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Abstract Currently, the designing and development of advanced hydrogel platforms
is one of the important research areas due to their applications in the fabrication of
functionalizedmaterials useful in biomedical sciences. The rich literature reveals that
most of these advanced materials are derived from the utilization of click reaction-
based approaches through arranging the appropriate building blocks together in order
to fabricate the desirable hydrogel architectures useful mainly in tissue engineering
and drug delivery including the stem cell differentiation. Among the limitations
of these materials, the non-degradability of synthetic polymers is responsible for
the restricted usage in biomedical fields. Therefore, there is a constant demand to
develop systematic methodologies for the synthesis of novel hydrogel materials to
improve the degradability of the hydrogels by fine-tuning the functional groups and
by incorporating more hydrophilicity for the ready hydrolysis.
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Abbreviations

PAA Polyacryliccacid
PEO Polyethylene oxide
PVA Polyvinyl alcohol
DMSO Dimethyl sulfoxide
EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide
NHS N-Hydroxysuccinimide
PBS Phosphate-buffered saline
TEMPO 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl or (2,2,6,6-

tetramethylpiperidin-1-yl)oxidanyl
AS Ally starch
CS Chitosan
St Starch
CS–Fu Furan–functionalized chitosan
CS–AMI Themaleimide–functionalized chitosan
Py–SA TOMFC
MES 2-(N-morpholino)ethanesulfonic acid
HA Hyaluronic acid
HAAA Hyaluronic acid-11-azido-3,6,9-trioxaundecan-1-amine
AA 11-Azido-3,6,9-trooxaundecan-1-amine
BH3NH3 Boranemonoammoniate
4-AC-TEMPO 4-Acetamido-2,2,6,6-tetramethylpiperidin-1-yl)oxyl
NaBr Sodium bromide
NaClO Sodium-hypochloride
NaIO4 Sodium metaperiodate
CuCl Copper(I) chloride
CuSO4 Copper(II) sulfate
BMI Bismaleimide
CuAAC Copper(I)-catalyzed azide-alkyne cycloaddition
Cu(I) Copper (I)-iodide
DNA Deoxyribonucleic acid
NaBH4 Sodium borohydride
CS-Fu-BMI Chitosan-furfural-bismaleimide
PEG MA Poly(ethylene glycol) methacrylate
PEG TMA Trimethylamine polyethylene glycol
DMF Dimethylformamide
AIBN Azobisisobutyronitrile
DMAP 4-Dimethylaminopyridine
DCC N,N′-Dicyclohexylcarbodiimide
P(NIPAAm-co-HEMA) Poly(N-isopropylacrylamide-co-hydroxylethyl methacry-

late)
HA/PEG Hyaluronic acid/polyethylene glycol
ATRP Atom transfer radical polymerization
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PEG TMC Polyethylene glycol-trimethylene carbonate
PHEA Poly(2-hydroxyethyl acrylate)
HEP 1,4-Di(2-hydroxyethyl)piperazine
HDI 1,1-Diisocyanatoethane
DBTDL Dibutyltindilaurate
FGE Furfurylglycidyl ether
PAH Polycyclic aromatic hydrocarbon

1 Introduction

The term “click chemistry” introduced by Sharpless in 2001 describes the high yield
coupling of two molecules A and B which are versatile, stereospecific, simple to
perform, and can be performed in easily removable or benign solvent systems [1, 2].
In addition to this, these reactions produce by-products that can be removed without
any chromatographic technique. Also, these reactions found high significance in
synthetic organic chemistry of therapeutic applications [3]. In general, the first step
of mechanism embraces the activation of biomolecules (via compatible “click” func-
tional groups) and the subsequent step involves the coupling of activated molecules
to arrange a stable conjugate. The key advantages of this click chemistry are: (i)
facile reactions in nature, (ii) excellent yields, (iii) easily separable by-products, (iv)
stereospecificity, (v) the usage of environmentally benign solvents, (vi) to support
both in vitro and in vivo of enzymatic activities with non-radioactive analysis, and
(vii) high selective, etc. The “click” reactions are of several types including [4] (i)
“one-pot” synthesis with thermodynamically feasible reactions, e.g. nucleophilic
ring opening of aziridines and epoxides, (ii) reactions of carbonyl groups (non-
aldol type), e.g. formation of heterocycles, (iii) formation of carbon–carbon multiple
bonds, e.g. reactions fromMichael addition and epoxides, and (iv) reactions through
alkyne–azide cycloaddition. One of the best examples for a click reaction is the
copper(I)-catalyzed 1,3-dipolar cycloaddition between azides and alkynes. Azide
and alkyne groups are stable to aqueous solutions and have almost no reaction with
biomolecules. This allows further achieving the target-guided synthesis and further
activity-based protein profiling [5]. In addition to this, Bertozzi et al. established a
route to the [3 + 2] azide–alkyne cycloaddition reaction due to the ring strain in the
absence of copper(I) as this method avoids the cytotoxicity due to the presence of
copper(I) [6].

