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Abstract

Bacterial quorum sensing mechanism is considered as the gene expression
regulator in response to fluctuations in bacterial cell population density. This
communication process is controlled by autoinducers. So bacteria can talk to
each other using autoinducers. We introduce bacterial talking mechanism or
communication process in this chapter. We briefly discuss quorum sensing
process in cases of different bacteria such as LuxI/ LuxR type quorum sensing,
LasI/LasR- RhlI/RhlR system, TraI/TraR system, ExpI/ExpR-CarI/CarR system,
ComD/ComE system, ComP/ComA system, AgrC/AgrA system and LuxS
family (interspecies communication). Here, we study the communication among
the bacteria through chemical signalling only.

2.1 Bacterial Quorum SensingMechanism

Bacteria secrete molecules which are used for their communication with other
surrounding bacteria (interspecies and intraspecies). This small secreted diffusible
molecule is a key controller of the communication mechanism which is formally
known as autoinducer or quorum sensing molecule (QSM) or chemical signalling
molecule. Bacteria receive these chemical signals from other bacteria with the
purpose of coordinating a collective behaviour. Bacteria emit and receive small
chemical signal in order to extend in concentration as a function of bacterial cell
number density. An important factor to be mentioned is that when bacteria continue
to emit autoinducers in the environment, then the external concentration of the
autoinducers is directly proportionate to the cell population density, making bacteria
aware of the threshold concentration of the autoinducers as a result of which, gene
expression starts altering [1–3]. Thus, we can say it as bacterial quorum sensing
mechanism or chemical signalling mechanism. Bacterial communication systems
regulate variety of physiological activity, which include biofilm formation, motility,
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Fig. 2.1 Quorum sensing: Bacteria emit autoinducers at low cell density, but they are not able to
communicate with the surrounding bacteria. Bacteria emit and receive autoinducers at high cell
density and the autoinducers concentration achieves a threshold. Quorum sensing begins at that
point of time. This bacterial collective behaviour is a density dependent phenomenon

symbiosis, sporulation, virulence, conjugation, competence, antibiotic production.
Quorum sensing was first observed in marine bacterium called Vibrio fischeri, which
can be found as living microorganism as well as a symbiont in the light producing
organ of an animal host (i.e. Hawaiian bobtail squid). V. fischeri is non-luminescent
at low density, when the cell population grows up at a certain level and autoinducers
concentration reaches a threshold, a coordination change is initiated. At that point of
time, gene expression takes place and generates the enzyme luciferase, which leads
to bioluminescence [2]. So, it is very much understandable that bacteria are talking
to each other via small molecule as a collective behaviour which we call quorum
sensing (Fig. 2.1).

Gram-negative bacteria use N-acyl homoserine lactones (HSL), fatty acid methyl
esters, alkyl quinolones as autoinducers (chemical signalling molecules) and gram-
positive bacteria use oligo peptides for conversation. Here we track some quorum
sensing bacteria with their features in Table 2.1.

2.2 Quorum Sensing in Gram-Negative Bacteria

In the last few decades, several gram-negative bacteria are identified, which
communicate using chemical signalling molecules or autoinducers (Fig. 2.2). Gram-
negative bacterial communication contains at least two homologues regulatory
proteins, known as LuxI and LuxR. Biosynthesis of autoinducers (specific acylated
homoserine lactone) is controlled by LuxI link proteins and the autoinducers
concentration elevates with rise of cell population density. Thereafter, LuxR link
protein binds with the autoinducers (specific acylated homoserine lactone) and
reaches the threshold concentration. Finally, target gene transcription is activated by
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Table 2.1 List of gram-negative quorum sensing bacteria with chemical signalling molecules,
regulatory proteins and phenotypes

Organism
Chemical signalling
molecules

Regulatory
proteins Phenotypes

Agrobacterium
tumefaciens

3-Oxo-C8-HSL TraI/TraR Ti plasmid conjugation

Aeromonas
hydrophila

C4-HSL AhyI/AhyR Exoprotease production

Aeromonas
salmonicida

C4-HSL AsaI/AsaR Extracellular protease

Burkholderia
cepacia

C8-HSL CepI/R Protease, siderophores

Chromobacterium
violaceum

C6-HSL CviI/CviR Exoenzymes, antibiotics,
cyanide, violacein

Erwinia
chrysanthemi

3-Oxo-C6-HSL C6-HSL ExpI/ExpR Pectate lyases

Erwinia stewartii 3-Oxo-C6-HSL EsaI/EsaR Exopolysaccharide,
virulence factors

Enterobacter
agglomerans

3-Oxo-C6-HSL EagI/EagR –

Escherichia coli – –/SdiA Cell division, attachment
and effacing lesion
formation

