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Neural Circuits Underlying Innate Fear 1
Chaoran Ren and Qian Tao

Abstract

Fear is defined as a fundamental emotion
promptly arising in the context of threat and
when danger is perceived. Fear can be innate
or learned. Examples of innate fear include
fears that are triggered by predators, pain,
heights, rapidly approaching objects, and
ancestral threats such as snakes and spiders.
Animals and humans detect and respond more
rapidly to threatening stimuli than to non-
threatening stimuli in the natural world. The
threatening stimuli for most animals are
predators, and most predators are themselves
prey to other animals. Predatory avoidance is
of crucial importance for survival of animals.
Although humans are rarely affected by
predators, we are constantly challenged by
social threats such as a fearful or angry facial
expression. This chapter will summarize the
current knowledge on brain circuits processing
innate fear responses to visual stimuli derived
from studies conducted in mice and humans.

Keywords

Innate fear · Looming · Amygdala · Pulvinar

1.1 Introduction

Animals promote their survival by avoiding rap-
idly approaching objects that indicate threats.
Looming stimulus-induced fear responses are
conserved across species. For instance,
expanding shadows specifying an impending col-
lision can induce an avoidance response and upset
in both infants and adults (Ball and Tronick 1971;
King et al. 1992). In response to an expanding
dark disk on a screen mimicking a predator, labo-
ratory mice exhibit fear behaviors with either
escape or freezing patterns (Yilmaz and Meister
2013). Given the robustness of looming stimuli-
evoked fear behaviors, it is crucial to dissect the
neural circuits that mediate this response.

1.2 Animal Studies

1.2.1 Retinal Ganglion Cells That
Detect Looming Signals

Vision is the only useful sensory modality for
initiating looming-evoked fear responses. It is
well established that retinal ganglion cells
(RGCs) are the final output neurons of the verte-
brate retina, which collect visual information
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from bipolar cells and amacrine cells. An organ-
ism as a whole cannot behaviorally respond to
visual stimuli that are not also detectable by indi-
vidual ganglion cells. Identifying the RGCs that
can detect and transmit looming signals is a cru-
cial step in understanding the neural basis of
looming-evoked fear responses.

The light response patterns of RGCs are
diverse. There are three types of signal detection
in RGCs (Hartline 1938). ON-type signal detec-
tion results in a transient burst to light onset and a
sustained elevated discharge rate throughout the
photic stimulation. ON-OFF-type signal detection
results in discharge bursts at both the onset and
cessation of light stimuli. OFF-type signal detec-
tion is quiet until the stimulus light is turned off.
There are two important components in a looming
signal: dimming and motion; therefore, RGCs
extracting this feature from the visual scene
should be able to detect both stimuli. In accor-
dance with these criteria, candidate RGC
subtypes have been suggested in mice. For exam-
ple, using genetic labeling, two-photon micros-
copy, and electrophysiology approaches, Münch
et al. identified an approach-sensitive ganglion
cell type in the mouse retina named PV-5 cells
(Münch et al. 2009). The authors found that PV-5
cells belong to the OFF ganglion cell type, of
which ~80% have dendrites that arborize in the
inner plexiform layer (IPL). The spiking
responses of PV-5 cells were evoked preferen-
tially by stimuli mimicking approaching motion
compared to either lateral motion or receding
motion. Although the morphological and physio-
logical features of PV-5 cells seem well posi-
tioned to detect looming signals, it remains to be
determined whether PV-5 cells are necessary for
looming-evoked fear responses in behaving
animals. On the other hand, our recent study
demonstrated that a looming stimulus can activate
a previously undescribed subtype of RGC that
innervates the dorsal raphe nuclei (DRNs) and
superior colliculus (SC) (Huang et al. 2017). We
found that dendrites of DRN/SC-projecting
RGCs stratified in both the ON and OFF
sublaminae of the IPL and that specific ablation
of those RGCs through a saporin-based
immunotoxin strategy impairs looming-evoked

fear responses (freezing and escape behaviors),
suggesting that those RGCs are necessary for
looming-evoked fear responses. Although DRN/
SC-projecting RGCs have an asymmetric den-
dritic field that resembles direction-selective
RGCs, DRN/SC-projecting RGCs: (1) lack
CART immunoreactivity and (2) show no direc-
tion preference to moving stimuli. It remains to be
determined how looming stimuli activate DRN/
SC-projecting RGCs that are nondirectional
although directional summation in nondirection-
selective RGCs has been described previously
(Abbas et al. 2013).