In general, hydrogels are polymeric materials and exhibit the ability to swell and
hold a significant fraction of water within the structure without dissolving in water.
Due to this, hydrogels also possess a definite degree of flexibility similar to the
natural tissues [7]. Consequently, these hydrogels function as delivery vehicles in
cell transplantation efficiently in a controlled manner and tolerate the culture of stem
cells under different environments. Due to their biocompatible nature, the research on
the development of newhydrogel polymers has beengained high significance for their



284 M. M. Reddy et al.

prospective applications in the construction of devices for drug delivery [8, 9], tissue
engineering [10, 11], coating [12, 13], cell culture [14, 15] and so on. In view of this,
click chemistry appears as a suitable alternative for the fabrication of chemically
cross-linked and polysaccharide-based hydrogel materials [16]. Among all these
click reactions reported, the Diels–Alder reaction has received huge demand as this
reaction has been carried out undermild reaction conditionswithout any side products
[17] and the biocompatibility of the material in the absence of catalysts or initiators
[18]. Further, this reaction has been used in synthesis of chitosan-based hydrogels
[19] and other types of polymeric hydrogels [20, 21]. The remarkable impact of
click chemistry on extraordinary efficiency and reliability of these reactions which
enabled rapid synthesis of hydrogel materials with appropriate network structures
has been highlighted. Also, the peptide sequences of biomolecular building blocks
have been incorporated efficiently through various click reactions either during or
after the synthesis of hydrogels. Further, this has led to the fabrication of many
stimuli responsive or “smart” hydrogels in recent years [22]. Natural polymers such
as collagen, gelatin or hyaluronate and synthetic polymers (e.g. PAA, PEO and
PVA) are the right choice to design the biocompatible hydrogel architectures having
large surface area. As the entire polymer support of these hydrogels is exposed to
aqueous solutions and enzymes, this can probably lead to quick hydrolysis [23].
Interestingly, these unique properties including great water absorption capacity and
water preservation ability make hydrogels remarkable candidates in contact lenses,
diapers and drug reservoirs [24].

2 Synthesis of Biocompatible Hydrogels via Click
Chemistry

Li et al. reported the synthesis of thiolene-based hydrogel material as shown
in Scheme 1 [25]. The analysis revealed that the hydrogel displays adjustable
swelling capacity and good mechanical properties. The degradation was due to the
combination of both diffusion and surface erosion.

A chemically cross-linked hydrogel derived from chitosan was successfully
synthesized through Diels–Alder reaction [26]. Further, chitosan derivatives for
example furan-modified chitosan (Cs–Fu) resulted from the reaction of furfural
and free amino groups of chitosan. The maleimide–functionalized chitosan (Cs–
AMI) was prepared from the reaction of a maleimide-modified aminoacid with the
amino groups of chitosan (Scheme 2). These hydrogel materials were found to be
pH-sensitive, biocompatible and anti-bacterial.

Lueckgen and the co-workers fabricated a flexible and degradable cross-linked
alginate-based polymer with tunable material properties by introducing either
tetrazine or norbornene functional groups for cross-linking (Scheme 3) [27]. The
degradation behaviour, swelling ability and the cell compatibility were assessed
to determine the in vivo functionality of the materials. Further, the biomaterial was
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implanted internally into themice, and further, the degradation and cytocompatibility
were determined via histological staining.

Alginate-based hydrogels have been fabricated by introducing micro-fibrillated
cellulose oxidized by TEMPO into the in situ polymerization of pyrrole to build
PPy/SA/TOMFC conductive hydrogels [28]. Interestingly, the incorporation of
TOMFC resulted in the significant improvement of structural integrity, enhanced
electrical conductivity and mechanical properties of the composite hydrogels. The
preparation of Cu(I)) catalyzedwater-soluble polysaccharide derivatives bearing side
chains endowed with either azide or alkyne terminal functionality was carried out
by mixing together in aqueous solution through a 1,3-dipolar cycloaddition reaction
[29] as shown in Scheme 4.

Hyaluronic acid was effectively modified structurally through chemical reactions
like oxidation/reductive amination and cross-linking via click chemistry (Scheme 5)
[30]. The combination of 4-acetamido-TEMPO/sodium hypochlorite/NaBr was
found as good alternative towards the modifications of the C-6 of hyaluronic acid.
These modified hydrogel materials were found as biocompatible.

