiency.
Further, that stable maintenance of a diverse microbial composition may be more
beneficial, and achievable through adequate maintenance of nutrients.

11.7.4 Use of Dispersants/Surfactants

Use of surfactants during bioremediation of oil spills, especially in marine environ-
ment, is a common strategy. Frequently, chemical dispersants such as Tween 80 are
used (Tian et al. 2016). These chemicals emulsify the oil and convert them into
smaller droplets which are more easily utilized by microbes. However, these
chemicals deteriorate the water quality, may perturb the microbial composition in
the affected area, and can be fatally toxic to the aquatic fauna (Tian et al. 2016).
Additionally, reduction of the droplet size of the oil has been reported to result in
increased uptake of PAH by fish (Ramachandran et al. 2004), thus affecting the
aquatic life and or entering the food chain.

Recent studies, based on metagenome analysis of microbial clusters
experimented in marine microcosms, have shown that the use of biosurfactants
alongside microbial biodegradation may prove to be more suitable over chemical
surfactants due to their biodegradability, low toxicity, and efficiency imparted in
microbial remediation of petroleum hydrocarbons. Their studies indicate that expres-
sion of genes related to hydrocarbon degradation was stimulated by the biosurfactant
surfactin, while these genes were in fact decreased by the chemical surfactant
Ultrasperese II (Rattes de Almeida Couto et al. 2019). The difficulties in the
production of biosurfactants in bulk quantities required for the application in field
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situations, as opposed to chemical dispersants, are currently the limiting factors that
prevent their application in the field (Patel et al. 2019).

A recently isolated B. Subtilis BL27 (Wang et al. 2019b) was found to be
enhanced by SDS and Tween 80 while being indifferent to the addition of
biosurfactants rhamnolipid and surfactin. Further, addition of CTAB and TTAB
were found to be highly toxic.

Biosurfactants produced by one species of microorganisms may damage the cell
membranes of other microbial species or strains. Therefore, when using microbial
consortia, this aspect needs to be considered. The use of naturally occurring com-
munities in bioremediation efforts (Perera et al. 2019) may help to overcome this
hurdle. In their studies, a natural biofilm-producing bacterial–fungal consortium
(comprising Aspergillus sp. MM1 and Bacillus sp. MM1) demonstrated synergistic
degradation of hexadecane (Perera et al. 2019) and crude oil (Perera et al. pers.
comm). While both were biosurfactant producers, Bacillus sp. MM1 produced
comparatively higher biosurfactant than the consortium, indicating it reduces its
production in the presence of the fungus. This is in conformity with a previous report
(Benoit et al. 2015) which indicated that surfactin production by B. subtilis was
reduced when co-cultivated with Aspergillus. This could be due to the active
adaptation of the Bacillus to the fungus. Surfactin is not only a powerful
biosurfactant, but an antifungal agent (Sarwar et al. 2018).

These reports highlight the need for good understanding of the requirements of
the organism or community, prior to their use in a bioremediation system.

11.8 External Factors Affecting Biodegradation

In addition to the presence of suitable microbes, several other factors also affect the
biodegradation of petroleum hydrocarbons. The concentration of crude oil in the
polluted site greatly affects the biodegradation capacity of the microbes, with
increasing concentrations above 2% reported to decrease biodegradation efficiency
(Chen et al. 2017). Similarly, environmental factors such as pH and temperature
directly affect bacterial survival and growth, consequently affecting biodegradation.
The availability of oxygen is also vital in aerobic biodegradation. A knowledge of
the factors that influence bioremediation is thus valuable in developing cost-effective
bioremediation strategies (Varjani 2017).

11.8.1 Temperature

Cui et al. (2019) in their study observed that while biodegradation rates for PHs
increased with increasing temperatures up to ~30 �C, there was no significant
difference between 30 and 40 �C in their studies using activated sludge in an airlift
loop bioreactor. These results are similar to our own findings, using an Aspergillus–
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Bacillus consortium to degrade crude oil in aerobic static cultures under laboratory
conditions (Perera et al. pers. Comm).

Temperature influences the chemical and physical structures of the PH compo-
nents; higher temperatures will increase solubility of the hydrocarbons and decrease
viscosity, thus increasing bioavailability of the PH to the microbes. Temperature will
also affect the growth rate of the microbes as well as the rate of enzyme activity (Bell
and Gutierrez 2019). Extremophiles have been reported to degrade hydrocarbons at
temperatures of 60 �C (Loginova et al. 1981), while psychrophilic bacteria may
degrade PH at temperatures as low as 5–13 �C (Ribicic et al. 2018).

11.8.2 Nutrients

The availability of nutrients plays a crucial role in microbial biodegradation of
hydrocarbons, with the growth of the organisms often being affected by low levels
of nitrogen and phosphorous. The formation of oil slicks on the water surfaces has
been observed to lead to depletion of nutrients on the surface.

11.8.3 pH

The pH of the environment will affect the enzyme activity and cell membrane
transport in microorganisms, consequently affecting the rate of biodegradation.
Neutral or alkaline pH has been shown to be suitable for PH degradation (Cui
et al. 2019).

11.8.4 Oxygen

Molecular oxygen is the optimal electron acceptor for aerobic biodegradation of
petroleum hydrocarbons and has been identified as the rate-limiting variable in PH
degradation (Varjani and Upasani 2017). It is also frequently the substrate in the
initial reaction of PH degradation, in reactions that are catalyzed by
monooxygenases. Increasing air flow up to 2.0 L/h was observed to be beneficial
for PH degradation in a bioreactor, but above that there was little change in
efficiency (Cui et al. 2019).
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11.8.5 Salinity

Some oleophilic microorganisms may have certain salinity requirements. P
aeruginosa NCIM 5541 isolated from a petroleum oil well and demonstrated to
efficiently utilize both glycerol and crude oil (Varjani and Upasani 2017) has been
shown to grow in PH medium only when supplemented with 5% (w/v) NaCl. This
halotolerant nature of this strain will find use in bioremediation of marine oil spills.
In general, it has been reported that hydrocarbon degradation increases with increas-
ing salinity (Varjani 2017); however, extreme salinity is expected to be inhibitory to
microbes.

11.9 Conclusion

Petroleum or crude oil, as it is naturally found, is derived from buried fossils which
have undergone natural weathering processes over millions of years. Today, crude
oil is used to produce a multitude of products including diesel and petrol. Its
extensive use world over has led to an increase in accidental spillage during storage
and transport. Contamination of pristine environments by crude oil or its derivatives
has detrimental effects on the ecological balance due to the toxicity and recalcitrant
nature of these chemicals. Both aquatic and terrestrial habitats can be affected
through accidental exposures, affecting organisms from microbes to larger animals,
either causing direct mortality or affecting the food chain through bioaccumulation.

Thus, methods to tackle such accidental spills are continuously being developed
and improved. While physical and chemical methods have been used as remedial
measures, bioremediation through the use of microbes is being increasingly seen as
the most ecologically and economically viable solution. As such, identification of
newer and more efficient organisms with the ability to degrade petroleum hydrocar-
bons and the development of microbial bioremediation techniques are currently
extensively researched.

Due to the hydrophobic nature of petroleum hydrocarbons, bioavailability of the
carbon source to the microbes is often a limiting factor. The use of surfactants to
increase bioavailability is thus a commonly observed practice. Biosurfactant secre-
tion by certain microbes has been found to increase efficiency and proved to be more
suitable than the use of chemical dispersants in improving bioavailability of the
hydrocarbons. As such, exploration for biosurfactant-secreting organisms is an
important area of research. Hydrocarbonoclastic microbes tend to increase at sites
of contamination and thus serve as the ideal source for isolating new organisms.

It has been observed that bioremediation rates at contamination sites often reduce
with time as a result of limiting inorganic nutrients such as nitrogen and phosphate
and/or reduction in microbial population. Biostimulation (introduction of suitable
microbes) and bioaugmentation (provision of required nutrients) are strategies that
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are frequently utilized in bioremediation efforts, to maintain an appropriate and
adequate microbe population.

Recent investigations have increasingly focused on the use of microbial consortia
as bioremediation agents. The provision of a broader genetic repertoire through the
use of consortia has led to the development of more efficient bioremediation
systems, by way of both the chemical spectrum remedied and the efficiency of
removal. Immobilization of microbes has been found to be both efficient and cost-
effective, with recent reports of bacterial–fungal biofilm-based systems proving to be
highly efficient. Microbes that naturally coexist have a potential to be adapted for
co-habitation and may thus demonstrate a synergistic relationship in utilization of
petroleum hydrocarbons. Thus, this is an area of investigation that needs to be further
explored in the future.
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Abstract Extremophiles are microorganisms that flourish in habitats of extreme
environments, including in high concentration of salts, pollutants, high or low
temperature, an acidic or alkaline pH. All extreme environments are dominated by
microorganisms belonging to Archaea, the third domain of life, evolutionary distinct
from Bacteria and Eucarya. Over the past few years, the molecular biology of
extremophilic Archaea has stimulated a lot of interest in the field of bioremediation.
Bioremediation is the use of microorganisms for the degradation or removal of
contaminants. Contamination of soils, sediments and water due to anthropogenic
activities is a matter of concern at global level. Bioremediation has emerged as an
effective solution for these problems. Most bioremediation research has focused on
the processes performed by the domain Bacteria. Recently, extremophiles are the
focus of growing interest for bioremediation because they can tolerate very harsh
environmental conditions due to their ability to produce an array of molecules or
extremozymes capable of functioning in the environment without denaturing. These
extremozymes from extremophilic microorganisms have special characteristics such
as stability to elevated temperature, extremes of pH, organic solvents and high ion
strength. Due to the stability and persistence of these extremophilic microorganisms
under adverse environmental conditions, they can be explored finding new species
for using in the bioremediation of environments contaminated with extremely
recalcitrant pollutants. Here, we provide an overview of the archaeal extremophilic
microorganisms such as thermopiles, acidophiles, halophiles which have potential
applications in the field of bioremediation of environmental pollutants, including
hydrocarbons, heavy metals, pesticides, petroleum and wastewater treatments.

Keywords Extremophiles · Bioremediation · Extremozymes · Pollutants · Archaea

12.1 Introduction

Microorganisms are the most ubiquitous living entities on our planet and are also the
diverse organisms present almost everywhere on the Earth. It is estimated that about
1% of the total microorganisms have been isolated and identified so far and still there
are unexplored niches where these microorganisms may be present. A variety of
microbes inhabit extreme environments. The extreme environments include high salt
concentration, pH, pressure and temperature and low temperature, pH, nutrients
concentration and water availability. In addition, high levels of radiations, harmful
heavy metals and toxic compounds including organic solvents are the extreme
environments. Extremophilic microorganisms are a largely unexplored group that
have the abilities to thrive in extreme conditions.

In year 1965, Thomas Brock, a microbiologist, discovered in the thermal vents of
Yellowstone National Park a new form of bacteria, Thermus aquaticus that can
survive at near-boiling temperatures (Fig. 12.1).
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The upper temperature for life was thought to be 73 �C at that time. Subsequently,
he isolated and collected many microbes from Octopus Spring, a particular geother-
mal area having large amounts of pink filamentous bacteria at a temperature of
82–88 �C. Taq polymerase, an enzyme used in PCR, was isolated first from Thermus
aquaticus strain YT-1 and later on, his group showed that Thermus aquaticus was
widespread in hot-water environments (Brock 1977). Such microorganisms which
thrive under extreme conditions are known as extremophiles (from Latin “extremus”
meaning “extreme” and Greek “philia” meaning “love”). MacElroy (1974) first
coined the term “extremophile” to designate any organism able to support environ-
mental conditions usually fatal to most eukaryotic cells. Most of the extremophilic
microorganisms belong to the archaeal species. The word “archaea” means “ancient
things” (from Greek), and it refers to a group of prokaryotic single-celled microor-
ganisms characterized for the extreme conditions they need to be alive. The archaea
group was classified as a separate group of prokaryotes by Woese and Fox (1977).
Most known extremophiles are microorganisms belong to the domain of archaea
(Fig. 12.2), bacteria and eukarya (Rothschild and Mancinelli 2001).

Initially, archaea were characterized as a group of single-celled prokaryotic
microorganisms living in extremophilic environments with low or high pH (acido-
philes, alkophiles), high temperatures (thermophiles), high salinity (halophiles) or
anoxia (Najera-Fernandez et al. 2012). Hence, thermophiles, acidophiles,
methanogens, halophiles and alkalophilic microorganisms are included in the
group of extremophiles. Over the past few decades, studies on these microorganisms

Fig. 12.2 A tree of three domains of life—archaea, bacteria and eukarya, depicting that the most of
the extremophiles belong to the domain archaea. (Source: http://www.scienceforthepublic.org/they-
didnt-believe-it/archaea-the-third-domain)
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have focused on the physiology, enzymology, ecology, taxonomy, molecular biol-
ogy and genetics. These microorganisms have made adaptations in their genetic and
metabolic machinery to flourish in the harsh conditions These microorganisms are
good candidates for research in different fields of science including bioremediation
and biotechnology due to their ability to grow under a wide range of extreme
conditions (Xu and Zhou 2016; Najera-Fernandez et al. 2012; Arora et al. 2014).

Studies on extremophiles have progressed to the extent that there are dedicated
scientific journal such as ‘Archae’ and ‘Extremophiles’ as well as regular interna-
tional ‘extremophile’ symposia and conferences are organized. There are a number
of variables that can lead to environments being considered extreme such as tem-
perature, pH, salinity, heavy metals or radiations. Some extremophiles have adapted
to a number of factors such as the alkaline pH and high salinity (Tindall et al. 1984),
pressure and temperature, i.e. near deep-sea hydrothermal vents (Pettit 2011).
Extremophiles have been isolated in diverse zones that possess extreme conditions,
and the products obtainable from these extremophiles such as enzymes, proteins and
compatible solutes are of great interest to biotechnology, industry and environmental
issues.

A worldwide environmental problem has occurred over the past few decades
because of the rapid increase in urbanization and industrialization. Environmental
pollution is a very big problem today due to hazardous waste leading to scarcity of
clean water and disturbance of soil causing decrease in crop production and human
health. Bioremediation have many advantages to remediate polluted sites from
economic, environmental and practical aspects. The main remediation processes
that can be mediated by the action of microorganisms include adsorption and
biodegradation of organic contaminants and the immobilization, mobilization
and/or transformation of contaminants especially heavy metals. In these processes,
microorganisms are stimulated to rapidly degrade hazardous organic pollutants to
environmentally safe levels in water and soil. Hence, bioremediation is considered
one of the safer, cleaner, cost-effective and eco-friendly technology for
decontaminating sites which are contaminated with wide range of pollutants. The
most recent research on extremophiles surviving in a wide range of extreme hostile
environments has demonstrated the beneficial for bioremediation processes. The
remarkable adaptation capabilities of extremophiles convert them into an attractive
source of biocatalyst or extremozymes for bioremediation. This review is focussed
on the extremophilic microorganisms and their potential applications in
bioremediation.

12.2 Extremophilic Microorganisms and Their Diversity

An extremophile is an organism which thrives in or requires “extreme” conditions,
i.e. adapted to survive in diverse ecological niches. These conditions can refer to
geochemical and physical extremes such as salinity, pH, pressure, temperature,
radiation, presence of toxic compounds and water availability. Thus, extremophiles
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consist of microorganisms that are capable of surviving and thriving in harsh
environments and conditions that are detrimental to the majority of life on earth.
Extremophiles have been isolated in diverse zones that possess extreme conditions.
Life in extreme environments have been studied intensively focussing on molecular
mechanisms involved as well as the diversity of organisms. Moderate environments
are important to sustain life which means environments with temperature between
20 and 40 �C, air pressure about one atmosphere, pH near neutral and adequate
levels of available nutrients water and salts. The presently known upper limit is
50 �C for multicellular eukaryotes, 62 �C for single-celled eukaryotes, 95 �C for
bacteria and 121 �C for archaea. Many extreme environments such as saline and/or
alkaline lake/ponds, acidic or hot springs, deserts and the ocean beds are found in
nature on the earth which are too harsh for normal life to exist. These extremophilic
organisms not only tolerate specific extreme conditions but also require these for
growth and survival. Many species can survive but are unable to reproduce or grow
indefinitely under such conditions. Extreme environments include high pH, temper-
ature, pressure, salt concentration, low temperature, pH, nutrients concentration,
water availability, harmful heavy metals, toxic compounds and high levels of
radiation.

Extremophiles are categorized according to conditions in which they grow. There
are many terms used to describe extremophiles as shown in Table 12.1. Thermo-
philes/hyperthermophiles grow in habitats with high or very temperatures such as
volcanic sites, hydrothermal vents, hot springs; psychrophiles thrive in cold habitats
such as on the mountains at high altitude, polar region; barophiles which love high
pressure conditions which are mainly found deep inside the oceans and sea; halo-
philes love very high salt concentrations such as in saline alkaline lakes, sea;
alkalophiles thrive at highly alkaline pH such as sodic lakes; acidophiles grow at
habitats with pH less than 5, such conditions are found in acid mine drainage sites
and acidic lakes; metallophiles can tolerate and grow in the presence of high
concentration of heavy metals; xerophiles can grow in conditions with very low
water availability which include deserts; anoxiphiles are the organisms having
colonized ecosystems deprived of oxygen. Multiple stresses are present in the
niche simultaneously and extremophiles which are able to thrive in such habitats
are known as polyextremophiles (e.g., thermoacidophiles, haloalkaliphiles).
Polyextremophiles organisms are adapted to live in habitats where various physico-
chemical parameters reach extreme values. For example, many hot springs are acid
or alkaline with rich metal content at the same time. Similarly, the deep ocean is
generally cold, very low nutrient content (oligotrophic) and exposed to high pres-
sure. Haloalkalophilic Halomonas campisalis which can grow at pH up to 12 has
been reported from Soap Lake, USA. Recently, the most acidophilic microorganisms
such as Picrophilus oshimae and Picrophilus torridus, which can grow at pH as low
as 0.06, have been discovered from hot spring in Noboribetsu, Japan. The most
halophilic microbe Halarsenatibacter silvermanii has been discovered from a salt
lake in USA, which can survive in salt concentration of about 35%. Microorganisms
such as Methanothermococcus thermolithotrophicus and Methanocaldococcus
jannaschii are examples of barophilic and thermophilic methanogens, which have
been isolated from high pressure niches of deep sea beds.
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12.3 Extremophiles in Extreme Environments

Extremophiles include members of all three domains of life—bacteria, archaea and
eukarya. Most of the extremophilic microorganisms are archaea, but this group also
includes eukaryotes such as protists (algae, fungi and protozoa) and multicellular
organisms. Culture-dependent and culture-independent (molecular) methods have
been employed for understanding the diversity of microbes in extreme environ-
ments. Archaea is the main group to thrive in extreme environments. They are quite
skilled in adapting to different extreme conditions. Most of acidophilic, halophilic
and hyperthermophillic microorganisms belong to the archaea group. These organ-
isms have evolved several structural and chemical adaptations, which allow them to
survive and grow in extreme environments (Satyanarayana et al. 2005). Among
bacteria, cyanobacteria is the best adapted group to various extreme conditions such
as formation of microbial mats with other bacteria from Antarctic ice to continental
hot springs. Among eukaryotes, fungi are the most versatile and ecological success-
ful phylogenetic lineage. The phylogenetic diversity of extremophiles is high and
very complex to study. Some extremophiles are adapted to the same extreme
conditions, even though dispersed broadly in the phylogenetic tree of life. Some
genera or orders contain only extremophiles, whereas other genera or orders contain
both mesophiles and extremophiles.

Specific biological functions and metabolic processes of these microorganisms
are mediated by proteins and enzymes known as extremozymes which are respon-
sible for unusual properties of extremophiles. Extremophiles are capable of surviv-
ing in extreme environments due to extremozymes having unique feature because of
extreme thermal stability and resistance against chemical denaturants such as deter-
gents, chaotropic agents, organic solvents and extreme of pH (Gaur et al. 2010;
Karan et al. 2011). The discovery of new extremophilic microorganisms and their
extremozymes has a great impact on the field of biocatalysis and hold tremendous
potential as industrial biocatalysts to work under harsh conditions.

The extreme environments are so unique that the organisms are highly specialized
with specific protein adaptations such as chaperone systems or enzymes
(extremozymes) capable of functioning in the environment without denaturing.
These enzymes or proteins are capable of functioning under such conditions in
which mesophilic proteins or enzymes may not work. Extremophiles have found
use as part of bioremediation of contaminated environments due to their unique
metabolic activities and tolerance to certain conditions. A number of proteins or
extremozymes sourced from extremophiles have already been utilized in industry for
the purpose as diverse as molecular biology reagents or as common place as laundry
detergents. The removal and detoxification of contaminants and wastes can be
achieved by means of extremozymes such as oxidoreductase (da Fonseca et al.
2015), laccase (Fang et al. 2012), dioxygenase (Saito et al. 2000), alkane hydroxy-
lase (Wang et al. 2010b), haloalkane dehalogenase (Zhang et al. 2013; Nikolaivits
et al. 2017). Usefulness of extremophiles in various industrial and other applications
such as bioremediation is due to their wide spectrum of unique properties such as
stability to elevated temperature, extremes pH, organic solvents and high ionic
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strength. Extremozymes being extremophilic origin are robust, long-term storage,
resistance to solvents and detergents (Merone et al. 2005) and active over a wide
range of temperature. These enzymes are highly convenient for immobilization and
could be used in filtration devices of bioremediation processes.

12.4 Bioremediation: A Dynamic Process to Remediate
Polluted Sites

Bioremediation is a natural process and is perceived by the public as an acceptable
waste treatment process for contaminated material. This method is less expensive,
and less energy is required as compared to other methods. This is useful for the
complete destruction of wide variety of contaminants. As the biological processes
are often highly specific, site factors are important for the success of bioremediation.
Bioremediation is limited to those compounds which are biodegradable. An advan-
tage of bioremediation over other methods is that it transforms contaminants instead
of simply moving them from one source to another as in the practice of land filing.
Bioremediation is a dynamic process, and different components are involved in this
process (Fig. 12.3).

Bioremediation is a process by which microorganisms are stimulated to rapidly
degrade hazardous organic pollutants to environmentally safe levels in soil, sedi-
ments, groundwater and other substances. Microorganisms that are used to clean up

Fig. 12.3 Different components and parameters for bioremediation
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contaminated sites use the contaminants as nutrients or energy sources. Stimulation
of microbes is achieved by the addition of growth substances, nutrients, terminal
electron acceptor or donors resulting in an increase in organic pollutant degradation
and biotransformation. Bioremediation may be employed to attack specific contam-
inants such as chlorinated pesticides that are degraded by microbes or a more general
approach such as oil spills that are broken down using multiple techniques.

The basic bioremediation methods include biostimulation, attenuation, augmen-
tation, venting and piles. Biostimulation is focus on stimulation of indigenous or
naturally existing bacteria and fungus community at the site (soil/ground water)
through the injection of specific nutrients. These nutrients are the basic building
blocks of life and allow microorganism to crease the basic requirements such as
energy, biomass and enzymes to degrade the pollutants (Madhavi and Mohini 2012).
Bioattenuation or natural attenuation is the eradication of pollutant concentrations
from surrounding which is carried out using biological processes such as both
aerobic and anaerobic biodegradation, chemical reactions such as ion exchange,
complexation, abiotic transformation, and physical phenomena such as dispersion,
advection, dilution, diffusion, volatilization and sorption/desorption. Many terms
such as biotransformation or intrinsic remediation are included within the natural
attenuation or bioattenuation (Mulligana and Yong 2004). Bioaugmentation
involves the addition of pollutant-degrading microorganism (natural/exotic/
engineered) to supplement the biodegradative capacity of indigenous microbial
populations on the contaminated site. Natural species are not fast enough to break
down certain compounds, so genetically modified or extremophilic microorganisms
have potential for bioremediation of soil, groundwater, activate sludge to enhance
degrading capabilities of a broad coverage of physical and chemical pollutants
(Sayler and Ripp 2000; Thapa et al. 2012). Bioventing involves venting of oxygen
via low air flow rate through soil to simulate growth of natural or introduced bacterial
and fungus in the soil to existing soil microbes to sustain their microbial activity.
Effective bioremediation of petroleum-contaminated soil using bioinventing has
been used reported by many researchers (Lee et al. 2006; Agarry and Latinwo
2015). Biopiles (also known as bioheaps, biocells, biomounds, compost piles) is a
process to reduce concentrations of aerobically remediable petroleum pollutants in
excavated soils during the time of biodegradation. In this process, air is supplied to
the biopile system through a system of pumps and piping to enhance microbial
activity through microbial respiration (Emami et al. 2012; Kumar et al. 2016).

On the basis of removal of wastes for treatment, there are basically two types of
bioremediation—in situ and ex situ bioremediation (Table 12.2). In the former type
of bioremediation, application involves in the subsurface and may be applied in the
unsaturated zone such as bioventing or in saturated soil and groundwater. This in situ
method is a superior method for cleaning contaminated sites as it is cheaper and safer
and uses harmless microbes to degrade the harmful chemicals. This in situ bioreme-
diation can be further categorized into intrinsic and engineered in situ bioremedia-
tion. In intrinsic in situ bioremediation, the innate capabilities of naturally occurring
microbial communities to degrade environmental pollutants are used for bioremedi-
ation. In engineered in situ bioremediation, the approach involves the introduction of
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certain microbes to the site of contamination to accelerate the degradation process by
enhancing the physicochemical conditions to encourage the growth of microorgan-
isms. This approach generally costs less than other remediated options and results in
complete transformation of organic contaminants to innocuous substance such as
carbon dioxide, water. The areal zone can be larger and reach areas that would
otherwise be inaccessible. There are some limitations of in situ method of bioreme-
diation. It usually requires an acclimatized population of microorganisms. Toxic
concentration of organic compound may inhibit the activity of indigenous microbes.
Some contaminants cannot be biodegraded, and intermediate compounds may be
more toxic and/or mobile than the parent compound. Over the last several decades,
in situ degradation of biologically foreign chemical compounds such as solvents,
explosive, polycyclic aromatic hydrocarbons, heavy metals and radionuclides has
been used as a cost-effective alternative to incineration or burial in landfills (Alex-
ander 1994).

