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Bioeconomy, an intersection between biological resources and economic activities,
underpins a pathway to tackle global challenges and to achieve sustainable develop-
ment goals. Bioeconomy involves the production and sustainable use of biological
resources to further the growth of the sustainable economy through the generation of
information, knowledge, bioproducts, ecosystem services and innovative processes.
Biological resources are the bedrock of bioeconomy. It includes materials of
biological origin, which have a potential role to play in the sustenance of the earth
system. While traditionally bioeconomy strategies aimed at upscaling the production
of biofuels and bioenergy and finding an alternative to fossil fuel-based energy
source, recent developments in the field of biotechnology, synthetic biology and
metabolic engineering have widened the scope of bioeconomy. Of late, waste
valorization, production of biochemicals, phytochemicals, biopesticides, flavour
compounds, etc. and transformation of bio-based materials including the building
blocks and polymers into value-added products are an integral part of sustainable
bioeconomy. In effect, the biological resources as a feedstock to biotechnological
and microbiological processes generate a wide variety of ecosystem services and
drive bioeconomy. Further, sustainability in bioeconomy is achieved through the
application of principles of circularity. In essence, the sustainable bioeconomy is a
paradigm shift from a fossil-fuel-based economy to a biological-based economy,
which is driven by the virtues of sustainability, efficient utilization of resources and
“circular economy” as well. As the sustainable bioeconomy hinges on the efficient
utilization of biological resources and societal transformations, they exhibit the
immense potential to achieve sustainable development goals. Sustainable
bioeconomy has immense potential to achieve food and nutritional security (SDG
2), to promote human well-being (SDG 3), to ensure access to water (SDG 6), to
ensure access to affordable and sustainable energy (SDG 7), to ensure sustainable
living habitat (SDG 11), to ensure sustainable production and consumption (SDG
12) and to reduce greenhouse gas emissions (SDG 13). The book earnestly explores
the facets of sustainable bioeconomy. The chapters focus on areas including but not
limited to economics of the circular bioeconomy, social and economic contribution
of the bioeconomic sector, production of bio-based products like biofuels,
biochemicals and flavour and fragrance compounds, the sustainability of agricultural
production system, use of biological resources like phytochemicals and



Vi Preface

biopesticides to improve agricultural bioeconomy, energy auditing, soil nutrient
budgeting, low carbon future and the role of culture and moral responsibility in
facilitating a sustainable bioeconomy. We are extremely honoured to receive
chapters from leading scientists and professors with rich experience and expertise
in the field of bioeconomy. The book targets scientists, researchers, academicians,
graduates and doctoral students working on natural, biological and social sciences.

Our sincere gratitude goes to the contributors for their insights on sustainable
bioeconomy. We sincerely thank Dr. Naren Aggarwal, Ms. Aakanksha Tyagi,
Mr. Ashok Kumar and Ms. Kavitha Jayakumar of Springer Nature for their generous
assistance, constant support and patience in finalizing this book.

New Delhi, India V. Venkatramanan
New Delhi, India Shachi Shah
Motihari, India Ram Prasad
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Davide Viaggi

Abstract

The concept of circularity has become key for the bioeconomy. The objective of
this chapter is to discuss the concept of the optimal level of circularity, how it can
evolve over time and how it can be operationally used in decision-making about
the bioeconomy. In the background of the current literature on circular
bioeconomy, we first illustrate the concept of the optimal degree of circularity
using a simple market equilibrium framework. Then we elaborate on how this can
be connected to the reality of transition to a circular bioeconomy. From an
economic point view, the identification of an optimal pathway towards a circular
bioeconomy driven by cost of recycling and externalities is central to ensure
economic efficiency. In practice, a series of information obstacles hinder the
implementation (and even the quantification) of this pathway. Hence, articulated
policy mixes are usually needed to promote transition towards a circular
bioeconomy.

Keywords

Bioeconomy - Circular economy - Sustainable development goals - Circularity

1.1 Introduction

The bioeconomy has become one of the main issues in the world technological and
social transitions. The bioeconomy, for its comprehensive view, touches a number of
different societal objectives. An analysis of the 2018 EU Bioeconomy strategy
confirms this point by finding that it is directly related to 12 out of 17 UN Sustainable
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Development Goals, in most of the cases with a synergistic effect (Ronzon and
Sanjuédn 2020).

Over time, the concept of bioeconomy has been growingly connected to that of
circular economy as one of its key elements (Patermann and Aguilar 2017; Koukios
et al. 2018). The circular economy concept relates to the idea that the economy
should rely more on the reuse of resources that are already in the system and less on
external raw materials. The connection with the bioeconomy is evident looking not
only at the strategic and policy agenda, but also at the practical fact that a large
number of technological solutions proposed for the bioeconomy actually target
waste and by-products reuse, hence aiming to contribute to circularity (Ronzon
and Sanjuén 2020).

Of the about 260 bioeconomy-related papers published in Scopus in the years
2018-2020, in the disciplines of economics, management and social sciences, about
40% also attach the issue of circularity to the bioeconomy. While it can be claimed
that circularity is inherently an issue for the bioeconomy, in reality the bioeconomy
does not imply circularity. The current literature highlights not only the variety and
ambiguity of the circularity concept, but also the relevance of obstacles and hinder-
ing factors its realisation is finding (Jarre et al. 2020). In addition, from an economic
point of view, it can be questioned that the higher possible level of circularity is an
objective per se, without properly considering costs and benefits of achieving
circularity.

In this context, the objective of this chapter is to discuss the concept of the
optimal level of circularity, how it can evolve over time and how it can be opera-
tionally used in decision-making about the bioeconomy. The main contribution of
the chapter rests on using simple economic analysis to frame the discussion of
circularity in economic terms, an issue poorly addressed by the literature up to
now. In the next section, we provide a representation of bioeconomy systems also
emphasising circularity. In Sect. 1.3, we analyse the issue of the optimal rate of
circularity. In Sect. 1.4, we discuss the limitations and research needs, followed by
concluding remarks in the last section.

1.2  Circularity in Bioeconomy Systems

Several graphical representations of the bioeconomy are available in the literature,
each highlighting different aspects (Wesseler and Von Braun 2017; OECD 2009).
Figure 1.1 sketches the main components of the bioeconomy and their relationships,
with a view on also making explicit the main circular components.

This representation of the bioeconomy emphasises biomass flows from
ecosystems to consumers. Part of this biomass is destroyed in the process and part
goes back to ecosystems, or to some of the previous steps of the process. Examples
include food wastes used in non-food systems (e.g. bioenergy) and biomass feeding
back agricultural soils.

There are different waste and by-products that can become usable as raw
materials. First, wastes and by-products can be used as such, without any
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Fig. 1.1 A graphical representation of the bioeconomy (arrows represent the main flows of
biomass). Source: Viaggi (2018)

transformation; this has been historically one of the main ways of closing cycles
especially in the farming sector. Second, selected compounds of waste feedstock can
be used after various processes of transformation/extraction, e.g., use of orange peel
to produce compounds for beverages and snacks (Vergamini et al. 2015). Third,
wastes and by-products can be used for bioenergy production; this is often not
considered to be the best solution, as it causes the loss of valuable compounds.
Finally, biowastes can be used in biorefinery processes that yield a variety of
different output and end up with energy production (Venkata Mohan et al. 2016).

The amount of waste use at present is rather differentiated in different sectors due
to various technological and organisational reasons (Egelyng et al. 2016). As an
example, Kinnaman (2014) suggests an optimal recycling rate of 36% for municipal
wastes in Japan.

In the bioeconomy, food is a key component of biomass production, so no
surprise that food waste plays a very important role in the issue of circularity. This
is also connected to ethically relevant issues, such as food security and affordability.
In this respect, using food by-products and wastes in the food industry (i.e. to
produce food) ensures a higher value addition.

Haas et al. (2015) provide an analysis of the degree of circularity of the global and
the EU-27 economy. Their estimates for 2005 show that there is a global flow of
roughly 4 Gt/year (gigatonnes per year) of recycled waste materials, i.e., less than
10% of the 62 Gt/year of processed materials and 41 Gt/year. of outputs produced
worldwide. The bioeconomy accounts for a large share of processed material
(19 Gt/year) but its degree of circularity is only 3% (7% in the EU-27). One of the
reasons for this is that biomass is largely used for energy purposes (including food),
so it is destroyed in the process of utilisation and is hence non-recyclable.

Circularity depends on the processes used to produce biomass. In particular,
circularity of biomass-related industries requires circularity of input production
and management processes. As an example, incresing circularlty in agricultur also
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implies closing the cycle of nutrients (nitrogen and phosphorous). Reducing waste
from production and consumption, and changing consumption patterns towards
solutions adapted to use less resources, can contribute to circularity (Viaggi 2015).

In general, as biomass is basically derived from solar energy fixation, if biomass
is produced sustainably, it can be considered renewable and the emitted CO,, as well
as waste flows, can largely be reused into new primary biomass within ecological
cycles (Jordan et al. 2007). However, while this applies at the global scale, systems
may be rather far to be circular, even assuming input of solar energy, at the local
scale. In addition, circularity in general refers to the anthropic system, hence
excluding ecosystems and, in this respect, the minimisation of waste and the
promotion of reuse is key to increasing the circularity of the bioeconomy (Cardoen
et al. 2015).

Circularity is also becoming an issue in bioeconomy firm management. On the
one hand, use of by-products is more and more a key strategic topic in promoting
innovation and building competitiveness in key bioeconomy industries such as the
food sector (Strgm-Andersen 2020). On the other hand, the industry organisational
shift is pushing attention to the use of appropriate business models for the circular
bioeconomy addressing in turn the topic of both new forms of business and
mechanisms for value creation (D’ Amato et al. 2020).

1.3  Optimal Rate of Circularity

Circularity in an economic perspective can be addressed under the lens of the
optimal level of recycling/reuse (or more generally of circularity). The starting
concept is that different circularity can be achieved using different technological
and organisational solutions. These solutions have different effects/performances
including financial/economic, environmental, institutional and social (da Cruz et al.
2014). It may be expected that these solutions are used starting from the cheapest
ones, so that there is an issue concerning when to stop, i.e., what is the optimal
degree of reuse. All of the dimensions above should hence be accounted for in
discussing the optimal level of circularity.

Few examples are provided in the literature. Among them, Kinnaman (2014) and
(Vollaro et al. 2016) study the issue of optimal recycling rate from the perspectives
of, respectively, recycling in municipal waste management and phosphorous recov-
ery from municipal wastewaters. Figure 1.2 illustrates the concept of the optimal
level of recycling.

Figure 1.2 illustrates the market of a resource that can be obtained either through
harvesting from natural sources (equivalent to extraction/mining) (supply function
S) or from recycling. Suppose the recycling can be performed through a high cost
technology represented by line RS;. The cost of harvesting is assumed to be growing
with increasing use, reflecting an increasing marginal cost of supply. On the oppo-
site, in order to keep things simple, we initially assume that RS is a horizontal line,
i.e., with constant marginal cost. The technology based on RS is profitable only if
demand reaches a very high level (i.e. when RS, crosses S), but it is normally not
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Fig. 1.2 Optimal level of recycling. Source: Viaggi (2018)

profitable and not used at all if, as in Fig. 1.2, the demand is lower and the market
equilibrium is at P*Q*. In this case, the marginal cost of the resource is low and
meets the demand at a price level lower than the cost of RS}, causing the recycling
technology to be out of the market.

RS, represents another recycling technology with rather different economic
characteristics. In particular, RS, has a lower cost, lower also than P*. As a
consequence, some recycling is now of interest. However, the recycled product
cannot be expected to completely substitute the harvested product. On the contrary,
there will be an optimal level of distribution of the resource provision between
harvested (Qg*) and recycled (Qrs2* — Qg™) resources. The optimal recycling level
is found when the marginal social cost of recycling reaches the marginal social cost
of supply by harvesting. A total substitution of harvested with recycled resource
would only occur if the intercept of S is above RS», i.e., if the constant-cost recycling
technology is below (less costly than) the least costs solutions for harvesting the
good. If RS, is available, the outcome is a market using more product compared with
the absence of a recycling technology. The source of the product comes partly from
harvested and partly from recycled sources. Note that the harvested component
(Qs*) is lower than the one under the initial market conditions (Q%).

The shift from RS to RS, may normally occur as an effect of technical change
leading to a reduction of recycling costs and can be seen as a dynamic effect of
innovation. Hence, as a result of the above, cost-reducing technical innovation will,
other things equal, increase the use of the product altogether, but reduce the
harvested component. The optimal level of recycling will be determined by the
market and will be higher the lower the cost of the recycling technology. As an effect
of the improved recycling technology, there is an overall welfare gain from the
demand side. If the demand side reflects an industry, this would also imply higher
profits and potential rebound effects, which may be a problem if industry develop-
ment is also attached to negative environmental effects.
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Fig. 1.3 Optimal level of recycling with externalities

Removing the assumption of horizontal supply of the recycled product does not
change the outcome substantially. If the line had a positive slope, there would be two
options. If it is always above S, the result will be similar to the case RS}, i.e., the
recycled technology is never profitable. If it crosses S, it will have an effect only if
the crossing point is “south west” of P*Q*. The result, however, is then the same of
the horizontal recycling cost assumed above.

Another option is possible, notably in the case of marginal cost increase because
the natural resource has become scarcer, which reflects in a move upwards of the
supply function S. The outcome, in this case may again be that the recycling
technology becomes used, in a context of higher market prices and lower use of
the resources altogether.

A similar situation can also occur due to the changes in demand. In particular, if
demand of the good grows, the demand function will move upward, leading to a
potential use of even RS, technology, when P* becomes higher than RS;. There will
be an optimal level of recycling and the share of recycled vs. harvested will depend
again on the level of prices. The overall situation will be the opposite of the previous
hypotheses, as the use of the resource increases.

A problem is that of failures in the markets of recyclable materials. These may be
due not only to environmental externalities, but also to imperfect and asymmetric
information and technological and consumption externalities. Nicolli et al. (2012)
review the nature of such failures and how they may affect markets for certain
recyclable materials. They also discuss how these failures can be overcome by
technological innovation and the role for policy measures in this innovation in the
area of plastic packaging. Figure 1.3 depicts a situation in which the optimal level of
recycling is affected by a negative externality attached to harvesting.

The social supply function is now represented by SE. If the externality is taken
into account, the equilibrium would be in Qg*. In this case, even if only RS; was
available, it would make sense to have some harvested (Qgz*) and some recycled
good (Qrsise® — Qsg*) on the market. Clearly even more if ERS, was available.
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However, as the difference between S and SE is due to an externality, this difference
in value is not taken into account by the market that would still produce at P*Q*.

In this case, the problem is then how to reach the optimal level. Clearly, a tax on
the harvested material would go in this direction actually moving from S to SE the
actual supply curve. However, this would put a higher burden to consumers and have
the limitations of any increase in taxes in terms of political consensus. On the other
hand, this situation may also justify support to the alternative recycling technology.

A major issue in this case would be that, in the absence of market prices for the
externality, it is much more difficult to identify the optimal level of circularity.

The analysis above is based on comparative statics, but can be used as a basis for
some dynamic considerations. First, some level of path dependency may apply in
terms of availability of materials to be recycled. In particular, the maximum amount
of recycled feedstock cannot be higher than the amount used in the previous period
(or in the same period); also the maximum efficiency of recycling technology should
be taken into account in considering this type of restrictions. Second, as mentioned
above, different costs levels may be interpreted as changes over time. It is usually
expected that, as the stock of mined or the availability of harvested resources
declines over time, while the stock of used products increases over time, the
importance of recycling increases (Zilberman et al. 2013). However, pressure to
moderate consumption increase can hinder the growth of production. Third and most
important, research and innovation tend to decrease costs of recycling over time, but
may affect also the costs of mining and harvesting.

It is important to note that bioeconomy resources may be grown or harvested, so
that cultivation may replace recycling if more profitable. Also, the advances in
technologies promoting reduction of biomass to elementary components, in particu-
lar platform chemicals, and their re-composition in new products open up to a wide
range of substitutes (or of substituting sources of biomass). For this reason, recycling
should be seen in the wider landscape of potential alternative technologies, rather
than in isolation.

14 Discussion

While the above provides a sound conceptual background, its implementation in
practical terms remains difficult for several reasons. The first and most important
remains the complexity in accounting for actual costs of different technologies and
how they shape the supply functions. Not only harvesting can come from different
sources, but also reuse technology can follow different solutions and pathways.
Another key issue is logistic. This is usually more important for high volume low
value goods. It is hence an issue for waste and other recycled material, similar but
with different problems compared to primary production, taking also into account,
e.g., legal constraints affecting wastes. Costs may depend on the way waste is
collected and managed and hence depend on facility choices, network design and
economies of scale. Costs may include fixed and variable costs per vehicle (trans-
port), personnel cost, container or bag costs as well as emission costs estimated to be
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about 15% for urban wastes, as cited in Groot et al. (2014). Also in closing cycles of
nutrients, distance and transport costs, and logistics issues at large are key (Akram
et al. 2019).

The second main issue is that of externalities. While several methods have been
developed over time to assess non-market goods and externalities, most of them are
sufficiently reliable only when restricted to be used to assess average costs/benefits
and usually much less robust when used to evaluate demand/supply functions,
especially at the extremes. Needless to say, external costs may depend a lot on the
ability to assess impact pathways and dose—response. This is rather a difficult task
for the most relevant external effects attached to the bioeconomy technologies, such
as the contribution to (combat) climate change.

The dynamic insights discussed above also hint at the fact that the optimal rate of
recycling would change over time. This implies that it would be necessary to identify
an optimal pathway of development of the recycled component. This, however,
would be largely driven by expectations about future technology changes and related
costs, as well as about demand.

Observing the current landscape, however, solutions to these policy dilemmas
may come from a better ability of the system itself to adapt. Suitable business models
are a key issue that requires proactive adaptation by the sector, but also policies
ensuring a suitable environment. In connection to new business models, innovation
remains a key topic, especially in the direction to solve cost issues and to address
uncertainties in the emerging solutions.

1.5 Conclusion

While the bioeconomy concept largely relies on biomass flows that can to a good
extent be connected to concepts of circular economy, such as waste valorisation and
reuse, the bioeconomy is not inherently circular. Given the fact that biomass tends to
degrade into energy, on the contrary, and that the primary sources of input for the
bioeconomy is actually solar energy, the topic is rather that of the optimal (rather
than the maximum) level of circularity. In other words, the question is to what extent
it is really efficient and sustainable to close the cycles, also in relation to different
geographical perspectives and levels.

The current literature still approaches this issue from a largely simplified perspec-
tive driven by recent policy evolution, rather pointing at promoting circularity.
Attention should rather shift to a more focused and economics-based research in
two complementary directions:

(a) Empirical economic analysis of “supply of circular solutions” and derived
understanding of the optimal degree of circularity;

(b) Evidence-based analysis of socio-economic transition pathways and new busi-
ness models.
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Implementing point, (a) requires addressing a number of empirical issues due to
the variety of solutions and to the fact that many of them are quickly evolving. On
the same ground, and as shown directly by the graphical analysis, accounting for
externalities may be key to understand the actual optimal level of circularity, which
implies an improved ability to account for non-market values.

Understanding transition pathways is also an issue, not only for the technical
dynamic issues, but also for the wider variety of aspects important for understanding
and promoting transition, such as awareness building and hindering factors. The
understanding of new business models and the study of options allowing their design
and replication remain one of the most challenging emerging issues.

Policy has a key role in bringing private incentives close to social values. As
discussed above, this can also be the case in order to foster a circular bioeconomy
due to needs brought by innovation and externalities. Similar to most of the
bioeconomy policy fields, the analysis above calls for actually a mix of policy
actions (Ladu et al. 2020), which could include one or more of the following:

* internalising externalities through direct incentives or regulation, with a strong
role of environmental and climate policies;

» providing incentives to technical innovation and cost reduction;

e providing incentives to innovation in organisational solutions and business
models; and,

 allowing more value expression by consumers, through information and aware-
ness rising.

Clearly, these policy areas require approaches much more qualitative with the
respect to the general framework highlighted above. In particular, given the lack of
ready-to-use economic information, participatory procedures and strategy would
need to be widely used to substitute economic rationale in actual decision-making
processes. However, there are also limitations of this approach. In perspective, with
increasing empirical studies on the topic, it may be expected to achieve a more
balanced use of different strategies in the direction of truly evidence-based policy
making in the field of circular economy.
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The Role of Culture and Moral
Responsibility in Facilitating a Sustainable
Bioeconomy

Madhavi Venkatesan

Abstract

Economics influences and is influenced by culture; in turn, culture is both
influenced by and influences the sustainability of the environment. Furthermore,
to the extent that moral judgment encompasses human and non-human life, the
environment and its sustainability are given significance within the economic
system. At present, there is increasing discussion of the implementation of a
bioeconomy within the present economic framework. This chapter discusses the
role of culture and education in promoting a moral perspective of the human
responsibility in establishing sustainable economic growth. The argument made
is that a bioeconomy can promote sustainability only if consumption choices
implicitly consider holistic impacts and are motivated by cultural values that are
based in moral judgement. Otherwise, sustainable economic growth may be
limited to the production process alone and fail to promote overall sustainability
in economic outcomes.
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2.1 Introduction

Bioeconomy has been defined as “the production, utilization and conservation of
biological resources, including related knowledge, science, technology, and
innovation, to provide information, products, processes and services across all
economic sectors aiming toward a sustainable economy” (Global Bioeconomy
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Summit 2018). As noted by the United Nations, Food and Agriculture Organization
(2020), the drivers of bioeconomic development include three focus areas:

1. Societal aspirations and good governance for sustainable development and for
improved health and well-being,

2. Needs and opportunities of valorization and protection of biological resources,
including residues, in the traditional bioeconomy core-sectors linked to agricul-
ture, forestry, fishery, water management food and bioenergy, and.

3. Scientific breakthroughs in biological, digital, and other technology fields,
expanding the frontiers of innovation possibilities (FAO 2020).

While sustainability has no formal definition, the commonly accepted definition
is that of the Brundtland Commission (1987), which notes, “sustainable develop-
ment is not a fixed state of harmony, but rather a process of change in which the
exploitation of resources, the direction of investments, the orientation of technologi-
cal development, and institutional change are made consistent with future as well as
present needs.” Included in the Brundtland discussion is a recurring theme of moral
decision-making that includes the welfare of all life.

Major changes in policies will be needed to cope with the industrial world’s current high
levels of consumption, the increases in consumption needed to meet minimum standards in
developing countries, and expected population growth. However, the case for the conserva-
tion of nature should not rest only with development goals. It is part of our moral obligation
to other living beings and future generations (Brundtland Commission, 1987, p 51).

Interestingly, the Sustainable Development Goals (SDGs), due make a reference
to the moral responsibility implicit in sustainability but appear to be aligned to an
anthropocentric approach.

The Sustainable Development Goals (SDGs) are intended to be universal in the
sense of embodying a universally shared common global vision of progress toward a
safe, just, and sustainable space for all human beings to thrive on the planet. They
reflect the moral principles that no-one and no country should be left behind, and that
everyone and every country should be regarded as having a common responsibility
for playing their part in delivering the global vision (Osborn et al. 2015).

What the FAO definition of bioeconomy has in common with the Brundtland
Commission and the SDGs is the focus on sustainability and a fundamental need to
adjust consumption and production behavior to account for a responsibility to the
present and future. However, the difference in the perception and inclusiveness of
sustainable development differs with respect to the explicit inclusion of non-human
life, the intrinsic value of non-human life, as well as the moral obligation to protect
non-human life (Fig. 2.1). Arguably, the FAO and the Brundtland Commission
address non-human life, while the SDGs promote an anthropocentric perspective.
The Brundtland Commission and the SDGs reference the moral responsibility
inherent in establishing sustainable development.
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Fig. 2.1 Relationship between the FAO definition of bioeconomy and the Brundtland Commission
and SDGs

However, implicit in the defining of bioeconomy is the measurement of economic
growth, this is also true for the SDGs. Both focus on the continuation of a
GDP-based economic growth model. Additionally, they do not explicitly address
the short-comings of the model, which is based on resource utilization through either
resource discovery or technological enhancement and efficiency of resource use.
Further, neither discusses population growth and needed controls, which surface
multiple times in the Brundtland Commission report (1987), “What is needed now is
a new era of economic growth—growth that is forceful and at the same time socially
and environmentally sustainable” (p. 7).

In this chapter, I propose that both a moral and inclusive perspective toward all
life is needed to promote a sustainable bioeconomy. Furthermore, in order to
facilitate a transition, a shift in cultural orientation is required, such that economic
growth can be aligned to sustainability. Evaluations of bioeconomy often neglect
this (Birch and Tyfield 2012; Fielding and Aung 2018). Without inclusion of
consumer education related to the non-market costs and impacts Or resource use, a
shift toward bioeconomy may yield a change in production process with limited
impact to outcome (Goven and Pavone 2015).

The discussion that follows begins with an evaluation of GDP and economic
growth. The chapter continues by building an argument for addressing the relation-
ship between economic growth and cultural values as the foundational step to
promoting sustainable development that is both inclusive and morally based. The
discussion concludes with the assertion that the attributes that enable sustainable
resource utilization and social well-being, two of the three attributes which define the
FAO definition of bioeconomy, are achievable through education that reconciles the
relationship between economic outcomes and cultural values to promote
sustainability. Promotion of production possibilities, the third attribute of the FAO
bioeconomy is addressed as a future discussion item with a requisite inclusion of
population growth.
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Fig. 2.2 Production
possibility frontier. Source:

Venkatesan (2017) Seed
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2.2 Consumption and Economic Growth

Cultural orientation toward consumption implicitly surfaces the perception of the
human relationship with the environment as either one of symbiosis or dominion. In
the case of the former, arguably stewardship would prevail. In the context of
perceived dominion, the economic system would likely fail to assess intrinsic
value of resources, as resource value would be dictated based on the value of the
natural resource to the human system. Further and significant, the inclusion of time
effects as they relate to the preservation and or regeneration of resources would
determine if one period’s stewardship or dominion impacted future access, avail-
ability, and viability of a resource.

Our present global society builds on an institutionalized western perspective of
the environment as a resource for human use; this in turn is implicit to global
economic systems and their focus on GDP. GDP is embedded within the prevailing
neoclassical discussion of the production possibilities frontier (PPF)" and similarly,
our policy interest in ensuring that we seek to maximize production subject to
resource constraints at any given point in time. In the case of production, this
conforms to policy, monetary, and fiscal that seeks to maintain or establish the
economy at its peak in business cycle terms, which is equitable to the attainment of
potential GDP.

The underlying and guiding assumption of production and consumption decisions
is premised on neoclassical consumer theory, which defines individuals in an
economy as having insatiable desires to consume. This assumption is reflected in
the production possibilities frontier (PPF) where efficiency is defined as any produc-
tion combination found on the PPF line (Fig. 2.2). On this line, the economy is
maximizing production relative to resource constraints. Combinations of output
along this can only be attained by allocating the resources in a way that maximizes

"This is referenced in the FAO definition of bioeconomy as item 3.
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production relative to inputs (e.g., land, labor, and capital). To the extent that the
allocation of resources at a given point in time considers intergenerational equity and
threshold extraction rates consistent with the prevention of resource depletion, and
enables repopulation for renewable resources, the trade-off decisions may or may not
be consistent with sustainable resource utilization.

Furthermore, to the extent that a society is taught or maintains the social norm of
stewardship and thus satiation of needs relative to that of wants, the efficient
allocation of resources may not embody the maximum production. Instead an
economy may not fully use observable resources given consideration of their
availability from a long-term perspective.

In Fig. 2.2, the PPF line labeled Z represents the maximum production possible in
an economy given resource availability at a given point in time; Z also corresponds
to a society for which insatiable wants have been embedded into the culture. This
society will be dependent on the identification of new resources and technology to
enable an increase in future production and related consumption. Increased resource
access and technological advancement are reflected in an outward shift of the PPF
over time. For both societies, using a GDP definition of progress, the PPF would
presumably be representative of the attainment of potential GDP. However, for the
society depicted as operating on A, for which Z was also accessible, GDP would be
lower as would be GDP growth rates over time. The focus on GDP omits the
qualitative value the society derives from the preservation of resources for future
periods and the related inter-temporal sustainability of consumption.

McCluney (2008) suggests that reduction in consumption is needed by developed
countries to reduce the environmental burden and social justice implications of the
present trajectory of consumption within those countries. He notes that there is a
moral dilemma at present, given that developed countries have been able to grow and
develop high standards of living by environmental exploitation but are now seeking
to eliminate the same channels that enabled their development within the developing
world. Addressing population pressures and finite growth prospects, he concludes
with questions that surface the significant role of consumption: “Will the industrial
world be willing to alter its own system to benefit the starving billions elsewhere?
How much should the industrialized countries be willing to sacrifice for the sake of
the underdeveloped world? Is it moral to conclude that we should not make such
sacrifices, or is the very question born of a fallacious understanding of what it takes
to live well (McCluney 2008)?”

2.3 Consumption and Sustainable Growth

In most western developed countries, consumption is a significant driver of GDP
growth. To the extent that GDP is the standard metric of economic progress and
economic progress is a focus due to the perception that progress equates with a
higher standard of living, consumption has also become a targeted metric. From this
perspective, nearly everything in an economy can be related to consumption, from
maintaining full employment, to maintaining stable inflation and low interest rates,
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to the built-in obsolescence of the goods we purchase. Even the assumptions
embedded in economics incorporate consumption: consumers are assumed to have
insatiable wants.

Marketing and advertising have played a strong role in fostering consumption by
creating marketed demand, which essentially is demand that arises as a result of
marketing and advertising. However, the responsibility of consumption has not been
fostered, developed, or perhaps even understood by consumers.

Consumers have become increasingly distanced from the production process of
the goods they are consuming, and as a result, they are not cognizant about the
impact that their consumption demand has on the degradation, exploitation, and
depletion of planetary resources. Instead, what consumers are aware of is price.
Fundamentally, consumers have focused on market price and have delegated the
inclusion of value parameters, including environmental and social costs, to
producers, but producers are incentivized to minimize cost and maximize return.
Externalizing costs are beneficial to producer profit maximization. As a result,
unfortunately, there is a failure in the incentive matching between consumers and
producers. In most cases, due to the externalizing of costs and externalities, market
prices do not reflect the true cost of a good. Individuals can purchase more resources
because not all costs are captured in their production; in essence, reliance on market
prices can enable unsustainable consumption (Venkatesan 2017).

From this perspective, consumption plays a significant role in the sustainability of
the planet. Responsible consumption is requisite, and this can be promoted through
education and the coalescing of the consumer base, where the common ground can
be founded both on the self-interest assumed in economics and the trending cultural
value of holistic assessment.

Consumption choices are based on demand and supply of a good and are
identified with satisfying a need or a want. The impact of consumption decisions
can be significant when there is asymmetry of information; fundamentally, there is a
relationship between economic and environmental outcomes and consumption
choices. Purchases affect labor and environmental resource use. However, most
purchase decisions are made through a market mechanism, where the consumer is
not explicitly made aware of the entire production process, prices are inclusive of
only market costs of production, exclusive of the impact of externalities, and waste is
not a factor in the consumption decision. This limitation in information transparency
often creates a disconnect between the social and environmental justice sensitivities
of a consumer and the realities of their consumption choice in enabling and
maintaining the values that they espouse.

Consumption decisions can have a significant ripple effect throughout a single
economy as well as the finite global resource base. Consider, for example, the life
cycle of milk cartons. Polyethylene lined, printed paper milk cartons have been
created for the transport and preservation of milk from the production to the
consumption stage. However, the components of the carton were not developed
with waste disposal in mind; rather, increasing distribution and sales was the
rationale for the carton. As a result, largely related to the focused basis of its creation,
the milk carton serves a consumption purpose without consideration of the impact to
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the environment and potential future human and animal health due to its
non-biodegradable or re-usable composition. This illustration on a broader con-
sumption scale provides a simplified perspective to evaluate the underlying values
captured in consumption decisions. From this perspective, production for consump-
tion may be expressed as a myopic activity, focused on near-term satiation of a need
or want to the exclusion of the evaluation of the impact or ripple effect of the
satiation.

Another example is the price of a t-shirt produced in an emerging market. The
price will include the cost of the laborer who cut and sewed the shirt, but not the
social cost resulting from the lack of a living wage (given the price differential from
his payment for labor and the return to the producer who will sell the product at a US
boutique) and the limited to non-existent safe working conditions. The price does not
include the carbon footprint related to the ultimate transportation of the t-shirt to the
store, or the waste cost related to the landfilling of a shirt that cannot biodegrade
because it is not made of natural fibers. In net, the cost of the consumption of the
t-shirt is only partially borne by the purchaser; other societies and the environment
subsidize the price. The outcome, a price that is not reflective of the true cost of the
resources used, allows a developed society to have more than needed, to satisfy
wants, while unknowingly using more resources and creating environmental and
social externalities. The developing country laborer subsidizes the consumption due
to lack of labor market strength and in this manner, it becomes quite obvious the
vicious cycle that exists between poverty and consumption. Poverty enables over-
consumption through enabling the maintenance of low prices in developed
countries. In the developing world, the pervasiveness of poverty limits self-funding
for infrastructure, sanitation, and sustainable choices; this fosters a dependency trap
that only promotes survival not a focus on quality of life.

Sustainable consumption requires that consumers base consumption decisions on
the holistic impact of their consumption choices. The values embedded and
communicated within demand and supply determine the manner in which a need
is satisfied. Explicit awareness of present behavioral assumptions inclusive of the
“unlimited wants” of consumers, the profit maximization motivations of producers
to meet investor returns, and the understated resource depletion resulting from
externalized or understated costs offer the potential to modify active and embedded
behavior.

GDP is the global metric for economic progress. The metric is based on the
market value of final goods and services sold within the geographic borders of a
given country. The limitation of the calculation of GDP to market value in conjunc-
tion with firm profit maximization and consumer insatiability, two endogenized
tenets of neoclassical economics, has resulted in externalities to the environment
and societies. Externalities are observable in environmental degradation, and deple-
tion of environmental resources as well as in exploitation of labor markets.

Given the strength of the consumer expenditures in developed countries’ GDP,
sustainability transformation to sustainable development may be catalyzed through
education that promotes a shift in the cultural value of consumption to include a
responsibility for the holistic impact of a given consumption choice. The result
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would potentially lead to internalization of externalized costs of production to ensure
sustainable use of environmental resources. The outcome of conscious consumption
would potentially be found in improved environmental and human welfare, such as
working conditions and wages, most significantly in developing countries. Codifi-
cation of the value shift embodied in sustainability transformation as described
would be expected to result in regulation that establishes an ongoing framework
for sustainable development, as consumer would be understanding of the need for
regulation and be aligned with the intention of it.

2.4  Consumption, Economics, and Culture

Nearly everything we do either is influenced by economics or influences economic
outcomes. This makes the study of economics unique relative to other disciplines.
Economics is about daily life. It is the study of how individuals, firms, and the
overall economy function every day in relation to wants, needs, resources,
constraints, and perceived optimization. Underlying economics are values and our
perception of the world in relation to ourselves. For example, is the environment a
resource for our use or a needed asset for us to steward? In understanding the
interconnection between human consumption and the ecosystem, awareness may
augment the consumption/production relationship. As a result, the study of econom-
ics allows participants in the economy to make better decisions and derive greater
benefit from their activities. However, the qualitative attributes of “better” and
“greater” are not universal but are culturally determined.

Economics evaluates human behavior relative to wants, needs, and resource
allocation within a natural environment. By definition, the parameters of the disci-
pline include other life forms and physical resources needed to maintain both life and
environmental regeneration. To the extent that a human culture incorporates
non-human elements in decision-making, the economic system includes an under-
standing of the holistic inter-dependence of living and non-living elements of the
planet.

Culture is a significant contributor to what is perceived as valuable and is the
determining parameter in the designations that ultimately yield to resource allocation
within a society (O’Hara 1995). Given that culture is a learned behavior, culture can
either promote or diminish any given society’s understanding of the interconnected-
ness of human and planetary life, thereby determining the extent of the anthropocen-
tric, or human-centered, perspective. The United Nations Educational, Scientific and
Cultural Organization, UNESCO, defined culture as a significant component to
attaining global sustainability:

Culture shapes the way we see the world. It therefore has the capacity to bring about the
change of attitudes needed to ensure peace and sustainable development which, we know,
form the only possible way forward for life on planet Earth. Today, that goal is still a long
way off. A global crisis faces humanity at the dawn of the twenty-first century, marked by
increasing poverty in our symmetrical world, environmental degradation and shortsighted-
ness in policy-making. Culture is a crucial key to solving this crisis (UNESCO 2000).
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The inputs and outputs of economic systems are dependent on the culturally
determined value structures of a society. To the extent that economics explains
observable phenomenon and proposes optimal outcomes, the discipline can be not
only responsible for the maintenance of an economic framework but can also be
the catalyst for change. Economic outcomes in essence mimic the values of the
participants in an economic system, as these evolve, so does the outcome of the
economy.

Evaluating the historical cultural progression of human society can promote a
stronger understanding of the economic relationship with resource allocation, both
intra- and inter-society, and most importantly provide insights with respect to how
perceptions of the world are shaped through cultural frameworks at a given point in
time. The pace at which cultural attributes evolve may also provide a deeper
understanding of why institutional and social frameworks may be inconsistent
with the manifestation of contemporary challenges. Viewing economic thought or
philosophy over time reveals the dynamic and cultural elements of society, as well as
the basis of economic thought that remains in the principles literature in the present
period.

2,5 Reconciling Economic Theory and Historical Context

The cultural attribution of value is a significant and arguably primary differentiator
with respect to the variation in the perspective between societies of the quality of life
for both human and non-human elements. Examples of surviving written works that
provide a foundation or insight with respect to economic activities include Plato’s
Republic and Aristotle’s Politics. The similarities in economic circumstances as
described by the authors are consistent with the phenomenon observable today;
however, the evaluation of human behavior as it applied to accumulation of wealth,
stratification of society, and the role and impact of gratification were framed within
an evaluation and discussion of moral philosophy and ethics, positioning Western
economics up to the eighteenth century within the discipline of moral philosophy
and politics. The evolution of the discipline continued through the modern era until
the discipline formerly separated from moral and political philosophy through
iteration as political economy to its present standalone context as economics. The
observable mechanics of economic systems were the basis of discussion in conjunc-
tion with the human values, whether assumed as innate or culturally inspired. A
connection between the qualitative and quantitative aspects of economic outcomes
was articulated and addressed as an evolving and dynamic process. From this
perspective, economics discussions offered both a normative and a positive perspec-
tive, where the former provided opinions and values related to optimization and the
latter described observable activity. At the present time, economics in practice has
shed the normative element of the discipline opting for a positive attribution as a
means to enhance its standing as a science. In essence, the focus on optimization has
been to the exclusion of explicit evaluation of prevailing values. Given the signifi-
cance of embedded values in conscious decision-making, the lack of articulation of
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values may contribute to the implicit value of outcome-based decision-making that
only considers the optimization of the outcome rather than the impact of the outcome
to others and future consumption.

The foundation for current economic thought can be found in the writings of
Adam Smith (1791), Jeremy Bentham (1879), David Ricardo (1911), and Karl Marx
(1959) along with many others. However, though all of these authors provided
insights related to the human behavior contemporary to their time, the context of
their writings has often been neglected in lieu of an adoption of an absolute meaning
of their opinions. In essence, allowing the commentaries of these authors to embody
a universal significance independent of time has arguably enabled the transfer of the
theoretical modeling of a society specific from one period to another, independent of
any assessment of the temporal evolution of behavior and underlying values.

To alarge extent, the economic principles in practice have maintained the theories
espoused by the writers and contributors to economic thought contemporary to the
Classical period. John Stuart Mill’s (2016) Principles of Political Economy provided
a summary of the contributions to economic thought by Adam Smith, David
Ricardo, and other significant thought leaders of the nineteenth century and became
a standard text used in the study of economics into the early twentieth century.
However, of note is that the authors including Mill were relaying behaviors per-
ceived in a society contemporary to their life and questioning aspects of the observed
progress of the time including poverty, the role of money, and the potential impact of
population growth. Their thoughts were debated, discussions and their frameworks
were not adopted as immutable facts. Additionally, the issues discussed were similar
to those of predecessor Western societies and as evidenced in the moral philosophi-
cal discourses of Plato and Aristotle, nearly two millennia earlier. The evaluation of
the human condition within a given social and economic framework prompted
economic commentators to be both positive evaluators from the perspective that
positive signifies reporting on observable and factual phenomenon and normative
participants, where normative requires an expression of value judgment.

In contrast with the foundations of the discipline, the present instruction of
economics has eliminated the normative aspects of assessment, reducing economics
to mathematical relationships that are addressed in absolute terms rather than in
alignment with cultural attributions coincident with their development. Furthermore,
the seeming lack of attention to values and behavior incorporated within economic
assessment has distanced the tangibility of economics, limiting understanding of the
explanatory potential of economics and the application of economics as both a cause
and a remedy of unsustainable practices. As a result, at present there is a need to
promote and foster an understanding of the role of values in economic outcomes and
the sustainability of observed outcomes.
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2.6 Values and the Tragedy of the Commons

Writing in 1968 to a highly respected scientific audience, Garrett Hardin presented a
compelling formulation of what he coined as the “tragedy of the commons.” In his
assessment of the tragedy, population growth would lead to significant adverse
impacts on common resources. He posed the population problem in stark terms.
First, he examined the relationship of population to resources, and concluded
population must be brought under control. He then evaluated the dynamics respon-
sible for the increase in population size. From this analysis, he proposed solutions.

Hardin rejected the wild hope that improved food production technology will
allow for an indefinite increase in population: “a finite world can support only a finite
population” (Hardin, 1968). More specifically, we cannot hope to provide unlimited
growth in both the material quality of life and population. Mathematically, both
factors cannot be independently maximized; and biophysically, the calories available
per person must eventually decrease as population increases. In his assessment, he
invalidated the classical economic perspective of Jeremy Bentham, who espoused
“the greatest good for the greatest number,” and concluded, “the optimum popula-
tion is, then, less than the maximum” (Bentham 1879).

