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Abstract

Eukaryotic microalgae and prokaryotic
cyanobacteria are diverse photosynthetic
organisms that produce various useful
compounds. Due to their rapid growth and
efficient biomass production from carbon
dioxide and solar energy, microalgae and
cyanobacteria are expected to become cost-
effective, sustainable bioresources in the
future. These organisms also abundantly pro-
duce various carotenoids, but further improve-
ment in carotenoid productivity is needed for a
successful commercialization. Metabolic engi-
neering via genetic manipulation and muta-
tional breeding is a powerful tool for
generating carotenoid-rich strains. This chap-
ter focuses on carotenoid production in
microalgae and cyanobacteria, as well as
strategies and potential target genes for meta-
bolic engineering. Recent achievements in
metabolic engineering that improved caroten-
oid production in microalgae and
cyanobacteria are also reviewed.
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10.1 Introduction

Eukaryotic microalgae and prokaryotic
cyanobacteria are diverse groups of microscopic
photosynthetic organisms that include the green
algae Chlorella (Liu et al. 2014a), Dunaliella
(Oren 2014), Haematococcus (Shah et al. 2016),
the diatom Phaeodactylum (Gügi et al. 2015), and
the cyanobacteria Synechocystis (Yu et al. 2013)
and Synechococcus (Ruffing et al. 2016). In par-
ticular, the green alga Chlamydomonas
reinhardtii has been extensively studied as a
model in genetic researches (Scranton et al.
2015). Microalgae and cyanobacteria produce
biomass photosynthetically and grow rapidly
compared with terrestrial plants and are therefore
promising targets for producing valuable
products, such as biodiesel (Taparia et al. 2016;
Ho et al. 2017). These organisms can also synthe-
size high-value natural chemicals that can be used
in cosmetics, dietary supplements, and
pharmaceuticals (Wang et al. 2015; Chew et al.
2017; Yan et al. 2016). Microalgae and
cyanobacteria produce biomass by fixing carbon
dioxide using solar energy, which contributes to
cost-effective and sustainable production of valu-
able compounds. In addition, their cultivation in
the hydrosphere does not compete with food pro-
duction on croplands. Some microalgae and
cyanobacteria can be grown using seawater, sav-
ing limited freshwater resources.

Carotenoids are warm-colored tetraterpenoid
pigments primarily synthesized by photosynthetic
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organisms including terrestrial plants,
microalgae, and cyanobacteria (Huang et al.
2017). Carotenoids are commonly localized in
chloroplasts and chromoplasts, and they function
as light-harvesting antennas in photosynthesis as
well as scavengers of reactive oxygen species
(ROS) to protect cellular components from pho-
tooxidative damage (Xiao et al. 2011; Jahns and
Holzwarth 2012). Due to their antioxidative
properties, carotenoids have begun to attract pub-
lic attention with respect to both their use as
natural coloring agents for foods and their use as
dietary supplements (Fiedor and Burda 2014).
Microalgae and cyanobacteria produce abundant
amounts of a wide variety of valuable
carotenoids, such as β-carotene, lutein, zeaxan-
thin, astaxanthin, and fucoxanthin (Varela et al.
2015; Huang et al. 2017).

In order to meet the increasing worldwide
demand for carotenoids, stable and cost-effective
carotenoid production technologies using
microalgae and cyanobacteria are needed (Lin
et al. 2015; Anila et al. 2016). Improved caroten-
oid productivity is desired for commercialization,
which could be realized by breeding valuable
strains via metabolic engineering approaches
(Gimpel et al. 2015). This chapter focuses on
metabolic engineering of microalgae and
cyanobacteria for carotenoid production and
summarizes recent achievements.