Table 12.2 Common bioremediation strategies for considering various factors with merits and
demerits

Type Technology Factors to consider Merits Demerits

In
situ

In situ
bioremediation

Biodegradative abilities of
indigenous
microorganisms

Most cost-efficient Environmental
constraints

Bioventing Biodegradability and dis-
tribution of pollutants

Relatively passive Extended treat-
ment time

Bioaugmentation Chemical solubility Natural attenuation
processes

Monitoring
difficulties

Biosparging Environmental parameters Soil and water
treatment

Presence of metals and
other inorganics

Noninvasive

Ex
situ

Landfilling Biodegradative abilities of
indigenous
microorganisms

Low cost Space
requirements

Biopiles Biodegradability and dis-
tribution of pollutants

Cost efficient Need to control
abiotic loss

Composting Chemical solubility Optimized environ-
mental parameters

Extended treat-
ment time

Aqueous
bioreactor

Environmental parameters Rapid degradation
kinetic

Mass transfer
problem

Slurry
bioreactors

Presence of metals and
other inorganics

Enhance mass
transfer

Bioavailability
limitation

Bioaugmentation Effective use of
inoculants and
surfactants

Soil requires
excavation

Toxicity concentration of
contaminants

High cost
capital

Toxicity of amendments High operating
cost
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The ex situ bioremediation is a biological process in which excavated soil is
placed in a lined aboveground treatment area and aerated following processing to
enhance the degradation of organic contaminants by indigenous microbial popula-
tion. This process is further divided into slurry-phase bioremediation and solid-phase
bioremediation. Slurry-phase process is a controlled treatment that involves the
excavation of the contaminants soil, mixing it with water and placing it in a
bioreactor to form slurry. Subsequently, soil is removed, dried up, deposited and
finally treatment of the resulting fluids. Solid-phase bioremediation is a technology
in which the contaminated soil is excavated and placed into piles. Bacterial growth is
stimulated through a network of pipes that are distributed throughout the piles.
Necessary ventilation is provided for microbial respiration through the pipes by
pulling air. This system requires a large amount of space, and cleanup requires more
time to complete than with slurry-phase processes. Some solid-phase treatment
processes include soil biopile, composting and land farming. The ex situ method is
suitable for a wide range of contaminants but is not applicable to heavy metal
contaminants or chlorinated hydrocarbons.

12.5 Potential of Extremophiles for Bioremediation

The ability of extremophilic microorganisms to grow under a wide range of extreme
conditions makes them good candidates for bioremediation. The biological pro-
cesses have many advantages from environmental, economic and practical aspects
to remediate polluted sites. The immobilization, mobilization and/or transformation
of metals/metalloids and adsorption and biodegradation of organic contaminants are
the main remediation processes that can be mediated by the action of several
microorganisms especially extremophiles surviving in harsh environments with
high concentrations of pollutants (Donati et al. 2019). The extremophilic microor-
ganisms have proved to be useful for bioremediation applications. Different kinds of
wastes and contaminants are produced from the industrial activities, the mining
activities for oils extraction or the accidental oil spills. All these activities release
several pollutants in the environments such as hydrocarbons, polycyclic aromatic
hydrocarbons, chlorinated hydrocarbons, pesticides and heavy metals (Sivaperumal
et al. 2017). Removal and detoxification of these contaminants and wastes can be
achieved by means of extremozymes which have unique properties such as high
thermostability and resistance to denaturing agents like detergents, organic solvents
and extreme pH (Castillo et al. 2005). Hence, there is an increasing interest in the
optimization of bioremediation approaches in high salt environments, high temper-
ature and extreme pH ranges (Table 12.3). In this sense, haloarchaea have been
successfully tested for biotechnological applications (Arora et al. 2014; Oren 2010;
Bonete and Martinez-Espinosa 2011). Recently, Marques (2018) reviewed about the
extremophiles as microfactories which are able to provide metabolic or genetic
mechanisms as controlled services to cleanup of environmental pollution. A most
recent research review on polyextremophilic microorganisms isolated from a wide
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Table 12.3 Some examples of extremophilic microorganisms having potential in bioremediation

Contaminants Extremophiles

Petroleum products (aliphatic and aromatic hydrocarbon
compounds)

Alcanivorax sp.
Bacillus safensis
Halobacterium sp.
Haloferax mediterranei
Halococcus sp.
Haloarcula sp.
Halorubrum sp.
Methanosaeta sp.
Methanosarcina sp.
Nocardioides sp.
Natrialba sp.
Nitrosopumilus maritimus
Paracoccus sp.
Pseudomonas stutzeri
Psychromonas ingrahamii
Streptomyces albaxialis
Sulfolobus solfataricus

Heavy metals (e.g. As, Pb, Hg, Cd, Cr, Co) Sulfolobus acidocaldarius
st. BC
Sulfolobus solfataricus
Aeropyrum pernix st. K1
Pyrobaculum calidifontis
Halococcus salifodinae
BK3

Haloferax sp.
Halobacterium noricense
Halobacterium sp. NRC-1
Halobacterium salinarum
CCM2090

Pesticides (atrazine, carbaryl, carbofuran, coumaphos, diazinon,
glycophosphate, parathion)

Flavobacterium sp.
Methanosarcina sp.
Methanococcus mazei
Methanobacterium
congolense
Methanothrix soehngenii
Sulfolobus solfataricus

Waste water (organic compounds, dyes, organic solvents) Methanobrevibacter
smithii
Haloferax mediterranei
Nesterenkonia
lacusekhoensis

Radionuclides (radiations) Desulfuromusa
ferrireducens
Rhodanobacter sp.
Pyrobaculum sp.
Haloferax sp.
Sulfolobus solfataricus
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range of environments including deserts, salaras, ice fields, geothermal springs and
diverse zones in Chile such as Atacama Desert, Altiplano, Central Chile, Patagonia
and Antarctica has discussed the molecular and physiological capabilities of many of
these isolates which has great potential for bioremediation processes (Orellana et al.
2018).

12.5.1 Bioremediation of Petroleum Products

Petroleum is composed of hundreds or thousands of aliphatic, branched and aromatic
hydrocarbons (Prince 1993) and other organic compounds including organometallic
constituents (Butler and Mason 1997). As the petroleum is an important energy
source in daily life and industry, its annual consumption has been increasing in the
last several decades. Many activities such as municipal and industrial runoff, effluent
release, offshore and onshore petroleum industry activities as well as accidental
spills cause petroleum hydrocarbon pollution which are toxic to animals, vegetation
and humans. These hydrocarbon pollutants which cause adverse impact on human
health and environment are classified as priority environmental pollutants by the US
Environmental Protection Agency (1986). These hydrocarbon pollutants through
spillages and leakage from underground tanks, steamers, abandoned oil refinery sites
or unplugging of oil wells cause contamination of surface soil, groundwater and
ocean (Souza et al. 2014; Prince et al. 2013).

Hydrocarbon pollutants comprising petroleum and its derivatives (refined prod-
ucts), which are released into the environment by oil spills and polycyclic aromatic
hydrocarbons (PAHs) are found in a wide range of habitats and affect the health of
many organisms (Giovanlla et al. 2020). Various hydrocarbons have different
susceptibilities to microbial attack. Degradation is more difficult in compound
with complex chemical structures, e.g. polycyclic hydrocarbons (Fathepure 2014).
PAHs and halogenated hydrocarbons can be remediated with microorganisms
(Prasad 2016). PAHs are a class of chemical compounds of two or more benzene
rings fused in a linear, angular or cluster arrangement. They may be classified as high
molecular weight (HMW) or low molecular weight (LMW). Petroleum derivatives
such as PAHs having a great affinity for macromolecules such as DNA, RNA and
proteins can induce mutations, leading to develop tumours in the skin and other
organs (Varjani et al. 2017). As PAHs are known for their toxicity and carcinoge-
nicity, they are recognized globally as priority pollutants (Prasad 2016).

The application of bioremediation for petroleum products is becoming the tech-
nique of choice for environmental researchers. Biodegradation of petroleum hydro-
carbons varies with the chemical structure and molecular weight of hydrocarbon
molecules. The chemical structure of organic pollutants has significant influence on
the extent and rate of their biodegradation (Alexander 1981). Presently, a majority of
commercial applications of bioremediation depend upon indigenous microorgan-
isms, and most are employed for hydrocarbon-contaminated sites. Bioremediation of
extreme environments requires extremophiles that are adapted to these habitats.
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Hence, extremophilic microorganisms can play an important role in the bioremedi-
ation of these habitats (Khemili-Talbi et al. 2015). Extremophiles have been utilized
for the microbial degradation of crude oil and refined petroleum pollutants. The
polluting agents can be biodegraded by marine microbes producing extremozymes
which are able to catalyse the oxidation of medium-length alkanes. Several micro-
organisms have been isolated from marine environments as producers of alkane
degrading enzymes. Park and Park (2018) described the bioremediation of organic
pollutants involving the strategies for alkane degradation under extreme conditions
such as low and high temperature, high salt and acidic and anaerobic conditions.
Alkane degraders seem to possess exclusive metabolic pathway and survival strat-
egies. Hydrocarbons can be mineralized or transformed through the biodegradation
process that occurs in various extreme habitats (Park and Park 2018). Extremophilic
microorganisms from Archaea domain from extreme environments have been found
as potential resources for the bioremediation of hydrocarbons (Giovanlla et al.
2020). Most bacteria that are capable of degrading petroleum hydrocarbons have
been isolated from deep ocean environments. The bacterial species Bacillus safensis
(CFA-06) isolated from petroleum in Campos Basin in Brazil produces two oxido-
reductases, namely a catalase and a new oxidoreductase. Theses enzymes have
promising application for petroleum removal because of actively involving in
degradation of aromatic hydrocarbons (da Fonseca et al. 2015).

A recent review has focussed on the bioremediation of aromatic compounds such
as toluene and xylenes involving the degradation of such pollutants (Blazquez et al.
2018). The degradation of aromatic compounds is another key issue in bioremedi-
ation of oil contaminated sites. Nocardioides species strain KP7 has been isolated
from a Kuwait beach, which produces a dioxygenase enzyme that is able to degrade
phenanthrene (Saito et al. 2000). Numerous marine species have been identified as
producers of enzymes catalysing the degradation of halogenated compounds. For
example, the marine bacteria Paracoccus sp. DEH99 (Zhang et al. 2014) and
Pseudomonas stutzeri DEH130 (Zhang et al. 2013) have been isolated which
produce exosomes-haloacid dehalogenases that are able to catalyse the
de-halogenation of 2-alanoic acids. The bacterium Psychromonas ingrahamii iso-
lated from the sea ice interface, produces a haloacid dehalogenase which degrades
chlorinated and brominated short chain (less than C3) haloacids (Nikolaivits et al.
2017; Novak et al. 2013). Yakimov et al. (1999) isolated the Alcanivorax group from
the North Sea as biosurfactant-producing and alkane-degrading marine bacteria.
These bacterial strains were isolated from a variety of marine environments such
as oil spill contaminated sites. Genus Alcanivorax has been found to play a major
role in the first step of crude oil biodegradation in the marine environment and
observed that these bacteria are important for the biodegradation of petroleum
especially under bioremediation conditions (Harayama et al. 1999). Al-Maghrabi
et al. (1999) reported rapid degradation of crude oil using thermophilic bacteria and
was found to survive in saline environments. Oil spills have been successfully
bioremediated in marine, Arctic and Antarctic environments (Delille et al. 1998;
Margesin and Schinner 1999). Kuznetsov et al. (1992) found a halo- and
thermotolerant Streptomyces albaxialis which degraded crude oil and petroleum
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products even in the presence of 30% sodium chloride. An extremely halophilic
Archaea Haloferax mediterranei was isolated and found to grow at 10–25% sodium
chloride (Zvyagintseva et al. 1995). Kulichevskaya et al. (1992) isolated some
species the bacteria from Halobacterium group from salt-rich stratum fluids of an
oil deposit which degraded n-alkanes with a C10–C30 composition in the presence
of 30% (w/v) sodium chloride. The bacterium Alcanivorax dieselolei strain B-5,
isolated from surface water of the Bohai Sea, produces different alkane hydroxylase
extremozymes which degrade either chlorinated or brominated alkanes with differ-
ent chain lengths, thus displaying potential for biodegradation and other industrial
applications (Li and Shao 2014). Others haloarchaeas from the genus Haloferax are
able to degrade a mixture of PAHs (anthracene, naphthalene, phenanthrene, pyrene)
in hypersaline medium (Bonfa et al. 2011).

The archaea Natrialba sp. C21 isolated from oil-contaminated saline water in Ain
Salah (Algeria) was able to survive under high salt concentrations (25%) solution
containing aromatic hydrocarbons (Khemili-Talbi et al. 2015). This strain demon-
strated good potential for degrading pyrene (3% v/v) and naphthalene (3% v/v) after
7 days at 40 �C, pH 7.0 and high salinity conditions. Zhao et al. (2017) reported an
strain of the haloarchaea 1M1011 isolated from Changlu Tanggu saltern near Da
Gang Oil field in Tianjin (China) by enrichment culture in hypersaline medium
containing hexadecane was able to degrade 57% of hexadecane (5 g L�1) in the
presence of 3.6 M NaCl within 24 days at 37 �C. An extremophilic microorganism
Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in
Saudi Arabia was able to degrade both HMW (pyrene) and LMW (anthracene,
naphthalene) in acidophilic mineral salt medium at pH 2 (Arulazhagan et al.
2017). Three haloalkaliphilic Pseudomonas strains (HA10, HA12 and HA14) were
studied by Hassan and Aly (2018) and reported to degrade BTEX (benzene, toluene,
ethylbenzene and xylene) at pH 9 in the presence of NaCl (7% w/v). Three novel
catechol 2,3-dioxynease genes, namely C23010, C23012 and C23014 were ampli-
fied, cloned and overexpressed from these strains.

In recent past few years, many studies applying extremophilic microorganisms in
hydrocarbon degradation were undertaken but toxicity evaluation during this process
are not considered. Hence, toxicity assays should be included to evaluate the
efficiency of the process in eliminating or reducing toxicity (Giovanlla et al. 2020).

12.5.2 Bioremediation of Chemical Pesticides

Chemical pesticides are any substance or mixture of substances intended for
preventing, destroying, repelling or mitigating any insects, weeds and plant patho-
gens. Pesticides are widely used worldwide to control agricultural and household
pests. The most commonly used pesticides belong to the organophosphorus group,
and the first organophosphorus insecticide, tetraethyl pyrophosphate, was developed
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in 1937 (Dragun et al. 1984). Organophosphorus pesticides have been widely
developed for agricultural purposes since the 1950s, and these pesticides are highly
toxic chemicals (Gupta 2009). The acute toxicity of organophosphorus chemical
compounds is due to their capacity to inhibit acetylcholine esterase, a key enzyme
involved in the overall regulation of the central and peripheral nervous system. As
the organochlorine pesticides such as lindane, dichloro-diphenyl-trichloroethane
(DDT) possess longer persistency, tendency towards bioaccumulation, high mam-
malian toxicity, and potential toxicity towards non-target organism, the use of these
has been diminished drastically in developed countries and has been replaced by the
less persistent and more effective and efficient other similar organophosphorus
compounds such as chlorpyrifos, glyphosate, methyl parathion, parathion, diazinon,
coumaphos, fenamiphos, monocrotophos and phorate. The phosphorus is generally
present as a phosphonate or a phosphate ester which are normally involved in
oxidation, hydrolysis, dealkylation and alkylation. Therefore, the most important
step in detoxification by microbial degradation involves through hydrolysis of P-O-
aryl and P-O-alkyl bonds. Singh and Walker (2005) have presented a list of
microorganisms capable of degrading organophosphorus compounds.

Although pesticides play a key role in the protection of crop yields, their
excessive and persistence use resulted in serious soil pollution and deteriorated
soil quality. Excessive and continuous use of these compounds has led to the
contamination of several ecosystems in different parts of the world (Cisar and
Snyder 2000; Tse et al. 2004). Residues of pesticides have been reported in soil,
water, milk, food, or fish in numerous countries around the world. As these com-
pounds possess high toxicity and constitutes major health and environments issue
(Jaipieam et al. 2009), it is essential to remove them from the environment. Numer-
ous approaches including physical, chemical and biological methods have been
considered for developing decontamination strategies against these chemicals, but
these methods are not considered for large-scale environmental remediation and also
involve harsh conditions (Jacquet et al. 2016). Hence, bioremediation, the treatment
that uses living organisms to transform hazardous substances into lesser or non-toxic
compounds, is an effective way to clean up the soil polluted with chemical pesti-
cides. The first microbe, Flavobacterium sp. that could degrade organophosphorus
compounds was isolated and identified in 1973, and subsequently, several bacterial
and a few fungal species have been isolated which can degrade a wide range of these
compounds in soil systems and liquid cultures. The degradation process of these
compounds takes place through the enzymes organophosphate hydrolase or
phosphotriesterase catalyse encoded by gene opd (organophosphate degrading)
which has been isolated, sequenced, cloned in different organisms and altered for
better activity and stability (McDaniel et al. 1988; Horne et al. 2002).

In recent years, enzymes from extremophiles have emerged as promising alter-
native to smoothly and quickly decontaminate these chemical compounds. The
phosphotriesterase-like lactonase ScoPox from the archaea Sulfolobus solfataricus
is an attractive candidate for bioremediation. This enzyme has been engineered and
proven to be highly efficient for degrading a number of organophosphorus pesticides
(Elias et al. 2008; Hiblot et al. 2012, 2013; Del Giudice et al. 2016). Two
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degradation products, a phosphodiester and an alcohol, are produced by the hydro-
lysis process through the phosphotriesterase activity of this enzyme on the organo-
phosphorus pesticides. This ScoPox enzyme being its extremophilic origin is robust,
i.e. resistance to detergents and solvents (Merone et al. 2005) and activity over a
wide range of temperature and long-term storage (Remy et al. 2016). The enzyme
could be used in filtration devices to treat effluent materials with organophosphorus
compounds as it can be immobilized easily. Poirier et al. (2017) reported a variant
ScoPox-αD6 by engineering ScoPox with enhanced phosphotriesterase activity.

12.5.3 Bioremediation of Heavy Metals

Technological advancement and industrialization have put a mounting burden on the
environment by releasing large quantities of perilous waste, heavy metals (e.g.,
chromium, cadmium, lead) and metalloids (e.g., arsenic and antimony). The build-
up of heavy metals and metalloids in soil and waters continues to cause serious
health concerns worldwide, as these metals and metalloids cannot be degraded into
non-toxic forms, but persist in the ecosystem (Ayangbenro and Babalola 2017).
Some metals such as iron, zinc, manganese, copper, cobalt and molybdenum are
trace elements necessary for life and required at a certain level. They are functioning
as co-factors for some enzymes, regulators of osmotic pressure, micronutrients and
stabilization of molecules. They are toxic when generated in excess and depend on
the availability and absorbed dose (Rasmussen et al. 2000).

Heavy metals such as arsenic, lead, mercury, aluminium and cadmium are toxic
to organisms. The presence of heavy metals in the environment has been a major
concern because of their toxicity. The toxicity of heavy metals is related to exposure
dose and the metallic chemical species, responsible for bioavailability and mobility
in the organism and in the environment. The most soluble and bioavailable metallic
species present the highest toxicity, risks to human health and impacts on ecosys-
tems (de Paiva et al. 2015; Ospina-Alvarez et al. 2014). Exposure to heavy metals
has been linked with teratogenicity, mutagenicity, cancer, neurological, circulatory,
endocrine and immune system disorders (Kim et al. 2015; Korashy et al. 2017).
Heavy metal toxicity is demonstrated in their ability to disrupt enzyme structures and
functions by binding with thiol and protein groups, or by replacing co-factors in
prosthetic groups of enzymes. Exposure to mercury (Hg) and lead (Pb) can cause the
development of autoimmunity, leading to joint disease such as rheumatoid arthritis,
nervous and circulatory disorders and kidney diseases (Ayangbenro and Babalola
2017). Cadmium (Cd) is known to be mutagenic and carcinogenic. Chromium
(Cr) causes nausea, diarrhoea, headaches, hair loss and vomiting in humans.
Heavy metals such as Cd, Pb, Hg and Al can exert their toxicity by interacting
metabolically with nutritionally essential elements such as Ca and Fe, interfering
with vital physiologically functions (Goyer 1997). Arsenic, mercury, lead and
chromium may cause oxidative stress due to the production of reactive oxygen
species (ROS) (Pinto et al. 2003).
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Their elimination from waste water before being released into the environment is
important for the maintenance of the ecosystem and from an economic point of view.
There are many techniques such as sludge filtration, adsorption processes, chemical
oxidation or reduction reactions, chemical precipitation, ion exchange, electrochem-
ical treatment and reverse osmosis which are used to remediate contaminated
environments with heavy metals (Siddiquee et al. 2015). However, these techniques
are costly, particularly when the metal concentrations are extremely low. As most of
the heavy metal salts have high solubility in solution, the separation by chemical and
physical techniques is also challenging. Hence, there is a need to evaluate alternative
techniques applicable, and it should be appropriate and suitable for the local
conditions.

In this perspective, some microorganisms have developed resistance mechanism
to adapt to these pollutants and could be promising for bioremediation processes
(Giovanlla et al. 2017). Bioremediation is an innovative technique for the removal
and recovery of heavy metals ions from contaminated sites. This method involves
using living organisms such as bacteria, fungi and algae to reduce and/or recover
heavy metal pollutants into less hazardous form. This technique has been used for
the removal of heavy metals from polluted soil and wastewater. These microorgan-
isms help to detoxify hazardous components in the environment by the process
which occur naturally or can be improved through the addition of nutrients and
electron acceptors. Metals whose different valence transformations states vary in
toxicity can be detoxify through the valence transformation mechanism. For
instance, methyl mercury is converted to less toxic Hg(II) by the enzyme organo-
mercurial lyase produced by mercury-resistant bacteria (Wang et al. 2010a). Simi-
larly, Cr(VI) is reduced to Cr(III) having less mobility and toxicity by
microorganisms used in bioremediation. Heavy metals can also be detoxified by
other mechanisms such as volatilization, vacuole compartmentalization and metal
binding. Metal binding involves chelators such as phytochelatin (e.g. glutathione
derived peptides), metal binding peptides and metallothein which bind to heavy
metals and facilitate microbial absorption and transportation of metal ions. Volatil-
ization mechanism takes place only in metals which have volatile states such as Hg
and Se and involve turning metal ions into a volatile state. The MerA enzyme is
utilized by mercury-resistant bacteria to reduce Hg(II) to the volatile form Hg(0) and
Se(V) can be reduced to elemental Se(0) to remediate polluted soil and waters
(Wu et al. 2010). Thus, bioabsorption, bioaccumulation, biotransformation and
biomineralization are some techniques used by microorganisms for their survival
in metal-polluted environment. These mechanisms have been exploited for biore-
mediation technology (Gadd 2000; Lin and Lin 2005).

Various factors influencing the microbial remediation of heavy metals include the
concentration of pollutants, bioavailability of metals to the microbe, electron accep-
tors, pH, oxygen, redox potential, soil structure, temperature, moisture content,
nutrient, osmotic pressure and water capacity. Hence, the choice of microorganisms
may be native to the contaminated environments or isolated from another environ-
ment and brought to the polluted site (Sharma et al. 2000). One such approach is to
search for new enzymes from extremophilic microorganisms. Extremophiles are
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organisms that are able to thrive at extreme environmental conditions (salinity, pH,
temperature, pressure, dryness, radiations or concentrations of heavy metals). Most
of the extremophilic microorganisms belong to the Achaea domain, and their
enzymes known as extremozymes have unique structure-function properties such
as stability at high temperature, extreme pH, high ionic strength, in the presence of
organic solvents and heavy metals (Cabrera and Blamey 2018; Koga and Moril
2007; Cavicchioli 2011).

