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Abstract

Aggression takes several forms and can be
offensive or defensive. Aggression between
animals of the same species or society aims
to inflict harm upon another for the purpose of
protecting a resource such as food, reproduc-
tive partners, territory, or status. This chapter
explores the neurobiology of aggression. We
summarize the behavior of aggression, rodent
models of aggression, and the correlates of
aggressive behavior in the context of neuroen-
docrinology, neurotransmitter systems, and
neurocircuitry. Translational implications of
rodent studies are briefly discussed, applying
basic research to brain imaging data and

therapeutic approaches to conditions where
aggression is problematic.
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2.1 Introduction

Aggression can be defined as delivering harm to
another, with the aim of taking advantage of a
limited resource (Haller 2018a). Motivation for
aggression in animals can be: (i) offensive, which
occurs during competition for, or protection of,
resources such as food, reproductive partners,
social status, or territory; (ii) defensive, to ward
off attacks from another animal of the same or
different species; (iii) maternal, to protect off-
spring; (iv) predatory, or hunting, capturing, and
consuming prey; (v) play-fighting, shown by ado-
lescent individuals; and (vi) patrol or marking as a
form of agnostic behavior (Adams
2006; Veenema 2009). Differences in animal
societal levels of aggression can be attributed to
increased mating aggression and decreased paren-
tal investment (Barber 2008).

Offensive or predatory aggression is expressed
in humans as instrumental or proactive aggres-
sion, where some goal is aimed for, whereas
defensive aggression corresponds to impulsive
or reactive aggression in humans, and occurs in
response to perceived attack or threat (Blair
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2016). Aggression is also associated with lack of
empathy (Hernandez-Lallement et al. 2018).

This chapter reviews the neurobiology of
aggression, recent findings in aggression research
in rodents, and summarizes its translational
implications.

Fighting between conspecifics usually follows
rules, such as signaling intent to allow for a
weaker opponent to withdraw, lunge-and-bite
attacks on relatively robust body parts such as
rump, while avoiding non-vital body parts such
as face and neck (this is not always the case), and
cessation of violence when signals of defeat are
expressed by the opponent (Adams 2006; Haller
2017). Abnormal or maladaptive aggression is
quantitative or qualitative increase in normal
aggressive behavior compared to controls, or
departure from these species-specific expressions
of violence or its intent (Haller and Kruk
2006; Miczek et al. 2015).

Some animals may seek aggression in operant
and place preference paradigms, and this aggres-
sion seeking shows features common with com-
pulsive and addictive behavior models, such as
resistance to abstinence conditioning (Golden
et al. 2017a, b). Previous experience in winning
or losing fights partially determines outcome of
future escalations to contact violence, in addition
to multiple other factors, such as prior residency
(Hsu et al. 2006). Male animals with a history of
winning fights show increased aggression after a
period of deprivation from fighting opportunities
(Kudryavtseva et al. 2011).

Aggression in animals may show seasonal
variations during reproductive periods and to pro-
tect territory, and this is associated with changes
in circulating gonadal steroids (Munley et al.
2018). Aggression toward prey, or hunting, is
obviously behaviorally distinct from that directed
at conspecifics.

2.2 Experimental Paradigms
to Explore Aggression
in Rodents

Resident-intruder paradigm: a male rodent, the
resident, is allowed to familiarize with a home
cage, with or without a female. An intruder

animal, also male, is then introduced to the resi-
dent. A fight ensues, in which, all other conditions
being relatively equal, the resident is expected to
defeat the intruder.

Maternal aggression: a lactating dam with
pups actively defends her nest and pups against
an intruder, an unfamiliar male or female animal.
Attacks can be fierce, may target face and neck of
the intruder, and are quickly initiated.

Predatory aggression: a rodent is allowed to
attack and consume prey, usually an insect.

Aggression seeking: This is measured using
conditioned place preference after exposure of
an animal to a conspecific in one compartment
for some days, or in an operant setup where a
lever is pressed or a nose poke is required to gain
access to a conspecific on which to aggress.

Aggression inheritance in rodents is polygenic
with a wide variety of strains in which to model,
in addition to considering developmental factors
such as maternal care, and the experimental para-
digm used to test aggression; animal selection for
modeling aggression therefore requires scrutiny
(Miczek et al. 2001; Natarajan et al. 2009; Nyberg
et al. 2004).

