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Abstract. Pneumonia is one of the most chronic diseases, and therefore, its
timely diagnosis is of utmost importance. Traditionally, clinical decisions have
been considered as a gold standard for diagnosis, but it is not a practical option
in all scenarios. Therefore, several methods have been explored to make the
process of diagnosis faster, efficient and as accurate as clinical decisions. In this
paper, we have described and proposed a Convolutional Neural Network
(CNN) based deep learning technique for the classification of chest X-ray
images for the diagnosis of Pneumonia. The proposed model is trained on 4099
images and tested on 1757 images resulting in an accuracy of 96.18%. The
evaluation and training are conducted on ‘Labeled Optical Coherence Tomog-
raphy (OCT) and Chest X-Ray Images for Classification’ dataset which is one of
the largest labeled datasets which is publicly available. Also, a comparison of
the proposed model with various other popular models is discussed. The results
indicate that our model despite having simpler architecture and without any pre-
training outperforms many of the popular models on several different perfor-
mance parameters.
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1 Introduction

Chest diseases are one of the major health problems in particular pneumonia is
extremely dangerous for people already suffering from other diseases, infants, and older
adults. According to WHO evaluation, 450 million cases of pneumonia are registered
every year that is 7% of the total world population. Moreover, nearly 4 million people
die because of it. This ratio is even higher for infants and older adults [1]. That is why
Pneumonia requires proper diagnosis at the initial stages for recovery treatment.

Traditionally, diagnosis of pneumonia has been done by medical specialists using
chest X-rays and sophisticated radiological investigation on them. However, this
approach, for appropriate analysis, would require radiologists. For instance, the labo-
ratory diagnosis of these ailments involves the detection of pathogens such as a virus in
the upper and lower respiratory by the use of microscopy techniques [1]. World Health
Organization (WHO) has estimated that approximately only one-third of the world

© Springer Nature Singapore Pte Ltd. 2020
S. Gupta and J. N. Sarvaiya (Eds.): ET2ECN 2020, CCIS 1214, pp. 254–266, 2020.
https://doi.org/10.1007/978-981-15-7219-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7219-7_22&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7219-7_22&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-7219-7_22&amp;domain=pdf
https://doi.org/10.1007/978-981-15-7219-7_22


population has access to a radiologist for the diagnosis of their disease. Therefore, to
bring about a solution to these challenges, various computerized systems have been
developed to analyze these X-ray images for medical diagnosis [2].

The computerized technique has been adopted because they give more precise
results and are easily accessible for diagnosis. The image processing technique has a
powerful ability to detect various objects together, extract deep features and classifying
them [3] and therefore it is popularly the initial step achieved by convolutional layers of
CNN. Traditionally in the interpretation of pneumonia, a radiologist looks for a white
spot in the lung, which represents infection. This step of observing patterns, similarities
and dissimilarities is achieved by the kernels of CNN and is a crucial step in classi-
fication problems.

The major problem in the medical domain is the lack of availability of large image
datasets. Particularly for pneumonia detection, the task is very tedious because of the
multiple and diverse nature of the disease. This leads to the development of transfer-
learning based pre-trained models for medical imaging-based classification problems.
The Deep Convolutional Neural Network shows the potential for highly variable tasks
across many object categories [4] and therefore selecting appropriate hyperparameters
is of utmost importance. However, in this paper, we have outperformed transfer-
learning based models using a simpler architecture purely by precisely tuning hyper-
parameters of the model.

2 Literature Review

In this work [5], General Regression Neural Network proposed for the prediction of
active pulmonary TB. Input parameters are divided into three groups: demographic
variables, constitutional symptoms, and radiographic findings. The model consists of
three layers: input, hidden, and output layer, where the hidden layer is used to extract
higher-order features, and the output layer gives the probability of active pulmonary
TB. This model achieved the specificity of 69% on the validation dataset.

This paper [6], focuses on chest disease diagnosis using several neural network
architectures. The analysis was done for six different chest diseases, out of which the
best accuracy was obtained for Pneumonia diagnosis using a Multi-Layer NN (MLNN)
model. The model achieves an accuracy of 91.67% for a single hidden layer and
90.00% for two hidden layers.