Bacteria and archaea that live in extreme conditions have been reported as great
microbial resources of heavy metal bioremediation. Sequencing of the genome of
extremophilic microorganisms such asMetallosphaera sedula (Aurenik et al. 2008),
Leptospirillum ferriphilum (Mi et al. 2011) and Sulfolobus solfataricus (Schelert
et al. 2013) has identified clusters containing the Hg-resistance gene merA. Takeuchi
et al. (2001) reported the isolate Acidithiobacillus ferrooxidans SUG 2-2 to volatilize
mercury from acidic soils polluted by this metal. Figueroa et al. (2018) have
reviewed about the extremophiles focussing on heavy metal and radionuclide pol-
lution. Some halophilic archaea have developed tolerance to heavy metals. Halo-
philic microorganisms are often able to absorb heavy metals (Zhuang et al. 2010).
Wang et al. (2012) reported that the Halobacterium sp. NRC-1 showed high
resistance to arsenic due to the presence of genes for arsenite and antimonite
extrusion system on plasmid. Kaur et al. (2006) studied the haloarchaeal strategies
of adaptation to high metal concentration of iron, zinc, manganese, copper, cobalt,
nickel usingHalobacterium sp. NRC-1 as a model organism. Srivastava et al. (2013)
have reported the intracellular synthesis of silver nanoparticles by the haloarchaeal
isolated Halococcus salifodinae BK3 when the cells were grown in the medium
containing silver nitrate. Similarly, selenium nanoparticles are synthesized when
these cells are grown in the presence of sodium selenite. Cadmium tolerance has
been reported in haloarchaeal strains from salterns of Ribandar and Siridao in India
(Chaudhary et al. 2014). Biosorption of metals by the organism at the surface or by
the exopolysaccharides (EPS) secreted to form the biofilms enables organism to
tolerate metals (Srivastava and Kowshik 2013). Kawakami et al. (2007) found that
Halobacterium salinarum CCM 2090 has a Ca(II)-dependent aggregation system.
Calcium ion is adsorbed on the surface of the cells and induces ionic cross-bridging
between the EPS, resulting in aggregation of the haloarchaeal cells. Cations such as
Zn2+, Cu2+, Fe2+, Mn2+, Co2+ and Ni2+ could replace Ca2+, enabling organisms to
tolerate these metals. Popescu and Dumitru (2009) reported the two Haloferax stains
having the capacity to reduce the concentration of Zn, Ni, Cr and Pb ions by
biosorption process from the media with high salinity. Halobacterium sp. GUSF
was reported to be able to absorb Mn at high concentration and high rates (Naik and
Furtado 2014). Halobacterium noricense was found to adsorb Cd (Showalter et al.
2016) while Haloferax st. BBK2 was found to accumulate Cd intracellularly (Das
et al. 2014).Methanobacterium bryantii was found to produce extracellular proteins
to chelate Cu (Kim et al. 1995).

Hence, the extremophiles belonging to the haloarchaea group can be used in the
treatment of hypersaline heavy metals polluted sites and wastewaters for heavy
metals removals. However, developing technologies for exploring for microbial
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environments and understanding the mechanisms driving microbial activity and
metal metabolic pathways under wide range of extreme climatic conditions need
to be further elucidated before successful and better-controlled site-specific treat-
ments can be undertaken.

12.5.4 Bioremediation of Radionuclides

The extensive use of radioactive materials at research laboratories, industrial sites
and biomedical institutions has produced a great accumulation of radioactive waste.
Fredrickson et al. (2004) reported that about 90 million gallons of high-level
radioactive waste are accumulated across the USA during the World War II. The
occasional disastrous accidents at nuclear facilities such as Chernobyl disaster of
1986 and the Fukushima Daiichi nuclear disaster in 2011 have also caused damage
to the human health and environment issues by generating a large quantity of
radioactive materials or radionuclides in the environment. Most radioactive wastes
are generated by nuclear power plants contributing about 95% of the radioactively
generated from all sources (Ahier and Tracy 1995; Tamponnet and Declerck 2008).
The commonly encountered radionuclides include cobalt-60 (60Co), Plutonium-239
(239Pu), Radium-226 (226Ra), Radon-222 (222Rn), Technetium-99 (99Tc), Thorium-
226 (226Th) and Uranium-238 (238U). Other radionuclides created through nuclear
reactors by means of the splitting of elemental atoms are Thallium-201 (201Tl),
Iridium-238 (238Ir), Caesium-137 (137Cs) and Strontium-90 (90Sr) having longer
time to decay (Kumraz et al. 2007).

Radionuclides in the environment are a major human and environmental health
concern. Even a small concentration of radionuclides in the environment can have an
impact for a prolonged period of time due to their long half-life. The impact of these
pollutants is growing with time. Exposure to radionuclides or radiation causes acute
health effects that begin with vomiting, nausea, headaches, and with increased
exposure, fatigue, weakness, fever, dizziness, diarrhoea, fever, blood in stool and
low blood pressure and finally death. Mohner et al. (2006) reported that long-term
exposure to radionuclides leads to high risk of leukaemia, kidney damage an genetic
damage, resulting in lethal problems, even passing to the next generation.

Excavation and shipping to a distant waste disposal location is the most common
means of eradicating soil contaminated with radionuclides. Due to high costs of
physiochemical approaches, bioremediation has been viewed as the ecological
responsible alternative environmentally destructive physical remediation. Microor-
ganisms carry endogenous genetic, biochemical and physiological properties that
make them ideal agents for pollutants remediation in soil and groundwater. Attempts
have been made to develop native or genetically engineered or extremophilic
microbes for the remediation of environmental containments including radionu-
clides. Extremophiles have been used to remediate radionuclides. Microorganisms
such as Rhodanobacter sp. and Desulfuromusa ferrireducens were observed to be
able to interact with these contaminants which initiate solubility of transformed

314 S. Kaushik et al.



radionuclides by addition or removal of electrons, leading to increase the mobility of
the contaminants and thus allowing it to be easily flushed from the environments
(Amachi et al. 2010; Green et al. 2012). This microbial-mediated biotransformation
presents opportunities for bioremediation of radionuclides in the environments,
either to immobilize them in place or to accelerate their removal.

Bioremediation of environmental niches (soil, sediments and water contaminated
with radionuclides) can be achieved by changing in the oxidation state through
biologically encoded biomolecules. Similarly, alternation in solubility, transport
properties and toxicity of radionuclides can take place by changing in speciation,
e.g. detoxification of mercury by methylation (Wang et al. 2012). Enzymatic reduc-
tion through oxidation-reduction, changes in pH, biodegradation of radionuclides,
biosorption by mass or biomass can bring about changes in solubility of radionu-
clides (Holker et al. 2002; Law et al. 2010; Hegazy and Emam 2011). Microbial
activity is mostly influenced by acceptors and electron donors, nutrients and other
environmental factors during the biotransformation of radionuclides.

As the reduced species are greatly insoluble and occur as precipitate, the oxidized
forms of radionuclides being soluble in aqueous medium are mobile in ground water.
Enzymatic reduction of soluble U(VI) by a c-type cytochrome protein in the
periplasm to insoluble species on the surface of the microorganism Shewanella
putrefaciens is reported by Wildung et al. (2000). A homologous cytochrome
(PpcA), a trihaem periplasmic cytochrome c7 of the Fe(III)-reducing bacterium
Geobacter sulfurreducens that may also play a role in U(VI) reduction in vitro
was reported by Lloyd et al. (2003). 99Tc is long-lived radionuclide with half-life
2.13 � 105 years and occurs in nuclear wastes. Tc(VII) is very difficult to remove
from solution using conventional chemical methods due to poor ligand-complexing
capabilities. The studies on the microorganisms which can reduce Tc(VII) and
precipitate the radionuclide into low-valency oxide Tc(IV) was demonstrated by
Pignolet et al. (1989). Lloyd and Macaskie (1996) observed the direct microbial
enzymatic reduction of Tc(VII) using Shewanella putrefaciens and Geobacter
metallireducens. The use of immobilized cells of sulphate-reducing bacteria such
as Desulfovibrio fructosovorans, which are capable of treating low concentration of
nitrate ions commonly occurring in nuclear waste, was demonstrated on the devel-
opment of a process to decontaminate water with Tc(VII) species (Lloyd et al. 1999).
Tc and U are normally the highest-priority radionuclide contaminants in most
radioactive wastes, but other actinides including Th, Np, Pu and Am are also present
at the polluted sited (Lloyd and Macaskie 2000; Tamponnet and Declerck 2008).
These pollutants can be enzymatically reduced by iron-reducing bacteria such as
Rhodoferax ferrireducens and Geobacter sp. (Kim et al. 2012). The enzymatic
reduction of radionuclides can be triggered through indirect reduction of soluble
pollutants in soil or sedimentary environments by sulphate or iron-reducing micro-
organisms. For instance, Fe(III) can be bioreduced into Fe(II) and sulphur S(IV) into
S(II) in the form of hydrogen sulphide. Microbacterium flavescens grown in the
presence of nuclides such as U, Th, Am and Pu produced compounds such as
siderophores, organic acids and extracellular metabolites which are capable of
dissolving and mobilizing radionuclides with the cells (John et al. 2001).
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Biosorption involves the sequestration of positively charges metal ions to the
negatively charged cell membranes and polysaccharides secreted on the outer
surfaces of bacteria through capsule and slime formation (Praksh et al. 2013).
Several microorganisms such as Citrobacter freundii and Firmicutes have been
reported radionuclide biosorbents (Haferburg et al. 2007; Xie et al. 2008).
Biosorption alone may not be sufficient to remove radionuclides unless the ground
biomass content is enhanced. Biostimulation using specific communities of micro-
organism can also enhance the bioremediation of radionuclides. Nitrate serves as an
energetically favourable electron acceptor for metal-reducing bacterial in nitric acid
co-contaminated sediments (DiChristina 1992). Finneran et al. (2002) reported that
the lack of microbial reduction in U(VI) due to presence of nitrate as a
co-contaminant in sediment. Wu et al. (2006) reported that this issue can be resolved
by the ex situ treatment and removal of nitrate and heavy metals before in situ
biostimulation to reduce the U(VI). A number of microorganisms such as
Desulfovibrio sp., Geobacter sp. and Shewanella sp. have been shown to carry out
reductive precipitation of radionuclides. Some microorganisms such as Citrobacter
sp. can interact with metals ions and immobilize for transformation or generate
biofilms to bind metallic ions, hence serving as a platform for the precipitation of
insoluble minerals (Keasling et al. 2000). Fredrickson et al. (2000) have shown that
the microorganism Deinococcus radiodurans can detoxify Cr(VI), Tc(VII) and U
(VI) from soil. Brim et al. (2003) reported that the microorganisms such as
Deinococcus geothermalis, Deinococcus murrayl have high resistance against
chronic irradiation (50 Gy h�1) and are able to grow at higher temperature
(55 �C). Lloyd et al. (2003) has shown that microbial family Geobacteraceae has
potential for radioactive metal reduction.

Thus, the study of the molecular mechanisms behind the extremophilic microbial
transformation of radionuclides and exploiting them in bioremediation would help in
tracking the responsible microbial metabolic products towards cell-free bioremedi-
ation and further assist in efficient removal of radionuclides from the contaminant
environments.

12.5.5 Bioremediation of Wastewater Treatment

The main substances found in wastewater are organic and inorganic compounds,
dyes and salts. The primary objective of a wastewater treatment plants is to reduce
the concentrations of pollutants to the level at which the discharge of the effluent will
not adversely affect the environment or pose a health threat. The leftover sludge at
wastewater treatment plants is treated through anaerobic digestion which is one of
the most promising and favourable technology. Breakdown of sewage effluent are
normally carried out by microorganisms which are able to live in the sludge of
treatment plants. They obtain nutrients by degrading the solids in wastewater to
various compounds. Biological treatments of wastewater involve not only carbon
removal, but also elimination of other nutrients such as nitrogen and phosphorus.
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Sequential and combined actions are required for such treatment successively by
several groups of microorganisms such as phosphate-accumulating organism and
heterotrophic bacteria or microbes which are able to perform nitrification, denitrifi-
cation or anammox (Gieseke et al. 2001). The extremophiles which can degrade
ammonia are now one of the main candidates for wastewater treatment in addition to
other natural various types of microorganisms. Other contaminants such as sulphur,
manganese, iron and runoff pollutants (hydrocarbons, fertilizers) can also be
removed. As the industrial effluents have high salt environments along with other
organic compounds and heavy metals, polyextremophilic microorganisms having a
higher resistance to metals, complex dyes along with high salt concentration can be
used for industrial and other similar wastewater treatment. Such polyextremophilic
microbes can be identified and isolated from industrial effluent or waste sites.
Wastewater and industrial effluent is a complex mixture of dyes, metals along with
other organic compounds and high salt substances. Some industrial effluent may be
highly acidic or highly basic.

Bioremediation using living microorganisms particularly halophiles can offer an
efficient and cheap option for decontamination of wastewater. In recent years,
haloarchaea have been assessed successfully for bioremediation and biotechnolog-
ical applications (Arora et al. 2012; Oren 2010; Bonete and Martínez-Espinosa
2011) because of extraordinary properties of their enzymes like high thermostability
and resistance to denaturing agents such as detergents, extreme pH and organic
solvents (Castillo et al. 2005). Activity and maintenance of the stable conformation
of the enzymes at high salt concentrations are due to the presence of acidic amino
acids in these proteins (Oren 2008). Most of the species from Haloferacease and
Halobacteriaceae families can grow under anaerobic conditions in diverse condi-
tions of salt concentrations (Torregrosa-Crespo et al. 2016; Valentine 2007). Con-
sequently, these microorganisms might be applied for bioremediation in saline and
hypersaline wastewater treatments because of their high tolerance to salt, metals and
organic pollutants (Bonete et al. 2015; Najera-Fernandez et al. 2012; Torregrosa-
Crespo et al. 2016).

Recently, more efforts have been devoted to effectively utilizing high-strength
organic wastes by using extremophilic microorganisms. The utilization of high-
strength wastes involves major issues, including sludge foaming, the inhibition of
key microorganisms of anaerobic digestion such as methanogens, and slower hydro-
lysis of complex compounds such as long-chain fatty acids and lignin. Hence,
extremophilic microorganisms able to deal with these compounds have become of
great interest in designing new strategies to treat wastewater. Recent researches
suggest that growth and activity of extremophiles were significant in the treatment
of activated sludge and wastewater (DeLong 1998; Casamayor et al. 2000; Schramm
et al. 1999). The roles of methanogenic extremophilic archaea within a broad range
of activated sludge, submerged biofilters and membrane bioreactors have been
studied in recent research (Gomez-Silvan et al. 2010; Gray et al. 2002; Damgaard
et al. 2001). Under oxic conditions, no methanogenesis was detected, but once
oxygen is depleted, methane production ensued. The results suggest that
methanogenic archaea can be activated under anoxic conditions (Gray et al. 2002).
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The microbial populations in industrial wastewater (rich in ammonia, phenol and
with high salinity) treatments are closely related to Methanobrevibacter smithii, the
predominant methanogen in human intestines (Gomez-Silvan et al. 2010).

The manufacturing of chemical compounds such as pesticides, herbicides and
explosive usually generate effluents containing complex mixtures of salts and nitrate
or nitrite leading to development of resistant to very high nitrate and nitrite concen-
trations in some species of Haloferax. Hence, it could be useful for bioremediation
applications in sewage plants where high salts, nitrate and nitrite concentrations are
detected in wastewaters and brines. Halophilic archaea, Haloferax mediterranei, are
able to carry out denitrification, thus providing excellent models to explore large-
scale bioremediation processes to remove nitrogen compounds from brines and salty
water. Similarly, a group of marine bacterial oxidoreductases represented by the
laccases have been studied by metagenomic approach from a marine library. Bacte-
rial laccases are the enzymes which are able to catalyse the oxidation of phenolic and
non-phenolic aromatic compounds and have unusual properties such as high stability
at 40� C, for pHs ranging from 5.5 to 9.0, high activity in the presence of chloride
and high decolourization capability towards azo dyes (Fang et al. 2012). Hence, such
extremophilic microorganisms producing extremozymes find applications in biore-
mediation of textile dyes in waste water treatment.

12.6 Further Research for Potential Extremophilic
Microorganisms and Their Scale-Up

A primary hurdle in the study of extremophilic microorganisms particularly belong-
ing to Archaea domain used in bioremediation process is methodological. Several
methodologies have been described to study Archaea with a number of archaeal and
universal amplification primer pairs for archaeal diversity (Bonfa et al. 2011;
Khemili-Talbi et al. 2017; Siles and Margesin 2018; Salam et al. 2017; de Jesus
et al. 2015). As PCR amplifications are prone to biases, they may lead to
overrepresent and underrepresent various microbial community members (Pinto
and Raskin 2012). In recent years, relative read depth analysis of the high throughput
sequencing of a 16S rRNA gene amplification product to provide quantitative
measurement of specific Archaea taxonomic groups and metagenomic sequencing
of unamplified DNA (Fig. 12.4) and quantitative PCR (qPCR) methods are used for
analysis of mixed cultures (Smith and Osborn 2009). Second hurdle in studying
Archaea in bioremediation systems is again methodological. Dose–growth response
analysis is generally used to measure community members that outcompete others at
a given physicochemical conditions on a given niche under energy stress (Valentine
2007). In the last several years, this field has made significant advances, but it is still
developing methodology to identify and isolate the suitable extremophile for using
in a particular bioremediation process.

Extremophiles are not cultivable under conventional laboratory culture condi-
tions, but may offer a wealth of valuable bioproducts, ranging from bioactive small
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molecules to unique biopolymers and enzymes (Tango and Islam 2002). To over-
come the limitation of cultivating extremophiles on a production scale, research
work is going on for developing methods and procedures by which extremophiles
can be effectively cultivated for increase in the production of extremophilic biomass,
enzymes and biomolecules. Culture-dependent and culture-independent molecular
methods have been employed for understanding, identification and isolation of
extremophilic microorganisms from diversity of microbes in extreme environments
(Fig. 12.4). The rigours of culturing these organisms have led to cutting-edge
independent molecular techniques such as metagenomics, metatranscriptomics and
metaproteomics being employed (Hedlund et al. 2014; Santos et al. 2011). Various
techniques such as use of different modes of formation, e.g. fed-batch, cell recycling
or continuous cultivation (Schuraldi and Rosa 2002) and optimisation of the medium
composition (Gomes and Steiner 2004; Patel et al. 2006), have been adopted to
improve biomass production by different research groups. Researchers have devel-
oped a unique production-scale bioreactor capable of continuous operations at
extreme temperature and pressure. Research work has been attempted to express
corresponding genes from extremophiles into mesophilic host (Eichler 2001). Fur-
ther developmental work in this direction needs to be done because the demand is
growing at an exponential rate.
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Biochemical and 
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DNA extraction
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Fig. 12.4 Microbial diversity studies: culture-dependent method involving isolation of strains
through serial dilution methods and their genetic, phenotypic and biochemical studies for microbial
characterization and culture-independent metagenomic approach involving a library construction
with identification of molecules (activity-based screening) and microbial communities (sequence-
based screening)
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12.7 Conclusions and Future Perspective

Bioremediation provides a technique for cleaning up pollution by enhancing the
same biodegradation processes that occur in nature. Bioremediation is considered as
one of the best option to treat contaminated environments. Taking into account the
amazing metabolic features that define extremophilic microorganisms, these micro-
organisms may become good candidates to improve bioremediation procedures, or
even new bioremediation strategies could be defined using them. Although the
potential use of extremophilic microorganisms in bioremediation has been exten-
sively demonstrated, but use of extremophilic microorganisms in bioremediation is
still hampered by an incomplete understanding of the genetics and genome-level
characteristics of these microorganisms used and metabolic pathways involved and
their kinetics. Hence, developing technologies for exploring for microbial microen-
vironments and understanding the mechanisms driving microbial activity and met-
abolic pathways (e.g. redistribution, detoxification, mobilization/immobilization,
translocation, transformation, biosorption and bioaccumulation) under diverse cli-
matic and extreme conditions need to be further elucidated before successful and
better-controlled site-specific treatments can occur. Therefore, more studies from
molecular biology and biochemical points of view are required to properly compre-
hend extremophiles metabolism regulation. Hence, new niches and extreme
microecosystems in terms of pH, salt concentration and temperature should be
explored to identify and isolate extremophilic microorganisms capable to deal with
the pollutants such as heavy metals, hydrocarbons and chlorinated compounds
affecting soil and water and have the potential to play key functions for bioremedi-
ation. In future, it is predicted that metagenomics tools together with new sequencing
technologies will provide the basis for the discovery of new extremozymes from
extremophilic microorganisms for bioremediation. Using high-throughput sequenc-
ing techniques and advanced bioinformatics tools together with metaproteiomics and
metabolomics analyses will allow the identification of genes and metabolites respon-
sible for the production of biomolecules to be used in bioremediation. These multi-
omics technologies are also filling gaps in the knowledge of gene expression,
metabolism and ecology of extremophilic microorganisms which could allow the
improvements in knowledge related to their application in the field of
bioremediation.
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Abstract Intense release of radionuclides into the environment and their mobility
prompted public and research concerned in recent years about the processing of
radionuclides. Numerous cases of soil and groundwater are getting contaminated
with various radioactive wastes. Currently available technologies are quite cost-
effective and technical limitation increased the cost high. Bioremediation, where
microorganisms (bacteria, algae, fungi) plays a major role in harnessing the

U. K. Vandana (*) · A. B. M. Gulzar · I. H. Laskar · L. R. Meitei · P. B. Mazumder (*)
Department of Biotechnology, Assam University, Silchar, Assam, India

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
D. G. Panpatte, Y. K. Jhala (eds.), Microbial Rejuvenation of Polluted Environment,
Microorganisms for Sustainability 25, https://doi.org/10.1007/978-981-15-7447-4_13

329

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7447-4_13&domain=pdf
https://doi.org/10.1007/978-981-15-7447-4_13#DOI


biogeochemical cycles of radioactive wastes. In this chapter, we exclusively discuss
the role of microbes in decontaminating process of various hazardous radioactive
wastes.

Keywords Bioremediation · Radioactive wastes · Actinides · Bacteria · Fungi ·
Algae · Biotransformation · Biomineralization · Biosorption · Bioaccumulation

13.1 Introduction

The word pollution is one of the global concerns for today’s world. Urbanization and
industrialization are increasing exponentially to fulfil the demand of people for their
modernization. The process of modernization not only improves the living style of
human being but also causes severe environmental problems by release of different
types of waste material (Fontenelle et al. 2019; Jiang et al. 2008). Radioactive waste
material has become a serious environmental problem. In the twenty-first century,
every country is trying to increase the power by establishing nuclear power plants,
testing the nuclear weapons and reprocessing the nuclear weapons. As a result, the
radioactive wastes are generated as a by-product of such power generation (Toth
2008). The release of radioactive wastes into the environment from the atomic power
plants or other sources by prosperously or by accidentally contributes to the already
present wastes generated (Kumar et al. 2007). The half-life of these radioactive
waste ranges from hundreds to thousands years, i.e. more time is required to reduce
the radioactivity of that compounds by half. Due to long half-life periods of those
waste materials, the disposition of such materials become a challenge for
researchers, policy makers and the power generation agencies throughout the
world (Marra and Palmer 2011; Sherman 2015). Presently the most common
practice to throw out the radioactive waste is direct release in geological storage
site. But this process requires high maintenance and day by day the by-product
radioactive waste generation is increases therefore, maintenance and storage of such
volume of radioactive wastes becomes a big issue (Uzair et al. 2019). There are some
physical and chemical methods developed for the remediation of radioactive wastes.
Though these technologies showed little impressive results, but due to their high
cost, time consuming and some environmentally destructive nature, these techniques
fail to gain public acceptance (Valdovinos et al. 2017). In one report, it has been
mentioned that the remediation cost of a radioactive contaminated site is minimum
trillions of US dollar (Kyne and Bolin 2016). On the other hand, bioremediation
refers to the use of biological agents such as microbes, plants or any other living
things that help to reduce contamination to a non-toxic level or untraceable level.
Due to the low cost, eco-friendly and successful remediation ability, bioremediation
gain much attention for cleaning environments (Ite and Ibok 2019). Microbes
(bacteria, fungi and algae) have a great influence on radionuclide transformation,
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speciation and mineralization by various enzymatic or non-enzymatic processes.
Microbial interaction with radionuclides has a great potential in detoxification of
radionuclides via mineralization, accumulation and transformation (Kumar et al.
2007). A variety of microorganisms such as Deinococcus radiodurans, Rhodotorula
taiwanensisMD1149,Mucor mehei, Chlorella vulgaris, and Parachlorella sp. binos
have been studied for remediation of radioactive wastes (Fredrickson et al. 2000;
Shimura et al. 2012; Tkavc et al. 2018; Kumar et al. 2007). Microorganisms adopt
various mechanisms like biotransformation, biomineralization, bioaccumulation,
etc. to degrade and detoxify radioactive wastes (Singh and Kumar 2020). Microor-
ganisms have the ability to reduce or precipitate the radionuclides in aqueous
condition, and this is done by extracting electrons from organic compounds and
transferring it to the radionuclides as a final electron acceptor (Kumar et al. 2007).
This procedure basically makes the radionuclides stable and prevents spilling from
contaminated sites. In this chapter, we will discuss about sources of radioactive
wastes, impacts of radioactive wastes on environment and potential role of microbes
in remediation of radioactive wastes.

13.1.1 Sources of Radioactive Wastes

Radioactive wastes are the wastes which contain radioactive materials. Radioactive
materials are the compounds of unstable atoms which emit ionizing radiations as
they decay. Radioactivity is a natural process and any atom which is not in its stable
form will give off its extra energy to become stable. This process is known as
radioactive decay. The process of decaying is atom specific and no two atoms have
similar rate of radioactive decay (Bryant 2019).

Radioactive wastes typically generate from nuclear fuel cycle required for elec-
trical power generation, research, medical, military and industrial applications and
also from accidents.

13.1.2 Nuclear Fuel Cycle

Nuclear fuel cycle is a series of processes, resulting in the production of electricity
from uranium in nuclear power plant (NPP). Two steps are involved in this process,
one when the nuclear fuel arrives at NPP which is regarded as front end and other
when the spent nuclear fuel (SNF) leaves the reactor, known as back end. Front-end
process is comprised of uranium mining, milling, refining, enrichment and fuel
fabrication to be used in nuclear reactor, whereas in contrast back-end process
involves storage of used fuel, recycling, reprocessing and ultimately disposal
(Rodríguez-Penalonga and Moratilla Soria 2017).