Hardin asserted that a resource is a common good when many people have access
to it. He reasoned that a self-interested rational economic agent would decide to
increase his or her exploitation of the resource since he or she receives the full benefit
of the increase, while spreading the costs among all users. The remorseless and tragic
result of each person thinking this way, however, is ruin of the commons, and thus of
everyone using it.

Hardin implicitly rejected the role of conscience or social self-policing of the
commons. However, his perception of behavior is aligned with prevailing
assumptions in economics related to self-interest embedded within both consumer
and producer theory. As a result, individual optimization strategies prevail but
produce outcomes that diverge from those predicted by Adam Smith. Smith in his
assessment and promotion of individual self-interested behavior perceived such
qualities as a mechanism that enhances overall public welfare.

2.7  The Role of Culture in Averting and Promoting Tragedy

Currently, interest in sustainability has promoted a reevaluation of the causality of
observable environmental degradation, exploitation, and resource depletion. As a
result, there has been an increasing interest in Indigenous societies specific to the
balance between their development and the environment. However, the unfortunate
reality is that much of the evaluation and attribution related to Indigenous societies
falls within the realm of conjecture and anecdote. This is due in large part to the
limited availability of records written in the pen of these people, as well as the
countervailing bias of recorded observations written in the hand of the colonial
settler. This is especially true in the United States, where the elimination and forced
assimilation of the Indigenous limited and often prevented the intergenerational
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transmission of their culture. However, even with these data limitations there remain
important insights and contributions associated with evaluating sustainability from
the perspective of the Native American population, foremost is the role of culture.

2.7.1 Indigenous Relationship with the Commons

In spite of the light ecological footprints left by the numerous tribes inhabiting the
North American continent, Indigenous populations were able to live and maintain
their cultures within a thriving ecosystem. Though it is not possible to state that the
Native inhabitants did not alter or augment their environment, their recorded cultural
practices at the time of the Plymouth colony support the view that they lived in
harmony with their ecological circumstances. This is most readily seen through the
accounts of abundance of the commodities that the English colonizers observed and
recorded, where the commodities were natural products that could be shipped to
Europe and sold profitably to provide regular income for colonists. Of related
interest is that the cost of these natural resources, as relayed in colonial documents,
included only the expense of hunting, cultivating, harvesting, and extracting, as well
as transport, there was no cost attributable for degradation or regeneration.

Native populations, in contrast to Europeans, appeared to live within purposely
created resource constraints. European records indicated that in spite of the resources
available, these societies stored insufficient amounts of food for the cold winter
season, preferring to endure starvation for periods. This appeared irrational to the
Europeans and was one of many lines of arguments used to justify the perception of
the Indigenous population’s way of life was inferior. However, contrary to the
Europeans interpretation, the practice of rationed fasting increased the hardiness of
Natives and to their ability to literally weather the difficulties of the change in
season. Additionally, consciously driven, limited food storage prior to the onset of
winter appeared to constrain population growth, thereby limiting the longer-term
human impact on natural resources and maintaining their accessibility to meet
communal and ecosystem needs (Cronon 1983).

In short, the evidence is consistent with the view that Native populations used
environmental resources sparingly despite their seeming abundance (Calloway
1997; Cronon 1983). This is easily seen in the descriptions of the wealth of resource
availability in early explorer and colonial narratives. Differences regarding the
cultural approach to the management of resources between the Indigenous and
European populations are clear when one considers the resource depletion that
took place, in the form of reductions in the availability of timber and animal
resources within a few decades of European colonial settlement.

Specific to agricultural practices, Indigenous agricultural practices were not as
intensive as the European planting and harvesting cycles. However, the mixed crop
planting appeared to have benefits to both the soil and harvest. The seeming lack of
attention to planting appeared to mimic the conscious ecological relationship
between Indigenous communities and the New England ecological system. Native
peoples rotated their settlements in relation to the seasons, maintaining a minimal
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impact to the ecosystem and limiting the burden that their settlements imposed on
any species. In their migration, Indigenous peoples maximized their seasonal access
to resources and minimized their efforts, while achieving greater ecosystem balance
(Cronon 1983). The observation of Native practices only furthered colonial views
related to the uncivilized nature of the Native population. Puritan accounts relayed a
view that Natives were inefficient in their agricultural practices and the seeming lack
of use of God given resources justified the taking of their land (Jennings 1975;
Lopenzina 2006).

The maintenance of Indigenous peoples in New England extended over a multi-
century period summing to millennia. Furthermore, at the time of colonial settle-
ment, Indigenous communities were not recorded as being in a state of self-induced
ecological peril. These observations compare to the significant environmental deg-
radation, species elimination, and resource depletion observable in less than four
centuries and arguably catalyzed by the culture of the usurping colonial settlers
(Calloway 1997; Jennings 1975). The variation between the environmental legacies
of the Indigenous relative to the colonists does promote a rationale for studying the
impact of a society’s cultural values on the environment.

2.7.2 Colonists Promotion of “Tragedy”

Colonial records of New England in the seventeenth century were not descriptive
narratives related to the beauty or even objective assessment of the landscape.
Instead the surviving descriptions are useful in providing insight into the market
focus of colonial settlers. The colonial attitudes and appetite for what was coined as
the “New World” equated to a “discovery” from the perspective that the resources
found were thought of as accessible for the colonists’ taking, the land for their
ownership, and the Native people for whatever purposes the colonists so fit, includ-
ing their elimination in the event they proved useless (Cronon 1983; Jennings 1975).
Their views were legitimized by religion and a sense of moral superiority and
indifference to whether their actions in the New World were contrary to those
espoused in either. The initial justification of the settler’s right to land that was
already inhabited was provided through religion and in particular the book of
Genesis, which said to give land to those who used their God given attribute of
dominion over plants and animals and who followed God’s pronouncement to
multiply; neither if these characteristics were found to be in use by the Indigenous
populations (Cronon 1983).

English settlers accustomed to scarcities of wood enthusiastically recorded that
the New England landscape was filled with trees of sufficient number, to ensure a
warmer winter than “the nobility of England could hope for.” A century later in the
1700s, the same areas were observed and recorded by William Wood, “as being so
clear that one may ride a hunting in most places of the land if he will venture himself
for being lost.” Another observer recorded that from a hill near Boston for thousands
of acres not one tree could be seen (Cronon 1983). Like timber harvesting, the
slaughter of animals for fur as a result of the European fur trade depleted large
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populations of beaver, deer, and bears. Other animals, especially wolves and cougars
were exterminated as part of the colonial process of transforming wilderness to
civilization. The loss of species impacted the entire ecosystem, in the case of beaver,
the significant decline in population meant that dams and natural fisheries were no
longer extant, this augmented river flow, fish spawning activities and impacted
habitats, grazing, and ultimately increased erosion (Calloway 1997).

Returning to Hardin’s assertion of the tragedy of the commons, it is clear that
colonial cultural norms promoted the observed tragedy of the commons, in much the
same manner as Indigenous cultural norms averted it. The enabling action for the
sustainable use of resources appears to be embedded social norms; values impact
behaviors that then establish economic outcomes.

2.8 Perception of Resource Value, Market Outcomes, and Price

Economics is the social science discipline that evaluates the relationship between
human wants and the resources available to satisfy them. In identifying and
explaining the relationship between wants and resources, economists use broad
generalizations related to human behavior, arguably the most significant of which
relates to wants (Fagg 1981).

Wants are based on the premise that individual economic agents, individuals
interacting within the general economy, will always seek to have more of desirable
goods and services. Desirable goods include both normal goods, which are goods
that an individual will continue to purchase as their income increases and luxury
goods, which are goods that are not needed but are wanted to support an external
display or perception of status or wealth. Not all goods are desirable, for example,
inferior goods represent a classification of goods and services that will be reduced or
eliminated by consumers as their incomes increase.

The behavior of wanting more, sometimes referenced as unlimited wants, is a
social value, consistent with consumerism, which is defined as the focused act of
consuming goods and services to improve utility, the economic concept that defines
the benefit of consumption. Insatiability is not representative of an intrinsic human
characteristic but rather a learned behavior. This is an important point. If a behavior
is learned, it can be unlearned and a new behavior can emerge, which in turn can
produce a different economic outcome.

29 Competition and the Tragedy of the Commons

Market outcomes, price and quantity, are highly dependent on the information that
consumers and suppliers have available. Informational asymmetry, where one party
has more understanding or knowledge related to a good than another party, can
create price and quantity outcomes that may not effectively consider scarcity. This
results in market inefficiency, a situation where resource use is not efficiently
allocated by the market. This is a significant issue and one that consumers are only
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beginning to understand. For example, abundance is a relative term but it is not
inconsistent with scarcity; all resources are scarce. The perception of abundance
without the recognition of inherent scarcity of resources can hasten resource
depletion.

Resources are broadly defined as including all the inputs in the production of final
goods and services that are ultimately tied to the satisfaction of a want. From this
perspective, resources could include teak wood trees in the making of furniture,
water in the production of soda, and cattle in the production of food. Typically,
resources are classified into one of three groupings, which include natural resources,
human resources, and capital resources. Trees, water, and cattle are all natural
resources. Human labor or entrepreneurship defines human resources and capital
resources consist of man-made objects that can be used to produce goods and
services, such as factories and equipment. Regardless of the type of resource, all
resources are finite and so by definition can be qualified as scarce (Venkatesan 2016;
Czech 2000; Choi and Ng 2011).

Scarcity in economics essentially captures the relationship between wants and the
access and availability of resources. For example, one could want a mango, see it
hanging high on a tree but not have a ladder to reach it. The good in question is
available but it is not accessible. Alternatively, one could stumble on a farmer’s
market selling mangos only to find that all the mangoes on display have been
purchased. In this case, the mangos are accessible but they are not available. Both
of these examples highlight the temporal or time sensitivity of scarcity. In the first
example, one could borrow or purchase a ladder but this will take time and in the
second scenario, one can drive or walk to another market, but again, additional time
will be required to satisfy the want.

Looking at time in a slightly different manner, a community could require lumber
for the construction of new municipal buildings. The lumber required will result in
the deforestation of one hundred acres. In satisfying the want for lumber today, the
community limits access and availability of lumber from the one hundred acres over
the time period required for the forest to regenerate, creating time-based scarcity.

2.10 Market Distortions, Externalities, and Failure of Market
Equilibrium

In a market system, access and availability establish a perceived scarcity embedded
within the supply of a good. Ultimately, the supplier’s willingness and ability to sell
a specified amount of a good at a prevailing price are assumed to capture the costs of
production of the good, implicitly including the scarcity of inputs. As a result, it is
expected that the higher the degree of perceived scarcity of a resource, the higher its
price and in the case of an input, the resulting price of the final good.

The production of goods by producers is based on a competitive framework.
Additionally, the producer seeks to minimize costs and maximize revenue, to
achieve maximum profitability. As a result of the focus on profitability, there is
significant incentive for producers to externalize costs of production as a means of
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cost minimization. Externalizing costs can include pollution discharge, exploitation
of regulatory differences between countries, overuse of natural resources, and
limited waste disposal and reduction efficiencies. Though in the immediate period
this may be beneficial to profitability, it may promote both short-lived unsustainable
returns and longer-term environmental and social costs.

Consumers may not be aware of the implicit trade-offs being made as a result of
the production of a good. This informational asymmetry can be attributable to many
reasons, including a belief that regulatory agencies guarantee safety, to just simply a
lack of diligence when assessing goods. For consumers, reliance on market effi-
ciency without an understanding of the embedded incentives of producers can
promote negative externalities. In effect, the pursuit of satisfying unlimited wants
may include effectively delegating environmental and social stewardship to
producers whose incentives may not include the evaluation of these parameters.
The end result is most readily seen in natural resources, where under-pricing (Boran
2006) due to lack of inclusion of scarcity can lead to extinction or elimination of a
resource’s availability.

In a market driven economy, such as in the USA, the market is credited with
efficiently determining the price of an item by implicitly incorporating the costs
associated with production. When consumers or producers face low prices for
consumption and input purchases, respectively, and the underlying belief is that
the price being paid is fully reflective of the cost of the item being purchased, there is
less of an incentive for efficient use and higher potential for waste. Price effectively
becomes a measure of a resource’s worth. When asymmetric or incomplete assess-
ment of scarcity is prevalent, price may not properly indicate the cost of the resource
being consumed.

In some areas of the world, forested land has been perceived as abundant and the
resulting price for land has been limited to the perception of present period abun-
dance. The net result of the perception has been excessive global deforestation,
resulting in present period-pronounced scarcity in some regions. Decades will be
required to promote regrowth of the same lands. Had prices considered the impact of
forest harvesting, or the price of temporal scarcity, demand would have been
lessened. Both consumption and production could have promoted efficient market
pricing leading to sustainable resource use, all from this simple inclusion.

Demand and supply yield market outcomes that are assumed to represent an
efficient allocation of resources. The price at which the quantity demanded equals
the quantity supplied is therefore expected to embody the cost associated with the
production and consumption of the good or service. However, production and
consumption are not limited to the transactional nature of exchange of the final
good at the determined market price. In the process of production and consumption,
there are costs that are not factored that impact the well-being of the economy at
large and these are referenced as externalities. In essence, externalities arise when an
individual or firm engages in activities that influence the well-being of others and
where no compensation is provided in exchange for the imposition.

Typically externalities are characterized as negative, signifying that the external-
ity yields an adverse outcome. These externalities are referenced as being negative
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externalities. However, there is a potential that a positive outcome could be
generated leading to a positive externality. In the discussion of externalities, it
often assumed that market participants accept the externalities generated by their
actions as acceptable due to their focus on immediate gratification of their needs. For
the producer, this equates to externalizing the cost of disposal of waste products into
waterways and the air where no cost is directly borne to adversely impact profits but
qualitative costs are assessed that may impact the enjoyment and longevity of
multiple life forms and generations of human life. For the consumer, the externality
can be evaluated in the indifference to waste creation at the point of the consumption
decision or even the externalities associated with the production of the good or
service being purchased. In the case of the former, the cost of disposal of packaging
material is typically marginal to zero, relatively negligible, but disposal creates a
negative externality in the landfill, incinerator, or recycling plant that could have
been avoided with a thoughtful exercise of demand.

At present, the type of internalizing of externalities that has occurred has been
limited to quantifying the externality to an overt cost. However, to the extent that the
costs may remain unassessed and the market mechanism is not cognizant and
focused on the elimination of the externality-based cost, rather the minimization of
overall costs, this process has yielded suboptimal outcomes. For example, assume
that a firm produces ambient pollution as a result of incineration of waste. If a
governmental regulatory body institutes a fee or cost for pollution, effectively
charging the firm for the ability to pollute the air, the producer is able to delegate
responsibility for environmental stewardship to the price of pollution. Additionally,
depending on the price elasticity of demand for the service offered, the producer may
be able to not only transfer the costs now associated with polluting activity to the
consumer, but may also be able to maintain the pollution level. Assuming that the
consumer is inelastic, in this example the negative externality related to internalizing
the cost has not changed, instead only the responsibility of pollution has been
transferred to a cost, revenue to the regulating body has been generated, and the
consumer has suffered erosion in their overall disposable income and purchasing
power.

The same type of scenario exists with a permit trading program, where in effect
permits are issued for a specific amount of externality emission, allowing economic
agents to trade and thereby optimize through again cost minimization. However, the
cost minimization is founded on the presumption or delegation of the permit system
to fostering socially optimal outcomes, again, relieving the economic agent engaged
in the creation of the externality form being directly accountable for qualitative
actions. Additionally, the trading of permits assumes that optimal financial outcomes
equate to optimal environmental and social outcome due to the aggregated assess-
ment of pollution. However, to the extent that pollution is not distributed evenly and
certain locations may have a disproportionate concentration, the permit systems fails
to generate a socially optimal outcome. This may be compounded by the impact of
inelasticity, which may allow for the transfer of costs of implementation of the
permit program to the economic agents the program was designed to protect.
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Externalities are defined as a type of market failure based on the premise that
optimal social outcomes result from individual economic agents acting in self-
interest. However, if instead of being a market failure, externalities could be
evaluated to assess and develop an optimizing strategy between individual interests
and enhanced social outcomes, externalities could be internalized within the market
model as a modification of preference. Perhaps externalities only indicate a lack of
holistic awareness on the part of the consumer and producer or a cultural bias toward
immediate gratification. These characteristics can be potentially modified through
education. Optimal and universally acceptable strategies could then be adopted to
promote sustainability.

The success of this internalization strategy relies on the development of the
educated rational economic agent as a consumer. If consumers are aware of the
responsibility inherent in their consumption and are aware of the environmental and
social impact of production processes, consumer demand can create the coalescing
framework to augment preference to exhibit demand for sustainably produced
products. The augmentation in demand does not allow for the opportunity of
delegation of responsibility of pollution capacity to a cost or alternatively, the
incorporation within a cost minimization framework, as a result, the change in
preference and subsequent modification in demand promotes the development of
market outcomes that are environmentally and socially optimal from the position of
what is supplied.

Resources such as air and water have no market price and are considered to be
abundant. On the surface, these resources may appear to be unlimited; however,
increased population pressures along with externalized costs related to production,
such as pollution, have diminished the availability of both potable water and clean
air. How could this have occurred?

The lack of price, a market model promoting the focus of profit maximization,
and promotion and validation of unlimited wants are largely responsible. Consumers
have effectively allowed supply to determine demand by not imposing restrictions
on how goods can be produced. Producers have focused on short-term profitability in
lieu of long-term strategic resource utilization. In the short-run, both consumers and
producers have benefitted but the cost of consumption and profitability was
externalized to other nations, the environment, and future generations. For example,
in the seventeenth century, North American coastal waters were described and
recorded as being rich in quantity and diversity of fish; the perception of abundance
led over time to overfishing and presently many varieties are endangered or at the
risk of extinction. The cost of fishing included the human and capital costs not the
replenishment costs. This yielded an ability to maintain artificially low prices,
greater yields for profitability (over fishing), and waste.
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2.11 Market Prices, Values, and Common Goods

An understanding of the perception of scarcity and abundance provides a strong
foundation to understanding supply, demand, and market outcomes as these
concepts relate to resource allocation and sustainability. To the extent that
consumers delegate responsibility for sustainable consumption to producers and
producers are focused solely on profit maximization increased understanding of
the responsibility inherent in consumption may provide a catalyst for increasing
sustainable production, consumption, and development. As holistic evaluation of
consumption is an assumed behavior of the rational economic agent, strengthening
the understanding of the role of consumption may be significant in enabling the
development of the rational economic agent.

Supply and demand reflect the amount that producers or suppliers of a good or
service are willing and able to sell at a particular price and the amount that
consumers of a good or service are willing and able to purchase at a particular
price, respectively. Though on the surface the concepts of supply and demand appear
simple the characteristics that determine the explicit willingness and ability can be
complex. The complications can arise as a result of differences in the preferences,
behaviors, cultural values, financial capacity, as well as resource access and avail-
ability to the production process as these relate to suppliers. For consumers or
demand, the complications can also be attributed to preferences, behaviors, cultural
values, financial capacity, and wealth perception, as well as the perception of value
and price, along with access and availability, of other substitute and complementary
goods. Where and how the supply and demand interact with each other define a
market. A market is comprised of a group of producers (supply) and consumers
(demand) for a specific good or service, who collectively, as part of their exchange
process, determine the market price or equilibrium price of a good or service.

Price is the natural outcome of the supply and demand relationship. It is indicative
of the value of a good based on a consumer’s assessment of the costs and benefits of
purchasing the good. As consumers become increasingly aware of the environmental
and social costs of production, the prevailing price may be corrected either through
regulatory imposition of the costs of externalities within the market mechanism or
via consumers, who will opt to purchase goods not on price but related to holistic
production costs.

It is important to note that the market relationship is dependent on information
and understanding of the limits of duty of care. The outcome of the market relation-
ship, price and quantity, can only reflect the embedded preferences and cultural
values depicted in demand and supply. If the market outcome does not meet
expectations, the market model is not to blame; rather the prevailing value structure
may be the flaw.

Value in this context is related to how resources are valued from the perspective
of the quality of care and maintenance we would be willing and able to provide to
ensure the protection of the resource. The use of the word “value” is not directly
based on market quantification but expresses the hierarchical importance that
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consumers and producers would attribute to a resource; examples may include the
environment, human health, and animal welfare.

Every day consumers make decisions with the collective strength of aggregated
individual demand. These decisions influence supply and demand going forward,
including the ability of producers to develop new goods and services, as well as
resources and technological advances to satisfy both existing demand and projected
future demand. Demand is a powerful catalyst in the evolution of market outcomes.
However, to a large extent the power of demand is limited both by the fragmentation
of consumers due to limited opportunities for coalescing around specific interests
and by the consumer understanding of the inherent power of aggregated consump-
tion decisions. From this perspective, understanding how the market functions and
the power of consumption in creating sustainable economic outcomes is one aspect
of developing into a rational economic agent.

The values embedded and communicated within demand and supply determine
the manner in which a need or want is attained. To the extent that there is no
discussion of the values and behavioral factors assumed and reflected in demand
and supply, arguably, implicit values, the values and the subsequent behaviors
become endogenous to the economic system. From this perspective, explicit aware-
ness of present behavioral assumptions inclusive of the “unlimited wants” of
consumers, profit maximization motivations of producers, and the understated
resource depletion resulting from externalized costs offer the potential to modify
active and embedded behavior.

2.12 Conscious Consumption and the Social Norm
of Sustainability

The explicit discussion of the embedded assumptions guiding the behavior of the
decision-maker is typically not a part of the economic education process. As a result,
to the extent that individual economic agents, producers or consumers of a good or
service, are bounded by rationality that does not include addressing the impact of
externalized or non-quantified costs, the economic discussion does not promote or
position the assessment of alternative outcomes. Implicitly and endogenously, the
economic discussion establishes and maintains consumption to production circular
flow, focusing on the gratification of consumption and profit-taking from production,
seemingly eliminating assessment of externalities and holistic dynamics.
Economics, in present practice, evaluates efficiency with respect to the use of
resources to maximize production and consumption, not by the moral desirability of
the physical methods and social institutions used to achieve this end. The factors that
are included in an economic evaluation are limited to the tangible quantifiable costs
and costs are overlooked where either a market or regulatory oversight has not
provided a monetary justification (Shah 1999; Venkatesan, 2015). From this per-
spective, the impact of consumption decisions on the environment, economic dis-
parity, or endangerment of other species is not an issue. The market mechanism
disenfranchises the consumer from the welfare of those impacted by his/her
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consumption and promotes the perception that price alone is indicative of the true
cost of a good. The possibility that consumption should be reduced because the act of
consumption is not good for the soul, or is not what actually makes people happy,
has no place within the economic value system (Nelson 1995). The underlying
assumption is that consumers are driven to want more. As a result, economic
modeling assumes that reduction in consumption in the current period is only
addressed through the lens of an increase in consumption in a later period (Knoedler
and Underwood 2003). That the assumption of insatiable want may be taught a
learned behavior, reinforced through a market model is not even addressed in
€Cconomics.

A general and seemingly applicable assumption is that consumers and producers
maximize the benefit related to the opportunity accessible in their particular circum-
stance. The desire to reach an optimal outcome for a given point in time, as has been
noted before, is subjective and specific to how these economic agents view the
concept of maximization, which in turn is likely to be highly correlated with cultural
values. For example, in Indigenous societies there is evidence that a balance between
present and future periods along with that of the environmental system, as a whole,
was included in decision-making and optimization (Nerburn 1999). In present
consumerism fostered economies, the cultural values are less likely or unlikely to
incorporate environmental and social justice parameters proactively. The focus of
observable and marketed consumption is immediate gratification. However, as
consumer awareness of both the impact of consumption and the power of consump-
tion to modify and catalyze economic outcomes increases there is growing evidence
of a shifting cultural paradigm to one of sustainability.

Markets do fail to produce environmental and socially optimal outcomes. Some-
times this is due to the myopic focus of market participants as in the case of lack of
accounting for externalities and in other circumstances it can be attributable to the
lack of excludability as in the case of common goods. To some extent, cultural
values dictate the significance of the adversity related to the creation of externalities
or abuse of common goods. The use of market models has been the regulatory
mechanism to modify socially non-optimal outcomes, but through relying on the
market mechanism rather than simultaneously including mechanics to promote
cultural change, the majority of regulatory interventions to date have had limited
to questionable success.

A constituency with an understanding of the holistic relationship between con-
sumption and sustainability and having engagement in government are foundational
elements in achieving and maintaining sustainability as a cultural norm. For long-
term traction, sustainability is dependent upon holistic and routine evaluation of
economic and societal frameworks. These frameworks need to be assessed and
modified as part of an on-going continuous improvement process. Fundamentally,
what may have been viewed as appropriate action at a point in time may no longer
serve the same purpose due to changing environmental, social, and cultural
parameters. However, the members of a society have to be both empowered and
cognizant of the need for this type of evaluation in order for efficiency and ultimately
sustainability to be a realized inter- and intra-generational attribute. From this
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perspective, the deployment of consumer education programs targeted at defining
responsible demand and conscious consumption is a requisite foundation for
sustainability (Junyent and Geli de Ciurana 2008).

2.13 Conclusion

The discussion in this chapter has focused on the role of culture in establishing
economic outcomes and the relationship between the economic system and environ-
mental sustainability and sustainable economic growth. In essence, argument has
been made that the present consumption oriented economic system is veiled by the
market, obscuring consumers from understanding their direct contribution to envi-
ronmental degradation and social injustice. Furthermore, an economic growth model
that measures growth based on consumption is misaligned with sustainability. In
order to promote the inclusion of environmental assets and non-human life in the
discussion of sustainability, consumers need to be made aware of the connection
between prices, externalities, and consumption. Education to align consumer behav-
ior with sustainability of outcomes is fundamental requisite to achieve a foundation
where bioeconomy can promote sustainable economic development. Without an
understanding of the impact of the consumer supply chain, the bioeconomy risks
being a substitute for present production processes rather than a value-based para-
digm shift that measures growth based on parameters independent of human and
non-human life exploitation.

Given that bioeconomy is discussed as a substitute for present production pro-
cesses and therefore relies on the development of new technologies to promote
efficient use and sustainability of resources, there is a need to also address the
sustainability of human population growth. Returning to the assertion that
sustainability be holistic and inclusive of the welfare of non-human life, without
discussion of human population control all non-human life will be controlled and
maintained for the benefit of human life, ceasing in its own ability to have life value
and evolve and further, eliminating the nature-based connection of the interconnec-
tivity of life that silently provides for natural balance. Human population growth
needs to be included as part of sustainability education and the role of reproduction
needs to be evaluated in order to establish a sustainable bioeconomy.
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Abstract

The national and international scientific community considers Ecuador’s biodi-
versity to be a comparative—even competitive—advantage of a new develop-
ment paradigm, which could pave the way for a future that is less dependent on
non-renewable resources. Accordingly, the concept of bioeconomy has raised
attention from different sectors, but its understanding and policy development to
exploit its potential are still very limited. In the present work, we propose a
methodological approach to assess the economic and social contribution of the
bioeconomic sector in Ecuador. First, the theoretical and empirical foundations
are delineated, based on conceptual aspects and similar previous case studies.
Second, three available models (input—output model, general equilibrium model,
and social accounting matrix) are evaluated in terms of comparability, applicabil-
ity, external validity, and scalability. Based on a comparison of the models, the
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input—output matrix ranks best in terms of comparability and external validity.
Aware that other countries in the region are also interested in implementing
similar efforts, we have completed this exercise prioritizing the comparability
(across and within countries) and external validity aspects. Thus, this work may
aid in the elaboration of future evaluation approaches in other Latin American
countries.

Keywords

Bioeconomy - Bioindustry - Input—Output model - Sustainable Development
Goals - Latin America

3.1 Introduction

The Ecuadorian economy is highly vulnerable to external factors. The oil sector
represents more than 40% of total exports and 20% of the public sector income (BCE
2018). Since the dollarization in 2000, the country has experienced an average
growth rate of 3.7% but also negative growth (around —1.23%) in 2016, due to a
fall in international oil prices and an earthquake in the northern coast of the country
(BCE 2018). The dollarization of the Ecuadorian economy marks a turning point in
the country’s economic history, in which the loss of monetary policy, dependence on
foreign currency, competitiveness, and other factors investigated by local authors
(Acosta 2004; Correa 2004; Falconi 2004) are characteristics to consider when
executing public policies. The national and international scientific community,
bearing in mind that Ecuador is a megadiverse country, considers biodiversity as a
comparative advantage (even competitive) of a new development paradigm that may
contribute to the construction of a post-oil Ecuador (MAE 2016).

The bioeconomy has the potential to coherently address the complex challenge of
generating from agricultural production, new sustainable sources of economic and
social growth that contribute to the achievement of most Sustainable Development
Goals (SDGs). In fact, promoting the bioeconomy and its subsectors in Ecuador
allows the country to avail itself of a strategic resource that has been neglected so far,
biodiversity and its genetic wealth. Despite the local interest awakened by the
bioeconomy (Ortega-Pacheco et al. 2018), its understanding and the development
of policies that could exploit its potential continue in an incipient stage.

In this context, the increasing exhaustion of natural stocks and volatility in prices
of raw material (e.g. oil prices) raises the need to promote public policies towards a
socio-economic transition that guarantees the environmental, social, and economic
sustainability of the country, particularly the rural sector. This context provides an
opportunity for the bioeconomy. In the same vein, the fall in prices of raw materials
has an impact on agriculture, generating a crisis of alternatives for the rural sector
and an opportunity for biodiversity-based production schemes that reduce vulnera-
bility to external shocks. Indeed, the National Biodiversity Strategy (NBS)
2015-2030 has been designed to give way to the industrialization of biodiversity
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based on bioknowledge (MAE 2016). It is a structure to protect biodiversity and
catalyse a sustainable transition of the Ecuadorian economy. The bioeconomy is
compatible with this approach to Ecuador’s development.

One of the main problems in the analysis of alternative development models are
the opportunity costs between the relative GDP participation of the sector, labour
migration, deforestation, loss of biodiversity, and the expansion of industrial and
service sectors. Any configuration of the bioeconomy must then consider the
complex interdependencies between these variables and the dependence of national
incomes on extractive economies. Falconi and Vallejo (2012) argue that the key
determinants that promote socio-ecological transitions in Andean countries such as
Ecuador are economic efficiency, income redistribution, and physical sustainability.
As extractive economies exert environmental pressure and deepen inequalities, their
prospects for economic growth are limited by the carrying capacity of the ecosystem.
Taking these factors into consideration, we have conducted this assessment of the
bioeconomic sector’s contribution to the Ecuadorian GDP.

The following section introduces the concept of bioeconomy and how it is
understood by the most relevant organizations. In Sect. 3.3, the Ecuadorian eco-
nomic structure is presented in terms of GDP components and bioeconomic shares
within the economic subsectors. Section 3.4 presents the different models available
for the assessment of the contribution of the bioeconomy. Section 3.5 compares the
models considering the criteria mentioned above. Section 3.6 presents the estimates
of the bioeconomy to the Ecuadorian economy, and Sect. 3.7 introduces five sectors
in which the bioeconomy has exceptional potential to contribute. Section 3.8 offers
final take-away ideas and suggests future research avenues.

3.2 Conceptual Framework

The present section aims to explore different definitions of bioeconomy to parame-
terize the identified methodology but not to critically compare the different theoreti-
cal proposals that are available nor to implement a normative analysis (Vivien et al.
2019). Relevant to the operational definition of bioeconomy is facilitating its appli-
cability in other examples, within a time frame that permits the evaluation of its
evolution. In other words, the concept of bioeconomy should be compatible with the
incorporation of items and sub-items of a national system within the methodology to
assess bioeconomy, as well as with the differentiation between the possible scenarios
for the implementation of bioeconomy in a context of productive development.
About these possible scenarios, it is important to consider that bioeconomy
requires the utilization of more resources, processes, and biological principles,
only possible if there is a utilization of new knowledge, technology and information,
and the availability of capacities that are related to its use. Accordingly, it has been
identified that, in the short-run, a technological hybridization would be observed,
whereby traditional technologies and new biotechnologies interact to pave the way
for more efficient and environmental friendly production models (i.e. increase effi-
ciency in the agricultural sector) (IICA 2019). In the long-run, progress in the
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biological sciences and information technologies will bring about better varieties and
new uses for biomass. The element that underlies the analysis of the possible
scenarios is the increase and focalization of investments in innovation and develop-
ment (I & D) and the commercial scaling of biodiscoveries, as well as the formation
of scientific and technological capacities, strategies to develop industrial clusters,
support programs, and equitable distribution schemes of the added value that has
been generated. Of particular interest is the possibility that these development
bioeconomy scenarios promote social inclusion by means of the increase of
opportunities in rural areas.

The Economic Commission for Latin America and the Caribbean (CEPAL, by its
Spanish acronym) defines bioeconomy as (Rodriguez et al. 2017):

(a) an economy based on the consumption and production of goods and services
derived from the direct use and sustainable transformation of biological
resources, including biogenic waste generated in the transformation, production,
and consumption processes,

(b) taking advantage of the knowledge of biological processes and principles, and,

(c) technologies applicable to the knowledge and transformation of biological
resources and to the emulation of biological processes and principles.

Other authors and FAO sources (Bracco et al. 2018) consider that bioeconomy
includes:

(a) use of renewable biomass and efficient bioprocesses to achieve a sustainable
production,

(b) use of converging technologies, including biotechnology, and,

(c) integration between applications such as agriculture, health, and industry.

Likewise, there is an increasing interest in the literature in defining bioeconomy
as technological solutions or other artificial solutions intended to complement or
substitute non-renewable resources with alternatives with biological base (D’ Amato
et al. 2019). These solutions are based on:

(a) the idea of applying principles and biological processes in all economic sectors,
(b) the replacement of fossil-based raw materials with biologically based resources
and principles in the economy (Dietz et al. 2018).

Thus, some authors conceptualize bioeconomy as the industrial transition towards
the sustainable use of aquatic and terrestrial resources through the generation of
intermediate and final products that involve the displacement of the use of products
derived from fossil-based raw materials (Golden and Handfield 2014). Note that
within these approaches, primary biobased products, such as those generated by
agriculture or livestock, are not considered, but only the transformation of these
products by means of an intensive use of knowledge. Therefore, combining these last
approaches, the bioeconomy does not only refer to an industrial sector but also to the
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set of economic activities related to the invention, development, production, and use
of products and processes based on biological resources within the national economy
(OECD 2009). That is, a productive transformation that is both biologically based
(Trigo et al. 2013) and circular (Giampietro 2019) as the ground for a socio-
ecological transition (de Schutter et al. 2019; Ortega-Pacheco et al. 2018).

In summary, a definition could be posited: “The production and use of biological
resources, biological processes and principles to provide intermediate and final
goods and services in a sustainable manner in all economic sectors through the
intensive use of knowledge that displaces the use of products derived from fossil
fuel”.

From this discussion, it is evident the need for a concept of bioeconomy that
contributes to the comparability, applicability, external validity, and scalability of
the applied methodology. Indeed, this concept should allow the incorporation of the
different groups of sectors and subsectors that each country considers to be
“bioeconomy”. Similarly, it should allow to interpret the role over time of actions
such as the provision of biomass resources, economic specialization, and
investments in research and development (R + D) in a context that ensures an
effective governance framework for a ‘“‘sustainable bioeconomy” (El-Chichakli
et al. 2016; IICA 2019).

3.3  Sectors in the Ecuadorian Bioeconomy
3.3.1 The Ecuadorian Economic Structure

Before detailing the methodology used to identify the sectors that compose the
bioeconomy in Ecuador, it is worth describing the composition of the country’s
economy. Considering the traditional classification of three economic sectors, the
Ecuadorian GDP is distributed as follows: primary 22%, secondary 24%, and tertiary
54% (BCE 2018). Considering a more disaggregated categorization, Fig. 3.1
displays the GDP contribution shares of the most relevant subsectors. Note that
the contribution share of the manufacturing industry is equivalent to that of the Oil
and Mines subsector. In other words, the wealth generation of the country’s indus-
trial apparatus is similar to the contribution of a single natural resource. Such a
characteristic is relevant when determining the contribution of the bioeconomy and
the planning of scenarios for a productive transition.

A priori, an assumption is that the bioeconomy participates more predominantly
in the primary and secondary sectors. Despite the fact that the GDP contributions
from these two are similar, the way their contributions come about is not. Note that
the participation of subsectors in the primary sector (green bars in Fig. 3.1) is mostly
composed of the Agriculture and Oil subsectors, whereas participation in the sec-
ondary sector (orange bars in Fig. 3.1) is less concentrated. The tertiary or service
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Fig. 3.1 Disaggregation of GDP by economic sectors. Green bars denote subsectors of the primary
sector, orange bars denote subsectors of the secondary sector, and blue bars denote subsectors of the
tertiary sector. Source: Central Bank of Ecuador (BCE) (2018)
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Fig. 3.2 Disaggregated share of GDP in (a) primary and (b) secondary sectors. Source: Central
Bank of Ecuador (BCE) (2018)

sector contributes to the GDP the most, as shown by the numerous blue bars in
Fig. 3.1; however, its bioeconomy-related contribution is expected to be low.'
Based on the concept of resource-industry supply chains, Fig. 3.2 displays the
participation of the main primary (Fig. 3.2a) and secondary (Fig. 3.2b) subsectors.
The agricultural sector has a 39% share of the total primary sector, whereas the
primary resources coming from non-traditional sources, such as aquatic spaces, have
minimal participation due to the specific weight of oil extraction (56%). In the
secondary sector, oil refining has a relatively low participation (8%), whereas the

!Considering the conceptual framework described in the next section, assessing the role of the
bioeconomy in the traditional tertiary sector is less straight-forward than in the primary and
secondary sectors. Mainly for this reason, we will not address this sector.
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manufacturing subsector has the highest participation (52%). Note also, the signifi-
cant contribution of the construction subsector (35%).

3.3.2 Selection of Bioeconomy Subsectors

The methodology used to measure the contribution of bioeconomic activities to a
country’s GDP is based on the proposal of the Buenos Aires Grain Exchange or
BCBA by its Spanish acronym (Trigo et al. 2015). This methodology proposes the
creation of a satellite account within the system of national accounts (SNA) that is
specific to the bioeconomy. Based on this account, the gross value added
corresponding to the bioeconomy is calculated.

The dimensioning of this satellite account is done by using shares of the contri-
bution to the bioeconomy within each productive sector of the SNA. The definition
of these shares is done only by consulting experts, which can render a high degree of
uncertainty and also limit the reproducibility of the calculation. Another aspect
adopted from the methodology proposed by the BCBA is the consideration that all
biomass is a bioproduct, not only those produced through the use of genetic
engineering. This consideration is also supported by the definition of bioeconomy
selected for this study.

Considering that the methodology proposed by the Buenos Aires Grain Exchange
(Trigo et al. 2015) has advantages and limitations, for the development of a new
methodology, some steps of the base methodology are adopted while other steps are
modified in an attempt to improve them. Thus, in the new methodology for measur-
ing the contribution of the bioeconomy, the use of the SNA as the economic database
of a country’s production is maintained. The use of the SNA guarantees the
applicability of the methodology in countries where it is updated, since its construc-
tion is based on standards set by various international and regional organizations
(Trigo et al. 2015). For countries where national accounts are not public or are
outdated, the methodology presented here will be applicable only after the construc-
tion of an equivalent economic database.

The SNA additionally allows considering the linkages of raw materials and
products between the different productive sectors, for example, the processing of
palm oil uses the palm fruit production, a primary subsector, as its basis. In this way,
the bioeconomic part of the primary production of the fruit of the palm is transferred
directly to the production of the oil by means of the share of bioeconomic contribu-
tion of the fruit production.

Additionally, the creation of a satellite account within the SNA is not included as
part of the methodology of this study due to restrictions on the availability of
information, as well as the low level of disaggregation in the national accounts.
This particularity makes it difficult to estimate specific parameters for the productive
sectors, due to the high aggregation in the sectors of the economy. Nevertheless, this
activity could be carried out based on estimates of productive parameters to deter-
mine the contribution of the bioeconomy for each aggregated sector (Table 3.1).
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Table 3.1 Economic sectors considered to be part of the bioeconomy in Ecuador

Fraction of contribution to the

Economic sector bioeconomy
Primary sector

Banana, coffee, and cocoa farming 0.67!
Cereal cultivation 0.417
Growing flowers 0.62*
Cultivation of tubers, vegetables, melons, and fruits 0.68%
0il and industrial crops 0.53°
Crop support activities 0.09*
Raising of livestock, other animals; animal products; and 0.95°
support activities

Forestry, logging, and related activities 0.987
Aquaculture and shrimp fishing 0.89°
Fishing (except shrimp) 0.87°
Aquaculture (except shrimp) 0.87°
Secondary sector

Meat processing and preservation 0.77°
Shrimp processing and preservation 0.89°
Processing of fish and other processed aquatic products 0.71°
Conservation of aquatic species 1.00
Processing of oils and fats of vegetable and animal origin 0.43°
Dairy product processing 0.95"°
Production of milling products 0.39'!
Production of bakery products 0.83"
Manufacture of noodles and other farinaceous products 0.85°
Sugar processing and refining 0.85°
Processing of cocoa, chocolate, and confectionery 0.85°
Prepared animal food processing 0.85°
Coffee processing 0.85°
Processing of various other food products 0.85°
Production of alcoholic beverages 0.85"
Production of non-alcoholic beverages 0.41°¢
Manufacture of tobacco products 0.85"
Manufacture of threads, yarns, fabrics, and clothing 0.68¢
Manufacture of leather, leather products, and footwear 0.85°
Production of wood and wood products 0.96°
Paper manufacturing and paper products 0.95'
Manufacture of rubber products 0.85"
Furniture manufacturing 0.88%

Generation, collection, and distribution of electrical energy 0.02f

“Fraction of organic fertilizers, herbicides and pesticides used in Ecuador (INEC)

"Economic sectors of low contribution. Their contribution to the bioeconomy was not analysed in
detail and only assumed with an average value derived from the other economic sectors

Soft drinks are not considered within the bioeconomy considering their contribution to the per
capita consumption of non-alcoholic beverages (Valverde Obando 2018)

(continued)
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Table 3.1 (continued)

9Number obtained from the total number of garment manufacturing enterprises that use cotton and
wool as their raw materials (Ordofiez 2015)

“Value was assumed as an intermediate between wood production and paper production

"Fraction of the energy produced from the combustion of biogas and biomass with respect to the
total energy produced in the country (INEC)

!Guevara Ramia (2015); ?Baca (2016); >Chiluisa Fogacho (2002); “Instituto Nacional Auténomo
de Investigaciones Agropecuarias (2002); *Mosquera Montoya et al. (2016); ®Jaramillo Orozco
et al. (2017); 7Organizacic’m de los Estados Americanos (1977); 8Lalamgui Balcazar et al. (2018);
°Ochoa Vivanco (2015); 19Cérdova Valverde and Valverde Peralta (2015); ! IMSME—Development
Institute (2011); *Muenala Colimba (2018); 13Guadalupe Garcia and Sanchez Estevez (2014);
14Chiluiza Benitez (2009)

The main modification made to the methodology proposed by the BCBA lies in
the definition of the SNA productive sectors’ bioeconomic contribution shares. In
this study, the calculation of these shares is not only based on the consultation with
experts, but also seeks to define the part of the production costs of the representative
products of each sector of the SNA that are based on the bioeconomy.