10.2 Technologies for Metabolic
Engineering of Microalgae
and Cyanobacteria

Genetic engineering enables the overexpression
of targeted genes and is therefore a powerful tool
for use in metabolic engineering. Carotenoid-rich
transgenic organisms have been generated by
introducing transgenes related to carotenoid syn-
thesis pathways via plasmid vectors into bacteria
(Li et al. 2015; Henke et al. 2016), yeast (Gassel
et al. 2014), and plants (Hasunuma et al. 2008a;
Zhu et al. 2009). The success of these efforts
suggests that genetic engineering is an effective
approach for improving carotenoid production.
Technologies for genetic engineering of

microalgae and cyanobacteria have been devel-
oped in model organisms, such as
Chlamydomonas (Baek et al. 2016a, b; Yamaoka
et al. 2016; Wannathong et al. 2016), Chlorella
(Fan et al. 2015; Yang et al. 2016), Dunaliella
(Feng et al. 2014; Zhang et al. 2015),
Haematococcus (Steinbrenner and Sandmann
2006), Nannochloropsis (Kilian et al. 2011;
Kang et al. 2015), Phaeodactylum (Xie et al.
2014; Kadono et al. 2015a), Synechocystis
(Yu et al. 2013), and Synechococcus (Ruffing
et al. 2016), as well as in some non-model
organisms, such as Monoraphidium (Jaeger
et al. 2017) and Scenedesmus (Chen et al. 2016).
In eukaryotic microalgae, transformation of either
nuclear or chloroplast would be available for
enhancing carotenoid production, because intrin-
sic carotenoid synthesis occurs primarily in the
chloroplasts (Gimpel et al. 2015). In some
eukaryotic microalgae, exogenous DNA
fragments introduced into cells are randomly
integrated into the nuclear genome via
non-homologous end joining (NHEJ) pathways
(Doron et al. 2016). This makes targeted gene
knock-in/out of the nuclear genome via homolo-
gous recombination (HR) quite difficult in these
eukaryotic microalgal species, including the
model microalga C. reinhardtii.

Genome editing is a recently developed
genetic engineering tool that involves sequence-
specific nucleases. The CRISPR-Cas9 system is
now a widely employed technology for genome
editing due to its ease of use (Hsu et al. 2014;
Mali et al. 2013; Yang 2015). Targeted gene
knock-in and knock-out are archived after
generated DNA double-strand breaks are repaired
by HR and NHEJ pathways, respectively.
Targeting knock-out strains generated by genome
editing would be valuable because exogenous
sequences do not remain in the genome DNA;
therefore, these mutants are not regarded as genet-
ically modified organisms (GMOs)
(Kanchiswamy et al. 2015). However, genome
editing is still uncommon in eukaryotic
microalgae, probably because of the random inte-
gration characteristic described above. Genome
editing using CRISPR-Cas9 is now possible in
Chlamydomonas (Shin et al. 2016; Kao and Ng
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2017), Nannochloropsis (Wang et al. 2016a;
Ajjawi et al. 2017), and Phaeodactylum (Nymark
et al. 2016). Knowledge gained through genome
editing of model microalgae is expected to lead to
improved carotenoid production.

Mutational breeding, which combines random
mutagenesis using various mutagens, such as UV,
radiation, and chemical agents with screening to
identify potentially valuable strains, has been
widely utilized as a classical and traditional
approach (Bose 2016; Tanaka et al. 2010; Kato
et al. 2017; Emmerstorfer-Augustin et al. 2016).
Recently, easy and accelerated high-throughput
screening techniques have become available due
to technological developments. Atmospheric and
room temperature plasma (ARTP) has attracted
attention as a convenient, safe, and effective tool
for random mutagenesis as an alternative to radio-
active materials and heavy ion radiation (Fang
et al. 2013; Zhang et al. 2014; Cao et al. 2017).
Fluorescence-activated cell sorting (FACS) using
fluorescent biomarkers accelerates screening pro-
cesses (Velmurugan et al. 2013; Rumin et al.
2015). In microalgae, oil-rich strains of
Chlamydomonas (Terashima et al. 2015),
Parachlorella (Ota et al. 2013), Desmodesmus
(Hu et al. 2013; Zhang et al. 2016), and Euglena
(Yamada et al. 2016) have been generated using
mutational breeding. This approach is particularly
useful in cases in which genomic characteristics
of the organism are not fully understood or when
other metabolic engineering tools are not avail-
able. Knowledge obtained via mutational breed-
ing can be feedbacked into other targeted
metabolic engineering approaches. In addition,
as strains generated by random mutagenesis are
non-GMO, they can be used for outdoor cultiva-
tion and food purposes.