1.2.2 Brain Circuits That Mediate
Looming-Evoked Fear
Responses in Mice

Looming signals detected by RGCs need to acti-
vate the brainstem fear systems to initiate fear
responses. The precise circuits underlying such
responses are not well understood. Accumulating
evidence suggests that the SC, which is a retinal
recipient structure, contributes to fear-related
behaviors. For example, stimulation of SC
neurons induces defensive behaviors (Sahibzada
et al. 1986; Dean et al. 1988; Keay et al. 1988;
Schenberg et al. 1990), and SC lesions impair
defensive reactions to a sudden overhead visual
stimulus (Dean et al. 1989). Therefore, if the SC
receives looming-related signals transmitted from
RGCs, it might be in a position to modulate
looming-evoked fear responses. Consistent with
this view, several circuits related to the SC have
been proposed for mediating looming-induced
fear behaviors. For instance, Wei et al. found
that optogenetic activation of CaMKIIa neurons
in the intermediate layer of the SC induced
freezing-like behaviors, whereas silencing of
those neurons reversibly blocked the expression
of looming-evoked freezing (Wei et al. 2015).
Furthermore, the authors demonstrated that
looming-sensitive SC neurons can innervate the
lateral posterior nucleus of the thalamus (LP),
which in turn activates the basolateral amygdala
(BLA) and that abrupt the signal transmission of
this pathway impairs looming-evoked freezing.

2 C. Ren and Q. Tao



Therefore, the authors provide compelling evi-
dence that the SC-LP-BLA pathway plays a piv-
otal role in the regulation of looming-evoked
freezing behaviors. In contrast, Shang et al.
found that PV+ excitatory neurons in the superfi-
cial layer of the SC can also detect looming
signals and that specific activation of PV+ SC
neurons triggers escape-like behaviors (Shang
et al. 2015). The authors also dissected the neural
circuits underlying this process: PV+ neurons in
the SC can project to the parabigeminal nucleus
(PBGN). Optogenetic activation of the PV+

SC-PBGN pathway reliably induces escape
behaviors. Furthermore, the authors prove that
the PBGN can further innervate the central amyg-
dala (CeA), which can also be activated by
looming stimulation. Collectively, the work
conducted by Shang et al. suggests that the SC-
PBGN-CeA pathway underlies looming-evoked
escape behaviors. Although the key neural
circuits that initiate looming-evoked fear
responses have been identified, another important
question regarding the looming-evoked fear
responses is how distinct defensive behaviors
(i.e., freezing and escape) are selected by the
brain. Shang et al. addressed this question by
showing that SC orchestrates dimorphic fear
behaviors with two divergent excitatory pathways
(i.e., SC-LP and SC-PBGN) that work in a
winner-take-all model (Shang et al. 2018). They
proposed that general factors, including environ-
mental context, threat stimulus features, and indi-
vidual differences, determine behavioral patterns
induced by looming stimuli.

Growing evidence suggests that changes in
mood states can adjust looming-evoked fear
responses, which is important for individual
adaptations to challenges. Deciphering the neural
circuits related to emotional centers that adjust
looming-evoked fear responses will shed light
on the mechanism of abnormal reactivity in
mood disorders, such as anxiety, depression, and
phobia. The monoaminergic systems derived
from the midbrain DRN, locus coeruleus (LC),
and ventral tegmental area (VTA) play a key role
in the modulation of mood states. Changes in
neural activity in the monoaminergic systems
may influence the expression of fear responses