Within the production costs, variable costs and fixed costs are considered. The
differentiation of the bioeconomic part of the variable costs is simple, because raw
materials and inputs from bioeconomic activities are considered and those from
non-bioeconomic activities are excluded. For example, in banana production, the
bioeconomic part of variable production costs is the acquisition of young trees and
agricultural inputs of biological origin. If, for example, this activity uses biofuels for
transport, energy production or machine operation, the costs related to the purchase
of biofuels would be included in the bioeconomic part of the production costs. On
the contrary, if the fuels are of fossil origin such as gasoline or natural gas, these
costs are excluded from the bioeconomic part. Similarly, the costs of pesticides and
fertilizers of non-biological (mineral) origin are not included in the bioeconomic part
of the production costs. If these were of biological origin, they would indeed be
added to the bioeconomic part.

Electricity is an additional important item to consider in the contribution to the
bioeconomy. In the proposed methodology, the bioeconomic part of electricity costs
would depend on the bioeconomic part of the local electricity grid. Biological
sources for electricity production are biomass and biofuels. Although wind, solar,
water, and geothermal energy have a smaller carbon footprint than energy derived
from the combustion of fossil fuels, they are not of biological origin, which is why
they are excluded from the bioeconomic part of the local electricity grid.

Within the fixed costs, however, are items related to labour, maintenance of
machinery and civil construction, payment of taxes and the monthly payment of
economic investments made for civil construction, acquisition of machinery,
processing equipment, tools, land, and vehicles, among others. Since the economic
activity could not take place without this part of the production expenses, the fixed
costs are assumed to be totally bioeconomic.
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The inclusion of 100% of fixed costs in the bioeconomy, however, has
consequences for the measurement of the contribution of the bioeconomy. For
example, if excess machinery is purchased for an activity, the share would
incorrectly suggest that this purchase favoured the bioeconomic part of the produc-
tive activity. On the contrary, if only variable costs are taken into account for the
calculation of the index, the purchase or lease of land is excluded from the
bioeconomic part, which would not be very accurate either since the use of land is
necessary for the economic activity. The advice of experts could be used for the
resolution of this type of conflicts in the methodology.

In the specific case of Ecuador, the economic activities considered are included in
the SNA classification of the Central Bank of Ecuador. These economic activities
belong to the primary and secondary sectors. Table 3.1 lists all the sectors considered
as part of the bioeconomy in Ecuador. In addition, the right column includes the
bioeconomic contribution shares calculated for each productive subsector.

In the primary sector, the costs excluded from bioeconomic accounting are
mainly those derived from the use of fertilizers and pesticides of non-biological
origin and from the use of fossil fuels used for transportation and the execution of
other reported mechanical tasks. In the secondary sector, costs related to the pur-
chase of raw materials and inputs of non-biological origin, non-biological packaging
materials, and fossil fuels used in transport are excluded. The item of expenditure on
electricity used during industrial processing was assumed to be non-bioeconomic in
its entirety because energy produced in Ecuador from biogas and biomass accounts
for less than 1% of total production.

Considering the primary subsectors, the bioeconomic contribution shares deter-
mined in this study are lower than in the case of Argentina (Trigo et al. 2015), where
the bioeconomic fraction of these sectors is 100%. Although in the secondary
productive sector, the BCBA study uses varied value indices, in general the shares
determined in this study are lower than those of the Argentine case.

Finally, it should be noted that the sources on which the calculation of contribu-
tion (to the bioeconomy) shares was based were mostly technical-economic studies;
we gave preference to those developed in Ecuador. Additionally, emphasis was
placed on using studies that contain real production data, that is, reported by
operating companies. However, it should be stressed that this calculation is not
without uncertainty. A sensitivity analysis is recommended to verify which rates
should receive additional attention and to reduce such uncertainty.

34 Available Models to Determine the Contribution
of the Bioeconomy in Ecuador

Considering the different alternatives to address the contribution in the economy, a
macro-economic perspective is proposed to quantify the contribution share of the
bioeconomy in Ecuador. Francois Quesnay is one of the first references for
evaluations of flows of goods and services in the productive apparatus of a society
in order to understand the interactions of its actors. In his model Tableau
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économique, he established the bases of the economic theory of the physiocrats.
Chronologically, it is also worth acknowledging the contributions of Leon Walras’
theory of general equilibrium (Walras 1874), Wilfred Pareto’s study of private
property tenure and, at the same time, the contributions of Kenneth Arrow and
Gerard Debreu on the balance between supply and aggregate demand for each good
or service of a specific set of prices (Arrow and Debreu 1954; Pareto 1906).

A study carried out by the FAO (Bracco et al. 2018) estimated the contribution of
the bioeconomy in various countries. It concluded that the most appropriate
approaches are descriptive macro-economic models with a top-down structure that
allow for the evaluation of interactions between different actors in the economy.
Such models include the input—output model, the general equilibrium model, and the
social accounting matrix. Therefore, this study focuses on and carries out a literary
review of the analysis of these types of models.

3.4.1 Input-Output Model (IOM)

The input—output model (IOM) was proposed by Nobel laureate economist Wassily
Leontief. It consists of a system of linear equations that quantifies the
interdependencies between the different sectors in an economic system, which are
then compiled into a set of matrices to evaluate the behaviour of all actors in the face
of external variations. Hence, the matrix representing the productive structure is also
called Leontief’s matrix (L).

The input—output model is based on existing transactions in all economic sectors,
information that may generally be obtained from the countries’ official economic
policy agencies. In the model, the quantity of goods and/or services demanded by
sector j of sector i output, measured in monetary terms for a given period, is the result
of a z;; flow of goods and services across sectors. Thus, the production of sector i,
denoted as x;, is demanded by all intermediate sectors and final consumers (y;) such
as households, government, fixed capital formation, and net exports.

=zt Azt ty=) %+ (3.1)
j=1

where n represents the total number of sectors in the economy. In the case of Ecuador
there are 71 economic sectors. By arranging the matrix, the economy’s total produc-
tion (X) can be defined in terms of all the intermediate consumption (Z;) plus all final
consumption (Y), as shown in Eq. (3.2).

X=Z+Y (3.2)

In the IOM structure, a basic premise is that the demand/production ratio between
sectors is fixed, i.e., the amount of inputs that sector j requires to carry out its
production does not vary (Miller and Blair 2009). This ratio, referred to as a sector’s
technical coefficient, is presented in Eq. (3.3).
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According to the structure of the IOM, these coefficients (a;) are fixed because
they represent the technological capacity of the society. They only vary if there are
significant technological changes that modify the productive structure of the society.
Thus, the matrix of technological coefficients (A) can be defined. Through a series of
algebraic operations from Eq. (3.2), the following expression can be obtained:

X=01-4)"v (3.4)

In Eq. (3.4), the element (I — A)~! is known as the Leontief inverse matrix (L).
The structure of this equation will be used to determine the impact of the technolog-
ical change in Ecuador on the national economy, considering the impacts per se due
to the change in the refining structure, known as direct effects, and the impacts along
the productive chains, known as induced effects.

Following the national accounts provided by the Central Bank of Ecuador, the
model’s reference year is 2015, generating an input—output matrix of 71 sectors (Z;).
Based on the theory shown, we obtain the respective technical coefficients (a;;) and
consequently an initial matrix of technical coefficients (A;), considering Ecuador’s
current refining capacity.

The literature review about the application of this model to the Ecuadorian
economy includes estimates of the transport sector demand (CEPAL 2017), analysis
of the impact of variations in the agricultural sector (Banderas and Hidalgo 2013),
identification of key sectors in the national economy (Fernandez 2009), estimates of
the contribution of the construction sector to national GDP (Yagual Velastegui et al.
2018), and estimates of input—output matrices for the provinces of Guayas (Palma
Luna and Vega Ramirez 2016) and Carchi (Fundacién Alianza Estratégica 2015).

3.4.2 General Equilibrium Model

The general equilibrium model (GEM) is based on the theory of general equilibrium
proposed by Walras. It is worth noting that the complexity of the model due to the
significant number of equations, number of variables and iterations between them,
made it difficult to enhance its development for several years. However, due to
advancements in computer and high-speed processors, the development of models
based on this theory was possible.

The theory of general equilibrium stems from the premise of the existence of an
equilibrium between the different actors in the market. As such, this type of model
seeks to explain the behaviour and interactions of the actors when faced with
alterations to the condition of equilibrium, using mathematical equations for the
supply (producers) and demand (consumers) of products or services according to the
realities of each society.
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Table 3.2 Supply and demand equations (GEM)

Demand—consumers Supply—producers

MaxU://’-x;"-x‘;’ MinC=Px-K+P,-L

Subject to: P; - X; + P; - X; = M Subject to: Q = - K> - Lt

Optimal allocations: X; = Optimal allocations: K =1 - Q- (%) o(L; L=
XM X = %Q(%)'XK

Table 3.3 GEM external sector equations

Imports Exports

X =A(yy M+ (1 —y,) - XddPr)"» Xd =T(yp-E’r + (1 —yp)-Xdd'r)"

This type of model combines the assumption that all markets are in perfect
equilibrium with realistic data derived from social accounting matrices (SAMs) to
represent the initial reference points in equilibrium, after a political intervention.
Equilibrium is guaranteed by price adjustments that cannot be influenced by internal
agents, such as households, firms, and government. Since they are sensitive to price
variation, consequently, they act as decision makers trying to maximize their welfare
(in the case of consumers) or profits (in the case of producers) under certain
constraints and quantity adjustments (Table 3.2).

The above is linked to a dispute between the actors over the factors of production:
labour (L) and capital (K); the labour factor refers to the remuneration received by
the company’s workers as a result of their labour activities, while the capital factor is
reflected in the remuneration of the capital produced by an investment. Conse-
quently, workers’ wages (P;) and capital interest (Pg) are the main elements of
analysis for the labour and capital factor, respectively.

Similarly, considering that society interacts with other economies, i.e., external
sector. The GEMs express through mathematical functions that reflect actors’
behaviour before the import and export of local and foreign products (Table 3.3),
where the equations are sensitive to variations of the rates (y,, Y1) and parameters
(pas, pr) that reflect the internal productive and consumption structure of the society
both for imports (M) and exports (E).

It is also frequent to refer to this type of models by the name of computable or
applied general equilibrium models. This nomenclature refers to simulations made
by computer systems that combine the concept of equilibrium with realistic eco-
nomic data of the society, to solve numerically the levels of supply, demand, and
prices that support the equilibrium in a set of markets. Therefore, the GEM is useful
for the evaluations of energy policies, as in the case of the bioeconomy and
particularly for policies that imply transitions in the productive and consumption
structure of a country.

With respect to its application in Ecuadorian reality, there are no specific studies
that use the GEM for evaluations to assess the impact of the bioeconomy in the
country; however, in 2005 the Ecuadorian Model of Applied General Equilibrium
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(MEEGA by its Spanish acronym) was developed, which includes households,
government, the external sector, and industry based on the 2001 SAM. This model
was designed to raise the level of discussion about the impact of economic policies in
the country. Its main application evaluated the possible effects on the Ecuadorian
economy of the Free Trade Agreement with the USA (Pérez and Acosta 2005).

Based on the structure of the MEEGA model, in 2007 the Model of Tributary
Applied General Equilibrium Model for Ecuador (MEGAT by its Spanish acronym)
was developed in order to conduct a comprehensive analysis of tax policies, taking
into account the evasion of the value added tax (VAT) and income tax (IRC)
(Ramirez 2007). In 2010 the model for evaluating exogenous shocks, economic
and social protection (MACEPES) was developed. Based on this model, studies
were conducted for seven Latin American countries, including Ecuador (Cicowiez
2012; Cicowiez and Sanchez 2010). More recently, Castro et al. (2018) developed
a General Equilibrium Model for Ecuador to asses the socio economic impacts due to
refinery matrix change.

3.4.3 Social Accounting Matrix

The social accounting matrix (SAM) is defined as the matrix representation of the
circular flow of income of a socio-economic system in a given period (BCE 2017a).
It has three main objectives: “(1) to organize the economic and social information of
a country in a given period; (2) to provide a synoptic view of the flows of receipts
and payments in an economic system; and (3) to form a statistical basis to build
models of the economic system to simulate the socioeconomic impact of policies”
(Giovanni Bellu 2012).

It is a complete and disaggregated data system that is one of the fundamental
elements in economic modelling and descriptive socio-economic analysis. It is
complete and disaggregated because, due to its construction process, it is established
under the “Top-Down” methodology, where each element at the macro level
represents a transaction within the same economic system involving different agents
such as households, firms, government, and the rest of the world; and the micro level
explains the disaggregation of different transactions, providing an analytical and
mathematical description to obtain the macro SAM (BCE 2017b). This matrix is
used for economic modelling, as it is the numerical basis for calibrating different
economic models, such as general equilibrium models (Ramajo et al. 1998), and for
socio-economic analysis, as it is a tool for analyzing and applying policies and
planning, since it covers the economic and social structure of an entire country.

The SAM is built under the guidelines established by the United Nations System
of National Accounts. It has a square matrix representation whose structure is fed by
the transactions of different accounts, organized in row (income) and column
(expenditure), or in its representation i and j, which represent the interconnections
between the different economic agents (BCE 2017b). The accounts involved in the
SAM are goods and services (origin and destination of final goods), production
activities, factors of production, economic agents, capital account, and the external
or so-called rest of the world account (Ramajo et al. 1998).
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3.5 Comparative Analysis of the Models

Considering the criteria of comparability, applicability, external validity, and scal-
ability, this section compares the available models to assess the bioeconomy’s
contribution to the Ecuadorian GDP. The first consists of the structure of a model
that allows for the comparison of scenarios and policy implementation alternatives,
in order to obtain a broader response to the implications of the bioeconomy. With
respect to applicability, the following are considered: criteria of information avail-
ability, reality of the productive structure, and availability of natural and economic
resources. In other words, the model should prioritize the validity of the results,
considering the existing limitations in its development.

In terms of external validity and scalability, there is a need to structure a model
whose results can be generalized to different populations, whether at a local or
regional level, and whose methodology can be replicated in different economies or
with characteristics similar to those of Ecuador. In this context, it should be noted
that the System of National Accounts and the Social Accounting Matrix are
standardized information in several countries, which allows for external validation
of the results obtained. The scalability is related to the technical and process
engineering aspects. An analysis in this regard will conclude up to what levels the
system could be expanded or adapted, while maintaining or increasing the growth
levels.

In addition, apart from the main criteria, the authors argue there is a need to
include a criterion of easiness by users or readers of the present study. In other
words, it is important that electronic tools are available for users to, by means of the
methodological sheets, evaluate different scenarios or alternative analyses to those
presented in this study.

Without a doubt, the use of the social accounting matrix has been historically and
widely disseminated in several economies, as it is a tool that effectively reflects the
socio-economic characteristics of countries. However, this study will refer to the
locally developed SAM model, which is based on Ecuador’s system of national
accounts. The use of this model would imply a high applicability since it considers
all conditions of the Ecuadorian system. As a counterpoint, it would be of low
comparability and external validity because it is restricted to the country’s
characteristics, and not necessarily to local or regional characteristics. As a conse-
quence of the contemporaneity of the model, it is probable that there are few studies
or applications based on it, implying a medium scalability, since it has few
references to the economic-technological relations with the aspects of process
engineering.

On the other hand, [OM and GEM models would have better scalability, based on
previous experiences and applications presented earlier, as is the case with the
development of IOM for specific provinces. The previous studies contributed to
the development of economic-technological parameters that would allow the extrap-
olation and evaluation of the conditions of the bioeconomy. Considering the higher
level of mathematical complexity and specific information involved in the
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Table 3.4 Selection criteria—available models

Model Comparability Applicability External validity Scalability
IOM High Medium High High
GEM Medium Medium Medium High
SAM Low High Low Medium

development of a GEM, the applicability criterion would be restricted to the avail-
ability of information.

Without a doubt, one of the strengths of the GEM is the responses of actors in the
economy to possible price variations, a characteristic that is difficult to evaluate in
the IOM. However, its comparability and external validity would be limited to the
availability of economic information from other firms under the same conditions. On
the other hand, the IOM, by not considering this type of conditions, allows structur-
ing versatile models that can be validated and compared with characteristics of other
firms.

Regarding ease of implementation by the user or reader of the report, the IOM and
the SAM score favourably. The former can be structured in a spreadsheet using a
standard operating system, while the latter could be run by the simulators available
from official sources. In contrast, the development of a GEM would involve the use
of more complex computer tools, due to the greater number of variables and
equations.

Therefore, considering the criteria set out in Table 3.4, this study proposes to use
an input—output model (IOM) as a basis. By providing methodological sheets, the
model will allow replication for other economic or social conditions, of similar
economies or conditions of extrapolation. Without a doubt, the IOM has its
limitations and restrictions, but its extensive use and the development of similar
studies make it possible to guarantee its versatility and assertiveness.

3.6 Contribution to the Ecuadorian Bioeconomy

Considering the criteria previously defined in Table 3.4, we now proceed to quantify
the contribution of the bioeconomy. We consider three aspects of interest that will
allow its comparison to other economic sectors, as well as with other realities or
societies. Such comparisons are relevant in the decision making, planning, and
definition of strategies to extend the participation of the bioeconomy, i.e., future
scenarios.

e Labour and salary.
* Production and consumption.
* Growth and taxes.

Additionally, the contribution of the bioeconomy in these three aspects is
quantified in segments in order to evaluate the interaction of results according to
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Table 3.5 Subsectors of the bioeconomy

Segment Economic sector Vector reference (k)
Bioagriculture Primary 1
Animal bioindustry Secondary 2
Crop bioindustriy Secondary 3
Bioindustry—Manufacture Secondary 4
Bioenergy Secondary 5

classification in the traditional economy as: primary or secondary. It is important to
note that these segments are structured according to the methodology of means to
take advantage of the bioeconomy, proposed by the Inter-American Institute for
Cooperation on Agriculture (IICA by its Spanish acronym) (IICA 2019).

Hence, the bioagriculture segment is linked to traditional agricultural activities
that produce goods and services derived from the direct use and sustainable trans-
formation of biological resources. These are classified as primary economic
activities, which are highly employment-generating but less capital-intensive.
Within this segment, the main focus is on the use of resource biodiversity through
innovation and the development of domestic markets, as well as sustainable intensi-
fication through agricultural practices that raise production levels while maintaining
or improving environmental performance (Table 3.5).

With respect to the secondary economic sector or industrial sector, which are
highly demanding in terms of capital, a segmentation is proposed based on the origin
of the raw materials used in the industrial processes, which can be of plant or animal
origin. The aim is for these segments to develop biotechnological applications to
raise the level of technological development in traditional production processes.
Another path identified is the increase of efficiency in the value chains, mainly in the
use of wastes and residues for the use or creation of by-products.

Additionally, considering the energy consumption forecasts in the transportation
sector, as well as the potential use of second-generation biofuels, a segment
designated as bioenergy is proposed; there is a high potential for the use of biomass
from the agricultural sector for energy generation. The production of biorefineries
would be a replacement alternative for fossil fuels, mainly for the production of
ethanol for passenger transport consumption.

In order to determine the contribution of the bioeconomy to the aspects of interest,
we propose specific quantifiable indicators that are available in the system of
national accounts, as well as in the country’s IPM. Consequently, Table 3.6 presents
an estimation of the participation in each of the indicators under the concept of
bioeconomy. Within the methodological structure, each indicator is defined as a
variable to be calculated, according to an established nomenclature.

The methodology proposes to estimate how many jobs (Emp.) are related to the
bioeconomy in the Ecuadorian productive structure, as well as the corresponding
total wage bill. Along the same lines, it is of interest to determine how much of the
total production and current intermediate consumption is related to the bioeconomy
and, consequently, estimate how much the bioeconomy contributes to the generation
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Table 3.6 Variables used to estimate the contribution of the bioeconomy

Aspect Indicators Nomenclature
Labour and salary Jobs generated Emp.
Total wage bill Sal
Production and consumption Total production TP
Intermediate consumption IC
Growth and taxes Gross value added GVA
Taxes on production Tax

of wealth (GVA) and taxes to the central government (Tax). Shortly, the aim is to
carry out a comprehensive analysis of the contribution of the bioeconomy in multiple
aspects so as to nourish the debate on this topic, and not only to focus its analysis on
a specific indicator.

The calculation for each indicator is determined by the double sum presented
below in Eq. (3.5a), which considers the five segments of the bioeconomy
(Table 3.5), as well as the contribution factors from Table 3.1. Equations 3.5b and
3.5¢c are equivalent representations of Eq. 3.5a. The bioeconomic segments are
denoted by the k subindex and the economic sectors by the ij subindexes. Therefore,
the ijk coordinates represent an economic sector within the segments of the
bioeconomy. This method quantifies the contribution of the segments first, in
order to quantify the contribution of the bioeconomy as a whole by means of a
general summation. For example, the generation of employment is calculated for the
bioagriculture, animal bioindustry, crop bioindustry, manufacturing bioindustry, and
bioenergy sectors, where the total sum would imply the generation of employment in
Ecuador related to the bioeconomy.

5 n
Indicator = E E Variable;; x Factor (3.5a)
k=1 i=1 j=1
Bioagriculture Animal Bioindustry Crop Bioindustry
T T T
Vijl Fij Vi Fi Vi3 Fij3
Indicator = + : + : : +
Vinl anl Vin2 Fn2 Vin3 an3
Biomanufacture Bioenergy
T T
Vij4 F ij4 Vijs F ij5
; I IR ; (3.5b)
Vin4 F nn4 Vins F nnS

Indicator = V1 'F] +V2'F2+V3‘F3 +V4'F4+V5'F5 (35C)
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3.6.1 Labour and Salary

As mentioned earlier, the labour and salary aspects allow us to quantify how many
workers are related to the bioeconomic processes, as well as the remuneration
involved in this type of activities. Such an analysis allows researchers to assess the
quality of work and to propose possible alternatives for the improvement of these
activities. In 2017, according to statistics from the Central Bank of Ecuador, 7.5
million jobs were generated in the country’s productive sectors, of which 46%
corresponded to the services sector, as shown in Fig. 3.3a. This fact is not surprising
as the largest job-generating productive sector in the country. Meanwhile, the
bioeconomy contributed with 20% of the jobs generated in the same year, a value
equivalent to 1.53 million workers.

It should also be noted that the generation of jobs in the bioeconomy is higher
than the generation of jobs in the traditional manufacturing industry (5%), the
construction sector (8%), and energy generation and transport (8%); a situation
that unfolds in an economy with low levels of industrialization and high export of
primary products. It should be noted that the greatest concentration of jobs generated
by the bioeconomy would be in the bioagriculture segment (76%), while the other
segments in the bioeconomy (bioindustries, biomanufacture, and bioenergy) would
represent a 24% share. Thus, there is a high potential for employment generation in
the last two sectors.

Labour compensation allows us to evaluate the quality of employment. In this
regard, the services sector represents the main share in workers’ remuneration, as
displayed in Fig. 3.3b. In addition, note that the public sector, which generates only

2%
10%

7%

/ 5%
———— 3%

7%

= Bioeconomy = Agriculture ' Manufacture
Energy and transport ® Oil and mining » Construction
m Services and commerce = Public sector
(a) (b)

Fig. 3.3 Contribution to employment generation (a) and labour compensation (b). Source: Central
Bank of Ecuador (BCE) (2017a, b)
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5% of jobs, has a significant share of workers’ total wage bill (22%). In fact, a public
sector worker would have an average monthly salary of US$1746 in 2017, approxi-
mately 4.6 times the monthly minimum wage in that year. The opposite situation
occurs with jobs related to the bioeconomy, which represent a share of only 10% of
the workers’ remuneration (Fig. 3.3b). On average, a worker in this sector receives
US$207 per month, which is less than the monthly minimum wage and less than the
minimum cost of living. This situation reflects the existence of inadequate work
conditions and high labour informality in the sector, as it is mostly primary.

3.6.2 Production and Consumption

The consumption of intermediate products in 2017 reached a total of US$73,836
million, linked to a production of US$170,919 million, while the difference was
destined to final consumption. Consequently, Fig. 3.4a shows that there is an almost
equal participation between the bioeconomy (23%), service sector (26%), and the
traditional manufacturing industry (19%) in the intermediate consumption of goods
and services, implying a significant participation of the bioeconomy. More than 90%
of the intermediate consumption of the bioeconomy is linked to the secondary sector
(crop and animal-related bioindustry) and the rest to primary products
(bioagriculture). The higher added value of processed products compared to agricul-
tural products explains this situation.

3%
23% 2%
. 2 %
19%
10%
Bioeconomy = Agriculture Manufacture
Energy and transport ® Oil and mining 1 Construction
m Services and commerce = Public sector
(a) (b)

Fig. 3.4 Contribution to intermediate consumption (values at consumer price) (a) and total
production (b) Source: Central Bank of Ecuador (BCE) (2017a, b)
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Regarding total production, the services sector has contributed the most (US
$55,922 million) followed by the bioeconomy (US$30,452 million); the latter is
even larger than the manufacturing and construction sectors, as displayed in
Fig. 3.4b. Consequently, the bioeconomy has room for growth in the production
of goods and services. Once the labour and production aspects are exposed, we will
expand the contribution of the bioeconomy in the generation of gross added value in
society, i.e., the generation of wealth, as well as its contribution in taxes for the
Ecuadorian state.

3.6.3 Growth and Taxes

Conceptually, the added value is composed of the sum of capital and labour
remunerations. In 2017, the Ecuador generated US$97,082 million in gross added
value contributions, considering all sectors in the economy. As may be expected,
Fig. 3.5a shows that the services sector was the main contributor (38%), followed by
the bioeconomy (14%). Of the US$13.279 billion in added value linked to the
bioeconomy, it is worth noting that there is an equitable participation between the
primary (bioagriculture) and secondary sectors (mostly crop and animal-related
bioindustry and biomanufacture). Since there is low remuneration for the labour
factor in the primary sector of the bioeconomy, this large contribution to the gross
value added would be explained by a higher return to the capital factor in this same
sector.

12%  14% 3%

' 9%
38% \%
12% 5%

Millones de USS

= Bioeconomy = Agriculture » Manufacture
Energy and transport ® Oil and mining m Construction
= Services and commerce Public sector
(a) (b)

Fig. 3.5 Contribution to gross added value (a) and taxes on production (b) Source: Central Bank of
Ecuador (BCE) (2017a, b)
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Note in Fig. 3.5b that the services sector, the sector with highest production and
consumption levels, is consequently the sector that contributes to taxes the most.
Note also that, since 2013, the oil and mining sector significantly increased their tax
generation, reaching a participation of 8% in 2017, compared to 1.4% in 2009.
The sectors related to the bioeconomy have maintained a rather stable participation
in the generation of taxes, with an average participation of 12.22%. In 2017, the
bioeconomy generated US$132 million in taxes, which is more than the contribution
of the industrial manufacturing sector but less than that of energy and transport.
Thus, there seem to be opportunities to increase the participation of bioenergy at the
expense of traditional energy sources that are mainly consumed in the transportation
sector.

3.7 Insights for Assessing the Contribution of the Bioeconomy
in Ecuador in a Future Scenario

To identify feasible possibilities of expansion of the bioeconomy, this section
presents settings in the Ecuadorian context that offer a large potential for its
development, considering it an opportunity for productive transition, given an
unfavorable oil production horizon and significant fossil fuel energy
consumption (Espinoza et al. 2019; Verdezoto et al. 2019). These settings are an
estimation of the potential for improvement of agricultural and livestock activities in
terms of yield per area of arable land used; estimation of the potential for the use of
fertilizers, herbicides, and pesticides of biological origin; estimation of an industrial
and energy development based on biomass; an estimation of the economic potential
of the expansion of biological wastewater treatment; and configuration of the IOM to
evaluate the future contribution of the bioeconomy. The methodologies to be used
for each of the above items are described below.

3.7.1 Potential for the Improvement of Agricultural and Livestock
Activities in Terms of Yield per Area of Arable Land Used

This contribution is calculated by estimating production yields per hectare of the
main agricultural and livestock products. For this purpose, the environmental statis-
tics available on INEC’s “VDatos” platform” could be used. The results would be
compared with yield data reported in countries of the region and other continents
with similar climatic and biodiversity conditions. The calculation strategy shall seek
not only to increase current crop and livestock production but also to improve land
use that reduces the expansion of the agricultural frontier and the consequent
degradation of native ecosystems.

2 Available at: https://www.ecuadorencifras.gob.ec/vdatos/
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Fig. 3.6 Potential sources of biomass in Ecuador today. (a) It is assumed that the rose together with
the stem weighs 25 g. (b) The reported number of stems produced is assumed to be the same weight
as a rose stem. (c¢) Mango, passion fruit, orange, and tree tomato

3.7.2 Potential for the Use of Organic Fertilizers, Herbicides,
and Pesticides

Until 2016, 9% of total fertilizers, herbicides, and pesticides used in Ecuador were of
organic origin. Taking this percentage as a basis, it is important to review the impact
of the expansion of the production of organic inputs for agriculture and the displace-
ment of products of chemical origin and fossil materials. The limitations of organic
products in terms of waste generation and product yields per hectare should be taken
into account.

3.7.3 Estimating Biomass-Based Manufacturing and Energy
Development

Considering that one of the main raw materials of the bioeconomy is biomass,
Fig. 3.6 shows the mass weight of the primary economic sectors in Ecuador. Most
of the data on the mass size of bioeconomic productive activities in Table 3.1 were
obtained from the INEC (2014) and from INEC environmental statistics.

The production of bananas, rice, corn grains, African palm, sugarcane, and wood
is the main primary productive activity that can become abundant sources of
biomass. Among the secondary economic activities, shrimp, coffee, cocoa, and
sugarcane processing are considered potential sources of biomass due to their
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Table 3.7 Biomass available from waste in Ecuador

Available biomass Ton/a (/1000) Waste in kg/product in kg
Primary sector

Rice straw 210.0 1.45'
Rice crust 289.7 0.07'
Banana stalk 1032.1 0.13*
Maize stubble 463.1 2.94°
Unspecified lignocellulosic waste 3642.9 2.44%
Secondary sector

Shrimp shells 222.6° 0.44°
Cane bagasse 3301.0 0.40°
Coffee processing residues

Barks 0.2 0.12°7
Pulp 0.6 0.29"7
Silver skin 0.1 0.05"7
Spent grain 1.0 0.54°
Cocoa processing residues

Bark 11.5 0.07%
Wasted grain 10.9 0.066"
Mucilage 11.4 0.07°
Noneconomic sector

Municipal waste® 2607.1 0.717 (INEC)

“Shrimp export volume was obtained from the National Chamber of Aquaculture of Ecuador (http:/
www.cna-ecuador.com/estadisticas/)

®Calculation made considering that fresh grain (INEC data) has 55% humidity (Blinova et al. 2017)
“Cardboard, paper, organic waste, and wood were taken into account

"Moraes et al. (2014); 2Pazmifio-Hernandez et al. (2017); 3Mufioz-Tlahuiz et al. (2013); 4Rodrigues
Lima et al. (2005); *Khan et al. (2014); ®Tyagi et al. (2019); "Blinov4 et al. (2017); Akinnuli et al.
(2014); °Balladares et al. (2016)

production volumes and relative geographic concentration. Table 3.7 presents the
estimation of the amount of biomass available as waste.

The wastes considered as potential sources of biomass are 10% of all lignocellu-
losic material (plants, leaves, and roots) left after a harvest of transitional crops, i.e.,
cereals, tubers, and vegetables. Normally this material is left in the fields for soil
nutrition (Lal, 2009), so its use is proposed at 10% only. This percentage could vary
considering the possible expansion of the use of organic fertilizers whose contribu-
tion in trace minerals is significant. The items determined by this calculation are
straw, stubble, and unspecified lignocellulosic wastes that bind all the other minor
products listed in Fig. 3.4. The economic potential of using these lignocellulosic
materials for the production of a range of products such as nutritional supplements,
edible fungi, chemicals, fibres, biomaterials for construction and biomedical
applications, polyphenols, bioactive substances, energy production, among others,
will be studied (Cheali et al. 2015; IICA 2019; Lal 2009).
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The secondary production sector can provide biomass in the form of waste from
the processing of sugarcane, shrimp, coffee, and cocoa. Sugarcane bagasse has
received attention as a raw material in the production of ethanol and other high
value-added products such as xylitol, enzymes, organic acids, microbial protein,
hydrocarbons, and furfural, among others (Nistico 2017; Restrepo-Serna et al.
2018). Since bagasse is currently used as fuel by Ecuadorian sugar mills, the use
of its ashes in the formulation of cements could also be considered due to its high
silica content.

Residues from shrimp processing are considered to be important sources of
calcium carbonate and chitin. Chitin is a long-chain sugar that can be used for the
production of pharmaceuticals derived from chitosan and glucosamine, valuable
monomers for the biopolymer industry (Oddoye et al. 2013). Coffee husks can be
used as a source of bioactive substances, in the production of biogas and
bioabsorbents for the removal of cyanide, heavy metals, dyes, lead, and fluorine in
water treatment. Coffee pulp also has significant amounts of tannins, polyphenols,
and caffeine. Silver skin is a potential source of antioxidants and can be used in
functional food formulations (Blinova et al. 2017). From the residues of cocoa
processing, mucilage is considered a raw material for the production of beverages,
pectin, and as a source of sugars for fermentation. The shell, on the other hand, can
be used for energy production and its ashes in the manufacture of soil fertilizers or
soaps because of their high potassium and potassium soda content (Balladares et al.
2016; Kaviedez Hernandez and Loyola 2014).

The proposal to use these wastes is based on the relative geographical concentra-
tion and high volumes of processing, such that their large-scale industrialization will
not be limited by supply chain costs.

3.7.4 Estimation of the Economic Potential of Water Treatment
Expansion

Water pollution has major effects not only on public health but also on a range of
economic activities that depend on clean water. Public health is affected on two
fronts: by the direct consumption of contaminated water and by the consumption of
food products that were exposed to contaminated water during their production.
Economic activities that are limited by the existence of contaminated water sources
are tourism, commercial fishing and aquatic animal farming, and recreational
businesses, among others. The fact that modern water treatment plants use biologi-
cally active sludge as a technological basis means that this sector can be explored as
part of the bioeconomy.

The assessment of the economic potential of the expansion of the wastewater
treatment sector will be based on the sum of potential reductions in the economic
impact on people’s health, the expansion of tourism and recreation businesses
related to water sources that are currently biologically contaminated, and the expan-
sion of the commercial fishing industry using currently polluted freshwater sources.



60 D. Ortega-Pacheco et al.

This calculation should be based on the estimated flow of contaminated water
sources in Ecuador. For this purpose, it is proposed to use the ratio between the
monitoring points of the National Institute of Meteorology and Hydrology
(INAMHI, by its Spanish acronym) where the concentration of fecal coliforms
exceeds 1000 MPN/100 mL, and the total number of monitoring points. This limit
is one of the criteria for defining suitable water for crop irrigation according to the
Unified Text of Secondary Environmental Legislation (TULSMA, by its Spanish
acronym). According to the most recent data available (2013), in 231 of 503 stations
in total the concentration of fecal coliforms exceeded the limit, i.e., in 46% of the
points. To put this percentage into perspective, it can be considered that according to
Ecuador’s National Water Secretariat (SENAGUA, by its Spanish acronym), 70% of
water sources below 2800 m (above sea level) have a considerable level of pollution.

3.7.5 Structure of the Input-Output Model to Assess the Future
Contribution of the Bioeconomy

For the structure of the alternative scenario, one in which the bioeconomy has a
greater participation in the social and productive structure, we propose the use of the
IOM with base year 2017. For this purpose, we rely on the criteria presented
previously. Two alternatives have been identified to address the objective.

The first consists in varying the technological-productive parameters in the
primary and secondary sectors of the Ecuadorian economy, assuming that the
implementation of the bioeconomy will bring about structural changes in society
as depicted in Fig. 3.7a. It should be noted that this premise would imply significant
investments by either the state or the private sector, in addition to the availability of

Intermediate
consumption

-

[ Shockin ]a‘

pp Shock i
Iy AX = (I —A)"1 - AY = L- AY [ e

technology consumption

(a) (b)

Fig. 3.7 Input—output model structure considering a shock in technology (a) and a shock in
consumption (b)



3 Social and Economic Contribution of the Bioeconomic Sector in Ecuador: A. .. 61

raw materials, infrastructure, and qualified professionals in the prioritized areas.
Undoubtedly, the above-mentioned aspects are difficult to access in the short term.

As a second alternative, variations in the final consumption of goods and services
are proposed, focusing mainly on household consumption as shown in Fig. 3.7b.
This premise consists in consumers preferring goods and services based on the
bioeconomy, displacing the preferences for traditional goods of fossil origin or
more polluting technologies. Notice that variations in final consumption do not
consider variations in exports, reflecting the importance of oil exports, since the
economy is still very sensitive to variations in this sector. It bares mentioning that
variations of consumption would assume the existence of incentives to consumers,
which can be channeled through tax incentives to sectors based on the bioeconomy
or market regulation for traditional products, i.e., structured approaches in a public
policy aiming for the development of the bioeconomy in the country.

3.8 Conclusion

The international scientific community acknowledges Ecuador’s biodiversity as a
competitive advantage whose potential is still not fully comprehended locally.
Despite the institutional and academic local interest in the bioeconomy as a means
for a transition of the productive matrix, the discussion is still lacking studies that
quantify the sector or its potential. We hope that the present work nourishes the topic
by assessing the current contribution of the bioeconomy sector to the Ecuadorian
GDP. We evaluate the available methodologies for this exercise considering five
criteria. Based on a comparison of the models, the input—output matrix ranks best in
terms of comparability and external validity. The contribution of the bioeconomy
sector in Ecuador was then calculated in terms of employment, total wage bill,
consumption, production, gross added value, and taxes on production. In almost
all aspects, except for total wage bill and taxes on production, the contribution share
of the bioeconomy sector ranks second. The methodology proposed gives room for
the measurement of the impacts of bioeconomic measures in developing economies.
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Abstract

Biobutanol, an alcoholic biofuel with 4-carbon atoms is one of the potential
biofuels to replace petrol fuel. Biobutanol has higher density, higher energy
content, and less corrosive as compared to bioethanol. Biobutanol also has similar
characteristic as gasoline, therefore, it can be distributed in the current storage and
pipeline system and used in a car’s engine without any modifications. Biobutanol
can be produced through fermentation process by commonly used microorgan-
ism, Clostridium sp. This species can consume both hexose and pentose sugars
that can be derived from agricultural biomass. Agricultural biomass is considered
as the most abundant material that can be continuously supplied as substrate for
fermentation. This material is composed of cellulose and hemicellulose as poly-
saccharide building blocks made of sugar and protected by the lignin made of
various types of phenolic components. The arrangement of these components in
plant cell wall makes the plant material difficult to be degraded. Therefore,
various technologies have been developed in order to utilize agricultural biomass
as substrate for fermentation. In this chapter, how agricultural biomass is
converted into biobutanol will be presented and discussed. The processes
involved include preparation of the substrate and medium formulation, microor-
ganism and inoculum preparation, fermentation operation, and the recovery
process.
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4.1 Introduction

Human population shows an increasing trend and it is projected to increase to 8.6
billion in 2030 (United Nations 2017). The increasing numbers of the human
population had caused a high demand for energy especially for transportation and
industrial activities. For more than two centuries after petroleum was found, now it
supplies 90% of world energy (Chew and Bhatia 2008). Unfortunately, the petro-
leum is non-renewable resource and utilization of petroleum had caused the negative
consequences to the environment including direct impact to the global warming due
to the release of greenhouse gases. Besides, due to its unrenewable resource, the
world also faces the insecure energy source due to the depletion of fossil fuels
reserves (Adams et al. 2013). Therefore, the alternative energy is highlighted in these
few decades, as scientific community is continuously reporting and exploring the
possible alternative energy source to overcome this major problem.

“Biobutanol, a C4 compound, is construed as an alternative fuel of biological
origin to gasoline due to its high energy density (29.2 MJ/L) and octane number of
87 (Shah and Venkatramanan 2019). Biobutanol is one of the promising alternative
energy with the estimated fuel market around $247 billion by 2020 (Green 2011). As
compared to other bioenergy, biobutanol has lower vapour pressure, less volatile and
explosive, less hygroscopic, easily mixes with gasoline, and can be transported in
existing pipeline (Garcia et al. 2011). Apart from that, biobutanol can reduce
hydrocarbon emissions by 95%; and oxides of nitrogen by 37% (Bellido et al.
2014). Interestingly biobutanol can be produced through acetone—butanol—ethanol
(ABE) fermentation which has been produced for several decades after World War
II. Recently, researchers are focusing on ABE fermentation using lignocellulosic
biomass as substrate. The lignocellulosic biomass is cheap, abundant, and readily
available that can be obtained from most agricultural and forestry industry. The
utilization of lignocellulosic biomass will be feasible in the future as several studies
reported positive aspects of using feedstocks such as whey permeate (Setlhaku et al.
2013), corn fibre (Guo et al. 2013), wood pulp (Lu et al. 2013), and other agricultural
wastes for biobutanol production, besides reducing air pollution from burning of
wastes.

