
Chapter 5
Abiotic Stress: Its Outcome and Tolerance
in Plants

P. Rawat, D. Shankhdhar, and S. C. Shankhdhar

Abstract The onset of nineteenth century along with anthropogenic pressure paved
the way for global climatic variation which is a major factor for global undernour-
ishment, malnutrition and endangered food security. The major upshot of climate
change is abiotic stress like salinity, flood and drought that declines the agricultural
productivity. Abiotic stress hampers the survival of the plants and restricts their
growth and development. Each abiotic stress confers negative impact on plants by
altering its physiology, morphology and metabolism. Production of reactive oxygen
species during stress condition alters the structure and metabolic function in plants
and restricts its growth. Drought is one of the serious threats to crop productivity
among the abiotic stress that imposes multidimensional effects on plants. Drought
alters physiology and anatomy of the plants and is the main reason for economic loss
in terms of livestock and grain yield in both developed and developing countries.
Plants adapt several resistance mechanisms to cope up with the drastic impact of
stress. Main tolerance mechanisms are alteration in membrane structure, escaping
the unfavourable conditions, activation of antioxidant defense system, production of
compatible solutes for maintaining osmotic balance of the cell. Present manuscript
focuses on the outcome of major abiotic stress in plants and their tolerance strategies
against the variable environmental conditions.

5.1 Introduction

Contemporary civilization and industrialization have led to global climate change
whose consequences like flood, drought, high temperature and global warming are
quite perceptible and hazardous for soil heath, microbial diversity and sustainable
crop production. Climate fluctuation also threatens the vulnerable and endangered
organisms in the ecosystem that are incompetent to endure such environmental
changes in their habitat. Climate variability has immense impact on food security.
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It hits the underdeveloped regions of the world causing yield and economic losses. It
has been estimated that 26% of total loss was in agriculture sector due to calamitous
events from 2006 to 2016 (FAO 2018). Figure 5.1a, b illustrates the severity of
disastrous events in the past years along with its impact on agricultural sector. There
has been a dire inflation in the number of undernourished people across the world
from 806 million in 2016 to 821 million in 2017 as an outcome of climate shock
(FAO 2018). In view of the above facts, the foremost challenge is to provide food
security to the projected global population of about 9.7 billion in 2050 under climate
fluctuation and dwindling crop productivity.

Fig. 5.1 (a) Rise in the calamitous events (1990–2016). Adopted from FAO (2018). (b) Damage
and loss in agriculture as share of total damage and loss across all sectors by type of hazards.
Adopted from FAO (2018)
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Abiotic stress is an aftermath of climatologically variation that ceases plant
growth, development and productivity below optimum levels. A surfeit or scant in
energetic, chemical or physical condition in the nature paved the origin of abiotic
stress in plants. The utmost abiotic stress comprises of drought, salinity, flooding and
oxidative stress that abolishes metabolic equilibrium of plants thereby threatening
food security (Fedoroff et al. 2010). Economic forfeiture in the developing countries
in terms of crop and livestock production was discerned up to USD 96 billion from
2005 to 2015 with a 2.6% decrement in national agricultural value added growth due
to occurrence of each climatic hazards (FAO 2018). An alarming upshot of climate
shock is forecasted to decline agriculture productivity and influence five billion
people by 2050 (UNESCO 2018; Watts 2018).

5.2 Abiotic Stress in Plants

5.2.1 Salt Stress

One of the most detrimental climate shocks is salinity stress which is prevalent in
arid and semiarid regions in the world as depicted in Fig. 5.2. Approximately 33% of
the world’s irrigated land and 20% of overall cultivated land are devastated by
salinity stress (Shrivastava and Kumar 2015). It has been forecasted that by 2050
around 50% of arable land would be influenced by salinity (Jamil et al. 2011). In
India seven million hectares of land is sheathed by saline soil (Patel and Dave 2011).
An electrical conductivity of precisely 4 dSm�1 of saturation extract from root zone
at 25 �C marks the saline soil (Jamil et al. 2011). Salinity damages the agricultural
productivity as the major food crops are susceptible to it. A remarkable yield loss of

Fig. 5.2 Salt affected regions of the world. Adopted from FAO (2016)
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about 65% in wheat was evident as an outcome of salinity stress (Ahmad et al. 2013).
Yield reduction of about 55% in corn and cotton was observed in case of salinity in
the range of about 8–10 dSm�1 and 18 dSm�1, respectively (Satir and Berberoglu
2016; Zörb et al. 2019).

