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Abstract IoT systems consist of smart devices ranging from a simple surveillance
camera to pacemaker andmission-critical rockets. Though these systems are designed
and developed systematically, it may malfunction due to hidden bugs that are uncov-
ered only after deployment. Model checking and run-time verification are well-
established procedures in formal methods to ensure the correctness of systems. We
combine both these methods together to guarantee that IoT systems deployed in
critical scenarios are fail-safe. This work aims at creating an end-to-end verifica-
tion framework for IoT systems. Our system consists of (1) a design-time model for
MQTT protocol based on the system specification, (2) a run-time model extracted
from the execution trace of MQTT implementation and (3) the essential features
of systems described in the temporal logic specification. The correctness of these
models are checked against the specification using model checking and run-time
verification approaches.

Keywords Model checking · Runtime verification · IoT systems

1 Introduction

Internet of things (IoT) systems with controllers and actuators have pervaded human
lives. Seamless interconnection of heterogeneous devices with minimum comput-
ing power gained momentum and began to be used in wide range of applications in
health care, flight control systems, security systems, etc. Many of these systems are
so critical that they should be prone to few errors [9]. We must ensure the correct-
ness of such systems from the initial stage of software engineering to the deployed
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environment. Formal verification and specification are the building blocks to develop
fail-proof critical systems. It ensures that essential features of the system specified
in the unambiguous formal languages are holding in the entire life cycle of soft-
ware development. In this work, we investigate how to combine two verification
approaches to guarantee the correctness of IoT systems. We illustrate our approach
using a widely used telemetry protocol in the IoT ecosystem.

Model checking [6] is an automated technique of verifying logical properties of
a system that is modeled as a finite state machine. Model checking aids to uncover
the errors at the design stage, thus preventing the errors to be propagated to the
deployment stage. The systemproperties to be verified are expressed in a specification
language andmodel checkers explore all possible paths of the execution to ensure that
key properties are satisfied in all stages of the system. The counterexample generated
from model checkers serves as a debugging method on models to understand the
path which fails to satisfy the system properties and it helps to patch the design-time
flaws in the system. However, model checking suffers from state-space explosion.
To overcome this limitation symbolic model checking [4] is used, where states are
represented symbolically and not explicitly. In [19], kripke structure (finite state
machine) of modeled system is represented with a Boolean formula. SPIN [12] is an
open-source explicit statemodel checker andNuSMV [5] is an open-source symbolic
model checker. Run-time verification (RV) [10] analyzes program executions against
the program specifications to uncover properties that are not satisfied by the system in
run-time.Run-time verification also includes techniques formonitoring the execution
of systems and detecting and correcting anomalies, preventing system failure. Unlike
model checking, run-time verification focuses on a single run rather than all possible
execution paths. IoT system comprises of heterogeneous devices working together
and in this scenario proposal of strategies ensuring system correctness is challenging
[18].

In this work, we are presenting a framework that combines both model checking
and run-time verification for proving the correctness of Message Queue Telemetry
Transport (MQTT)protocol. MQTT is one of the popular communication protocols
in IoT systems designed for constrained environment. The MQTT protocol is mod-
eled in the PROMELA language, and the key properties of protocol are specified in
linear temporal logic (LTL). The SPIN model checker performs the symbolic model
checking over the PROMELA model and validate the correctness of LTL specifica-
tion. Both models and specifications are created from the OASIS standard of MQTT
protocol [2]. The run-time model is generated from the execution trace of the imple-
mented system. We are using execution logs of Mosquito MQTT broker to produce
the state-space representation of MQTT system. We assure that the run-time model
is also compliant with LTL properties.

The remainder of this paper is organized as follows. Section 2 discusses the
related literature in this field; Section 3 detailed our methodology; Section 4 presents
verification of the system; and finally, Section 5 presents conclusions and areas of
further work.



Formal Verification of IoT Protocol: In Design-Time … 875

2 Related Work

Hinrichs et al. [11] in their positional paper convey the idea of combining model
checking and verification as a single technique. They have illustrated examples of
systems where algorithm correctness is checked with model checking and data struc-
ture correctness is checked at run-time. In this system, there is a clear separation of
properties that could be verified using model checking and run-time verification.
The work [15] extends a model checker DIVINE to support run-time verification.
DIVINE model checker has two modes, run and verify. In run mode, a single exe-
cution of the program is explored, where assertions and all behaviors are checked.
In verify mode along with the program, an environment that contains a stand-in
operating system is given as input to the model checker.