through activation of related receptors distributed
in fear regions, including the amygdala. In our
previous study, we identified a retinoraphe pro-
jection with DRN-projecting RGCs that also send
axonal collaterals to the SC (Huang et al. 2017).
We demonstrated that looming signals can not
only initiate fear responses by activating the
retina-SC pathway but can also inhibit the seroto-
nergic tone in the DRN, which can facilitate the
induction of fear responses. Our finding suggests
that the primary sensory input regulates itself via
the DRN. The added synaptic delay in the circuit
must clearly be outweighed by an adaptive advan-
tage in such an important innate survival
response. The role of the LC and VTA in the
regulation of looming-evoked fear responses
was investigated by Liping Wang’s lab. Li et al.
found that exposure to repeated stress caused
anxiety-like behaviors accompanied by
accelerated fear responses to looming stimulation
(Li et al. 2018). The underlying neural
mechanisms were investigated using an array of
brain circuit interrogation tools, including c-Fos
brain mapping, fiber photometry, chemogenetics,
and optogenetics. They demonstrated that the
LC-SC pathway is both necessary and sufficient
for the stress-induced acceleration of looming-
evoked fear responses. In addition, a very recent
study conducted by Zhou et al. found that
looming stimulation can also activate a subset of
CaMKIIa+ neurons in the deep layer of SC,
which could synapse onto CeA-projecting
GABAergic neurons in the VTA (Zhou et al.
2019). Optogenetic activation of the SC-to-VTA
projections induced escape behaviors, whereas
inhibition of VTA GABAergic neurons impaired
looming-evoked escape behaviors. These results
demonstrated that visual circuits related to the
VTA can also mediate looming-evoked fear
responses. The precise interactions between the
SC-VTA pathway identified by Zhou et al. and
the SC-PBGN pathway identified by Shang et al.
need to be determined (Zhou et al. 2019; Shang
et al. 2015). One possible explanation of these
redundant circuits for mediating looming-evoked
escape behaviors is that the SC-PBGN pathway is
dedicated to triggering active escape behaviors,
whereas the SC-VTA pathway can also facilitate
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looming-evoked escape behaviors through modu-
lation of the neural activity in the VTA.

Recent studies also found that mood-related
brain regions other than the monoaminergic
systems can also regulate looming-evoked fear
responses. For example, Evans et al. found that
a subset of excitatory neurons in the deep layer of
the medial SC (mSC) can directly synapses onto
the glutamatergic neurons in the dorsal
periaqueductal gray (dPAG) (Evans et al. 2018).
Changes in the activity of the mSC-dPAG path-
way can regulate looming-evoked escape behav-
ior. On the other hand, Salay et al. demonstrated
that midline thalamic nuclei (i.e., the nuclei of the
ventral midline thalamus, the xiphoid nucleus,
and nucleus reuniens) can also regulate
looming-evoked fear responses, including freez-
ing, tail rattling, and autonomic arousal (Salay
et al. 2018).

1.3 Human Studies

From the evolutionary point of view, innate fear
subserves “self-protection” function that
promotes the initiation of fight-or-flight response
in the absence of awareness. It is therefore
believed that initial responses triggered by innate
fear are automatic and quick. This notion is
supported by electrophysiological data
demonstrating that detection of fear-related
stimuli is as quickly as 100 ms post-stimulus or
even earlier, which is more quickly than detection
of non-fear stimuli (Mogg and Bradley 2010;
Vuilleumier and Pourtois 2007).

The neural mechanism underlying innate fear
is most likely involve non-conscious emotion
processing. A host of techniques and experimen-
tal paradigms have been used to elicit
non-conscious emotion processing. For instance,
a backward masking procedure briefly presented
an emotional stimulus (target) that is immediately
followed by a masking emotional stimulus
(mask), and it is most likely that the observer
cannot consciously report the presence or the
content of the target. Other techniques include
binocular rivalry or flash suppression, during
which the stimuli are presented at a subliminally