10.3 Carotenoid Synthesis Pathways
in Microalgae
and Cyanobacteria

Basic knowledge regarding carotenoid synthesis
pathways is indispensable for determining targets
for metabolic engineering. Carotenoids in
microalgae are believed to be synthesized via

universal pathways in common with plants
(Lohr et al. 2005; Cheng 2006; Liang et al.
2006; Wang et al. 2014). The hypothetical and
generally accepted pathways in microalgae and
cyanobacteria are summarized in Fig. 10.1. The
intermediate metabolites for carotenoid synthesis
are initially generated in the 2-C-methyl-D-
erythritol 4-phosphate (MEP) pathway. In the
MEP pathway, pyruvate and glyceraldehyde-3-
phosphate (GA3P) are converted to isopentenyl
diphosphate (IPP) and its isomer dimethylallyl
diphosphate (DMAPP) via 1-deoxy-D-xylulose-
5-phosphate (DXP), MEP, 4-diphosphocytidyl-2-
C-methyl-D-erythritol (CDP-ME), 4-diphos
phocytidyl-2-C-methyl-D-erythritol-2-phosphate
(CDP-MEP), 2-C-methyl-D-erythritol-2,4-
cyclodiphosphate (MEcPP), and (E)-4-hydroxy-
3-methyl-but-2-enyl pyrophosphate (HMB-PP)
by the sequentially acting enzymes DXP synthase
(DXS), DXP reductoisomerase (DXR), MEP
cytidylyltransferase (CMS), CDP-ME kinase
(CMK), MEcPP synthase (MCS), HMB-PP
synthase (HMS), and IPP/DMAPP synthase
(IDS). Microalgae and cyanobacteria do not pos-
sess the mevalonate pathway, which is also used
to synthesize DMAPP and IPP in plants (Lohr
et al. 2012; Bentley et al. 2014).

Lycopene are then synthesized from IPP and
DMAPP in the carotenoid synthesis pathway via
geranylgeranyl diphosphate (GGPP), phytoene,
and ζ-carotene by the sequentially acting
enzymes GGPP synthase (GGPS), phytoene
synthase (PSY/CrtB), phytoene desaturase
(PDS/CrtP), ζ-carotene desaturase (ZDS/CrtQ),
and carotenoid isomerase (CRTISO/CrtH), or
the bypassed pathway by cyanobacterial
phytoene desaturase (CrtI). PSY/CrtB functions
at the beginning of this pathway and converts
GGPP into phytoene. In plants, PSY is a rate-
limiting enzyme in carotenoid synthesis (Ruiz-
Sola and Rodríguez-Concepción 2012).
PDS/CrtP is downstream of PSY/CrtB, which
catalyzes the conversion of phytoene into
ζ-carotene. Considerable carotenoid synthesis
pathway research in eukaryotic microalgae has
focused on PDS due to the availability of specific
inhibitors (Simkin et al. 2000).
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The synthetic pathway upstream of lycopene is
common in many microalgae and cyanobacteria,
but pathways and synthesized carotenoids down-
stream of lycopene diverge across species
(Takaichi 2011). Lutein, mainly found in eukary-
otic Chlorophyta, is synthesized from lycopene
via α-carotene by lycopene ε-cyclase (LCYE),
lycopene β-cyclase (LCYB/CrtL), and two cyto-
chrome P450 enzymes (CYP97C and CYP97A).
Zeaxanthin, mainly found in the Rhodophyta and

Cyanophyta, is synthesized by LCYB/CrtL and
carotene β-hydroxylase (CHYB/CrtZ/CrtR) using
lycopene and β-carotene as the substrates.
Heterokontophyta and Haptophyta cells contain
abundant amounts of fucoxanthin, which is
synthesized from zeaxanthin via violaxanthin
and neoxanthin by zeaxanthin epoxidase (ZEP)
and neoxanthin synthase (NSY). The xanthophyll
cycle, which consists of reversible reactions
catalyzed by ZEP and violaxanthin deepoxidase
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Fig. 10.1 Proposed
pathway for carotenoid
synthesis in eukaryotic
microalgae and
cyanobacteria
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(VDE), is an important photoprotection mecha-
nism in plants and microalgae (Goss and Jakob
2010). Astaxanthin, found in a limited number of
eukaryotic microalgae (such as Haematococcus
pluvialis) and cyanobacteria, is synthesized from
β-carotene via zeaxanthin and canthaxanthin by
carotene β-ketolase (BKT/CrtW/CrtO) and
CHYB/CrtZ/CrtR (Shah et al. 2016). Although
most eukaryotic microalgae do not possess the
bkt gene, genetic engineering enables the synthe-
sis of astaxanthin from β-carotene, as described
below (Vila et al. 2012).