5.2.2 Impact of Salinity Stress in Plants

Salinity stress devastates the plants by two ways: (a) Osmotic effect that diminishes
plant potential for water uptake due to excess salt in soil and (b) ion excessive effect
that occurs due to accumulation of excess salt in the leaf tissues (Greenway and
Munns 1980). Salinity amends the major physiological processes like photosynthe-
sis, transpiration, nutrient regulation and osmotic balance as an outcome and affects
plant growth and yield. Influence of salinity stress in plants has been illustrated in
Table 5.1.

Table 5.1 Outcome of salinity stress in plants

Parameters Alterations References

Germination Hinders water imbibition by seeds Khan and Gul (2006)

Alters the enzyme activity requisite for met-
abolic functions

Gomes-Filho et al. (2008)

Deteriorates seed coat, diminishes the seed
vigour index and surges seed dormancy

Panuccio et al. (2014)

Water relation Osmotic imbalance leading to soaring salt
concentration near roots

Munns (2005)

Decrement in relative water content and tur-
gor pressure

Ghoulam et al. (2002)

Plant growth Minimizes water retaining capacity of plant Munns (2002b)

Enhances ion toxicity that results in early
leaves senescence

Munns (2002a, 2005)

Photosynthesis Accumulation of Na+ and Cl� ions in
chloroplasts

Sudhir and Murthy (2004)

Alteration in electron transport chain by
impeding photon phosphorylation and car-
bon metabolism

Farahbakhsh et al. (2017).

Decrement in chlorophyll content Saha et al. (2010)

Modification in cytoplasmic structure, retar-
dation in carboxylation reaction and genera-
tion of ROS

Maxwell and Johnson (2000)

Nutrient
imbalance

High osmotic potential lessens nitrogen
content in plants

Lea-Cox and Syvertsen (1993);
Rozeff (1995); Bar et al. (1997)

Low phosphorous content Qadir and Schubert (2002)

Reduced influx of Ca2+ and K+ ions Suhayda et al. (1990); Hu and
Schmidhalter (1997); Asch
et al. (2000)
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5.2.3 Plant Tolerance Strategies against Salinity Stress

Resistance strategies of plants to salinity rely on environmental conditions and plant
species. Plants mainly endure salt stress by three ways:

(a) Endurance to osmotic stress
(b) Efflux of sodium from leaf blades
(c) Tissue tolerance

5.2.3.1 Osmotic Stress Endurance

Osmotic stress is marked by generation of osmolytes like glycine betaine, proline,
polyols, etc. to maintain the osmotic balance. Osmotic tolerance also aids in
balancing stomatal conductance and leaf expansion during salinity (Rajendran
et al. 2009). Osmolytes stabilize the membrane integrity, proteins and pigments in
the cell and also alleviate reactive oxygen species (Krasensky and Jonak 2012;
Gupta and Huang 2014). It was evident that proline accumulation improved the
salinity tolerance in maize (Tang et al. 2019). Likewise, trehalose accumulation also
assisted in boosting salinity endurance in wheat (Sadak 2019).

5.2.3.2 Sodium Ion Efflux from Leaf Blades

Outcome of salinity stress in plants comprises ion toxicity due to sodium ion (Na+)
accumulation inside the cell. This can be overcome by down regulating the expres-
sion of ionic channels and Na+ transporters (Munns and Tester 2008; Rajendran et al.
2009). An antiporter (AtNHX1) confined in tonoplast of Arabidopsis maintains Na+

balance in the cell under salinity condition by directing the influx of Na+ ions from
cytosol to vacuole (Apse et al. 1999). Likewise NAX1gene in durum wheat impedes
Na+ translocation in the shoots and leaf sheath from roots, whereas NAX2 gene
confers high potassium ion (K+)translocation in leaf (Flagella et al. 2006). Sodium
exclusion theory for salt resistance has been validated in rice (Ren et al. 2005) and
durum wheat (James et al. 2006). It was studied that potassium transporter
(PpHKT1) gene from rootstock of almond also enhanced salt tolerance in transgenic
Arabidopsis by balancing ion homeostasis (Kaundal et al. 2019).

5.2.3.3 Tissue Tolerance

For hindering the senescence of leaves and enhancing its survival rate, tissue
tolerance is a salient attribute during stress. Generation of compatible solutes that
balances the osmotic homeostasis in the cell and antioxidant defense system that
scavenges the reactive oxygen species under stress condition is an attribute of
tolerance of plants to stress condition (Hasegawa et al. 2000; Zhu 2001; Sakamoto
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and Murata 2002). Tissue resistance also incites the ion compartmentalization in the
cell to diminish toxicity of ion (Munns and Tester 2008). A notable rise in osmolyte
production like proline up to 14.87 μmol g�1 DW and an increment in antioxidants
like ascorbate peroxidase up to 77%, catalase up to 15% and glutathione reductase
up to 138% were recorded in chickpea as a tolerance response to salinity stress
(Arefian et al. 2018).