threshold. The neuroimaging studies using such
techniques have shown consistently that unseen
stimuli of fear elicit activity in the amygdala. For
instance, Whalen and colleagues presented
pictures of fearful and happy facial expressions
to healthy subjects by using the backward
masking procedure and in meanwhile functional
magnetic resonance imaging (fMRI) data was
collected (Whalen et al. 1998). Although subjects
reported seeing only neutral facial expressions,
fMRI results found significant more activations
in the amygdala during viewing of masked fearful
faces than during viewing of masked happy faces.
By recording intracranial electrophysiological
data, a short-latency fear-related amygdala
response was found during fearful, but not neutral
or happy, facial expressions (Mendez-Bertolo
et al. 2016). Another line of evidence comes
from investigations on blindsight patients with
striate cortex lesions, who could discriminate the
content of emotional stimuli presented in their
blind field. The results obtained in these patients
also showed that the unseen fear stimuli increased
amygdala activation, which were parallel with the
data from healthy subjects when masking
techniques were used. Some studies further dem-
onstrate a correlation between their proficiency
and activity in the amygdala (Pegna et al. 2005;
Tamietto et al. 2009). These findings suggested
that fear-related information can be perceived in
the absence of awareness despite lesions to the
visual cortical pathway.

Converging evidence suggests a subcortical
pathway is underlying innate fear processing.
First, it is evidenced that 5-month-old infants
look longer at spiders than at non-threatening
biological stimuli (e.g., flower), and 8-month-
old infants responded more rapidly to snakes
than to flowers and more rapidly to angry than
to happy face (Rakison and Derringer 2008;
LoBue and DeLoache 2010). Given that the
infants have had little experience with the threat-
ening stimuli, these results suggested that a sub-
cortical mechanism underlying innate fear present
from birth. Second, accumulated neuroimaging
evidence suggests that the visual information of
threat is transmitted from retina to amygdala via a
subcortical pathway comprising the superior
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colliculus (SC) and pulvinar by demonstrating
co-activation among these three brain regions in
healthy subjects (Morris et al. 1999; Vuilleumier
et al. 2003) as well as blindsight patients (Morris
and Dolan 2001; Pegna et al. 2005) when they
view fear-related stimuli. Dynamic causal
modeling (DCM) is a powerful approach that is
informed by anatomical and physiological
principles to investigate effective connectivity
between brain regions. Several DCM studies
investigated whether the activation of these sub-
cortical regions is causally related, and the studies
have consistently showed a forward connection
between the pulvinar and amygdala (McFadyen
et al. 2017; Garvert et al. 2014; Rudrauf et al.
2008). Finally, lesion studies have shown that
patients with unilateral pulvinar lesions impair
discrimination of fearful faces in the contralateral
fields (Ward et al. 2007). Furthermore,
hemianopic patients without blindsight with
pulvinar lesions demonstrated no facilitatory
effects on detecting fearful faces, whereas
hemianopic patients without pulvinar lesions
showed response facilitation to fearful stimuli
(Caterina et al. 2018). These findings suggest a
pivotal role of pulvinar in implicit fear
processing.

An important question is whether there is
anatomical evidence that the SC-pulvinar-amyg-
dala pathway exists in the human brain. Tamietto
and colleagues used diffusion tensor imaging
(DTI) to characterize in vivo the connectivity
between the SC, pulvinar, and amygdala in ten
healthy individuals and a blindsight patient with
early unilateral destruction of the visual cortex
(Tamietto et al. 2012). The authors found
pulvinar-amygdala fiber connections and SC-
pulvinar-amygdala fiber connections in the
healthy individuals as well as the patient.
Destruction of the visual cortex led to increased
fiber connections along the subcortical pathway
but only in the damaged hemisphere. This finding
supports a functional role of the subcortical path-
way in conveying visual emotional information
critical for the blindsight patient. Similarly, Rafal
et al. used probabilistic DTI tractography to
reconstruct the subcortical pathway in both
hemispheres for 19 of the 20 healthy human

participants and 7 of the 8 macaques (Rafal
et al. 2015). Importantly, it was evidenced that
the microstructure of SC-amygdala pathway
predicts threat bias, suggesting a functional role
of the subcortical pathway in processing threat in
healthy humans (Koller et al. 2018). The sample
of human subjects was expanded in a multimodal
neuroimaging study (McFadyen et al. 2019). The
authors computationally modeled the hemody-
namic activity during an emotion task and
demonstrated a correlation between fiber density
in this subcortical pathway and fearful face rec-
ognition as well as the strength of dynamic cou-
pling between the SC, pulvinar, and amygdala.