Abnormal or excessive aggression can be
modeled in rodents through: (i) stress models,
which include repeated prolonged maternal sepa-
ration and early isolation or social subjugation;
(ii) drug models such as administration of ana-
bolic steroids during adolescence or alcohol in
adulthood; (iii) genetic, by selective breeding of
animals showing high aggression or anxiety; and
(iv) decreasing circulating glucocorticoid by
adrenalectomy and low-dose corticosterone pellet
implantation (Haller 2017; Takahashi et al. 2012).
Early social deprivation is associated with
increased aggression and attack behavior on vul-
nerable body parts (Tóth et al. 2008).

Exposure to chronic ultrasonic noise
increased aggression in the resident-intruder
paradigm only in animals showing initial high
levels of aggression in one series of
experiments, but in all animals in another
(Gorlova et al. 2019; Pavlov et al. 2017). Surgi-
cal devocalization of rats increased propensity to
aggressive behavior during neutral interactions
(Kisko et al. 2017).
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2.3 Neuroendocrinology
of Aggression

During development: Maternal separation is
associated with increased play-fighting in adoles-
cence and aggression in adulthood, and increased
basal corticosterone and hypothalamic vasopres-
sin (Veenema and Neumann 2009). Impacting
dam–pup interaction, including reduced bedding
material, is associated with higher circulating
corticosteroids, lower corticotropic hormone,
and increased aggression (Rice et al. 2008). Ado-
lescent animals attacked by an adult show
changes in the vasopressinergic system, namely
vasopressinergic fibers are increased and seroto-
ninergic terminals are decreased (Ferris 2000).
Down-regulated or impaired oxytocinergic activ-
ity is associated with increased aggression, but
exogenous administration does not ameliorate
aggressive behavior (de Jong and Neumann
2018).

In Males: Testosterone as a biological root of
aggression is contested (Albert et al. 1993). Dele-
tion of androgen receptors in the nervous system
is associated with impaired display of masculine
behavior (Juntti et al. 2010). Development of
play-fighting is dependent on androgen- and
estrogen-mediated effects (Field et al. 2006).
Higher aggression in male animals was correlated
with higher adrenocorticotropin hormone
responsiveness, lower trait anxiety, and great
Fos immunoreactivity in paraventricular nucleus
(Veenema et al. 2007).

In Females: Maternal aggression (actions
mediated by a pregnant or lactating dam against
others) is modulated by ovarian steroids,
stimulated by suckling pups, and increased if the
pups are handled (de Almeida et al. 2014;
Giovenardi et al. 2005). During estrus in a lactat-
ing dam, a male intruder is either attacked or
solicited, and this may be associated with changes
in perception of male-specific urinary proteins
(Agrati et al. 2011; Martín-Sánchez et al. 2015).
However, male-specific urinary proteins alone do
not instigate aggression in animals (Mucignat-
Caretta et al. 2004; however see also Chamero
et al. 2007), indicating that other sensory stimuli
are also involved. Vasopressin release in central

amygdala and oxytocin release in central amyg-
dala and paraventricular nucleus contribute to
maternal aggression (Bosch and Neumann 2010;
Bosch et al. 2005; Bosch 2013). Female aggres-
sion has not received the same attention as male
aggression; due to ethological background,
neurocircuitry of femal aggression is better
investigated in rodent models other than C57BL/
6 mice, such as Swiss Webster mice, rats, and
Syrian hamsters (Been et al. 2019).

2.4 Neurotransmitter Systems
in Aggression

Neurotransmitters directly implicated in physiol-
ogy and pathology of aggression include seroto-
nin, dopamine, and GABA (de Almeida et al.
2005). Factors altering serotonin and dopamine
neurotransmission during development are
associated with life-long behavioral alteration
(de Almeida et al. 2005).

Low brain serotonin has been correlated with
high aggression but mechanistic explanations or a
direct relationship is not agreed upon. Serotonin
levels were lower in some brain areas of animals
showing high aggression, and these same individ-
ual animals show the greatest increase in seroto-
nin after the stress of agonistic behavior
(Summers et al. 2005). Treatment with systemic
specific serotonin agonists and antagonists
suggests that normal and abnormal aggressive
behaviors are mediated by different serotonin
subtypes and mediate different types,
phasic vs. tonic, of serotoninergic activity
(de Boer and Koolhaas 2005). Chronically
enhanced activity of 5-HT1A serotonin auto-
receptors is associated with increased aggression
(Caramaschi et al. 2007).

