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Abstract

Nowadays, carotenoid biosynthetic pathways
are sufficiently elucidated at gene levels in
bacteria, fungi, and higher plants. Also, in
pathway engineering for isoprenoid (terpene)
production, carotenoids have been one of the
most studied targets. However, in 1988 when
the author started carotenoid research, almost
no carotenoid biosynthesis genes were
identified. It was because carotenogenic
enzymes are easily inactivated when extracted
from their organism sources, indicating that
their purification and the subsequent cloning
of the corresponding genes were infeasible or
difficult. On the other hand, natural product
chemistry of carotenoids had advanced a
great deal. Thus, those days, carotenoid bio-
synthetic pathways had been proposed based
mainly on the chemical structures of
carotenoids without findings on relevant
enzymes and genes. This chapter shows what
happened on carotenoid research, when carot-
enoid biosynthesis genes met
non-carotenogenic Escherichia coli around
1990, followed by subsequent developments.
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15.1 Introduction

Carotenoids are biosynthesized in all photosyn-
thetic prokaryotes that contain photosynthetic
bacteria and cyanobacteria, in all photosynthetic
eukaryotes including algae and land plants, and
further in some non-photosynthetic bacteria and
fungi. Nowadays, carotenoid biosynthetic
pathways are sufficiently elucidated at gene levels
in bacteria, fungi, and higher plants. Also, in
pathway engineering for isoprenoid (terpene) pro-
duction, carotenoids have been one of the most
studied targets (Misawa 2011). However, almost
no knowledge about enzymes and genes involved
in carotenoid biosynthesis had been available up
to 32 years ago. The present chapter shows what
happened on carotenoid research, when caroten-
oid biosynthesis genes met Escherichia coli those
days, followed by subsequent developments.
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15.2 The Early Days When
Carotenoid Biosynthesis Genes
Met Escherichia coli

In 1988 when I started carotenoid research as an
employee of Kirin Brewery Co. Ltd., no caroten-
oid biosynthesis genes were identified. It was
because carotenogenic enzymes are easily
inactivated when extracted from their organism
sources, indicating that their purification and the
subsequent cloning of the corresponding genes
were infeasible or difficult. On the other hand,
natural product chemistry of carotenoids had
advanced a great deal (Goodwin and Britton
1988). Thus, those days, carotenoid biosynthetic
pathways had been proposed based on the chemi-
cal structures of carotenoids or metabolic analysis
without findings on relevant enzymes and genes
(Britton 1988). Carotenoids were also the first
group of compounds among isoprenoids, which
were synthesized from foreign genes in
non-carotenogenic E. coli as a heterologous host
(Sandmann et al. 1999). The first report was the
cloning of a 12.4-kb carotenogenic gene cluster in
E. coli, resulting in yellow pigmentation (Perry
et al. 1986; Tuveson et al. 1988). This gene clus-
ter was derived from Erwinia herbicola
(reclassified as Pantoea agglomerans) that
belongs to the same γ-Proteobacteria class as
E. coli. This result represented that genes for the
yellow pigment were functionally expressed in
E. coli. Up to then, molecular biologists of
carotenoids had noted carotenogenic genes from
photosynthetic bacteria such as Rhodobacter
capsulatus and Rhodobacter sphaeroides, which
belong to the α-Proteobacteria class. DNA
sequence of a 11-kb R. capsulatus carotenoid
biosynthesis gene cluster was determined in
1989, which was the first reports on nucleotide
sequence of carotenogenic genes (Armstrong
et al. 1989; Bartley and Scolnik 1989), while its
gene functions had remained unclear.

We were able to isolate a yellow pigment-
generating gene cluster from Erwinia uredovora
(reclassified as Pantoea ananatis) as a 6.9-kb
fragment using E. coli (Misawa et al. 1990).
This gene cluster was sequenced and found to