Because of inefficiency in working with high-dimensional image datasets, various
deep learning models have been developed for the diagnosis of various diseases.
CheXNet [7] uses a 121-layer pre-trained CNN and was extended to detect 14 diseases
from ChestX-ray14 [8] dataset. The accuracy achieved for the binary classification
problem of pneumonia detection is 76.80%.

Another deep learning model called ChetNet [9] was developed for the diagnosis of
14 thorax diseases. The proposed model comprises of classification and attention
branch, where the classification branch implements feature extraction and attention
branch calculates the correlation between class label and location of abnormalities. The
final diagnosis is achieved by averaging the output of both branches. This proposed
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method achieves an accuracy for pneumonia detection is 69.75%, while the average
per-class accuracy encountering all the thorax diseases is 78.10%.

The availability of pre-trained models led to the development of various transfer-
learning based models for diagnosis of Pneumonia. The paper [10] describes a gen-
eralized model primarily capable of performing diagnosis through OCT image analysis.
It was further extended to diagnose pneumonia based on chest X-ray images. The
model was pre-trained on the ImageNet dataset and then was fine-tuned for the desired
application. This model achieved an accuracy of 92.8% with a sensitivity of 93.2% and
a specificity of 90.1%.

Recently, various CNN based models have been developed for the detection of
pneumonia from a chest X-ray image. The work [11] proposes a model consisting of
feature extraction and classification. The feature extractor consists of four convolution
layers, and the classifier is a simple feed-forward network. The best performing vali-
dation accuracy by this model is 93.73%.

Another CNN based binary classifier [12] uses Chest X-Ray Images for diagnosis
of Pneumonia. It uses k-fold cross-validation for evaluation of the performance of the
model, obtaining an average accuracy of 95.30%.

Before this paper, a lot of work has been done in the field of diagnosis of Pneu-
monia by using chest X-ray images. The ANN-based architectures [5, 6] fail to produce
high accuracy results because of the lack of ANNs to deal with high-dimensional
features from images for better generalizability. Later, various CNN based models [11,
12] have been developed to tackle the challenges of overfitting due to the huge number
of training parameters resulting in problems of overfitting. Moreover, even some
transfer-learning based models [10] have been utilized due to the availability of pre-
trained models. In this paper, we propose a 9-layer CNN based model that is trained on
the same dataset as several of the models, as mentioned earlier, achieving a 96.18%
validation accuracy with minimum trainable parameters.

3 Methodology

3.1 Proposed Model

Figure 1 shows the proposed CNN architecture for the two-class problem of pneu-
monia diagnosis. The proposed model consists of nine layers out of which there are two
2D-Convolutional layers, two Pooling layers, one layer each for Batch Normalization,
Dropout, and Flatten and then finally two Dense (Fully Connected) layers leading to a
SoftMax output.

3.2 Input Preprocessing

The first step involves resizing the input image to a 64 � 64 � 3-dimensional matrix.
Then, the 8-bit representation of each image is normalized to a scale of 0 to 1 by
dividing each pixel value by 255.
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For an input image ‘X’, each pixel at position (i, j), the zero-centered standard-
ization is expressed in terms of the mean ‘�X’ and standard deviation ‘rX’ as shown in
the Eq. (1)

Xstand i; jð Þ ¼ X i; jð Þ � �X
rX

ð1Þ

These input scaling methods remove the biases that might have been introduced
due to abnormal deformities in the X-ray images.

3.3 Description of the Architecture

As shown in Fig. 1, the first convolutional layer ‘C1’ comprises of 64 kernels, each of
size 3 � 3. Moreover, the kernel is initialized by the ‘glorot uniform’ distribution
function, which unlike random initialization, helps in achieving the global minimum of
the loss function faster with relatively less training.

The initial weight values ‘W’ for the jth layer is dependent on the number of
weights in jth layer ‘nj’ as well as the next layer ‘nj+1’ according to the Uniform
Distribution function ‘U’ as shown in Eq. (2).