Myxoxanthophyll, a cyanobacteria-specific
carotenoid, is synthesized from lycopene via
γ-carotene (Graham and Bryant 2009). To
increase the carotenoid content in microalgae
and cyanobacteria, previous metabolic engineer-
ing studies generally employed one of three main
approaches: (1) overexpression of genes
encoding rate-limiting enzymes,
(2) downregulation of competitive reactions, and
(3) heterogeneous expression of important/absent
genes.

10.4 Recent Achievements Through
Metabolic Engineering

10.4.1 Enzymes in the MEP Pathway

Challenges associated with metabolic engineer-
ing of microalgae and cyanobacteria and their
consequences are summarized in this section.
The MEP pathway is upstream of the carotenoid
synthesis pathway that synthesizes IPP and
DMAPP from pyruvate and GA3P. DXS is the
gateway enzyme in the MEP pathway and
catalyzes the conversion of pyruvate and GA3P
into DXP. In plants, this step is rate limiting in
carotenoid synthesis (Estévez et al. 2001;
Rodríguez-Concepción 2006); therefore, the dxs
gene is a potential target for metabolic engineer-
ing to improve carotenoid production (Hasunuma
et al. 2008b). Unfortunately, limited data are
available regarding metabolic engineering of the
MEP pathway in microalgae and cyanobacteria.
Some studies reported that metabolic engineering
of microalgae and cyanobacteria targeting the dxs

gene led to increased carotenoid content
(Table 10.1). Overexpression of the dxs gene in
Synechocystis sp. PCC6803 resulted in a 1.5-fold
increase in the total carotenoid content (Kudoh
et al. 2014). In Phaeodactylum tricornutum, the
fucoxanthin content was increased 2.4-fold com-
pared with the wild type following the introduc-
tion of the dxs gene (Eilers et al. 2016). GGPS,
which catalyzes the conversion of DMAPP and
IPP into GGPP, was also examined as a target of
metabolic engineering in microalgae. The ggps
gene from the thermophilic Archaea Sulfolobus
acidocaldarius was introduced into
C. reinhardtii, but no significant change was
observed in terms of carotenoid content
(Fukusaki et al. 2003).

10.4.2 Phytoene Synthase

Phytoene synthase is the gateway enzyme in the
carotenoid synthesis pathway and catalyzes the
conversion of GGPP into phytoene. Carotenoid
deficiency caused by the downregulation of the
psy gene in some microalgal species has been
reported. In C. reinhardtii, knockdown of the
psy gene using artificial miRNA decreased the
chlorophyll content, suggesting a deficiency of
protective carotenoids that suppress
photobleaching (Molnar et al. 2009). In
P. tricornutum, knockdown of the psy gene
using artificial miRNA resulted in a decrease in
total carotenoids (Kaur and Spillane 2015). These
data suggest that phytoene synthase plays an
important role in carotenoid synthesis.

Metabolic engineering involving the psy gene
is reportedly an effective way to improve carot-
enoid content in plants (Lindgren et al. 2003). In
microalgae, the psy gene was also shown to be a
key enzyme in carotenoid synthesis in studies
mainly involving C. reinhardtii and
P. tricornutum (Table 10.2). The psy gene from
Dunaliella salina was constitutively
overexpressed in C. reinhardtii using the
promoters of the rubisco small subunit (rbcS2)
and hsp70A genes. This increased the content of
violaxanthin, lutein, β-carotene, and neoxanthin
2.0-, 2.6-, 1.25-, and 1.8-fold, respectively,
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compared with the wild type (Couso et al. 2011).
In the same way, the psy gene from Chlorella
zofingiensis was overexpressed in C. reinhardtii
using the rbcS2 and hsp70A promoters. This
increased the content of lutein and violaxanthin
2.0- and 2.2-fold, respectively, compared with the
wild type (Cordero et al. 2011a). Overexpression
of the orange protein (OR), which is a DnaJ-like
chaperone for PSY, also increased the carotenoid
content. Overexpression of OR in C. reinhardtii
increased the content of lutein and β-carotene 1.9-
and 1.7-fold, respectively, compared with the
wild type (Morikawa et al. 2017). The psy gene
was also overexpressed in P. tricornutum.
Expression of the intrinsic psy gene using the
fcpA (fucoxanthin chlorophyll a/c-binding pro-
tein) promoter increased the fucoxanthin content
1.45-fold compared with the wild type. By con-
trast, the level of β-carotene, which is an interme-
diate metabolite for fucoxanthin in the carotenoid
synthesis pathway, was not affected (Kadono