Ankush Desai et al. proposed a framework [7] that combines bothmodel checking
and run-time verification for developing robotic systems. The key properties to be
satisfied by the robotic software systems are specified in a high-level language P and
the system is model checked. Here, model checking is done with assumptions about
the correctness of interfaces of the verified softwarewith the physical world and other
software components. These assumptions that are to be satisfied by the interfaces are
specified in signal temporal logic (STL) and it is monitored at run-time and the result
is given as feedback to the software stack of a robotic system for decision making.
Samir Ouchani in [22] formally models an IoT system using process algebra. This
IoT systemmodel is verified using PRISM (a model checker). Key system properties
checked are written in probabilistic computational tree logic (PCTL). Torjusen et
al. [24] proposed a technique where run-time verification enablers are included in
adaptive security for smart IoT (ASSET) in e-health-based IoT systems. Adaptive
security systems learn and adapt dynamically, by changing the parameters/structure
of the system. It predicts threats of the system and makes security decisions to
overcome the threats.

A monitor for run-time verification of IoT systems using Constraint Application
Protocol (CoAP) is described in [14]. This non-intrusive, passive monitor captures
CoAP messages in a particular network and generates simple events based on it.
These events are articulated with event calculus and then processed by the complex
event processing engine to find out abnormal behavior. İnçki and Ari [13] extend this
approach where the activity/interaction of nodes in the IoT system is considered as
events and modeled using message sequence charts. This message sequence chart
is processed and behavior of the system is expressed as formulae of event calcu-
lus. From this, complex event patterns are generated as event processing language
(EPL) which is given as input to Esper engine (Java-based complex event processing
engine) for verification. Leotta et al. in [17] have used UML state machines to spec-
ify the expected system behavior. This specification is converted to trace expression
manually. This is translated to prolog clauses, which is given as input to a run-time
monitor. The monitor observes the system execution and records the events. Then,
the trace is compared with the specification for detecting abnormal behavior.
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Aktas et al. [1] proposed a system for run-time verification with self-healing
capability in the IoT domain. There are two external services, self-healing service
and predictive maintenance service, which the system under test interacts. Events in
the IoT system are captured along with provenance information about IoT devices
and sent to the run-time verification system for detection of faults. On detecting any
abnormality, verification system triggers services for corrective actions by the self-
healing system. Run-time verification of timed properties is proposed by Pinisetty et
al. [23]. Given both expected and observed timed property of the system, a monitor
is generated that takes the current execution of the system and predicts whether
this execution satisfies or violates the given property in the future. In [16], Caroline
Lemieux et al. proposed a mining tool, Texada that mines the traces and extracts
properties that satisfy the LTL specification. The system takes logs and LTL formulae
and outputs instances of LTL formulae, where the atomic propositions in the LTL
formulae are replaced by events in the log. The property instances generated are
checked for their validity on all traces.

3 Methodology

The proposed system consists of two components, (1)model checker and (2) run-time
verifier. Figure 1 illustrates the overall architecture of our proposed system.

For the illustration, we include the subset of MQTT protocol [3] such as con-
nection establishment, publish and subscribe. In the model checking component, a
model is constructed from the specification and correctness properties are specified
in linear temporal logic (LTL). In the run-time verification component, an existing
stable implementation ofMQTT protocol is executed and the events and client-server
interactions are recorded in logs. We generate the state space from the log and the
same set of correctness properties specified in design-time modeling are verified.

A brief description of tools/languages used to develop this system is given below.
SPINModel checker: SPIN [12] is a tool for analyzing the consistency of concurrent
systems. Promela (process meta-language) is a modeling language used in the SPIN
that facilitates modeling of concurrent processes and its communication. The model
described in the Promela consists of proctype definitions that correspond to the
behavior of processes in the system. The communication between these processes
is realized using channels. Each proctype definition in Promela corresponds with a
transition system. The global behavior of system is represented as a single transition
system, obtainedby interleaving individual transition for eachproctype. SPINverifies
the correctness of a concurrent system by executing the process definitions and
validating the system against correctness claims specified in linear temporal logic
(LTL) and assert statements. SPIN generates counterexample for the failed claims
and it helps to improve the model. LTL is a model temporal logic to specify how
the behavior of the system changes over time. LTL claims are converted to Buchi
automaton in SPIN model checker [8].
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Fig. 1 System architecture

MQTT Protocol: Message Queue Telemetry Transport (MQTT) protocol [3] is a
publish-subscribe protocol used for communication between nodes in an IoT system.
This protocol requires less memory footprint, thus suitable for resource-constrained
devices. MQTT protocol operates in a pre-defined way. Every node (client) commu-
nicates with a broker (server) by exchanging control packets. In this work, we deal
with the following properties of MQTT.