5.3 Flooding Stress

Prolonged submergence and soil waterlogging result in hypoxic condition that
constitutes flood stress in plants. One of the key limitations to crop productivity in
high rainfall areas of the world is flood stress. Climate change promotes submer-
gence to be more recurring and drastic (Pachauri et al. 2014). Approximately 10% of
irrigated land in India, China, Russia and 16% of cultivable land in the USA are
damaged by waterlogging (FAO 2015). Figure 5.3 explains the ubiquity of flood
hazard in the world. According to statistical approximates of food and agriculture
organization of United Nations, flood stress upshots 17% of total loss and damage in
agriculture (FAO 2018).

It was discerned that annually 20–50% production loss in wheat occurred under
waterlogging condition (Hossain and Uddin 2011). Overall 15% of maize produc-
tion in South Asia is damaged by floods. India accounts for 25–30% maize produc-
tion loss every year on account of flood stress (Bailey-Serres et al. 2012).

Fig. 5.3 Global flood hazard prevalence. Adopted from SEDAC (n.d.)
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5.3.1 Outcome of Flood Stress in Plants

The prime consequence of flood stress in plant comprises anoxia or oxygen limita-
tion. Necrosis, senescence, low nitrogen fixation and ultimately plant death are the
consequences of flood stress (Hasanuzzaman et al. 2012). Overall effects of flood
stress in plants are outlined in Table 5.2.

5.3.2 Adaptation of Plants to Flood Stress

5.3.2.1 Morphological Alterations

For escaping anoxic conditions under flood stress, plants showcase morphological
adaptations. Submerged leaves have low stomatal counts and are often dissected and
filamentous (Sculthorpe 1967). Vigorous adventitious root growth is one of the
prominent adaptation as evident in Sesbania javanica (Jackson 2006) and Chrysan-
themum (Yin et al. 2009). Decrement in root hairs and diameter, rapid shoot
elongation are some of the evident variations (Jackson 2008). Under submergence,
formation of leaf gas film improves carbohydrate supply, generation of adventitious
roots and aeration of roots. In rice, resistance to radial oxygen loss is enhanced by

Table 5.2 Consequences of flood stress in plants

Parameters Alterations References

Anatomical
variation

Over growth of aerenchyma, lenticels and adventi-
tious roots

Ashraf (2009)

Decrement in stele and seminal root diameter,
reduced cortex thickness

Grzesiak et al. (1999)

Increment in width of phloem tissue and number of
xylem vessels

de Souza et al. (2013)

Formation of suberized exodermis on root cortex
periphery

Kulichikhin et al.
(2014)

Physiology and
metabolism

Impaired stomatal conductance, CO2 assimilation Ashraf (2009)

Decrement in net photosynthetic rate, transpiration
rate, PSII efficiency and rubisco activity

Zheng et al. (2009)

Low relative water content and membrane stability Kumar et al. (2013)

Accumulation of hexose sugars in roots and organic
acids in leaves

Vandoorne et al. (2014)

Nutrient
availability

Enhanced nitrogen content and reduced phospho-
rous and potassium content in plant tissues

Reddy and mittra
(1985)

Reduced uptake of copper and zinc Tarekegne et al. (2000)

Growth and
yield

Reduction in leaf number, diameter, height and leaf
area of plant, leaf epinasty

Parent et al. (2008);
Gonzalez et al. (2009)

Decline in dry matter accumulation, chlorosis, and
flower abortion

Mensah et al. (2006)
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development of effective barriers. This aids in shielding the plants from toxins
generated from anoxic environment and boosts root tip aeration under flood stress
(Kirk et al. 2014; Yamauchi et al. 2018).

5.3.2.2 Anatomical Alterations

To hinder the loss of radial oxygen from submerged roots, plants show formation of
lateral diffusion barrier (Sauter 2013). Lenticels development is also evident in flood
affected plants as this aids in oxygen diffusion in downward direction (Parelle et al.
2006). Aerenchyma formation is one of the unique characters of plants under flood
or submerged condition as these gas spaces allow oxygen transport from roots to
shoots (Shiono et al. 2008). Exodermis thickness was improved by 23.70% com-
pared to control in Garcinia brasiliensis under flood state in addition to increment in
root xylem vessels and phloem width (de Souza et al. 2013). In flood tolerant barley
cultivar (TX9425 and Yerong), more well developed intercellular spaces in leaves
and mesophyll cells were observed that enhanced photosynthesis due to quick
gaseous exchange Zhang et al. 2016). In rice seedlings, rapid coleoptile elongation
during germination is a marker for submergence tolerance that facilitates aeration of
developing embryo (Guru and Dwivedi 2018).