4.2 Biobutanol

Biobutanol is an alcohol produced through acetone—butanol-ethanol (ABE) fermen-
tation by Clostridia spp. The biobutanol properties depend on their four-carbon
structure, either in linear or branched form. Biobutanol produced through fermenta-
tion is normally a straight-chained n-butanol, also known as 1-butanol, where the
OH group attached to the terminal carbon (Mascal 2012). The other type of linear
form of biobutanol is 2-butanol where the internal carbon is attached by hydroxyl
group (—OH) (Fig. 4.1). Butanol with 4-carbon structure is more complex alcohol
compared to methanol and ethanol that only has 1 and 2-carbon structure, respec-
tively (Ranjan and Moholkar 2012).
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Fig. 4.1 Sturcture of butanol OH
isomers
2 R SN
(a) n-butanol (b) sec-butanol
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Butanol is a colourless and flammable four carbon chain alcohol. Besides being
used as a fuel, butanol finds application as a solvent in detergent and cosmetic
formulations and as a chemical intermediate. Butanol isomers have a different octane
number, boiling point, and viscosity. All the butanol isomers can be generated from
fossil fuels by applying the different methods; however, only n-butanol can be
produced from biomass (Liu et al. 2013).

To date, the research on the substitution of fossil fuels are being undertaken very
intensively. Recently, biobutanol have drawn attention of the most researchers’ as it
possess better properties as compared to other biofuels. Butanol has the capability to
blend with gasoline very well. Apart from that, butanol can reduce hydrocarbon
emissions by 95% and oxides of nitrogen by 37% (Bellido et al. 2014). Due to the
properties such as high hydrophobicity, low vapour pressure, high energy density,
and low heat of vaporization, biobutanol is regarded as a promising alternative
fuel (Table 4.1). Biobutanol has higher energy content, less corrosive, and lower
in flash point as compared to bioethanol (Prakash et al. 2016). These properties make
biobutanol more suitable to be used in industry as there is no modifications needed
for engines system. Furthermore, it can be a future option for blending with diesel
since it contains more oxygen content compared with the biodiesel, leading to further
reduction of soot (Cao et al. 2016).

4.3  Agricultural Biomass

Agricultural biomass is an organic matter derived from plant or animal that consists
of stored energy obtained from the sunlight through the photosynthesis process. This
energy is used to convert carbon dioxide and water into sugar and oxygen (Peterson
and Hustrulid 1998). Furthermore, the stored energy contained carbon resource,
which can be converted into many useful form of energy, for instance, heat and
electrical energy which have made biomass as a renewable source for energy
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production (Khan et al. 2015). Agricultural biomass includes food-based crops,
nonfood-based crops, perennial grass, and animal waste.

Food-based crops provide food to mankind in a daily life. This type of crops
produce either oil or simple sugar as a source (https://dnr.wi.gov/topic/
ForestManagement/documents/WoodyBiomassToolkit.pdf). The food-based crops’
biomass usually are rapeseed, sunflower, soybeans, corn, sugarcane, and sugar beets.
The sugar that can be obtained from corn, sugar beets, and sugarcane are commonly
fermented to produce bioethanol. Meanwhile, rapeseed, sunflower, and soybeans
that have an oilseed usually are refined into biodiesel. However, bioenergy produc-
tion from food-based crops or first generation feedstock has created a controversy
and criticism due to its potential competition with food and animal feed (Dutta et al.
2014) This situation also resulted in a debate over the food versus fuel which
subsequently diverted attention of the researcher over the world to find solution to
this polemic.

Nonfood-based crops or second generation feedstock are non-edible for the
human or animal consumption. The second generation feedstock includes lignocel-
lulosic feedstock or waste materials from the food-based crops during the processing
for food production (Cantrell et al. 2008; Havlik et al. 2011). The biomass includes
wheat straw, barley, oil palm, oat straw, and nutshells. These waste materials or
agricultural residue could cause a serious environmental problem due to the poor
waste management. Therefore, utilization of this type of biomass into bioenergy can
significantly reduce the environmental pollution and emission of greenhouse gases
(Aditiya et al. 2016).

Perennial grass is the grass that has several years of life cycle and able to grow in
diverge environments (https://dnr.wi.gov/topic/ForestManagement/documents/
WoodyBiomassToolkit.pdf). They have been indicated as a leading feedstock for
the bio-based economy for the production of variety of value-added products. This is
due to their low demand on nutrient, wide-range of geographical growth, and high
yield of net energy. There are various type of perennial grasses such as prairie
cordgrass, switchgrass, and miscanthus. Since perennial grass is a lignocellulosic
biomass, pretreatment is needed to break down the cellulose in order to use as a
ferment for the biofuels productions (Sills and Gossett 2011). However, the research
on breeding, agronomy, and postharvest logistics are needed to deliver the high
quality of the products by maximizing the sources and efficiency of the
bioconversion.

Animal waste in this context includes the manure produced from beef cattle, dairy
cattle, hogs, and poultry. Manure generally can be categorized into three forms
which are liquid, slurry, and solid (https://dnr.wi.gov/topic/ForestManagement/
documents/WoodyBiomassToolkit.pdf). The solid manure can be burned to produce
gas for energy production. Manure also can be converted into biogas, primarily
methane by bacteria. This waste conversion into energy basically involves an
anaerobic condition by using the anaerobic digesters (Amon et al. 2006).


https://dnr.wi.gov/topic/ForestManagement/documents/WoodyBiomassToolkit.pdf
https://dnr.wi.gov/topic/ForestManagement/documents/WoodyBiomassToolkit.pdf
https://dnr.wi.gov/topic/ForestManagement/documents/WoodyBiomassToolkit.pdf
https://dnr.wi.gov/topic/ForestManagement/documents/WoodyBiomassToolkit.pdf
https://dnr.wi.gov/topic/ForestManagement/documents/WoodyBiomassToolkit.pdf
https://dnr.wi.gov/topic/ForestManagement/documents/WoodyBiomassToolkit.pdf

72 N. H. Alias et al.

4.3.1 Availability of Biomass

Recently, biomass has received an utmost interest and attention as an alternative
energy source for the conventional fossil fuels due to the growing of exhaustion of
fossil fuels and energy demand worldwide. As biomass has been widely seen as an
effective substitute for the conventional fossil fuels, the assessment on the resource
and its availability need to be performed (Sudha and Ravindranath 1999). This is to
ensure the sustainability of present consumption patterns and feasibility on
introducing the applications of a modern biomass fuel-based on a global level.

The global land area is about 13.2 billion ha and currently, about 12% of global
area is under the cultivation of agricultural crops, 28% under forest, and 35% under
grasslands and woodland ecosystems. Huge quantities of agricultural wastes are
generated from the agricultural and forestry related activities. With the abundant
bioenergy resources, it is crucial to implement the latest waste-to-energy
technologies to tap the potential biomass resources (Zafar 2019). Asia is a key
supplier of biomass feedstocks to markets such as Europe or the United States of
America. Particularly, Southeast Asia with its huge biomass resources holds a
strategic position in the global biomass energy atlas (Tun et al. 2019).

Rice and wheat are predominant crops in Southeast Asia (Carlos and Khang
2008). In Southeast Asia, Malaysia is blessed with the large palm oil cultivation.
Malaysia is the world’s leading exporter of palm oil. More than 19.9 million tonnes
of palm oil has been exported in year 2017 (Nambiappan et al. 2018). However,
huge waste were generated during the extraction of the palm oil from the palm fruit
bunch. Out of palm oil processing yield, only 10% are finished products, while the
remaining 90% are harvestable biomass waste in the form of palm kernel shells,
empty fruit bunches, and mesocarp fibres. Production of oil palm is about 17.32
million tonnes per year which subsequently has generated up to 100 million tonnes
of waste (MPOB 2017). Mostly, these biomass are left on the field to act as a soil
amendment or organic fertilizer which plays a crucial role to ensure the sustainability
of plantations and preserve soil fertility. However, due to the abundant of these
waste, it could lead to the environmental pollution if not fully utilized.

Sago palm is also widely distributed and scattered in Southeast Asia specifically
Malaysia, Indonesia, and Philippines. In the recent past, sago flour started to become
one of the main agricultural export item (Karim et al. 2008). The export value of sago
was reportedly increasing by 15-20% per year (Department of Agriculture Sarawak
2010). High production of sago products will significantly increase the amount of
waste generated from this industry, which may lead to a large proportion of
environmental issues.

4.3.2 Chemical Composition of Biomass
Starch-based biomass is made up of glycan, macromolecules of glucose and held

together by a-1,4 and o-1,6 glycosidic bonds (Alias 2009). At the end of the
polysaccharide chain, there is a presence of latent aldehyde group. It is important
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Table 4.2 Various biomass with their constituents

Cellulose Hemicellulose Lignin
Biomass (%) (%) (%) References
Sago pith residue 37.0 20.0 6.0 Linggang et al.
(2013)
Oil palm fibre 40.0 39.0 21.0 Hassan et al. (2010)
Wheat straw 27.1 21.1 22.5 Adapa et al. (2011)
Sugarcane 41.6 25.1 20.3 Kim and Day (2011)

bagasse

to degrade the chain of this carbohydrate polymer into sugar monomers via micro-
bial action. Starch is made up of amylose and amylopectin polysaccharides that are
assembled from glucose unit (Madihah et al. 2001). Their relative amount/ratio of
amylose and amylopectin varies with biomass type and source of starch.

Amylose is made up of a long linear polymer consisting of more than a few
thousands of glucose units through an a-1,4 glycosidic bond (de Souza and de
Magalhaes 2010). Amylose contributes to the helical shape of starch polymer
(Minteer 2011). Their content in starch is commonly between 14 and 27%. Amylose
with roughly around 4000 to 340,000 in molecular weight has a hydrophobic inner
surface that acts similarly to the cyclodextrins and able to withstand spiral molecules
of water (Singhal et al. 2008). This is due to the substitution by aromatic molecules
or hydrophobic lipid. Amylopectin appears like a root-like structure as it possesses
a-1,4 linked linear chain consisting of 10-60 glucose units and «-1,6 linked side
chains with 15-45 glucose units. Amylopectin consists of two chains, namely
A-chain and B-chains. The A-chain is generally made of 13-23 residues while
B-chain are composed of 235 residues (Bertoft et al. 2008). There are two fractions
that exist in B-chain which are short and long chains.

Lignocellulosic-based biomass is a plant-based material and its component
consists of three basic structures specifically cellulose, hemicellulose, and lignin
(Balat et al. 2008; Ibrahim et al. 2017). This type of biomass includes wood and
fibrous materials from agricultural wastes, organic sources, organic municipal
wastes, and organic industrial wastes. Recently, this class of biomass have been
abundantly produced by the agricultural industries, which has led to serious envi-
ronmental problems. In order to overcome this problem, lignocellulosic biomass has
been used as a substrate for biofuel production and to date, it has been recognized as
one of the valuable source. In average, lignocellulosic biomass is composed of
38-50% of cellulose, 23-32% hemicellulose, and 15-25% of lignin (Abd-aziz
2002). The content between cellulose, hemicellulose, and lignin varies between
one plant species to another dependent on age and soil (Table 4.2).

Cellulose is made up of long, linear homopolymers of $-1,4 linked p-glucose
units and forms a crystalline amorphous structure. The rigid cellulose structure
which requires harsh treatment to break down, is caused by the bonded hexoses by
[-1,4 glycosidic bond in linear arrangement (Balat 2011; Saini et al. 2015). Cellulose
can be found in the cell wall of plants, particularly in the stalks, stems, and in all the
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woody parts of plant body. The high tensile strength and solvent insoluble properties
are provided by this structure (Sjostrom and Westermark 1999). The build-up of
plant cell wall is determined by the regular arrangement of microfibrils of cellulose
(Chen et al. 2007). Hemicellulose that linked together with hydrogen bonds covers
the adjacent spaces between the elementary fibrils (Ali et al. 2015; Saini et al. 2015).

Hemicellulose consists of different monosaccharide units compared to cellulose.
Hemicellulose commonly possesses arabinose (five carbon sugar), xylans (five
carbon sugar), and uronic acid, for instance, sugar acid (Jenol et al. 2014). They
are heteropolymers consisting of linear and branched structure arrangement of
pentoses, hexoses, and sugar acids (Peng et al. 2012). Amorphous morphology of
hemicellulose made it partly soluble in water (Demirbas 2008). In terms of molecular
weight, hemicellulose is lighter compared to cellulose and since it is composed of
short lateral chain, it is easy to hydrolyse. Several components that act as inhibitors
like furfurals and hydroxymethyl furfurals in the fermentation process might be
produced during the degradation of hemicellulose. Hence, hemicellulose should be
removed at least 50% in order to increase the degree of digestibility of cellulose.

Lignin is the most complex compound in lignocelluloses, which provides a
structural support to the plant. Lignin tied the long molecular chains of sugars of
cellulose and hemicellulose together to make sturdy and strong cell walls
(Hiittermann et al. 2001). The tight association between lignin and different
polysaccharides has conferred the mechanical strength to the cell wall. It also
protects the cellulose and prevents the fibre to swell when reacting with water and
acts as protective shield against microbial and enzymatic attacks. Therefore, the
conversion of the cellulose into sugar is extremely slow. Lignin is bound to both
cellulose and hemicellulose by the a-ether linkages, acetal bonds, phenyl glycosidic
bonds, and ester bonds in the matrices (Ali et al. 2015).

There are many types of natural enzymes that can be utilized to depolymerize
starch into glucose and maltose such as a-amylase and glucoamylase. Endoenzyme
or a-amylase is used to hydrolyse a-1,4 glycosidic bond while exoenzyme or
glucoamylase is used for hydrolysis of both a-1,4 glycosidic bond and «-1,6
glycosidic bonds. Each type of enzymes may give a different rate of hydrolysis.
For example, rate of hydrolysis of a-1,4 glycosidic bond using glucoamylase is
20 times faster compared to hydrolysis of a-1,6 glycosidic bond. However, the rate
of reaction are also affected by other factors like pH of solution, starch granules
structure, temperature, and chemical composition of the starch itself (Murthy et al.
2011).

Commonly, the starch conversion is conducted at a first stage called liquefaction,
where starch is hydrolysed by a-amylase to form a shorter chain of dextrin. The
viscosity of starch will be reduced during this step. Then, in the second step, the
maltodextrins are further hydrolysed by glucoamylase in order to release glucose
together with a small amount of disaccharides or trisaccharides. In most practices,
glucose produced then can be used as a feedstock in fermentation for biofuel
productions and other applications (Husin et al. 2018).
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The lignocellulosic component degradation is usually performed by cellulase that
is highly specific catalyst (Taherzadeh and Karimi 2007). There are three
components that have been identified in cellulase which are endoglucanase,
exoglucanase, and p-galactosidase (Fig. 4.2) (Linggang et al. 2013). Synergistic
action among these three components is responsible to produce fermentable sugars
from cellulose. From these three enzymes, at first, endoglucanase is responsible to
attack fp-1,4 bonds randomly within the cellulose chain in order to initiate the
cellulose breakdown and make it accessible for the attack of second enzyme which
is exoglucanase. Exoglucanase then attacks on units from the free chain ends and
hydrolyses p-glycosidic bond and making cellobiose as the core product (Linggang
et al. 2013). The degradation activities were further accomplished with the role of
[B-galactosidase that lessens the inhibitory effect of cellobiose on cellulase activity by
breaking the cellobiose into glucose units.

4.4  Biobutanol Production from Agricultural Biomass
4.4.1 Substrate Preparation

Increase in the cost of feedstock is an important challenge in biobutanol production.
So underutilized and cheap raw materials like lignocellulosic biomass have been
intensively studied so as to use it as feedstock for biobutanol production. However, it
is important to choose the right substrate, for instance, their structural arrangement
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and chemical composition as it plays an important role in product yield (Ibrahim
et al. 2017). Therefore, high lignin content is not preferred as it will take a long time
in pretreatment process.

In the first step, the substrate that has a high lignin content should undergo the
pretreatment. The pretreatment methods vary with the biomass used for biobutanol
production. The often used pretreatments include sulphuric acid pretreatment, alka-
line peroxide pretreatment, steam explosion pretreatment, hydrothermal
pretreatment, and organic acid pretreatment. These pretreatments are needed to
degrade the structure of lignin that holds the cellulose and hemicellulose
components. After the pretreatment, the substrate can be easily hydrolysed into
fermentable sugar and subsequently into biobutanol. Pretreatment can be categorized
into three types which are physical, chemical, and biological.

Physical pretreatment commonly is conducted for the woody biomass in order to
reduce the woody size before chemical or biological processing. Woody biomass
typically is very energy-intensive as high energy consumptions are needed for
milling the wood chips into fibres and approximately 500 to 800 Wh/kg are used
(Schell and Harwood 1994; Zhu et al. 2009, 2010a). Therefore, in order to reduce
energy consumption and to ensure viable commercial cellulosic bioenergy produc-
tion from woody biomass, post-chemical pretreatment size reduction approach has
been proposed (Zhu et al. 2010b).

Chemical pretreatment includes alkali, dilute acid, oxidizing agents, and organic
solvents. Chemical pretreatment has become the most promising method to remove
the lignin and/or hemicelluloses of biomass and subsequently decrease the degree of
polymerization and crystallinity of the cellulosic components (Behera et al. 2014).
Furthermore, some chemicals used do not produce toxic residues for the downstream
processes although those chemicals have a significant effect on the genuine structure
of lignocellulosic biomass when the process has been carried out at room tempera-
ture and pressure (Mtui 2009). However, concentrated acid is not favourable as it is
corrosive and not feasible for the economic pretreatment.

Biological pretreatment has provided more eco-friendly and economically viable
strategy for enhancement of enzymatic saccharification rate as this pretreatment uses
metabolite of a microorganism in nature for the biofuel production (Sindhu et al.
2016). Currently, pretreatment using rot fungi seems promising as it consumes less
energy and contributes less damage to the environment (Chen et al. 2010). In
addition, as the pretreatment is conducted at mild condition, the by-product pro-
duced during the pretreatment do not inhibit the subsequent hydrolysis.

4.4.2 Medium Formulation

An optimum medium composition is essential for a high biobutanol production
especially carbon and nitrogen. It was reported that the amount of carbon source
particularly sugar should not exceed more than 160 g/L. The cells growth is inhibited
if more than 80 g/L. of sugar is supplied and the cells cannot grow in medium
containing more than 160 g/L of sugar (Monot et al. 1982). However, low sugars
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supply which is less than 40 g/L could produce more acids than solvents and inhibit
the cells after 48 h of fermentation (Ibrahim et al. 2015).

P2 synthetic medium (P2-Medium) (Monot et al. 1982) is widely used as basic
fermentation medium for Clostridia. P2 synthetic medium consists of vitamin,
mineral and buffer, sugar. This medium is important for cell growth, and solvent
formation. Cell growth is dependent on the presence of Mg, Fe, and K in the
medium. It was reported that, excess of ammonium acetate supplementation caused
acidic fermentation (Monot et al. 1982). Apart from P2 medium, buffer also plays
significant role in modulating the transition between the conversions of acids into
solvents in acetone—butanol-ethanol fermentation. Ibrahim et al. (2015) reported
higher solvent concentration of 2.93 g/L in the ABE fermentation with buffer using
Clostridia as compared to the fermentation without buffer.

4.4.3 Microorganism and Inoculum Preparation

The selection of microorganisms for biobutanol production is important. The
organisms must tolerate toxicity in solvents and concentration of end products.
Commonly, Clostridium sp. are used for the fermentation process. Clostridium
sp. is a group of obligate, Gram-positive, and endospore-forming anaerobes. There
are lots of strains that are commonly used for the fermentation which include ATCC
(American Type Culture Collection), DSM (German Collection of Microorganisms.
Or Deutsche Sammlung Von Mikroorganismen), NCIMB (National Collections of
Industrial & Marine Bactria Ltd.), and NRRL (Midwest Area National Center for
Agriculture Utilization Research, US Department of Agriculture). Though the strains
are different, it still share the similar metabolic pathway and end products.

4.4.4 ABE Fermentation

ABE fermentation was first discovered by Louis Pasteur. He is the first person that
found bacteria producing biobutanol in 1861. Interestingly in 1916, Clostridium
acetobutylicum was first isolated by Chaim Weizmann. He is recognized as the
father of ABE fermentation, and able to ferment sugars into acetone, butanol, and
ethanol. Clostridium sp. was identified as the best organism for ABE fermentation.
Commercial ABE fermentation plant was built in 1918, in Terra Haute, Indiana. This
project supplied butanol for a primary component of paint lacquers (Ezeji et al.
2004). However, during the 1960s, the petrochemical butanol produced seem
unbeatable as a competitor of biologically derived butanol. After decades of the
energy crisis, interest on ABE fermentation was renewed. However, nowadays
China is the only country currently running on ABE fermentation at industrial
scale (Dong et al. 2012).

ABE fermentation continuously gaining interest among researchers to produced
biobutanol with high yield and can tolerate with biobutanol toxicity. ABE fermenta-
tion is also feasible and could be a promising process for the second generation
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Fig. 4.3 Methabolic pathway of Clostridium spp. (Source: Liitke-Eversloh and Bahl 2011; Shinto
et al. 2008)

biofuels that use lignocellulosic biomass substrate (Morone and Pandey 2014).
Previously, the sources of carbon for ABE fermentation are sugarcane, corn, and
cassava which has competing demands. Currently, researchers are interested to
utilize agricultural lignocellulosic biomass as a substrate for the biofuel production
including bioethanol and biobutanol.

ABE fermentation involves two important phases (Fig. 4.3). First phase is
acidogenesis stage where acids (acetic acid, butyric acid) and gases (hydrogen,
carbon dioxide) are formed usually during log phase of microbes. The next phase
is solventogenesis, in which solvents are produced during stationary stages
(Gheshlaghi et al. 2009). Acids then reassimilated for ABE production. In order to
achieve high biobutanol production, the reassimilations of acids need to be success-
fully converted to solvents. The excess amount of acetic and butyric acid produced
by C. acetobutylicum at its maximum growth rate causes the failure of transition
from acidogenic to solventogenic phase (Schuster et al. 2001). Interestingly another
study suggested that “acid crash” can be halted, by promoting the transition phase
from acidogenesis to solventogenesis phase by adopting delayed yeast extract
feeding (DYEF) (Li et al. 2012).
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4.4.5 Recovery

The lower concentration of biobutanol in ABE fermentation is mainly because of
inhibition of biobutanol towards the microbes, low biobutanol titer, sluggish fer-
mentation. Integration of in situ recovery could help to increase the recovery of
biobutanol from the fermentation process. Several in situ recovery techniques are
suggested such as pervaporation (Li et al. 2014), gas stripping (Qureshi and
Blaschek 2001), liquid-liquid extraction (Yen and Wang 2013), and adsorption
(Luyben 2008). The low energy input and less capital investment for facilities
could be another specialties of this techniques compared to other techniques (Xue
et al. 2014). The best recovery technique in terms of high biobutanol recovery, cost-
effectiveness, and capability to upscale into large scale processing is preferred.
Besides in situ recovery enhances the overall fermentation process and is able to
prolong the microbial growth and productivity. Separation of biobutanol from the
production process should not remove other biobutanol precursor such as butyric
acid, enzyme and others glucose, and media. Gas stripping has shown as a suitable
candidate for the biobutanol recovery since only volatile compound was stripped out
without interfering the fermentation process itself. In other words, the gas stripping
is preferred as it selectively separates volatile substances and do not harm the cell,

Table 4.3 Comparison of biobutanol recovery techniques

Butanol

recovery

technique Principle Advantages Limitations

Adsorption Adherence of solvents to | Easy to operate, low | High adsorbent cost, low

Gas stripping

Liquid-liquid
extraction
Perstraction

Pervaporation

silicalite resin, clay,
activated carbon, or
other adsorptive
materials

Volatile solvents being
stripped out by gases and
then condensed

Using the solubility
differences of solvents

Membrane-based
extraction, separating the
fermentation broth from
the extractive solvents
Using membrane to
selectively let the
vaporous solvents pass
through

energy requirement

Easy to operate, no
harm to the culture,
no fouling

High selectivity,
efficient

High selectivity, low
toxic to the culture
compared to liquid—
liquid extraction
High selectivity
(separation factor:
5-100)

efficiency, low selectivity
(will absorb any
component), low
adsorbent capacity
(loading: ~0.1 g/g)
Require a high
temperature or vacuum
for sufficient volatility,
low selectivity (separation
factor: 6-20)

Forming emulsion, toxic
to the culture

Poor stability, membrane
fouling, high cost

Membrane fouling, high
cost

Source: Dhamole et al. (2012), Durre (1998), Gapes et al. (1996), Groot et al. (1992), and Qureshi

et al. (2005)
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and not strip out the nutrient. (Lu et al. 2012). The in situ recovery by gas stripping is
integrated in fermentation system by removing the biobutanol and retaining the
concentration of biobutanol under its maximum value in fermentation culture. The
gas stripping is a promising technique due to its economic and operation simplicity.
Besides, the study of gas stripping technique from small scale up to large scale can
be carried out extensively. However the process to selectively recover biobutanol
from ABE medium need to be carried out using two-stage gas stripping technique
(Xue et al. 2013), which increased biobutanol production by two-fold. Further, the
energy consumption for gas stripping process could be reduced by obtaining high
recovery of biobutanol (Xue et al. 2013). Table 4.3 summarizes and compares the
pros and cons of these alternative biobutanol recovery methods.

4.5 Conclusion

Agricultural biomass could provide a sustainable and economical way to produce
biobutanol via biotechnology approach in order to overcome the limited fossil fuels
reservoir that the world has been facing. However, the bioconversion of biomass into
biofuels still faces many challenges that include limited yields of biobutanol due to
the multiple by-products, the suitability of the biomass as feedstock, and cost of
pretreatment. Therefore, research must be directed to decipher the fundamental
processes of biobutanol production, enhance the productivity of metabolic pathway
through genetic engineering of microorganisms, and reduce the cost of pretreatment
of agricultural biomass.
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Abstract

The ever increasing global population, continuous dependence on fossil fuels for
chemicals, fuels, feeds, and food substitutes, movement of population towards
urban, and emergence of more urban cities, have created a shift towards more
renewable technologies for sustainable development of environment, economy,
and society. One of the renewable technologies which promotes sustainability is
efficient waste management technologies. Existing waste management
technologies such as open dumping, land filling, and incineration results in
generation of more greenhouse gas emissions. The concept of circular economy
against existing linear economy emphasizes, if the wastes are managed properly
more resources can be extracted out if it, which not only contributes to sustainable
economic development but also to environment and society in general. Wastes
can be broadly classified into degradable (biowastes) and non-degradable waste,
at present the per-capita generation of waste is 0.74 kg/day; as the population
continues to rise the amount of wastes generated will double causing serious
environmental, public, health, and socio-economic and political concerns. In
order to be more sustainable, in the recent years global attention is focused
towards valorization of biowastes into energy, food, feed, chemicals generation.
This chapter deals with different types of wastes viz., biomass, food, industrial,
animal, municipal solid wastes, their characteristics and scope for valorization
into fuels, chemicals, and food.
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5.1 Introduction

According to United Nations report, the global population will continue to rise in a
steady state phase; it will reach 8.5 billion in 10 years from now and will be 9.7
billion in 30 years from now and around 80% of the mentioned population will live
in cities (Wilson et al. 2016). As the population increases the demand for food, fuels,
chemicals will increase simultaneously with consequent utilization of natural
resource also increases tremendously. Besides these, the dependence of global
population for their primary source of energy has not reduced significantly. The
current balance of fossil fuels such as coal (3,789,934 ktoe), Natural Gas
(3,106,799 ktoe), Nuclear (687,481 ktoe), and oil (4,449,499 ktoe) indicate its finite
quantity and if the current rate of utilization continues, the remaining years for
complete depletion of fossil fuels are 53 years for oil, 54 years for natural gas, and
110 years for coal (Ritchie and Roser 2020). The consumption rate far exceeds the
production of fossil fuels. The transportation sector continued to be the highest
consumer of total energy produced during 2017 (IEA 2019). This unprecedented
utilization of fossil fuels has emitted more CO, adding to the global climate change
(IEA 2019).

Besides these negative effects on the environment, the burgeoning population
levels lead to generation of enormous quantity of wastes to the environment. Wastes
are defined as unwanted and unsuitable materials or by-products. Depending on
degradation nature, wastes can be classified into biodegradable and
non-biodegradable. The most common and abundant waste of all, is Municipal
Soil Waste (MSW). Worldwide, the total MSW generation for the year 2018 was
2.01 billion metric tonnes (Kaza et al. 2018). The USA was among the highest in
terms of generation (267.8 million tonnes) followed by Europe (249 million tonnes)
which was followed by China (215 million tonnes) during the year 2017 (Bhatia
et al. 2018). It is predicted that by 2050, 3.40 billion metric tonnes of MSW alone
would be generated (Kaza et al. 2018). Accumulation of waste seems to be on
increasing trend, for instance, the most notorious plastic waste generation was over
8 million tonnes in the year 2017 and unfortunately most of them were dumped into
sea (Xu et al. 2019). The most common methods of treatment of wastes are land fill,
open dumping, and incineration with very less amount goes for recycling. Such
management practices add more greenhouse gases (GHGs) to the environment, for
example, 3% Methane was emitted by open dumping, land fill, and direct incinera-
tion of MSW in the year 2017 (Wilson et al. 2016).

Therefore, the world is confronted on one side with the explosion of population,
the other side with increased waste generation due to increased consumption of fuels,
chemical, food, and feed. Thus, the developed and developing countries think of
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management of waste in more sustainable way which would significantly contribute
to economy, environment, and society. In the past decade, the concept of “circular
economy” was introduced which describes maintaining the market value of the
products, resources instead of disposing them as in the case of linear economy
(Bos et al. 2017; Dahiya et al. 2018; Kaur et al. 2018; Maina et al. 2017; Vea
et al. 2018). In other words the circular economy matches with green chemistry of
bio-based product generation from wastes. Thus eliminating disposal of wastes,
rather producing new products/recycling and reusing in more sustainable way. It is
high time to develop new technologies to extract value added products from the
biowastes. Hence, this chapter aims to review the biowastes valorization into
chemicals, fuels, food, and feed additives. This chapter covers the various types of
biowastes, ways to utilize them, products generated out of it, and their future scope
(Fig. 5.1).

5.2 Biowastes

According to European Union definition, biodegradable garden and park waste, food
and kitchen wastes, office waste, restaurant waste, whole sale waste, and food
processing plant waste are included in the biowastes (Fava et al. 2015). However,
increased evidence of literature suggest that agricultural wastes can be one of the
main feedstock for the production of biofuel and chemicals. This chapter focusses on
agricultural residues, food wastes, animal wastes, and industrial wastes for genera-
tion of chemicals, fuels, food as described in Fig. 5.2.
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5.2.1 Valorization of Biomass into Fuels and High Value Added
Products

Biomass constitutes largest resource of carbohydrates and lignin. Every year
2 x 10'"" tonnes of biomass is generated worldwide (Appels and Dewil 2012).
Among the biomass, the estimated global production of lignocellulosic biomass is
about 181.5 billion tonnes per year (Narron et al. 2016). Due to increasing energy
demand, environmental, geo-political factors of fossil fuels utilization, biomass as a
renewable alternative was considered for production of different types of biofuels.
Biomass can be divided into four types based on the origin.

* Biomass exclusively produced for fuel purposes. For example, sugar beet, corn,
sugarcane, etc.

¢ Lignocellulosic biomass includes all agro-residues rich in carbohydrate for bio-
fuel production.

¢ Organic fraction of municipal soil wastes rich in fuel properties

* Crop residues that include residues after harvest of crop (Fig. 5.3).
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All of the different types of biomass can be used for generation of biofuels. The
major pathways used for generation of biofuel from biomass is given in Fig. 5.4. For
efficient conversion of biomass to biofuels initially it needs to undergo pretreatment
to remove the recalcitrant molecule lignin and enable the sugars such as cellulose
and hemicellulose to be fermented by microorganisms to produce biofuel (Narron

et al. 2016).
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5.2.1.1 Anaerobic Digestion of Biomass

The carbohydrates in the biomass using anaerobic digestion (AD) can be
transformed into biogas which constitutes methane (60%) and CO, (40%). The
AD technology, although known for many years, in recent times gained more
attention. The home based AD has become more popular in developed and develop-
ing countries. In India, AD of biowastes has gained traction in different sectors
namely as home based AD, community based AD, and large scale AD depending on
the quantity and quality of waste generated in the region (Breitenmoser et al. 2019).
Although AD generates energy out of biomass, this technology also generates
digestate to be used as bio-fertilizers or soil enhancer. However, if the AD is to be
completely operated throughout the sector from home to large scale units, it needs to
accommodate more innovative ways such as co-digestion with other wastes, design
and development of suitable reactor for individual sector, synergy between public,
private, and industrial sectors (Bhatia et al. 2018).

5.2.1.2 Bioalcohol Production from Biomass

Among the different sectors of energy consumption worldwide, the major share
(28%) goes to transportation sector which contributes to global warming. It is
predicted that the global mobility will increase triple fold in the 2030; use of
petroleum products will also likely to increase (Balan 2014; Fatih Demirbas et al.
2011). Many countries started producing biofuels from lignocellulosic biomass.
Among the biomass, lignocellulosic biomass (LCB) is the most preferred option
for generation of bioalcohol. The LCB contains 40-50% cellulose, 30—40% hemi-
cellulose, and 20-30% lignin. Cellulose and hemicellulose are polysaccharides
which mainly contain Beta 1, 4 linkages. Lignin the abundant aromatic polymer
finely laced between cellulose and hemicellulose hindering many pretreatments and
prevent accessible of hydrolytic enzymes (Manisha 2017). General bioalcohol
production methods first remove lignin and depolymerize cellulose and hemicellu-
lose into glucose and xylose units. After enzymatic hydrolysis, microorganisms
convert the carbohydrates into bioalcohol. Lignin although not valorized is mostly
burnt to generate electricity. However enormous value added products can also be
generated from lignin (Narron et al. 2016).

5.2.1.3 Biodiesel Production from Biomass

Although bioalcohols were significantly produced, recently biodiesel production
from biomass is gaining attention. Europe is the forerunner in biodiesel production
worldwide. Biodiesel are lipids from oleaginous microorganisms. In nature, certain
bacteria, fungi, yeast, and algae are capable of accumulating lipids in their biomass
more than 70% of their dry weight under high carbon and low nitrogen conditions
(Bhatia et al. 2018; Intasit et al. 2020). These lipids are similar to any vegetable oils
in terms of their biodiesel properties. Use of microorganisms for lipid production
although known for more than 100 years, due to its high cost they were not
commercialized. Recently they are gaining momentum as the use of renewable
biomass is available as a cheap source for biofuels. Biodiesel from oleaginous
microorganisms has many advantages over plant oils, as they do not require huge
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land, time, labour, and no seasonal disturbances. Microbial biodiesel can be pro-
duced significantly under controlled conditions. Although several research efforts
are still needed to commercialize this technology on larger scale. Biomass to
biodiesel continues to be an important source of energy in the recent years (Dahiya
et al. 2018).

5.2.1.4 Biohydrogen Production from Biomass

In the current wave of renewable energy generation out of wastes, anaerobic
digestion, municipal solid waste, organic waste, agricultural waste, waste water,
and sludge are considered as renewable source of biohydrogen production. Although
the continuous production of biohydrogen has some disadvantages such as low H,
yields, the technology can be improved by mixing photosynthetic microbes with
anaerobes to degrade carbon rich and less toxic raw materials. Under anaerobic
conditions, hydrogen production proceeds with photo fermentative as well as dark
fermentation (Balan 2014). Biohydrogen production is an anerobic fermentation of
organic substances. The most studied anaerobic bacteria Clostridium butyricum can
serve as a candidate for biohydrogen production. The theoretical yields of hydrogen
is 4 mol of H, per mole of glucose or 2 mol of H, per mole of acetate. In order to be
competitive with other biofuels, the H, production should be enhanced by isolation
and identification of novel microorganism with high titres, bioreactor designs, use of
mixed culture, and more advanced phototrophic microorganism for higher yields
(Venkata Mohan et al. 2016).

5.2.1.5 Bulk Chemicals from Biomass

As mentioned biomass constitutes a largest renewable resource for chemicals pro-
duction. There has been renewed interest to produce fine chemicals and platform
chemicals from biomass. Although the concept is promising, and high value added
products can be generated, the industry must also think of producing bulk chemicals
initially to sustain its production (Ahorsu et al. 2018; Appels and Dewil 2012;
Balboa et al. 2015). The major limitation with fine chemicals is that they have
very small market. On the other hand, chemicals such as surfactants, plastic
monomers, lubricants, fibres, and industrial solvents serve as bulk chemicals with
huge market potential. High value added fuels and chemicals currently replace
300 million gallons of petroleum per year. The market for high value chemicals is
growing rapidly and will have a better future in contributing to economy of the
nation (Biddy et al. 2016).

For the production of bulk and fine chemicals, focus must be paid to use the food
processing waste. The residues left on the field although in enormous quantity, they
may be preferred to be retained on the field, as they add more value to soil. On
volume basis, rice husks and sugarcane bagasse are the two important processed
residues from rice processing plant and sugar industry, respectively. These two high
volume renewable sources are available for production of fuels and chemicals.
Organic fraction of municipal solid waste is also another important source of
biowastes that can be efficiently transformed into fuels and chemicals (Gallezot
2012).
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Majority of industry focus on biofuels especially bioethanol from biomass.
However, a high value compound ethylene is produced by dehydration of ethanol.
Then ethylene could serve as platform chemical for production of multiple high
value chemicals. Oxidized form of ethylene is ethylene oxide or ethylene glycol. The
National Renewable Energy Laboratory (NREL) has released a list of bio-based
chemicals with near-term market potential (Fig. 5.5) (Biddy et al. 2016). The
chemicals mentioned in Fig. 5.5 can serve as building blocks for production of
several other chemicals. Polybutadiene and styrene butadiene rubbers can be pro-
duced from 1,3-butadiene (BD). 1,4-butanediol (BDO) is a platform chemical from
which polymers and solvents are synthesised. Surfactants are the products produced
from fatty alcohols and are used as floor cleaners (Gallezot 2012; Rosales-Calderon
and Arantes 2019). Furfural alcohol (FA) and product of furfural obtained via
chemical condensation of hemicellulose are widely used in resin preparation. Glyc-
erine, a well-known hygroscopic substance is used in variety of industries. Lactic
acid, a fermented product of sugars by microorganisms can be used in many fine
chemical transformations. 1,3-propanediol (PDO) has gained popularity in polymer
industries and cosmetics industry. Similar to lactic acid, succinic acid has multiple
product transformations with high market potential. Xylene, an important platform
chemical serves as an integral part of polyethylene bottle manufacturing
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Table 5.1 Industries involved in production of chemicals from biomass

S. no. Company Country Product

1. Braskem Brazil Polyethylene

2. Genomatica USA 1,4-Butanediol

3. INVISTA USA 2,3-Butanediol and butadiene
4. LANZATECH USA 2,3-Butanediol and butadiene
5. International Furan Chemicals Netherlands Furfural

6. Archer Daniels Midland USA Glycerol

7. Amyris USA Bio-isoprene

8. NatureWorks USA Lactic acid

9. Cellulac UK Lactic acid

Source: Adapted from Biddy et al. (2016)

(Rosales-Calderon and Arantes 2019; Shahbazali 2013; Singhvi and Gokhale 2019)
Several industries involved in production of fine and platform chemicals from
biomass is described in (Table 5.1).

5.2.2 Valorization of Food Waste into Chemicals and Fuels

Management of food waste is another critical issue in both developed and develop-
ing nations. It is estimated that globally, about 30-40% of food is wasted during the
supply chain (Dahiya et al. 2018). The trend in low income countries suggests that
more food loss occurs at initial stages of supply chain due to improper infrastructure,
lack of finance to maintain the supply chain. On the other hand, the food loss is found
at the end of supply chain for high income nations. Together both high and low
income nations contribute equally to food waste. It is estimated that about 1/3 of the
world’s food was lost or wasted per annum. It is not only the food that is wasted
without consumption, but also loss of the resources that played a part in the food
production. Further, food production also involves release of greenhouse gases
emissions. Hence, food loss and waste is cause of concern. Global agenda on
SDGs also focusses on this problem, as SDG 2 (Ending hunger) and SDG
12 (Responsible consumption and production) are connected to this problem. In
fact the target 12.3 of the SDG “calls for halving per-capita global food waste at
retail and consumer levels by 2030, as well as reducing food losses along the
production and supply chains”. Further, potential exists in the valorization of food
waste into value added chemicals and fuels.

5.2.2.1 Existing Methods of Management of Food Wastes

Aerobic decomposition (compost production) and anaerobic digestion are currently
followed worldwide to manage the food wastes. Both the technologies are operated
in the mode of biodegradation of organic matter. Composting is aerobic degradation
of food waste with the help of decomposing microorganisms to produce compost.
Compost is excellent manure that adds nutrients to soil and enhances the water
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holding capacity of soil. Composting also has several limitations such as release of
odour, NH;, GHG, and leachate. While AD works well for biomass, waste water,
sludge, industrial by-products, food waste to methane has several shortcomings. Due
to high nutrient load in food waste, the methane yield gets reduced. Further,
increased production of free fatty acids which are volatile in nature results in
formation of foams. In some countries the digestate can be of excellent fertilizer to
soil; however, it increases the nutrient content in soil. Hence, the demand for
sustainable methods of valorization of food wastes are increasing from the past
decade (Mirabella et al. 2014).