1. Connection Establishment: This process requires exchange of CONNECT and
CONNACK packets between broker and node. For every connect request from
the node, the broker should respond with CONNACK with appropriate response
code.

2. Subscribe Message: A node can subscribe to a topic by sending SUBSCRIBE
packet to the broker, and the broker must respond with a SUBACK with appro-
priate reason code. The message delivered by the broker depends on the quality
of service (QoS) in subscribe and QoS associated with the published message.

3. Publish Message: A node can publish a topic by sending PUBLISH packet con-
taining information including data, QoS, etc. Broker should respond appropriately
depending onQoS.This protocol defines three delivery semantics based on quality
of service (QoS) expected out of the protocol.

a. QoS = 0, “at most once” where the message is sent once and there is no
guarantee that the receiver will receive it.
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b. QoS = 1, “at least once” where the message is guaranteed to be delivered at
least once. However, node may receive duplicates of the message.

c. QoS = 2, “exactly once” ensures that the message will be received by the client
exactly once, without duplication.

MQTT protocol is lightweight and is suited for systems with component nodes
communicating asynchronously. However, it supports only small payload and is
not appropriate for systems which require large data sequences.
Mosquitto: Mosquitto [21] is an open-source MQTT broker. A broker acts as an
intermediate entity between two communicating nodes. Nodes send data pertaining
to a particular topic to the broker. The broker forwards themessage to those nodeswho
have subscribed the topic. The performance of different publicly deployed MQTT
brokers is evaluated in [20]. The brokers are tested for their message load handling
for 1000 real-timemessages subscribed over a topic, which takes least time to deliver
messages from server to client at QoS level 0 and 2.

3.1 Design-Time Modeling

We have modeled node as well as broker as proctype in Promela. Communication
between these processes occurs through two synchronous Promela channels and
defined as:

chan ctob=[0] of {int,mtype};

chan btoc=[0] of {int,mtype};

The client process sends a connect request (CONNECT) over channel ctob along
with its identification (clientid). This clientid is used to uniquely identify a client in
the server side. The server responds with an acknowledgement (CONNACK) with
appropriate response code over channel btoc. Similar to CONNECT request, it sends
a publish (PUBLISH)/subscribe (SUBSCRIBE) request to the server and receives
an acknowledgement (PUBACK/SUBACK) back. The following code snippet gives
client proctype implementation.

/*Type of messages defined*/

mtype{CONNECT,CONNACK,ERROR,PUBLISH,SUBSCRIBE,

DISCONNECT,SUBACK,PUBACK};

/*Defining channels for communication

from client to server and vice-versa*/

chan ctob=[0] of {int,mtype};

chan btoc=[0] of {int,mtype};

proctype client(int client_id){

int c_id;

mtype m1,m2;
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bool con=0; bool cack=0;

bool sub=0; bool pub=0;

bool suback=0; bool puback=0;

do

::con==0 ->

atomic{m1=CONNECT;ctob!client_id,m1; con=1;}

::con==1 ->btoc??eval(client_id),m2;

if

:: m2==CONNACK ->cack=1; m2=ERROR;

:: m2==SUBACK -> printf("suback received");suback=1;

:: m2==PUBACK ->printf("pub ack received");puback=1;

:: else skip;

fi;

::(con==1)-> ctob!client_id,PUBLISH;pub=1;

::(con==1)-> ctob!client_id,SUBSCRIBE;sub=1;

od;

}

Following is the model of MQTT broker that responds to the CONNECT, SUB-
SCRIBE and PUBLISH. Server identifies each client using a clientid and keeps
track of its CONNECT request. All clients share a common channel with the server
for communication, and a particular client reads a message addressed with its own
clientid.

connected con_clients[5];

proctype broker(){

mtype m1,m2;

int client_id;

do

:: ctob?client_id,m1 ->

if

:: m1==CONNECT ->

con_clients[client_id].con_request=1 ;

m2=CONNACK; btoc!client_id,m2;

con_clients[client_id].con_ack=1;

::else

printf("process subscribe/publish");

if

:: m1==SUBSCRIBE -> m2=SUBACK;btoc!client_id,m2;

:: m1==PUBLISH -> m2=PUBACK;btoc!client_id,m2;

fi;

fi;

od;

}
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Fig. 2 Sequence of MQTT client-broker interaction in SPIN

Thismodel can accept up to five clients. The following init process creates two clients
and a broker. The broker waits for the request from the clients and send appropriate
response to client which is read by corresponding client.

init{

run broker();

run client(0);

run client(1);

}

Figure 2 illustrates the working of MQTT client-broker model developed with
two clients sending connect requests and receiving appropriate responses in SPIN.