In addition to the subcortical SC-pulvinar-
amygdala pathway, some cortical regions may
be also involved during non-conscious perception
of fear. Neuroimaging studies in healthy humans
suggest that fear-related stimuli selectively acti-
vate prefrontal, and orbitofrontal regions, anterior
cingulate, and brain stem. The orbitofrontal cor-
tex may extract threat value and inform threat
perception via a feedback pathway to early visual
regions (Barrett and Bar 2009; Kveraga et al.
2007).

In summary, an “innate alarm system” under-
lying perception of innate fear is a brain network
comprising both subcortical and cortical regions.
The amygdala seems to be a core site within this
network. This network facilitates an immediate
and fast response to threatening stimuli.
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Neurobiology and Neural Circuits
of Aggression 2
Mohamed Helmy, Jiaozhen Zhang, and Hao Wang

Abstract

Aggression takes several forms and can be
offensive or defensive. Aggression between
animals of the same species or society aims
to inflict harm upon another for the purpose of
protecting a resource such as food, reproduc-
tive partners, territory, or status. This chapter
explores the neurobiology of aggression. We
summarize the behavior of aggression, rodent
models of aggression, and the correlates of
aggressive behavior in the context of neuroen-
docrinology, neurotransmitter systems, and
neurocircuitry. Translational implications of
rodent studies are briefly discussed, applying
basic research to brain imaging data and

therapeutic approaches to conditions where
aggression is problematic.

Keywords

Aggression · Neural circuits · Hypothalamus

2.1 Introduction

Aggression can be defined as delivering harm to
another, with the aim of taking advantage of a
limited resource (Haller 2018a). Motivation for
aggression in animals can be: (i) offensive, which
occurs during competition for, or protection of,
resources such as food, reproductive partners,
social status, or territory; (ii) defensive, to ward
off attacks from another animal of the same or
different species; (iii) maternal, to protect off-
spring; (iv) predatory, or hunting, capturing, and
consuming prey; (v) play-fighting, shown by ado-
lescent individuals; and (vi) patrol or marking as a
form of agnostic behavior (Adams
2006; Veenema 2009). Differences in animal
societal levels of aggression can be attributed to
increased mating aggression and decreased paren-
tal investment (Barber 2008).

Offensive or predatory aggression is expressed
in humans as instrumental or proactive aggres-
sion, where some goal is aimed for, whereas
defensive aggression corresponds to impulsive
or reactive aggression in humans, and occurs in
response to perceived attack or threat (Blair
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2016). Aggression is also associated with lack of
empathy (Hernandez-Lallement et al. 2018).

This chapter reviews the neurobiology of
aggression, recent findings in aggression research
in rodents, and summarizes its translational
implications.

Fighting between conspecifics usually follows
rules, such as signaling intent to allow for a
weaker opponent to withdraw, lunge-and-bite
attacks on relatively robust body parts such as
rump, while avoiding non-vital body parts such
as face and neck (this is not always the case), and
cessation of violence when signals of defeat are
expressed by the opponent (Adams 2006; Haller
2017). Abnormal or maladaptive aggression is
quantitative or qualitative increase in normal
aggressive behavior compared to controls, or
departure from these species-specific expressions
of violence or its intent (Haller and Kruk
2006; Miczek et al. 2015).

Some animals may seek aggression in operant
and place preference paradigms, and this aggres-
sion seeking shows features common with com-
pulsive and addictive behavior models, such as
resistance to abstinence conditioning (Golden
et al. 2017a, b). Previous experience in winning
or losing fights partially determines outcome of
future escalations to contact violence, in addition
to multiple other factors, such as prior residency
(Hsu et al. 2006). Male animals with a history of
winning fights show increased aggression after a
period of deprivation from fighting opportunities
(Kudryavtseva et al. 2011).