5.2.2.2 Fuels from Food Wastes

The rich nutrient content in food wastes makes them suitable feedstocks for genera-
tion of biofuels. In the past years enhanced research efforts have been oriented
towards valorization of food waste into biofuels. Potential of food wastes in
generating different biofuels are given in Fig. 5.6.

Anaerobic Fermentation

Anaerobic fermentation (AF) is the most popular method of food waste valorization
towards generation of methane, volatile fatty acids, hydrogen, and other organic
acids such as butyric acids, propionic, iso-butyric, valeric acids. However, the AF to
be competitive over other platforms, use of mixed microbiome for utilization of
different nutrients should be performed. Combining anerobic fermentation with
bioelectrode systems to generate electricity from methane is one of the promising
way of valorization. Anaerobic fermentation consumes all organic load for platform
chemicals production and reduces the carbon foot print (Dahiya et al. 2018; Venkata

Mohan et al. 2016).
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Fig. 5.6 Fuels production from food wastes
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Extraction of Sugars from Food Wastes

Due to the rich organic content of food wastes, research has been directed at the
possibilities of extraction of sugars from food wastes for production of fuels and
chemicals. To extract sugars from food wastes, pretreatment step is necessary. Dilute
acid pretreatment yields more sugars than other methods. Similarly, amylase enzyme
digestion leads to production of glucose, fructose, galactose, and ribose. Such sugars
can then be used to make platform chemicals, fuels, and food additives. It is worth
noting that during any pretreatment either it be chemical, physical, or biological,
product recovery should be maximum (Dahiya et al. 2018).

Biohydrogen

Highly degradable organic material content in food wastes makes it a potential
candidate for biohydrogen production. Biological production of hydrogen involves
photo-fermentation, biophotolysis, and anaerobic fermentation. Biohydrogen pro-
duction using anaerobic fermentation is directly dependent on nature and property of
microbial inoculum, type of treatment adopted, pH, inclusion of inducer, design of
bioreactor, etc. In addition, integration of anaerobic fermentation with photo-
fermentation to increase the yield is an additional option. Similarly fusing dark
and photo-fermentation also increases the yield of hydrogen fermentation (Arancon
et al. 2013; Maina et al. 2017; Mirabella et al. 2014).

Biomethane

The most preferred technology for energy generation from food wastes is methane
production through anaerobic digestion. The major bottleneck while using food
waste as a substrate is their rich nutrient content and foaming in the reactor. To
overcome such shortcomings process should be optimized with better C/N ratio,
newer reactor design, co-digestion with other wastes to improve methane yield
(Bhatia et al. 2018; Jobard et al. 2017; Marin-Batista et al. 2019).

Biohythane

Biohythane is a combined fuel of methane and hydrogen prepared at 1:4 ratio to
improve the calorific value of fuels. Such type of adding a small percentage of
hydrogen with methane improves efficiency of methane fuels. Food wastes as a
source of biohythane production has received attention and semi-pilot scale studies
reveal that they are the good source for production of biohythane.

Volatile Fatty Acids

During the generation of H, production, a combination of short chain volatile fatty
acids as co-products are generated under anaerobic fermentation. Currently these
volatile fatty acids are produced from petroleum refinery and not benign to the
environment. Hence volatile fatty acids generated from the anaerobic fermentation
of food waste has got renewed interest. Production of volatile fatty acids has
numerous advantages in textile, pharmaceutical, and food industries (Posmanik
et al. 2017).
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Bioethanol

Global demand for bioethanol has increased considerably. Currently biomass to
biofuels route are most commercialized and many pilot and industrial plants are
operated. Due to the increased demand, alternative feedstocks are explored simulta-
neously. It was observed that fermentation of food wastes at high solids content with
a vacuum recovery system yielded higher amounts of bioethanol than the conven-
tional fermentation (Huang et al. 2015). Thus food waste can also be a suitable
substrate for bioethanol production as they do not require multi-step pretreatment
processes for biofuel production.

Biodiesel Production

Biodiesel is a mixture of esterified fatty acid and is conventionally produced from
non-edible and few edible oils, cooked oils, and fats from animal origin. However,
their supply is very limited and cannot meet the increasing demand. There are
microorganisms called oleaginous microorganisms that can accumulate lipid in
their biomass. These oleaginous microorganisms have potential to convert food
wastes into lipids. The lipids are trans-esterified with chloroform and methanol in
the presence of KOH (potassium hydroxide) to form biodiesel.

5.2.2.3 Chemicals Production from Food Wastes

Food wastes are not only good candidates for biofuels production, owing to their
nutrient content they are also good source for extraction and recovery of value added
chemicals. An overview of chemicals generated from food waste is given in Fig. 5.7
(Dahiya et al. 2018; Mirabella et al. 2014). The three major wastes vegetable waste,
dairy products, and meat industry wastes contribute to food wastes.
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Fruits and vegetables waste constitutes to be largest fraction of food wastes. It has
significantly high solids, high COD and BOD, and it can be used for production of
high value chemicals. During processing of vegetables and fruits viz., apple, potato,
tomato, berries, olives, citrus, enormous amount of wastes has been generated. Their
production potential has been reviewed by (Mirabella et al. 2014). Several food
industry, pharmaceutical industry produces can be generated from fruit and vegeta-
ble wastes (Fig. 5.7). Biologically active phenols and pectins are extracted from
apple pomace, citrus peel residues, and berries. Gelling and thickening agents are
also obtained from fruit wastes.

Dairy industries generate enormous quantity of liquid wastes with different
nutrient content. The liquid of dairy waste mainly contains proteins, salts, fatty
substances, lactose, etc. Precipitation, filtration techniques were followed to purify
the whey from different cheese whey. Such treated whey is a rich source of lactose
which can be used for production of chemicals, especially industrial production of
kefiran, an exopolysaccharide rich in glucose and galactose. Whey permeate was
used as sanitizing agent to treat fruits and vegetables.

Global meat consumption has increased significantly due to increased demand for
protein rich food. One of the causes of concern with respect to recovery of chemicals
from meat and meat processing waste is health and hygiene issue. For instance,
Bovine Spongiform Encephalopathy is found to be one of the most dangerous
diseases that affect the value and consumer chain, calling for much attention during
handling of meat wastes. Meat wastes are also a rich source of proteins, hence
several extraction methods were tried to extract meat proteins from lungs and beef
pork. Such proteins can be a flavour enhancer, nutritional additive, etc. (Arancon
et al. 2013; Dahiya et al. 2018; Ibarruri and Hernandez 2019; Imbert 2017).

5.2.3 Industrial Wastes

During the processing of organic material into high value products, a significant
quantity of wastewater is generated. In most cases they are not treated properly either
land filled or directly disposed into water bodies causing environmental problems.
Valorization strategies are followed for such industrial wastewater. Starch
processing wastewater is one such waste composed of high quantities of starch
from peelings of potato. Starch containing wastes also have significant amounts of
total soluble nitrogen and total soluble phosphorous which can be recovered/
removed by biological wastewater treatment (Muniraj et al. 2013). With regard to
Olive mill waste (OMW), the wastewaters contain enormous amounts of organic
load. In this case, biogas production can be a better option. The digestate after
treatment with appropriate concentration of nutrients can be composted and used as
soil amendment to enhance the organic carbon content. Further, the reclaimed
wastewater can be a good source for irrigation of agriculture and horticultural
crops (Fritsch et al. 2017).
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5.3 Conclusion

Valorization of biowastes (agricultural, food, industrial wastes) is an important step
towards sustainable economy, environment, and society. Valorization technologies
and their adoption vary with type, composition, availability of biowastes, energy
demand, economic and technological feasibility. However, there are challenges that
need to be sorted, for instance, sorting different wastes, storing them, instability of
microorganisms in the wastes, and high heterogeneity of by-products. The
challenges warrant development of new and innovative technologies. Further,
while the valorization of biowastes into value added products is a good option,
many of the technologies available for valorization of biowastes are costly. Hence,
concerted effort is required to reduce the cost of technology and upscale the
economic returns.
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Abstract

Agro-residues are kind of the lignocellulosic biomass feedstocks used for both
biofuel and biochemical production via a biorefinery approach. The renewable
bio-products from these residues have the potential to replace the petroleum
sources. Immediately after the harvest of the first crop, farmers have a short
period for land preparation to raise the next consecutive crop. Due to lower prices,
huge quantity, and poor logistics, farmers are forced to burning of residues at an
open field. Existing disposal methods of agro-residues management such as in
situ burning would create air pollution, and the biomass is burnt into ashes
without utilizing their biofuel or biochemical potentials. The biorefinery would
aim for minimum or zero waste generation and to produce biofuels and value-
added biochemicals from agro-residues. The process selection for a biorefinery is
entirely dependent on targeted end products. This chapter briefly discusses the
valorization of cellulose, hemicellulose, and lignin of agro-residues for biofuels
and biochemicals production. The barriers to the commercialization of
biorefinery plants are also discussed.
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6.1 Introduction

The energy products obtained from underground mines/reserves had shown signifi-
cant contributions in the industrial era and occupied first place in terms of higher
energy value as compared to other energy resources. Transportation, power genera-
tion, industry, and agriculture sectors are the primary consumers of fossil fuels.
Furthermore, liquid and solid fuels derived from fossil fuels play a vital role in the
transport sector. The fossil fuel reserves are shrinking rapidly due to an increase in
demand worldwide, and the crude oil reserves will be depleted in the next 30 years
(Bajpai 2020). Looking from another side, about 15-22% of the world’s greenhouse
gas (GHG) emissions come from fossil fuel-run vehicles, and it contributes one-fifth
of global CO, emissions (Soimakallio and Koponen 2011; Chin et al. 2013; Kirtay
2011). The alarming rate of usage of these fuels in the present scenario showed a
negative impact on the environment, which results in air pollution, climate change,
and global warming. Renewable energy sources are one of the potential candidates
to resolve the above-said problems. Among the renewable energy sources, biomass
was used by mankind from the ancient period and especially for thermal energy and
other purposes.

Biomass means biodegradable organic matter, which is produced by plants/
animals/microorganisms. The present predominant usage of lignocellulosic biomass
feedstocks is burning or treated as waste and less exposure for tapping other energy
values. The biomass is one of the potential feedstocks to produce multiple
bio-products via different biomass conversion technologies. Among the different
biomass feedstocks, agro-residues have come under the lignocellulosic feedstocks
category. Recent trends show that the crop production area increased with food
demand for the growing population and results in increased crop residue generation.
The available agriculture wastes subjected to poor utilization and management
practices such as decomposing field itself or in situ burning results in significant
environmental impacts (Tripathi et al. 2019). However, these residues have the
potential to produce biofuels, biochemicals and bioenergy. For effective utilization
and minimal waste generation, multiple bio-products production from agro-residues
are proposed.

Biorefinery helps to generate a variety of products from these residues. There are
several reasons for the agro-residues to be used as inputs in the biorefineries, such as
their low price, massive production, and potential resource for multi-bioproducts.
The goal in a biorefinery is to isolate all the added value from the biomass feedstock,
resulting in little or no wastes generation. By producing multiple value-added
products, a biorefinery offers huge potential. Biofuels, bioenergy, and biochemicals
are commonly known bio-products from biomass materials and the biorefinery
concept targets two or more of these bio-products through combined
bio/thermochemical conversion processes. Biofuels are defined as fuel derived
from the biomass substrates, which may be in the form of liquid, gaseous, or solid.
These biofuels can be used as alternate to petro-fuels.

The constituents of agro-residues are converted into different platform chemicals
via suitable technologies. For example, the cellulose can produce different chemicals
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viz., sorbitol, 5-HMF, glucaric acid, succinic acid, and lactic acid. Furthermore,
furfural and xylitol can be produced using hemicellulose as a source, whereas
levulinic and glutamic acids derived from both cellulose and hemicellulose of
biomass (Ge et al. 2018). However, the process technologies used in the biorefineries
are still under the research stage. This chapter delves about the broad outline of
biorefineries and also discusses challenges faced in commercialization.

6.2  Potential and Availability of Agro-Residues

Generally, the agro-residues are mainly classified into primary residues and second-
ary residues. Primary residues are collected at the time of crop harvesting, whereas
secondary residues are collected from the processing of agro-produce. The agro-
residues are made of three major constituents such as cellulose, hemicellulose, and
lignin. The composition of selected agro-residues is listed in Table 6.1. The biomass
compositions vary with biomass species, environmental conditions, and even in the
same variety grown in different seasons. The cellulose content of selected residues is
in the range of 24-53%, and variation in the values is due to their biomass types and
other factors. Lignin is another vital constituent of agro-residue, which offers more
resistance for biological conversion. Generally, the percentage of lignin content in
these residues ranges from 6 to 29, and lignin content can be used as the chemical
platform to produce biochemicals.

The cultivation of crops is mostly region-specific, and a variety of crops is grown
in different parts of the world. Generally, the quantity of agricultural residues
generated per annum is directly linked with the residue to grain ratio of the individ-
ual crop. The details of the residue to grain ratio for most of the crops are already
available in the literature. Therefore, we can use the individual crop yield data to
predict their respective residue, and summing up the individual crop residue would
give the total crop residue availability for a region or nation. The cereal and
sugarcane crops are contributing a significant share in global residue production
(Tripathi et al. 2019). Annual agro-residues produced in India is estimated as
500 million tonnes (Mt), which includes sugarcane (141 Mt), wheat (110 M),
paddy (122 Mt), maize (71 Mt), millets (26 Mt), fibre crops (8 Mt), and pulses
(28 Mt) (Saroj Devi et al. 2017).

6.3  Biorefinery Methods

The biorefinery is a platform used to produce biofuels, bioenergy, and biochemicals
from single/multiple biomass feedstocks by applying a group of selected biomass
conversion methods with their appropriate equipment/machinery. The group of
selected biomass conversion methods used in the biorefineries could be operated
by one by one in a sequential order. In the case of biorefinery, the raw material can be
converted to main products in the first process, and their intermediate products
further converted into secondary products through the second conversion process.
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Table 6.1 The composition of selected agro-residues

S. no.

Agricultural
residues

Cellulose
(%)

Hemicellulose
(%)

Lignin
(%)

References

Rice straw

25-44

20-34

10-26.4

Mussatto and Dragone
(2016), Hassan et al.
(2018), Paul and Dutta
(2018), and
Rangabhashiyam and
Balasubramanian (2019)

‘Wheat straw

30-44.5

20-50

15-22.3

Cai et al. (2017), Dai et al.
(2019), Paul and Dutta
(2018), and Sharma et al.
(2019)

Barley straw

3048

21-38

6.3-26

Cai et al. (2017), Paul and
Dutta (2018),
Rangabhashiyam and
Balasubramanian (2019),
and Harindintwali et al.
(2020)

Sorghum
straw

26.93-35

24-32.57

10.16-21

Hernandez-Beltran et al.
(2019), Cai et al. (2017),
and Harindintwali et al.
(2020)

Sugarcane
bagasse

18.6-45

12.2-35

10.6-30

Mussatto and Dragone
(2016), Paul and Dutta
(2018), Rangabhashiyam
and Balasubramanian
(2019), Sadhukhan et al.
(2019), and Srivastava
et al. (2019)

Com cob

33.7-45

25-45

5-18.8

Cai et al. (2017), Dai et al.
(2019), Paul and Dutta
(2018), and
Rangabhashiyam and
Balasubramanian (2019)

Corn stover

29.6-43.9

19.1-32

14-21.8

Huang et al. (2016),
Sadhukhan et al. (2019),
Paul and Dutta (2018),
and Harindintwali et al.
(2020)

Rice husk

24-41.05

12-29.3

14.45-26

Hassan et al. (2018),
Mussatto and Dragone
(2016), Dai et al. (2019),
and Sadhukhan et al.
(2019)

Poplar

35-53.3

14.8-28.7

15.5-29.1

Kumar et al. (2020), Cai
et al. (2017), and
Rangabhashiyam and
Balasubramanian (2019)

10

Switchgrass

26.8-45

21.9-31.4

12-28

Mussatto and Dragone
(2016), Dai et al. (2019),
Paul and Dutta (2018),
Srivastava et al. (2019),
and Sharma et al. (2019)
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| Single bioproduct I | Multiple bioproducts | Multiple bioproducts Outputs
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Fig. 6.1 Biorefinery concepts apply to biomass feedstocks (source: Kamm and Kamm 2004).

There will be minimum or less waste generated in the biorefineries. The biorefinery
routes applicable for biomass feedstocks are shown as phase I, II, and III (Fig. 6.1)
(Kamm and Kamm 2004). Furthermore, phase III biorefinery systems are divided
into whole-crop biorefinery, green biorefinery, lignocellulosic biorefinery, and
two-platform concept biorefinery (Clark and Deswarte 2008). The proper selection
of bio/thermochemical conversion methods is based on inputs used and outputs
coming from the biorefinery industry. Generally, three types of primary biomass
conversion methods used in biorefineries are biochemical, thermochemical conver-
sion, and chemical methods.

6.3.1 Thermochemical Conversion Method

The thermochemical conversion method uses heat (with/without air/oxygen) for the
thermal degradation of biomass into end products. Combustion, gasification, and
pyrolysis processes fall under the thermochemical conversion method, which is used
to produce heat energy, biofuels, and biochemicals. Since the agricultural residues
have a low bulk density in nature, the size reduction and drying are common biomass
pretreatment steps adopted before applying the thermochemical conversion
technologies. In the case of residues with higher moisture content, the hydrothermal
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liquefaction process is well suitable, whereas low moisture feedstocks are found
suitable for combustion or pyrolysis or gasification process.

6.3.1.1 Gasification

All constituents of biomass feedstock subjected to higher temperatures (700-900 °C)
with a restricted amount of oxidizing agent (air/oxygen/steam) supply in a gasifier
can yield a gaseous biofuel. This gaseous fuel is referred to as syngas or producer
gas, which can be used as fuel in burners or dual-fuel engines for thermal
applications and electricity generation, respectively. In terms of typical calorific
value, the biogas (21-24 MJ/m®) is lower than that of syngas (4-10 MJ/m?)
depending on biomass feedstocks and reaction conditions (Tumwesige et al. 2014;
Widjaya et al. 2018). The syngas is used as a chemical platform for biofuels or
biochemicals. Pre-processing of biomass feedstocks is carried out by drying and size
reduction process. The low moisture content of biomass (10-15%) is preferred for
the gasification process (Basu 2010), which can be achieved by sun-drying or
mechanical drying methods. Generally, the size and shape of the biomass materials
are not in uniform shape due to heterogeneous biomass feedstocks. Therefore, size
reduction is the main pre-processing step after drying. The size of biomass
feedstocks must be reduced to increase the biomass holding capacity of the gasifier
and also for enhancing the reaction rates. Most of the agro-residues would contain
alkali minerals, and it reacts with silica to form clinkers at time of thermal degrada-
tion. For example, the rice husk contains more silica content and forms clinkers in
the case of the combustion or gasification process. Therefore, the selection of
biomass feedstock for the gasification process is an important one, and feedstocks
are tested for their performance in the gasifier to assess their syngas potential.

6.3.1.2 Pyrolysis

The biomass materials subjected to medium temperature without air/oxygen in a
pyrolytic reactor yields useful bio-products such as pyrolytic gas, solid product, and
liquid biofuel. Typical end product yields (dry basis) produced from different modes
of the pyrolysis process is depicted in Fig. 6.2. It depends on reaction conditions
used in the pyrolysis process, either biochar or bio-oil generated from the biomass.
Biochar and charcoal can be used as a soil conditioner.

6.3.1.3 Combustion

Complete burning of biomass materials in an excess air/oxygen environment in a
combustor/furnace/stoves/chulha to produce heat energy. The steam is produced by
burning of biomass, which can be used for electricity generation. For example,
sugarcane bagasse is used as fuel in steam boiler and electricity is produced in
steam turbines. If the agro-residues with higher ash content are used as fuel in the
combustion process, ash removal setup should be incorporated in the combustion
system for continuous ash removal.
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Fig. 6.2 Different pyrolysis modes and end products yield (source: adapted from Bridgwater 2007)

6.3.2 Biochemical Conversion Methods

The agro-residues can be converted into different biofuels like ethanol, butanol,
bio-oil, and acetone by using biochemical conversion technologies. Depending on
the product and the process, the microbes like bacteria, fungi, and yeast can be used
in the biochemical conversion process. The selection of microbes depends on the
substrate, process, and end products. The lignin present in the biomass makes
complications, and this biomass is not suitable to produce bioethanol/biobutanol
through the fermentation process.

6.3.2.1 Biomass Pretreatment

The pretreatment is an unavoidable step for lignocellulosic biomass used for lignin
removal and to release the sugars for fermentation. Pretreatment of lignocellulosic
biomass is one of the expensive processes, and it accounts for about 18% of the total
production cost (Zhang and Shahbazi 2011). Since the compositions of agro-
residues from different sources may vary with varieties, crops, seasons, and regions.
The major hurdles in the commercialization of agro-residues based biofuels produc-
tion are the high energy-intensive process and cost involved in different unit
operations. Development of low cost and energy-efficient technologies for
pretreatment, minimum inhibitors production, and sugar loss, fermentation, distilla-
tion process are significant challenges for the production of biobutanol from ligno-
cellulosic feedstocks. Therefore, the major hindrance to the commercialization of
alcohol production technology is the biomass pretreatment process.

6.3.2.2 Fermentation Process
Technology for bioethanol production from sugar crops is well established. Further-
more, many bioethanol plants are operated at commercial scale. Meanwhile, a
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complete package of technology for bioethanol production from lignocellulosic
feedstocks is still under development stage. Yeast and bacteria used in the fermenta-
tion process can yield alcohol and acid. The fermentable sugars are converted into
bioethanol/biobutanol with the help of yeast through the fermentation process.

6.3.2.3 Anaerobic Digestion

The agricultural crop residues can be converted into biogas and biodigesate through
the anaerobic digestion process. In this process, the microbial degradation of bio-
mass materials takes place under anaerobic conditions. Most of the primary residues
require biomass pretreatment to enhance the biogas yield, and sometimes it performs
better for co-digestion of mixed residues with cow dung than crop residue alone. The
biodigesate can also be used as manure in the agricultural fields.

6.3.2.4 Hybrid Thermochemical: Biochemical Conversion Technology

The hybrid technology can be used to produce biomass-derived syngas and then
followed by ethanol production. In this case, the first bioproduct (syngas) is pro-
duced by the gasification process, and further, it might be converted into ethanol by
fermentation process (Fig. 6.3). This hybrid technology offers several advantages
viz., higher specificity of biocatalysts, lower energy costs, and higher carbon effi-
ciency. The contaminants present in the raw syngas are particulate matter, tar, H,S,
NH3, alkali compounds, halides, etc. The syngas must be free of these contaminants
before used in fermentation. The biocatalysts used for syngas conversion are more
sensitive to inhibitors present in syngas (impurities) derived from agro-residues. In
order to maintain the excellent quality of syngas, operational parameters used in the

Fig. 6.3 Hybrid technology .
(gasification and [ Agro-residues ]
fermentation) for biofuels/
biochemicals production from l
-resid . .
agro-resicues Size reduction by
physical methods

!

[ Gasification ]

!

[ Syngas cleaning ]

!

[ Syngas fermentation ]

A 4

Bioethanol
/biochemicals
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syngas cleaning system should be optimized for selected crop residue. Syngas is an
excellent chemical feedstock for the production of ammonia, methanol, and other
derivatives through suitable chemical catalytic conversion, i.e., Fischer—Tropsch
synthesis.

6.4  Biofuels Production from Agricultural Residues

6.4.1 Solid Biofuels

The low bulk density biomass materials can be converted into high-density biomass
fuel by briquetting technology. Biomass briquette is a solid biofuel and used to
replace firewood in steam boilers. However, briquetting technology is an energy-
intensive process. Moreover, charcoal is a solid fuel produced from agro-residues
through the pyrolysis/carbonization process. The quality of charcoal depends on
biomass type and pyrolysis conditions (Zubairu and Gana 2014). The charcoal yield
from residues is strongly influenced by lignin content and also biomass
compositions.

6.4.2 Liquid Biofuels

Bioethanol and biobutanol are produced from fermentable sugars using appropriate
fermentation technology. For the production of liquid biofuels from any agro-
residues, biomass pretreatment is a necessary step to separate lignin and also
improving the hydrolysis process. Bio-oil is also derived from agro-residues through
a fast pyrolysis process. Nevertheless, the yield and composition of bio-oil depend
on factors including but not limited to composition of biomass and the operating
parameters of pyrolysis process.

6.4.3 Gaseous Biofuels

Syngas and biogas are produced from biomass via gasification and anaerobic
digestion process, respectively. The major combustible gases present in syngas are
carbon monoxide, hydrogen, and methane, whereas methane accounts for a signifi-
cant share in the biogas composition. Both these biofuels require the cleaning
process to remove impurities for further usage in engines.
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6.5 Value-Added Biochemicals Production via Sustainable
Biorefinery Approach

More than 90% of chemicals available in the commercial markets are derived from
fossil fuels (Fernando et al. 2006). The conventional chemical industries are recently
shifting the raw materials from fossil fuels to greener feedstocks. The reasons for this
change are rapid depleting of reserves and frequent price hike, and environmental
issues. Biomass feedstock has the potential to address chemical requirements from
society. Agro-residues contain cellulose, hemicellulose, and lignin. The appropriate
technology can be chosen to disintegrate these three components and used as raw
materials to produce different platform chemicals or value-added biochemicals.
Generally, platform chemicals can be processed to produce a variety of higher
value-added products. The valorization of these components of agro-residues are
discussed below.

6.5.1 Valorization of Cellulose

Cellulose is a useful component available in the lignocellulosic materials, and it has
the potential for fuels or biochemicals production. Annual production and consump-
tion of cellulose are ca. 75 billion tonnes (Kirk-Othmer 2001), and its demand is
increasing every year. It consists of long linear fibrils of p-(1,4)-glucopyranoside
chains and its degree of polymerization in the range of 800—10,000 units (Kirk-
Othmer 2001). Cellulose made of polysaccharides is composed of Cs and C¢ sugars
that can be used as carbon sources after different pretreatment processes (Sun and
Cheng 2002; Moncada et al. 2013). In the lignocellulose biomass, cellulose is tightly
embedded with the other two components viz., hemicellulose and lignin. Generally,
the cellulose is insoluble in water due to a highly crystalline nature. Application of
the hydrolysis process for monomer sugars production from cellulose is a more
difficult and challenging task than that of hemicellulose. The cellulose can be
separated from the residues and used to produce different platform chemicals such
as sorbitol, xylitol, succinic acid, lactic acid, furfural, 5 HMF, and Itaconic acid.
Details of optimized process conditions and biochemicals yield for cellulose and
hemicellulose substrates obtained from different agro-residues are presented in
Table 6.2.

6.5.2 Valorization of Hemicellulose

Hemicellulose can have a variety of Cs, C¢ sugars, and also sugar acids (Saha 2003)
and highly soluble in water. Cellulose and hemicellulose made of polysaccharides.
After biomass pretreatment, these polysaccharides are used as a carbon source for
further process (Sun and Cheng 2002; Moncada et al. 2013). Different routes used to
converting Cs/Cg sugars into various chemicals and aromatic furfurals and furfural
are presented in Table 6.2.
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Table 6.2 Different platform chemicals and their yield from cellulose and hemicellulose derived
from lignocellulosic biomass

Catalyst, pretreatment, and

Biomass substrate growth conditions Yield References
Sorbitol
Cellulose Nig.63Cu; Al .g,Fe 79, 68.07% Zhang et al. (2014)
pretreatment: heating-stirring,
214.85 °C, 180 min
0.4% Ru-3% Ni/AC, ball- 70% Ribeiro et al. (2017)
milling, 205 °C, 60 min
MCC 5% Ru/NbOPO4-pH2, ball- 69.10% Xi et al. (2013)
(microcrystalline milling, 160 °C, 1440 min
cellulose) 3.0% Ru/SiO,-SO5H, ball- 61.20% Zhu et al. (2014)
milling, 150 °C, 600 min
0.4% Ru/AC, ball-milling, 68% Ribeiro et al. (2015)
205 °C, 60 min
4.0 wt.% Ru/C, 245 °C,0.5h, |30% Luo et al. (2007)
6.0 MPa
1.0 wt.% Ru/CNT, 185 °C, 36% Deng et al. (2009)
24 h, 5.0 MPa
2.0 wt.% Pt/BP2000, 82% Kobayashi et al.
pretreatment: ball-milled, (2011a)
190 °C, 24 h 5.0 MPa
Hydrolytic 2 wt.% Pt/BP2000, ball-mill, 49%
hydrogenation of 190 °C, 24 h, 5 MPa
cellulose 1 wt.% Ru/CNT, pretreatment: | 69% Deng et al. (2009)
H;PO,, 185 °C, 24 h, 5 MPa
2 wt.%, ball-mill, 190 °C, 18 h, |30% Kobayashi et al.
0.8 MPa (2011b)
3 wt.% Ni/CNF, pretreatment: 50% Van de Vyver et al.
ball-mill, 190 °C, 24 h, 6 MPa (2010)
Pt/C, HySiW 5,049, 60 °C, 24 h, | 54% Ogasawara et al.
0.7 MPa (2011)
5 wt.%, Ru/C HpSOy, 160 °C, | 33% Palkovits et al.
1h, 5 MPa (2010)
2.5 wt.% Pt/Al,03, 190 °C, 25% Fukuoka and Dhepe
24 h, 5 MPa (2006)
Xylitol
Corncob Candida intermedia FLO023, 40% Wu et al. (2018b)
hydrolysate pH: 5.0,30°C,48 h
Corn cob Candida tropicalis, pH: 6.0, 61.00% Misra et al. (2013)
30°C,42h
Candida tropicalis, pH: 6.0, 55% Jiang et al. (2016)
30°C,27h
Candida tropicalis CCTCC 38.80% Kumar et al. (2018)
M2012462, pH: 6.0, 35 °C,
14 h
Sugarcane straw Candida guilliermondii FTI 70% Hernéndez-Pérez

20037, pH: 4.5,30 °C,48 h

et al. 2016)

(continued)
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Table 6.2 (continued)

Catalyst, pretreatment, and

Biomass substrate growth conditions Yield References
Sugarcane bagasse C. tropicalis, pH: 5.0, 30 °C, 30.74% Vallejos et al.
24 h (2016)
Kluyveromyces marxianus 31.50% Dasgupta et al.
IIPE453, pH: 4.5,45°C,40 h (2017)
Sorghum Stover Corynebacterium glutamicum, | 96.50% Kumar et al. (2018)
pH: 6.5,30°C, 16 h
Bamboo culm Candida magnolia, 30 °C,48 h | 10.50%
Cashew apple Kluyveromyces marxianus 6.76% de Albuquerque
bagasse CCA 510, pH: 5.0,30°C, 96 h et al. (2014)
Succinic acid
Corn stalk and Anaerobic batch, 15.8 g/lL Li et al. (2010b)
cotton stalk A. succinogenes
Corn fibre Anaerobic batch, 70.3 g/L Chen et al. (2011)
hydrolyzate A. succinogenes
Corn stover Anaerobic batch, 56.4 g/ Lietal. (2011)
A. succinogenes
Cornstalk Batch, E. coli 57.8 g/L Wang et al. (2011)
enzymatic
Corn straw Anaerobic, fed-batch, 53.2 g/L Zheng et al. (2009)
A. Succinogenes
Cane molasses Anaerobic batch, 46.4 g/ Liu et al. (2008)
A. Succinogenes
Fed-batch, A. succinogenes 55.2 g/l
Orange peel Batch, F. Succinogenes 1.75 g/L Li et al. (2010a)
Wheat straw Batch, F. Succinogenes 1.55 g/L
Softwood dilute Batch, E.coli 42.2 g/L Hodge et al. (2009)
acid
Sugarcane bagasse Anaerobic batch, 22.5 g/l Borges and Pereira
hydrolyzate A. Succinogenes (2011)
Lactic acid
Cellulose Al(III)-Sn(II), pretreatment: 65% Deng et al. (2018)
ball-milling, 189.85 °C,
120 min
MCC 10% ZrO»—Al,03, 25.30% Wattanapaphawong
pretreatment: ball-milling et al. (2017b)
199.85 °C, 360 min
Er/K10(S)-3, pretreatment: 67.60% Wang et al. (2015)
mechanical stirrer, 240 °C,
30 min
ZRO-7 ZrO,, pretreatment: 21.20% Wattanapaphawong
ball-milling, 199.85 °C, et al. (2017a)
360 min
Er/deAlb-2, pretreatment: 57.90% Wang et al. (2017)
mechanical stirrer, 240 °C,
3 min
Wood hydrolysate E. faecalis RKY1, batch 93 g/L Wee et al. (2004)

(continued)
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Table 6.2 (continued)

Catalyst, pretreatment, and

Biomass substrate growth conditions Yield References
Wheat bran Lb. bifermentans DSM 20003, | 62.8 g/L. Givry et al. (2008)
hydrolysate batch with cell immobilization
Wheat straw Lb. brevis and Lb. pentosus, 7.1 g/L Garde et al. (2002)
hemicellulose batch
Cassava bagasse Lb. casei NCIMB 3254, batch 83.8 g/L John et al. (2006)
SSF
Defatted rice bran Lb. delbrueckii IFO 3202, SSF |28 g/L Tanaka et al. (2006)
Sugar cane bagasse | Lb. delbrueckii subsp. 67 g/l Adsul et al. (2007)
delbrueckii mutant Uc-3, batch
SSF
Lc. lactis 10-1, batch 10.9 g/L Laopaiboon et al.
(2010)
Alfalfa fibres Lb. plantarum, SSF 46.4 ¢/ Sreenath et al.
(2001)
Corn cobs, 100 C. acremonium, R. oryzae 24 ¢/L Miura et al. (2004)
Avicel, 17.5 T. reesei, Lactobacillus 8.4 g/L Brethauer and
delbrueckii Studer (2015)
Furfural
Wheat straw [bmim][HSO,], 160 °C 36.2%" Carvalho et al.
(2015)
Pubescens H20, 160 °C 1.2%° Luo et al. (2010)
Water, 180 °C Less than Luo et al. (2014)
1%"
‘Water, microwave, 200 °C 1% Luo et al. (2017b)
Water, cyclohexane, 160 °C 1% Xu et al. (2012)
Water, AICl3, 120 °C 26%" Luo et al. (2014)
Birch wood H,0, H,S0,, 147 °C 0.91%" Brazdausks et al.
(2014)
Cardoon CPME/H,0, 1 wt.% H,SO,, 100%° Molina et al. (2012)
170 °C
Maple wood THF/H,0, 1 wt.% H,SO,, 87%¢ Cai et al. (2013)
170 °C
Poplar THF/H,0, AICI3-NaCl, 160 °C | 64%° Yang et al. (2012)
Corn stover 90% GVL-H,0, 0.025 M 96%" Alonso et al. (2013)
H,S0y4, 170 °C
GVL, SC-CaCt-700, 200 °C 66.3%" Li et al. (2017)
Water, AlICl;, 140 °C 11.09%¢ Yi et al. (2013)
Bagasse THF-H,O0 (2:1), 0.4 M HCI, 71%" Li et al. (2014)
200 °C
H,O/p-xylene, HUSY, 170 °C | 99.5%" Sahu and Dhepe
(2012)
Corncob H,0, 0.9 mmol H,SO,, 160 °C | 56%° Wang et al. (2014)
H,0 0.10 wt.% H,S0,, 190 °C | 93%° Luo et al. (2019)
GVL, SPTPA, 175 °C 73.9%" Zhang et al. (2017)

(continued)
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Table 6.2 (continued)

Catalyst, pretreatment, and

Biomass substrate growth conditions Yield References
5 HMF
Fructose 1%wt HCl (pH = 1), 150°C, 2 h 27% de Souza et al.
Glucose 1%wt HCI (pH = 1),220°C, 2 h 26% (2012)
Fructose 100 g/L 0.1 M H3POy,, 1 wt.% CaP,0¢, | 22-39% Daorattanachai et al.
1 wt.% a-Sr (PO3),, 200 °C, (2012)
5 min
Glucose 100 g/L 0.1 M H3POy, 1 wt.% CaP,0¢, |4-21%
1 wt.% a-Sr (PO3),,
200-230 °C, 5 min
Fructose 100 g/L 0.1 g/mL TiO,, 200 °C, 5 min |22 % Watanabe et al.
(2005)
Fructose 2 wt.% TiO,, 200 °C, 1 min 17.8% Qi et al. (2008)
Zr0,, 200 °C, 5 min 30.6%
Glucose 2 wt.% TiO, (half of the substrate), 18.6%
200 °C, 5 min
Glucose 100 g/L 100 g/L TiO,, 200 °C, 5 min 20% Watanabe et al.
(2005)
Fructose 30 wt.% 0.25 M HCI, 180°C, 2.5-3 min | 25.5 mol.% Roman-Leshkov
et al. (2006)
Fructose 10 g/L 0.1 g/mL Nby,-WO;, 120 °C, | 27-30% Yue et al. (2016)
1-3h
Glucose 10-100 g/ 0.1 g/mL Nby,-WO;, 120 °C, | 12-34%
L 3h
Fructose 10 g/L 10 g/L titanate nanotube, 16% Kitano et al. (2010)
120°C,0.5h
Fructose 0.05 M H,SO,, pH = 1.5-5, 240 °C, 14.9 Salak Asghari and
120 s —40.6 mol.% | Yoshida (2006)
Fructose 6 wt.% Cr-VOPO,4-2H,0, 80 °C, 1 h 48.5 mol.% Kang et al. (2018)
Glucose 0.055 M 100 g/L H3PO4/Nb,0O5-nH,0, 47.9 mol.% Nakajima et al.
120°C,3 h (2011)
Glucose 0.05 mol./ 350-400 °C, 0.2-1.7 s 0.1-6.1% Aida et al. (2007)
L
Glucose 1 wt.% Amorphous ZrP (catalyst/ 3.2-23.5 mol. | Asghari and
glucose = 1:1—-1:4), 240 °C, % Yoshida (2006)
60-240 s
Glucose 10% 1% CrCl;-6 H,0, 130 °C, 13.0 wt. % Zhou et al. (2017a)
360 min
Cellulose Solvent: [EMIM]Br, Catalyst: 68.20% Li et al. (2018)
SPPS, pretreatment: Stirring,
180 °C, 240 min
Levulinic acid
10% sugar cane 0.55 M H,SOy,, 150 °C, 8 h 63 mol.% Girisuta et al. (2013)
bagasse (with 69%
of sugar polymer)
6.25% wheat straw 3% H,S0y, 210-230 °C, 19.2 wt.% Chang et al. (2008)
30 min
6% wheat straw 3% H,S0y,, 210 °C, 42 min 41 wt.% Chang et al. (2009)

(continued)
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Table 6.2 (continued)

Catalyst, pretreatment, and

Biomass substrate growth conditions Yield References
9.1% pretreated rice | 4.5% (v/v) HCI, 160 °C, 56 bar | 54.50% Bevilaqua et al.
husks and 70 min (2013)
9.1% pretreated rice | 4% (v/v) HySOy, 170 °C, 45.70%
husks 60 min
5% cotton 1 M HCI, 150°C, 2 h 44 mol.% Victor et al. (2014)
10 wt.% corn stalk 0.5 M FeCls, 180 °C, 40 min 48.89 mol.% Zheng et al. (2017)
Corn stalk 0.05 mol./L FeCls, 230 °C, 48.73 mol.% Zhi et al. (2015)
10 min
73 g/L olive tree 37% HCI, 11.5 meq, 200 °C, 20.1 wt. % Galletti et al. (2012)
pruning 1h
73 g/L poplar 37% HCI, 11.5 meq, 200 °C, 29.3 wt.%
sawdust l1h
73 g/L paper sludge | 98% H,SOy, 8.3 meq, 200 °C, | 15.4 wt.%
1h
73 g/L paper sludge | 37% HCI, 11.5 meq, 200 °C, 31.4 wt.%
1h
100 g/L furfural 2% H,S0y4, 180 °C, 2 h 66.6 mol.% Xu et al. (2015)
residue
1 wt.% water 1 M H,SO4, 175 °C, 30 min 53 mol.% Girisuta et al. (2008)
hyacinth (C6-sugars
is 26.3 wt.%)
9% Miscanthus 0.10-0.53 M H,SO,, 58-72 mol.% | Dussan et al. (2013)
(40.7% glucan) 160-200 °C
10% sorghum flour 8% H,S0,, 200 °C, 30 min 32.6 wt.% Fang and Hanna
(2002)
14 wt.% 8% H,S0y4, 190 °C, 60 min 50.49% Yuan et al. (2016)
pennisetum theoretical
alopecuroides
62.5 kg/m® H,SO0, (2 kg/m?), 160-200 °C, | 32.3 wt.% Jeong (2015)
H. tuberosus L. 10-35 min
Cellulose [C4(Mim),] [2(HSOy,) 55% Khan et al. (2018)
(H,SO),], pretreatment:
stirring, 100 °C, 180 min
Itaconic acid
Olive & beet waste A. terreus CECT 20365, 30 °C, |44 g/L Nikolay et al. (2013)
5 days, pH: 5.5
Glucose Ustilago maydis, 34 °C, 5 days, |29 g/LL Rafi et al. (2012)
pH: 3.0, 180 rpm
A. terreus DSM23081, 91 g/L Kuenz et al. (2012)
NRRL1960, NRRL 1963,
33°C, 7 days, pH: 3.1, 120 rpm
A. niger, 33 °C, 10-13 days, 1.4 g/L Blumhoff et al.
180 rpm (2013)
A. terreus TN-484-M1, 37 °C, 82 g/L El-Imam and Du

6 days, pH: 2.0, 220 rpm

(2014)

(continued)
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Table 6.2 (continued)

Catalyst, pretreatment, and

Biomass substrate growth conditions Yield References

Glucose and A. terreus, 30 °C, 14 days, pH: | 54 g/L

sucrose 35

Various starches A. terreus NRRL1960, 35 °C, 18.4 g/L
6 days, pH: 3.4, 500 rpm

Jatropha cake A. terreus, 9 days, pH: 1.5, 48.7 g/lL El-Imam et al.
400 rpm (2013)

Glucose, glycerol A. terreus, 37 °C, 6 days, pH: 30.2 g/lL Vassilev et al.
4.5, 200 rpm (2012)

Sago starch A. terreus SKR10, 40 °C, 48.2 g/l Dwiarti et al. (2007)
6 days, pH: 2, 295 rpm

POME A. terreus 282743, 30 °C, 5.76 g/L Jahim et al. (2006)
5 days, pH: 5.8, 150 rpm

Starch hydrolysate A. terreus, M-8, 35 °C, 4 days, |55 g/L El-Imam and Du
pH: 2.5-2.8 (2014)

“Yield of furfural was based on the weight of Cs fraction in biomass
®Yield of furfural was based on the moles of Cs fraction in biomass
“Yield of furfural was based on the weight of the starting materials

6.5.3 Valorization of Lignin

The lignin is an essential component in the lignocellulosic biomass feedstocks,
which acts as a shield to prevent microbial degradation and protect the cellulose.
Lignin is a highly branched structure; aromatic polymer and helps in tight intact with
holocellulose. Several biomass pretreatment methods are used to remove this com-
ponent to tap the cellulose and hemicellulose. Lignin monomers and dimers, includ-
ing phenols, alkylphenols, aromatic aldehydes, aromatic acids, etc. can be derived
from lignin using different conversion processes. Furthermore, the heating value of
lignin is higher than other components present in the biomass. The effective utiliza-
tion of lignin (both soluble and insoluble) to produce different value-added
chemicals are presented in Table 6.3.