5.3.2.3 Biochemical Alterations

Under flood stress, switch in the metabolism of plants from aerobic to anaerobic
condition with high activity of alcohol dehydrogenase, a key enzyme in anaerobic
fermentation is observed (Sairam et al. 2008). Proline content in Casuarinawas high
in tolerant cultivar as it acts as a signal molecule, an osmolyte and showcases
antioxidant defense response under stress condition (Bajpai and Chandra 2015).
Enhanced activity of alpha aminobutyric acid has been evident in soybean nodules in
flooded conditions as this metabolite balances intercellular pH, acts as nitrogen
reservoir under flood condition and also serves as antioxidant (Souza et al. 2016).
Elevated activity of enzymes like phosphoenolpyruvate carboxylase, glutamate
dehydrogenase and alcohol dehydrogenase was observed in flooded nodules of
Sesbania herbacea (Krishnan et al. 2019).

5.4 Heavy Metal Stress

One of the major aftermaths of industrial revolution in the twenty-first century is
heavy metal pollution in the environment. Heavy metals are potentially noxious
elements and present in trace amount in soil. They are comprised of metalloids,
lanthanoides and transition metals with atomic density ˃6 g cm�3except selenium,
boron and arsenic (Park et al. 2011). The root cause of heavy metals in the
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environment encompasses usage of pesticides and fertilizers, combustion of fuels,
mining, sewage sludge, oil spills, etc. Heavy metals are diverse in their functioning.
Metals like iron, zinc, copper, nickel, manganese, chromium impart proper func-
tioning of plant’s metabolic processes contrarily lead, arsenic, mercury have nega-
tive effect on plant growth and productivity (Pierart et al. 2015). These noxious
elements enter the food chain and attack human, animal and soil health (Augustsson
et al. 2015).

Uptake of heavy metal by plants interrupts the chief metabolic processes like
photosynthesis, nitrogen fixation and nutrients uptake and results in biomass and
yield reduction and also death of the plants (Buendía-González et al. 2010). In
China, about 20,000,000 acres of farmland is polluted by heavy metal with an
annual crop loss of 1,000,000 million tons per year (Wu et al. 2010). About 12%
of world’s agricultural land is estimated to be affected by heavy metal pollution
(Dziubanek et al. 2015). One of the most detrimental heavy metal for human health
is lead. Lead exposure resulted in loss in economic productivity of about $977
billion annually in low to middle-income count (Attina and Trasande 2013). Statis-
tical estimates of Institute for Health Metrics and Evaluation disclosed that lead
exposure caused nearly 0.5 million deaths and 9.3 million life years lost among
adults of 15 years and older (Landrigan et al. 2018).

5.4.1 Outcome of heavy metal stress in plants

Heavy metal stress deteriorates soil and plant health. Metal toxicity alters the
morphology and physiology of plants at different growth stage as a consequence
there is decline in crop productivity. Table 5.3 outlines the impact of heavy metal
stress in plants.

5.4.2 Plant tolerance to heavy metal stress

5.4.2.1 Antioxidant enzymes

To escape heavy metal toxicity plants evolve many alterations. Exclusion of metal
ions from the cell or binding with ligand prevents entry of metal ions to the roots is
the first line of defense mechanism (Zeng et al. 2011). Metal ions also make
complexes with carboxyl group of pectin in the cell wall thereby restricting its
entry in the cell (Jiang and Liu 2010). Secondary response for metal detoxification
is generation of antioxidant enzymes like superoxide dismutase, catalase and per-
oxidase. Compounds like glutathione, proline, cysteine, ascorbic acid also serve as
scavengers of reactive oxygen species (Shahid et al. 2012; Pourrut et al. 2013).

Glutathione is a tripeptide antioxidant with thiol group and forms mercaptide
bond with metals due to its nucleophilic thiol group and its reduced form also
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scavenges peroxide radicals. Glutathione conjugates with compounds of heavy
metals that are translocated to vacuole to protect cell from its harmful effects
(Klein et al. 2006; Yazaki 2006). It was also studied that in response to cadmium
toxicity there is a modulation in the activity of antioxidants like guaiacol peroxidase,
ascorbate peroxidase and catalase in tolerant plants (Alves et al. 2017; Borges et al.
2018). In Brassica juncea L. such kind of high efficiency antioxidative defense
system was evident during caesium toxicity (Lai and Luo 2019).