W�U �
ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nj þ njþ 1

p ; þ
ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nj þ njþ 1

p
� �

ð2Þ

The layer immediately after ‘C1’ is the first 2D-pooling layer ‘P1’ implementing
maxpool with a pool size of 2 � 2. Including ‘P1’ helps in the reduction of dimension
as well as the complexity of the network and also avoids overfitting, thereby making
the model generalized.

Fig. 1. Proposed CNN architecture
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Following the ‘P1’ layer is the Batch Normalization layer, which normalizes the
entire batch of inputs from the previous layer in a slightly modified way, as described in
Eq. (1) for the input image. This layer helps in speeding up convergence and accel-
erating the training by reducing the internal covariate shift [13]. Moreover, a dropout
layer is also added, which is set to drop 10% of the connection to the next layer to
prevent overfitting [14].

The next layers consisting of a convolutional layer ‘C2’ with 32 kernels each of
size 3 � 3, and following it is the pooling layer ‘P2’. The output of ‘P2’ is flattened and
then fed as input to the fully connected neural network layers and finally classifying the
image into two classes: Normal and Pneumonia. The first Fully Connected layer ‘FC1’
has 7200 input neurons and 100 output neurons, each a ‘ReLu’ activation.

‘ReLu’ stands for the Rectified Linear Unit and is also used as activation for the
convolutional layers ‘C1’ and ‘C2’. The output of ReLu ‘U’ can be defined in terms of
the input ‘x’ as described in the Eq. (3)

U xð Þ ¼ x; x[ 0
0; x� 0

�
ð3Þ

The next Fully Connected layer ‘FC2’ has 100 inputs from ‘FC1’ and 2 output, one
for each class having a ‘SoftMax’ activation. The output of SoftMax describes the
probability ‘U’ for each class ‘j’ in terms of input ‘x’ as described in the Eq. (4)
(Table 1).

U xj
� � ¼ exjP2

i¼1 e
xi

ð4Þ

3.4 Dataset

The dataset [15] used for training, testing, and validating the model contains a total of
5863 chest X-ray Images (JPEG file format) belonging to two categories: Normal and

Table 1. Description of the proposed CNN architecture comprising of a total of 740,714
trainable parameters and 128 non-trainable parameters

Layer (Type) Output shape No. of parameters

conv2d_1 (Conv2D) (None, 62, 62, 64) 1792
max_pooling2d_1 (MaxPooling2) (None, 31, 31, 64) 0
batch_normalization_1 (Batch Normalization) (None, 31, 31, 64) 256
dropout_1 (Dropout) (None, 31, 31, 64) 0
conv2d_2 (Conv2D) (None, 29, 29, 32) 18464
max_pooling2d_2 (MaxPooling2) (None, 15, 15, 32) 0
flatten_1 (Flatten) (None, 7200) 0
dense_1 (Dense) (None, 100) 720000
dense_2 (Dense) (None, 2) 202
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Pneumonia. Pneumonia class further has two subclasses of Pneumonia, which are
Bacterial and Viral.

The labeling of these chest X-ray radiographs was carried out by two expert
physicians, followed by a third expert to avoid discrepancies due to grading errors.
Some of the sample images of chest X-ray from the dataset [15] have been shown in
Fig. 2 and Fig. 3.

3.5 Computational Logistics

All the simulation was performed on ‘Spyder IDE’ with all codebase written in
‘Python3’. The primary deep learning frameworks that have been used are ‘Keras
2.2.4’ and ‘Tensorflow 1.13.1’ to build and train the convolutional neural network
model. All the experiments were run on a standard PC with Nvidia GeForce 1050
Ti GPU card of 4 GB (DDR5) with a DDR4 RAM of 16 GB.

(a)           (b)         (c)

Fig. 2. (a), (b) and (c): Sample images without pneumonia (Normal)

(a)           (b)         (c)

Fig. 3. (a), (b) and (c): Sample images with pneumonia
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3.6 Training and Testing

The entire database [15] on which the model training, as well as model evaluation, is
performed consists of 1583 Normal Images and 4273 Pneumonia Images. Out of these,
the model is trained on 70% of the dataset, and the remaining 30% is reserved for
testing and validation.