Erwinia carotovora
subsp. carotovora

3-Oxo-C6-HSL ExpI/ExpR
CarI/CarR

Exoenzymes Carbapenem
antibiotics

Pseudomonas
aeruginosa

3-Oxo-C12-HSL C4-HSL LasI/LasR
RhlI/RhlR

Biofilm formation,
multiple extracellular
enzymes, Xcp, RhlR
secondary metabolites,
RpoS

Pseudomonas
aureofaciens

C6-HSL PhzI/PhzR Phenazine antibiotics

Pseudomonas
syringae

3-Oxo-C6-HSL AhlI/AhlR Epiphytic fitness, cell
aggregation

Pseudomonas
chlororaphis

C6-HSL PhzI/PhzR Phenazine-1-
carboxamide
biosynthesis

Pseudomonas putida 3-Oxo-C12-HSL PpuI/PpuR Biofilm development

Pseudomonas
fluorescens

Long acyl-chain-HSL MpuI/MpuR Mupirocin biosynthesis

Rhizobium
leguminosarum

C6-HSL RhiI/RaiR RhiABC
rhizosphere-expressed
genes, nodulation

Rhizobium etli – RaiI/RaiR Restriction of number of
nitrogen fixing nodules

Ralstonia
solanacearum

C8-HSL SolI/SolR –

(continued)
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Table 2.1 (continued)

Organism
Chemical signalling
molecules

Regulatory
proteins Phenotypes

Rhodobacter
sphaeroides

7-cis-C14-HSL CerI/CerR Dispersal from bacterial
aggregates

Serratia liquefaciens C4-HSL SwrI/SwrR Extracellular protease,
swarming

Salmonella
typhimurium

– –/SdiA Resistance to competence
killing

Vibrio fischeri 3-Oxo-C6-HSL LuxI/LuxR Bioluminescence

Vibrio harveyi 3-Hydroxy-C4-HSL LuxLM/LuxN
Lux-/LuxPQ

Bioluminescence

Vibrio anguillarum 3-Oxo-C10-HSL VanI/VanR –

Yersinia
enterocolitica

C6-HSL YenI/YenR –

Yersinia
pseudotuberculosis

C8-HSL YtbI/YtbR Bacterial aggregation,
motility

the LuxR-autoinducers complexes [4–6]. In general, this type of circuit is observed
in different gram-negative bacteria with few exceptions (i.e. M.xanthus, V. harveyi)
[2] (see more details in [1,7–9]). We discuss some well understood quorum sensing
circuits of gram-negative bacteria in this section.

2.2.1 Quorum Sensing Circuit of Vibrio fischeri

It has been observed that the V. fischeri has symbiotic relationship with the
eukaryotic host. This bacterium lives in a nutrient rich environment and the cell
density grows inside the light organ of the host [10–12]. In the signalling cascade,
we observed two regulatory protein such as LuxI and LuxR. LuxI activates the
production of N-(3-oxohexanoyl)- homoserine lactone (autoinducers of V. fischeri)
and LuxR binds with N-(3-oxohexanoyl)- homoserine lactone. The interaction
between LuxR and autoinducers exposes the LuxR DNA binding domain, which
allows LuxR to combine with luxICDABE promoter and activate transcription of
the luxICDABE operon [4, 13–17]. The LuxR-autoinducer complex behaves as a
negative feedback loop (i.e. luxR expression), which decreases the positive feedback
loop (i.e. luxICDABE expression) [4]. The concentration of autoinducers is same
in intercellular as well as extracellular environment, because N-(3-oxohexanoyl)-
homoserine lactone is easily diffusible across the cell membrane [18]. V. fischeri
culture grows over the time and cell density reaches around 1011 cells/ml [19].
The autoinducers concentration reaches a threshold level (around 1–10 μg/ml) [20]
and starts communication with other bacteria inside the host. So, the cell density is
correlated with light production. Luciferase enzymes are needed for the production
of light in these bacteria, which are encoded by luxCDABE (being as a part of
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Fig. 2.2 Chemical structures: The core molecule and R groups of some Acyl-homoserine lactones
(autoinducers)

luxICDABE operon) [4, 21] (Fig. 2.3). This light production feature is known as
bioluminescence. Eukaryotic host utilizes this light for particular purposes such as
attracting preys and staying away from predators [22]. For example, Monocentris
japonicus uses this V. fischeri light to attract a mate and Euprymna scolopes uses
this same lightning feature of V. fischeri for antipredation strategy [2].