et al. 2015b). Another study reported that expres-
sion of the psy gene in P. tricornutum increased
the fucoxanthin content 1.8-fold compared with
the wild type (Eilers et al. 2016). A unique study
reported increased carotenoid content in a green
alga, Scenedesmus sp., via psy gene expression.
In Scenedesmus sp., the β-carotene content
increased approximately threefold by the expres-
sion of a synthetic psy gene encoding consensus
amino acid sequences from the C. reinhardtii,
D. salina, and Mariella zofingiensis proteins
(Chen et al. 2017). In Synechocystis
sp. PCC6803, overexpression of crtB, which
encodes phytoene synthase in cyanobacteria,
increased the content of both zeaxanthin and
myxoxanthophyll 1.5-fold compared with the
wild type (Lagarde et al. 2000).

Table 10.1 Genetic engineering of the MEP pathway

Gene Microalga Strategy Effect on carotenoid production References

dxs Synechocystis sp. Genetic
engineering

1.5-fold increase in total
carotenoid content

Kudoh et al.
(2014)

dxs Phaeodactylum
tricornutum

Genetic
engineering

2.4-fold increase in fucoxanthin
content

Eilers et al.
(2016)

ggps (Sulfolobus
acidocaldarius)

Chlamydomonas
reinhardtii

Genetic
engineering

No significant change Fukusaki et al.
(2003)

Table 10.2 Genetic engineering related to phytoene synthase

Gene Microalga Strategy Effect on carotenoid production References

psy
(Dunaliella
salina)

Chlamydomonas
reinhardtii

Genetic
engineering

2.0-, 2.6-, 1.25-, and 1.8-fold increases in
violaxanthin, lutein, β-carotene, and neoxanthin
content

Couso et al.
(2011)

psy
(Chlorella
zofingiensis)

Chlamydomonas
reinhardtii

Genetic
engineering

2.0- and 2.2-fold increases in lutein and
violaxanthin content

Cordero
et al.
(2011a, b)

or Chlamydomonas
reinhardtii

Genetic
engineering

1.9- and 1.7-fold increases in lutein and β-carotene
content

Morikawa
et al. (2017)

psy Phaeodactylum
tricornutum

Genetic
engineering

1.45-fold increase in fucoxanthin content Kadono
et al.
(2015a, b)

psy Phaeodactylum
tricornutum

Genetic
engineering

1.8-fold increase in fucoxanthin content Eilers et al.
(2016)

Synthetic psy Scenedesmus sp. Genetic
engineering

3.0-fold increase in β-carotene content Chen et al.
(2017)

crtB Synechocystis sp. Genetic
engineering

1.5-fold increase in zeaxanthin and
myxoxanthophyll content

Lagarde
et al. (2000)
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10.4.3 Phytoene Desaturase

Phytoene desaturase, downstream of phytoene
synthase, catalyzes the conversion of phytoene
to ζ-carotene. Silencing of the pds gene via
RNA interference was conducted in
C. reinhardtii and D. salina, but no effect on
carotenoid content was reported (Vila et al.
2008; Sun et al. 2008). Another study reported
that the downregulation of the pds gene resulted
in the accumulation of phytoene and decline in
the levels of lycopene, β-carotene, and lutein in
D. salina (Srinivasan et al. 2017).