The proposed CNN based architecture consists of several parameters (or weights)
distributed throughout the layers which are optimized and used for constructing the
classification model. Out of all the layers shown in Fig. 1, the layer ‘C1’, Batch
Normalization, ‘C2’, ‘FC1’, and ‘FC2’ contribute to the weight parameters. Out of all
these layers, ‘C2’ contributes the most with 720,000 parameters. The entire proposed
architecture has a total of 7,40,714 parameters, out of which 7,40,586 are trainable, and
128 are non-trainable parameters.

The training process uses categorical cross-entropy as the loss function. The reason
for using this loss function is its robustness against noisy labels [16].

The categorical cross-entropy loss ‘H’ can be calculated based on the predicted
categorical output by the model ‘Q’ and the ground-truth categorical labels ‘P’ for ‘N’
classes as shown in the Eq. (5).

H P;Qð Þ ¼ �
XN
i¼1

P ið Þ � log Q ið Þð Þ ð5Þ

Furthermore, a stochastic optimizer - ‘Adam’ is used because of its ability to work
well in a sparse setting with low-resource requirements [17] with a stepsize a of 0.01 and
exponential decay rate for moment estimates b1 and b2 of 0.9 and 0.999 respectively.
The hyperparameters chosen for developing the model are summarized in Table 2.

4 Results

4.1 Confusion Matrix

The confusion matrix is an ‘N’ � ‘N’ size matrix, where ‘N’ is the total number of
classes, representing the number of correct as well as misclassifications. In our binary

Table 2. Hyperparameters used in training the model

Parameter name Value

Learning rate 0.0001
Dropout rate 0.1
Optimizer used Adam
Convolutional layer activation ReLu
‘FC1’ Activation ReLu
‘FC2’ Activation SoftMax
Batch size 32
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classifier, the confusion matrix is a 2 � 2 matrix consisting of each of the following
parameters as defined below:

• True Positive (TP) is defined as the number of true pneumonia X-ray images
correctly predicted by the classifier.

• True Negative (TN) is defined as the number of true normal X-ray images correctly
predicted by the classifier.

• False Positive (FP) is defined as a number of true normal X-ray images wrongly
predicted by the classifier.

• False Negative (FN) is defined as the number of true pneumonia X-ray images
wrongly predicted by the classifier.

As shown in Fig. 4, the TP are 1225 contributing to the probability of 0.98 of
correctly identifying Pneumonia, and the TN is 461 contributing to a probability of
0.91 to classify normal samples correctly.

4.2 Fundamental Performance Parameters

Some of the fundamental parameters which are used for performance evaluation of a
classifier are Sensitivity, Specificity, Precision, and F1 score.

Sensitivity is the probability of images that were classified as pneumonia out of the
total number of pneumonia image samples and also known as the Recall parameter or
TPR (True Positive Rate). Specificity is the ratio of the correctly classified normal
images out of the total number of normal samples. Precision is defined as the ratio of
the total number of correctly classified pneumonia samples out of total samples that
were classified as pneumonia [18]. The mathematical equations of sensitivity, speci-
ficity, and precision are as shown in Eq. (6), Eq. (7) and Eq. (8) respectively.

Fig. 4. Confusion Matrix evaluation on the testing dataset (Class 0 represents Normal X-ray
Chest Images, and Class 1 represents Pneumonia X-ray Chest Images)
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Recall ¼ TPR ¼ Sensitivity ¼ TP
TPþFN

ð6Þ

Specificity ¼ TN
TNþFP

ð7Þ

Precision ¼ TP
TPþFP

ð8Þ

F1 Score is a metric that takes into account recall as well as the precision and is the
weighted average of precision and recall. F1 score gives more information than the
ROC curve for binary classifiers [19]. The Performance Summary for the Binary
Classifier is given in Table 3.