It was suggested that aggression has different
phases including appetitive and executive phases,
which were influenced by pre- and post-synaptic
serotoninergic neurotransmission respectively
(Olivier and van Oorschot 2005). Modulation of
aggression by serotoninergic neurotransmission
interacts with glucocorticoids released during
stress in a phase-, context-, and history-dependant
manner (Summers and Winberg 2006). Studies
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have shown that reduced serotoninergic activity
in prefrontal cortex is associated with altered
serotonin receptor expression in forebrain, poorly
regulated dopamine secretion in nucleus
accumbens and aggressive impulsivity (Nautiyal
et al. 2015; Niederkofler et al. 2016; Seo et al.
2008). Knockout of serotonin autoreceptors 1B
decreased serotonin in brain and spinal cord
regions probably through increased serotonin
turnover, increased dopamine turnover in nucleus
accumbens, decreased dopamine, and was
associated with increased aggressiveness and
heightened cocaine sensitivity (Ase et al. 2008).
Increased alcohol-induced aggression is
associated with expression of certain GABAA

receptor subtypes, whereas activation of seroto-
nin receptor subtypes is associated with decreased
alcohol-induced aggression (Miczek et al. 2006).

Dopamine in nucleus accumbens increased in
anticipation of aggression and peaked after con-
frontation, while serotonin in prefrontal cortex
decreased in association with termination (Ferrari
et al. 2003; van Erp and Miczek 2000). Lack of
monoamine oxidase A but not B is associated
with increased aggression (Cases et al.
1995; Shih et al. 1999).

Lack of endothelial nitric oxide synthase
greatly decreases aggression in male mice but
does not influence maternal aggression, whereas
deficiency of neuronal nitric oxide synthase
decreases maternal aggression in female mice
(Demas et al. 1999; Gammie and Nelson 1999;
Gammie et al. 2000). Lack of neuronal nitric
oxide synthase increased aggression, decreased
social investigation, and was associated with
decreased serotonin turnover and deficient sero-
toninergic receptors (Chiavegatto et al. 2001;
Trainor et al. 2007a).

2.5 Neurocircuitry of Aggressive
Behavior

2.5.1 Amygdala

The amygdala plays a vital role in mediating
many aspects of innate and learned emotional
behaviors such as fear-conditioning, predation,
and aggression. In rat muricide model, c-Fos

immunoreactivity increased in medial, central,
and basolateral amygdala, as well as lateral hypo-
thalamus; periaqueductal gray activations shifted
from dorsal to ventral columns (Tulogdi et al.
2015).

Estrogen receptors α and β in medial preoptic
area and medial amygdala differentially modulate
aggressive behavior in males (Nakata et al. 2016).
Site-specific knockdown of an estrogen receptor β
gene in medial preoptic area decreased aggressive
but not sexual behavior in adulthood; in amygdala
knockdown of estrogen receptor β and α did not
impact aggression (ibid). GABAergic neurons in
medial amygdala promote aggression and are
inhibited by neighboring glutamatergic neurons;
the latter promote solitary grooming (Hong et al.
2014).

Aromatase expressing neurons in
posterodorsal medial amygdala modulate inter-
male aggression and maternal aggression (Unger
et al. 2015). Estrogen-dependent gene expression
increased in bed nucleus of stria terminalis during
long days and was associated with decreased
aggression (Laredo et al. 2014; Trainor
et al. 2007b).

Protein expression in oxytocin- and
vasopressin-positive neurons in hypothalamus
and bed nucleus of stria terminalis after intermale
aggression is associated with medial amygdalar
connectivity and activity (Wang et al. 2013).

Increased early growth response factor 1 in
medial amygdala was associated with increased
maternal aggression (Hasen and Gammie 2006).