5.4.2.2 Metallothioneins and Phytochelatins

Vacuolar sequestration of heavy metals is an important response of plants to metal
stress. Complex formation of metal ion with ligand reduces the toxicity of heavy
metals. Metallothioneins and phytochelatins rich in cysteine are natural metal
chelators in plants that reduce metal toxicity by forming mercaptide bonds with
metals and sequester them to vacuoles (Gupta et al. 2010; Jiang and Liu 2010). In
Brassica napus, cadmium toxicity results in strong expression of MT4
metallothionein in germinating seeds as a defense mechanism (Mierek-Adamska
et al. 2018). Likewise in Oryza sativa, phytochelatin synthase genes (OsPCS5 and
OsPCS15) were profoundly induced under cadmium stress as tolerance mechanism.

Table 5.3 Out-turn of heavy metal stress in plants

Parameters Modifications References

Germination Inhibition of water uptake by copper, cadmium Kranner and Col-
ville (2011)

Reduction in germination percentage Chigbo and Batty
(2013)

Formation of abnormal embryos and decrement in seed
viability

Stvolinskaya
(2000)

Slow activity of alpha amylases, phosphatases. Decrement
in remobilization of storage reserves

Kalai et al. (2014)

Lipid peroxidation and proline accumulation in the radical Kalai et al. (2014)

Plant growth Chlorosis, decline in growth and yield, reduced nutrient
uptake and nitrogen fixing potential

Guala et al.
(2010)

Generation of reactive oxygen species Romero-Puertas
et al. (2004)

Photosynthesis Disruption in energy transfer in light harvesting complex,
decline in chlorophyll and carotenoid content

Kuzminov et al.
(2013)

Electron transport inhibition between photosystem I and II Rama Devi and
Prasad (1999)

Deformation of chloroplast ultrastructure Kalaji and
Loboda (2007)

Nutrient
uptake

Low concentration of zinc, iron, calcium and manganese Chatterjee et al.
(2004)

Decline in shoot nitrate content and nitrate reductase
activity

Xiong et al.
(2006)
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These genes encode phytochelatins that bind heavy metals in cytosol and detoxify
them in the vacuoles (Park et al. 2019).

5.5 Low Temperature Stress

Chilling or low temperature stress amends the plant morphology, physiology and
metabolism. Occurrence of chilling stress at temperature 0 �C to 15 �C whereas
freezing stress at ambient temperature for ice crystal formation causes cellular injury
and osmotic dehydration in the cell (Bhatla 2018).

5.5.1 Impact of low temperature stress in plants

Chilling in plants is advantageous for breaking seed dormancy, for vernalization and
cold acclimation. In contrast, chilling in susceptible crops has many aftermaths as
listed in Table 5.4.

5.5.2 Adaptations to low temperature stress

5.5.2.1 Cold acclimation

Increment in phospholipid proportion and decrement in ceramide and sugar
containing lipids in plasma membrane results in reduction in expansion induced
lysis. Expression of sugar producing enzymes like acid invertase, galactinol synthase
and sucrose synthase to improve membrane stability is induced in response to cold
acclimation (Turhan and Ergin 2012). Accumulation of compatible solutes like

Table 5.4 Consequences of chilling stress in susceptible crops

Parameters Modifications References

Lipid membrane Membrane becomes leaky and dysfunctional Bhatla (2018)

Membrane transport and receptors disabled

Cellular structure distorted

Osmotic dehydration of cell

Photosynthetic
apparatus

Impaired electron transport chain Bhatla (2018);
Wise et al. (1987)Generation of reactive oxygen species

Cell plasmolysis

Chloroplast swelling and dilation of thylakoids, dis-
integration of chloroplast

Depletion of starch and phosphorylated metabolites in
cell
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hydroxyl proline and arabinose in the cell maintains osmotic balance during cold
acclimation (Bhatla 2018). Expression of hydrophilic and LEA (late embryogenesis
abundance protein) proteins declines the denaturation of proteins under cold and
drought stress. In Brassica napus, dehydrin proteins, a class of LEA proteins was
highly expressed under cold stress in tolerant cultivar. It is used as biomarker for
selection of cold tolerant lines (Maryan et al. 2019).

5.5.2.2 Modification in gene expression

Expression of cold regulated genes (COR) confers cold tolerance in plants by
stabilizing the plasma membrane during low temperature stress. Hydrophilic pro-
teins encoded by COR genes expressed during low temperature stress are involved in
the production of anthocyanin and play indirect role in cold acclimatization. Extra-
cellular production of antifreeze proteins (AFP) prevents ice crystal formation during
low temperature stress. Molecular chaperons like HSP90 restrict denaturation of
proteins during chilling stress. Other proteins like MAP (mitogen activated protein)
kinase and calmodulin related proteins are encoded by COR genes and impart role in
cold temperature signalling in plants (Bhatla 2018). A chromatin remodelling factor
PICKLE (PKL) was found responsible for cold stress tolerance in Arabidopsis. It
also modulates expression of other cold responsive genes like RD29A and COR15A
(Zhao et al. 2019). In Brassica rapa L., genes such as temperature-induced lipocalin-
1, zinc finger protein ZAT12, dehydrin ERD10 and adenosylhomocysteinase 2 were
analysed and found to be involved in cold stress tolerance (Ma et al. 2019).