Starch-based hydrogels were prepared by cross-linking throughDiels–Alder reac-
tions between furan-modified starch and bismaleimide as given in Scheme 6. The
conducting properties of these materials were remarkably improved by graphene
layers as active nanofillers [31]. The effect of increasing the furan/maleimide ratio
on the structural, morphological, rheological and swelling properties of hydrogels
was evaluated. The pore size decreases up on increasing the cross-linker content and
this leads to an effective network structure. As the presence of bismaleimide imparts
the hydrophilic character, graphene nanosheets produce nanocomposite hydrogel
with better rheologic al properties, electrical conductivity and antimicrobial activity.

The azide-alkyne cycloaddition (CuAAC) click reaction catalyzed by Cu(I) yields
cross-linked functional polymer chains having a sieving gel which was useful for
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DNA electrophoresis [32]. The competence of this reaction offers hydrogels with
near-ideal linkage connectivity with improved physical properties under mild condi-
tions. The sieving environmentwas formedby reacting twopolymers holding reactive
functional groups like poly(dimethylacrylamide) with an alkyne moiety in the pres-
ence of poly(ethylene glycol) functionalized bis-azideazido groups at both ends. In
addition to this, the Diels–Alder reaction (Scheme 7) was employed in the fabrication
of stimuli–responsive chitosan-based cross-linked hydrogels for biomedical appli-
cations by reacting furan-modified chitosan (Cs–Fu) with polyetheramine derived
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from bismaleimide (Scheme 8) [33]. Both the final storage modulus and the sol–gel
transition value for the different formulations were almost similar and close to 40min
and 400 Pa, respectively. Studies on the influence of the quantity and the behaviour
of the cross-linker in the properties of these polymers were investigated by varying
the furan to maleimide ratio.

Several strategies were used to produce 3D-hydrogel networks by joining func-
tional polymers or polymeric fragments for various applications including tissue
engineering [34]. The development of junctions between each polymer segments
is important in altering the stability and mechanical strength of these gels. This
was recognized via formation of covalent and non-covalent bonds with different
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strengths and density [35, 36]. Even though the physical hydrogels were formed by
the transient cross-linking between polymer chains through various kinds of phys-
ical interactions [36], these weak physical cross-linking generally provides to low
mechanical strength. Nevertheless, these interactions play a vital role in the gener-
ation of self-healing properties via dynamic self-assembly/disassembly features. A
typical example for this is a combination of clay and the dendritic molecular binder to
fabricate self-healing hydrogels as reported byAida and co-workers [37]. In contrast,
chemical hydrogels usually hold networks produced by cross-linked covalent bonds,
and their mechanical properties can be controlled with the cross-linking density. In
this connection, Anseth et al. reported the fabrication of photo-controlled degrad-
able hydrogel by sequentially performedCuAACand thiolene reactionswith variable
architecture and functionality [38].

In general, the Michael-type thiolene “click” reaction was reported by carrying
out under mild conditions which are similar to human physiological conditions [39].
The gelation of PEG–MA and PEG–TMAwas carried out to prepare two biodegrad-
able and biocompatible PEG hydrogel derivatives with multienes or multithiols by
polycondensation employing scandium trifluoromethane sulfonate (Sc(OTf)3) as a
chemo selective catalyst and further the influence of concentration and pH values
was evaluated [39]. Zhang and co-workers have reported a series of thermosensi-
tive hydrogels derived from the chemoselective cross-linking reaction between two
different types of polymer backbones with cellulose modified by azide and alkyne-
modified poly(N-isopropylacrylamide-co-hydroxylethyl methacrylate) P(NIPAAm-
co-HEMA) in the presence of Cu(I) catalyst [40]. Also, alkyne-modified P(NIPAAm-
co-HEMA) and azide-modified cellulose were produced to investigate the formation
of in situ hydrogel through “click” chemistry by Zhou and co-workers [41]. The
synthesis routes of the two polymers were given in Scheme 9.

A double cross-linked network was designed and further prepared by Diels–Alder
click reaction, followed by the incorporation of acylhydrazone bond (Schemes 10 and
11). As the Diels–Alder reaction preserved the structural integrity and mechanical
strength of hydrogel under physiological environment, the flexible covalent acyl-
hydrazone bond leads to the development of hydrogel’s self-healing property and
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controlled the on–off switch of network cross-link density. At the same time, the
aldehyde groups present in hydrogel further support the integration of hydrogel based
on the formation of imine from the aldehyde–amine Schiff-base reaction [42].