Aggression in animals may show seasonal
variations during reproductive periods and to pro-
tect territory, and this is associated with changes
in circulating gonadal steroids (Munley et al.
2018). Aggression toward prey, or hunting, is
obviously behaviorally distinct from that directed
at conspecifics.

2.2 Experimental Paradigms
to Explore Aggression
in Rodents

Resident-intruder paradigm: a male rodent, the
resident, is allowed to familiarize with a home
cage, with or without a female. An intruder

animal, also male, is then introduced to the resi-
dent. A fight ensues, in which, all other conditions
being relatively equal, the resident is expected to
defeat the intruder.

Maternal aggression: a lactating dam with
pups actively defends her nest and pups against
an intruder, an unfamiliar male or female animal.
Attacks can be fierce, may target face and neck of
the intruder, and are quickly initiated.

Predatory aggression: a rodent is allowed to
attack and consume prey, usually an insect.

Aggression seeking: This is measured using
conditioned place preference after exposure of
an animal to a conspecific in one compartment
for some days, or in an operant setup where a
lever is pressed or a nose poke is required to gain
access to a conspecific on which to aggress.

Aggression inheritance in rodents is polygenic
with a wide variety of strains in which to model,
in addition to considering developmental factors
such as maternal care, and the experimental para-
digm used to test aggression; animal selection for
modeling aggression therefore requires scrutiny
(Miczek et al. 2001; Natarajan et al. 2009; Nyberg
et al. 2004).

Abnormal or excessive aggression can be
modeled in rodents through: (i) stress models,
which include repeated prolonged maternal sepa-
ration and early isolation or social subjugation;
(ii) drug models such as administration of ana-
bolic steroids during adolescence or alcohol in
adulthood; (iii) genetic, by selective breeding of
animals showing high aggression or anxiety; and
(iv) decreasing circulating glucocorticoid by
adrenalectomy and low-dose corticosterone pellet
implantation (Haller 2017; Takahashi et al. 2012).
Early social deprivation is associated with
increased aggression and attack behavior on vul-
nerable body parts (Tóth et al. 2008).

Exposure to chronic ultrasonic noise
increased aggression in the resident-intruder
paradigm only in animals showing initial high
levels of aggression in one series of
experiments, but in all animals in another
(Gorlova et al. 2019; Pavlov et al. 2017). Surgi-
cal devocalization of rats increased propensity to
aggressive behavior during neutral interactions
(Kisko et al. 2017).
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2.3 Neuroendocrinology
of Aggression

During development: Maternal separation is
associated with increased play-fighting in adoles-
cence and aggression in adulthood, and increased
basal corticosterone and hypothalamic vasopres-
sin (Veenema and Neumann 2009). Impacting
dam–pup interaction, including reduced bedding
material, is associated with higher circulating
corticosteroids, lower corticotropic hormone,
and increased aggression (Rice et al. 2008). Ado-
lescent animals attacked by an adult show
changes in the vasopressinergic system, namely
vasopressinergic fibers are increased and seroto-
ninergic terminals are decreased (Ferris 2000).
Down-regulated or impaired oxytocinergic activ-
ity is associated with increased aggression, but
exogenous administration does not ameliorate
aggressive behavior (de Jong and Neumann
2018).

In Males: Testosterone as a biological root of
aggression is contested (Albert et al. 1993). Dele-
tion of androgen receptors in the nervous system
is associated with impaired display of masculine
behavior (Juntti et al. 2010). Development of
play-fighting is dependent on androgen- and
estrogen-mediated effects (Field et al. 2006).
Higher aggression in male animals was correlated
with higher adrenocorticotropin hormone
responsiveness, lower trait anxiety, and great
Fos immunoreactivity in paraventricular nucleus
(Veenema et al. 2007).