Two main strategies are involved globally to decide the fate of SNF: one is once-
through cycle or direct disposal or open cycle and another is twice-through cycle or
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partially closed cycle. In open cycle, the SNF is considered as high-level waste and
disposed in a safe storage facility without going through any chemical processes to
mitigate its radiotoxicity. The SNF is supposed to be remained in that situation for
millions of years until it gives off its radiotoxicity naturally and transforms itself into
safe uranium levels. While in case of closed cycle, much of SNF is reprocessed to
extract uranium and plutonium. It is estimated that around 94–96% of uranium and
1–1.5% of plutonium can be recycled from its original SNF quantity to be used as a
nuclear fuel, and rests are disposed. Different strategies or technologies are used in
different countries to recycle the SNF in closed cycle process.

The final disposal of nuclear wastes from various processes of nuclear fuel cycles
should end up in a deep geological repository (DGR), but as of now, there is none
operating but under process. The safety of DGR is very much debated but in many
international forums it has been accepted as an option for recent time until new
strategies arise for better disposal option. For current measures, low and intermediate
levels of wastes are buried close to surface but high levels of wastes are disposed of
to an underground engineered facility for its radioactivity to decay naturally. The
time taken for nuclear wastes in safe storage repositories to reach to its safe levels
depends much on its reprocessing technologies.

Radioactive wastes may generate from NFC during or between various stages of
characterization, segregation, treatment, transport and disposal. Radioisotopes like
89Sr, 90Y, 95Zr, 103Ru, 105Rh, 129Te, 140Ba, 144Ce, 144Pr and their relevant
isotopes are considered as significant hazards at reactor stage and may get released
into environment. Apart from that, during fuel element transport and fuel
reprocessing state, 90Sr, 129Te, 131I, 137Cs, 95Zr, 95Nb, 106Ru, 144Ce or their
other relevant radioisotopes may also get released. Contamination may also happen
during solidification of fusion product and final disposal process. The content of final
disposal from NFC may get leeched in repository and contaminate the soil mostly
with radionuclides like 137Cs, 90Sr and actinides (Smičiklas and Šljivić-Ivanović
2016).

13.1.3 Radioactive Wastes from Medicine

Radioisotopes are increasingly used in health care for therapeutic and diagnostic
purposes. The radioisotopes which are mostly used include Technetium 99m
(Tc-99m), Iodine 131 (I-131), Iodine 125 (I-125), Iodine 123 (I-123), Tritium
3 (H-3), Carbon 14 (C-14), Yttrium 90 (Y-90), Cobalt 60 (Co-60), Strontium
89 (Sr-89), Iridium 192 (Ir-192), Caesium 137 (Cs-137), Xenon 133 (Xn-133), etc.
The department of nuclear medicine in each hospital generates most of the radioac-
tive wastes. The radioactive wastes are mostly in the form of liquid with little solid
wastes as used in syringes, needles, vials, contaminated gloves, cotton swabs,
clothing, absorbent materials and utensils of patients and minimal amount of gaseous
products. Strategies used in disposal of radioactive wastes in hospitals involves safe
storage until its radioactivity is reduced to safe levels naturally through decaying and
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discharge of low activity hazards into sewage system. The discharge is ensured to
achieve the community safety standpoint, so that no negative consequences occur in
case of sludge formation in nearby area of human population (Khan et al. 2010).

13.1.4 Radioactive Wastes from Research Institutes

Research institutes and universities are often using radionuclides for tracing the
metabolic or environmental pathways necessary for monitoring the activities of
materials such as drugs, minerals, pesticides and biomolecules. The radionuclides
mostly used are C-14, H-3, I-125, etc. Many radionuclides which are used are short
lived with few long-lived radionuclides like C-14. Transuranic elements which also
have longer half-lives may also be present in the radioactive wastes from research
institutes.

13.1.5 Radioactive Wastes from Industry

Sealed radioactive sources (SRS) are mostly found in industrial application of
radionuclides. They are contained in specialized devices for testing in a
non-destructive manner and for quality control measures and also in luminous
display and as a tracer. In industrial setting, spent or unused SRS are great sources
of hazard and found in several serious accidents. Tritium 3 (3H), Phosphorus
32 (32P), Nickel 63 (63Ni), Americium 241 (241Am) and Strontium 90 (90 Sr)
are some of the radionuclides used in industries for measuring the thickness of the
product. Tritium 3 is also used in case of water movement, luminous and electronic
valves and Americium 241 can be used in smoke detectors. Cobalt 60 (60 Co) is
another radionuclide applied in sterilization and irradiation. For gauging, eye appli-
cators and radiography Krypton 85 (85 Kr), Strontium 90 (90 Sr) and Caesium
137 (137 Cs) radioactive materials are used, respectively.

13.1.6 Radioactive Wastes from Naturally Occurring
Radioactive Material (NORM)

Radioisotopes or radioactive materials which are present naturally in the Earth’s
crust and due to anthropogenic activity their ionizing radiation gets exposed to
public domain are commonly referred to as NORM. NORM originates from burning
of fossil fuels as well as mining, using of fertilizers and gas production. Uranium
mining is the major source of NORM exposure. Key sources are U-238 and Th-232
decay series. Another source of NORM includes radon gas which is itself a decay
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product from radium, but it is also found in the intermediate step of radioactive decay
of many short lived radioactive materials (Nazaroff 1992). Radon exposure occurs to
humans directly from their homes only if it is built in granitic ground, and it is the
second cause of lung cancer after smoking (Pacheco-Torgal 2012). On the other
hand, technologically enhanced naturally occurring radioactive materials
(TENORM) involve specifically the natural radioactive materials whose physical,
chemical and radiological properties have increased in concentration due to
man-made activities and as a result are now more exposed to its radioactive exposure
(Abdel Rahman et al. 2013).

13.1.7 Radioactive Wastes or Radioactivity Due to Accidents

Radioactive wastes can arise from nuclear accidents and that is more detrimental
compared to other source of wastes. The radioactive wastes that arise from accidents
are uncontrolled mass of emission or discharge directly into environment. Some of
the notable radioactive material exposures through accidents will be discussed here.
Los Alamos criticality accident 1946 which took lives of two persons was due to the
anomaly in plutonium assembly (McLaughlin et al. 2000). 1961 Nuclear meltdown
at Idaho National laboratory, USA took the lives of three persons due to the
malfunction and overheating of the nuclear reactor. Stationary Low Power Reactor
(SL 1), an experimental prototype meant for nuclear power generation, was the one
that got flawed in Idaho incident (Peplow 2014). Another incident happened the
same year in USSR known as 1961 atom accident on submarine. One of the two
nuclear reactors powering the K-19 submarine of soviet era got damaged and in a
radiation exposure took the life of nine crew members within 2 days after their rescue
from the damaged submarine (Erlanger 1992). In 1984, in Casablanca, Morocco, an
iridium-192 radiography source was lost from an industry and was taken home by a
labourer, and in the subsequent week, the whole family was exposed to its radiation
and which took the lives of eight of the family members (Nenot 2009). In 1986, in
Prypyat, Ukraine, 15 km from proper populated area of Chernobyl, in the Chernobyl
Nuclear Power Plant, four RBMK-1000 reactors were used with the intention of
producing 1 MW electrical power generation. The RBMK-1000 reactors were
graphite moderated water cooled reactors with a lacking of western style contain-
ment vessel. On 26 April, the workers bypassed the safety systems to perform a test
which resulted in steam explosion. The steam explosion damaged the upper cover of
the reactor, releasing almost all its core water. In a subsequent event, due to the
reaction between steam and graphite or zirconium, a possible second hydrogen
explosion followed. The explosion immediately took the lives of three persons
with 26 others including firefighters who died in the following days due to acute
radiation. Another 238 persons survived with acute radiation sickness (Mould 2000).
In 1987, In Goinia, Brazil, two individuals from a left out radiotherapy unit of a
clinic took two sealed containers home and broke the seal. The sealed containers
contained 1375 curies of cesium-137 chloride salt which ultimately got exposed.
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They then sold it to another person, and in the following days, a whole area was
exposed to it through its unconscious distribution. The incident started 12 September,
and by 28 September, many people fell sick. On 29 September, the governmental
authority got alerted and began their search of contamination and eradication of
threat. The authority set up facilities for injured and contaminated individuals in the
city’s Olympic stadium. Around 112,800 people were examined, and out of which,
129 people were found to contain radioactive contamination. A total of 5 people died
in this incident with 20 seriously injured (Brandao-Mello et al. 2000). In 1996, San
Jose, Costa Rica, a Cobalt-60 radiation source in radiotherapy unit was miscalibrated
and resulted in 50–60% of overdosages to the patients of San Juan de Dios Hospital.
The accident took the lives of 7 patients with 81 injured (Coeytaux et al. 2015).
Recent most notable nuclear accident happened in Fukushima, Japan in the year
2011. On 11 March 2011, a major earthquake brought out 15 m of tsunami waves to
the land of Japan. Almost 20,000 people died in this natural disaster and prominent
damage occurred to the three reactors of Fukushima Daiichi nuclear power plant.
The radioactive materials from the three nuclear reactor core evaded to the sea, land
and atmosphere. The Japanese authority was managed to shut down the three
reactors in mid-December 2011 after the fallout of temperature to 80 �C during
October. The exact casualty due to radioactivity is uncertain, but the amount of
radioactivity released is supposed to one-tenth of Chernobyl nuclear disaster.

13.1.8 Radioactive Waste or Radioactivity Due to Military Use

Environmental contamination through the release of radioactive wastes or radionu-
clides by nuclear weapon testing for military use is enormous. After the historic
Hiroshima and Nagasaki nuclear bombing during Second World War, the testing of
nuclear weapons has reached its peak during the Cold War era. In USA alone, from
1945 to 1980, the atmospheric tests amounted to 428 megatons which is 29,000
times in its size compared to Nagasaki nuclear bomb. Although the adoption of non-
proliferation treaty and the end of Cold War era has put a restrain to the ongoing
competition for nuclear war heads, it is noteworthy that many other countries apart
from then global competitors of West versus Soviets have also achieved their nuclear
potential. But it is also noteworthy that many other countries apart from then global
competitors of West versus Soviets have also achieved their nuclear potential. The
greater concern with nuclear weapon testing is that radioactive debris gets stuck in
the atmosphere by partitioning in the troposphere and stratosphere and eventually
getting precipitated for shorter or longer periods (Smičiklas and Šljivić-Ivanović
2016). Pu and its relevant isotopes which are released after a nuclear test in particular
are of major concern as it has higher biological half-lives approximately 24.3 � 103

to 81� 106 years (Gabrieli et al. 2011). 241Am, 137Cs, 131I, 90Sr, etc. are the most
significant radioisotopes found almost in every nuclear-related incidents or testing
which are very much detrimental to human lives (Turner et al. 2003).
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13.1.9 Impact of Radioactivity on Environment

Radioactive exposure has varied degrees of impact when it comes to environment
and public health. The international community of nuclear experts set up bars to
measure the scale of radioactivity and based on its impacts to environment. The
international nuclear and radiological event scale (INES) which was brought into
force in 1990 by International Atomic Energy Agency (IAEA) and Organization for
Economic Co-operation and Development Nuclear Agency (OECD/NEA) had made
seven levels of radiological exposures. Levels 1–4 are termed as incidents, whereas
levels 5–7 are considered as accidents. The evaluation is on the amount of dosages
people received and the number of people involved or the amount released into the
environment.

Level 1 is considered as anomaly wherein a member of public community is
overexposed to a radioactive source more than its expected statutory annual limit or a
radioactive source was picked up or minor defects in safety systems in a facility
containing radioactive substances.

Level 2 is overexposure more than 10 mSv (millisievert) to a person or a worker
working in a radioactive facility. In case of radioactive facility, radiation level
reaching more than 50 mSv per hour or contamination in the facility is also
considered as level 2 risk.

Level 3 which is also termed as serious incident involves overexposures to
workers more than ten times of its statutory annual limits or non-lethal burns or
inflammation from radiation. Exposure more than 1 Sv/h or unexpected severe
contaminations in the facility are also this level of threat. Any accidents near a
nuclear power plant or any radioactive materials stolen or lost or misdelivered also
come under this level.

Level 4 or an accident with consequences involves death of one individual due to
radiation. It encompasses minor exposure of radioactive material unlikely to have a
need of implementing countermeasures except for food sector which requires control
measures. Damage to core structure or fuel melting which if results in release of
0.1% of core material or exposure of significant amount of radioactivity which can
have significant impact on public health falls under this level.

Level 5 or an accident with broader consequences involves several deaths due to
radiation and requires implementation of countermeasures. This level also deals with
greater damage to reactor core which may result in exposure of large amount of
radioactivity within the premises of an installation.

Level 6 also known as serious accidents involves release of significant amount of
radioactive material from a radioactive source or installation. It requires planned
countermeasures to control radiotoxicity of environment.

Level 7 or major accidents can be defined as major release of radioactivity from a
source or installation with broader negative consequences on public health and
environment. It requires planned and extended countermeasures to mitigate its
radiotoxicity (Ojovan et al. 2019).
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To better understand the levels set by INES, some instances will be useful here.
The radioactive incident of 1987 in Goinia, Brazil where Cs-137 SRS was distrib-
uted in an area was a level 5 risk whereas level 7 risks involved Chernobyl nuclear
disaster and Fukushima Daiichi nuclear disaster. It is estimated that 6000 mSv of
radiation exposure was found within a month of Chernobyl nuclear disaster, and in
case of Fukushima, 400 mSv per hour was recorded on 14 March, and it was the
maximum recorded value to this date though it fell down later. Apart from the
immediate deaths on aftermath of Chernobyl nuclear disaster, till date there are many
cases of thyroid cancers reported. According to a UNSCEAR (United Nations
Scientific Committee on the Effects of Atomic Radiation) report, around 6000
cases of thyroid cancer were reported related to Chernobyl disaster till 2005. The
predicted cause for this sudden increase in incidence of thyroid cancer attributed to
overexposure of 131-I due to the fallout of Chernobyl nuclear disaster. In contrast, in
Fukushima incidence, the level of radioactive exposure or contamination remains
uncertain though the estimated radioiodine exposure is 1% to that of Chernobyl
accident (Lee et al. 2013). Nuclear accidents are the sole reason of major contam-
ination of environment. Also Chernobyl nuclear disaster was able to increase the
radioactive contamination of soil of Europe 3500 times compared to beforehand of
the disaster. Most radionuclides which get dispersed in a nuclear disaster involve
131I, 137Cs, 90Sr, 239Pu and 240Pu (Steinhauser et al. 2014). Major contaminants
from Fukushima Daiichi nuclear disaster involved 134Cs and 137Cs which were
mostly found in soil samples 32 km from the incident site. Furthermore, in the same
soil, other radionuclides like 110mAg, 129Te, 129mTe, 131I and 140La were also
detected. The outer cover of leaves of cabbage, bamboo and grasses were also found
to have radioactive contamination along with soil (Tazoe et al. 2012).

13.2 Microbes-Assisted Bioremediation of Radioactive
Wastes

Enormous volumes of radionuclides and lethal metals containing wastes are gener-
ated from atomic fuel cycle and nuclear weapon generation agencies, medical
research institutes, mining, etc., and causing adverse effects on earth is a significant
concern (International Atomic Energy Agency 2010). As the physical and chemical
methods of remediation are much expensive and also generate secondary pollutants,
development of new low-cost inventive treatment and remediation advancements,
including bioremediation utilizing microorganisms for adjustment or evacuation and
recuperation of the contaminants, got much attention (Coelho et al. 2015; Francis
2006).

A wide range of microorganisms including bacteria, fungi and algae showed
efficient results in the field of bioremediation of different types of pollutants.
Microbial bioremediation of radioactive wastes depends upon the complex interac-
tion of microbes and pollutants (Lloyd and Renshaw 2005). Different types of
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microbial activity like biotransformation, biomineralization and biosorption and
bioaccumulation (Fig. 13.1) can reduce the toxicity of radioactive wastes and also
increase the metal transport into the microbial system (Valdovinos et al. 2017;
Kumar et al. 2007).

13.2.1 Bacterial Bioremediation of Radioactive Wastes

There are a huge number of bacteria that have the ability to remediate pollutants like
metallic compounds and other organic pollutants through detoxification, transfor-
mation or immobilization. But, all the bacteria are not able to resist under high
ionizing radiation and high acidic conditions (Misra et al. 2012). The waste produced
from atomic power plants, nuclear weapon testing sites, mining and medical research
industries contains actinides (Marra and Palmer 2011). Radioactivity is one of the
most important property of actinides. Actinides and other fission products present in
the wastes are able to produce high amount of β-radiation and γ-radiation. Therefore,
the use of extremophilic bacteria which are able to resist under high radiations is an
essential requirement for bioremediation under such extremophilic conditions
(Albrecht-Schmitt 2019; Misra et al. 2012). Several microbial processes are involved
in bioremediation of pollutants, but biotransformation, biomineralization,
biosorption and bioaccumulation processes are most important bioremediation pro-
cesses for radioactive wastes (Table 13.1, Kumar et al. 2007).

13.2.1.1 Biotransformation via Bioreduction

One of the most important negative properties of metals or other radioactive metallic
waste element is that the elements cannot be destroyed like other organic pollutants,
but it can transform or convert one form to another (Ayangbenro and Babalola
2017). Initially, the radioactive wastes are present in either soluble or insoluble form,
and after disposal, the microbial process may convert the wastes soluble to insoluble
or vice versa. This strategy of microbial process is used in the field of bioremediation
(Francis 2006). The presence of electron acceptor like oxygen and electron donor
like hydrogen influences the biotransformation. In the absence of oxygen, i.e. under
anaerobic condition, bacteria use nitrates, sulphates or carbon dioxide as electron
acceptor (Francis 2006; El Mamouni et al. 2002). Bacteria can transform radionu-
clides by either direct or indirect mechanisms.

1. Direct immobilization of radionuclides
Direct immobilization of radionuclides includes transformation of radionu-

clides by enzymatic processes produced by microbes (Kumar et al. 2007).
Actinides like Uranium (U), Technetium (Tc), Chromium (Cr), etc. showed
efficient enzymatic reduction by microbes. In aqueous condition, oxidized form
of actinides like Uranium (U), Technetium (Tc), Chromium (Cr), etc. is present in
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highly soluble form, whereas reduced form of actinides is insoluble and immobile
under aqueous condition (Humphries and Macaskie 2002; Istok et al. 2004).
Therefore, these reduced elements are often found in precipitated form. Under
in vitro condition, Desulfovibrio vulgaris have the ability to reduce U(VI) and Cr
(VI) to U(IV) and Cr(III) where H2 act as electron donor and cytochrome c3 as Cr
reductase (Lovley and Phillips 1994; Lovley et al. 1993). In 2002, another
experiment was performed to understand the involvement of cytochrome c3 and
hydrogenase protein in metal reduction. It was found that the c3 mutant
D. desulfuricans strain G20 was able to reduce uranium along with lactate or
pyruvate as electron donor, but the rate of reduction was decreased as compared
to the wild-type. From this study, it was concluded that cytochrome c3 is a part of
metal reduction along with hydrogenase, and it can be bypassed by additional
pathways (Payne et al. 2002).

2. Indirect immobilization of radionuclides
Indirect immobilization means immobilization of primary molecules via

bioreduction of a secondary molecule. For example, iron Fe(III) and sulphur S
(VI) can be reduced by microbes into Fe(II) and S(II) form and the oxidation of
that bioreduced Fe & S can reduce a primary molecule and transform them into
mobile to immobile molecule (Prakash et al. 2013). Technetium-99 [Tc(VII)] is
an example of higher risk driving radioactive waste. Indirect mechanism play
important role in immobilization of Tc(VII), where bioreduced Fe(II) directly
donate electron to Tc(VII). After accepting electron from Fe(II) the reduced Tc
(VII) becomes immobile (Kumar et al. 2007). Geobacter metallireducens has the
ability to reduce Fe(III) as ferrihydrite Fe(II) enzymatically, when the cell is
exposed to the highly soluble U(VI), it converts U(VI) to poorly soluble U
(IV) (Lloyd 2003). Another indirect immobilization process involves the
siderophore production and complexation. For example, Microbacterium
flavescens developed under radioactive waste condition secretes various organic
acids, siderophores, extracellular metabolites which mix with and assemble the
radionuclides in the form of dirt (Banerjee et al. 2018; Kumar et al. 2007).

13.2.1.2 Biomineralization

The term biomineralization refers to the process of metal precipitation at the
microbial cell surface with the help of ligands such as sulphides, carbonates,
phosphates and hydroxides generated by microbes (Jiang et al. 2019). Bacteria
like Citrobacter species and Serratia species showed efficient uranium biominerali-
zation (Ding et al. 2019). It was observed that under glycerol phosphate condition,
the cell shows phosphatase activity and releases inorganic phosphates which ulti-
mately form complexes with uranium in the form of hydrogen uranyl phosphate at
the cell surface (Beazley et al. 2007). Similar uranium biomineralization was noticed
earlier when Pseudomonas species was supplied with tributylphosphate (Thomas
and Macaskie 1996). Bacterial cells covered with uranium phosphates were isolated
from uranium contaminated soils, which suggest that biomineralization is a naturally
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occurring process (Newsome et al. 2014). Rapid precipitation of metal phosphate
will form a barrier around the cell surface which may hurdle in cell metabolism
(Mondani et al. 2011; Newsome et al. 2014). But in Serratia, the uranium deposition
was observed only on one side where lipopolysaccharide prevent fouling of cell
surface (Macaskie et al. 2000; Newsome et al. 2014).

13.2.1.3 Biosorption

Biosorption refers to the passive deposition of the soluble substances at the cell
surface. The presence of various ionizable groups such as phosphate, carboxyl,
hydroxyl, amine, and sulfhydryl at the cell surface generates electronegative attrac-
tions for metal cations as results the metal ions get deposited at the cell surface
(Lopez-Fernandez et al. 2019). Biosorption is considered as right method for treating
low concentration metallic wastes as the process of binding is faster than accumu-
lation process, and also it is easy to remove bound pollutants from the cell surface to
regenerate the biosorbant for further use (Newsome et al. 2014; Oyewole et al.
2019). But there are some problems in biosorption like

• Sometimes problems may arise in bioremediation when other non-targeted cat-
ions competes and binds with cell surface as a result the rate of bioremediation
decreases drastically (Schiewer and Volesky 2000).

• Sometimes the cell surface becomes saturated as a result further binding of
cations do not takes place (Newsome et al. 2014).

• If the sorbed cell dies, rapid desorption of cation takes place which may alter in
bioremediation process (Knopp et al. 2003).

13.2.1.4 Bioaccumulation

Bioaccumulation of radioactive waste refers to the accumulation of radioactive
wastes inside the cell. A wide range of metal accumulation takes place through
bioaccumulation (Diep et al. 2018). Certain metal ions show structural similarity
with essential elements needed for bacterial growth and developments as a result the
adventitious uptake of these ions take place. As uranium has no known biological
function, uranium uptake into the cell takes place through membrane permeability
caused by uranium toxicity (Newsome et al. 2014). In Pseudomonas species, the
uranium accumulation takes place in the form of uranyl phosphates. Other microbes
like Arthrobacter nicotianae,Micrococcus luteus, Citrobacter sp. N14, and Bacillus
megaterium showed efficient bioremediation of radioactive wastes through
bioaccumulation process (Shukla et al. 2017).
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13.2.2 Fungi: Bioremediation of Radioactive Wastes

Fungi play an essential role in soil food web as it decomposes various organic
substances. Fungi is able to decompose woods by degrading the key components of
wood fibre such as lignin and cellulose (Hildén and Mäkelä 2018). Fungi also
showed efficient results in bioremediation of dyes, heavy metals released from
textile industries, pharmaceutical industries, etc. (Khan et al. 2019). The environ-
ment radioactive waste contaminated sites have low pH, high temperature and
extreme radiations, and it seems to be impossible to survive any species at that
extreme condition. Therefore, for bioremediation purpose, it is essential to search the
microbes which is able to survive under extreme environmental conditions
(Fredrickson et al. 2004). Tkavc et al. isolated Rhodotorula taiwanensis MD1149,
a fungal species which can survive under environmentally harsh condition,
i.e. highly acidic condition at pH 2.3, high metal concentration and extreme radia-
tion. The fungi showed bio-film formation under extreme gamma radiation and at
low pH (Tkavc et al. 2018).

Fungi Rhizopus arrhizus along with the immobilized particles showed
biosorption of uranium from bioleaching uranium ore solutions. The amine nitrogen
of chitin along with free radicals results uranium biosorption (Gadd and Fomina
2011). The carboxyl and phosphates group of Saccharomyces cerevisiae cell wall
showed initial uranium deposition (Zhang et al. 2020). pH also plays a major role in
biosorption of radionuclides. For examples, at pH 3 Mucor miehei sorbs 70–80 mg
uranium/g dry weight of fungi, and at pH 4 and 5, the biosorption increases 2–3
times, respectively. While Rhizopus sp. showed efficient Cr(VI) adsorption at pH 2.0
(Espinoza-Sánchez et al. 2019; Gadd and Fomina 2011). The crystalline disposition
of uranium was observed in Penicillium digitatum (Gadd and Fomina 2011).

In the field of bioremediation, mushroom plays a key role. Due to the large
fruiting bodies, mushroom gains much attention that it can accumulate large amount
of wastes. Mushroom has the ability to degrade, decompose and accumulate differ-
ent types of organic wastes and agro wastes (Pandey et al. 2018). But in the field of
radioactive waste bioremediation, mushroom was less studied. Baeza and Guillén
(2006) studied the uranium bioaccumulation in mushrooms, and they determined it
in terms of transfer factor (TF), i.e. level of radioactivity is detected in mushrooms in
comparison to surface soil. They found that Amanita muscaria and Hebeloma
cylindrosporum showed the highest TF values while Lactarius deliciosus exhibited
the least ranges from 0.043 to 0.49 (Baeza et al. 2004).