Many studies successfully increased caroten-
oid production using metabolic engineering
approaches targeting phytoene desaturase
(Table 10.3). Data resulting from metabolic engi-
neering of phytoene desaturase are now available
for microalgae and cyanobacteria. Many of these
studies used PDS/CrtP inhibitors, such as the
herbicide norflurazon (Chamovitz et al. 1991).
In a wide range of microalgae and cyanobacteria,
norflurazon inhibits PDS/CrtP, which has an
adverse effect on carotenoid production. For
example, norflurazon caused a decrease in the
carotenoid content in Dunaliella bardawil by
inhibiting the conversion of phytoene to
ε-carotene (Salguero et al. 2003; León et al.
2005). As they are antioxidants, carotenoids sup-
press photooxidative damage by ROS generated
under high light conditions. Thus, the inhibition
of the carotenoid synthesis pathway using
PDS/CrtP inhibitors negatively affects cell viabil-
ity under high light conditions. In other words,
resistance to PDS/CrtP inhibitors could be
obtained by increasing the levels of PDS/CrtP;
therefore, resistance to PDS/CrtP inhibitors has
been used as the indicator of high carotenoid
production in mutational breeding. A wide range
of metabolic engineering studies have succeeded
in increasing carotenoid content using PDS/CrtP
inhibitors. Carotenoid content was increased in
Chlorella sorokiniana using a mutational breed-
ing approach with norflurazon and nicotine. By
selective breeding using nicotine and norflurazon,
the lutein content in the resulting mutants
was1.49- and 1.55-fold higher, respectively,

than that of the wild type (Cordero et al. 2011b).
Mutational breeding was also conducted in
H. pluvialis using nicotine, diphenylamine,
fluridone, and norflurazon. The nicotine-resistant
mutant produced 2.08-fold more astaxanthin than
the wild type (Chen et al. 2003).

An important and widely conserved motif was
identified that controls the activity of phytoene
desaturase. Point mutations in this motif were
studied in Synechococcus sp., H. pluvialis,
C. zofingiensis, and C. reinhardtii. Changes in
phytoene desaturase activity resulting from
changes in the amino acid sequence of the motif
affected carotenoid content and resistances to
norflurazon (Liu et al. 2014b). In H. pluvialis,
expression of the pds gene modified by site-
directed mutagenesis increased the astaxanthin
content 1.33-fold compared with the wild type.
Thus, conversion of phytoene to ζ-carotene
catalyzed by PDS is thought to be the rate-
limiting step in astaxanthin synthesis
(Steinbrenner and Sandmann 2006). A
C. zofingiensis mutant with a single amino acid
substitution in PDS was generated using a chemi-
cal mutagen. Compared with the wild type, the
mutant showed 31-fold greater resistance to
norflurazon and 1.44-fold higher astaxanthin con-
tent under high light conditions (Liu et al. 2010).
A subsequent study reported that by inducing
point mutation in the pds gene in
C. zofingiensis, the transformant acquired
norflurazon resistance, and the astaxanthin and
total carotenoid content increased by 1.54- and
1.32-fold, respectively, compared with the wild
type (Liu et al. 2014b). Expression of modified
PDS protein also increased carotenoid content in
C. reinhardtii. A single amino acid substitution
mutant of PDS was designed based on the above
studies. The transformant expressing this
modified PDS showed 27.7-fold greater resis-
tance to norflurazon than the wild type and sig-
nificantly higher content of carotenoids, such as
lutein, β-carotene, and violaxanthin (Liu et al.
2013).

Norflurazon-resistant Synechococcus
sp. PCC7942 mutants have also been analyzed.
Three mutants with point mutations in the crtP
gene accumulated phytoene but exhibited
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decreased carotenoid content. Another mutant
had a deletion in the crtP promoter and
overexpressed the crtP gene. Like eukaryotic
microalgae with pds point mutations, this mutant
accumulated high level of carotenoids compared
with the wild type and was highly resistant to
norflurazon. Thus, phytoene desaturase is also
thought to be the rate-limiting enzyme in caroten-
oid production in cyanobacteria (Chamovitz et al.
1993). A positive correlation between carotenoid
content and norflurazon resistance has been
reported for many microalgae and cyanobacteria.
For increasing carotenoid content, modification
of the pds/crtP gene by selective breeding using
PDS/CrtP inhibitors is now possible for a wide
variety of microalgae and cyanobacteria.