6.6  Challenges in Commercialization

The biomass supply chain involves supplying of wastes/residues from the biomass
production area to energy conversion facilities (Mafakheri and Nasiri 2014). Gener-
ally, the agro-residues are of low bulk density in nature. In other words, these
feedstocks occupy more space as compared with the same weight of high-density
biomass materials. Due to this physical property, either we use more vehicles or
more trips of a transport vehicle for conveying the residues from agricultural fields to
the biorefinery industry area. This approach would increase the overall transport cost
as well as more human resources will be required for loading and unloading the
feedstocks.
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Furthermore, the biorefinery industries also require additional space for drying
and storage of these wastes. This could be overcome by establishing a common
collection point from nearby agricultural fields and pre-processing of biomass
feedstocks at the field itself. The collection of agricultural residues depends on
several factors such as its price, transporting cost, the time gap between crop harvest
and sowing of consecutive crop, the quantity used for in situ burning, other
applications, collection, and storage of individual crop residues. For handling of
bulk quantity of biomass without pre-processing, the biomass handling machinery
such as balers/binders can be used to bundle the biomass in the form of bales. The
transportation cost is directly proportional to the distance between the biomass
collection point and the biorefinery site. In other words, higher transportation costs
could be incurred for the biorefinery site located far away to the collection point and
vice versa. The biomass supply chain may be achieved in three ways viz., direct
biomass procurement from agricultural growers, mediators, and contract farming
between industry and growers. Alternatively, a mobile biomass pretreatment unit can
be used to pretreat the biomass and hydrolysate/solid residue will be sent in separate
transport vehicles to biorefineries. The sustainability of agricultural residues based
biorefinery factories depends on

¢ Types of biomass and their availability nearby factory site

* Seasonal availability of agro-residues

* Good biomass supply chain and logistics

* Technical and economic feasibility of the biorefinery technologies

Through proper supply chain management, the overall transport cost can be
minimized. This kind of practice would result in lesser storage area and human
resources requirement, leading to sustainable operation of biorefineries. The
influencing factors for biomass supply chain and logistics are biomass types and
seasonal availability, collection and storage area, biorefinery sites, pretreatment
types, and transportation mode (Sharma et al. 2013). The biomass supply chain
logistics have a significant share of the total cost of biofuel production, which
consumes about 20-35% of total processing cost (Rentizelas et al. 2009). If the
cost of raw materials, as well as transport costs are higher, it would reflect on the
economic returns of the biorefinery project. Therefore, biomass supply chain design
plays a vital role in a sustainable biorefinery industry. The major bottlenecks for
commercialization of biochemical conversion technology for bioethanol production
from agro-residue are energy-intensive processes, higher pretreatment and enzyme
costs, difficult to scale up, the low fermentability of mixed sugar stream, the
generation of inhibitory soluble compounds, and higher capital investment.
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6.7 Conclusion

The different types of agro-residues generated from selected crops and their
compositions have been reviewed. The biomass feedstocks also have the potential
to produce multiple bio-products through appropriate technology. Different types of
bio-products can be derived from agro-residues via the biorefinery approach, and the
biochemicals from cellulose, hemicellulose, and lignin were briefly discussed. In
order to commercialize the biorefinery technologies, the cost and energy efficiency
and process efficiency must be up-scaled through optimization of the process
parameters.
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Abstract

Flavour and aroma are the important attributes which determine the sensory
perception of food, pharmaceutical and cosmetic products. Traditionally, flavour
and aroma compounds are extracted from plant and animal sources. In order to
meet the huge demand and expenses for various products, the artificial chemicals
are now being added. Due to the chemo-phobia and health hazards, artificial
flavours and fragrances are not acceptable by the consumers. Biotechnological
methods provide better and eco-friendly substitutes for artificial flavour and
fragrances. The bio-routes for their synthesis are based on enzymes methods,
de novo microbial processes, and bioconversion/biotransformation using
microorganisms. Solid-state fermentation carried out by microorganisms can
produce a variety of potentially valuable aromatic compounds. Different agro-
industrial wastes such as plant residues, bran, straw, flowers, fruit pods can be
used as the raw materials which reduces the manufacturing costs of these
bio-products and also solves the problem of environmental pollution. Advances
in genetic and metabolic engineering are newer approaches of biotechnology
which has opened a fenestella in the production of flavour and fragrances.
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7.1 Introduction

‘The Creator, in making man eat in order to live, persuaded him by appetite and
rewarded him by pleasure’ is a famous quote by French gastronomist, Jean
Anthelme Brillat-Savarin of the nineteenth century. The human beings are being
rewarded by food that not only provides us nutrients but also gives us a pleasurable
feeling. Foods which are found pleasurable alleviate our mood making us feel good
with their appearance, taste and aroma (Fernandez-Vazquez et al. 2013; Licon et al.
2019). ‘Quot sapit nutrit’ (from Latin) is interpreted as, ‘If it tastes good, it’s good
for you’ or what pleases the taste also nourishes (Macdonnel 1828). The senses of
taste (flavour) and smell (odour) are the two chemical senses perceived by the
humans. Aroma is an odour with a pleasant connotation in smell, while flavour is
defined as a strong or pleasant taste (Mottram and Elmore 2003). Flavour is defined
as a distinctive taste of something as it is experienced in the mouth. The sensory
characteristics of taste and smell co-exist, are highly correlated and are also
stimulated together (Licon et al. 2019). Hence the terms ‘flavour’ and ‘aroma’
include the global integral perception of all the senses that are involved (smell,
taste, sight and touch) with the edible products (Astray et al. 2007). Studies have
shown that flavour and odour perceptions are the consequence of a complex phe-
nomenon which is due to the properties of certain chemicals (Licon et al. 2019).
‘Flavours, sensu lato’ are a group of compounds with sensorial characteristics
(Janssens et al. 1992). Both flavours and fragrances can be naturally or artificially
derived and are categorized according to their origin (Spudic 2015). The chemical
composition of natural substances is responsible for flavour and aroma (Zviely
2002). There are about 6500 flavours known but of these only 300 are commonly
used (Scragg 2007).

These pleasing characteristics are not only used for food items but also widely
used globally for enhancing the advent of beverages, detergents and pharmaceutical
products among the consumers. Furthermore, flavours and fragrances are also
blended to impart attractive taste and aroma to processed foods and beverages, and
a pleasing scent is also imparted to non-edible products such as perfumes, toiletries,
household cleaners, etc. (Triumph Venture Capital (Pty) Limited et al. 2004).

7.2  Flavourings and Fragrance Chemicals

Many volatile and non-volatile compounds which are present in complex matrices
are responsible for the flavour and aroma of food items. Humans have been
flavourings their food using spices and culinary herbs, which contain essential oils
and certain aromatic compounds (Opara and Chohan 2014). These compounds
stimulate the receptors of smell and/or taste which leads to the production of an
integrated psychological response in humans (Mottram and Elmore 2003; Longo and
Sanroman 2006; Astray et al. 2007). While ‘the non-volatile compounds contribute
essentially to the taste sensations, the volatile ones influence both taste and aroma of
food items’ (Guichard and Salles 2016; Vilela 2018; Sanchez-Rodriguez et al.
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2019). These chemically defined substances which act on the senses of smell and
taste are termed as ‘flavour compounds’ or ‘aromatic (aroma) compounds’ (Triumph
Venture Capital (Pty) Limited et al. 2004). These aromatic compounds vary widely
in their structures and may contribute to the overall flavour of a food. On the basis of
chemical structure, these compounds can be classified into hydrocarbons, alcohols,
aldehydes, ketones, acids, esters or lactones (Gatfield 1988; Bicas et al. 2010). These
compounds may be present in low concentrations which can be as low as 1 part in
10'? (Rodriguez and Fernandes 2017). Both flavourings and fragrances are either
present naturally or added artificially to the food items. The compounds used for
flavourings and fragrances can be categorized into: (1) natural compounds,
(2) nature-identical compound and (3) artificial compounds (Zviely 2002; Joint
FAO/WHO food standards programme 2005; Fisk 2015). The natural compounds
are directly obtained from natural resources by physical methods such as pressing,
sublimation, distillation, chromatography and filtration (Zhang et al. 2018). Essential
oils, a class of such natural compounds, are the volatile substances which are
naturally derived from different parts of the aromatic plants (Cowan 1999; Dhifi
et al. 2016). These aromatic oils represent a cocktail of multiple chemical
components in variable amounts (Patrignani et al. 2015). These substances have
been known since ancient times and have been utilized enormously in different
sectors for their pleasing aromas. Most essential oils are directly used as flavours in
the edible as well as other products (Surburg and Panten 2006). Their wide applica-
tion in the food items, cosmetics, pharmaceuticals and toiletries can be attributed to
their aromatic, anti-oxidant, immuno-modulatory and physiological properties
(Singh and Malik 2008; Malik and Singh 2010; Maen and Cock 2015). Further, a
variety of essential oils have also been found to show antimicrobial activities against
different microorganisms (Vandamme 2003; Malik et al. 2011, 2015; Hyldgard et al.
2012; Silva et al. 2013; Sirohi et al. 2016). In addition, food technologists and
scientists are now also formulating edible packaging for functional foods and
pharmaceutical products containing a defined concentration of these fragrant essen-
tial oils and their components (Antosik et al. 2017; Malik and Singh 2015; Malik
2017; Sarkic and Stappen 2018).

Nature-identical compounds are chemically isolated from aromatic raw materials
or are produced synthetically but are chemically identical to their natural
counterparts. These are produced by chemical transformation methods as they give
satisfactory yields and good production rates (Astray et al. 2007; Poornima and
Preetha 2017). Large-scale synthesis of aroma chemicals was started in the late
nineteenth century, with the methyl salicylate (1859), benzaldehyde (1870), vanillin
(1874) and coumarin (1878). Presently, there are about 5000 different aroma
chemicals that include both natural and synthetic product.

At present, approximately 5000 different aroma chemicals are available in the
market which include both synthetic and natural product (Personal Care Magazine
2009). These synthetic ingredients are nowadays playing a major role in the fra-
grance and flavour industry due to their convenient availability and the relatively
lower cost as compared to natural molecules, as the natural sources are relatively
limited. Health agencies and administrations have often not assessed the safety
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concerns of number of chemicals critically. For example, Food and Drug Adminis-
tration have not assessed the safety of most of the secret chemicals which are being
used in different fragrances and sprays. These constitute proprietary chemical
formulas and because of the competition in market the composition of these products
are kept secret; fragrance secrecy has been considered to be legal due to a giant
loophole in the Federal Fair Packaging and Labeling Act of 1973. According to the
act, the cosmetics ingredients have to be properly listed on product labels, but
fragrance ingredients are exempted. Although, some fragrance ingredients may
pose potential health risks to the consumers (EarthTalk 2012). The ‘synthetic’
label associated with these compounds also decreases the economic interest (Bicas
et al. 2010). Nature-identical compounds can also be obtained via enzymatic
reactions which are highly specific, less expensive; their methods of production
yield less by-products and the products are comparatively pure (Cheng et al. 2015).
Artificial flavour substances are those compounds which have not yet been identified
in plant or animal products but can be used for the human consumption. In different
countries, important aroma chemicals like cinnamic aldehyde, benzaldehyde, methyl
salicylate, coumarin, phenyl acetaldehyde and vanillin were chemically synthesized
between 1830 and 1890. Due to their enormous potential, industries were set up in
Germany (1874), Switzerland (1876), the USA (1913) and Japan (1922). Eucalyptol,
ethyl vanillin, eugenol, etc. are some examples of the artificial compounds which are
nowadays widely used in different food, cosmetic and pharmaceutical preparations
(Surburg and Panten 2006). The development of these artificial compounds is based
on the close interaction of multiple disciplines including flavourists, chemists,
toxicologists, technologists and chefs (Paravisini and Guichard 2017; Wicochea-
Rodriguez et al. 2019). As the business and market of artificial flavouring substances
has grown enormously, the government authorities have now laid the foundation for
the legislation on their incorporation in foodstuffs and other items. According to the
Food and Drug Administration (FDA), USA, the function of artificial flavour
compound is to impart flavour, which is not derived from a spice, fruit or fruit
juice, vegetable or vegetable juice, edible yeast, herb, bark, bud, root, leaf or similar
plant material, meat, fish, poultry, eggs, dairy products or fermentation products
thereof. In Europe, all the flavour agents which are artificially added for edible use
have to be characterized and have to fulfil the criteria which are laid in the Regula-
tion (Ec) No. 1334/2008 of the European Parliament (Sabisch and Smith 2020). The
permission for a new chemical to be used in products is given by an expert panel
which is assembled by the Flavour and Extract Manufacturers Association (FEMA),
which reviews the toxicological and usage data for each proposed chemical to assess
its safety. A list of the permissible chemicals, known as GRAS, for ‘Generally
Recognized as Safe’, is published periodically which includes the flavour chemicals
that can be used in food flavours. There are 2244 compounds in the FEMA- GRAS
list (Smith et al. 2011).

The artificial chemicals have the advantages of easier availability and relatively
lower costs as compared to natural molecules. However, safety, toxicity, allergic
reactions and side effects are the various disadvantages of the addition of chemicals
to the food items. Consumers also have a ‘chemo-phobia’ due to which they do not



7 Biotechnological Interventions for Production of Flavour and Fragrance. . . 135

prefer the consumption of products which are being flavoured by the artificial
chemicals. The flavours with greener image are now becoming a preferential choice.
The increasing demand for natural flavours has led to a significant shortage of
several plant materials. Essential oils and isolated aroma compounds are currently
available at prices of more than 5000 US$/kg. Moreover, the production processes of
chemically synthesized compounds are not eco-friendly and produce undesirable
by-products resulting into environmental pollution. The production cost of these
synthetic ingredients is also high (Willaert et al. 2005; Poornima and Preetha 2017).

Further, nowadays, many researchers and industries have switched to biocatalytic
flavour synthesis due to consumer’s inclination towards natural flavours (Longo and
Sanroman 2006). Due to disadvantages of both nature-identical and artificial flavour
compound and more interest in natural products, newer strategies are being explored
for the production of natural flavours.

The biotechnological methods are better alternative methods for the flavour
production. These methods are sustainable and eco-friendly unlike the global
warming and pollution issues associated with chemical industries. White biotech-
nology can also be used for the production in flavour and fragrance industry. The
biotechnological approach for production of aroma compounds includes (1) Enzy-
matic methods, (2) Microbial methods-de novo synthesis and biotransformation,
(3) Plant tissue culture methods.

7.3 Biotechnological Methods for Production of Flavours
7.3.1 Enzymatic Methods

A significant amount of enzymes are able to directly produce flavour molecules by
hydrolysis of larger precursors with higher productivity than direct extraction from
plants (Ben Akacha and Gargouri 2015). The enzyme catalysed reactions involve the
use of lipases, proteases, glucosidases, hydroxylases, etc. Chang et al. (2001)
reported the use of lipases from Staphylococcus epidermidis in the synthesis of
various flavour esters in aqueous media. Lipase produced by Mucor miehei has been
found to be highly selective towards flavour active short-chain fatty acids. Butanoic,
hexanoic, octanoic and decanoic acid are produced which can be used as flavouring
agents as they have cream-like/butter-like flavour (Chen and Yang 1992).
Mesifurane [2,5-dimethyl-4-methoxy-3(2H)-furanone], an important flavour com-
pound in arctic bramble, strawberry and pineapple, is produced by Candida
antarctica (Nozaki et al. 2000). Proteases were used for obtaining the flavour
concentrates in the processing of crayfish as the concentration of benzaldehyde
and pyrazines were increased (Baek and Cadwallader 1996). Advances in technol-
ogy have also led to the use of immobilized enzymes in flavour production. de
Temifio et al. (2005) used immobilized alcohol dehydrogenase from Lactobacillus
kefir to synthesize (R)-phenylethanol from acetophenone in an organic solvent
(hexane). The enzyme and its cofactor were entrapped in polyvinyl alcohol gel
beads so as to enhance their stability in organic solvents, which enabled both
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cofactor diffusion and in situ regeneration. Frutarom Ltd. has produced an enzyme
for the commercial production of a compound from synthetic ingredients which
gives the natural flavour of methyl mercaptan, found in all savoury vegetable or
meat-based flavours (BBSRC 2014). Another enzyme which is commercially avail-
able is Flavorzyme®, manufactured by ‘Novo Nordisk Bioindustrials’, can be used
to obtain a meat-like flavour from defatted soybean meal (Dubal et al. 2008).

However, long and complicated steps for enzyme isolation and purification are
one of the disadvantages of these methods. Similarly, the differences in solubility
between reacting molecules are also a drawback of enzymatic processes which are
usually performed in aqueous phase (Sarma et al. 2014).

7.3.2 Microbial Methods

de novo synthesis of the flavour by microorganisms involves metabolism on
substrates such as carbohydrates (glucose and sucrose), fats and proteins by
microorganisms to form different and complex fragrant compounds (Dubal et al.
2008; Braga et al. 2018). The precursors usually used are fatty acids, amino acids
and terpenes (Hosoglu et al. 2018). These methods produce a mixture of several
aroma compounds, which are actually secondary metabolites produced due to
metabolic activities of the microorganisms. As regards the de novo synthesis, the
microorganisms through the enzymes such as lipases, proteases, nucleases and some
glycosidases transform carbon or nitrogen compounds into flavour compounds. The
first ‘de novo’ synthesis of an aroma compound (2-amino acetophenone) by Pseu-
domonas aeruginosa was reported by Omelianski (1923). Other species of Pseudo-
monas with striking odour properties were also identified such as aromaticus,
esterifaciens, odorus, odoratus, jragi or nobilis. The aroma formation was found
to be a ‘changeable character’ which was rapidly lost during ‘artificial cultivation’ of
the bacteria. The production of odour by a microbial culture has been explained due
to a single volatile, or due to an entire profile of volatiles, which are also concentra-
tion dependent in batch cultivation (Berger 1995). de novo methods can be practi-
cally applicable only when known starter cultures having good flavour potential are
used (Belin et al. 1992). These methods produce flavours in low concentrations. In
order to enhance production, genetic engineering techniques can be applied to de
novo processes, which involves expressing the genes from flavour producing
microorganisms into other microorganisms. Genes of plant and animal origins that
encode useful flavour molecules can also be expressed. However, the application of
genetically engineered de novo approaches is sensitive due to the complexity of
cellular potential and is also subjected to regulation in the host microorganism.

A limitation of de novo process is that the precursors which are usually added in
the medium may be inhibitory to the producer strains. Fed-batch processes can be
used to overcome substrate inhibition by slowly feeding the substrate and thereby
keeping the concentration of the compound below critical threshold values
(Carlquist et al. 2015). However, de novo synthesis is not very promising and
economically viable for industrial production as only trace amounts of flavours are
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produced (Belin et al. 1992). These methods lead to the formation of one major
product involving either one (biotransformation) or several (bioconversion) bio-
chemical steps (Cheetham 1997). The biotransformation processes involve different
biochemical reactions such as oxidation, reduction, hydrolytic reactions, dehydra-
tion and formation of new C-C bonds. In fact, the flavour production in
microorganisms is carried out by enzymes which comprise hydrolytic enzymes,
transferases, oxidoreductases and lyases (Schreier 1997). The yield of flavoured
product in bioconversion and biotransformation processes is also higher as com-
pared to de novo synthesis. Therefore, approaches for production of flavour
compounds are also economical (Welsh et al. 1989; Amalraj et al. 2017). In the
beginning of the era of aroma production, both de novo and biotransformation
methods were used for the production of flavour compounds. The microorganisms
were isolated, screened and selected for their unique aroma production properties.
But, in order to produce completely new set of flavours and to improve the fragrance
yield and notes, the microorganisms have been modified by the techniques of
metabolic and genetic engineering, which can also be termed as synthetic biology.

The genetically engineering strains of bacteria for flavour production were first
used in 2010, when there was an acute shortage of fragrance oil, extracted from
Pogostemon cablin (Patchouli), an essential oil used as a fragrance in incense sticks,
personal and health care products. Due to heavy rains in Indonesia, the medicinal
shrub was destroyed which led to a poor harvest of fragrant oil (Gupta et al. 2015;
Mahajan and Phatak 2019). Biotechnological interventions solved the crisis when
the firms like Allylix, Isobionics and Evolva used genetically engineering bacteria
(e.g. Pseudomonas sp.) and yeast (Saccharomyces sp.) that could produce plant oils
by fermenting sugars (Mahajan and Phatak 2019).The gene coding for a particular
aroma character was identified and isolated from its known source. Following the
cloning approaches, the target gene was cloned and expressed either in E. coli or
Saccharomyces cerevisiae, thus fragrance producing recombinants were produced.
Microbial synthesis of aroma compounds which is classified into different groups is
described in the next section.

7.3.2.1 Fruity and Floral Terpenes

Terpenes are the flavoured components of essential oils, consisting of five carbon
isoprene units which are assembled to each other, while terpenoids are modified
class of terpenes with different functional groups and oxidized methyl group at
various C positions (Perveen 2018). Only a few terpenes have been reported to be
produced by de novo methods using microorganisms, usually fungi belonging to
group Ascomycetes and Basidiomycetes (Gupta et al. 2015). Fungi such as
Kluyveromyces lactis and Ceratocystis moniliformis produce de novo fruity and
floral flavoured terpenes such as citronellol, linalool and geraniol (Drawert and
Barton 1978; Bluemke and Schrader 2001). However, the methods involving bio-
transformation of terpenes are milder and produce less toxic wastes and, hence, are
better alternative for the production of natural aroma compounds (Dionisio et al.
2012; Bier et al. 2011).The pathway for biotransformation of geraniol into methyl
heptenone has been elucidated for Penicillium digitatum and citral lyase enzyme
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responsible for this conversion has been purified (Wolken 2003). Some enzymes
which are involved in terpene biosynthesis have been sequenced and characterized.
The fragrance of lemon-scented sweet basil (Ocimum basilicum) is due to geraniol,
produced from geranyl diphosphate, catalysed by geraniol synthase (GES). Iijima
et al. (2004) isolated gene for GES, sequenced and expressed in Escherichia coli.
Similarly, geraniol synthase gene (CtGES) present in geraniol chemotypes of
Cinnamomum tenuipilum has also been cloned and expressed in E. coli (Yang
et al. 2004).

Limonene, a cyclic monoterpene, is used widely in citrus-flavored products such
as soft drinks and candies, and also in fragrant household cleaning products and
perfumes (Duetz et al. 2003). It is the principal precursor in number of biotechno-
logical monoterpenoids production; used for a variety of fine chemicals such as
perillyl alcohol or carvone (Marmulla and Harder 2014). Both chiral forms of
limonene have different aroma characteristics and hence differ in their applications;
(+)-Limonene (also called R- or d-limonene) has a pleasant, orange-like odour
whereas the (—)-form (also called S- or l-limonene) has a more harsh turpentine-
like odour with a lemon note (Friedman and Miller 1971). d-limonene is present in
the oils of citrus fruits (70-98%), it is chiefly produced as a side product from the
citrus juice industry (Ciriminna et al. 2014). The production and cost of limonene
mainly depends on the availability of citrus oil, which is usually alleviated by
various environmental factors such as bacterial disease in citrus plants. In plants,
limonene is bio-synthesized from the precursor geranyl diphosphate (GPP) by the
enzymatic biotransformation with d- or l-limonene synthetase. In microorganisms,
GPP is produced via the methylerythritol phosphate (MEP) pathway from pyruvate
and glyceraldehyde-3-phosphate or by mevalonate pathway (Carter et al. 2003;
Jongedijk et al. 2016). Due to the less amounts of geranyl diphosphate (GPP) in
microorganisms, lower yield of limonene is obtained. Hence, the availability of GPP
and consequently the yield of limonene in microorganisms have to be increased
using metabolic engineering approaches. Willrodt et al. (2014) optimized the syn-
thesis of (§)-limonene from glycerol and glucose as carbon sources in a two liquid
phase fed batch setup using recombinant Escherichia coli. A fourfold increase in the
yield of limonene in E. coli was observed by limiting the amount of magnesium
sulphate in the fermentation medium (Willrodt et al. 2016).

Another strategy includes the use of a truncated version of 3-hydroxy-3-
methylglutaryl-CoA reductase (tHMGR), a key regulatory enzyme of the
mevalonate pathway to increase limonene production by mevalonate pathway
(Willrodt et al. 2014; Zebec et al. 2016). A genetically engineered yeast, Yarrowia
lipolytica, was used to produce d-limonene and I-limonene by heterologous expres-
sion of 10 genes which included d-limonene synthase gene and I-limonene synthase
gene, respectively. Hydroxymethylglutaryl-CoA reductase (HMGR) was found to
be the key rate-limiting enzyme in the mevalonate (MVA) pathway for improving
limonene synthesis in Y. lipolytica. It significantly increased the titres of both
d-limonene and 1l-limonene upon overexpression (Pang et al. 2019). Heterologous
expression of codon optimized neryl diphosphate synthase-1 (NDPS1) and limonene
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synthase (LS) in Y. lipolytica produced d-limonene with a titre of 23.56 mg/L (Cao
et al. 2016).

Biotransformation of limonene to a-terpineol was performed by Cladosporium
sp. and a yield of 1.0 g/LL was obtained (Kraidman et al. 1969). Penicillium digitatum
and Fusarium oxysporum have also been used for this bioconversion (Adams and
Demyttenaere 2003; Mar6stica et al. 2007). Extracellular and intracellular
ligninolytic enzymes of white rot fungi, Ceripora sp. ZLY-2010 and Stereum
hirsutum, also carried out the biotransformation of (-)-a-pinene to valuable
terpenoids (Lee et al. 2015).

Biotransformation studies have also been carried for agro-industrial waste
residues from which essential oils have already been extracted. In monoterpenic
agro-industrial wastes such as turpentine oil and essential orange oil, Penicillium
sp. caused biotransformation by submerged liquid culture approach. R-(+)-limonene
and o-, B- pinenes from the oils were biotransformed by Penicillium sp. to produce
a-terpineol and perillyl alcohol, and verbenol and verbenone, respectively
(Maréstica et al. 2007). In the orange peel residues, limonene was biotransformed
into valuable compounds, a-terpineol by Penicillium italicum which was also
isolated from decayed orange peel (Awny et al. 2017).

The biosynthesis of monoterpenes, sesquiterpenes and diterpenes requires
isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP)
as the universal building blocks. There are two pathways to biosynthesize IPP and
DMAPP: the mevalonate (MVA) pathway in eukaryotes such as Saccharomyces
cerevisiae and the 2-methyl-D-erythritol-4-phosphate (MEP) pathway in most bac-
teria, including Escherichia coli (Carter et al. 2003). Wu et al. (2019) have improved
the production of limonene in E. coli by systematic optimization of the metabolic
flux of limonene biosynthetic pathway. The heterologous limonene biosynthetic
pathway was divided into the upstream, midstream and downstream modules, each
of which was carried out by module genes derived from bacteria (Enterococcus
faecalis), yeast (S. cerevisiae) and plants (Abies grandis and Mentha spicata). The
upstream module from acetyl-CoA to mevalonate was constructed by choosing the
genes EfmvaE and EfmvaS from E. faecalis, which were expressed in the bicistronic
plasmid pMAP1. In the midstream module from mevalonate to IPP and DMAPP, the
genes ScMK, ScPMK, ScPMD and ScIDI from S. cerevisiae were expressed under
the control of T7 promoter as the monocistronic operon in plasmid pISP2. The
downstream module was constructed for the conversion of IPP and DMAPP to
limonene; neryl pyrophosphate synthase (NPPS) from Solanum lycopersicum and
the MsLS from Mentha spicata were separately expressed in the plasmid pGLS,
under two T7 promoters. Three plasmids pMAP1, pISP2 and pGLS were introduced
into strain E. coli BW25113 (DE3) to create strain E. coli ELIM17. Fed-batch
fermentation in a shake-flask was carried for the metabolically engineered strain
ELIM78 and the yield of limonene was reported to be 1.29 g/L in 84 h.

The metabolically engineered gene coding for the enzyme S-linalool synthase
(LIS), responsible for the formation of the monoterpene S-linalool in Clarkia
breweri flowers, was isolated and cloned into a binary vector which was introduced
into A. tumefaciens strain LBA4404. The recombinant bacteria were used to
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transform two varieties of tomato, viz. UC82B and CB3. Metabolic analysis of fully
mature tomato fruits showed the accumulation of S-linalool and 8-hydroxylinalool
in ripening fruits, while the other terpenoids such as tocopherols, lycopene, carotene
and lutein remained unaltered (Lewinsohn et al. 2001).

A sesquiterpenoid ‘patchoulol’ (which is a main component of patchouli essential
oil) is generated by the enzyme sesquiterpene synthase from farnesyl pyrophosphate
(FPP). Patchoulol is used as a component in perfumes, incense and natural insect
repellents (Croteau et al. 1987). Sesquiterpene synthase, heterologously expressed in
several organisms such as Saccharomyces cerevisiae (Gruchattka et al. 2013), the
moss Physcomitrella patens (Zhan et al. 2014) and the green microalga
Chlamydomonas reinhardtii (Lauersen et al. 2016), has been used for the fermenta-
tive production of patchoulol. Corynebacterium glutamicum is another bacterium
which is considered as workhouse of biotechnology, has been engineered for the
production of patchulol by applying different strategies. In the first strategy, a
farnesyl pyrophosphate-producing platform strain was constructed by combining
genomic deletions with heterologous expression of ispA from Escherichia coli.
Secondly, the limiting enzymes from the 2-C-methyl-D-erythritol 4-phosphate
(MEP)-pathway were overproduced to increase the supply of precursor and in the
third approach plant patchoulol synthase gene PcPS from Pogostemon cablin was
heterologously expressed (Henke et al. 2018). A combinational genetic engineering
strategy was applied in Saccharomyces cerevisiae. It included the change in pro-
moter, knockout of regulator ROXI, inhibition of squalene pathway and
overexpression of tHMGR. The engineered yeast was used for de novo production
of (+)-valencene (Ouyang et al. 2019).

7.3.2.2 Aromatic Compounds in Alcoholic Beverages

Flavours in aromatic beverages are due to higher alcohols and esters, polyfunctional
thiols, lactones and furanones and terpenoids. The flavour profile of alcoholic
beverages is affected due to the medium-chain alcohols, even when present in low
amounts. While fusel alcohols at high concentrations impart off-flavours, low
concentrations of these compounds and their esters impart the basic flavours and
aromas to wine (Belda et al. 2017). Initial fermentation is carried out by a large
number of non-Saccharomyces yeast genera (Candida, Debaryomyces,
Hanseniaspora, Hansenula, Kloeckera, Metschnikowia, Pichia, Lachancea,
Brettanomyces, Kluyveromyces, Schizosaccharomyces, Torulaspora,
Zygosaccharomyces and Saccharomycodes) that contribute significantly to the over-
all aroma profile of the wine by producing flavour-active compounds (Esteve-
Zarzoso et al. 1998; Romano et al. 2003). Pyruvate, the metabolic intermediate of
glycolysis, is the precursor for the de novo synthesis of higher alcohols.

In yeasts, higher alcohol with aromatic characters is produced via the Ehrlich
pathway, synthesized either from amino acids which are transported across the cell
membrane or through de novo biosynthesis of amino acids and their a-ketoacid
intermediates (Holt et al. 2019). The alcohols such as 2-butanol, 1,2-butanediol and
2-phenylethanol (2-PE) have unique organoleptic properties. 2-phenylethanol
(2-PE), a unique aromatic alcohol, has a delicate fragrance of rose petals (Karami
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and Jandoust 2016). PE disguises the aroma of rose flower in such a realistic manner
that the popular saying by William Shakespeare, ‘A rose by any other name would
smell as sweet’, can be reframed as ‘A rose by any other name is phenylethanol’. It is
widely used in perfumes, cosmetics, pharmaceuticals, foods and beverages
(Carlquist et al. 2015). It is also used as a raw material to produce other important
flavour compounds, such as 2-phenylethylacetate (Etschmann et al. 2002) and
phenylacetaldehyde (Guo et al. 2017).

Kluyveromyces marxianus has been determined to be a promising candidate for
industrial production of 2-PE (Fabre et al. 1997; Wittman et al. 2002). Genome
engineering has been done in Saccharomyces by introducing allele variation through
sequential oligonucleotide recombination. Designer synthetic DNA oligonucleotides
have been introduced in the original genome, which allow the combinatorial alter-
ation of pathway genes of aromatic compounds. In the successive rounds of trans-
formation, the yeast genome is gradually re-modelled towards the production of a
flavoured metabolite (Mitchell et al. 2015). In a targeted metabolic footprinting
method, at low initial nitrogen concentrations, Saccharomyces cerevisiae strain
KU1 produced higher quantities of esters and fatty acids, whereas M522 produced
higher concentrations of isoacids, 7y-butyrolactone, higher alcohols and
3-methylthio-1-propanol (Carrau et al. 2008).

7.3.2.3 Esters

Among esters, acetate esters are usually relevant from flavour viewpoint. These are
ethyl acetate (apple aroma), isoamyl acetate (banana-like aroma) and
2-phenylethylacetate (honey- and rose-like aroma) (Verstrepen et al. 2003). Sachsia
suaveolens and Oidium suaveolens are known to produce certain fruity odours due to
methylbutanols and other esters (Hattori et al. 1974). The yeasts Hanseniaspora
guilliermondii and Pichia anomala are potent 2-phenylethyl acetate and isoamyl
acetate producers, respectively (Rojas et al. 2001). The alleles which confer superior
production of phenylethyl acetate have been identified to be wild-type TOR1 allele
and a superior FAS2BTCD allele in Saccharomyces cerevisiae using polygenic
analysis. A hybrid diploid Saccharomyces cerevisiae yeast strain was developed
by crossing two descendants from the unrelated industrial yeast strains, ‘ale’ yeast
and the other was a bioethanol production yeast. Exchange of both superior alleles in
the ER18 parent strain increased 2-PEAc production to 70%. The polygenic analysis
combined with CRISPR/Cas9-mediated allele exchange comprises a novel strategy
which could be used for the creation of cis-genic yeasts having a novel flavour
profile which could be used for the production of alcoholic beverages (de Carvalho
et al. 2017). Lomascolo et al. (2001) have selected S. cerevisiae mutants which can
convert L-phenylalanine added in the medium via deamination, decarboxylation and
subsequent reduction into 2-phenylethanol. A high yield of the fragrant ester (>2 g/
L) was obtained by solvent extraction of the fermentation broth. Double coupled
system was used to identify non-Saccharomyces yeasts from Agave duranguensis,
which showed that Pichia fermentans can be used for the biotechnological produc-
tion of isoamyl acetate (Hernandez-Carbajal et al. 2013). E. coli, genetically
engineered for the synthesis of banana flavour, nicknamed as ‘Eau d’coli’, was
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developed by expressing ATF1 gene from S. cerevisiae which converts isoamyl
alcohol in the growth media to isoamyl acetate. The gene was cloned between a
bacterial ribosome binding site and a transcriptional terminator to make a three part
‘banana-odour generator’. A bacterial promoter that is primarily active during
stationary phase controls the expression of ATF'1 gene. For the best production of
the banana fragrance, the cellular chasis bore a mutation in the maA gene, which
inhibits indole production and thus effectively eliminates the putrid smell that
characterizes the usual smell of E. coli culture (Dixon and Kuldell 2011).

3-methylbutyl-acetate, a fruity ester, has been synthesized de novo by the yeast
Williopsis saturnus. The yield was improved by feeding fusel oil as a cheap source of
precursor branched alcohols in the fermentation process (Vandamme 2003).
Geotrichum klebahnii has been reported to produce de novo various ethyl esters of
branched carboxylic acids, giving a pleasant fruity flavour. Ethyl-2-methylbutyrate
is formed when medium is supplemented with isoleucine (Janssens et al. 1989).
Another ester, ethyl acetate is responsible for an ‘apple’ aroma. Lai et al. (2019)
reported the production of ethyl acetate in ‘Kaoliang’, a wheat-based koji prepared
using sorghum as a substrate, by S. cerevisiae as the dominant strain along with other
yeasts Kazachstania exigua and Candida humilis.

7.3.2.4 Ketones

The most important flavoured ketone is Diacetyl (2, 3-butanedione) which is respon-
sible for the buttery aroma of many dairy products. Lactic acid bacteria, especially
L. lactis biovar, produces diacetyl from co-fermentation of citrate and lactose
(Papagianni et al. 2007). The characteristic aroma of raspberry is because of para-
hydroxyphenyl-butan-2-one. The first biotechnological strategy for the production
of raspberry ketone involves the de novo synthesis by basidiomycetes Nidula niveo-
tomentosa using L-tyrosine or L-phenylalanine as the natural precursor. The second
strategy is a two-step bioconversion which involves hydrolysis of betuloside, a
glycoside of 4-4-(hydroxyphenyl)-2-butanol. The hydrolysis releases betuligenol
which gets transformed to ketone by Acetobacter aceti (Schrader 2007).

7.3.2.5 Fruity Lactones

Lactones are the compounds responsible for flavours like oily-peachy, creamy,
fruity, nutty and coconut. Specifically, y- and 8-lactones with equal or less 12 carbons
are well-known for their great variety of taste and aroma (Dabbou et al. 2016).
y-decalactone and d-decalactone are responsible for typical flavour of peach and
apricot (Greger and Schieberle 2007). A yeast Sporobolomyces odorus de novo
produces 4-decalactone (up to 1.6 mg.L) which gives a peach odour (Welsh et al.
1989). Another lactone which is widely used for its coconut odour is 6-pentyl-2-
pyrone which is produced by fungus Trichoderma viride (Fadel et al. 2015).
Tyromyces sambuceus and Cladosporium suaveolens efficiently generate coconut-
flavoured lactones y-decalactone and &-dodeca-lactone from ricinoleic acid and
linoleic acid, respectively (Kapfer et al. 1989; Allegrone et al. 1991). The yield of
lactones carried by yeasts via de novo fermentation is low, which can be increased
by supplying a limiting intermediate or precursor molecule to the fungal culture.
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Ricinoleic acid, the main constituent of castor oil, has been converted to
y-decalactone via partial f-oxidation, by yeasts such as Sporidiobolus salmonicolor
and Yarrowia lipolytica. A yield over 10 g/L has been reported along with the
production of undesirable side product hydroxy-y-decalactone. Saccharomyces
cerevisiae converts hydroxy-y-decalactone into 3, 4 unsaturated y-decalactone,
which is then stereoselectively reduced into the desirable y-decalactone by the
yeast (Vandamme 2003).

7.3.2.6 Phenolic Aldehydes

Phenolic aldehydes which constitute nice flavours are anisaldehyde and some
derivatives of protocatechualdehyde (3, 4-dihydroxybenzaldehyde), such as vanillin,
veratraldehyde and heliotropin (Braga et al. 2018). Vanilla flavour is due to the
phenolic aldehyde vanillin, is widely used for its pleasant, sweet and intense aroma
in ice creams, cookies, cakes, in soft beverages and cosmetics. About 6000 tonnes of
vanilla is consumed worldwide each year (Priefert et al. 2001). Natural vanilla is a
complex mixture of flavours which is obtained from cured vanilla pods belonging to
Vanilla orchids, Vanilla planifolia, Vanilla tahitensis or Vanilla pompona, where it
contributes to about 2% (w/w) of the dry matter (Green Protocols n.d.). Although
flavour and fragrance profile of the wvanilla extracts shows more than
200 components, Vanillin (4-hydroxy-3-methoxybenzaldehyde) is the characteristic
key component of vanilla flavour comprising of various functional groups like
aldehyde, ether and phenol (Green Protocols n.d.). It is also used as a precursor for
various pharmaceutical formulations and finds application as a food preservative
(Hassan et al. 2016). Also, synthetic vanillin is used in the production of deodorants,
air fresheners, cleaning products, antifoaming agents or herbicides. In the green
beans, vanillin is present in the conjugated, p-D-glucoside form, which has no trace
of the characteristic vanilla flavour (Green Protocols n.d.). The flavour develops
during the 6 months long fermentation or curing process of green pods. During
curing, vanillin B-D-glucoside and related PB-D-glucosides are acted upon by
enzymes f-D-glucosidases releasing vanillin (1-3%) and related phenolics (Walton
et al. 2003). The annual global sales of vanillin were reported to be more than
15,000,000 kg in 2010. It has been reported that less than 1% is obtained from
vanilla pods, while remaining is obtained by the chemical methods (Green Protocols
n.d.). The cultivation of vanilla beans and the isolation of vanillin from vanilla pods
is a laborious and costly process. About 500 kg of vanilla pods have to be processed
to produce 1 kg of vanillin, for which approximately 40,000 vanilla orchid flowers
have to be hand-pollinated. The cost of natural vanillin is quite high due to the
limited availability of vanilla pods, fluctuations in harvest yields, labour intensive
cultivation and curing of vanilla pods (Sinha et al. 2008).