5.6 Drought Stress

One of the most disastrous outcomes of climate change is drought that restricts plant
growth and development in both developed and developing countries. The utmost
driver of undernourishment and hunger is geographical and global drought that
declines agricultural productivity (FAO 2017).US, a technologically advanced
country encounters an annual loss of $ 6 billion in agricultural productivity due to
drought and such losses are more severe in underdeveloped and developing coun-
tries (CIA 2017). Around 20% of world’s cultivable land is hit by drought and more
than 80% damage in livestock and agricultural production is because of drought
stress (FAO 2018). Major drought exposed regions in the world have been delin-
eated in Fig. 5.4.

Drought is a climatic variation with perpetuate periods of rainfall scarcity that
results in hunger, malnutrition, deficit food productivity and ultimately food insecu-
rity. Plants encounter severe drought when water loss via transpiration is high
enough or when roots are deficient in water supply (Anjum et al. 2011). A severe
drought can threaten the national food availability and results in pervasiveness of
undernourishment. Approximate global yield loss of 21% in wheat and 40% in
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maize was observed from 1980 to 2015 (Daryanto et al. 2016). Table 5.5 illustrates
susceptible and resistant crops under major abiotic stress.

Drought alters photosynthesis, water balance, nutrient acquisition, oxidative
metabolism and assimilates partitioning in plants. This modification in plants
depends on species, growth stage of the plants and environmental conditions.
Apparent symptoms of drought in plants are depicted in Fig. 5.5. Reduction in
grain filling rate, harvest index and solar use efficiency are some key drivers
responsible for diminished yield under drought stress. Table 5.6 describes deleteri-
ous impact of drought stress in plants ranging from morphological, biochemical to
molecular level and is discernible at every phenological stage of crop growth at any
period of time (Farooq et al. 2009; Deepak et al. 2019).

5.6.1 Outcome of Drought Stress on Morphological
Attributes

The foremost impact of drought stress on morphology of plant is restricted seed
germination and seedling growth (Farooq et al. 2009). Drought negatively alters
seed vigour, seedling growth and also results in poor seed quality as reported in
Medicago sativa (Zhang et al. 2019a, b), Oryza sativa (Bhavyasree et al. 2019),
Glycine max (Reddy et al. 2019), Zea mays and Sorghum (Queiroz et al. 2019).

Drought impedes mitosis and cell enlargement because of restricted water flow
from xylem to neighbouring cells (Hussain et al. 2008). Reduction in plant size and
biomass is one of the major morphological alterations in plants during drought stress.
Fifty percent reduction in biomass in wheat was observed as compared to control

Fig. 5.4 Global map of drought affected regions. Adapted from Carrao et al. (2016)

5 Abiotic Stress: Its Outcome and Tolerance in Plants 91



Table 5.5 Comparative representation of crops for resistance and tolerance to different abiotic
stress

Stress Sensitive crop Reference Resistant crop Reference

Salinity Brassica napus
L.

Dolatabadi et al.
(2019)

Hordeum vulgare Han et al. (2018)

Phaseolus
vulgaris

Lahaye and Epstein
(1971)

Echinochloa
frumentaceae

Williams et al.
(2019)

Oryza sativa L. Khatun et al. (1995) Beta vulgaris L. Wu et al. (2018)

Triticum
aestivum

Ahmad et al. (2013) Vigna unguiculata Pan et al. (2019)

Lupinus albus Jeschke (1984) Solanum
lycopersicum

Amjad et al.
(2019)

Flood Zea mays Panozzo et al.
(2019)

Saccharum
officinarum

Singh et al.
(2019)

Solanum
lycopersicum

Ezin et al. (2010) Oryza sativa L. Dwivedi et al.
(2018)

Glycine max Tewari et al. (2016) Solanum dulcamara
L.