10.4.4 b-Carotene Hydroxylase
and Zeaxanthin Epoxidase

To enhance zeaxanthin accumulation in
microalgae and cyanobacteria, metabolic engi-
neering of β-carotene hydroxylase and zeaxanthin
epoxidase is effective (Table 10.4). CrtR, the
β-carotene hydroxylase in cyanobacteria, is
important for zeaxanthin synthesis (Masamoto
et al. 1998). In Synechocystis sp. PCC6803,
overexpression of the crtR gene increased the
zeaxanthin content 2.5-fold compared with the
wild type (Lagarde et al. 2000). Zeaxanthin con-
tent can also be increased by downregulating

ZEP, which is a competitive enzyme that converts
zeaxanthin to violaxanthin. C. reinhardtii ZEP
mutants accumulate zeaxanthin constitutively
(Niyogi et al. 1997). This result was confirmed
by a more recent study using genome-editing
technology. A strain that constitutively produces
zeaxanthin was generated by the knock-out of the
zep gene in C. reinhardtii using CRISPR-Cas9
(Baek et al. 2016a, b). The ZEP protein in
C. zofingiensis was also shown to be functional
by expressing the zep gene from C. zofingiensis in
the zep mutant of C. reinhardtii (Couso et al.
2012). Mutational breeding with visual screening
of pale-green coloration was conducted in
D. salina, and a mutant lacking neoxanthin,
violaxanthin, and antheraxanthin but that consti-
tutively accumulates zeaxanthin was isolated.
These data strongly suggested that ZEP in this
mutant is functionally defective (Jin et al. 2003).
Thus, commercially valuable strains that accumu-
late high levels of useful zeaxanthin have been
generated via both enhancing zeaxanthin synthe-
sis and blocking the conversion of zeaxanthin to
less-valuable carotenoids.

10.4.5 b-Carotene Ketolase

β-Carotene ketolase, which catalyzes the conver-
sion of β-carotene and zeaxanthin to canthaxan-
thin and astaxanthin, respectively, is an important
enzyme for astaxanthin synthesis in microalgae

Table 10.3 Genetic engineering of phytoene desaturase

Gene Microalga Strategy Effect on carotenoid production References

pds Chlorella
sorokiniana

Mutational
breeding

1.55-fold increase in lutein content Cordero et al.
(2011a, b)

pds Haematococcus
pluvialis

Mutational
breeding

2.08-fold increase in astaxanthin content Chen et al. (2003)

Modified
pds

Haematococcus
pluvialis

Genetic
engineering

1.33-fold increase in astaxanthin content Steinbrenner and
Sandmann (2006)

pds Chlorella
zofingiensis

Mutational
breeding

1.44-fold increase in astaxanthin content Liu et al. (2010)

pds Chlorella
zofingiensis

Mutational
breeding

1.54- and 1.32-fold increases in astaxanthin
and total carotenoid content

Liu et al. (2014a, b)

Modified
pds

Chlamydomonas
reinhardtii

Genetic
engineering

Increase in lutein, β-carotene, and
violaxanthin content

Liu et al. (2013)

pds
promoter

Synechococcus
sp.

Mutational
breeding

Increase in carotenoid content Chamovitz et al.
(1993)
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and cyanobacteria. It was designated as BKT in
microalgae and CrtW (the BKT ortholog) in bac-
teria (Kajiwara et al. 1995). Cyanobacteria also
possess CrtO, which has a limited catalytic func-
tion, e.g., not to convert zeaxanthin to astaxanthin
(Choi et al. 2007). Studies involving metabolic
engineering of β-carotene ketolase in microalgae
and cyanobacteria are summarized in Table 10.5.
Most microalgae, except H. pluvialis, do not pos-
sess the bkt gene and are therefore unable to
produce astaxanthin (Vila et al. 2012).
Upregulation of the bkt gene in H. pluvialis
enhanced the astaxanthin content two- to three-
fold compared with non-transformed cells
(Kathiresan et al. 2015). Mutational breeding
was also conducted in H. pluvialis using the
astaxanthin synthesis inhibitor diphenylamine,
generating a mutant with 1.7-fold higher
astaxanthin content than the wild type (Wang
et al. 2016b). Metabolic engineering was also
employed to produce astaxanthin using
microalgae and cyanobacteria that originally
lack the capability to synthesize astaxanthin.
The bkt gene from H. pluvialis was expressed in
C. reinhardtii using a constitutive
rbcS2promoter. The transformant cells
accumulated a ketocarotenoid, but interestingly,
it was neither astaxanthin nor canthaxanthin
(León et al. 2007). The bkt gene derived from
H. pluvialis was also introduced in
Synechococcus sp. PCC7942. The transformed
cells produced various carotenoids (including
astaxanthin) not normally synthesized by this
species (Harker and Hirschberg 1997). In
Synechococcus sp. PCC7002, the expression of
the crtW and crtZ genes from Brevundimonas
sp. resulted in the production of astaxanthin at

the cost of β-carotene and zeaxanthin accumula-
tion (Hasunuma et al. 2019).