13.2.3 Algae: Bioremediation of Radioactive Wastes

Like bacteria and fungi, algae also play crucial role in bioremediation of various
pollutants like heavy metals and other organic pollutants. Algal-based bioremedia-
tion is known as phycoremediation. Due to autotrophic in nature, algal
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bioremediation does not require external energy sources for their growth and hence
showed enhanced bioremediation (Iwamoto and Minoda 2018). For growth, auto-
trophic algae need only light, water, carbon dioxide and dissolved minerals.
Recently algal bioremediation showed effective role in remediating sites contami-
nated with radionuclides. Chlorella vulgaris showed efficient biosorption of ura-
nium, and the rate of biosorption depends on the availability of carboxylic and
phosphate groups. The concentration of uranium, pH and the status of cell is also
directly related to the uranium biosorption (Vogel et al. 2010). Different microalgae
showed effective results in remediation or radionuclides like radioiodine, caesium,
strontium, etc. For example, a green Parachlorella sp. binos microalgae when
cultured under radioiodine condition. It accumulates radioiodine into the cytosol in
light-dependent manner. The microalgae are also able to accumulate strontium and
caesium in light-independent manner, and accumulation of strontium was observed
into the extracellular matrix of Parachlorella sp. (Shimura et al. 2012). Coccomyxa
actinabiotis sp. nov. isolated from nuclear agencies is able to survive under high
ionizing radiation doses up to 20,000 Gy, and it is supposed to be 2000 times lethal
human dose. The microalgae are also able to accumulate high amount of radionu-
clides like 238U, 137Cs, 110mAg, 60Co, 54Mn, 65Zn and 14C (Earis 2009).

13.2.4 Genetic Engineering: Bioremediation of Radioactive
Wastes

Due to adverse environmental conditions, it seems impossible for microbes to
survive and remediates pollutants. But there are still some microbes which can resist
extreme environmental conditions but fail to remediate the contaminants (Katarína
et al. 2018). In this case, genetic engineering provides a new insight in the field of
bioremediation as many microbes can be designed in such a way that can remediate
the contaminants which are not done by normal microbes. In this case by altering
gene sequences of desired microbes and enhancing its ability to degrade, digest, and
accumulate contaminants or sometimes reconstructing a microbe by inserting a gene
which has an extraordinary ability to remediate the specific contamination. Thus,
reconstruction of microbes for bioremediation is done specifically (Jaiswal et al.
2019). Deinococcus radiodurans is a well-known radio-resistant bacteria that have
the ability to reduce radioactive wastes like Cr(VI), U(VI) and Tc(VII) (Fredrickson
et al. 2000). Attempts were made to reconstruct Deinococcus radiodurans that has
the ability to reduce the radionuclides along with other contaminants like other
metals and organic pollutants. Incorporation of an E. coli (merA) gene provides
carbon assimilation property for energy generation generated from toluene and
mercury catabolism. Thus, genetically modified Deinococcus radiodurans can be
a promising tool for bioremediation of radionuclides along with other pollutants
(Watanabe 2001). Similarly, expressing the PhoN gene in Deinococcus radiodurans
through rDNA technologies increased 6 months shelf life of the bacteria also
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increased uranium bioprecipitation along with cobalt (Misra et al. 2012). Expressing
NiCoT gene into high radiation-resistant Deinococcus radiodurans through genetic
engineering showed increased uptake of radioactive Cobalt (60Co) isotope and
reduced the total biomass of cobalt (Gogada et al. 2015). Most of the bacteria of
Geobacteriaceae family are able to reduce radionuclides. The dcuB of Geobacter
sulfurreducens coded for fumarate transporter, constitutive expression of ducB in
G. metallireducens, increased respiratory capabilities along with bioremediation of
radioactive wastes (Butler et al. 2006). Genetic engineering holds considerable
promises, and more studies will require in developing advanced and more efficient
technologies for safe and clean environments.

13.3 Factors Affecting Bioremediation of Radioactive
Wastes

Microbes have the ability to adapt themselves with the changing environments and
showed a promising approach towards radioactive waste bioremediation. But there
are some biotic and abiotic factors which alters the biological processes of microbes
by altering the behaviour and growth. Lack of knowledge regarding the factors that
affect and influence may alter the rate of bioremediation (Boopathy 2000; Varjani
and Upasani 2017). Factors that affect the microbial processes are classified into
three groups:

1. Physicochemical factors or abiotic factors
2. Biological factors or biotic factors
3. Climatic factors

13.3.1 Physicochemical Factors or Abiotic Factors

The physicochemical factors that affect bioremediation by altering microbial behav-
iour and growth are mainly pH, solubility, presence and absence of electron donor
and acceptor, and the ionic strength. In the process of microbial biosorption, pH
plays the key role to absorb pollutants like radionuclides (Srivastava et al. 2014). A
slight change in pH may alter the rate of bioremediation. pH value changes cell
surface charge by altering the isoelectric points. The ionic strength of various ligands
like carboxylic group, phosphate groups, sulphur and amino groups directly depends
on pH (Boopathy 2000). Changes in pH value bring changes in ionic strength of such
ligands and alter the rate of biosorption. The solubility of metal ions are also pH
dependent as with decrease in pH the solubility of the metal ion increases which alter
the adsorption by microbial cells (Varjani and Upasani 2017). For examples, at pH 3
Mucor miehei sorbs 70–80 mg uranium/g dry weight of fungi, and at pH 4 and 5, the
biosorption increases 2–3 times, respectively (Gadd and Fomina 2011).
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13.3.2 Biological Factors or Biotic Factors

There are some biological factors that have great influence in bioremediation. The
specificity of microbes towards the substrates has a great role in bioremediation, and
it has shown that microbes have a wide range of specificity for different types of
substrates which may alter the remediation of target pollutants (Boopathy 2000;
Abatenh et al. 2017). Complete bioremediation cannot be achieved by single
microbial species; therefore, a microbial consortia is required for complete biore-
mediation. In microbial consortia, the interaction of microbes is the key factor for
bioremediation (Abatenh et al. 2014). Individually, maybe all the microbial species
are good remediators, but in consortium maybe they are allelopathic in nature.
Therefore, proper design of microbial consortia is an important step of bioremediation
(Boopathy 2000).

13.3.3 Climatic Factors

Elevated carbon dioxide and temperature are the main factors of global climate
change (Boopathy 2000). Though there are no direct evidence of climate change
affecting the bioremediation, changes in physicochemical characteristics of micro-
bial niche may disturb various metabolic processes and thereby bioremediation
process. The climatic condition greatly influences the microbial extracellular enzyme
productions which may help/alter in bioremediation process (Abatenh et al. 2017).

13.4 Conclusion and Future Prospects

Essential research on bioremediation of radionuclides is of fundamental significance
to the advancement of new strategies and innovations to secure the earth. Radionu-
clide bioremediation to a great extent depends upon the capability of the microor-
ganisms to survive under highly radioactive situations. But there are some biotic and
abiotic factors which alters the biological processes of microbes by altering the
behaviour and growth. Lack of knowledge regarding the factors that affects and
influences may alter the rate of bioremediation. Therefore, it is necessary to under-
stand the mechanism how the factors affecting bioremediation will help to find out
the permanent solution. In this case, genetic engineering has brought a revolutionary
change in the field of bioremediation as it can help to overcome the factors which can
affect bioremediation by engineering new pathways or by evaluating regulatory
factors that are participating in bioremediation. It is important to comprehend the
mechanism that empowers organisms to dispense with the radionuclides from
defiled sites. Understanding the molecular network by ‘omic’-based studies such
as proteomics and transcriptomics will be helpful for environmental decontamina-
tion. Future prospects in the field of bioremediation have a lot of opportunities. Since
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climate change along with other environmental change will alter microbial commu-
nities, as it is predicted that climate change will alter whole earth ecosystem.
Therefore, climate change along with microbial processes would be an interesting
field of research.
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Abstract Plastic has been identified as a recalcitrant polymers which are inexpen-
sive, durable, light weighted, strong, and corrosion-resistant materials. The prolong
accumulation of these plastic and most especially the bioplastic has been highlighted
to constitute several health and environmental hazards. The movement of these
recalcitrant polymers in agricultural soil, water, and sediments has raised several
concerns globally. Therefore, there is a need to search for the potential solution that
could help in the biodegradation of synthetic polymers. The application of beneficial
microorganisms that possess the capability to degrade plastic could be an effective
and sustainable approach to all the highlighted challenges. Hence, this chapter
intends to write a comprehensive details on the application of probable microorgan-
isms that possess the capability to degrade synthetic plastics. The modes of action
utilized by these microorganisms and their biodegradative enzymes are discussed in
detail. Further recommendation and suggestions could enhance the practical utiliza-
tion of plastic biodegrading microorganism most especially for practical or field
application.
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14.1 Introduction

The total amount of plastics that are generated every year has been estimated around
140 million tons which are eventually made available to the ecosystem as industrial
waste products (Shimao 2001). It has been highlighted that about 30% of most of the
plastics that are utilized globally are generated from different sources after utilizing
the products which contain cosmetics, detergents, pharmaceuticals, chemicals, as
well as packaging materials for water and foods. The trends still continue to rise day-
by-day at a very high exorbitant rate of 12% p.a (Sangale 2012). The utilization of
plastic has virtually replaced the place of cellulose-based products and paper as a
packaging material. This might be linked to the facts that they are resistant to
microbial attack, enhanced strength, tensile, lightness, and their durability in nature.

There are numerous types of plastics utilized for packaging purposes which
include polypropylene (PP), polyvinyl chloride (PVC), polyethylene (LLDPE,
LDPE, HDPE, MDPE), and polystyrene (Khanam and Mariam 2015). Moreover,
the low-density polyethylene which could be classified as a thermoplastics class
(Pramilla and Vijaya 2015) has been highlighted to be nondegradable in nature
which might be linked to its hydrophobic backbone (Myint et al. 2012).

Furthermore, some other merits of plastic polymers with large application in the
food packaging agricultural films might be linked to the fact that their durability,
cost-effectiveness, and ductility. In view of all the highlighted advantages, plastic
has been highlighted as a source of pollution which constitutes several hazards to
human and animal health. Moreover, among all the types of plastics that constitute
pollution, microplastics have been highlighted as a point of high concern because
whenever they are deposited in an aquatic environment, most of the aquatic animals
and seabirds normally feed on them. This might lead to high level of mortality as a
result of high accumulation of these microplastics in their stomach (Krueger et al.
2015; Acampora et al. 2017). This might eventually affect food chain which might
affect human health (Rillig and Bonkowski 2018; Li et al. 2015; Jabeen et al. 2017).

The application of some conventional techniques such as landfilling and inciner-
ation might result into environmental pollution, and they might also require several
amount of money toward their management (Krueger et al. 2015; Song et al. 1998).
Moreover, the recent trends toward the development of biodegradable plastic in
recent years have resulted into the minimization of environmental pollution as a
result of plastic discharged into the environment (Ioakeimidis et al. 2016; Shimao
2001).

Therefore, there is a need to search for an alternative solution to all these
challenges. The application of biodegradation is an environmental approach through
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which organic materials are broken down into smaller compounds such as H2O and
CO2 through the action of microorganisms. The process of biodegradation involves
the growing of the microbial cell on the solid surface for the production of hydro-
philic groups followed by the hydrolysis or oxidation of the long-chain hydrocar-
bons into short chains through the action of microorganisms mainly through the
action of some relevant enzymes while the short-chain polymers are converted into
fatty acids after which the fatty acids are later oxidized into humus, H2O and CO2

(Shah et al. 2008a, b; Singh and Sharma 2008; Yang et al. 2014, Plastics Europe
2018).

Several scientists have reported numerous microorganisms for their
biodegradative potential on plastic. Some of these strains includes Streptococcus,
Aspergillus, Bacillus, Staphylococcus Penicillium, Pseudomonas, Moraxella, and
Streptomyces mainly derived from marine, soil, and sludge under natural conditions
(Restrepo-Flórez et al. 2014, Pegram and Andrady 1989, Jones et al. 1974). Also,
there are several factors that constitute delay in the biodegradation of these plastic
within a very short period of time which includes high chemical bond energy, high
molecular weight, and strong hydrophobicity(Watanabe et al. 2003). While some
strains such as Nocardia asteroids and Penicillium simplicissimum could take a
longer time (Yamada-Onodera et al. 2000).

Hence, this chapter intends to provide a detailed information on the application of
beneficial microorganisms for the bioremediation of heavily polluted environment
with plastic. The modes of action utilized by these microorganisms were also
highlighted. Further recommendation that could enhance more research activity
that would promote the process involved in the biodegradation of plastic was also
suggested.

14.2 Application of Plastic-Degrading Microorganisms
in Environmental Bioremediation

The utilization of plastic polymer in our daily life, agriculture, and industry cannot
be overemphasized due to the fact that it might be liked to their cost-effectiveness
and their easy use. However, there is an increase in the level of pollution constituted
as a result of pollution constituted by plastic polymer most especially polyethylene
which constitutes several health and environmental challenges to humans and
animals. In view of the aforementioned (Ren et al. 2019), Enterobacter sp. D1
was derived from the month of wax moth (Galleria mellonella). The colonies
growing around the polyethylene film after a period of 14 days of growth containing
Enterobacter sp. D1. The level of cracks, roughness, and depressions was perceived
on the surface of the polyethylene film and was detected by atomic force microscopy
and scanning electron microscopy. The presence of various function groups avail-
able was detected using Fourier transform infrared spectroscopy which detected the
presence of ether and carbonyl group. Moreover, liquid chromatography-tandem
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mass spectrometry revealed the presence of acids, alcohols, and esters, which
indicated the presence of oxidation reaction happening on the surface of the poly-
ethylene film that was inoculated with the Enterobacter sp. D1. Their study showed
the biodegradative potential of Enterobacter sp. D1, most especially the several
materials containing polyethylene film.

Patil (2018) evaluated the degradative capability of some microorganisms utiliz-
ing opaque techniques for fungi and bacteria. The preliminary evaluation established
using opaque showed that two fungal and four bacterial species which were utilized
for further investigation. The typical examples of the bacterial strain isolated with
biodegradation potential include Pseudomonas fluorescens, Bacillus amylolyticus,
Pseudomonas putida, and Bacillus firmus. These strains were utilized for their
biodegradative potential on commercial polythene carry bags of low-density poly-
ethylene for a period of 30 days in a shaker culture when performed in a laboratory
condition, utilizing weight determination techniques. It was established that Bacillus
sp. obtained from garbage soil showed a biodegradability potential of 32%.

Muhonja et al. (2018) utilized fungi and bacteria that possess the capability to
degrade low-density polyethylene. The extent of the biodegradation of low-density
polyethylene using fungi and bacteria from various sampling sites of dumpsite in
Dandora was assessed under laboratory condition. The experiment was carried out
using low-density polyethylene under the incubation period of 28 days at 37 �C for
fungi, and bacteria for a period of 16 weeks using a rotatory shaker. The level of
biodegradation was assessed using GC-MS and Fourier transform infrared spectros-
copy. The analysis using Fourier transform infrared spectroscopy showed the pres-
ence of new functional group as a result of hydrocarbon degradation from bacterial
and fungal. The molecular characterization of the best strain responsible for the
biodegradation of low-density polyethylene was carried out using 18SrDNA and
16S rDNA sequences for fungi and bacteria, respectively. The following bacterial
strains which entail Brevibacillus, Lysinibacillus, Pseudomonas,
Cellulosimicrobium, and Bacillus while genus Aspergillus was the only fungal strain
isolated as polyethylene degraders. The result obtained shows that fungi exhibited a
more biodegradative potential of polyethylene when compared to bacteria. The
maximum fungal degradation action was obtained in terms of weight reduction of
36.4 � 5.53% from Aspergillus oryzae strain A5 with accession number of
MG779508 while 20.28 � 2.30% was obtained from Brevibacillus borstelensis
strain B2,2 (MG645267) and Bacillus cereus strain A5 with accession number of
A5,a (MG645264). The result obtained shows that the following genus which
involves Brevibacillus, Aspergillus, and Bacillus are affirmed to possess a great
capability to biodegrade low-density polyethene. The Fourier transform infrared
spectroscopy analysis showed the presence of the following functional groups
such as carboxyl, ether, and aldehyde while ketone was detected as a transitional
product detected in the culture media. The authors suggested that their need to
establish the best optimum condition that favors the best microbial activity that
could enhance the biodegradation of plastic through the enzyme activity of micro-
organisms for their eventual commercial application.
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Begum et al. (2015) evaluated the effect of soil bacterial obtained from plastic
polluted environment. The result of the biochemical and morphological characteri-
zation showed that Pseudomonas alcaligenes and Desulfotom aculumnigrificans
were detected to possess the ability to biodegrade polythene bag. It was detected
that Pseudomonas alcaligenes showed the effectiveness for plastic biodegradation
when compared to Desulfotom aculumnigrificans after 30 days. It was detected that
rise in the incubation period shows tremendous increase in weight loss of the treated
polythene bag. Their study indicated that Pseudomonas alcaligenes might be uti-
lized drastic reduction of polythene bags available in the natural environment. This
might be linked to the cost-effectiveness, environmental friendly utilizing these
plastic degrading microorganisms.

The build-up of plastic wastes in the environment has been discovered to consti-
tute threats to the environment while the significance of plastics that are biodegrad-
able has been recognized as ecofriendly with enhanced application in various
sections that utilize plastic in their packaging.

Jumaah (2017) evaluated the potential of some microorganisms to biodegrade
some plastic material after incubation for a period of 1 month in a submerged
fermentation. The result revealed the presence of two Gram negative and three
Gram positive bacteria. The following bacterial were detected which involved
Bacillus subtilis, Bacillus amylolyticus, Pseudomonas fluorescens, Bacillus firmus,
and Pseudomonas putida. It was discovered that Pseudomonas putida exhibited the
highest biodegradative potential of plastic after performing submerged fermentation
with average value of 30% weight loss per month when compared to Bacillus subtilis
of 22% weight loss per month. Their study showed that Pseudomonas putida
exhibited the highest biodegradation potential among all the tested strains when
compared to the others.

The role played by the application of plastic in our economy each year has been
estimated to around 350–400 million tons. However, it has been discovered that due
to low circular utilization and recycling while millions of tons build up in the marine
and terrestrial environments. It has been observed that plastic possess the capability
to induce several adverse effect on environment and human health most especially
the microplastics. Therefore, the application of microorganism for the biodegrada-
tion of plastic has been identified as a sustainable tools. In view of the aforemen-
tioned, Danso et al. (2019) wrote a comprehensive review on the ester-based
polyurethane and polyethylene terephthalate which were high molecular weight
polymers.

Their review also highlighted the significant of microorganisms and enzymes that
could biodegrade these polymers. They also suggested that the application of dark
matter proteins and global metagenomes of non-cultivated microorganisms will help
in the biodegradation of plastic. It was also suggested that the application of new
biocatalysts and microorganisms could enhance rapid biodegradation and recycling
of numerous man-made polymers.

Soud (2019) evaluate the effect of Streptomyces spp. for the biodegradation of
plastic wastes and some other pollution. This strain was screened for their biodeg-
radation potential of polyethylene low density polyethylene in various assays. The
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evaluation of their biodegradation potential was based on the dry weight loss of
plastic stripes of plastic cup (p) and polyethylene bags (g) after culturing in sub-
merged fermentation using ATCC medium after incubation in the following condi-
tion such as 25–30 �C in shaker incubator at 120 rpm. The potential of this strains to
produce bioemulsifier and spectrophotometric assay were evaluated after 1 month of
incubation which result in the loss in dry weight in polyethylene low-density
polyethylene stripes which include 8%, 11%, 19% for (g) stripes and 6%, 9%,
15% for (p) stripes by the following strains (SSP2, SSP4, SSP 14), and spectropho-
tometric assay documented greatest results for polyethylene low-density polyethyl-
ene degradation, it was discovered that strains recorded SSP2 (0.08, 0.55), SSP4
(0.09, 0.65), and SSP 14 documented (0.13, 0.70) for p and g, respectively. In
conclusion, the bioemulsifier fabrication and evaluation also showed maximum
results that play significant role in biodegradation process, the outcome observed
indicates that bioemulsifier production yield by the following strains (SSP2, SSP4,
SSP14) isolates are (8.44%, 9.84%, 12.94%) for (g) stripes and (5.74%, 7.24%,
11.84%) for (p) stripes. Their study indicated that strain SSP14 is the best isolate for
polyethylene low-density polyethylene degradation which shows that Streptomyces
could be utilized for the bioremediation of polyethylene low-density polyethylene
and could be used for many other microbiological environmental science.

The application of plastic has been identified for several purposes. The release of
plastic waste has been identified as the second largest solid waste. The high
persistence of plastic in the environment has diverted the attention of numerous
scientist. In view of this, Munir et al. (2018) isolated a bacteria that could degrade
low-density polyethylene plastic. This was carried out in a mineral salt medium
broth, entailing a low-density polyethylene powder. It was discovered that 2 out of
the 10 isolate possess the capability biodegrade low-density polyethylene in a
preliminary trial. The result obtained showed that strains SP4 and SP2 possessed
that capability to decrease low-density polyethylene with the following value,
respectively, 12.06% and 10.16% after a period of 4 weeks of incubation. The
scanning electron microscopy evaluation revealed that the surface of the treated
low-density polyethylene was altered when compared to the untreated film. Further-
more, there was presence of cracks, rough outlook, and attachment of bacterial to
their surface. The presence of biodegradation of low-density polyethylene was also
affirmed by Fourier transform infrared spectroscopy evaluation. Their study indi-
cated that the bacteria isolated from landfill could be utilized for the biodegradation
of plastic material.

Vignesh et al. (2016) evaluated the effect of fungal and bacterial strain that could
biodegrade plastic which resides in the dumped soil samples obtained from harbor
and Pallikaranai at Chennai. The plastic degrading microorganisms were screened
using opaque techniques for the fungi and bacteria. The preliminary method revealed
the presence of three fungal and bacteria species with high biodegradative potential
which was later recognized as Streptococcus sp., Aspergillus sp., Bacillus sp.,
Fusarium sp., and Pseudomonas sp. when tested using biochemical test. This was
carried out in a submerged fermentation that involves nutrient broth for bacteria
while potato dextrose broth was utilized for the fungal isolates. The potential of these
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strains to biodegrade LDPE was tested for a period of 30 days under a submerged
fermentation utilizing weight determination techniques, and it was discovered that
Bacillus sp. isolated from petroleum soil possess the capability to degrade plastic up
to 23% while Fusrium spp. could biodegrade plastic up to 44%. It was discovered
that it takes 120 days for the bacteria to biodegrade the plastic while it takes 75 days
for the fungi to biodegrade plastic during the period of the experiment.

Poly(ethylene terephthalate) has been recognized as one of the greatest synthetic
polymers that build up in the environment at overwhelming rate as unwanted
packaging and textiles. It has been observed that the utilization of poly(ethylene
terephthalate) had several limitations which might be linked to its high resistance to
biodegradation. In view of the aforementioned, Austina et al. (2018) isolated a new
bacterium Ideonella sakaiensis 201-F6 that possess the capability to utilize poly
(ethylene terephthalate) as energy and carbon sources. It was discovered that this
strain possess that potential to secrete PETase (PET-digesting enzyme). Their study
indicated that 0.92 Å resolution X-ray crystal structure of PETase which showed the
common features to lipase and cutinase. It was established that PETase preserves the
inherited α/β-hydrolase fold but displays a more open active-site cleft when com-
pared to homologous cutinases. The narrowing of the binding cleft through the
application of mutation of two active-site residues to preserved amino acids in
cutinases, we amazingly perceive enhanced PET degradation, portentous that
PETase is not completely improved for crystalline PET degradation, regardless of
apparently surfacing in a PET-rich environment. Furthermore, the authors showed
that PETase degrades which is another polyethylene-2,5-furandicarboxylate which
is another semiaromatic polyester which has been recognized as a new bioderived
polyethylene-2,5-furandicarboxylate replacement with enhanced barrier properties.
Conversely, PETase does not possess the capability to biodegrade aliphatic poly-
esters which shows that it is aromatic polyesterase. Their study indicated that
incorporation of protein engineering to enhance PETase activity is accurate and
acme the requisite for supplementary growths of structure/activity associations for
the biodegradation of synthetic polyesters.

Unresponsiveness and the undiscriminating utilization of chemical polymer has
been identified as a factor that constitutes water and land pollution. The application
of plastic has been identified in various utilization such as household practices,
packaging industries, agriculture. It has been recognized that the indiscriminate
application of chemical polymers has led to build up of solid waste in natural
environment. This has constitutes several hazards to human and environment. This
might be linked to the poor biodegradation of plastic. In view of the aforementioned,
Pathak and Navneet (2017) wrote a comprehensive review on the application of
microorganisms that possess that capability to biodegrade plastic and synthetic
polymers. The authors also shed light of the potential of bacterial and fungal isolates
for the biodegradation of plastic. Some of the highlighted strain includes Mucor
rouxii, Pseudomonas aeruginosa, Pycnoporus cinnabarinus, Pseudomonas stutzeri,
Fusarium lini, Clostridium thermocellum, Streptomyces badius, Aspergillus flavus,
Rhodococcus ruber, Aspergillus niger, Comamonas acidovorans, and Butyrivibrio
fibrisolvens.

14 Plastic-Eating Microorganisms: Recent Biotechnological Techniques for Recycling. . . 359



Table 14.1 shows some techniques used in the degradation of plastics, types of
enzymes, and microorganisms involved.