3.2 Run-Time Modeling

Run-time data is extracted from the execution trace of the MQTT implementation.
As we discussed, we are collecting log of Mosquitto MQTT broker. It includes
all the activities like connection establishment, message subscription, etc. Figure 3
shows the example of Mosquitto log. This log is created by running an instance of
MosquittoMQTTbroker and instances ofMQTTclients. The clients include instance
of MQTT spy (an open-source utility to monitor MQTT activity) and MQTT client
implemented in Java using Paho Java client (an MQTT client library in Java).
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Fig. 3 Snap shot of log file of MQTT server

Fig. 4 State diagram of MQTT broker

We have used a Python parser to obtain the run-time model, it is essentially state
space over the linear time. Figure 4 is a example of such state space generated from
log.
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4 Verification

We have verified the following properties in our design-time and run-time model.

1. Connection establishment—A broker that receives a CONNECT control packet
should return a CONNACK with appropriate response code. A node should sent
only oneCONNECT request to the broker after network connection is established.

2. a. A publish message with QoS = 1 should be responded with PUBACKmessage
b. A publish message with QoS = 2 should follow a sequence of control packets

as given in Fig. 5.
3. A subscribe message received by the broker with QoS ≥ 1 should be responded

with SUBACK message with appropriate response code.

We have expressed this properties as the following LTL statement.

�(con_request_client1 ⇒ ♦con_response_client1)

�(con_request_client2 ⇒ ♦con_response_client2)

This specification ensures that a connection request received by the broker at any
time should be followed by a response at any time in the future. For example,
con_request_client1 is the variable that keeps track of request from client1 and
con_response_client1 is a variable for tracking response to client1.

�(pub_client1 & pub_client1_qos) ⇒ ♦puback_client1)

�(pub_client2 & pub_client2_qos) ⇒ ♦puback_client2)

In this specification variable, pub_client1 keeps track of publish request from client1
and variable pub_client1_qos stores the quality of service associated with the pub-
lish request. If a publish request arrives and its QoS value is 1, then variable pub-
ack_client1 should be set to true, where puback_client1 keeps track of PUBACK
message that is sent to client1. The similarly we can define the second statement for
client2

�((publish_r ⇒ ♦pubrec_s) ⇒ pubrel_r ⇒ ♦pubcomp_s)

This specification ensures if a PUBLISH message is received by the broker from a
client, it will respond with a PUBREC message, which will in-turn be followed by
receiving of PUBREL and sending of PUBCOMP messages.

Fig. 5 Publish message with
QoS 2
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Fig. 6 Verification in iSpin

The verification process ensure that both design-time model and run-time model
are satisfied the above-mentioned LTL properties.

Design-time Verification: We verify satisfiability of LTL statement in Promela
model. SPIN model checker performs the verification process over the model using
symbolic model checking. If the property is not satisfied by model, SPIN generates
the counterexample and it gives execution path leads to the failure. Figure 6 gives an
example of SPIN verification.

Run-time verification: It checks whether all the essential features designed are actu-
ally implemented and it is behaving as expected when the system is deployed. LTL
properties are checked for compliancewith the state space of a runningMQTT imple-
mentation. The broker-client implementation we selected satisfies all the specified
LTL properties.

5 Conclusion and Future Scope

This work is a step toward the integration of model checking and run-time veri-
fication in IoT systems. We have developed design-time and run-time model for
MQTT protocol and verify the correctness. We used LTL language to specify the
correctness properties and it helps to eliminate the ambiguity in the specification.
The challenge involved in this approach is to make the process work seamlessly from
model checking to run-time verification. This work can be extended to generate a
monitor automatically from LTL specification so that run-time verification will be
fully automated.
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10. Havelund K, Roşu G (2018) Runtime verification-17 years later. In: International conference
on runtime verification. Springer, pp 3–17

11. Hinrichs TL, Sistla AP, Zuck LD (2014) Model check what you can, runtime verify the rest.
In: HOWARD-60, vol 42, pp 234–244

12. Holzmann GJ (1997) The model checker SPIN. IEEE Trans Softw Eng 23(5):279–295
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14. İnçki K, Arı İ, Sözer H (2017) Runtime verification of IoT systems using complex event

processing. In: 2017 IEEE 14th international conference on networking, sensing and control
(ICNSC). IEEE, pp 625–630
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