contain six open reading frames (ORFs) (Misawa
et al. 1990). Its three ORFs were found to exhibit
significant homology to the crtE, crtI, and crtB
genes in the carotenogenic gene cluster of
R. capsulatus. Thus, the same designation was
applied to the corresponding three ORFs, and
the other P. ananatis three ORFs (novel genes)
were newly designated crtX, crtY, and crtZ.
E. coli cells carrying the six genes of
P. ananatis were found to produce zeaxanthin
3,30-β-D-diglucoside as a main carotenoid by
chromatographic and spectroscopic analysis
(Nakagawa and Misawa 1991). Next, each ORF
was disrupted using a unique restriction endonu-
clease site, and E. coli cells carrying the
remaining five ORFs or E. coli cells that carried
various combinations among the six ORFs were
analyzed by chromatographic and spectroscopic
methods. Consequently, the crtI, crtY, crtZ, and
crtX genes were found to be responsible for the
conversion of phytoene (15,150-cis) to lycopene
(all-trans), lycopene to β-carotene, β-carotene to
zeaxanthin, and zeaxanthin to zeaxanthin
3,30-β-D-diglucoside, respectively (Fig. 15.1)
(Misawa et al. 1990). The crtE and crtB genes
were shown to encode geranylgeranyl diphos-
phate (GGPP) synthase [its substrates: farnesyl
diphosphate (FPP) and isopentenyl diphosphate
(IPP)] and phytoene synthase, respectively, by
metabolic analysis using crude enzyme extracts
(Fig. 15.1) (Math et al. 1992; Sandmann and
Misawa 1992).

Characters of the gene products (enzymes),
CrtE, CrtI, CrtY, and CrtX, were further exam-
ined using the respective proteins synthesized in
recombinant E. coli cells (Fraser et al. 1992;
Hundle et al. 1992; Schnurr et al. 1996;
Wiedemann et al. 1993). The above-mentioned
results also demonstrated the suggestion, made
some years earlier, that carotenogenic enzymes
typically recognize a particular half-molecule,
end group, or structural feature rather than a spe-
cific whole molecule (Britton et al. 2017), e.g.,
CrtY catalyzes reactions for converting lycopene
and γ-carotene into γ-carotene and β-carotene,
respectively, and CrtZ for converting β-carotene
and β-cryptoxanthin into β-cryptoxanthin and
zeaxanthin, respectively, as shown in Fig. 15.1.
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15.3 Subsequent Rapid Advance

The above-described results significantly
indicated that we obtained a new and powerful
tool to analyze the functions of carotenoid bio-
synthesis genes, since we became able to synthe-
size in E. coli basic carotenoids that contain
phytoene, lycopene, β-carotene, and zeaxanthin
and GGPP, as substrates. Since 1992, numerous
carotenoid biosynthesis genes have been isolated
from bacteria including cyanobacteria and other
Proteobacteria, fungi including yeasts, algae, and
land plants that contained higher plants and
bryophytes, and the great majority has been

functionally analyzed using the recombinant
E. coli strains, which has resulted in their func-
tional assignments (Fraser and Bramley 2004;
Misawa 2010; Nishida et al. 2005). For example,
as for carotenogenic genes from cyanobacteria
and higher plants, phytoene synthase genes [pys
and PSY (pTOM5)] that exhibit homology to the
crtB gene were first isolated from Synechococcus
PCC7942 and tomato, respectively (Chamovitz
et al. 1992; Ray et al. 1987), and functionally
confirmed using GGPP-accumulating E. coli
cells due to the presence of the P. ananatis crtE
gene (Chamovitz et al. 1992; Misawa et al. 1994).
Phytoene desaturase (PDS) and ζ-carotene
desaturase (ZDS) genes from higher plants were
cloned and functionally analyzed in E. coli
(Bartley et al. 1999; Linden et al. 1994; Pecker
et al. 1992).

Figure 15.2 shows carotenoid biosynthetic
pathway common to land plants, which has been
elucidated at gene levels (Giuliano 2014; Moise
et al. 2014; Takemura et al. 2014; Zhu et al.
2003). LCYb (lycopene β-cyclase) and BHY (-
β-carotene 3,30-hydroxylase; also called CHYb
and BCH) of land plants show homology as
well as the same functions to CrtY and CrtZ,
respectively. On the other hand, the route from
phytoene to lycopene requires four enzymes,
PDS, Z-ISO (ζ-carotene isomerase), ZDS, and
CRTISO (carotene isomerase) in higher plants,
which is comparable to one enzyme reaction
with CrtI. Cyanobacteria also retain the four
enzyme-mediated desaturation reactions same to
higher plants, with the exception that CrtI is used
in Gloeobacter violaceus which partially retains
ancestral properties of cyanobacteria (Tsuchiya
et al. 2005).