14.3 Specific Examples of Microorganisms that Could
Degrade Plastic

The economic benefits derived from the use of plastics cannot be quantified. About
350–400 million load of it are produced year in year out. Plastics have been proven
to be nonbiodegradable. This nature of it can cause serious environmental and health
problem especially microplastics. However, of recent, several techniques have been
developed and employed in order to break this jinx of nonbiodegradability. Danso
et al. (2019) did a review of the viewpoint of environmental and biotechnological
prospects of using bacterial in the degradation of plastics. The authors stated that
PET (polyethylene terephthalate) and PUR (polyurethane) are active chemicals
found in plastics which are very noxious. That many microbial consortia are still
been evaluated to ascertain specific enzymes that can degrade plastics. However,
several studies have been carried out on the degrading potential of some microbial
consortia without specifying any enzymes that can breakdown polymers with high
molecular mass such as polyethylene, polyurethane (ether-based), polypropylene,
polyvinylchloride, polyamide, and polystyrene. In conclusion, the authors recom-
mend that specific research on the richness of enzymes and microbial consortia
action on plastics should be carried out in order to tap into the protein-metagenomes
of native and non-cultivated bacterial potentials. This will pave new grounds for
bio-catalyst consortia that can degrade plastics to useable products (oligomers and
monomers) for human benefits in turn reduce the worldwide issues caused by
plastics.

Shah et al. (2008a, b) in a review looked at the remediation potential of bacteria
on plastics. The authors recounted the environmental problems causes as a result of
the nonbiodegradable nature of plastics. This has necessitated the global awareness
of their potential ecological and health threats. The authors stated that bioremedia-
tion is very important for water immiscible plastics, the reason that, when they enter
the aquatic environment eventually, they cannot be incinerated nor recycled. In
conclusion, the authors recommend that it is very important to understand the
mechanisms involved in bioremediation via considering the microbial consortia to
be used in synthetic or natural plastics. In addition, the biochemical reaction
involved in the interaction between the microbial consortia and the plastic materials
should also be understood immensely. Again the utilization of in vitro techniques is
highly encouraged in the biodegradation of plastics.

Bassi (2017), in a book, reviewed the biological technology for the management
of plastics. The author stated that wastes generated from plastics are unending and
need urgent management strategies. The utilization of microorganisms in the break-
down of plastics can yield many biomaterials that can be used in the agricultural and
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Table 14.1 Biotechnological techniques used for the biodegradation of plastics

S/
N Strain/species Methods of degradation

Types of
enzymes References

1 Strain TF1
(Actinomadura sp.) and
strain T12-1
(Actinomadura
keratinilytica)

Turbidity Serine
hydrolase

Sriyapai et al.
(2018) and
Sukkhum et al.
(2009)

2 Strain 9AHK119
(Thermobifida alba)
and
Thermomonoaspora

Not specified Cutinase Sukkhum et al.
(2009), Hu et al.
(2010) and
Kitadokoro et al.
(2019)

3 Strain T9-1
(Nonomuraea
fastidiosa) and strain
L44-1 (Nonomuraea
terrinata)

Turbidity Not
specified

Sukkhum et al.
(2009)

4 Strain FTPLA
(Thermopolyspora
flexuosa) and
Thermopolyspora

Not specified Not
specified

Sangwan and Wu
(2008) and
Husárová et al.
(2014)

5 Strain KKU215 (Strep-
tomyces sp.) strain
APL3 (Streptomyces
sp.)

PLA-packaging surface
change and weight loss

Serine
hydrolase

Sriyapai et al.
(2018) and Yottakot
and
Leelavatcharamas
(2019)

6 Streptoalloteichus
sp. and strain RM423
(Pseudonocardia)

Residual films in the culture
broth TOC (total organic
carbon) and film-weight loss;
CO2 content.

Not
specified

Jarerat et al. (2002)
and Apinya et al.
(2015)

7 Strain AS4.1531T

(Pseudonocardia alni)
Film-weight loss; monomer
production

Not
specified

Konkit et al. (2012)

8 Kibdelosporangium
aridum

Film-weight loss; monomer
production

Protease Jarerat and Tokiwa
(2003)

9 Lentzea (Saccharothrix
wayanadensis)

Film-weight loss; monomer
production

Protease Jarerat and Tokiwa
(2003) and Nair
et al. (2012)

10 Strain SCM_MK2-4
(Amycolatopsis
oliviviridis)

Turbidity Lipase,
esterase,
and
protease

Penkhrue et al.
(2018)

11 Strain CMU-PLA07T

(Amycolatopsis
thallandensis)

Not specified Not
specified

Chomchoei et al.
(2011)

12 Amycolatopsis
orientalis

Film-weight loss Serine
protease

Li et al. (2008)

13 Strain K104-1
(Amycolatopsis sp.)

Turbidity Serine
protease

Nakamura et al.
(2001)

(continued)
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food industries. In conclusion, the author recommends the utilization of bacterial
enzymatic and biocomposites or grafting techniques for the degradation of plastic
wastes.

The usefulness of plastics in our current generation is so enormous. The
non-biodegradable nature of plastics has led to their long shelf life in the environ-
ment. However, this has led to an uncontrolled proliferation of them in the ecosystem
and persistent pollution. Wierckx et al. (2018) did a review of the opportunities and
challenges faced in the biodegradation of plastic wastes. This is an attempt to reduce
pollution. Moreover, studies have shown the emergence of engineered microorgan-
isms which can degrade or decontaminate recalcitrant high polymers molecular
connection via some enzymatic reactions. In conclusion, the authors recommend a
better viewpoint on plastic remediation by the utilization of pre-treatment-thermo-
chemical and substrates of microbial enzymes as a future panacea.

Philp et al. (2013), in a review, looked at the possibility for a bio-economy using a
bio-based plastic technique in recycling plastic wastes from biodegradation. The
specificity for a bio-economy is derived from the utilization of chemicals and
oil-based materials from the biodegradation of useful materials from biorefineries
by microbes and biomass-derived substances from the process (biocomposting). In
conclusion, the authors recommend more improvement, awareness, and attention in
their shared market values, while anticipating a sustainable contributions toward
climate change alleviation.

Zheng et al. (2005) did a review of the biotechnological improvement in the
degradation of plastics and associated wastes. The authors recounted the importance
of plastics to every facets of human lives. The need of the breakdown of plastics by
microbes is very important because of the ecological and health risks they portend.

Table 14.1 (continued)

S/
N Strain/species Methods of degradation

Types of
enzymes References

14 Strain
41 (Amycolatopsis sp.)

Film-weight loss; monomer Protease Pranamuda et al.
(2001)

15 Strain ATCC 27649
(Amycolatopsis
mediterranei)

Clear zone Not
specified

Pranamuda and
Tokiwa (1999)

16 Strain KT-s-9
(Amycolatopsis sp.)

Film-weight loss; monomer
production

Protease Tokiwa et al. (1999)

17 Strain 3118
(Amycolatopsis sp.)

Film-weight loss; monomer
production

Protease Ikura and Kudo
(1999)

18 Strain HT-32
(Amycolatopsis sp.)

Film-weight loss; monomer
production

Protease Pranamuda et al.
(1997)

19 Strain B7-3
(Micromonospora
viridifaciens

Turbidity Not
specified

Sukkhum et al.
(2009)

20 Strain B12-1
(Micromonospora
echinospora)

Turbidity Not
specified

Sukkhum et al.
(2009)
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Extracts such as starch and pro-oxidants employed as artificial materials to make and
change plastics degradation potentials are recent studies techniques used in plastic
degradation. However, thermoplastics gotten from polyolefins, are native recalci-
trant material which is known to be resistance to bioremediation process. However,
several methods such as chemical and photo/light degradation are used in the
process. Nonetheless, polymers of plastics (thermoset plastics) such as polyurethane
and aliphatic polyester are easily broken down or eaten by microbes because of the
probable urethane or hydrolytic cleavage molecular bonds they possess as well as a
major source of nitrogen and carbon for the microbes. The authors in conclusion
suggest the utilization of co-polyesters from aliphatic aromatic hydrocarbons for
commercialization because of their biodegradability and mechanical characteriza-
tion. More so, probable novel methods should be looked into in order to reduce the
influence of plastics wastes on the ecosystem.

PLA (polylactic acid) has been recognized as one of the environmental concerned
plastics derived from bioplastics, a renewable and biodegradable polymer which is
used to supplant petroleum-established plastic materials. Butbunchu and Pathom-
Aree (2019) did a mini review of the potentials of Actinobacteria in the biodegra-
dation of polylactic acid for bioplastic. The authors stated that Actinobacteria
enzymatic action, as in degradation of the bioplastic, is a function of economic
value and environmental safety for waste control. Specific examples of such bacte-
rial found in this phylum Actinobacteria is the family Thermomonosporaceae,
Streptosporangiaceae, Streptomycetaceae, Micromonosporaceae and
Psuedonocardiaceae. The authors stated that the cultivation of the degrading species
of the phylum Actinobacteria in the laboratory settings has been shown to be a
serious trial procedure. They resounded that a well-sounded taxonomic understand-
ing on data of specific taxa of importance will pave a way to enhance cultivation and
isolation for polylactic acid degrading microbes. More so, information on novel
quality of the genome of the polylactic acid bacteria will improve their degrading
potentials. In conclusion, the authors recommend the utilization of two important
viable and highly vigor Actinobacteria; Actinomadura and Amycolatopsis to be the
best candidates for degrading bioplastic. More so, their economic worth in the
market have gone higher. In addition, high consideration should be placed on
these strains when sampled, cultured, and isolated for remediation purposes.

Gaytán et al. (2020) tested and evaluated the degrading potentials of bacterial
consortia on xenobiotic residues and polyurethanes recalcitrant from different land-
fill. The authors elucidate the mode of action of bacterial consortia play when they
feed on polyurethanes plastics. That degrading polyurethanes plastics bacteria can
grow in water polyurethanes dispersion (WPUD) media as the solitary model and
carbon base for the BP8 landfill bacterial consortia. The composition of the WPUD
are mainly glycol ethers, isopropanol and N-methyl 2-pyrrolidone-xenobiotic
extracts and PE-PU-A (polyether-polyurethane-acrylate). The results of the study
showed that the biodegradation process yielded ether groups by oxidative and
hydrolytic mechanisms, recalcitrant aromatic urethanes, C–C and BP8 cleaves
esters, both in the hard and soft segments of the co-polymer. The results of the
metagenomic study, revealed five genomes of which three of them were new strains
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of microorganisms. More so, the results of the biodegradative process showed that
the metabolic pathways, putative enzymes, genes programming enzymes and
metagenome were the most identified activities in the bacterial consortia over the
PE-PU-A co-polymer and the additives. In conclusion, the authors recommend
bacterial consortia gotten from landfill as the base candidate for the biodegradation
of xenobiotic residues and polyurethanes recalcitrant in the environment.

The impacts of plastic on benthic marine biogeochemical cycling and distribution
of organisms are currently gaining immense environmental attention. Pinnell and
Turner (2019) tested and evaluated the response of bacterial consortia to bioplastic
and plastic in marine benthic ecosystem using the metagenomic shotgun technique
in water–sediment boundary. The results of the study indicated that there was misty
comparison between the plastic biofilms and the control (ceramic biofilm). The most
dominated and distinct biofilms bioplastic was SRB (sulfur-reducing bacteria). The
results of the gene pools of the bioplastic showed that the process was enhanced by
many enzymes; dsrAB (dissimilatory sulfite reductases), aprBA (adenylyl sulfate
reductases), depolymerases, and esterases. In addition, about twice of 20 enhanced
genetically phenotypic different PHB (polyhydroxybutyrate) enzymes
(depolymerase) indicated that the bacterial consortia was evenly distributed. The
results of the metagenomic of the engineered genome, revealed two new species/
strains; Desulfobulbaceae and Desulfobacteraceae amid the SRB with their genome
consisting of both sulfur reduction and bioplastic degrading genes. The findings
from their study showed that there was a significant enhancement of the gene pools
and diversity of the bacterial consortia by the bioplastic. The authors in conclusion
stated that if pollution from plastic is transacted for pollution from bioplastic, there
will be a large sedimentary contributions, and the bacterial response might unknow-
ingly impact the biogeochemical and benthic activities via the stimulation of
the SRB.

Chukwuma et al. (2012) in a review looked at the challenges and prospects in
using biotechnological tools for the sustainability of the environment. The authors
stated that for a sustainable ecosystem, the best way of controlling wastes is by
recycling them into useable forms, so that the living an nonliving factors of the
environment can maintain a healthy and esthetic steady state. This natural technique
is the best approach in removing harmful substances from the environment-bio-
tools. The authors listed some bio-tools (biomass fuel production, bioremediation,
biofiltration, biosolvent/biodetergent, biocatalysis, bioleaching, biomonitoring, and
aquaculture management/treatment) currently used in mitigating pollutants in water,
sediment, and soil. In conclusion, the authors stated that bioenvironmental tools for
bioremediation are sustainable and the mechanism are closer to nature, efficient, and
faster than other conventional methods.

Roohi et al. (2017) did a review of the potential of enzymatic degrading bacteria
on plastics. The authors recounted the benefits (biomedical implants, garbage bags,
paper coating, and packaging) derived from the recycling and renewal of plastic
wastes. However, the increase in wastes from plastic production is alarming. the
breakdown of the bio-polymer is linked to the production of water molecules,
methane, carbon dioxide, and low-weight monomers. The authors in conclusion
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proposed a novel disposal method for the breakdown of polymers as well as new
enzymatic degradation of plastic and inexpensive manufacture of decomposable
plastic.

Siracusa (2019) in a review looked at the degrading potential of artificial bio-
polymers by microbial consortia. The authors stated that the demand for polymers
that are biodegradable has risen (20–30%) over the last 10 years with a market share
of<0.1%. They said that the incentives gotten from natural renewable resources can
reduce the total dependency on petroleum resources. The wastes from natural
materials such as wood, cellulose-straw, potatoes, cereals-starch, and oilseed crops
can be converted into polymers and chemical intermediates. However, the utilization
of renewable natural materials for bioplastic production, cannot be vouched for any
negligible environmental influence. Moreover, bioplastics are commonly biodegrad-
able, nevertheless the dispersion of the composting technology is a precondition for
their advancement. In conclusion the authors suggested that more efforts should be
put in place in order to optimize high performance and less expensive products for a
sustainable ecosystem.

Of recent, plastic pollution has drawn more attention because of the ecological
and health risks it portends. Shovitri et al. (2017) tested and evaluated the degrada-
tion of plastics by soil-burial technique with strains PL-01 (Pseudomonas) and
PL-01 (Bacillus) native microbes. The authors recounted their previous study on
plastics using similar strains. The strains were able to breakdown about 10% of
plastics. However, the results from their current study for 16 weeks revealed positive
influence by the two strains on the degradation of the plastics. Bacillus sp. had more
impact than Pseudomonas sp. It was noticed that transparent plastic degraded faster
than other colors (white and black) plastics “Kresek” bags. The results of the
biodegradation performance of the soil microbes showed that the native mangrove
soil microbes performed better in plastic degradation and biofilm formation without
Pseudomonas and Bacillus strains addition. The FTIR (Fourier transform infrared)
examination confirmed that there were reduced peaks of diffusion, indicating chem-
ical efficient assemblage changes happening in the plastic compound after the study
regime (16 weeks).

Pathak and Navneet (2017) did an extensive review of the current level of
polymer degradation using different bacteria and fungi strains. The authors
recounted the ecological risks associated with the undiscriminating use of artificial
polymers on water and land. The application of plastic is very elaborate. Over use of
the artificial polymers can increase the level of pollution in the environment which in
turn affect the living and nonliving components therein. This pollutant, plastics, is
seen as a potential threat because it is nonbiodegradable. However, microorganisms
(bacterial and fungi) are the current bio-tools used in the biodegradation of xenobi-
otic and recalcitrant pollutants like plastics. Specific examples of such are: bacteria
(Butyrivibrio fibrisolvens, Clostridium thermocellum, Comamonas acidovorans,
Rhodococcus ruber, Streptomyces setonii, Streptomyces badius, Pseudomonas
stutzeri, and Pseudomonas aeruginosa) and fungi (Mucor rouxii, Pycnoporus
cinnabarinus, Fusarium lini, Aspergillus flavus, and Aspergillus niger). They stated
that biofilm development enhances the degradation efficacy of plastic pollutant, then
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mineralization follows. The most efficient bacteria (Pseudomonas aeruginosa CA9)
has been recounted to have well-enhanced biodegradation potential with low-density
polyethylene (LDPE). While AKS2 strain (Pseudomonas sp.) has been recounted to
degrade and form biofilm on low-density polyethylene by improving the bacterial
development by 31% hydrolytic activity and 26% superficial hydrophobicity.
Psuedomonas stutzeri was recounted for an increase in molecular mass/weight of
polyethylene glycol (PEG) breakdown. Two strains 75Vi2 and 252 (Streptomyces
setonii and Streptomyces badius) were recounted to degrade and colonize polyeth-
ylene by making hydrolyzing enzymes and biofilm on it. They stated that the
enhancement of the degradation of polyethylene was via introduction of additives
of peroxidant during the production process. This made it vulnerable to light and
chemical mineralization and in vitro beneficial for polyurethane-polyester break-
down via polyurethane esterase enzymatic hydrolysis and production. The reason for
this was because of the chief gene pudA, programming the enzyme polyurethane
esterase. Aspergillus niger a fungi species produces an enzyme (acetyl xylan ester-
ase) which works in synergy with endo-xylanase for competent breakdown of xylan.
Aspergillus flavus and Aspergillus niger have been recounted to be best for the fast
mineralization of average-length monomer chains. While Aspergillus niger has been
known to be more effective in polythene degradation, Aspergillus flavus has been
recounted for both polythene and polycaprolactone (PCL) degradation. In the same
vein, Streptomyces, Aspergillus flavus, and strain NRRL 1835 (Mucor rouxii) have
been reported to be linked with starch founded polyethylene breakdown. The fungal
species Fusarium lini has been reported to be associated with the manufacturing of
an enzyme dehydratase that is involved in the breakdown of polyvinyl alcohol with
water and carbon dioxide formation. The white fungus (Pycnoporus cinnabarinus)
has been associated with polyvinyl alcohol (PVA) degradation with the manifesta-
tion of a chemical agent—Fenton’s reagent. In conclusion, the authors recommend
more studies on the evaluation of effective and new bacterial species in order to
reduce the ecological and health risks associated with plastics in the environment.

Sangale et al. (2019) isolated and tested the biodegradation potential of fungi
sourced from mangrove soil in the degradation of polythene. The authors stated the
wide utilization of plastics, of which polythene had the largest (64%) share. How-
ever, there are many approaches been developed to control and reduce the increasing
amount of wastes from plastics of which biodegradation promises to be more
effective, eco-friendly, and sustainable. The polythene degrading fungi (109) was
sourced isolated from the soil-root (rhizosphere soil) of Avicennia marina from
12 zones across the coast of West Indian and screened under pH of 3.5, 7, and 9.5
for 60 days based on the tensile strength and weight of the polythene. The results of
their study indicated that strains PNPF15/TS (Aspergillus sydowii) and MANGF1/
WL (Aspergillus terreus) were the most efficient fungi that degraded the polythene
plastics out of the 109 isolates of fungi in the following rates: 94.44 � 2.40% loss in
TS, pH 3.5 and 50.00� 4%WL, pH 9.5, respectively. The results from the scanning
electron microscope (SEM) revealed that the breakdown polythene had cracks such
as disturbances (holes, fissures, and scion) which showed weathering. The result of
the Fourier transform infrared (FTIR) spectroscopy showed the various formations
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after the ultraviolet (UV) and chemical treatments in the control as 1630–1840 cm�1

(carboxylic group), 2915 cm�1 (CH stress), 1630–1840 cm�1 (carboxylic group).
and 1710–1740 cm�1 (carbonyl group). The findings from their study showed
reduced peaks after the treatment with the fungi strains. This indicates eating of
the polythene plastics by the fungi acids (carboxylic and carbonyl) as well as the
polymerization of the plastic polythene unit structures.

Plastics are inexpensive, strong, harsh resilient materials, durable, and light
weighted substances, which have been reported to have long lasting adverse effect
on the ecosystem. Raziyafathima et al. (2016) in a review, looked at the degradation
of plastics wastes by microbes. The authors recounted the ecological and health risks
posed by wastes from plastics when heated up by UV light. In the light of this,
scientists have developed biodegradable plastics that are eco-friendly and not nox-
ious even at room temperature. The authors, in conclusion, recommend the use of
microbes for the effective degradation of wastes from plastics.

Changes brought by anthropogenic activities on the marine ecosystem as a result
of plastic influence can impede the health of the coastal environment. Urbanek et al.
(2018) did a review of plastic degradation by plastic-eating microorganisms in an icy
marine ecosystem. The authors stated that the impact from plastic pollution without
permanent remediation can live an indelible ecosystem injury. The artificial plastics
are the major debris in the benthic region of the ecosystem that constitute a blockage
to the food chain structure occasioned by humans. However, this problem remained
unresolved, but several approaches have been used to reduce the impacts on the
marine ecosystem. Biodegradation a process using microorganisms to degrade
wastes like plastic in the environment. Nonetheless, in a cold region, the authors
presented some microbes that can be utilize to degrade plastics in cold environment.
Specific examples of are; Rhodococcus, Micrococcus, Arthrobacter, Corynebacte-
rium, Streptomyces, Pseudomonas, Flavobacterium, Cryobacterium,
Cryobacterium, Leifsonia, Agreia, Subtercola, Micrococcus and Polaromonas that
are sourced from cold environment. Others are Shewanella, Pseudoalteromonas,
Marinomonas, and Colwellia. The authors stated that the impact of biofouling
bacterial consortia are not well understood as well as the relationship between
the microbes and the plastics. However, the microbes inhabiting colder regions of
the world have natural potentials differ from others from other marine ecosystems.
The reason is that the nature of the environmental condition as well as the increasing
rates of wastes from plastics forces them to acclimatize to new-fangled substrates.
The authors in conclusion opined that natural acclimatization of microbes might take
much time. This will eventually slow the rate of degradation, and pollution from
plastics will increase and might be irremediable.

Odusanya et al. (2013) in a preliminary study, isolated, characterized and eval-
uated the degradation of plastic bottle by microbes in Nigeria. The LLDPE (Linear
Low Density Polyethylene) potable plastic bottle was used employing a simple
proprietary solvent technique to powderize and solubilize it. Utilizing an enrichment
culture techniques, eight bacterial colonies were isolated which were capable of
breaking down LLDPE into useable carbon source. The most productive organism
observed was Serratia marcescens. Results showed that the organisms isolated and
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characterized were gram-rod bacteria. While the H2S and indole production was also
negative. The test for fermentation was positive for citrate, sorbitol alanine, fructose,
glycerol, sucrose, and glucose. However, the factors surrounding the coloration
could not be found but the UV zone absorbed some radiation and form ferric chloride
precipitate. The results from the scanning electron microscope exposed some depres-
sion that were linked to the potential breakdown of the plastic by the Serratia
marcescens. The plane surface of films in the control without the introduction of
Serratia marcescens was shown by the micrographs. The results of the glass
transition temperature (Tg) of the undegraded and graded plastics as confirmed by
the DSC (differential scanning calorimetry) were 63.33 and 52.43 �C, respectively,
indicating an increase of the rate of movement small chain length formed after the
biodegradation of the plastics. More so, the measurement of the differential scanning
calorimetry in addition revealed the crystallization enthalpy (AH) before and after to
be 89.936 and 31.945 J/g respectively. A reduction was spotted in the crystallization
temperature and enthalpy of crystallization to be 118.980–112.25 �C and (�) 83.241
to (�) 34.776 J/g respectively. The findings from their study showed that the
Differential Scanning Calorimetry was able to indicate the relationship of reduction
between crystallinity and the biodegradation procedures.