In Females: Maternal aggression (actions
mediated by a pregnant or lactating dam against
others) is modulated by ovarian steroids,
stimulated by suckling pups, and increased if the
pups are handled (de Almeida et al. 2014;
Giovenardi et al. 2005). During estrus in a lactat-
ing dam, a male intruder is either attacked or
solicited, and this may be associated with changes
in perception of male-specific urinary proteins
(Agrati et al. 2011; Martín-Sánchez et al. 2015).
However, male-specific urinary proteins alone do
not instigate aggression in animals (Mucignat-
Caretta et al. 2004; however see also Chamero
et al. 2007), indicating that other sensory stimuli
are also involved. Vasopressin release in central

amygdala and oxytocin release in central amyg-
dala and paraventricular nucleus contribute to
maternal aggression (Bosch and Neumann 2010;
Bosch et al. 2005; Bosch 2013). Female aggres-
sion has not received the same attention as male
aggression; due to ethological background,
neurocircuitry of femal aggression is better
investigated in rodent models other than C57BL/
6 mice, such as Swiss Webster mice, rats, and
Syrian hamsters (Been et al. 2019).

2.4 Neurotransmitter Systems
in Aggression

Neurotransmitters directly implicated in physiol-
ogy and pathology of aggression include seroto-
nin, dopamine, and GABA (de Almeida et al.
2005). Factors altering serotonin and dopamine
neurotransmission during development are
associated with life-long behavioral alteration
(de Almeida et al. 2005).

Low brain serotonin has been correlated with
high aggression but mechanistic explanations or a
direct relationship is not agreed upon. Serotonin
levels were lower in some brain areas of animals
showing high aggression, and these same individ-
ual animals show the greatest increase in seroto-
nin after the stress of agonistic behavior
(Summers et al. 2005). Treatment with systemic
specific serotonin agonists and antagonists
suggests that normal and abnormal aggressive
behaviors are mediated by different serotonin
subtypes and mediate different types,
phasic vs. tonic, of serotoninergic activity
(de Boer and Koolhaas 2005). Chronically
enhanced activity of 5-HT1A serotonin auto-
receptors is associated with increased aggression
(Caramaschi et al. 2007).

It was suggested that aggression has different
phases including appetitive and executive phases,
which were influenced by pre- and post-synaptic
serotoninergic neurotransmission respectively
(Olivier and van Oorschot 2005). Modulation of
aggression by serotoninergic neurotransmission
interacts with glucocorticoids released during
stress in a phase-, context-, and history-dependant
manner (Summers and Winberg 2006). Studies
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have shown that reduced serotoninergic activity
in prefrontal cortex is associated with altered
serotonin receptor expression in forebrain, poorly
regulated dopamine secretion in nucleus
accumbens and aggressive impulsivity (Nautiyal
et al. 2015; Niederkofler et al. 2016; Seo et al.
2008). Knockout of serotonin autoreceptors 1B
decreased serotonin in brain and spinal cord
regions probably through increased serotonin
turnover, increased dopamine turnover in nucleus
accumbens, decreased dopamine, and was
associated with increased aggressiveness and
heightened cocaine sensitivity (Ase et al. 2008).
Increased alcohol-induced aggression is
associated with expression of certain GABAA

receptor subtypes, whereas activation of seroto-
nin receptor subtypes is associated with decreased
alcohol-induced aggression (Miczek et al. 2006).

Dopamine in nucleus accumbens increased in
anticipation of aggression and peaked after con-
frontation, while serotonin in prefrontal cortex
decreased in association with termination (Ferrari
et al. 2003; van Erp and Miczek 2000). Lack of
monoamine oxidase A but not B is associated
with increased aggression (Cases et al.
1995; Shih et al. 1999).

Lack of endothelial nitric oxide synthase
greatly decreases aggression in male mice but
does not influence maternal aggression, whereas
deficiency of neuronal nitric oxide synthase
decreases maternal aggression in female mice
(Demas et al. 1999; Gammie and Nelson 1999;
Gammie et al. 2000). Lack of neuronal nitric
oxide synthase increased aggression, decreased
social investigation, and was associated with
decreased serotonin turnover and deficient sero-
toninergic receptors (Chiavegatto et al. 2001;
Trainor et al. 2007a).