Dawood et al.
(2014)

Triticum
aestivum

Zhou (2010) Zea nicaraguensis Yamauchi et al.
(2018)

Cicer arietinum Solaiman et al.
(2007)

Populus euphratica Yu et al. (2015)

Heavy
metal

Triticum
aestivum
(Lead)

Alamri et al. (2018) Lupinus
(Cadmium, nickel)

Rathaur et al.
(2012)

Oryza sativa L.
(Cadmium,
arsenic)

Makino et al. (2019) Brassica napus
(Nickel, cadmium,
copper)

Marchiol et al.
(2004)

Lolium perenne
L.
(Aluminium)

Parra-Almuna et al.
(2018)

Raphanus sativus
(Nickel, cadmium,
copper)

Marchiol et al.
(2004)

Brassica juncea
(Copper)

Yadav et al. (2018) Setaria italica L.
(Cadmium)

Chiang et al.
(2011)

Solanum
lycopersicum
(Cadmium)

Carvalho et al.
(2018)

Miscanthus sinensis
(Aluminium)

Ezaki et al.
(2008)

Chilling Solanum
lycopersicum

Ronga et al. (2018) Arabidopsis
thaliana

Schulz et al.
(2016)

Zea mays Bilska-Kos et al.
(2017)

Brassica juncea L. Sinha et al.
(2015)

Cicer arietinum Selpair (2018) Mentha arvensis Dhawan et al.
(2018)

Brassica
oleracea

Zhang et al.
(2019a, b)

Pisum sativa L. Zhang et al.
(2016)

Vigna radiata Batra et al. (2018) Capsicum annuum Shawon et al.
(2017)

Drought Oryza sativa L. Lawas et al. (2018) Setaria italica Han et al. (2019)

(continued)
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under drought stress (Paul et al. 2019). Dry weight and fresh weight of root and shoot
as well as root shoot ratio tend to cut down in drought induced Brassica napus
L. (Khan et al. 2019).

Decrement in stomatal aperture, leaf rolling, cutinization of leaf surfaces are some
observable drought stress induced morphological parameters (Hussain et al. 2008).
Drought hampers the leaf size, grain yield in crops, for instance, yield parameters
like panicle length, seed setting rate and grain weight declined in Oryza sativa
L. under drought (Wei et al. 2017). Likewise in wheat, 62% of grain loss was
observed in drought condition compared to well-watered conditions (Paul et al.
2019).

Table 5.5 (continued)

Stress Sensitive crop Reference Resistant crop Reference

Triticum
aestivum

Bakhshandeh et al.
(2019)

Sorghum Ohnishi et al.
(2019)

Zea mays Daryanto et al.
(2016)

Arachis hypogaea
L.

Banavath et al.
(2018)

Cicer arietinum Kaloki et al. (2019) Macrotyloma
uniflorum

Sharma et al.
(2018)

Glycine max Popović et al. (2015) Brassica napus L. Mahmood et al.
(2019)

Helianthus
annuus

Pekcan et al. (2015) Hordeum vulgare Carter et al.
(2019)

Fig. 5.5 Drought stress prodrome in plants
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5.6.2 Physiological and Biochemical Alterations Under
Drought

Physiological attributes like transpiration rate, stomatal conduction, leaf water
potential and relative water content are adversely affected by drought. Low water
potential, transpiration rate, relative water content and enhanced leaf temperature
were observed in Oryza sativa under drought (Fahad et al. 2017). Drought stress
induces the formation of reactive oxygen species (ROS) along with enhanced
generation of osmolytes like proline, glycine betaine. Production of ROS leads to
oxidative stress that ultimately results in cell death in plants (Silva et al. 2019).

Another important trait influenced by drought is photosynthesis. Drought stress
induces reduction in leaf expansion, damages the photosynthetic apparatus and
activity of photosynthetic enzymes. Reduction in phosphorylation and disruption
in ATP synthesis are key drivers for impaired photosynthesis under drought (Fahad
et al. 2017). Reduction in thylakoid membrane proteins and PSII activity under PEG
induced drought stress have been evident in many studies (Wang et al. 2019).

Activity of rubisco, a motor enzyme of photosynthesis is declined drastically
under drought. Reduction in amount of substrate, i.e. ribulose 1, 5 bisphosphate for
carboxylation, modification in ultrastructure of rubisco and chloroplast and acidifi-
cation of chloroplast stroma are the driving factors for decrement in rubisco activity.
Other enzymes like fructose-1, 6-bisphosphatase, NADP-glyceraldehyde phosphate

Table 5.6 Salient modifications in drought stricken plants

Parameters Modification Reference

Morphology Inhibition of seed germination Farooq et al. (2009)

Reduce shoot and root dry weight Manickavelu et al. (2006)

Diminished leaf area and number of
stomata

Jaleel et al. (2009)

Impaired mitosis and cell elongation Hussain et al. (2008)

Loss of turgor pressure and cell growth Taiz and Zeiger (2006)