Muhonja et al. (2018) isolated, tested, and evaluated the degradation potential of
fungi and bacteria isolates from a specific dumpsite in Kenya in degrading polyeth-
ylene. The results of the FTIR (Fourier transform infrared) spectroscopy analysis
showed the presence of new-fangled clusters accredited to the degradation of
hydrocarbon by the consortia of fungi and after incubation. The results of the
evaluation of the 18S rDNA and 16S rDNA sequence of the fungi and bacteria,
revealed that the fungi belong to the genus Aspergillus, while the bacteria belong to
the genus Lysinibacillus, Cellulosimicrobium, Brevibacillus, Bacillus, and Pseudo-
monas were connected as degraders of polyethylene. Further analysis of their results
showed that the bacteria were poor degrader when compared with their counterparts;
fungi which were better degraders. It was observed from their study that the highest
mean from the fungi reduction activity was 36.4 � 5.53% linked to strain A5,
1 MG779508 (Aspergillus oryzae). While for the bacteria, strain B2, 2 MG645267
(Brevibacillus borstelensis) and strain A5, a MG645264 (Bacillus cereus) had the
highest mean a values of 20.28 � 2.30% and 35.72 � 4.01% respectively. The
results of the LDP (low-density polyethene) degradation, established that
Brevibacillus, Bacillus, and Aspergillus were good degrader contenders among the
other strains. This findings was in advance established by the presence of carboxyl
efficient clusters, ether and aldehyde after the Fourier transform infrared (FTIR)
spectroscopy analysis of the ketone; and intercessor culture media product and the
polythene pieces. In conclusion, the authors suggested the application of the findings
from their study into large-scale and commercial purposes.
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14.4 Conclusion and Future Recommendations

This chapter has discussed extensively the practical application of beneficial micro-
organism that could degrade plastic and synthetic polymers. It was established in this
chapter that microbial degradation of plastic has several merits when compared to
physical and synthetic approaches. Furthermore, the application of engineered
biodegradation pathways should be encourage to enhance the biodegradability
capability of these potential strains. The modes of action through which these strain
break down the surface of the polymer were also discussed in details. The applica-
tion of techniques such as atomic force microscopy and scanning electron micros-
copy was also elucidated for the validation of the role of these biodegradative strains
most especially their degradative role on the surface of these plastics. The applica-
tion of Fourier transform infrared spectroscopy for the detection and monitoring of
the biodegradation of these plastic was also highlighted in detail. This chapter also
established that the application of potential strains isolated from landfill environment
could be utilized for the biodegradation of plastic wastes in a controlled environment
such as landfill or in dumped soil.
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Bioaugmentation: A Powerful
Biotechnological Techniques
for Sustainable Ecorestoration of Soil
and Groundwater Contaminants
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Abstract The recent advances in industrialization and constant application of
agropesticides have led to increase in the release of hazardous compounds into the
environment. Most of these hazardous compounds possess several adverse effects
which entail high level of toxicity, accumulate, and persist in the environment,
impairment of human health because most of these toxic compounds are anthropo-
genic and mutagenic in nature. The application of microorganisms possess the
capability to remove pollutants available persistently in contaminated soils.
Bioaugmentation has been recognized as a sustainable bioremediation technology
which involves the application of beneficial microorganism for the ecorestoration of
heavily polluted environment. Therefore, this chapter provides a comprehensive
detail on the application of bioaugmentation for the ecorestoration of heavily
polluted environment. Information on the gene bioaugmentation, rhizosphere
bioaugmentation, and their utilization in the bioremediation of polluted soil has
been discussed in detail. Special emphasis has been laid on some specific gene
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responsible for the process of bioaugmentation. Moreover, the movement of hori-
zontal gene transfer during the process of bioaugmentation such as transformation,
conjugation, and transduction is also highlighted. Future recommendation and useful
suggestion are also highlighted which could boost the application of
bioaugmentation for bioremediation of polluted environment.

Keywords Bioaugmentation · Bioremediation · Microorganisms · Environment ·
Gene · Contaminants

15.1 Introduction

The drastic advancement in the technological development and the dynamic civili-
zation coupled with high rate of industrialization, intensive application of large-scale
heavy metals, wars and chemical xenobiotic have led to several environmental and
health hazards (Bayat et al. 2015; Akhtar et al. 2003). Typical examples of such
pollutants include polycyclic aromatic hydrocarbons, pesticides, petroleum products
(Belanger 2010, Chatterjee and Lefcovitch 2014), chloro- and nitrophenols and their
derivatives, organic dyes, and heavy metals (Mohamed et al. 2016; Rodgers-Vieira
et al. 2015; Smułek et al. 2015; Wasilkowski et al. 2014; Wojcieszyńska et al. 2013,
2014; Greń et al. 2010).

The application of agricultural pesticides for the management of agricultural pest
and the consumption of pesticides for agricultural purposes was approximated up to
2.36 million tons (Moreno-Medina et al. 2014). The continuous application of these
pesticides may lead to several adverse effects on the beneficial component of the
ecosystem such as human, soil structure, soil enzymes, and soil microorganisms
because pesticides also have a detrimental effect to non-target organisms (Moreno-
Medina et al. 2014; Mesnage et al. 2014; Roberts and Karr 2012).

Furthermore, it has been highlighted that some metabolites of some pesticides are
also toxic and may be a major source of soil contamination. For example,
2,4-dichlorophenol and p-nitrophenol are the significant metabolite derived from
2,4-dichloropenoxy acetic acid and p-nitrophenol degradation (Herrera et al. 2008;
Wojcieszyńska et al. 2008; Liu et al. 2007; Gallizia et al. 2003).

Therefore, there is a need to search for a sustainable and biological solution that
could lead to bioremediation of these heavily contaminated environment. The
application of some beneficial microorganism have been highlighted as a sustainable
biotechnological solution that could mitigate all the highlighted environmental
hazards and contamination (Adetunji et al. 2017, 2018, 2019a, b, 2020; Adetunji
and Adejumo 2017, 2018, 2019). This might be linked to the fact that they possess
the capability to biodegrade all the hazardous and synthetic pollutants (Lade et al.
2015; Kaczorek et al. 2013).
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Bioremediation has been recognized as the application of beneficial microorgan-
ism for the sanitization of heavily polluted environment. This might be linked to the
fact that these microorganisms could use most of these pollutants as a substrate, then
degrade, metabolize, or then chelate various toxic compounds (Tausz and Donath
1930; Mosa et al. 2016). Microorganisms possess the capability to biodegrade
contaminants by cometabolism or the utilization of these pollutants as a carbon
source (Mosa et al. 2016; Garbisu and Alkorta 2003). Bioremediation has been
identified as a sustainable biotechnological solution that could mitigate all the
highlighted environmental challenges, This might be linked to the following attri-
butes such cost-effectiveness, noninvasive, eco-friendly, and sustainable without
any form of contamination (Garbisu and Alkorta 2003; Perelo 2010; Kulik et al.
2006; Xu and Lu 2010). Bioremediation of heavily contaminated soil can be
performed ex situ which might be at a certain place or in situ which might be at
the place of contamination. (Xu and Lu 2010; Angelucci and Tomei 2016; Tomei
and Daugulis 2013). The process of in situ bioremediation involves three major
processes such as natural attenuation, bioaugmentation, and biostimulation (Suja
et al. 2014; Pimmata et al. 2013).

The process of bioaugmentation involves the introduction of certain microorgan-
isms that possess some special potential to break down some certain contaminants
which some indigenous microorganisms might not be able to break down, or when
these indigenous microflora are not available in sufficient amount (Pimmata et al.
2013; Simarro et al. 2013). Therefore, in order for these microorganisms to perform
the process of bioaugmentation effectively, they must possess certain features such
as capability to degrade certain pollutants whether in immobilized or mobilized
inoculum state, and they must be able to survive in an adverse environment move
through pore available in the soil. The process of bioaugmentation involves the
application of indigenous microorganisms or genetically modified microorganisms
could be utilized for the bioremediation purposes. The process of bioaugmentation
depends on the level of relationship between indigenous and exogenous populations
of microorganisms due to the fact that they all depend and compete for the avail-
ability of nutrients (Simarro et al. 2013; Hamdi et al. 2007; Alisi et al. 2009; Ueno
et al. 2007).

Therefore, this chapter intends to provide a comprehensive detail on the applica-
tion of bioaugmentation as biotechnological tool for the bioremediation of heavily
contaminated environment. The modes of action by which bioaugmentation were
analyzed in detail. Various microorganisms that play crucial role in various
bioaugmentation processes were highlighted. Future recommendations that will
promote the sustainability of bioaugmentation approaches were also highlighted.
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15.2 Techniques Used for Bioaugmentation of Soil
and Water with Specific Examples

Microorganisms naturally degrade waste materials or hazardous materials into
usable form(s). In some cases, the process (bioremediation/biodegradation) might
be less efficient and very slow. The addition of microbial or archaea cultures which
are needed to enhance the rate of degradation of pollutants in a bioremediation
process is called bioaugmentation (biological remediation). Bioaugmentation is
usually employed in waste management to resurrect the activated slurry
bio-reactor machine (ASBM). Microbes (fungi, rotifers, nematodes, protozoans,
and bacteria) which are proficient in the ASBM degradation of wastes aid in the
degradation of wastes to a non-toxic usable forms. These organisms are usually
under studied in order to ascertain if they have the potential to catalyze a bioreme-
diation reaction. If the native strains do not have the potential to speed/breakdown/
bioaugment a bioremediation process effectively, an exogenous assortment with a
more enhance capability is introduced in order to biostimulate the entire process.

Bioredegradation has been identified as a cheaper, ecofriendly solution for the
bioremediation of polluted environment using microorganisms. Maruthi et al. (2013)
perform an experiment to establish the role of fungal isolates in the biodegradation of
organic compounds present in polluted soil with diesel and petrol. The result of
the preliminary screening led to the isolation of two fungal strains that possess the
capability to biodegrade total organic carbons from the oil-polluted sites. The
experiment was performed inside an Erlenmeyer flasks under aerobic conditions. It
was discovered that the total organic carbons vary from 0.7 to 32% depending on the
concentration and the strain types. It was discovered that Aspergillus niger and
Phanerochaete chrysosporium had the highest total organic carbons with 21% and
32% respectively before amending with nutrient. The level of total organic carbons
was decreased after the media was amended through the addition of sulfur, nitrogen,
and phosphorus most especially by Phanerochaete chrysosporium strains. The study
showed that Aspergillus niger and Phanerochaete chrysosporium possess the capa-
bility to liberate more CO2 and biodegrade the substrate hydrocarbon present in the
polluted oil sites, and they could be used in the waste recycling process.

Ferraro et al. (2019) evaluated the application of an anaerobic bioremediation
treatment for the recuperation of polycyclic aromatic hydrocarbons (PAHs) of
polluted soil. The PAH-polluted sol was artificially primed, and seven various
pollution conditions were evaluated. The soils were polluted with benzo[a]pyrene
(D), naphthalene (A), pyrene (C), and anthracene (B) while the other treatments
contained other experimented such as PAHs (i.e., A + D, B + D, and C + D tests).
The experiment was carried out in order to validate the effect of degradation kinetic
for the single entailed in single PAH which varies from aromatic rings ranging from
2 to 5 as well as establish the influence of adding PAHs together with a 5-aromatic
ring contaminant (i.e., benzo[a]pyrene). The assay was performed in a bioaugmented
condition using two microbial inoculant derived from anaerobic digestion tests on
lignocellulosic substrate. The result obtained showed that the two inoculants varied
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by enriched through the assay featured by experiments characterized by chronolog-
ical re-inoculation on new substrate, for its successive treatment, every 24 and 96 h,
respectively. This present study centralized on the effectiveness of PAHs degrada-
tion, characterization of the microbiological abundance, and pathway which provide
a holistic approach on the bioremediation of soil contaminated with PAHs.

Simarroa et al. (2013) evaluated the effect of various in situ bioremediation
treatments which entail natural attenuation, bioaugmentation, biostimulation, and
bioaugmentation on creosote-contaminated soil. Some of the parameters assessed
were evolution of bacterial communities, toxicity, creosote degradation, and micro-
bial respiration. The result obtained indicated that the creosote reduced significantly
all the treatments, and no single variation was discovered among all the treatments.
Moreover, it was discovered that some certain PAHs were broken down to a larger
extent through biostimulation. The domination of low temperatures at an average of
8.9 �C lowers the microbial creosote and the polycyclic aromatic hydrocarbon
uptake and polycyclic aromatic hydrocarbon degradation (>60%) at the completion
of the experiment while the level of toxicity remains constant through the experi-
ment. The result obtained from the biostimulation indicated maximum microbial
biodiversity by the termination of the biodegradation process, while the composition
of all the treatment varies from all the treatments in comparison with the control
assay. It was later discovered that some of the uncultured bacteria belong to the
genera Sphingomonas, Balneimonas, Pseudomonas, Pantoea, and Flexibacter. It
was also established that Pantoea and Balneimonas possess the capability to degrade
PAH while Pseudomonas genus was the most of the species identified during the
process of creosote biodegradation. The result affirmed that some bacteria possess an
intrinsic potential to degrade the creosote without previous exposure.

Bento et al. (2003) assessed the effect of bioaugmentation, natural attenuation,
and biostimulation on the degradation of total petroleum hydrocarbons available in
the polluted soils with diesel oil. It was observed that bioaugmentation exhibits the
maximum degradation which includes heavy (C23–C40) fractions of TPH (75.2%)
and light (C12–C23) fractions (72.7%) while natural attenuation shows more activity
when compared to the biostimulation. The highest dehydrogenase activity of 3.3-
fold was detected from bioaugmentation of the Long Beach soil followed by 4.0-fold
by the natural attenuation of the Hong Kong soil. It was also observed that the
population of heterotopic and microorganisms that possess that capability to degrade
diesel oil was not influenced by bioremediation treatment. It was also established
that the application of inoculum of microorganism pre-selected from their own
environment gave the best approaches for the ecorestoration of soil polluted with
diesel oil.

The pollution of the soil with aromatic compounds has been identified as a serious
environmental concern which could lead to mutagenic and carcinogenic properties.
In view of this, Koul and Gauba (2014) wrote a comprehensive review on the
application of bioaugmentation for the bioremediation of heavily contaminated
soil. The authors stated that bioaugmentation has been utilized as a biotechnological
techniques for enhancement of the biodegradative potentials of polluted soil using
some microorganisms. The amendment of pre-grown microbial cultures improves
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the breaking down of heavy metal and organic compounds. The most significant
factor in the selection of potential microorganism that could break down most of
these contaminants as well efficaciously compete with original micro flora. It was
also stated that the application of genetic engineered microorganism could enhance
the stability of indigenous microorganisms without affecting their biodegradation
potential. Bioaugmentation is commonly applied in the bioremediation of municipal
wastewater. Moreover, it was stated that remediation industry practices employed
bioaugmentation as a sustainable approach for the bioremediation of various gener-
ated pollutant from their industry because it is cheaper and affordable, and it could
facilitate the process of bioremediation on the site.

It has been stated that microorganisms possess the capability to enhance plant
growth–promoting capability and bioremediation of heavily polluted sited with
heavy metals. In view of the aforementioned, Arunakumara et al. (2015) isolated
phosphate solubilizing bacterial strain and tested their effectiveness in the bioreme-
diation of the following strains such as Co, Pb, and Zn and their potential to fast track
their uptake by Helianthus annuus. The level of heavy metal was performed using
the agar dilution techniques while the rate of metal uptake and the influence of
phosphate solubilizing bacterium in the enhancement of the heavy metal uptake was
established in a pot experiment while batch experiment was utilized for the estab-
lishment of bacterial inoculation on the movement of metals in soil. The character-
ization of the isolated that could solubilize phosphate using 16S rRNA sequence
evaluation showed that Klebsiella oxytoca JCM1665 was the best strain among
many others. It possesses the capability to solubilize phosphorus in the absence
and presence of metals. It was also established that the inoculation of strain
JCM1665 of Klebsiella oxytoca led to the improvement of H. annuus (49%, 22%,
and 39%, respectively in Co, Pb, and Zn contaminated soils) when compared to the
control plants while there was improvement in the level of translocation and
accumulation of Co, Pb, and Zn from roots to shoots Also, the water-soluble fraction
of Co, Pb, and Zn in soil was improved by 51%, 24%, and 76%, respectively in
inoculated soils when compared to the control without any inoculants. Their study
showed that Klebsiella oxytoca JCM1665 possess metal mobilizing capability and
could enhance plant growth promotion with improved phytoextraction activity most
especially for the soil polluted with Co, Pb, and Zn.

It has been observed that the process of bioaugmentation could enhance the
process of microbial diversity and the level of soil fertility apart from playing a
crucial role in the bioremediation of heavily polluted soil. Festa et al. (2016)
evaluated the influence of bioaugmentation with Sphingobium sp. AM strain on
numerous soil microbiomes, contaminated soil (Phe), chronically contaminated soil
(IPK), and pristine soil (PS). The study was carried out to establish the role of these
microorganisms in the bioremediation of these polluted soil and their role in the
improvement of the ecology that drives bacterial communities after each inoculation
of these isolates. It was discovered that AM strain draft genome classifies genes for
the metabolism of aliphatic and aromatic hydrocarbons. Moreover, it was detected
that inoculation enhances the removal of phenanthrene during the whole treatment of
Phe no observable degradation of any PAH was detected. Also, pyrosequencing
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evaluation enhances the diversity and richness of contaminated microbiomes, hence
autonomously of PAH degradation enhancement, we detected traces of inoculant
formation, signifying it could utilize other resources to persist. The rate of inocula-
tion does not have any effect on the bacterial community of PS. It was also observed
that the incubation conditions enhanced the level of orders from Sphingomonadales
and Actinomycetales while inoculation resulted in the reduction of level of
Actinomycetales while the addition of most diverse microbiomes with inoculants
most especially to PS and Phe led to enhancement in the level of orders from
Rhizobiales, Sphingomonadales, and Burkholderiales. It could be concluded that
there is a synergetic effect between all the genera which showed that there may not
be any relation with PAH degradation.

It has been observed that the extemporaneous, natural self-attenuation of the
groundwater polluted with oil-derived pollutants most especially in the groundwater
environment has been observed to be slow which might warrant numerous amplifi-
cation activities that are obligatory to speed up the process. It has been observed that
ex situ bioremediation is one of the best treatments for the bioremediation of polluted
soil from which the ground is evacuated from its natural site and developed into piles
suited in different clean-up sites. This permits easy amendment and regulator of the
development parameters and consents for delightful other optimization activities
such as bioaugmentation with specially prepared microorganism cultures. In view of
the aforementioned, Kaszycki et al. (2011) evaluated the influence of soil-derived
bacterial community utilized as inoculum in the bioaugmentation of organic com-
pounds. After inoculation, it was discovered that the level of the soil bacteria
population was enhanced by 16–42 times and extended the value of 3.6 �
106 cells g�1. The designated optimization activities, pragmatic for the first stage
of the longstanding bioremediation scheme, permitted to accomplish substantial
pollution removal rates: over 3.5-fold at the site P1 and over five-fold at P2.

da Silva and Alvarez (2010) wrote a comprehensive review of bioaugmentation.
The authors recounted that bioaugmentation has been a major priority in the biore-
mediation process, employed to enhance the aforementioned process in degrading
recalcitrant pollutants in the ecosystem. That proper inoculate aid in improving the
efficiency and activity of the bioremediation process. Nevertheless, the entire pro-
cess also depends on external factors that might militate against its set objectives for
environmental restoration. The authors opined that there is a need to improve on the
qualities of the strains used in the bioaugmentation process in order to boost the
normal genetic constituents of the microbes and enhance the catabolic enzyme
specificity and gene adaptability against critical environmental conditions such as
redox condition and pH that may affect in situ condition of bioaugmentation. A
better understanding of the biology and the chemo-taxis response away and toward
sourced contaminants of the microbes is very important, in order to predict and
monitor the process of regulation and to improve the distribution and perfusion of
the micro-biota. In conclusion, the authors are of the opinion that a part of
re-engineering the microbes adapt to abiotic stress, the issues of biological stress,
such as struggle for food might also hinder the biological process. They recommend
the selection of inhibited species that specifically hinder the biological process and
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add specific strains of bacteriophages to buffer the stress faced by the microorgan-
isms during the pigmentation process. More so, there is a need to improve on a
biological model that will be employed for predictive analysis of catabolic enzyme
genes and other markers of biological stress, to ensure a perfect clean-up process.
This will inform certain ecological decisions and forestall future strategy for a better
ecorestoration.

Mrozika and Piotrowska-Seget (2010) in a review looked at the clean-up of soils
polluted with aromatic compounds using bioaugmentation approach. The authors
stated that most mutagenic and carcinogenic health risks are associated with the
impacts from aromatic compounds, especially the poly/long chain forms. That
bioaugmentation has been proven to be more efficient in the decontamination
pollutants through the introduction of specific fit consortia of microbes that will
enhance the degradation capacity of already existed inoculum. The authors also
stressed the need to avoid external and inter ecological and biological stressors that
will militate against the biological degrading process. They suggested that the
improvement of bioaugmentation could be attained by distributing suitable microbes
that are powerless on several transporters of triggered soil and the re-engineering of
microbial gene.

The process of the decontamination of oil, diesel, and fuel hydrocarbons in a cold
or snowy situation has become one of the greatest challenges faced in biotechnology
of pollutants.

Kauppi et al. (2011) tested and evaluated the relationship of bioaugmentation and
biostimulation in the improvement of bioremediation of oil, diesel, and fuel hydro-
carbons in polluted soil during a cold or snowy condition. The authors used a
different assortment of microorganism inocula, aeration, bulking negotiator, and
nutrient alga under field and laboratory settings. The rRNA genes of the consortia
microbes were explored. The results of their study indicated that proteo-bacteria
were the most well highly distributed microbes in the consortia. The biodegrading
process was more efficient when aeration and nutrients were slowly released con-
currently. The microbial inocula was unable to improve the remediation of the soil
nor was a long-lasting consortia density noticed in the laboratory setting. However,
in the field setting, the result showed that there was enough aeration and excess
decrease of moisture when the bulking negotiator was employed. The findings from
their study showed that bioaugmentation was not effective under cold condition. The
authors concluded that the rate of biostimulation through enhancement of oxygen
and nitrogen source increased the remediation potentials of the consortia microbes in
the cold soil unlike bioaugmentation.

Taccari et al. (2011) tested and evaluated the bioaugmentation and biostimulation
impacts of microbial consortium on the decontamination of petroleum diesel. The
biological control test was investigated for 120 days. Different substrates (-
β-cyclodextrin; biosurfactant, compost, guano, and microbial consortium) were
combined or individually used by the microbial population. The results of the
biological study indicated that the adding of the compost guano with the microbial
consortium elevated the activities of the heterotrophic aerobic microorganism which
was suspected to be strain of Pseudomonas. Bioaugmentation and biostimulation
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were noticed to be on the increase in direct variance with the increase of the
microbial diversity, as well as the dry and wet mass (biomass contents). The
diversity and biomass of the microbial community were later reinstated at the
expiration of the bioremediation after a sudden drop, instigated through the xenobi-
otic stressor. There were similarity between the microcosms and the microflora
density population with or without the addition of biosurfactant. However, a
decrease of the petroleum hydrocarbon was noticed below the situation tested. The
findings from their study showed that a combined substrate (compost guano and the
bacterial consortium) was significant in the decontamination of the petroleum
hydrocarbon about 96%, after 120 days of investigation.

Sludge from petroleum hydrocarbon, specifically oil mixture, has been known to
contain recalcitrant pollutants. Ragheb et al. (2011) tested and evaluated the
bioaugmentation potential of oil sludge using an enhanced strategy. The investiga-
tion lasted for 198 days. Two microbial consortia were used alongside with micro-
cosms consisted with PAHs and alkanes isolated from an oil sludge and soil. The
results from their study showed that about 30% degradation of the TPH (total
petroleum hydrocarbons) from the oily sludge. Although, the degradation of the
alkane content was slightly removed. While, the asphaltic and aromatic parts were
significantly improved via the adding of the other consortium. The findings of their
study showed that resin a polar compound was significantly enriched with
asphaltene and aromatic application. However, their volume in terms of concentra-
tion was reduced to the normal concentration at the culmination of the incubation
timing.

The decontamination of polluted soils containing PAHs has become an evolving
biotechnology approach. Typical biotechnological techniques used currently are
bioattenuation, biostimulation, and bioaugmentation. María et al. (2016) in a book
chapter reviewed different bioremediation techniques (bioattenuation,
biostimulation, and bioaugmentation) used in the degradation of PAHs in polluted
soil. The authors stated that these current biotechnologies are considered favorable,
because of the advantages (ecological friendly, cost-effective, and do not produce
any noxious substance), which the conventional techniques do not have both in the
field and laboratory settings. The authors in conclusion recommend agricultural
management as a panacea to the end-point of major pollutant in conjunction with
the aforementioned bioremediation techniques.

Cosgrove et al. (2010) tested and evaluated the potential effects of
bioaugmentation and biostimulation on the bioremediation of polyurethane
suppressed in a soil. The authors used microcosms obtained from soil alongside
with Impranil for the biostimulation process, yeast extract, and polyurethane
degrading fungi for the bioaugmentation process. The results showed that the extract
from the yeast for biostimulation in combination with Impranil, improved about 62%
of the decontamination of polyurethane suppressed in the soil as compared to the
control, and also linked with 45% alleged improvement of the degradation of
polyurethane by the consortium organisms. The results of the bioaugmentation of
polyurethane with the fungi showed about 28% degradation potential when wheat
was added to mycelium-rich inoculum. This indicated that the wheat acted as a
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biostimulation impact on the degradation of polyurethane. A further addition of
several strains of Mucor mycotina sp., Penicillium ochrochloron, Penicillium
viridicatum, and Nectria haematococca enhanced about 30–70% of degradation of
polyurethane. This informs that both bioremediation techniques (bioaugmentation
and biostimulation) are working in synergy to recital of the degradation of the
pollutant. The findings from their study revealed that bioaugmentation however
spurred the numbers of the native consortium microbial and fungi population for
effective bioremediation process. They recommend both the techniques as feasible
instruments for the degradation of environmental pollutants with polyurethane.

Population increase and technological developments have been linked to the
major generation of environmental concerned pollutants. These imbalances as a
result of these impacts have caused impending stress in the biotic community.
However, several methods have been employed in remediating the ecological
concerned pollutant. Goswami et al. (2018) in a review looked at the different
potential strategies of remediation, environmental pollutants using bioaugmentation
and biostimulation techniques. The authors stated that bioaugmentation has been
proven efficient in the remediation of recalcitrant pollutants using strains of microbes
as well as the biostimulation of the process using regulating nutrients that will
enhance the efficacy of the microbial strains in the remediation of the rate of
degradation of some environmental concerned pollutants. The authors, however,
pinpointed that the co-eco-friendly nature of the two bioremediation techniques has
yet to be ascertained and recommend the evaluation of the ecological and health
impacts of these techniques.