F1 Score ¼ 2
Recall� Precision
RecallþPrecision

� 	
ð9Þ

4.3 Validation Accuracy and Loss

The model evaluation was done by testing it on 30% of the total dataset on which it had
never been trained. In addition, the model accuracy strongly affected by the values of
hyperparameters, which has been discussed in Sect. 5.1.

The results obtained are training accuracy = 1.00, testing accuracy = 0.9618 and the
plots of accuracies and losses after each epoch are as shown in Fig. 5 (Table 4).

Table 3. Performance Summary for the proposed binary classifier

Precision Recall F1 score Validation samples

Normal class 0.95 0.91 0.93 505
Pneumonia class 0.97 0.98 0.97 1248

(a)                (b) 

Fig. 5. Training and Testing accuracy and loss plots
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4.4 ROC Curve and AUC

ROC (Receiver Operating Characteristics) and AUC (Area Under the Curve) are some
of the most crucial performance measurement parameters for classification models.
ROC represents the classifier performance across the entire distribution of classes [20]
and the AUC the area under ROC, which is the measure of separability or the model’s
capability to distinguish between classes. Higher the AUC, the better the model can
identify the categories and therefore it is an essential parameter for characterizing the
strength and weakness of diagnostic tests [21].

The area under the ROC curve or AUC, achieved by our model, is 0.9891. Figure 6
shows the ROC curve plotted between True Positive Rate and False Positive Rate on
the testing data for our model.

5 Discussion

The proposed model has a relatively simpler architecture as compared to other archi-
tectures that have a relatively deeper network with a large number of training
parameters. This is because of the careful design of various hyperparameters and design
parameters, which play a vital role in determining the performance of the model. The
next section discusses in detail various empirical testing methods used to select

Table 4. Performance comparison between [10] and our proposed model on the same dataset

Performance metric (%) D. S. Kerman etc. [10] Proposed model

Validation accuracy 92.8 96.18
Sensitivity 93.2 98.16
Specificity 90.1 91.29
Area under ROC 96.8 98.91

Fig. 6. ROC Curve between True Positive Rate and False Positive Rate.
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appropriate hypermeters and also a comparison of the performance of our proposed
model with various other models developed using similar architecture on the same
dataset.

5.1 Empirical Determination of Hyperparameters

The performance of deep learning classifiers is heavily dependent on hyperparameters,
and therefore, to achieve the desired result for a particular application, customized
models have to be designed.

The first design parameter is the number of CNN layers, in particular, the number of
convolutional layers. When the number of convolution layers changes, the performance
is significantly impacted because of the distribution of weights and kernels across
several layers. The second design parameter is the number of outputs of the FC1 layer.
The dense network essentially behaves like a neural network with a hidden layer, and
therefore, the number of the output of the FC1 layer plays a vital role in model
performance. Therefore, in this paper, we have performed two empirical analyses to
select the best performing parameters and results have been plotted as shown in Fig. 7.

5.2 Performance Comparison

Next, we compared our classifier model with other models, which also uses the same
dataset [15] using the same number of Chest X-ray images as shown in Table 5. The
validation accuracy achieved of the proposed model, despite relatively simpler archi-
tecture without any pretraining, is 96.18%, which is higher than the accuracy achieved
by various models developed using the same dataset.

Fig. 7. Plot for empirical testing of design parameters. (a) Testing Accuracy v/s No. of CNN
layers and (b) Testing Accuracy v/s No. of Output Neurons of FC1 layer
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6 Conclusion

In this paper, we proposed the model a nine-layer convolutional neural network for
detecting pneumonia from chest X-ray images. The proposed model achieved a training
accuracy of 100% (trained for 200 epochs) and a validation accuracy of 96.18% for this
problem of binary classification. The result shows that the proposed approach offers a
very high prediction accuracy on the chest X-ray images with minimum training
parameters. The proposed method can be extended as a generalized technique to assist
medical professionals for faster diagnosis of other diseases as well. The future research
work will be focusing on to extend this classification model for multiple classes of
diseases that are possible to be diagnosed from such similar chest X-ray image datasets.
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