Deletion of the cyanobacterial β-carotene
monoketolase gene crtO combined with
overexpression of the crtB and crtP genes was
investigated in Synechocystis sp. PCC6803
(Lagarde et al. 2000). The crtP gene encodes
phytoene desaturase in cyanobacteria. The dele-
tion of the crtO gene increased the content of
myxoxanthophyll and total carotenoids 2.3- and
1.3-fold, respectively. The overexpression of the
crtB and crtP genes combined with the deletion of
crtO resulted in2.6-, 1.6-, and 1.5-fold increases
in the content of myxoxanthophyll, zeaxanthin,
and total carotenoids, respectively.

10.5 Conclusions

Microalgae and cyanobacteria have sufficient
potential for economical production of
carotenoids due to their rapid growth and high
carotenoid content. The use of terrestrial plants is
currently more profitable; therefore, further
improvements in carotenoid production are
required to commercialize carotenoid production
by microalgae and cyanobacteria. As the technol-
ogy progresses, metabolic engineering has
become less time-consuming and more effective
and thus could be further utilized to generate
valuable strains. Selecting suitable host strains
and genes for targeting to increase carotenoid
production as well as the best production strategy
are important for the most efficient utilization of
metabolic engineering. More basic data regarding
carotenoid synthesis and metabolic engineering in
microalgae and cyanobacteria are needed for each

Table 10.4 Genetic engineering of b-carotene hydroxylase and zeaxanthin epoxidase

Gene Microalga Strategy Effect on carotenoid production References

crtR Synechocystis sp. Genetic
engineering

2.5-fold increase in zeaxanthin content Lagarde
et al. (2000)

Δzep Chlamydomonas
reinhardtii

Mutational
breeding

Constitutive zeaxanthin accumulation Niyogi et al.
(1997)

Δzep Chlamydomonas
reinhardtii

Genetic
engineering

Constitutive zeaxanthin accumulation Baek et al.
(2016a, b)

Δzep? Dunaliella salina Mutational
breeding

Constitutive zeaxanthin accumulation; no neoxanthin,
violaxanthin, or antheraxanthin accumulation

Jin et al.
(2003)
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species. Regarding mutational breeding, screen-
ing tools to identify high carotenoid producers are
still lacking. High-throughput methods for mea-
suring carotenoid content in living cells should be
developed.

Metabolomics studies can provide a compre-
hensive understanding of cellular metabolites in
organisms, including microalgae and
cyanobacteria. For example, dynamic metabolic
profiling using in vivo13C-labeling combined with
transcription analysis revealed the details of
starch-to-lipid biosynthesis switching in
Chlamydomonas sp. and identified the metabolic
rate-limiting step, thus highlighting a potential
target for metabolic engineering to improve lipid
accumulation (Ho et al. 2017). Similarly, the
metabolic flux of glycogen biosynthesis was
determined in the cyanobacterium Arthrospira
platensis, and enhanced carbon dioxide
incorporation was revealed in a transgenic strain
of Synechocystis sp. PCC6803via dynamic meta-
bolic analyses (Hasunuma et al. 2013, 2014).
There is no doubt that metabolomics will also
play an important role in increasing carotenoid
production through the study of wild type strains
and mutants obtained via metabolic engineering.

Other challenges must be overcome to suc-
cessfully commercialize carotenoid production
using microalgae and cyanobacteria. Outdoor

cultivation using solar energy is essential for
cost-effective production. Therefore, strains for
commercialization should be robust in unstable
outdoor conditions and in the presence of envi-
ronmental contaminants. In addition, the resis-
tance of consumers to accept GMOs should be
considered, although most microalgae and
cyanobacteria are “generally regarded as safe
(GRAS)” for food purposes. Strains obtained
through mutational breeding could be utilized
for the present, as they are non-GMOs. Contain-
ment strategies for GMOs, such as the use of
auxotrophy, should also be developed.
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