2.5.2 Hypothalamus

For decades, it was generally accepted that the
aggression center in the brain is the hypothalamic
attack area, which is located in mediobasal hypo-
thalamus and receives inputs from medial pre-
frontal neurons, septal regions, bed nucleus of
stria terminalis, medial amygdala, amygdalo-
hippocampal subiculum, locally from hypothala-
mus, and from lateral parabrachial nucleus (Toth
et al. 2010). Electrical stimulation of the hypotha-
lamic attack area promptly induced attack in cats
and rodents, and increased c-Fos immunoreactiv-
ity in the lateral septum, bed nucleus of stria
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terminalis, medial and central amygdala,
mediodorsal thalamic nucleus, and piriform and
cingular cortex (Halász et al. 2002), suggesting
these brain areas are also involved in aggression.
Fos immunoreactivity in medial preoptic area and
nucleus accumbens correlates with mating and
experience of aggression (McHenry et al. 2016).
Bilateral lesions of medial preoptic area are
associated with attenuated aggression (Albert
et al. 1986). Maternal aggression in lactating mice
toward a male intruder is associated with increased
Fos immunoreactivity in medial preoptic area,
extended amygdala, accessory olfactory bulb,
claustrum, and other brain regions (Gammie and
Nelson 2001; Hasen and Gammie 2005).

In 2011, the ventrolateral part of ventromedial
hypothalamus (VMHvl) was identified as a node
structure to initiate attack (Lin et al. 2011).
Optogenetic activation of neurons in VMHvl
initiated male attack against conspecifics and
females, as well as inanimate objects. Single unit
activity measured widespread activation during
aggressive encounters, but low and diminishing
activity during mating (ibid). Consistently, single
unit recording showed that the activity of VMHvl
neurons is correlated with investigating olfactory
cues of male conspecifics and attack; neuronal
activity increased as the male–male distance
decreased (Falkner et al. 2014). Optogenetic acti-
vation of VMHvl potentiated aggression-seeking
and attack ferocity; inhibition had an opposite
effect (Falkner et al. 2016).

Within the VMHvl, a group of estrogen recep-
tor α-positive neurons has been shown to play an
essential role in aggression. Calcium activity and
optogenetic activation of estrogen receptor
α-positive (Esr1+) neurons in the anterior part of
VMHvl were associated with defense behavior
against a conspecific, including non-threatening
female; optogenetic inhibition impaired defense
behavior against an aggressive conspecific (Wang
et al. 2019a). Fos immunoreactivity shows
overlapping hypothalamic and amygdalar activa-
tion after an aggressive or sexual encounter in
males, indicating aggression and mating
behaviors may be regulated by the same type of
neurons (Veening et al. 2005). This concept is
supported by a recent study showing that

increasing photostimulation power on VMHvl
Esr1+ neurons in male mice shifted behavior dur-
ing a single interaction with a male or female
mouse from investigation, to mounting, to attack,
whereas non-cell-specific optogenetic activation
in the same area was associated with attack but
not mounting (Lee et al. 2014). Collectively,
these results suggested that the VMHvl Esr1+
neurons coordinate scalable control of two dis-
tinct behaviors, namely aggression and mating.

Interestingly, roles of VMHvl Esr1+ neurons
seem to be varied in different mouse strains and
sexual history. Optogenetic activation of VMHvl
Esr1+ neurons in virgin C57 female mice was
associated with attack on an intruder female
mouse, whereas activation of the same cells in
virgin Swiss Webster and lactating C57 female
mice was associated with mounting of a female
intruder (Hashikawa et al. 2017). Unexpectedly,
knockdown of estrogen receptor α in ventrome-
dial hypothalamus increased female aggression
against juveniles (Spiteri et al. 2010). In addition
to Esr1+ neurons, other cell types in VMH are
also involved in aggression. For example, genetic
ablation of progesterone expressing neurons in
ventromedial hypothalamus inhibited sexual
receptivity in females and mating and aggression
in males (Yang et al. 2013). In addition, a subset
of neurons in VMHvl has been shown to mediate
social fear (Sakurai et al. 2016).

Pheromone and olfactory receptors participate
in hypothalamic circuits modulating aggressive
behavior, but comprehensive descriptions are
lacking (Sternson 2013). Deficiency of TRP2-
expressing neurons in vomeronasal organ impairs
intermale aggression and sex discrimination
(Stowers 2002). A component of urine acts as a
phermone to instigate intermale aggression in
mice via vomeronasal organ neuronal circuits
(Chamero et al. 2007).