HA/PEG hydrogels formed by Diels–Alder reaction showed with short gelation
times and appropriate mechanical properties [43]. Unlike traditional Diels–Alder
hydrogels, the series of HA/PEG hydrogels, i.e. DS1 (1:1), DS1 (3:1) and DS2 (1:1)
exhibited the required gelation times for cell encapsulation, survival and prolifera-
tion.Among these hydrogels,DS1 (3:1)was effectivewith fatigue resistance and high
elasticity even after 2000 loading cycles. Studies on the use of propargyl acrylamide
(PAm) as a comonomer along with acrylamide (AAm) and N,N′-methylene bisacry-
lamide (BAAm) as cross-linkers in photoinitiated polymerization were carried out
[44]. Hydrogels with clickable acetylene groups can be prepared photochemically
in a single step to achieve the selectivity by generation of free radicals towards
acrylic function of PAm. Based on the acetylene functionality, the molecules
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possessing azide groups can be conjugated onto hydrogel easily. The preparation
of distinct sliding-graft semi-IPN of PEG and poly(2-hydroxyethyl methacrylate)
(s-IPNPEG/R-CD-sg-PHEMAs)with grafted linear poly-2-hydroxyethyl methacry-
late (PHEMA) on the grids of PEG linkages was possible via simultaneous CuAAC
and ATRP [45] to achieve the biocompatible hydrogels having very good physical
and mechanical properties. Further, the reaction of azide-terminated PEGs having
4-arms with dialkyne flanked peptides in the presence of CuBr/L-ascorbic acid/DMF
yielded the hydrogels of the required template [46].

A click reaction was carried out to prepare zwitterionic antifouling hydrogels
such as poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) (poly(HEMA-
co-GMA)) by implanting amino acids onto polymer chains through ring opening
reaction (i.e. primary amino groups of amino acid and epoxy groups of polymer
chains) in weakly alkaline aqueous solution. Further, the protonation of secondary
amino groups and deprotonation of carboxyl groups at pH 7 were carried out
[47, 48]. This zwitterionic structure possesses protonated secondary amino cations
(PSA, –NH+

2 –) and deprotonated carboxyl anions (DPC, –COO–). Recently, thiol-
ene “click” reactions (Michael addition type) between electron-deficient enes and
thiols have been widely used over the well-known traditional polymer networks and
they do not require light irradiation or a metal catalyst [49]. In this connection, a
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series of polyethylene glycol (PEG)-based derivatives containing multiple “click-
able” groups by the polycondensation of dihydroxyloligo (ethylene glycol) with
maleic anhydride/thiolmalic were prepared for biomedical applications [50, 51].

A series of PEG-TMC networks were prepared by Huisgen’s 1,3-dipolar cycload-
dition of azides with alkynes catalyzed by Cu(I) to yield completely hydrophilic
PEG hydrogels, as well as PEG-poly(TMC) (PTMC) hydrogels with amphiphilic
behaviour [52] (Scheme 12).

A facile preparation of poly(ethylene glycol) (PEG)-cyclodextrin containing
hydrogels by radical thiol-ene reaction was reported using the hydrophilic matrix of
the type alkene end-functionalized poly(ethylene glycol)s and thiol functionalized
β-cyclodextrin as multifunctional cross-linker [53]. Two bis-alkyne reagents (iso-
propargyl succinate and bis-propargyl hexane urethane) were employed as cross-
linkers to fabricate the click gels containing degradable ester or urethane groups
based on azido-functional PHEA (PHEA-N3) and di-alkyne cross-linkers as shown
in Scheme 13 [54].
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A series of click hydrogelswere obtained by the reactions of functionalized alkyne
groups with azido-terminal cross-linkers of the types 3-arms poly(ethylene glycol)
(PEG) and 3-arms poly(ethylene glycol)-poly(amino urethane) (PEG-(PAU)3) with
3-azido-1-propionic acid (APrA). Then the “click” hydrogels can be obtained with
cross-linkers (Schemes 14 and 15) [55].

As showed in Scheme 15, poly(ethylene glycol)-block-poly(γ-propargyl-L-
glutamate) (PEG-PPLG) with pendent alkynyl groups derived by click chemistry
displayed good cytocompatibility in vitro and acceptable in vivo biocompatibility
[56]. A bactericidal poly(ethylene glycol)-based (PEG) hydrogel was synthesized
and utilized as a layer with covalently attached antimicrobial peptides (AMP) stabi-
lized against proteolytic degradation [57]. New hydrogels were developed based on
furan-modified gelatine using bismaleimide cross-linker [58]. The furan groups were
grafted on to gelatin by the reaction of epoxy-amine with furfuryl glycidyl ether, and
then further cross-linked with Jeffamine®-based bismaleimides (Schemes 16 and
17). Attempts were also made to prepare the hydrogels with polyampholyte based
on dextran with cryoprotective properties for tissue engineering applications [59].