2.2.2 Quorum Sensing Circuit of Pseudomonas aeruginosa

Pseudomonas aeruginosa is a well known pathogenic bacteria, which has a
hierarchical LuxI/R quorum sensing process. P. aeruginosa is responsible for
the lung disease called cystic fibrosis and also regulate the biofilm formation
[2]. Quorum sensing system of this bacteria has two signalling cascade such
as LasI/LasR [23] and RhlI/RhlR [24] (both pairs are LuxI/LuxR homologues).
LasI and RhlI produce autoinducers N-(3-oxododecanoyl)-homoserine lactone
[25] and N-(butryl)-homoserine lactone [26], respectively, to regulate the quorum
sensing circuit and control virulence genes. LasR binds with N-(3-oxododecanoyl)-
homoserine lactone (autoinducer) and the complex (LasR-autoinducer) binds with
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Fig. 2.3 Illustration of quorum sensing circuit of Vibrio fischeri (LuxI/LuxR): The oval shape
shows a bacterial cell. This system consists of two regulatory genes (luxI and luxR) and five
luciferase structural genes (luxCDABE). The triangles are autoinducers. LuxI (protein) produces
autoinducers. The concentration of autoinducers increases, when the cell population density
rises. When the concentration of autoinducers reaches a certain level LuxR (protein) binds with
autoinducers. LuxR-autoinducers complex binds with promoter region of luxICDABE and active
the transcription process of the operon luxICDABE and produce light

the promoter region before the genes encoding virulence factors (i.e. alkaline
phosphatase, exotoxinA, protease and elastase are encoded by aprA, toxA, lasA and
lasB, respectively) [1,23,27,28]. The infection mechanism of the host begins and is
controlled by these secreted virulence factors. A positive feedback loop is observed,
when the complex (LasR-autoinducer) triggers lasI expression [29].

In other signalling cascade, rhlR expression is activated by the complex (LasR-
autoinducer). RhlI produces N-(butryl)-homoserine lactone (autoinducer) and RhlR
binds with the autoinducer [30]. Two genes expressions (lasB and aprA) are
also controlled by the complex (RhlR-autoinducer). Moreover, RhlR-autoinducer
complex triggers specific genes such as rpoS, rhlAB and lecA [1, 8, 9, 24, 30–37].
We can observe an autoregulatory loop in the system (activation of rhlI). Both the
signalling mechanisms (RhlI/RhlR and LasI/LasR) work sequentially (Fig. 2.4).

Beside this above mention signalling cascades, P. aeruginosa uses 2-heptyl-3-
hydroxy-4-quinolone (also known as Pseudomonas quinolone signal (PQS). PQS is
considered as an additional link between Rhl and Las circuits and partially controls
lasB gene expression [38].

2.2.3 Quorum SensingMechanism of Agrobacterium tumefaciens

The crown gall tumours are induced by the plant pathogenic bacteria Agrobacterium
tumefaciens. Bacterium transfers oncogenic Ti plasmid to the host for the formation
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Fig. 2.4 Quorum sensing circuit of Pseudomonas aeruginosa: The oval shape shows the bacterial
cell. The triangle and the circle represent two different autoinducers such as N-(3-oxododecanoyl)-
homoserine lactone and N-(butryl)-homoserine lactone, respectively. There are two signalling
cascades (LasI/LasR and RhlI/RhlR). LasI produces N-(3-oxododecanoyl)-homoserine lactone
(autoinducer) that binds to LasR. The complex (LasR-autoinducer) activates different targeted
genes (including virulence genes), induces transcription of rhlR as well as initiates the second
signalling cascade. RhlI also produces N-(butryl)-homoserine lactone (autoinducer) and RhlR
binds with autoinducer. The RhlR-autoinducer complex triggers set of targeted genes