2.5.3 Prefrontal Cortex

Post-weaning social isolation was associated with
increased aggression in later life, reduced prefron-
tal cortical thickness, and was associated with
abnormal aggressive behavior such as reduced
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signaling and attack of vulnerable body areas
(Biro et al. 2017). Optogenetic activation of excit-
atory neurons decreased the intensity of an
aggressive bout and the propensity to initiate it,
but was not associated with change in aggression
termination; optogenetic suppression was
associated with opposite effects (Takahashi et al.
2014).

2.5.4 Lateral Septum

Projections from lateral septum to ventrolateral
part of ventromedial hypothalamus are inhibitory,
and photoactivation of lateral septum cells
terminates attack behavior (Wong et al. 2016).
Loss of a calcium-activated chloride channel in
a subpopulation of lateral septum neurons
increased aggressive display in the resident-
intruder paradigm (Wang et al. 2019b).

GABAA receptor agonist injected into lateral
septum increased aggression (McDonald et al.
2012).

Animals bred for short attack latency or high
anxiety behavior are more aggressive, and show
reduced vassopressinergic neurotransmission in
lateral septum, in addition to altered
hypothalamo-pituitary-adrenal axis response and
increased serotoninergic neurotransmission
(Veenema and Neumann 2007). Vasopressin
released in lateral septum modulates social behav-
ior but not aggression (Beiderbeck et al. 2007).

2.5.5 Other Brain Areas

Winning fights increased neurogenesis in hippo-
campus and aggression in males, and decreased
Fos immunoreactivity in amygdala; these effects
discontinue with absence of further opportunities
to aggress (Smagin et al. 2015). Dopamine
decreased in nucleus accumbens in anticipation
of an aggressive episode (Ferrari et al. 2003).
Knockdown of progestin receptors in ventral teg-
mental area in female mice is associated with
increased male rejection and aggression (Frye
et al. 2014). Neural activity in dorsal midbrain
central gray is associated with offensive and

defensive aggressive behavior (Adams 2006).
pCREB-positive cells increased in caudal
periaqueductal gray and lateral septum after
maternal aggression (Gammie and Nelson 2001).

2.5.6 Synthesis

Research summarized above suggests environ-
mental signals to aggress are relayed through one
of two possible main systems as shown in Fig. 2.1:
(i) medial amygdala to extended amygdala, lateral
septum, and hypothalamic areas, and therefrom to
periaqueductal gray; (ii) hypothalamic attack area,
the ventrolateral part of the ventromedial hypothal-
amus coordinating afferent and efferent brain sig-
naling in the initiation and processing of
aggression with afferents and efferents from and
to prefrontal cortex, lateral septum, amygdala,
other areas of hypothalamus, and brainstem
(Aleyasin et al. 2018; de Boer et al. 2015; Nelson
and Trainor 2007). Olfactory cues obviously play
an important role in rodent social dynamics, but
their contribution to human aggression is
unknown. Signals from prefrontal cortex modulate
or inhibit aggressive behavior. Data from human
studies support a central role for amygdala, hypo-
thalamus, and periaqueductal gray for processing
and initiating aggressive impulses, and prefrontal
cortex in processing action values and the decision
to aggress (Blair 2016).

2.6 Translational Implications

Aggression in human history is obviously com-
plex, and attempts at interpretation are placed in a
socioeconomic context (Fortman and Bas de
2005).

Human aggression can be reactive or impul-
sive associated with anger and autonomic arousal,
and instrumental which is thought to be more
goal-oriented and involves less autonomic
arousal; similarly aggression can be clustered
into impulsive-affective and controlled-predatory
subtypes (Nelson and Trainor 2007; Vitiello and
Stoff 1997). Human conditions in which aggres-
sive behavior is problematic include antisocial
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personality disorder, borderline personality disor-
der, intermittent explosive disorder, post-
traumatic stress disorder, irritable and
depression-linked aggression, schizophrenia,
bipolar disorder, attention-deficit hyperactivity
disorder, dementia and associated illness, and
alcohol-related aggression (Coccaro et al. 2011;
Nelson and Trainor 2007; Pompili et al. 2017). It
was suggested that aggressive conditions can be
classified into those associated with
neurocircuitry pathology, hypoarousal and low
circulating glucocorticoids, and emotional and
physiological hyperarousal (Haller and Kruk
2006). Establishing animal model validity as
related to human conditions is suggested
(Haller 2018b).