Water and nutrient
relation

Low water use efficiency and transpiration
rate

Turner et al. (2001)

Low uptake of phosphorous, calcium and
magnesium

Barber (1995)

Enhanced nitrogen uptake Barber (1995)

Photosynthesis Reduction in RUBP generation and photo-
system II activity

Wise et al. (2004); Camejo
et al. (2006)

Low chlorophyll content Din et al. (2011)

Assimilate
partitioning

Decline in translocation of assimilates from
source to sink

Kim et al. (2000)

Disturbance in phloem loading and
unloading

Zinselmeier et al. (1999)

Low potential of sink to utilize the
assimilates

Zinselmeier et al. (1999)
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dehydrogenase, phosphoribulokinase, phosphoenol pyruvate carboxylase and pyru-
vate orthophosphate dikinase also decline under drought stress (Farooq et al. 2009).

Drought restricts nutrient movement from soil to plants. Under drought, root
growth and proliferation are hindered that limit nutrient translocation in plants.
Limited flow of oxygen, carbon and nitrogen assimilation in root nodules impedes
nitrogen fixing ability of legumes under drought (Ladrera et al. 2007). Nitrate
reduction in leaves was limited by declined photosynthesis, which supplies reducing
power, generated during photosynthetic via electron transport for the process of
nitrate reduction (Chen et al. 2018).

5.6.3 Adaptation of Plants to Drought Stress

5.6.3.1 Escape

Drought escape is characterized by short life cycle that enables plants to flower early
before onset of drought. Growing season is dependent on environmental variation
and plant genotype. Drought escape is enhanced when development of plant
synergizes with duration when soil moisture is available. Although drought escape
helps in plants survival during stress yet there is a decrement in the yield (Farooq
et al. 2009). High grain yield in Lens culinaris was recorded under early drought as a
result of drought escape. Maximum leaf area, stomatal conductance, high stomatal
density, early flowering with short life cycle were also observed as an outcome of
drought escape strategy in lentil (Sanchez-Gomez et al. 2019).

5.6.3.2 Avoidance

Avoidance is marked by maintaining the water potential of plants during drought. It
is also characterized by reduced water deprivation through transpiration and
balancing the water uptake from soil. For efficient water uptake, a deep and
extensive root system is required along with thick cuticle whose formation requires
high input of energy that ultimately results in low yield. Therefore, plants with
avoidance strategies are generally of compact size (Lisar et al. 2012). In Sorghum,
aquaporin genes PIP2;3 were strongly expressed in roots under drought compared to
roots under watered conditions. Aquaporins are the membrane proteins that allow
water and solute passage through the membrane into cell and their expression under
drought is an adaptive strategy (Schulze et al. 2019).

5.6.3.3 Tolerance

Tolerance to drought stress is perceptible by limited area and number of leaves
during water deficit condition. Plants show traits like formation of trichomes and
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hairy leaves which reduce leaf temperature during drought. Root architecture like
root density, root proliferation, root growth rate are some key alterations in plants
during drought. Reduction in stomata number, increment in root shoot ratio, accu-
mulation of osmolytes and induction of antioxidant defense system are other drought
tolerance traits in plants (Sapeta et al. 2013). In sorghum, leaf rolling, leaf waxiness,
stay green trait, root architecture, abscisic acid metabolism, ion transporter, transpi-
ration efficiency and osmotic adjustments are drought tolerant traits that enable it to
survive under drought stress (Badigannavar et al. 2018).

5.7 Conclusion

Major constraint for sustainable agricultural productivity and global food security is
abiotic stress which is an outcome of global climate change. Extreme weather
conditions attack morphological, physiological and biochemical attributes of the
plants and threat their survival in the environment. Multiple abiotic stresses like
salinity, flood, heavy metal and drought impact the crop yield. Drought is the most
devastating abiotic stress that declines the global crop productivity. Drought ham-
pers seed germination, reduces the stomatal frequency and diminishes leaf area and
water potential. At physiological level, drought restricts photosynthesis, thylakoid
structure and enzyme production. All these modifications alter the metabolism and
limit growth and development of plants. Despite such abiotic constraints, plants have
inherent tolerance mechanisms that enable them to cope up and survive under
extreme conditions. Activation of antioxidant defense system, changes in the mem-
brane lipid composition and enzyme production as well as morphological alterations
in plants are some of the tolerance traits in plants. In spite of such adaptive strategies,
improvements in the tolerance of plants against the extreme calamities are required.
Strategies like alteration in expression of stress responsive genes and transcription
factors are potential candidates to develop stress tolerant crops. More emphases
should be there on molecular research for exploiting the stress tolerance traits and
minimizing the aftermath of stress in plants.
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