Cytochromes P450 typically require redox
partner proteins such as NADPH-P450 reductase
to exert their catalytic activity (Chang et al. 2007;
Hannemann et al. 2007; Nodate et al. 2006). It is
thus worth noting that the CYP97A and CYP97C
genes were functionally expressed without a het-
erologous redox partner gene in E. coli that natu-
rally does not possess any P450 and catalyzed the
synthesis of zeinoxanthin and lutein there, respec-
tively (Fig. 15.2) (Kim and Della Penna 2006;
Quinlan et al. 2007). It was also confirmed using

Fig. 15.1 Carotenoid biosynthetic pathway of the
Pantoea genus containing Pantoea ananatis and Pantoea
agglomerans and functions of the gene products (the
enzymes encoded by the genes)
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α-carotene-accumulating E. coli that in liverwort
Marchantia polymorpha, nonheme β-carotene
3,30-hydroxylase (MpBHY) can bifunctionally
convert α-carotene into zeinoxanthin instead of
CYP97A (Fig. 15.2) (Takemura et al. 2015).

Nowadays, all of the carotenoids shown in
Fig. 15.2, except for neoxanthin (and its 90-cis
form), can be synthesized in E. coli (Takemura
et al. 2019). IPP isomerase (Idi) is known as one
of rate-limiting step enzymes for the biosynthesis
of isoprenoids including carotenoids in E. coli
(Harada and Misawa 2009). We first showed
that further expression of an exogenous IDI
gene in recombinant E. coli cells, that synthesized
carotenoids, resulted in two to threefold increase
of carotenoid content (Kajiwara et al. 1997).

15.4 The Early Days When
Astaxanthin Biosynthesis
Genes Met Escherichia coli

Recently, astaxanthin, one of commercialized
carotenoids, attracts a lot of attention because of
its diverse clinical benefits against age-related
functional decline and muscle or eye fatigue
(Guerin et al. 2003; Kidd 2011; Yamashita
2006). However, astaxanthin had only been
noted as the red pigment used for aquaculture,
until its strong antioxidant activity was suggested
(Miki 1991). Marine Biotechnology Institute
(MBI) isolated some marine bacteria that pro-
duced astaxanthin (Yokoyama et al. 1995,
1996). Independently in almost the same time,
Hebrew University and JX Nippon Oil & Energy

Fig. 15.2 Carotenoid biosynthetic pathway of land plants
containing higher plants and liverworts and functions of
the gene products
Gene product names from bacteria are enclosed in
parentheses and shown as reference. Idi (type 2) and

IspA were described by Kaneda et al. (2001) and Fujisaki
et al. (1990), respectively.
DMAPP dimethylallyl diphosphate, GPP geranyl diphos-
phate, GGPS GGPP synthase
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Corporation (now, ENEOS Corporation) isolated
a soil bacterium (named Paracoccus marcussi)
and a river bacterium (named Paracoccus
carotinifaciens), respectively, as astaxanthin
producers (Harker et al. 1998; Tsubokura et al.
1999). These bacteria belonged to the
α-Proteobacteria class.

According to color change in E. coli, we first
isolated an astaxanthin biosynthesis gene cluster
(Misawa et al. 1995a, b) from a marine bacterium
Agrobacterium aurantiacum (Yokoyama et al.
1995), which was later renamed to Paracoccus
sp. strain N81106. The functions of the individual
genes were identified by the same methods as
those of the Pantoea genes (Misawa et al.
1995b). A novel gene, named crtW, was found
to encode β-carotene (β,β-carotenoid) 4,4-
0-ketolase (Misawa et al. 1995a). Figure 15.3
shows the biosynthetic pathway of astaxanthin
from β-carotene.

A gene named bkt [renamed BKT2 by Huang
et al. (2006)] that shares homology to crtW was
isolated from green algaHaematococcus pluvialis
(Kajiwara et al. 1995). Separately from us, Lotan
and Hirschberg (1995) isolated a similar gene
from this alga and named crtO [renamed BKT1
by Huang et al. (2006)]. In H. pluvialis,
β-carotene is converted to astaxanthin with the
same biosynthetic routes to Fig. 15.3 by BKT1

or BKT2 (CrtW homolog) and by β-carotene (β,β-
carotenoid) 3,30-hydroxylase (BHY; CrtZ homo-
log). We also carried out enzyme character-
izations of ketolases, CrtW and BKT2, along
with CrtZ (Fraser et al. 1997, 1998).

Postscript and Acknowledgment This chapter was writ-
ten intending to reveal or recall what happened on carot-
enoid research, when carotenoid biosynthesis genes met
Escherichia coli in the beginning, as a witness of such
exciting events of those days.
The author is very grateful to dead Profs. Keiji Harashima
and Kanji Ohyama, who were my teachers those days for
carotenoid research and research in general, respectively.
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