Studies in animals and humans suggest
neurocircuitry underlying aggression involves
subcortical systems producing aggressive
impulses, circuits predicting outcome of
aggressing and making a decision to aggress or
not, and notably circuits in prefrontal and medial

temporal cortex regulating emotion (Anderson
et al. 1999; Bufkin and Luttrell 2005; Coccaro
et al. 2011; Davidson 2000). Aggression in
humans associated with neurological damage or
degeneration includes frontotemporal lesions,
epilepsy, and Alzheimer’s disease (Haller and
Kruk 2006). Violent behavior in humans is
associated with functional impairments in pre-
frontal cortex (Yang and Raine 2009). Bilateral
amygdalar destruction in humans to treat intracta-
ble aggression has a “taming effect” but does not
abolish aggressive outbursts (Lee et al. 1998).
Deep brain stimulation of posterior medial hypo-
thalamus and nucleus accumbens reduced aggres-
sion (Harat et al. 2015).

Borderline personality disorder is associated
with volume loss in amygdala, hippocampus,
and left orbitofrontal and right anterior cingulate
cortex (van Elst et al. 2003). Psychopathy is
associated with hypoactive frontolimbic circuit
and hippocampal asymmetry (Raine et al. 2004;
Veit et al. 2002).

Fig. 2.1 Models of brain regions and circuitry
mediating aggression. Neurocircuitry mediating aggres-
sive behavior is processed either mainly through MeA, to
BNST, LS, and hypothalamic areas, or through the hypo-
thalamic attack area and VMHvl which communicates
with amygdala, PFC, and LS. The output of these
pathways is the PAG. Environmental stimuli of aggression

are mostly social in nature. Olfactory cues are received by
the olfactory bulb and relayed to MeA, hypothalamic
areas, or both. Visual and auditory cues are processed by
MeA as well as PFC. BNST bed nucleus of the stria
terminalis, LS lateral septum, MeA medial amygdala,
MPOA medial preoptic area, PAG periaqueductal gray,
PFC prefrontal cortex

2 Neurobiology and Neural Circuits of Aggression 15



Early to exposure to violence and cruelty may
consolidate an attraction to aggression in an indi-
vidual, and is associated with higher incidence of
post-traumatic stress disorder (Hinsberger et al.
2016; Raine et al. 2004). Aggression during
development is highly predictive of maladaptive
behavior in adulthood; theories of aggression
development combine genetics of
neurotransmitter-receptor systems, most notably
monoamine oxidase A, brain structure, micro-
and macrodynamic psychosocial factors such as
parenting and sociocultural background, and hor-
monal factors (Austerman 2017; Kim-Cohen
et al. 2006; Lansford 2018).

Experiments in rodents are needed to improve
pharmacotherapy of aggressive conditions, and
which presently includes the following:
(i) atypical antipsychotics such as clozapine and
risperidone; (ii) anticonvulsants such as
topiramate; (iii) mood stabilizers such as lithium;
(iv) adrenergic receptor agonists such as cloni-
dine; (v) typical antipsychotics such as haloperi-
dol; (vi) benzodiazepines such as midazolam;
(vii) combinations of drugs which may include
histamine blockers such as promethazine; (viii)
drugs acting on brain serotonin notably selective
serotonin reuptake inhibitors; (ix) beta blockers
such as propranolol; (x) drugs acting on nicotine
receptors (Brieden et al. 2002; Buitelaar et al.
2001; Granic 2014; Hoptman 2015; Huf et al.
2016; Knapp et al. 2012; Pompili et al. 2017;
Robb et al. 2019; Swann 2003). Studies in
animals and humans show that oxidative stress
plays an important role in alcohol toxicity and
aggressive behavior (Tobore 2019).

In short, we have a wealth of data spanning
across genetics, neurophysiology, brain structure,
pharmacology, and behavior from animal and
human studies on aggression; a comprehensive
integration of this data may provide novel
insights into how we can better screen for and
manage conditions associated with or
predisposing to aggression early in life, and shed
light on common and disparate mechanisms
underlying this complex phenomenon. Further
integrating neuroscientific findings into the

broader context of society would need a meaning-
ful science of neurosociology, which has not yet
developed a common language between the
sociological and phenomenological on the one
hand, and the biological and deterministic on the
other (Meloni et al. 2016). There is reason for
optimism toward further integrating the neurol-
ogy of development within a sociological context
(Vasileva and Balyasnikova 2019).
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