Vanillin was first isolated by evaporation of vanilla extract so as to obtain it in a
dry and crystallized form by Gobley (1858). In 1874, Tiemann and Haarmann,
synthesized vanillin from coniferin present in tissues of pine tree. A company
named ‘Haarmann’s Vanillinfabrik’ was founded for its production, which was
later joined by Reimer. The first chemical method of synthesis of vanillin was
using guaiacol as the substrate (Ciriminna et al. 2019). Guaiacol (a petrochemical
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constituent) and glyoxylic acid are still used these days for the chemical synthesis of
vanillin (Esposito et al. 1997). Reimer-Tiemann method (1876) was also adopted;
eugenol (obtained from clove oil) was reacted with potassium hydroxide and
refluxed with an alkaline solution of chloroform and then oxidized by nitrobenzene
to produce vanillin (Havkin-Frenkel and Belanger 2017; Ciriminna et al. 2019). The
reaction between glyoxylic acid and guaiacol is a two-step process: First is the
condensation process which is promoted by base and in the second step, vanillyl
mandelic acid is oxidatively decarboxylated to produce vanillin, catalysed by copper
(II) in an aqueous alkaline medium at 80-130 °C (Kumar et al. 2012; Fache et al.
2016). At present, the chemical synthesis of vanillin has been carried out at 5 indus-
trial plants worldwide, fulfilling about 85% global demand of vanillin. The cost of
synthetic vanillin is $10-20/kg, sold mainly to ice cream and chocolate
manufacturers, and to flavour and fragrance companies. For meeting the remaining
demand, vanillin was produced from lignin via an alkaline oxidation process. The
alkaline aqueous solution of lignin is prepared with oxidants (such as nitrobenzene),
at high temperature and pressure. The depolymerisation of lignin releases crude
vanillin containing structurally similar compounds like acetovanillone and
syringaldehyde (Schultz and Templeton 1986; Shakeri et al. 2013).

In 2015, major food companies, including General Mills, Hershey’s, Kellogg’s
and Nestlé, took a vow to eliminate artificial flavours and other synthetic additives
from food items in the USA. At the same time, the bad orchid harvesting season in
Madagascar, the highest producer of vanilla, led to a soar in the market prices
(vanilla beans @$225/kg and pure vanilla price > $11,000/kg). In June 2018, the
price of vanilla beans was further increased to $527/kg. This multi-fold increase in
vanilla price between 2012 and 2018 has to be accomplished by alternative vanillin
production methods which are environment friendly. Although direct bioconversion
of glucose to vanillin has not been known in any naturally occurring
microorganisms, a recombinant E. coli for de novo biosynthesis of vanillic acid
from glucose via a designed shikimate pathway was developed in which vanillic acid
was enzymatically reduced to vanillin by aryl aldehyde dehydrogenase (Li and Frost
1998). In de novo method, biosynthesis of vanillin from glucose was explored in the
yeasts, Schizosaccharomyces pombe and Saccharomyces cerevisiae. Three genes,
viz. 3-dehydroshikimate dehydratase from the dung mould Podospora pauciseta, an
aromatic carboxylic acid reductase (ACAR) from Nocardia and O-methyltransferase
from Homo sapiens, were incorporated in both the yeasts. The production of vanillin
was determined to be 65 and 45 mg/L in S. pombe and S. cerevisiae, respectively,
which was also free from any contaminating isomers and production was carried out
in the usual media and growth conditions (Hansen et al. 2009). Certain natural
substances like lignin, ferulic acid, eugenol, and isoeugenol can be used for the
biosynthesis of vanillin. A gene mining method was devised for producing a
carotenoid cleavage oxygenases (CCO) protein which was named ‘SeNCED’. The
gene from Serratia sp. ATCC 39006 was cloned and overexpressed in E. coli. The
enzyme was used to catalyze the side chain double bond cleavage of isoeugenol and
4-vinylguaiacol to yield vanillin (Tang et al. 2018).
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Ni et al. (2015) synthesized vanillin from glucose and other substrates
(L-tyrosine, xylose and glycerol). The metabolically engineered strain produced
97.2 mg/L vanillin from I-tyrosine, 19.3 mg/L from glucose, 13.3 mg/L from xylose
and 24.7 mg/L from glycerol. Ferulic acid is the best-explored substrate for produc-
tion of vanillin whose degradation pathways in microorganisms produce vanillin as
an intermediate. Based on the different initial reactions involved in ferulic acid
bioconversion five major pathways can be distinguished in microorganisms which
are (1) CoA-independent retro-aldol reaction, (2) CoA-dependent retro-aldol reac-
tion, (3) CoA-dependent p-oxidation, (4) non-oxidative decarboxylation and (5) a
reductive pathway. Some microorganisms have developed multiple pathways for
bioconversion of ferulic acid. Pseudomonas fluorescens has been reported to metab-
olize ferulic acid by three pathways which are decarboxylation (Huang et al. 1994),
reduction (Martinez-Cuesta et al. 2005) and via a CoA-dependent retro-aldol reac-
tion mechanism. The retro-aldol mechanism involves elimination of an acetate
moiety from the unsaturated ferulic acid side chain resulting into vanillin formation.
White rot fungi can convert ferulic acid to vanillic acid, which is further converted to
vanillin. Aspergillus niger carries out transformation of ferulic acid into vanillic acid.
In the second step, Pycnoporus cinnabarinus or Phanerochaete chrysosporium
further converts vanillic acid into vanillin (500 mg/L) (Stentelaire et al. 2000).
Several microorganisms have metabolism pathways for formation of vanillin from
ferulic acid (FA) (Tang et al. 2018). In a pathway known as coenzyme-dependent
deacetylation pathway, FA is converted to feruloyl-CoA catalysed by the enzyme,
feruloyl-CoA-synthetase (Fcs). In the next step, enoyl-CoA-hydrolase (Ech) forms
vanillin. The engineered E. coli and other bacterial cells containing Fcs and Ech can
effectively convert FA to vanillin (Yang et al. 2013; Chakraborty et al. 2017). HCHL
gene of Pseudomonas fluorescens, encoding p-hydroxycinnamoyl-CoA hydratase/
lyase, was expressed in two transgenic hairy root (HR) lines of Beta vulgaris. These
HCHL expressing cell lines exhibited conversion of inherently available
phenypropanoid precursor (ferulic acid) into vanillin (Singh et al. 2015).

The chemical constituents of essential oils such as eugenol and isoeugenol can be
converted, by several microorganisms such as Pseudomonas putida, Corynebacte-
rium sp., Arthrobacter globiformis to vanillin (Furukawa et al. 2003; Zhao et al.
2005; Vilela 2018). Barghini et al. (2007) converted ferulic acid to vanillin using
E. coli IM109 cells in which ferulic acid-degrading genes from Pseudomonas
fluorescens BF13 were expressed. The natural pathway of vanillin production in
plants was mimicked in E. coli. The metabolically engineered strain produced
vanillin in different amounts 97.2 mg/L (l-tyrosine), 19.3 mg/L (glucose),
13.3 mg/L (xylose) and 24.7 mg/L (glycerol) (Ni et al. 2015).

Biotransformation approach can be used for the production of vanillin from
certain natural precursors like lignin, eugenol, isoeugenol, ferulic acid and phenolic
stilbenes. Production of flavour compounds can also be carried out using
microorganisms. Vanillic acid has been found as a main intermediate in lignin and
ferulic acid degradation, and in contrast to vanillin, it has found to be accumulated in
remarkable amounts (Andreoni et al. 1995). The first biotransformation process for
production of vanillin was carried out with A. niger ATCC 9142 using isoeugenol.
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The yield was found to be quite low and efficiency was only 10% (Abraham et al.
1988). The excrement of herbivorous animals has been used for the production of
plant polyphenol using the subcritical water. This unusual discovery has been
awarded Nobel Prize. Vanillin, protocatechuic acid, vanillic acid and syringic acid
were produced by the method, which was used as the intermediate materials of the
medicines and vanilla flavourings (Yamamoto et al. 2008).

Vanillin can also be produced by phenolic biotransformation by Aspergillus
luchuensis (a fermentation starter fungus). During the production of ‘awamori’
(a fermented beverage), vanillin was also produced. It involves a two-step process
catalysed by the enzymes, CoA ligases and feruloyl-CoA hydratase followed by a
two-carbon elimination of ferulic acid which produces vanillin and acetyl-CoA. The
production mechanism can be explained as the side chain cleavage of ferulic acid
through Coenzyme A (CoA) and feruloyl-CoA hydratase/lyase, to form vanillin and
acetyl-CoA (Taira et al. 2018).

Furanones comprise the aromatic chemicals present in many fruits such as
pineapple, strawberries, mangoes, raspberries. 2,5-dimethyl-4-hydroxy-3(2H)-
furanone (DMHF) marketed as Furaneol® imparts strawberry flavour in dilute
solutions and caramel-like flavour in concentrated form (Vandamme 2003). Soy
sauce yeast Zygosaccharomyces rouxii can also produce DMHF in the medium
supplied with D- fructose-1,6-biphosphate (FBP) and glucose. Since FBP is readily
available, microbial process is a cheaper alternative (Dahlen et al. 2001).

7.3.2.7 Grassy Aroma

The ‘grassy’ aroma found in damaged green tissue (e.g. cut grass) and in aromas of
many fruits and vegetables is formed via the degradation of plant polyunsaturated
fatty acids (PUFA) such as linolenic acid which are acted upon by lipoxygenases and
hydroperoxides. Although, these enzymes have not been detected so far in bacteria
or fungi, but the genes for lipoxygenase and hydroperoxides lyase have been
expressed in yeast cells and green note flavour by fungal fermentation has been
obtained from linolenic acid added in the medium (Gallo et al. 2001).

7.3.2.8 Musk Aroma

Lactones with a musk aroma are found in some plants such as ambrette seed oil,
galbanum, whereas the keto musk aroma is produced by musk deer and civet cats.
Being obtained from animals, these are very expensive and unethical. Mutants of
Torulopsis bombicola were developed which were able to convert palmitic acid into
w-hydroxypalmitic acid ester, which can then be cyclised into hexadecanolide
lactone musk.

Ambrox, an important ingredient of Ambergris, has a musk like fragrance. It is a
rare product which is produced in the digestive tract of the sperm whale (Physeter
macrocephalus) (Leffingwell and Leffingwell 2011). Chemical synthesis of this
musky compound is carried using a terpene, sclareol (Extracted from the Salvia
sclarea plant) as starting material, which is first converted to sclareolide and then
into Ambrox®. The fungus Hyphozyma roseoniger and the yeast Cryptococcus
sp. can use sclareol as a sole carbon source and can accumulate sclareolide, which
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is chemically converted into Ambrox (Cheetham 1993). A fermentation process was
performed at Nippon Mining Co. for the production of a dicarboxylic acid which is
alpha-omega-alkanoic acid for macrocyclic musk molecules. Candida tropicalis has
been mutated to give high yields of a-w-alkanoic acid from C10-C18 alkanes, 120 g
of product/L is produced on 20 m® scale (Cheetham 1999).

7.3.2.9 Synthetic Biology

Synthetic biology has become a new tool in the synthesis of aromatic molecules
because of the declining cost of DNA synthesis, rapid advances in bioinformatics
tools and expanding omics databases. Now in a heterologous microbial host it has
become possible to resolve single and multienzyme gaps in a heterologous microbial
host. Synthetic biology plays a revolutionary role in the creation of Saccharomyces
cerevisiae and E. coli as an aroma factory. It allows for the production of a
completely new set of microbial-derived flavours. In S. cerevisiae genome the
repetitive sequences were removed, LoxPsym sequences were introduced at the 5’
ends of all the genes in the yeast genome which are considered individually
non-essential. These are the sites which allow inducible homologous recombination
downstream of all non-essential genes which is mediated by the action of the site-
specific Cre recombinase. Rapid gene deletion, duplication or inversion is promoted
at these LoxPsym sites, the process is known as SCRaMbLE (Synthetic Chromo-
some Rearrangement and Modification by LoxPsym-mediated Evolution), which
allows for the rapid synthetic rearrangement and evolution of fermentation. Thus, a
large library of genomically divergent yeasts has also been created (Wyk et al. 2018).

7.3.2.10 Metabolic Engineering

The most recent approach in metabolic engineering involves tools and strategies
which employ engineering the microbial cells to follow a biosynthetic module. The
biochemical pathways involved in the production of these compounds have to be
understood. This further requires the identification of the genes and enzymes
involved in the synthesis of volatile compounds. The concept of metabolic engineer-
ing of aroma has also been previously applied to a variety of food items such as
fruits, vegetables and herbs (tomato, potato, etc.), milk products and alcoholic
beverages (Dudareva and Pichersky 2008).

Rational metabolic engineering and inverse metabolic engineering are the two
approaches used for production of bioflavours. Defined genetic manipulations are
made in genome to carry out a metabolic pathway of interest. Inverse metabolic
engineering strategy is carried; genes are knocked-out/knocked-in to get a desired
aromatic phenotype (Turanli-Yildiz et al. 2017). The aromatic chemicals which are
derived from microorganisms are usually shikimate (SHK) and aromatic amino acids
like L-phenylalanine (L-PHE), L-tyrosine (L-TYR) and L-tryptophan (L-TRP).
These aromatic compounds can be categorized into intermediates and derivatives
of the shikimate (SHK) pathway and aromatic amino acids, e.g. L-phenylamine
(PHE), L-tyrosine (TYR), L-tryptophan (TRP) and their derivatives (Huccetogullari
et al. 2019).
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A shikimate pathway intermediate (3-dehydroshikimate) has been converted to
vanillin in a multi-step conversion through heterologous expression of four genes
from Podospora pauciseta, Nocardia iowensis, Corynebacterium glutamicum and
Homo sapiens. Brochado et al. (2010) used genome-scale metabolic modelling to
identify gene deletion targets in S. cerevisiae in order to improve vanillin production.
The deletion of genes PDC1 and GDH1 resulted in a fivefold increase in production
of vanillin.

7.3.2.11 Process of Solid-State/Submerged Fermentation
for Production of Aroma Compounds

The process of solid-state fermentation (SSF) is used in the production of biologi-
cally active secondary metabolites, which can also be used for the bioflavours
(Prabhakar et al. 2005; Singhania et al. 2009; Ray and Behera 2011). SSF is a
three-phase system, a gas phase (also called headspace), a solid phase and a liquid
phase, which is in the form of a thin layer of moisture, around the solid phase. In
SSF, the microorganism grows on this layer of moisture in the absence or near
absence of free water (Thomas et al. 2013), whereas submerged fermentation (SmF)
involves submersion of the microorganism in an aqueous solution containing all the
nutrients needed for growth. SmF utilizes free flowing liquid substrates, such as
molasses and broths. The bioactive compounds are secreted into the fermentation
broth (Subramaniyam and Vimala 2012). SmF has also been used for the production
of aroma compounds by using several microorganisms. A higher yield is obtained in
SSF as compared to submerged fermentation. In addition, SSF has lower production
costs, lower demand for energy and water as well as less amount of liquid wastes are
produced (Rodriguez and Sanroman 2006; Singhania et al. 2009; Soccol et al. 2017).
The disadvantage of SSF over the SmF is the difficulty in monitoring of process
variables such as pH, moisture and nutrient availability. In the scaling-up, there is
also a problem of heat mass transfer associated with the use of solid substrates
(Pandey 2003; Soccol et al. 2017). The application of SSF in large scale is limited
(Singhania et al. 2010; Salihu and Alam 2012) as the aroma compounds are either
produced in the solid matrix or in the headspace which can be lost or stripped when
aeration is required (Try et al. 2018).

Rossi (2009) have used the fungi Ceratocystis fimbriata for the production of a
variety of aromas using citric pulp (CP), a waste from the citric juice production
industry as the substrate for fermentation. Other materials such as carbon sources
(sugarcane molasses, soya molasses) and nitrogenous sources (soya bran or urea)
were also checked for the production of aromatic compounds. Gas chromatography
of the headspace showed the best production of volatile compounds (99.60 pmol/L
2), when the citric pulp was supplemented with 50% of soya bran, 25% of sugarcane
molasses and mineral saline solution. The production of a number of fruity esters,
namely isoamyl acetate, phenylethyl acetate, ethyl dodecanoate, decanoate and
octanoate from orange peel, has also been reported by Mantzouridou et al. (2015).

The solids derived from coffee such as coffee pulp and coffee husk can also be
used for the production of flavour compounds (Pandey et al. 2000). Ceratocystis
fimbriata was grown in two media constituted from steam treated coffee husk
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supplemented with 20 and 35% glucose. A prominent pineapple aroma resulted due
to the production of 6.58 and 5.24 mmol/L/g total volatiles (TV) in the respective
media. Different aromatic compounds such as acetaldehyde, ethanol, isopropanol,
ethyl acetate, ethyl isobutyrate, isobutyl acetate, isoamyl acetate and ethyl-3-
hexanoate were identified in the headspace of the cultures. When leucine was
added, the total volatiles increased to 8.29 mmol/L/g. A strong banana odour was
detected as ethyl acetate and isoamyl acetate were found to be produced. However,
the biosynthesis of volatile compounds was not improved by the addition of soybean
oil and in fact it was reduced due to the addition of mineral salts (Soares et al. 2000).
In a study, five different agro-industrial residues were evaluated as substrate for
cultivating a strain of Kluyveromyces marxianus. The yeast produced fruity aroma
compounds when cassava bagasse and giant palm bran (Opuntia ficus-indica) were
used as substrates. In the experiment, the influence of different parameters on the
production of volatile compounds was tested. The parameters included initial pH of
the substrate, addition of glucose, incubation temperature, initial substrate moisture
and the size of inoculum. Using a 2° factorial design, both the parameters, namely
addition of glucose and initial pH of the substrate, were found to be statistically
significant for the production of aroma compounds when palm bran was used as a
substrate. The addition of glucose did not have a significant role when the substrate
was cassava bagasse, but 27 factorial designs showed the addition of glucose to be
statistically significant at higher concentrations. Nine and eleven aroma compounds
were found to be produced from palm bran and cassava bagasse, respectively, when
headspace analysis of the culture was done by gas chromatography. These
compounds included alcohols, esters and aldehyde. Ethyl acetate, ethanol and
acetaldehyde were the major compounds produced, while two compounds remained
unidentified in both the cases. Esters produced were responsible for the fruity aroma
in both the cases. When the substrate was supplemented with 10% glucose, 418 and
1395 pmol L™" headspace g 'of ethanol (palm oil) and ethyl acetate (cassava
bagasse) were produced at highest concentration (Medeiros et al. 2000).
Trichoderma viride has been reported to ferment the fruits of Pandanus tectorius
by using SSF approach. The aromatic compounds produced belonged to the classes
of alkanes, alcohols, ketones, pyrones, furanes, monoterpene and sesquiterpenes.
GC/MS analysis showed 17 peaks which corresponded to alkenes hydrocarbons
(tetradecane, tetracosane, tetracosahexaene, pentadecane, hexacosane, heptadecane
and octadecane), alcohol (phenol), amide (9-octacenamide) and monoterpene alde-
hyde (9-octadecenal) (Darmasiwi et al. 2016).

Following solid-state fermentation and distillation of sorghum, a fermented
product Kaoliang is prepared, further blended and aged by yeasts Saccharomyces
cerevisiae, Kazachstania exigua and Candida humilis) to form yellow water, a
by-product of fermentation. The optimization of fermentation process led to the
enhanced production of aroma compounds, such as ethyl acetate, isoamyl acetate
and 2-phenylethanol in the yellow water (Lai et al. 2019). Boratynski et al. (2018)
carried out solid-state fermentation (SSF) on linseed and rapeseed cakes inoculated
with different strains of filamentous fungi producing aroma lactone such as
I-phenylethyl acetate, a mixture of ‘trans’ and ‘cis’ whisky lactones,
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y-decalactone, 5-decalactone, and cis-3a,4,7,7a-tetrahydro-1(3H)-isobenzofuranone,
y-decalactone, 1-phenylethyl acetate. Hosoglu et al. (2018) also proved that increas-
ing the initial concentration of both yeast extract (YE) and glucose in the fermenta-
tion medium favoured both the growth of the yeast and production of fusel alcohols
(isoamyl alcohol) in a bioreactor. When compared with SmF, this method of
fermentation was found to lower the capital by approximately 78%. As the agro-
nomic waste residues are usually utilized, therefore, it also provides a solution to the
environmental hazards. Apple pomace was used as a substrate, inoculated with
basidiomycete, Tyromyces chioneus. A pleasant flavour mixture, giving a combined
aroma of stewed fruit and plum purée, was generated by the biotransformation using
submerged cultures of the basidiomycete 7. chioneus. GC-MS analysis showed that
3-phenylpropanal, 3-phenyl-1-propanol and benzyl alcohol were identified as potent
aroma chemicals. E)-cinnamic acid was also identified as a precursor for
3-phenylpropanal and 3-phenyl-1-propanol for biotransformation (Bosse et al.
2013).The leaves of Eucalyptus cinerea from which essential oil has been extracted
are used as a substrate and inoculated with two edible mushrooms Pleurotus
ostreatus and Favolus tenuiculus;1,8-cineole was transformed to new aroma
compounds which were 1,3,3-trimethyl-2-oxabicyclo[2.2.2]octan-6-o0l and 1,3,3-
trimethyl-2-oxabicyclo[2.2.2]octan-6-one (Omarini et al. 2015).

Olive mill waste fermentation was carried out by Rhizopus oryzae and Candida
tropicalis, in shake cultures and bioreactor cultures. The concentration of
d-limonene was determined as 185.56 pg/kg and 249.54 pg/kg in the fermented
olive mill waste by R. oryzae and C. tropicalis in shake cultures, respectively,
whereas in the bioreactor, it was determined to be 87.73 pg/kg and 11.95 pg/kg
R. oryzae and C. tropicalis, respectively (Guneser et al. 2017).

de Araujo et al. (2002) reported the production of 6-pentyl-a-pyrone (6-PP),
related to coconut aromas, by Trichoderma sp. via solid-state fermentation and
submerged fermentation methods. A higher yield of 6-PP concentration was found
when sugarcane bagasse was used as a solid support. Kabbaj et al. (2002) reported
the production of aroma compounds, using Pleurotus ostreatus JMO 95 fruit body
and its mycelium as inoculum, by solid state and submerged state of fermentation.
The aromatic spectra showed that the main aromatic compounds octan-3-one (sweet
and fruity odour) and octan-3-ol (hazelnut and sweet herbaceous odour) were
produced in the similar proportions on the agar surface and on the solid support
culture, while the proportion was found to be low in SmF. Dairy flavour compounds
such as diacetyl, butyric acid and lactic acid are produced by semisolid maize-based
using mixed cultures of Lactobacillus acidophilus and Pediococcus pentosaceus
(Escamilla-Hurtado et al. 2005).

7.3.2.12 Bioreactor Model

Packed-bed reactor and the fluidized bed reactor are used for the aroma compound
production by microorganisms and enzymatic methods. The bioreactors can be
operated in different modes such as batch, fed-batch and continuous. In the batch
operation method, no fresh material is introduced or removed from the bioreactor
while processing, whereas in the fed-batch culture, the feed is added continuously to
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the bioreactor in order to keep both nutrient levels and the growth rate maintained at
a predefined value. When the bioreactor operates in the continuous manner fresh
media is introduced and the product is also removed continuously. For example, a
nylon-immobilized lipase from C. cylindracea in batch continuous-flow reactors has
been used for the synthesis of ethyl propionate, isoamyl propionate and isoamyl
butyrate in the continuous mode (Carta et al. 1991). Amyl caprylate has been
synthesized using fluidized bed reactor inoculated with C. rugosa lipase
immobilized on Sepabeads in both batch and continuous mode (Saponjic et al.
2010).

In situ removal process (ISPR) follows the production of the aromatic chemical
by fermentation. On the basis of the physico-chemical properties of the target aroma
product, a particular ISPR method can be followed involving the extraction, immo-
bilization, evaporation, permeation. In addition, bioreactor/separation units are
configured accordingly and also operated under the suitable conditions (Stark and
Stock 2003). Cervenansky et al. (2018) designed a hybrid system for biocatalytic
synthesis of 2-phenylethanol (2PE). Being toxic to the production strain, PE was
continually removed from the fermentation broth using a membrane separation in a
hybrid system consisting of a batch bioreactor and an extractive membrane module,
which prolonged the production cycle and hence the efficiency of the process was
enhanced. The volatile compounds were isolated and concentrated from the matrix
by the processes such as steam distillation/extraction or supercritical CO, extraction
or the solid phase microextraction (SPME) (Maarse 1981). Janssens et al. (1989)
reported the stripping of acetate esters from the fermentation broth using the
aeration-air of the fermentation which were then adsorbed on activated coal at the
exhaust of the fermentor, and solvent extraction was used for its subsequent
recovery.

Immobilized cell technology is used to protect microbial cells which are used in
bioflavour production. Immobilization of microbial cells protects the cells from
physico-chemical changes, inhibitory substances and contaminations. It also
enhances substrate utilization, rapid fermentation rates and stability of the product
(Nedovi¢ et al. 2016). In the processes of bioflavour production, the most widely
used immobilization technique is the entrapment of cells within porous polymeric
matrices and adsorption on various support materials. The carrier used in the
immobilization process is important as it can affect and also control the flavour
profile of the final product. The factors which determine the choice of the carriers are
viz., its specific requirement, conditions for maintenance of immobilized cell viabil-
ity and metabolic activity, cost effectiveness, ease of handling, adherence due to
large surface area and presence of functional groups, food grade purity (Kourkoutas
et al. 2010). For example, encapsulation in calcium alginate beads was used to
immobilize Saccharomyces cerevisiae. The immobilized cells showed better growth
performance and also improved de novo synthesis of phenylethyl acetate, ethyl
hexanoate, octanoate, decanoate and dodecanoate. Due to immobilization,
bioflavour production carried out in repeated batch fermentations of orange peel
hydrolysate, was successfully maintained after six consecutive cycles of a total
period of 240 h (Lalou et al. 2013).
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7.3.3 Plant Tissue Culture Methods

Transgenic crop plants with higher yield, improved quality and desired
characteristics of texture, aroma and flavour have been developed by inserting
genes of known function (Speirs et al. 2000; Lewinsohn et al. 2001). Plant tissue
culture method (PTC) is the culturing of plant cells on solid or in liquid culture.
Although, the methods of PTC have been in use for the past hundred years, but they
have been introduced for the production of aroma compounds only in the 1970s. It is
now used for the commercial production of existing and novel flavours (Fu 1999;
Boskovic-Dornenburg and Knorr 2010). Tissue culture methods have already been
employed for propagation of commercially important plants, for example, CFTRI
has standardized the technology and methods of processing for the mass propagation
of Vanilla planifolia by tissue culture techniques (https://www.cftri.res.in/
technologies/MFP/vtc.pdf). One of the advantages of PTC is that unlike whole
plants, these methods are not limited to geographic locations or the seasons. The
aroma compounds can be isolated from cells or the medium with relative ease.
However, this production method is quite expensive as the precursors are the
compounds which are produced in relatively low amounts. The additional expenses
are the cost of the medium and the purification of the compounds for food grade.
Moreover, PTC can only be used effectively in systems for which the biochemical
pathway of the aroma compounds is already known (Harlander 1994; Hrazdina
2006).

Plant cell cultures are normally grown under sterile conditions in which a part
taken from the plant, known as an explant, is surface-sterilized. The explant is placed
on a solid medium which contains major and minor salts, a carbon and energy
source, normally sucrose and the growth regulators auxins and cytokinins to form an
undifferentiated mass of cells called callus. When callus is added to a liquid medium,
it forms the suspension cultures (Harlander 1994). Suspension cultures generally
have a faster growth rate, are more homogeneous than callus material and thus can be
cultivated on a large scale in bioreactors. High yielding plant cultures are screened
and selected. The culture conditions are manipulated to stimulate the accumulation
of secondary products. Other methods such as elicitation, permeabilization, product
removal, immobilization and differentiation can also be used to enhance the produc-
tion of secondary products (Scragg 2007). The transformed shoot cultures of Mentha
exhibited the synthesis of monoterpenes in mint oil (Rhodes et al. 1991).

The flavour compound/ aroma such as 2,3-butanedione, apple aroma, cinnamic
acid, caryophyllene, basmati flavour, cocoa flavour, flavanol, garlic, monoterpenes,
onion, triterpenoid and vanillin have been produced from plant tissue cultures of
Agastache rugosa (Kim et al. 2001), Malus sylvestris, Nicotiana tabacum and
Lindera strychnifolia (Drawert et al. 1984), Oryza sativa (Suvarnalatha et al.
1994), Theobroma cacao (Townsley 1972), Polygonum hydropiper (Nakao et al.
1999), Allium sativum (Ohsumi et al. 1993), Perilla frutescens (Nabeta et al. 1983),
Allium cepa (Prince et al. 1997), Glycyrrhiza glabra glandulifera (Ayabe et al.
1990), Vanilla planifolia (Dornenburg and Knorr 1996), respectively, via tissue
culture methods. Multiple shoots of Vanilla planifolia were induced from nodal
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explants under influence of different concentrations of plant growth regulators such
as kinetin. The in vitro cultured plantlet exhibited more amounts of vanilla flavour
compounds in the cultured plantlets. It was found that enzymes of lignin biosynthe-
sis (cinnomoyl CoA reductase and coniferyl alcohol dehydrogenase) as well as the
enzymes potentially involved in benzoate biosynthesis (O-methyl transferase and
glutamyl transferase) were induced by kinetin (Renuga and Saravana Kumar 2014).

The callus cultures of garlic (Allium sativum) and onion (Allium cepa) have been
used for the synthesis of the flavour precursor, alliin. Allyl thiol and allyl cysteine, at
a concentration of 10 mM, were incorporated into the callus medium for cultures of
garlic and onion callus (Hughes et al. 2005). Addition of S-alk(en)yl donors or
presumed biosynthetic intermediates aided in the synthesis of cysteine sulphoxide by
tissue culture method in both onion and garlic (Jones et al. 2004). Normal and cell
suspension cultures of flavour rich tuberous roots of Decalepis hamiltonii were used
for the enhanced production of metabolites through ferulic acid (FA) feeding to the
culture medium. Flavour metabolites such as 2-hydroxy-4-methoxy benzaldehyde
(2H4MB), vanillin, 4-Methoxy Cinnamic acid derivatives and aromatic alcohols
were produced as flavour metabolites (Matam et al. 2017). Using plant tissue culture
method, flavour molecules can also be produced following biotransformation. Cell
culture of Peganum harmala (African rue) converted geranyl acetate to geraniol and
linalyl acetate to linalool and a-terpineol (Zhu and Lockwood 2000). Controlled-
release polymer discs were made from poly-2-hydroxyethyl methacrylate containing
geranyl acetate or linalyl acetate, which produced higher concentrations of their
biotransformation products (Zhu et al. 2000). Geraniol is an essential oil constituent
commercially produced by Mitsui Chemicals Ltd. by culturing Geraminea spp.
(Ochoa-Villarreal et al. 2016). The commercial production of aromatic compounds
can be carried out by using stirred bioreactors, bubble column bioreactors, air-lift
bioreactors and wave-mixed bioreactors with one-dimensional (1-D) motion
(Ruffoni et al. 2010; Georgiev et al. 2013).

7.4  Sensory Evaluation of Flavour Compounds

The sensory evaluation has to be performed after the synthesis of aroma compounds.
The flavouring and fragrant components of compounds are detected by the head-
space analysis. The volatile compounds can be measured by two methods: Gas
chromatograph-mass spectrometer (GC-MS) and a GC-MS coupled with an
olfactometric port or a sniff port (GC-O). Following the method of gas chromatog-
raphy, the volatile components of a mixture are separated and then a mass-
spectrometer is used to characterize each of the components individually. In
GC-O, this system is additionally equipped with a sniff port because of which it is
possible for a human to detect the components in the volatile mixture and thus
determines the sensory flavour of the sample (Chambers and Koppel 2013). Elec-
tronic nose can also carry out the analysis of aroma, which often consists of
non-selective sensors which interacts with volatile molecules so that if there is any
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physical or chemical change, then a signal is sent to a computer which makes a
pattern, which is recognized and the compound is identified (Dhar et al. 2018).

Traditionally, the identification of flavours is being carried out by an expert panel.
About 4 mL of sample is withdrawn from the shake flasks every second day after
production and transferred into 20-mL snap-cap vials, which are then tempered to
40 °C for 5 min. The olfactory evaluation is done by a sensory panel. The panel
consists of group of testers (at least three) who have exceptional sensory perceptions,
thus can describe the fragrant products on the basis of taste, smell or texture. The
odour intensity is rated on a scale ranging from one to five level (Bosse et al. 2013;
Hootman 1992). The sensory classification of flavouring substances is carried out by
the sensory panel and ‘Aroma and Flavour Wheels’, a pattern is generated by
following a standardized system (Simat et al. 2017). The aroma wheel, consisting
of three concentric circles of sensory descriptors and references, divides all the
fragrant substances into families and sub-families and also characterizes them on
the basis of the individual attribute of the substance (Simat et al. 2017).

7.5  Product Formulation/Delivery Systems of Flavours

The fragrance and flavour compounds have to be properly formulated after recovery,
S0 as to maintain its stability, sensory effectiveness and to optimize their delivery in
the food items (van Soest 2007). In encapsulation, the flavours are entrapped in a
material due to which a protective matrix or shell is created. Encapsulation of
flavours has been attempted and commercialized using different methods, viz.
spray drying, spray chilling or spray cooling, extrusion, freeze drying, coacervation
and molecular inclusion (Renu and Zehra 2015). In the spray drying method, the
liquid encapsules are converted to solid (powdery) forms, which enables easy
handling and also increases the efficiency of the aroma and flavour (Zuidam and
Shimoni 2010). Currently, food industries are preparing nanoparticles of these
flavour and aroma emulsions. Nanoencapsules range between 10 nm and 1 um in
size (Tamjidi et al. 2013). Due to their very small size, the macro-scale
characteristics, i.e. food texture, taste, odour and colour, are improved. This also
enhances their characteristics of taste and aroma during their shelf life. Nowadays,
liposomes are also used, as they can be tailor-made and have unique characteristics
due to which complex flavour patterns can be programmed and released in the food
products at pre-arranged rates (Emami et al. 2016). Nanoliposomes with
encapsulated essential oil like Zataria multiflora are created by thin film evaporation
method (Yoshida et al. 2010). Cyclodextrin encapsulations are also prepared which
are toxic and inexpensive, poorly absorbed in the upper gastro-intestinal tract but
readily metabolized by colon microflora (Astray et al. 2009).
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7.6  Bioeconomy, Regulatory Aspects and Legal Status
of Flavours

Today, approximately 5000 different aroma chemicals are available in the market
including synthetic and natural product (Personal Care Magazine 2009). Flavour and
fragrances account for 25% of the total food additives market (Dubal et al. 2008).
The flavour and fragrance industry is segmented broadly into three areas: (1) Pro-
duction of synthetic and isolation of natural aroma chemicals or essential oils/natural
products, (2) Blending and compounding of these products into formulations so as to
meet specific customer requirements, (3) Sale and use of these formulations in the
production of various end-products.

The end-products of these formulations are foods, beverages, detergents and
pharmaceutical products which are now produced and utilized in each and every
country. The consumption in the global market has increased as these chemicals are
not just used individually, but the flavour and fragrances are usually combined and
blended, which imparts either an attractive taste or aroma or both to the processed
foods and beverages. Not only the edible products but consumer products such as
perfumes, toiletries, household cleaners, etc. also have acquired a pleasing scent
owing to these wonder chemicals.

The end-use markets of these products are first-world markets. About 50% of
these aroma chemicals are used in beverages and the rest are used for the
formulations of soaps/detergents and cosmetics/toiletries. The largest market is the
USA which accounts for 31% of the total market, followed by Western Europe
(29%) and Japan (12%). The remaining market of flavours and fragrances lies in
developing countries which have high growth rates as well as high market potential.
In 2002, the worldwide flavour and fragrance business, which included the sales of
compounded flavour and fragrance products, aroma chemicals as well as essential
oils and natural extracts, was estimated to be $15.1 billion (Triumph Venture Capital
(Pty) Limited et al. 2004). Due to the enormous growth, the value reached US$28.2
billion in 2017, showed an increase of 4.6% as compared to the previous year. It is
expected that the global market value of flavours and fragrance will reach US$28.37
billion in 2023. As the Flavour and Fragrance industry is continually expanding,
hence, in the future, it demands a definite and robust investment and research.

The enormous consumption of flavours and fragrances is anticipated to be driven
by various factors such as increase in gross national income, rapid urbanization, rise
in global population, enhancement of living standards, increase in demand for
packaged food and increase in middle class population. As the demand for packaged
food has also increased, it has led to the preferential incorporation of essential oil and
natural extracts as compared to the synthetic chemicals. The population who con-
sume low calorie or salt and sugar-free diets is another reason for increase in use of
flavour additives as a taste appeal is required in dietetic and low-calorie foods
(Berenstein 2015). Despite the tremendous rise the market is also challenging,
being governed by various determinants like rising prices of raw materials, change
in demand by consumers; there are also numbers of barriers for new compounds. The
trends and developments in the market of these products are new launches, rise in
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consciousness about healthy and ethical products, change in consumer’s choice and
decision.

The high rise in the market of food, cosmetic, pharmaceutical and toiletries is
speculated and requires an increased input of natural flavours and fragrances in the
industry. It is estimated that the global market share of bio-based chemicals will rise
from 2% in 2008 to 22% in 2025 (Biddy et al. 2016). This has paved the way for
some biotechnological firms like DSM, a Dutch-based multinational life sciences
and materials sciences company and another largest chemical producer company
headquartered in Germany BASF (Badische Anilin- und Soda-Fabrik). BASF pro-
duced 4-decalactone, a peach flavoured compound, and got it distributed by its
subsidiary co. Fritzsche Dodge & Olcott. It involved the bioconversion of triglycer-
ide, 12-hydroxy-9-octadecene acid by Yarrowia lipolytica, with a yield of 6 g/L
(Janssens et al. 1992). These companies have invested a lump sum amount of $13.5
million in the microbial based production of flavour and fragrance molecules in
collaboration with a company named Allylix which is based in San Diego. Although
there are no direct reports in literature about the bioeconomy of biotechnologically
derived flavour and fragrance products, there is scarce data abut the comparison
between their cost-effectiveness as compared to their chemical counterparts. How-
ever, there is an enormous difference in the costs of synthetic and natural aroma
compounds. On an average, the market price of natural aromas is about 100 times
higher than that of synthetic aromas. Essential oils and isolated aroma compounds
are currently available at prices of more than 5000 $/kg. An essential oil, patchouli
oil is currently produced via traditional agriculture and steam distillation from dried
patchouli leaves, for which 100 kg of dried patchouli leaves is required to produce
2.2-2.8 kg of patchouli oil. This process lasts 8 h and 40 L of kerosene is consumed
for the production (Kusuma and Mahfud 2007). Hence, the traditional process which
is both energy inefficient and resource intensive can be replaced by microbial
fermentative processes (Henke et al. 2018). Biotechnologically derived aromas can
be a valuable substitute and in order to survive the competition in the market, the
price of microbial flavours should range between 200 and 2000 US$/kg.

The biotechnological firms like DSM and BASF (Badische Anilin- und Soda-
Fabrik) have invested a lump sum amount of $13.5 million towards the microbial
based production of flavour and fragrance molecules in collaboration with another
company named Allylix. Independently, Allylix and Isobionics are producing two
citrus molecules, viz. valencene from the peel of the Valencia orange and nootkatone
from the grapefruit peels. It has been suggested that there is potential for biosynthetic
routes to completely replace any natural sources of flavour and fragrance molecules.
Hence, now a number of the pharmaceutical and biotechnological companies are
collaborating and adopting secretive policies and conditions to develop these natural
aroma molecules (Gupta et al. 2015). For example, synthetic 4-decalactone which is
the key flavour compound of peach costs 150 US$/kg, the compound from the
natural source has the worth of 6000 US$/kg, whereas the biotechnological pro-
duced form is priced at 180 US$/kg (Dubal et al. 2008; Bicas et al. 2016).

The most widely used flavouring agent vanilla has a global demand of 12,000
tons/year, artificial vanilla is priced at 15 Euro/year while 50 tons of the natural
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extracts of flavour is required every year and is priced at a cost of 4000 Euro/year. It
is estimated that bio-vanillin (vanilla flavour from biotechnological sources) will
have a demand of 5000 tons/year and an average price of 800—1000 Euro/year. The
firm ‘Evolva’ is commercially involved in the production of vanillin which produces
a glycoside precursor to the vanillin molecule using a yeast that metabolizes glucose
(Singh and Winters 2016). The biotechnologically produced vanillin can be consid-
ered economically viable as the synthetic vanillin is priced around US$11/kg, the
natural vanilla flavour extracted from fermented pods of Vanilla orchids costs
US$1200-4000/kg (Bythrow 2005). EveValencene™, an orange flavour and fra-
grance ingredient of food items, beverages, personal care and household products, is
a fermentation product produced commercially by ‘Evolva’ (https://www.evolva.
com/orange-flavor-valencene). Another valuable flavour is raspberry ketone (para-
hydroxyphenyl-butan-2-one) which is present in very low concentrations in the
berries (0.1-2.0 ppm or 4 mg/kg of berries), its potential market is 610 million
Euros (Feron and Wache 2005). Although, the chemically synthesized ketone costs
only US$10/kg but the flavour industry and the consumers prefer natural substance.
Due to its high cost of extraction and inconspicuous presence (4 mg/kg) in berries,
the current market demand of natural raspberry ketone could not be completed;
biotechnological interventions are underway to rationalize its production. ‘Rose
aroma’ is another aroma which is also in high demand in the flavour and fragrance
industry, coded by 2-phenyl ethanol and 2-phenyl acetate. The chemically produced
2-phenylethanol has a market of 7000 tons/year, whereas the requirement of natural
product is 0.5-1 ton/year, is sold at US$1000/kg and is mainly produced by yeast
based bioprocess, since its isolation from the natural source is very costly (Schrader
2007). The natural peach aroma compound, gamma-decalactone was priced
US$6000/kg, while the synthetic counterpart has been priced at US$150/kg, now
the biotechnological aroma has reduced its price to US$300 kg/kg ( Dubal et al.
2008).