of tumour [39, 40]. Opines secretion in the plant and biosynthesis is controlled by
the genes on the Ti plasmid. The conjugation between cells needs autoinducer signal
and opine signal. Opines control the communication mechanism and are considered
as nutrient source for bacteria. Opine regulates the TraR expression. Two different
class of opine such as nopaline type and octapine type regulate conjugal Ti plasmids.
A. tumefaciens quorum sensing circuit is very much similar with V. fischeri at
low cell population density. Bacterium uses N-(3-oxoctanoyl)-homoserine lactone
(autoinducer) for their communication [41,42]. We can observe TraI/TraR signalling
cascade in this communication process. TraI produces autoinducers and TraR binds
with autoinducers and forms a (TraR-autoinducer) complex, which induces the
traI expression. In this way, a positive autoinduction loop is created. The complex
(TraR-autoinducer) regulates tra operon, trb operon and traM gene [2, 43–45]. trb
operon encodes necessary genes and tra operon triggers Ti plasmid mobilization.
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Moreover, the complex (TraR-autoinducer) induces TraM and down regulates the
communication process. TraM is an additional level of regulation in this quorum
sensing circuit.

2.2.4 Quorum SensingMechanism of Erwinia carotovora

We can find soft rot in potato because of plant pathogenic bacteria Erwinia caro-
tovora [46]. The quorum sensing process of E. carotovora consists of two signalling
cascade ExpI/ExpR and CarI/CarR. ExpI/ExpR homologues to LuxI/LuxR that
regulates the cascade to mount a victorious infection [2]. Exoenzymes secretion
is controlled by ExpI/ExpR at high cell density. The second signalling cascade
is CarI/CarR, which has a similarity with LuxI/R. ExpI and CarI both produce
the same autoinducer known as N-(3-oxohexanoyl)-homoserine lactone [47]. ExpR
and CarR response to the same biochemical signal. CarI/CarR system generates
antibiotics as well [48, 49].

2.3 Quorum Sensing in Gram-Positive Bacteria

Gram-positive bacteria regulate the cell-to-cell communication process using
oligopeptides (autoinducers). We observe a precursor protein in this system,
which is translated from peptide signal precursor locus and divided into peptides
(autoinducers). Peptides are transported via ABC transporter, because it is not
diffusible across cell membrane. The autoinducers concentration increases and
reaches the threshold concentration. Gram-positive bacteria have two-component
histidine sensor kinases for detection of autoinducer. Then, we notice a series
of phosphoryl events, which is initiated by peptide ligand. This phosphorylation
triggers response regulator (DNA binding transcription process). Finally, targeted
genes transcription is activated by the phosphorylated response regulator [2,3,7,50–
52]. Here, we are mainly discussing three gram-positive quorum sensing system
(Figs. 2.5 and 2.6).

2.3.1 Quorum Sensing Process of Streptococcus pneumoniae

We observe genetic transformation in a gram-positive quorum sensing bacterium
called Streptococcus pneumoniae [53]. This biochemical process needs that the
bacterium becomes competent in order to get exogenous DNA molecules. This
competent state is very complex phenomenon and partially controlled by cell-to-cell
communication mechanism [54]. Competent state arises at the time of exponential
growth. The S. pneumoniae loses the ability in later stage and departs from the
competent state [53, 55, 56]. The competent state is developed by the signalling
peptide known as competence stimulating peptide (CSP). ComC (41-amino acid
precursor peptide) produces CPS (17-amino acid peptide) [57, 58]. This system
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Fig. 2.5 In general, schematic diagram of a quorum sensing system of a gram-positive bacteria.
This quorum sensing mechanism is mediated by peptides. The oval shape represents bacterial
cell. Black diamonds are signalling peptides (autoinducers). Precursor protein (black and white
diamonds) is translated from a peptide signal precursor and generates autoinducers. These autoin-
ducers transport through ABC transporter. Peptides (autoinducers) detected by sensor kinase, at
high cell density and phosphoryl group is transferred to response regulator by autophosphorylation.
The targeted genes are activated by phosphorylated response regulator

has ABC transporter, ComAB. ComAB secretes processed CSP [59, 60]. ComD
is the sensor kinase protein, which can detect CSP at high cell density [61].
Autophosphorylation of ComD is induced by high level of CSP and phosphoryl
group is transferred to ComE (response regulator). Finally, comX gene transcription
is triggered by phospho-ComE [62].