The uncontrolled use of fungicides in agricultural activities has yielded to
rebound of recalcitrant chemicals like Azoxystrobin in the agro-ecosystem. How-
ever, the ecorestoration of soil contaminated by this chemical can forestall a healthy
environment for soil micro and macro biota. Baćmaga et al. (2017) tested and
evaluated the bioaugmentation potential of soil fungicide pollutant—Azoxystrobin.
The authors investigated this with the use of catabolic enzymes (alkaline phospha-
tase, acidic phosphatase, catalase, urease, and dehydrogenases) secreted by the four
microbial consortium strains [KJ843149.1 (Bacillus megaterium) KF831381.1
(Bacillus weihenstephanensis), KC848897.1 (Bacillus cereus), and LM655314.1
(Bacillus sp.)] and two fungi strains [JN943451.1 (Aphanoascus fulvescens) and
AB861677.1 (Aphanoascus terreus)]. The results indicated that the microbial con-
sortium was able to increase the breakdown of azoxystrobin in the contaminated
soils within 90 days of investigation by the four microbial (24%) and two fungi
(78%) strains correspondingly. Azoxystrobin was degraded by Aphanoascus
fulvescens and Aphanoascus terreus by 9% in the sandy-loamy soils. The findings
of the study showed that the activity of the soil catabolic enzymes was altered/
increased, due to inoculation of the topsoil by the microbes and fungi strains, which
is also an indication of that the augmentation process has attained its objective
compared to the control. The entire process created a suitable environment and
effective removal of azoxystrobin as well as improved the adverse impact on the
soil micro and macro biota. More so, it created an avenue to utilize microbial
organisms in the contaminated soils in the bioremediation process of azoxystrobin.
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In conclusion, the authors recommend the strains of microorganisms and fungi as the
potential candidates for the decontamination of soil fungicides—azoxystrobin.

Ghaly et al. (2013) tested and evaluated the biodegrading potentials of pyrene a
congener of PAHs. The efficacy of the degradation relies on the bioaugmentation
and biostimulation of the soil environment with mycobacterium and toting of food or
nutrients to the degrading media. Results showed that there was an increase in the
number of microbial cells (40, 58, 70, and 132) in the bioaugmentation,
biostimulation, and control group correspondingly. However, a pause time (0.5
days) and growth rate (0.896 day�1) were noticed when bioaugmentation and
biostimulation were combined as a treatment at mean temperature of 41 �C and
minimum–maximum temperature of 28–32 �C. This was consequent as a result of
the non-compensation of the gas lost during the organic matter breakdown in the
remediation of pyrene in the bioreactor. The amount of pyrene breakdown was
shown by the reduction of the oxygen level/concentration and the rise of the carbon
(IV) contents in the bioreactor exhaust as compared to the control. More so, the level
of O2 to CO2 in the treatment groups, bioaugmentation, and biostimulation were the
same. However, at day 7 trial period, the concentration of O2 to CO2 declined. The
greatest reduction (84.29%) of pyrene was noticed in the biostimulation-
bioaugmentation process, followed by 87.56% of the bioaugmentation process,
50% of the biostimulation process, and 37% of the control group. The findings of
this study showed that there were various degradation rates in the microbial phases
(stationary, exponential, and lag) when both the bioremediation processes were
combined.

Garbisu et al. (2017) did a review of the biodegradation of soil pollutants using
bioaugmented facilitated plasmid method. Unfortunately, microbial degradation of
soil contaminants sometimes is ineffective due to the rapid reduction of microbial
sustainability and richness. This is consequent on the genes that encrypt in the
biodegradation of organic compound found in the plasmids of the microbial cell.
A facilitated plasmid technique in bioaugmentation targets to excite the binge of
pollutant degradation of DNA segment among native strains of soil microorganisms
via the preface of plasmids found in the contributor gene pool. This will enhance the
host’s ability for an effective degradation process. In conclusion, the authors
suggested that for the entire bioaugmentation facilitated plasmid process to be
more effective, an in-depth knowledge of the soil native consortium and the envi-
ronmental factors that may militate against the plasmid expression and acquisition
should be of paramount interest in bioremediation prospective research.

Baneshi et al. (2014) tested and evaluated the impact of bioaugmentation in
improving the flora decontaminating of pyrene and phenanthrene-selected PAH
congeners. The authors stated that PAHs removal from the soil by phytoremediation
is an effective technique suggested for a future utilization. Onobrychis sativa and
Sorghum were combined with the specific microbial consortium to
phytoremediation pyrene and phenanthrene. Polluted soil (1.5 kg) of proportion
100:300 mg was used and investigated for 120 days. The results showed that the
flora were able to remediate the polluted soil and significantly decontaminate totally
the pyrene (63%) and phenanthrene (74.5%) contents of the soil correspondingly.
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When both plants were combined, the bioaugmentation efficiency improved for
pyrene (74.1%) and phenanthrene (85%) as well as for sorghum (85.2%) and
Onobrychis sativa (73.84%) correspondingly.

In the combined mode, the removal efficiency dramatically increased, leading to
pyrene and phenanthrene removal efficiencies of 74.1% and 85.02% for Onobrychis
sativa and 73.84% and 85.2% of sorghum, respectively. In conclusion, the authors
recommend sorghum and Onobrychis sativa as typical bioaugmentation tools for the
degradation of phenanthrene and pyrene from adulterated soil. In summary, they also
suggested the utilization of indigenous plants for the biodegradation of soil recalci-
trant pollutants such as PAHs congeners.

The introduction of disproportionate dependency on chemicals increase the level
of industrialization with enhanced undiscriminating, discarding of specifically chlo-
rinated solvents, triggering a variation of environmental problems. It has been
observed that chlorinated solvents such as perchloroethylene and trichloroethylene
possess the capability to pollute the groundwater that could led to several health and
environmental hazards. Numerous approaches have been applied in resolving these
challenges but only very few success have been recorded. Time edgings for reme-
diation have a tendency to be time-consuming, generally measured in decades. In
view of the aforementioned, Anjali (2018) wrote a comprehensive review on the
application of genus Dehalococcoides as a bioaugmentation tool for the bioremedi-
ation of heavily polluted chlorinated solvents. The techniques that have been utilized
in the present, past, and future recommendations in the application of
bioaugmentation are highlighted.

Baek et al. (2007) evaluated the utilization of numerous bioremediation processes
and microbial diversity for the ecorestoration of polluted soil with crude oil. Several
treatments such as bioaugmentation (BA), natural attenuation (NA), biosurfactant
addition (BE), and biostimulation (BS) while their combined treatment containing
bioaugmentation, biostimulation, and biosurfactant addition, which were referred to
as (CT), were applied in the biodegradation of process and the determination of the
microbial level present in this communities. It was observed that CT treatment
showed the highest CT treatment while there was no observable changes in the
level of the available hydrocarbons after 120 days. It was observed that the total level
of bacterial count improved during the first 2 weeks in all the treatments and later
become unstable. The alkane monooxygenase gene fragment, alkB, and the bacterial
communities were related by denaturing gradient gel electrophoresis (DGGE). The
result obtained indicated that the DGGE evaluation of the CT and the BA treatments
which entails Nocardia sp. H17-1 showed modest dominant population structure in
comparison with the other treatments. Moreover, the Simpson dominance index
(D) and the Shannon–Weaver diversity index (H0) evaluated from 16S rDNA
established a quantitative variation in the community structure after and before the
application of bioremediation treatment as well as among treatment situations.

Olu-Arotiowa et al. (2019) assessed the ecorestoration of atrazine herbicide–
polluted agricultural soil under numerous bioremediation approaches utilizing indig-
enous Aspergillus niger, Pseudomonas aeruginosa, Bacillus subtilis as a
bioaugmentation agents while poultry droppings were applied as biostimulation
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agents. The result obtained due to the process of bioaugmentation with all the tested
strains and the application of biostimulation enhances in maximum atrazine biodeg-
radation which varies from 97 to 100%.The biodegradation half-life and modeling
using first-order kinetic model were applied in establishing the kinetics of atrazine
biodegradation in the soil. It was observed that the rate of the constants (k1) of
atrazine biodegradation in the soil where bioaugmentation with Aspergillus niger,
Pseudomonas aeruginosa, and Bacillus subtilis, while the fungal and the bacterial
consortium vary from 0.059 and 0.191 day�1. Also, it was detected that the soil
exposed to natural bioattenuation, biostimulation, and joint bioaugmentation and
biostimulation are 0.026, 0.164, and 0.279 day�1, respectively. The half-life (t1/2) of
atrazine ecoretordation in soil when exposed to natural bioattenuation was affirmed
to be 26.7 days. The best ecorestoration effectiveness showed the following strate-
gies with the following treatments in the following trends like combined
bioaugmentation and biostimulation > Bioaugmentation with bacterial–fungal con-
sortium > Biostimulation with poultry droppings > Bioaugmentation with Pseudo-
monas aeruginosa > Bioaugmentation with Bacillus subtilis > Bioaugmentation
with Aspergillus niger > Natural bioattenuation.

Soil co-contaminated with organics and metals has been identified to entail some
significant challenges for remediation. The availability of metal contamination can
prevent or destroy the activity of microbial degradation of organic pollutants such as
operative in situ biodegradation most especially utilizing bioaugmentation. Pepper
et al. (2002) evaluated the bioremediation process of 3-chlorobenzoate (3-CB) and
2,4-dichlorophenoxyacetic acid (2,4-D) available in two various soil entailing cad-
mium (Cd) contamination and without the presence of cadmium (Cd) contamination.
The potential of bioaugmentation in facilitating the process of organic degradation in
these processes was also evaluated. The authors also assessed the level of degrada-
tion could be linked to the plasmid transference to native microbial populations
(gene bioaugmentation) or survival of the introduced organism used for the process
of bioaugmentation. It was observed that 2,4-D-degrading bacterium, Ralstonia
eutropha JMP134 improved the rate of 2,4-D degradation when tested in Brazito
soil that was inoculated with a Cd-resistant bacterium. Moreover, it was also
established that the application of Escherichia coli Dll, which does not possessed
chromosomal genes which could be utilized for widespread 2,4-D mineralization,
was utilized for the process of gene bioaugmentation in Madera soil. Furthermore, it
was observed that an enhanced gene transfer of the plasmid to the native populations
was recorded and the rate of 2,4-D degradation was improved in comparison to that
of the control. Also, it was established that Comamonas testosterone was applied in
the process of cell bioaugmentation which was shown to validate that it plays a
crucial role in the rate of bioremediation of 3-CB in Madera soil while
non-bioaugmented samples evaluated with Madera soil exhibited a total 2,4-D
degradation but non-bioaugmented Brazito soils demonstrates partial 2,4-D degra-
dation. Their study established that the application of gene bioaugmentation and cell
bioaugmentation could be utilized for biodegradation of organic degradation in
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co-contaminated soils. Eventually, the bioaugmentation approach may be contingent
on the amount of contamination and the period frame obtainable for remediation.

Burghal et al. (2015) evaluated the effect of autochthonous microflora for the
bioaugmentation of hydrocarbon polluted soil after it has been biostimulated by the
mixture of sheep and cow dung in the presence of sawdust. The experiment was
carried out in a test biopile containing contaminated soil entailing petroleum waste
100 kg together with 1.5% sawdust as well as necessary minerals and water that
improve the growth of necessary microorganisms. Aeration was supplied to the pile
by drainage-pipe network to enhance the process of bioaugmentation for a period of
90 days. It was established that there was alteration in the bacterial communities and
the total petroleum hydrocarbons. There was also a drastic decrease in the total level
of total petroleum hydrocarbons from 52 to 10.6 g kg�1. It was also revealed that the
dominant microorganism available in the soil entails autochthonous microorganisms
and Gram-positive bacteria mainly from actinomycete group that possess the capa-
bility to biodegrade to the maximum level of 1.6 � 107 cfu g�1 at 45 days. Their
study revealed that ex situ (biopile) experiment was the best approaches because it is
cost-effective, eco-friendly, sustainable for effective bioremediation of polluted soil.
The list of numerous microorganism utilized for bioaugmentation purposes are listed
in Table 15.1.

15.2.1 Specific Gene Involved in Bioaugmentation

It has been recognized that most of the microorganisms utilized for the process of
bioaugmentation do not survive. They have introduced the application of natural
gene transfer so as to establish the transfers of remediation genes into polluted
environment. The introduction of recent advances like genome sequencing has
helped in rapid advancement in the establishment of the role of horizontal gene
transfer played in the bioremediation of heavily polluted environment (Ochman et al.
2000). The movement of horizontal gene transfer may take place through the process
of transformation or conjugation which involves the conjugative transposons
between microorganisms or exchange of genetic material or physical contact such
as plasmids, transduction which involves mediation by bacteriophage, and the
application of gene bioaugmentation which involves several remediation genes
that are available in mobile form that could be liked to self-transmissible plasmid
when compared to the out-of-date cell bioaugmentation techniques involved.
(1) There is no necessity for long-term persistence of the introduced host strain.
(2) Release of remediation genes into local microorganisms could endure and
increase in the environment. It has been observed that the movement of plasmids
through conjugation is the technology mostly premeditated with reverence to
bioaugmentation (Christensen et al. 1998; Dejonghe et al. 2000; DiGiovanni et al.
1996; Herrick et al. 1997; Newby et al. 2000a, b; Top et al. 1999, 2002, 1998).

Newby et al. (2000a, b) evaluated the level of bioaugmentation within two
various bacterial donors that possess the capability of conveying the
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Table 15.1 List of microorganisms used for bioaugmentation purpose

SN Lists of microorganisms Functions
Substance/substrates
degraded References

1 Verticillium sp., Asper-
gillus sp., Acremonium
sp., strain BIA
(Enterobacter
agglomerans), strain
4015
(Chromobacterium sp.),
strains B1f, B5A and
B3g (Bacilllus sp.) and
Aspergillus sydowii

Bioaugmentation Benzo(a)pyrene,
dibenzo(a)anthracene,
pyrene, anthracene,
phenanthrene, and
naphthalene

Silva et al. (2009)

2 Penicillium funiculosum
and Rhizopus sp.

Bioaugmentation Petroleum
hydrocarbons

Mancera-López
et al. (2008)

3 Fusarium oxysporum,
Microbacteriaceae bac-
terium, Gordonia
polyisoprenivorans,
Microbacterium sp.,
Bacillus cereus, and
Mycobacterium
fortuitum

Bioaugmentation PAH congeners
(pyrene, phenanthrene,
and fluorine)

Jacques et al.
(2008)

4 Strains NM and M
(Pseudomonas
aeruginosa) and strain
DM-04 (Bacillus
subtilis)

Bioaugmentation Crude petroleum oil
hydrocarbon

Das and
Mukherjee
(2007)

5 Pseudomonas sp.,
Acinetobacter sp., and
Rhodococcus sp.

Bioaugmentation PAH congeners
(pyrene, phenanthrene,
and fluorine)

Yu et al. (2005)

6 Acremonium sp.,
Verticillium sp., Asper-
gillus sp.,
Trichocladium
canadense, and Fusar-
ium oxysporum

Bioaugmentation HMW-PAHs (4–7
rings)

Silva et al. (2009)

7 Aspergillus sp., and
strain ZWL73 (Pseudo-
monas putida)

Bioaugmentation LMW-PAHs (2–3
rings) and
4-chloronitrobenzene

Silva et al. (2009)

8 Strain BS29 (Gordonia
sp.), strains LEBM1 and
LEBM3 (Aspergillus
sp.), strain LEBM2
(Aspergillus sp.) and
strain FDS-1
(Burkholderia spp.)

Bioaugmentation Aromatic and aliphatic
hydrocarbons, chloro-
benzene, phenol, and
fenitrothion

Hong et al.
(2007), dos
Santos et al.
(2008)

9 Strain ATCC 39723
(Sphingobium
chlorophenoticum)

Bioaugmentation Pentachlorophenol Dams et al.
(2007)

(continued)
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Table 15.1 (continued)

SN Lists of microorganisms Functions
Substance/substrates
degraded References

10 Strain WatG (Pseudo-
monas aeruginosa)

Bioaugmentation Diesel oil Ueno et al.
(2006)

12 Strain ST41 (Pseudo-
monas sp.)

Bioaugmentation Marine gas oil Stallwood et al.
(2005)

13 Absidia cylindrosora Bioaugmentation Fluorene Garon et al.
(2004)

14 Strain A6L
(Arthrobacter
chlorophenolicus)

Bioaugmentation 4-Chlorophenol Jernberg and
Jansson (2002)

15 Strain BR60
(Comamonas
testosterone)

Bioaugmentation PAHs and crude oils Gentry et al.
(2001)

16 Strain pDH5/Paw
340 (Pseudomonas
putida)

Bioaugmentation 4-Chlorobenzoic Massa et al.
(2009)

17 Strain RW112
(Cupriavidus necator)

Bioaugmentation Chlorobenzoates
Aroclor 1221 and 1232

Wittich and
Wolff (2007)

18 Strain LB400/ohb
(Burkholderia
xenovorans)

Bioaugmentation Aroclor 1242 Rodrigues et al.
(2006)

19 Strain RE (Pseudomo-
nas fluorescens)

Bioaugmentation 2,4-Dinitrotoluene Monti et al.
(2005)

20 Strain MP (Pseudomo-
nas fluorescens)

Bioaugmentation 2,4-Dinitrotoluene Monti et al.
(2005)

21 Strain KT2442 (Pseudo-
monas fluorescens)

Bioaugmentation Naphthalene Filonov et al.
(2005)

22 Strain
F113rifpcbrrnBP1::
gfpmut3 (Pseudomonas
fluorescens)

Bioaugmentation Naphthalene and PCBs Boldt et al.
(2004)

23 Strain RHAI
(Rhodococcus sp.)

Bioaugmentation 4-Chlorobenzoate Rodrigues et al.
(2001a, b)

24 Strain AtzA
(Escherichia coli)

Bioaugmentation Atrazine Strong et al.
(2000)

25 Strain B13STI/pPOB
(Pseudomonas sp.)

Bioaugmentation 3-Phenoxybenzoic
acid

Halden et al.
(1999)

26 Rhodococcus sp., Pseu-
domonas sp.,
Burkholderia sp., and
Arthrobacter sp.

Bioaugmentation Petroleum
hydrocarbons

Adebusoye et al.
(2007)

27 Strain F92
(Rhodococcus sp.)

Bioaugmentation Various petroleum
products

Quek et al.
(2006)

28 Strain BCRc14349
(Pseudomonas putida)

Bioaugmentation Trichloroethane and
phenol

Chen et al.
(2007)

29 Strain CS2 (Pseudomo-
nas fluorescens)

Bioaugmentation Ethylbenzene and
biphenyl

Parameswarappa
et al. (2008)

(continued)

388 C. O. Adetunji and O. A. Anani



self-transmissible plasmid pJP4, possessing 2,4-D degradative genes to local soil
bacteria. It was established that pJP4 plasmid was transferred to the soil through
E. coli D11.156 or its inventive host, R. eutropha JMP134. It was established that
R. eutropha JMP134 possess the capability of mineralizing 2,4-D, but E. coli D11
could not due to the absence of the chromosomal genes together with plasmid genes
that enable total mineralization of 2,4-D. It was further established that it took
28 days for complete biodegradation in the presence of soil receiving R. eutropha
JMP134 while it took 49 days for the complete biodegradation of non-bioaugmented
soil as well as soil receiving E. coli D11 inoculant. It was also established that many
transconjugants isolated from E. coli D11 amended soil were recognized as the
inoculant organisms most especially those that possess the capability to degrade
2,4-D obtained from the soil receiving R. eutropha JMP134. Subsequent deprivation
of the preliminary 2,4-D adjustment, the authors added supplementary 2,4-D to the
soil. Afterwards, the amendment 2,4-D was degraded further swiftly in the micro-
cosms that was treated with the E. coli D11 inoculant when compared to the soil that
was treated with the non-bioaugmented soil and R. eutropha JMP134 inoculant.

Table 15.1 (continued)

SN Lists of microorganisms Functions
Substance/substrates
degraded References

30 Strain F113rifPCB
(Pseudomonas
fluorescens)

Bioaugmentation Polychlorinated and
biphenyl

Brazil et al.
(1995)

31 Strain B13STI/pPOB
(Pseudomonas putida)
and Pseudomonas sp.

Bioaugmentation 3-Phenoxybenzioc
acid

Halden et al.
(1999)

32 Strain AtzA
(Escherichia coli)

Bioaugmentation Atrazine Strong et al.
(2000)

33 Strain RHA1
(Rhodococcus sp.)

Bioaugmentation 4-Chlorobenzoate Rodrigues et al.
(2001a, b)

34 Strain
F112rifpcbrmBP1::
gfpmut3 (Pseudomonas
fluorescens)

Bioaugmentation PCBs Boldt et al.
(2004)

35 Strain KT2442 (Pseudo-
monas putida)

Bioaugmentation Naphthalene Nesbo et al.
(2001)

36 Strain MP (Pseudomo-
nas fluorescens)

Bioaugmentation 2,4-Dinitrotoluene Monti et al.
(2005)

37 Strain RE (Pseudomo-
nas fluorescens)

Bioaugmentation 2,4-Dinitrotoluene Monti et al.
(2005)

38 Strain LB400/ohb
(Burkholderia
xenovorans)

Bioaugmentation Aroclor 1242 Rodrigues et al.
(2006)

39 Strain RW122
(Cupriavidus nectar)

Bioaugmentation Aroclor 1221 and 1232
and chlorobenzoates

Wittich and
Wolff (2007)

40 Strain PaW 340/pDH5 Bioaugmentation 4-Chlorobenzoic acid Massa et al.
(2009)
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Their study showed the significance of local microorganisms in the biodegradation
of specific pollutant in addition of necessary genetic material through gene augmen-
tation. Their study also affirmed the capability of bioaugmentation to change the
local soil microbial gene pool.

Dejonghe et al. (2000) evaluated the effect of propagation of two numerous 2,4-D
degradation plasmids available in the B (lower) and A (upper) horizon of a soil. The
application of an auxotrophic Pseudomonas putida strain that poses either of the two
plasmids lead to enhance population of transconjugants (>105 g�1) in B and A
horizons. It was further revealed that the donor population reduces following the
bioaugmentation to the soil while the growth of transconjugant populations could be
linked to the degradative potential of 2,4-D. It was later observed that the process of
bioaugmentation led to improved 2,4-D degradation in the B horizon which does not
possess any local degrader population when compared to the A horizon which had a
larger number of indigenous degrader population. Their study also established that
gene bioaugmentation could be applied for bioremediation of heavily polluted soil.
The application of mobile genes in bioaugmentation was also established in a review
documented by Top et al. (1999).

15.3 Microbial Derived Materials that Could Enhance
the Process of Bioaugmentation

The process of bioaugmentation could be enhanced through the addition of enzyme
or biosurfactant when combined or added singly in addition to microbial inoculant.
The application of biosurfactant has been established for the bioremediation of
organic polluted material or heavy metal contaminated environment (Garcia-Junco
et al. 2003; Hong et al. 2002, Maier et al. 2001, Mata-Sandoval et al. 2002, Sandrin
et al. 2000, Sekelsky and Shreve 1999). They possess the capability to prevent the
adverse effect of metal toxicity on microbial inoculants and enhance the level of
organic substrates available for degradation (Sandrin et al. 2000; Rahman et al.
2003). Sandrin et al. (2000) established that the application of metal-complexing
with the biosurfactant mainly from rhamnolipid for reducing metal toxicity in a
model polluted system. The experiment was performed in the presence of
naphthalene-degrading Burkholderia sp. together with naphthalene and Cd. It was
revealed that the addition of rhamnolipid prevented the eliminated Cd toxicity after
the addition of ten-fold concentration of the Cd. It was discovered that at a lower
concentration the rhamnolipid decreases and exhibited no impact on Cd toxicity. The
authors affirmed that the presence of rhamnolipid reduces Cd toxicity by enhanced
naphthalene bioavailability, LPS release, and metal complexation. Some other
scientists have validated the application of enzyme that was encapsulated in dead
microbial cells or in their purified form for the reduction of contamination (Zhao
et al. 2003, Zhou 2003, Zhou and Thompson 2002, Zhou and Tiedje 1995,
Zouboulis et al. 2001, Wackett et al. 2002, Bhandari and Xu 2001).
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Strong et al. (2000) applied bioaugmented atrazine-polluted soil with genetically
engineered E. coli strain that possess the capability to over produce the enzyme
referred to as atrazine chlorohydrolase which could dechlorinate atrazine. The
authors applied chemical in the inhibition of the genetically modified microorgan-
isms before introducing them to the field site for the purpose of reducing their
regulatory concern (Wackett et al. 2002). It was discovered that the level of atrazine
concentrations in the enzyme-treated plots was reduced by 52% when compared to
the insignificant biodegradation in the control plots. The application of 52% will
help in the mitigation of all the associated challenges with bioaugmentation which
are needed for the sustainability of the microbial inoculants in hearse environment
most especially in the field.

15.4 Conclusion and Future Recommendation

This chapter has provided a detailed information on the application of
bioaugmentation in the ecorestoration of heavily polluted environment. The role of
cell bioaugmentation, activated soil, and immobilized microorganism was also
highlighted. The application of some specific enzymes and biosurfactant when
combined with bioaugmentation was also highlighted. Moreover, the movement of
horizontal gene transfer during the process of bioaugmentation such as transforma-
tion, conjugation, and transduction was also highlighted. Information on the gene
bioaugmentation, rhizosphere bioaugmentation, and their utilization in the bioreme-
diation of polluted soil was discussed in detail. The application of some beneficial
microorganism with high bioaugmentation capability when applied at the rhizo-
sphere of some plants has been discovered to hasten the process involved in the
absorption of heavily metals and various contaminants available in a particular
environment. Moreover, there is a need to carry out more field trial so as to validate
all the result observed on the laboratory scale. This will be a strong basis for their
eventual commercialization.
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