The global limonene market size is projected to grow from 45 kilo tons in 2015 to
65 kilo tons by 2023 (Global Market Insights 2017). The cost of limonene has also
increased in previous years, currently priced at around 20 $/kg (Ciriminna et al.
2014; Lange 2015). Natural lactones are also highly priced like the cost of
y-decalactones was over US$10,000/kg in 1980. But due to the biotechnological
production, the prices reduced to US$300/kg (Schrader et al. 2004). Lactones were
traditionally produced by chemical synthesis from keto acids, although their
bio-production using fungal strains and biotechnological methods is now being
favoured. Biotechnological production of y-decalactones (GDL) and
8-decalactones (DDL) reached to US$1400/kg and US$6000/kg, respectively (Hui
20006).

‘Amyris’, a biotechnology and renewable products company, has collaborated
with ‘Firmenich’, another company involved in the production of flavour and
fragrance, to develop Clearwood. It is a mixture of the sesquiterpenes and alcohols
which are found in patchouli oil. A yeast has been genetically engineered to
metabolize sugar into the novel hydrocarbon chemical compounds which are
found in patchouli oil. The market price of ‘Clearwood’ is half the price of patchouli
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essential oil, roughly US$47/kg, and production has reached 400 metric tonnes in
2017. The firm ‘BASF’ is executing the microbial production of 4-decalactone, a
peach aroma which is distributed by its subsidiary company Fritzsche, Dodge and
Olcott. This process involves the bioconversion of Ricinus communis (castor) seed
oil, by Yarrowia lipolytica, which is composed of 80% of a triglyceride of
12-hydroxy-9-octadecene acid, also known as ricinoleic acid. Unilever’ is involved
in the commercial preparation of (R)-S-dodecanolide scale from 5-ketododecanoic
acid using Saccharomyces cerevisiae. The production is carried out in a 30,000 L
fermentor, 5-ketododecanoic acid is used for its buttery flavour in margarines
(Tyrrell 1990). ‘Hercules Inc’ produces butyric acid and ethyl butyrate using Clos-
tridium butyricum, converts glucose into butyric acid under anaerobic conditions,
which is added for its natural cheese aroma (Sharpell 1985; Dziedzak 1986).
‘Unilever’ manufactures (R)-S-dodecanolide on a commercial scale using baker’s
yeast starting from 5- ketododecanoic acid, in a 30,000 L fermentor, the lactone
which is produced can be used for flavouring in margarines (Dubal et al. 2008).
Today, approximately 5000 different aroma chemicals are available on the market
including synthetic and natural product (Personal Care Magaxine 2009).

The global market for aroma chemicals is estimated at US$4727 million in 2018,
and is forecast to grow at a CAGR of 5.3% to reach US$6126 million by 2023.
Terpenoids represent the largest product category, with a share of 31%, closely
followed by benzenoids with 29%. The market for aroma chemicals is concentrated
in the EU, the USA and China. Demand is lower in developing markets, as there is
little perfumery (blending) activity, and these countries are much more likely to
purchase ready-made compounds. The data in reports also showed that 47.13% of
demand of the aroma chemicals is in foods and beverages field, 14.29% is used in
cosmetics field and 22.99% in personal and household care. Hence, in the next few
years, aroma-chemical industry will continue to be highly energetic industry. Sales
of Aroma Chemicals have brought a lot of opportunities, hence more companies are
entering into this industry with their biotechnological flavours and fragrances.

7.7 Conclusion

In order to meet the growing demand for flavour and aroma compounds, the
chemical synthesis is generally preferred. Nevertheless, the chemical synthesis is
not only unsustainable but also the synthetic product has lesser market value.
Though the flavour and aroma compounds extracted from natural sources are
valuable, the extraction processes are costly and inefficient. Also, the availability
of plant sources of flavour and aroma compounds is influenced by season and crop
geography. So, there is dire need for advanced biotechnological methods to produce
flavour and aroma compounds. Incidentally, the developments in the field of genetic
engineering, synthetic biology and metabolic engineering have provided
opportunities to produce flavour and aroma compounds sustainably. The recent
biotechnological approaches are though mostly in their primary stages, but their
commercial viability is now getting confirmed. Perfume manufacturing microbes are
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now mimicking the natural fragrances in a realistic and commercial approach. The
practical implementation of biotechnological processes requires the collaboration of
researchers, funding agencies, governments and industries, who have to work
together for the development of a true bioeconomy. In conclusion, the market-
push in the form of high demand of flavours and fragrances can be met by the
market-pull in the form of biotechnologically produced microbial flavours and
fragrances.
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Abstract

Phytochemicals are produced by plants which possess bioactive compounds
responsible for plant defence against pests, pathogens, and other natural enemies.
India is one of the mega diversity countries in the world, having many kinds of
medicinal and aromatic plants. Bioactive compounds from plants will serve as a
raw material for phytoinsecticides. It has several advantages over chemical
insecticides in terms of biodegradability, safe to non-target organisms, and can
be easily extracted from the locally available plant sources. It is an essential
component in the Integrated Pest Management (IPM) of field and also stored
product pests. Phytochemicals from neem, pyrethrum, sabadilla, and ryania based
products are commercially available and are used for the management of agricul-
tural pests. There is a huge demand to develop and employ phytochemicals for the
management of stored pests since stored insect pests cause severe damage to the
stored produce. The stored product pests reduce the quality of produce, contami-
nate the produce with uric acid and exuvia, and also produce allergens which
results in reduction of commercial value of the products. There is a great potential
to use phytochemicals for the management of stored pest and to develop com-
mercial formulations for the benefit of the human beings. The identification of
suitable plant material, developing suitable extraction method, proper testing
against target organism, and developing formulations are important for
integrating these phytochemicals in the IPM of stored product pests.
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8.1 Introduction

Stored grain pests cause significant damage to grains during storage, resulting in
quantitative and qualitative losses to the stored grains and making it unfit for
consumption. It attacks most of the cereals and pulses, millets, oilseeds, and
processed commodities stored in the public godowns and storage units of food
companies (Pourya et al. 2018). Stored product pests are majorly classified into
internal and external feeders based on the feeding behaviour. Internal feeders are also
called as primary pests which attack whole or unbroken grains, feed within the
grains, and cause damages inside the grain. The symptom of damage can be noticed
only after the emergence of the adults. External feeders are also known as secondary
pests which attack only damaged grains and milled products (Table 8.1). Practice of
chemical fumigation to the food grains results in residues in food materials and
resistance development in insects (Subramanyam 2018). Stored product pests
account to loss of 20-25% during 2010-2011 (Singh 2016). Controlling the stored
pest and preventing loss of the food grains are necessary to maintain sufficient buffer
stock (Nicolopoulou-Stamati et al. 2016). Chemicals in the form of fumigants are
used at present to manage the stored product insects. Considering the safety and
efficiency of using botanical insecticides, extensive studies on organic plants and
their phytochemical activity are being studied by many researchers for the develop-
ment of botanical insecticides for stored product pest (D’Incao et al. 2013). This
chapter deals with the classification of phytochemicals, mode of action, extraction
and testing methods, analysis of phytochemicals and management of stored pests by
use of plant based chemicals.

8.2  Phytochemicals

Phytochemicals or phytoinsecticides are the chemicals derived from plant origin. It
originates from the Greek word phyfo, meaning “plant” (Breslin 2017). Each
phytochemical has varying structure and performs different functions such as pro-
tection, growth acceleration, and reproduction in the plants (Huang et al. 2016).
Phytochemicals are found in fruits, vegetables, grains, pulses, nuts, seeds, and other
plant foods (Baxter et al. 1998). Since ancient times, medicinal plants and botanicals
were used to treat chronic diseases like cancer, diabetes, and coronary heart diseases
(Arnason et al. 2013). Certain plants contain phytochemicals (Table 8.2) which
possess insecticidal properties against pests (Table 8.3). Phytochemicals can be

Table 8.1 List of internal and external feeders damaging stored commodities

Internal Rice weevil (Sitophilus oryzae), lesser grain borer (Rhyzopertha dominica),

feeders pulse beetle (Callosobruchus chinensis), cigarette beetle (Lasioderma
serricorne), drug store beetle (Stegobium paniceum), angoumois grain moth
(Sitotroga cerealella), and copra beetle (Necrobia rufipes)

External Red flour beetle (Tribolium castaneum), saw-toothed beetle (Oryzaephilus

feeders surinamensis), and rice moth (Corcyra cephalonica)
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Table 8.2 Bioactive compounds in plants

Plant Bioactive compounds References

Cymbopogon citratus Citral Anggraeni et al. (2018)

Allium sativum Diallyl disulphide and diallyl Plata-Rueda et al. (2017)
sulphide

Carica papaya Oleic acid Ghosh et al. (2017)

Curcuma longa Curcumin Gul and Basheer (2016)

Acorus calamus o and PB-asarone Devi et al. (2014)

Cinnamomum Cinnamaldehyde Wong et al. (2014)

aromaticum

Andrographis Andrographolide Chao et al. (2009)

paniculata

Ocimum basilicum Estragole Lépez et al. (2008)

Azadirachta indica Azadirachtin Sadeghian and Mortazaienezhad

(2007)
Mentha spicata Carvone Tripathi et al. (2000)
Citrus sinensis d-limonene Karr and Coats (1988)

categorized into four major types namely carbohydrates and lipids, alkaloids and
other nitrogen containing metabolites, phenolic compounds, and terpenoids
(Table 8.4) (Baxter et al. 1998). The bioactive compounds present in the
phytochemicals are responsible for ovicidal, larvicidal, reduced progeny emergence,
toxicity, and repellency. Phytochemicals can be extracted using different methods
viz., solvent extraction, microwave assisted extraction, ultrasonic assisted extraction,
and can be utilized for pest management (Altemimi et al. 2017).

8.3 Extraction Methods

Pre-extraction and the extraction procedures are important in processing bioactive
constituents from plant materials. Traditional methods such as maceration and
Soxhlet extraction using solvents are commonly used. Solvent preparation, solvent
sample ratio, extraction procedures, and methods for extraction are to be considered
when separating the compound of interest.

8.3.1 Solvent Extraction Method

The basic step for initiating solvent extraction is drying of the plant either through
sun drying or hot air oven. This step is followed by pulverisation of the plant. It can
be performed using mechanical means like mortar and pestle or a mixer. Other
techniques that can be used are enzymatic degradation and chemical degradation.
This helps in homogenisation with the solvent by allowing the solvent to penetrate
the ruptured walls overnight at chilled condition (4 °C). Then it is filtered on the next
day using muslin cloth or filter paper followed by evaporation of the solvent using
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Table 8.3 Phytochemicals and their effectiveness against different stored pests

Description of botanical

Essential oil of Mentha
viridis

Essential oil of Rosmarinus
officinale

Essential oil of Pistacia
atlantica, P. kurdica, and
P. khinjuk

Essential oil of citronella

Extract of Xylopia
aethiopica

Rhizome of Drynaria
quercifolia

Catmint oil (Nepeta cataria)
and hydrogenated catmint oil
Acetone extract of Curcuma
longa and Allium sativum
Methanol extracts of Acorus
calamus and Illicium verum
fruit

Extracts of Clausena
excavate, C. lansium, and
C. emarginata

Essential oil of Amomum
villosum

Leaf extracts of Cleistanthus
collinus

Essential oil of Cyperus
rotundus

Essential oil of Cuminum
cyminum L.

Essential oil of Artemisia
dubia

Effectiveness

90% mortality against adults of
Callosobruchus maculates at 4%
concentration

85% mortality against larvae of Tribolium
castaneum at 3% concentration

Strong toxicity against adults of
Callosobruchus maculatus

90-100% repellency against adult of

T. castaneum

Effective toxicity in controlling

T. Castaneum with 95% ethanol extract but
no repellent activity

Effective pesticidal activity at 0.88—1.77 mg/
cm? using ethanol extract and repellency at
0.94 to 0.23 mg/em? against T castaneum
Effective repellency against 1. castaneum
and T. confusum adults

Effective reduction in emergence of larvae
for T. castaneum

100% mortality of Sitophilus oryzae and
Callosobruchus chinensis

Repellent activity against Liposcelis
bostrychophila (100%, 98%, and 96%,
respectively)

Contact toxicity against 7. castaneum and
Lasioderma serricorne

Toxicity and repellency against adults of
S. oryzae and T. castaneum

90-95% repellency against adults of

O. surinamensis, T. granarium

Mean repellency activity of 92.58 against
T. castaneum

Fumigant toxicity and repellency against

T. castaneum and Liposcelis bostrychophila
with LCs values of 49.54 and 0.74 mg/L

Note: Effectiveness of botanicals tested at laboratory scale only
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rotary evaporator at the respective boiling point of the solvent (Khare et al. 2018).
The solvent used for the extraction process of bioactive components from the
botanicals varies based on the solute which is going to be extracted. Commonly
used solvents are hexane, chloroform, ethyl acetate, acetone, methanol, and water
listed based on the polarity in ascending order (Hassan et al. 2018; Shrivastava and

Mishra 2019).
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Table 8.4 Classification of phytochemicals

S1. Types of

no. phytochemicals Sub categories

1 Carbohydrates Monosaccharide, disaccharide, oligosaccharide, polysaccharide,

and lipids sugar alcohol and cyclitols, organic acid, fatty acids, hydrocarbons,

acetylenes, thiophenes, and miscellaneous aliphatics

2 Alkaloids Amaryllidaceae, betalain, indole, isoquinoline, lycopodium,
pyrrolidine, piperidine, pyrrolizidine, quinolone, quinolizidine,
steroidal, tropane

3 Phenolics Anthocyanins, coumarins, flavonoids, lignans, phenols, quinones,
tannins, xanthones

4 Terpenoids Mono- and sesqui-terpenoids, diterpenoids, triterpenoid saponins,

steroid saponins, phytosterols, carotenoids

8.3.2 Microwave Assisted Extraction (MAE)

Microwave heating is a process by which high frequency alternating electric field
heats the dielectric material from inside to the outside (Mari¢ et al. 2018; Kaderides
et al. 2019). Microwave produces electromagnetic radiation consisting of alternating
electric and magnetic wave which travels perpendicular to one another. The fre-
quency of the electromagnetic radiation is 300 MHz to 300 GHz. The ISM bands
which are used commonly in microwave are 915 MHz and 2450 MHz. In MAE,
microwave radiation is supplied to the solution in short intervals. It causes heating of
the mixture through ionic conduction and dipolar rotation. It takes lesser time to heat
up the sample and provides uniformity. Exhaust fans and fumes detector should be
provided in the laboratory and domestic microwaves are not advisable for use.

8.3.3 Ultrasound Assisted Extraction (UAE)

Ultrasound refers to sound waves with frequencies between 20 and 100 kHz
(Chuyen et al. 2018; Wen et al. 2018). The use of ultrasound is often combined
with other treatments at moderate intensity. When ultrasonic wave hit the surface of
the solution it produces compression and shear waves. When both waves are
combined together it produces instantaneous change in temperature and pressure
that causes cavitations, shear disruption, weakening of cell wall, and free radical
production in the plant tissues. This process produces heat which is cooled by
placing the extraction container on an ice bath.

8.3.4 Supercritical Fluid Extraction (SFE)

Supercritical fluid extraction is efficient, environmentally friendly, powerful,
and faster. Hence it has been widely recognized as a green sample preparation
technique. In supercritical fluid, distinct liquid and gas phases do not exist
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(Sanchez-Camargo et al. 2019). It can effuse through solids like a gas and dissolve
materials like a liquid (CO,), ethylene, ethane, propylene, propane, and nitrous oxide
are some examples of substances which can exist in the supercritical state. Compar-
atively CO, is best suitable for use as it is non-flammable, odourless, easily dispos-
able, and available at low cost. Most importantly it has a lower critical point. SFE is a
technique of extracting the bioactive component from the sample using supercritical
fluid like CO, as the solvent (Yousefi et al. 2019). The Supercritical fluid used can
easily be removed by depressurizing the sample where the solvent will turn to a
gaseous state. Moreover, the risk of heating up the equipment is not there in case
of SFE.

8.3.5 Hydrodistillation

Hydrodistillation is a conventional method used to extract essential oils, flavonoids,
and other bioactive compounds from various plants. This method does not use
organic solvents for extraction. Water or stream is used for the extraction of
bioactive compounds from the plants. The basic steps involved in this extraction
method are cleaning and cutting of plants, followed by soaking in distilled water at
1:2.5 ratio. The contents are then transferred into a round bottom flask, which is
fitted to Clevenger apparatus and condenser. It is distilled for a period of six hours
(Solanki et al. 2019).

8.3.6 Soxhlet Extraction

Soxhlet extraction technique is usually employed for the removal of fats from the
sample using soxhlet apparatus (Azwanida 2015). The sample is kept in the thimble
and the thimble is attached to the soxhlet flask where the solvent is added and it is
connected to the condenser. When the apparatus is turned on, the solvent gets heated
where evaporation and condensation takes place. N-Hexane (69 °C), petroleum ether
(40-80 °C), and ethanol (78 °C) are the common solvents used in this technique.

8.3.7 Solid Phase Extraction (SPE)

Solid phase extraction is a sensitive method used for concentrating and purifying
analytes from a solution by sorption onto a disposable solid phase (Plotka-Wasylka
et al. 2015; Andrade-Eiroa et al. 2016). It consists of two phases: a mobile phase and
a stationary phase. The mobile phase carries the molecules to be extracted. In normal
phase SPE, the stationary phase absorbs the non-polar molecules while the polar
molecules get eluded later. In reverse phase SPE, the stationary phase absorbs the
polar molecules eluding the non-polar molecules at the end.



8 Phytochemicals for the Management of Stored Product Insects 177

8.4  Testing Methods to Determine the Efficiency
of Phytochemicals against Stored Pests

8.4.1 Area Preference Test

Area preference test is the most commonly used test against stored pests which was
first validated by McDonald et al. (1970). Whatman filter paper can be used to
perform area preference test. It should be cut into halves and treated separately with
the extract and the solvent, respectively. After evaporating the solvents completely,
the halves of the filter paper were reattached using adhesive tape and placed inside a
petri dish leaving small gaps in between. The stored product insects, about 10 or
20 adults of same age were released in the middle of each petri plate and placed in a
dark environment. The number of insects that moved to the treated and
untreated sides of the filter paper were counted and noted down. The repellency
percentage (%) was then calculated using the equation given below (Licciardello
et al. 2013),

c-T
where, R is the repellency percentage, C is the no. of insects available on the control
half of the filter paper, T is the no. of insects available on the treated half of the filter

paper.

8.4.2 Feeding Preference Test

The feeding preference of insect differs and each plant possesses various
phytochemicals (Vet et al. 1983). The odour secreted by the host attracts the insects.
An olfactometer is a device used for testing the feeding preference of stored product
insects. Two arm and four arm olfactometer are available. The behaviour of insect
movement differs for each type of odour secreted by the host. The insects should be
released in the middle of the treatment chamber and the behaviour of the insects can
be monitored. It has an insect drop point and a vacuum point. Air pump unit and
vacuum unit are provided in a single controlling chamber. One end of silicon tube is
connected to the middle-bottom of the acrylic chamber and the other end of the tube
is attached to the vacuum connector. The remaining three silicon tubes were used to
connect between the three air ways provided by the controlling unit to the three-ways
of the acrylic chamber leaving one end of the treatment chamber as control (Defagd
et al. 2016; Mangang et al. 2019).
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8.5  Analysis of Phytochemicals

Purification of the active compound is the key step in analysing the phytochemicals
(Obouayeba et al. 2015; Thakor et al. 2016). Column chromatography and thin layer
chromatography are the most widely used purification technique. Chromatography is
used to separate the active components based on polarity of stationary phases like
silica, alumina, cellulose, and polyamide (Coskun 2016). In both chromatography
techniques, the analytes are separated based on the amount of affinity between two
phases. The mobile phase carries the solution to be purified. After purifying the
bioactive compounds, it is subjected to structural clarification using spectroscopic
techniques viz., mass spectroscopy, infrared spectroscopy, UV visible spectroscopy,
and nuclear magnetic resonance (Dias et al. 2016).

8.5.1 IR Spectroscopy

Infrared light is an electromagnetic radiation which has a wavelength longer than
visible light (0.7-1000 pm). Usually tungsten bulbs were used to produce infrared
light and analytical applications are confined to the middle infrared range (3-8 pm),
as the absorption of organic molecules is high in this region (Schulz and Baranska
2007; Baker et al. 2014). The light source is focused using a concave mirror to the
sample area and the amount of light which pass through the sample is detected using
thermocouple, pyroelectric, or photo-conducting detectors. Frequencies of infrared
light absorbed are detected by the detector and plotted on a chart (frequency on X-
axis and intensity of absorption on Y-axis).

8.5.2 UV Visible Spectroscopy

UV visible spectrophotometer measures the absorbance based on the transmittance
by the light source (UV range: 185—400 nm, visible range: 400-800 nm) when it
passed through a sample. It is calculated using Beer Lambert’s law which states that
absorbance is equal to the multiplication of absorbance constant, path length, and
sample concentration (Priya et al. 2012). It uses deuterium arc lamp (190-420 nm),
tungsten lamp (350-2500 nm), or xenon lamp (180-900 nm) as light source and it is
focused to a monochromator using mirror or lens. The monochromatic light passes
through the sample in the absorption cell (quartz, fused silica, or glass) and gets
detected using photodiode or photo multiplier tube detector (Banu and Cathrine
2015; Altemimi et al. 2017).
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8.6 Insect Repellent Packaging

The critical step towards maintenance of safer food with increased shelf life is
packaging. However, the problem of insect infestation had been troubling the food
retailers and wholesalers. Infestation may occur during production, storage, or
transportation. In recent years, the research on insect repellent packaging is growing.
The efficacy of packaging materials incorporated with essential oils such as citro-
nella, rosemary, and oregano was studied (Licciardello et al. 2013). Microencapsu-
lation technique was used to encapsulate cinnamon oil in the packaging material
(Jo et al. 2015).

8.7  Constraints of Using Phytochemicals in Pest Management

The use of chemicals during storage is a regular practice used to keep the produce
free from insect infestation. Several research were conducted on phytochemicals to
use them as an alternative to chemicals. It was proven as an effective method at
laboratory scale. Yet, the use of phytochemicals at commercial scale is required.
Many problems were encountered during use of phytochemicals. Quantity of phyto-
chemical required, their persistence in the environment, and effectiveness against
various stages of pests are to be considered. Phytochemical degrades more rapidly in
the environment than the chemicals and are slow in action. Hence, it is not feasible to
use it as a sole method.

8.8 Conclusion

There are 50,000 medicinal plants and botanicals available across the world. Yaseen
et al. (2019) reported that 59.37% out of 30,000 plants were documented to have
medicinal use present in the Royal botanical garden, Kew. Research and concerted
efforts are required to commercialise the use of phytochemicals as a tool in the
integrated pest management of stored product insects. Micro- and nano-
encapsulation techniques can be used to encapsulate the phytochemicals and to
improve its release profile. Use of phytochemicals along with other biological
method aid in the safety of human health, well-being, and also sustainability of
ecosystem.
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Abstract

Indigenous farming methods as a part of the indigenous knowledge system (IKS)
are complex, environmentally friendly, sustainable, cost-effective, culture-spe-
cific and play a vital role in the cultivation of vegetables and livestock among
indigenous communities. The use of IKS has been beneficial to those practising
indigenous farming methods; however, its benefits are highly dependent on the
agricultural models that are utilised. There is an association between the imple-
mentation of IKS in agriculture and the natural form of the products produced.
The link of the two concepts of the method of farming and the form of products
enables the increase of food production, with a positive impact on food security in
communities. The focus of this study was to assess the impact that the usage of
IKS has on sustainable agriculture and to establish how this impact also affects
food security in the selected communities of the City of Tshwane Metropolitan.
The study was conducted in the geographical area of the City of Tshwane
Metropolitan, but in different localised geographical areas. The objectives of
the study are: (1) To describe and identify challenges and issues faced in
sustainable agriculture in selected rural communities in the City of Tshwane
Metropolitan; (2) To identify best practices in using IKS ensuring food security
through sustainable agriculture in selected rural communities in the City of
Tshwane Metropolitan; and (3) To identify ways in which indigenous knowledge
and its practices and innovations might enhance livelihoods in a manner that is
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ecologically sustainable, economically viable, and socially acceptable. The col-
lection of data was done through semi-structured face-to-face interviews utilising
a questionnaire as a guide. The interviews were conducted with farm owners and
workers in different geographical areas of the City of Tshwane Metropolitan. The
observation method assisted in reducing some of the challenges in this research,
for example, the language barrier (with the majority of the participants, the
interview had to be conducted in the local language of either Sepedi, Setswana,
Zulu, or the local dialect informally known as “Pretoria taal”). Purposive sam-
pling was used and the sample researched was from a small holder farmer
database provided by the Agricultural Research Council-Vegetables and Orna-
mental Plants (ARC-VOP). The findings of the study can be a base for a more
in-depth focus on the knowledge and the best practices that exist in the selected
communities, which could reduce food insecurity and encourage the growth of
agriculture in these communities and households. Although the data was col-
lected in one municipality area, the location of each participant was in a different
geographical area that allowed a much broader knowledge base and practices in
the field of IKS and sustainable agriculture. The results indicated that although
the participants appreciated the benefits of IKS, as it is associated with natural
farming of produce, the benefits of modern technology could also be utilised
where the combination of a variety of knowledge systems could enable the
farmers to get more yield on their crops. The commercially focused farmers
indicated that they utilised both methods in their agricultural practices to enhance
production and meet the current food demand. The usage of IKS and other
traditional agricultural practices seemed to be more prevalent in community-
based farming rather than those in commercial farming. One of the underlined
benefits of IKS sustainable farming, although IKS is only recently being
documented, is that it gives an opportunity for communities to come together
and share stories of success or failures and lessons learned. Indigenous knowl-
edge is normally shared in the local language, which makes it easy to understand.
The combination of modern technology and traditional farming techniques
enables effective and faster farming activity using less energy. Hence, one of
the recommendations is an in-depth study of how to utilise the positive and
functional attributes of IKS to modern farming and to commercial agricultural
practices. This can allow the enhancement of both schools of thoughts and yield
positive results. For example, in the interview session with the representative and
farming expert from Agri-Skills, the researcher got the opportunity to see farming
tools designed by Agri-Skills, which incorporate traditional farming methods
with the latest technology to enhance the farming process. These farming tools
are mainly used in the rural farming areas, which have limited resources. The
study thus recommends that the sharing of IKS and incorporating it with technol-
ogy and modern agriculture can create a new dynamic, agricultural practice that
will benefit commercial farmers, community or primary farmers, and households
with functional gardens.
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9.1 Introduction

The presence of indigenous knowledge systems (IKS) in communities that practise
such systems cannot be ignored as people of such communities have always gained
knowledge through experiences and practices they have engaged in for the longest of
time. The differentiating factor of these knowledge systems is that most of them are
not formally documented and their presence is more prevalent in storytelling and
practices. Human beings have been producing knowledge and strategies enabling
them to survive in a balanced relationship with their natural and social environment
over many centuries (de Guchteneire et al. 1999). Indigenous knowledge (IK) is
mainly tacit, unique, non-systematic, derived from local experiments, innovations,
creativity, skills, and experiences and embedded in the minds and activities of
communities with long histories of close interaction with the natural environment
across cultures and geographical spaces (Lwonga et al. 2011). These statements
briefly paint a picture of the characteristics of the type of knowledge system that is
present in communities; however, the majority of this type of knowledge system is
not documented formally, which influenced and encouraged the interest in the topic
and study.

The rapid development globally due to globalisation and urbanisation has created
serious challenges with regard to the usage and distribution of natural resources that
are currently at our disposal. These problems were identified in a United Nations
Development Programme (UNDP) report as cited by Gupta (2011): challenges of
global warming; rapid loss of biodiversity; crisis-prone financial markets; growing
international inequality; and the emergence of new drug-resistant disease strains and
genetic engineering. As a result of these challenges, communities frequently experi-
ence the need to go back to the knowledge repository, to access knowledge and
experiences that have been passed on from one generation to the next and to apply
these in their day-to-day practices and activities. Due to IKS being part of the way
communities engage and perform tasks, the usage and impact of it are not always
conscious and documented, for example, the knowledge of when to plant which crop
without referring to any documented material, natural ingredients to use for medici-
nal purposes, and techniques to preserve food using the sun, like dried “morogo”.
However, urbanisation and integration with other communities are increasing the
possibility of essential IKS being lost and not fully utilised.

The contributing factor to the reduction of the use of IK in communities can be
attributed to the shift from the extended family unit to nuclear families (smaller
family unit) and the latter engaging less with extended families. This results in the
weakening of links with the grandparent generation, who are the repository of much
knowledge and the second filial generation (the second and third generations in
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communities), which is alienated and removed from IKS due to the power of
modernity and urbanisation (Eyong 2007). Knowledge erosion is a threat, as it
becomes not only difficult to conserve what we do not know, but also the rapid
degrading of natural resources. It, therefore, becomes essential and necessary that a
method is established to “go back in time” and establish solutions based on the past
to the current challenges, in order to ensure a good future and sustainability of the
resources that are currently utilised for day-to-day survival (Eyong 2007).

Briggs (2013) identifies the following challenges that are experienced in the
usage of IK systems in sustainable development:

* Indigenous knowledge is locally and geographically specific
* The integration of IKS with formal science

These challenges were investigated further in this study as it seeks to establish
and find a workable solution to them. Due to IKS being of a historic nature it may be
beneficial to find a manner in which it could be integrated into the current agricul-
tural practices and to identify best practices in which IKS could be elevated from
local to regional and, perhaps, to national practices. The manner in which natural
resources are currently consumed is starting to become a major concern globally, as
the demand for resources is increasingly higher than the capacity of production.
Using IK as an alternative, an additional or combined knowledge system is able to
yield benefits for sustainable agriculture and create alternatives and options in
ensuring the sustainability of resources and food security in communities. Environ-
mental changes that are currently being experienced may be best countered by
diversified indigenous survival strategies and adaptive responses developed at a
household level and at community levels (Eyong 2007).

Aluma (2004) states that “discussions on agriculture and food security (or rural
livelihoods as a whole) reveal that the primary drivers for local change are a
deteriorating natural resource base (loss of natural habitat, deforestation, soil degra-
dation), declining agriculture productivity, loss of indigenous cultivation practices,
and conflicts over access to and the utilisation of natural resources”. The usage of
IKS also enables smaller farmers to engage in sustainable agricultural practices and
be instrumental in the increase of food security in local communities and in the
country.

This study investigated the key conceptual elements of IKS, namely sustainable
agriculture and food security by understanding the impact thereof and the relation-
ship they have on each other. The impact of IKS on sustainable development may be
deemed beneficial or detrimental in addressing the current sustainability issues that
most rural communities are experiencing, especially in the area of encouraging and
implementing sustainable agriculture. In order to achieve a beneficial impact,
solutions need to be identified to deal with establishing the importance and relevance
of IKS and to introduce an effective method to integrate IKS in modern living,
preserve the knowledge and experiences in order to use it effectively in food
security, as well as to develop and apply the principles of sustainable agriculture.
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Understanding and appreciation of IKS are essential for promoting sustainable
agriculture development. IKS provides a cultural basis for non-formal agricultural
programmes that is absent in technology transfer approaches (William and Muchena,
1991). The effective application of IKS in sustainable agriculture also enables a
variety of biodiversity in the land. This growth in biodiversity is also based on
sustainable land management. Sustainable land management, which is a knowledge-
based procedure, helps integrate land, water, biodiversity, and environmental man-
agement to meet the rising food and fibre demands while sustaining the ecosystem
services and livelihoods (World Bank 2008). The proper management of land and its
resources will also be essential in ensuring that communities are able to meet the
requirements of the growing population.

In the management of land for sustainability, it is essential to ensure that the land
is properly utilised in order to enable full satisfaction of current food and land
requirements and also for the future generation. Sustainable land management
success also involves the inclusion of not only the western knowledge system but
also the integration of all systems that are available in the community. In sustainable
land management (SLM), the World Bank (2008) states that in order to optimise the
usage of resources, the following activities are involved:

e Preserving and enhancing the productive capabilities of cropland, forest, and
grazing land;

e Sustaining productive forest areas and potentially commercial and
non-commercial forest reserves;

* Maintaining the integrity of watersheds, for water supply and hydropower gener-
ation needs and water conservation zone; and

¢ Maintaining the ability of aquifers to serve the needs of farm and other productive
activities.

The management of land in accordance with the above activities ensures that
biodiversity in the land increases. The usage of IKS in this regard ensures that there
is a continuous and effective sustainable land management and that communities
focus on IKS-knowledge as integration with other systems (World Bank 2008).
There is a significant contribution that IKS has on global biodiversity and conserva-
tion initiatives in communities.

Nakashima and Roué (2002) state that most regions that are biodiversity-rich are
normally areas that still apply IKS in the sense that the persistence of traditional
ways of life has gone hand-in-hand with the maintenance of ecological systems and
the conservation and even enhancement of biodiversity. In conjunction with ensur-
ing the future availability of resources and the dealing with current usage, it is
beneficial to find solutions in repairing the damaged resources and restore them
and mitigate the adverse effects of earlier misuse (Nakashima and Roué 2002). To
mitigate the misuse of resources and to make decisions about what needs to be done
can be achieved by implementing a method of assessing the environment
utilising IKS.

The problem that was investigated was whether selected (rural) agricultural
communities in the City of Tshwane Metropolitan understand the impact of IKS in
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their agricultural practices. Furthermore, how the knowledge was acquired and what
initiatives these communities were engaged in, in order to ensure that the knowledge
of their agricultural practices is preserved and shared within the communities. The
study also further probed how the usage of IKS has affected sustainable agriculture
by ensuring the preservation of natural resources to ensure the availability of such
resources in the future (the beneficial effect).

9.2  Aim and Objectives

The aim of the study was to decipher the impact of indigenous knowledge system on
sustainable agriculture in the selected communities of the City of Tshwane Metro-
politan, Gauteng Province in South Africa. The specific objectives of this research
have been identified as follows:

* To contextualise the impact of IKS by defining and exploring related concepts;

* To define and systematically analyse the impact of IKS on sustainable agriculture;

* To describe and identify the challenges and issues faced in sustainable agriculture
in the selected rural communities in the City of Tshwane Municipality;

» To identify best practices in the utilisation of IKS to ensure food security through
sustainable agriculture in selected rural communities in the City of Tshwane
Municipality; and

e To identify ways in which indigenous knowledge and its practices and
innovations might enhance livelihood in a manner that is ecologically sustainable,
economically viable, and socially acceptable.

9.3 Research Methodology

Research is systematic, that is, it is the adoption of a coherent strategy or a set of
principles to study an issue of interest (Chilisa 2012). This process includes the
gathering of data in order to understand or explore the knowledge base in a particular
area or topic. Such a coherent strategy usually commences with the identification of
an area of interest to study; a review of the literature to develop further understanding
of the issue to be investigated; and the choice of a research design or strategy that
will inform the way the sampling of respondents is performed, the instruments for
data collection, the analysis, interpretation, and reporting of the findings (Chilisa
2012).

9.3.1 Research Design

This study was based on IKS and how the identified communities in the City of
Tshwane Metropolitan interacted with the environment, with specific reference to
sustainable agriculture. In this research an approach to how IKS needs to be
investigated is defined which informed the decision to follow the qualitative research
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method. However, the quantitative research method was needed in order to give a
broader understanding of the community and the decision to utilise IKS in sustain-
able agriculture. It was these two views that informed the choice to use a mixed-
method research approach. A mixed-method research approach is regarded as a third
major research approach or research paradigm, along with qualitative and quantita-
tive research (Johnson et al. 2007). In the article “Toward a Definition of Mixed
Methods Research” Johnson et al. (2007) define mixed-method research as the class
of research where the researcher mixes or combines quantitative and qualitative
research techniques, methods, approaches, concepts, or language into a single study
or set of related studies. The utilisation of the mixed method guaranteed a more real
reflection and application of the considered variables in practice.

The study focused on exploring and highlighting IKS and sustainable develop-
ment within the context of sustainable agriculture. The research procedure selected
for this study incorporated a literature review and an empirical study that employed
semi-structured interviews and observations in selected communities of the City of
Tshwane Metropolitan in the Gauteng Province. The observation method enabled
the gathering of data from the communities that led to a comparison of the IKS used
and the determination of the best practice in those systems. Further, literature review
was undertaken to establish the depth of completed research and to collate the
research findings on the topic. The literature was utilised as a method to establish
a relationship between IKS and sustainable development focusing on sustainable
agriculture.

9.3.2 Research Setting

The research was conducted in the geographical area of the City of Tshwane
Metropolitan in the communities of Bronkhorstspruit, Centurion, Cullinan,
Winterveld, Soshanguve, and Hammanskraal in the Gauteng Province. The
communities of the City of Tshwane Metropolitan have been selected as those
who utilise indigenous knowledge within their agricultural practices. The research
undertook to understand the impact of IKS on sustainable agriculture in these
communities. The research enabled the establishment of similarities and differences
in the manner in which indigenous knowledge within sustainable agriculture is
exploited. The impact of indigenous knowledge and how the participants benefited
from applying it were analysed, and its importance and benefit to the community
were highlighted.

9.3.3 Sampling

“You cannot study everyone, everywhere doing everything” (Punch 2003).
Although the study was being limited to the mentioned communities in one munici-
pality in the Gauteng Province, it would have been challenging and arduous for all
the people within the community to be contacted and interviewed. Therefore, a
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sample was used. Sampling is a technique employed to select a small group with a
view to determining the characteristics of a large group (Brynard and Hanekom
2006). The method of sampling that was applied was one that focused on community
members that constantly use IKS to sustain themselves and use it in sustainable
agriculture. The sampling for the research was based on a list of agricultural
practitioners provided by the Agriculture Research Council-Vegetables and Orna-
mental Plants (ARC-VOP) and from informal interviews with participants of
Agrifest, the conference at the Mexico Embassy, and the session at the Agri-Skills
institution.

Punch (2003) identified a number of non-probability sampling techniques, and in
this study, the researchers used the combination of two non-probability sampling
methods namely; convenience sampling and purposive sampling. Wysocki (2008)
defines the two sampling techniques as follows:

* Convenience sampling is the use of subjects who are available, but not necessar-
ily representative of a population and

e Purposive sampling is a method in which each element is selected by the
researcher for a specific purpose.

These methods were selected to enable the collection of data from the above-
mentioned communities engaging in the use of IKS in sustainable agriculture, so as
to be more focused on and specific to the field. With the assistance of the particulars
entered into the database provided by the Agricultural Research Council-Vegetable
and Ornamental Plants (ARC-VOP), the possible participants were contacted tele-
phonically, and the purpose of the study and method of data collection were
explained. It was during this time that permission and availability of the participants
were requested and once granted, appointments were organised based on the avail-
ability of the participants. The focus and choice of the participants were based on the
work that they have done in the field of indigenous knowledge and their understand-
ing and practice of sustainable agricultural methods.

94 Data Collection

Data collection was conducted by means of semi-structured face-to-face interviews
which were conducted at 14 farms in the City of Tshwane Metropolitan with farmers
and IKS practitioners in the selected communities. Babbie and Mouton (2001)
highlight and emphasise the following general rules for face-to-face interviews,
which were considered at the time when the interviews were conducted. These
rules cover the following aspects and were followed by the researcher:

 characteristics of the interviewer (language, age, ethnicity);

 familiarity with questions (know the field that is being researched);

 recording responses exactly (do not make own assumptions/interpretations about
the answers rendered), and
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* probing for responses (ensure that the interviewee understands exactly what is
asked and that the response is applicable to what was asked).

As the research followed a mixed-method approach, both quantitative and quali-
tative data collection methods were utilised.

9.4.1 Quantitative Data Collection

In the study, a semi-structured questionnaire was utilised to gather data. This
questionnaire was utilised in order to give a flow of the required information and
some element of structure in the gathering of data. The questionnaire was instru-
mental in allowing and giving the researcher an opportunity to probe more and have
a systematic flow of information. However, it is essential to state that the quantitative
data was mainly focused on the biographic data. Quantitative data collection focuses
on data that can be measured, it is effective at answering the “what” or “how” of a
given question, it is concerned with collecting and analysing data that is structured
and can be represented numerically. The statistical information was utilised to plot
different biographical attributes that could influence the usage of IKS in sustainable
agriculture. The quantitative data forms a good foundation for understanding and
better probing the qualitative data.

9.4.2 Qualitative Data Collection

Qualitative research is the development of concepts which help us to understand
social phenomena in natural (rather than experimental) settings, giving due emphasis
to the meanings, experiences, and views of the participants (Pope and Mays 1995).
Qualitative research is aimed at understanding and solving social problems and
phenomena. It is aimed at answering the question of “why” and “how”. In the
study, the focus was on understanding why communities use IKS, how they use
IKS in sustainable agriculture and the impact, and benefit that the choice of the
farming process has on them and the community. Qualitative research furthermore
aims to help researchers to understand the world in which they live and why things
are the way they are; it is concerned with the social aspects of our world and seeks to
answer questions about:

¢ Why people behave the way they do?

* How opinions and attitudes are formed?

* How are people affected by the events that go on around them?
* How and why cultures have developed in the way they have?

These questions were aligned in the process of collecting data as the researcher
needed to understand why the choice of a particular agricultural process, the view of
the participants on the subject of IKS, and how the agricultural choice impacts the



192 J. Seko et al.

community and their businesses. These factors and explorative questions were
incorporated into the research questions and form the basis for achieving an under-
standing of the research objectives. For the purposes of this research, semi-structured
interviews were conducted utilising the questionnaire as a basis and guideline in the
data collection. The researcher spent time with the selected communities to observe
how they use