A facile synthesis of PAH from PMAwith quantitative conversion of carboxylates
to carbonyl hydrazides was carried out using various hydrazide based click reactions
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to produce a range of useful materials like pH sensors, stimuli responsive hydrogels,
ion exchange epoxy resins, and polymer–dye conjugates as outlined in Scheme 18
[60].

Ossipov and Hilborn investigated a click reaction by grafting the azide and alkyne
pendant groups onto poly(ethylene glycol) (PEG) and poly(vinyl alcohol) (PVA)
in the formation of hydrogel in order to derive structure–property relationships as
shown in Scheme 19 [61]. The first approach describes the telechelic PEG-diazide
as a cross-linker for the PVA functionalized with alkyne groups, whereas the second
approach deals with the functionalization of two PVA components with azide and
alkyne groups.

PEG-based hydrogels were synthesized in well-defined networks with signifi-
cantly improved mechanical properties and the selectivity of the azide/acetylene
coupling reaction allows the incorporation of functional groups into the hydrogel
architectures as described in Scheme 20 [62].

Interestingly, the single-walled carbon nanotubes (SWNTs) were fused into
hydrogel networks to encourage the electron transport leading to the formation of

HN
NH2

O

O
O

O

OH

HO
O

O

N
H

NH2

H
N

N

O
O

S

O

Ort, 70 oC

HN
NH

O

S

HN
O

NH

O

O

H
NN

H

HO3S

OH

O

HN
N
H

HO3S
OH

O

O

H
N

N

N
H

H2N

O

O
O

O
O

O

NH
HN

O

O

THF

60oC

rt-6
0o C

rt-6
0o C

rt

Hydrogel (V)

Probe attacted PAH (VI)

(I)

(II)

NH2NH2. H2O

TBAB

AZO-dye labeled PAH (IV)

Epoxy Resin (III)

Scheme 18 Synthesis of functionalized materials from hydrazide based click reactions



298 M. M. Reddy et al.

OH
360

N N

O

N N

DMSO
(5eq / OH group)

O OHO
N

N

m 360-n N
R1

R2H

(0.02-0.1eq / OH group)
DMSO

O OH

O
N

N

O
O

R2 R1

m n-m 360-n NH3

H2O

O OH
O

N

360-mm

R
R

Compounds R1 R2

1

2

3

4

5

H

Me

H

H

                      H

H2
C

H2
C

H2
C

H2
C N3

O
H2
C

H2
C

H
N

O

O

Scheme 19 Synthesis of grafted azide and alkyne based PEG and PVA hydrogels

well-dispersed co-networks of electroactive polymers [63]. The fabrication of PEG–
CMC hydrogel was carried out via thiol-ene photo polymerization using thiol groups
anchored CMC and by norbornene immobilized tetra-arm poly(ethylene glycol)
(PEG4NB). The properties of PEG–CMC hydrogel materials allow these materials
towards a pH-responsive drug release carriers (Fig. 1) [64].

3 Conclusion

Recently, there has been a tremendous development in the growth of functional
hydrogel platforms due to their applications in the fabrication of advanced materials
and in biomedical sciences. Certainly, this has largely originated from the utilization
of click reaction-based approaches toward the construction and functionalization
of these hydrogel materials. The impact of these chemical reactions to arrange the
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building blocks together has been established in the design of numerous hydrogel
materials within the past few years. The literature witnesses the reports on a wide
range of materials based on HA and their potential claims in tissue engineering and
drug delivery. In addition to this, HA-based hydrogels can also exhibit biological
activity to cells up on interaction with biomaterials, as evident in cellular behaviour
and stem cell differentiation. Similar to HA-based materials, a significant progress
has been observed for thiolene hydrogels towards the controlled delivery of therapeu-
tics. However, there are some challenges regarding the broad clinical translation of
thiolene hydrogels that the retaining of bioactivity of cargomolecules when they are
exposed to the hydrogel environment during formation or degradation. Maintaining
the controlled drug cargo release is another challenge. One of the other challenges of
these hydrogels is the non-degradability of synthetic polymers which is responsible
for the restricted usage in biomedical fields. Therefore, there is a constant demand
to develop systematic methodologies for the synthesis of novel hydrogel materials
to improve the degradability of the hydrogels by fine-tuning the functional groups
and by incorporating more hydrophilicity for the ready hydrolysis.
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