2.3.2 Quorum Sensing Process of Bacillus subtilis

The peptide quorum sensing system is also observed in another gram-positive
bacteria known as Bacillus subtilis. We notice competent state and sporulation
mechanism, which are controlled by the two peptide mediated communication
process. B. subtilis reaches the competent state at the transition between logarithmic
and stationary phase growth [51,63]. When the bacteria live in limited nutrients con-
dition and the environmental condition have also deteriorated, then the sporulation
process occurs in B. subtilis [64]. Quorum sensing mechanism is mediated by two
peptides, ComX and CSF (competence and sporulation factor). These peptides are
ejected and the concentration of peptides (autoinducers) increases as the cell density
rises. 55-amino acid precursor peptide generates ComX and ComQ is needed for
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Fig. 2.6 Chemical
structures: Oligopeptide
autoinducers
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production of ComX. ComP is a sensor kinase required for the detection of ComX.
ComA is a response regulator of this signalling mechanism. The comS gene is
activated by the phospho-ComA [65–68]. The degradation of ComK is inhibited
by phospho-ComA. ComK is transcriptional activator associated with competence
pathway.

B. subtilis also uses CFS (pentapeptide) to regulate the communication process.
CSF is generated from the precursor peptide PhrC [66]. CSF is secreted via
Opp (ABC type oligopeptide transporter). RapC (ComA-specific phosphatase) is
inhibited by CSF (at low intracellular CSF concentration). comS gene expression
is induced by CFS (at high intracellular CFS concentration) [66, 67, 69, 70]. So,
competence is promoted at low intracellular CSF concentration, whereas sporulation
is induced at high intracellular CSF concentration. RapB is inhibited by CSF, which
dephosphorylates Spo0A (response regulator) and smooth the sporulation pathway
[63, 70–72].

2.3.3 Quorum SensingMechanism of Staphylococcus aureus

Staphylococcus aureus is a gram-positive pathogenic bacteria. This is a multital-
ented bacterium, which causes several diseases such as endocarditis, toxic shock
syndrome and skin infection. The S. aureus quorum sensing system is regulated
by autoinducing peptide (AIP) [73]. We can also notice variation in AIPs. The
density dependent pathogenicity is regulated by RNAIII (RNA molecule). RNAIII
is partially controlled by agrBDCA operon. agrBDCA is transcribed from hld gene.
hld encodes the RNAIII transcript. Octapeptide is produced from AgrD (precursor
peptide). This production process depends on AgrB-dependent mechanism [74–80].
We observe a thio-lactone ring in AIP and a two competent system AgrC/ArgA
(sensor kinase/ response regulator) which is this communication system [80–82].
The concentration of RNAIII is increased by phospho-AgrA. RNAIII triggers the
gene expression as well as virulence factors.

2.4 Cross-Species Cell-to-Cell Communication

Bacteria can talk with other bacterial species, which is formally known as inter-
species or cross-species communication process. This notion arose with the finding
of autoinducers-2 (AI-2) in Vibrio harveyi. luxS gene is needed for AI-2 production
and LuxS synthesis the AI-2. Bacteria use AI-2 based quorum sensing mechanism
for interspecies cell-to-cell communication [7, 83, 84]. For example, V. harveyi
lives in a mixed population (with other bacterium) and communicates with each
other using two different type of autoinducers (AI-1 and AI-2). Bacteria use AI-1
for intraspecies communication and AI-2 for interspecies communication [83, 84].
There are several number of gram-negative and gram-positive bacteria that contain
luxS gene (required for interspecies communication), such as B. subtilis, S. aureus,
E. coli, V. cholerae, Y. pestis, S. paratyphi, H. influenzae, K. pneumoniae, M.
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tuberculosis and many more [7, 84]. LuxS generates DPD (4,5-dihydroxy-2,3-
pentonedione). DPD is highly reactive and derives signalling molecules AI-2 [3].

So, we conclude that bacteria can talk to each other (intraspecies and inter-
species) using different types of chemical signalling molecules for their own
survival strategies. Gram-negative bacteria use acyl-homoserine lactones (autoin-
ducers) and gram-positive bacteria use peptide for regulating the quorum sensing
systems. We will see how bacteria can regulate other biochemical phenomena
such as biofilm formation, virulence, swarming and many more (with mathematical
modelling approach) in the next couple of chapters.
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