2.5 Neurocircuitry of Aggressive
Behavior

2.5.1 Amygdala

The amygdala plays a vital role in mediating
many aspects of innate and learned emotional
behaviors such as fear-conditioning, predation,
and aggression. In rat muricide model, c-Fos

immunoreactivity increased in medial, central,
and basolateral amygdala, as well as lateral hypo-
thalamus; periaqueductal gray activations shifted
from dorsal to ventral columns (Tulogdi et al.
2015).

Estrogen receptors α and β in medial preoptic
area and medial amygdala differentially modulate
aggressive behavior in males (Nakata et al. 2016).
Site-specific knockdown of an estrogen receptor β
gene in medial preoptic area decreased aggressive
but not sexual behavior in adulthood; in amygdala
knockdown of estrogen receptor β and α did not
impact aggression (ibid). GABAergic neurons in
medial amygdala promote aggression and are
inhibited by neighboring glutamatergic neurons;
the latter promote solitary grooming (Hong et al.
2014).

Aromatase expressing neurons in
posterodorsal medial amygdala modulate inter-
male aggression and maternal aggression (Unger
et al. 2015). Estrogen-dependent gene expression
increased in bed nucleus of stria terminalis during
long days and was associated with decreased
aggression (Laredo et al. 2014; Trainor
et al. 2007b).

Protein expression in oxytocin- and
vasopressin-positive neurons in hypothalamus
and bed nucleus of stria terminalis after intermale
aggression is associated with medial amygdalar
connectivity and activity (Wang et al. 2013).

Increased early growth response factor 1 in
medial amygdala was associated with increased
maternal aggression (Hasen and Gammie 2006).

2.5.2 Hypothalamus

For decades, it was generally accepted that the
aggression center in the brain is the hypothalamic
attack area, which is located in mediobasal hypo-
thalamus and receives inputs from medial pre-
frontal neurons, septal regions, bed nucleus of
stria terminalis, medial amygdala, amygdalo-
hippocampal subiculum, locally from hypothala-
mus, and from lateral parabrachial nucleus (Toth
et al. 2010). Electrical stimulation of the hypotha-
lamic attack area promptly induced attack in cats
and rodents, and increased c-Fos immunoreactiv-
ity in the lateral septum, bed nucleus of stria
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terminalis, medial and central amygdala,
mediodorsal thalamic nucleus, and piriform and
cingular cortex (Halász et al. 2002), suggesting
these brain areas are also involved in aggression.
Fos immunoreactivity in medial preoptic area and
nucleus accumbens correlates with mating and
experience of aggression (McHenry et al. 2016).
Bilateral lesions of medial preoptic area are
associated with attenuated aggression (Albert
et al. 1986). Maternal aggression in lactating mice
toward a male intruder is associated with increased
Fos immunoreactivity in medial preoptic area,
extended amygdala, accessory olfactory bulb,
claustrum, and other brain regions (Gammie and
Nelson 2001; Hasen and Gammie 2005).

In 2011, the ventrolateral part of ventromedial
hypothalamus (VMHvl) was identified as a node
structure to initiate attack (Lin et al. 2011).
Optogenetic activation of neurons in VMHvl
initiated male attack against conspecifics and
females, as well as inanimate objects. Single unit
activity measured widespread activation during
aggressive encounters, but low and diminishing
activity during mating (ibid). Consistently, single
unit recording showed that the activity of VMHvl
neurons is correlated with investigating olfactory
cues of male conspecifics and attack; neuronal
activity increased as the male–male distance
decreased (Falkner et al. 2014). Optogenetic acti-
vation of VMHvl potentiated aggression-seeking
and attack ferocity; inhibition had an opposite
effect (Falkner et al. 2016).

Within the VMHvl, a group of estrogen recep-
tor α-positive neurons has been shown to play an
essential role in aggression. Calcium activity and
optogenetic activation of estrogen receptor
α-positive (Esr1+) neurons in the anterior part of
VMHvl were associated with defense behavior
against a conspecific, including non-threatening
female; optogenetic inhibition impaired defense
behavior against an aggressive conspecific (Wang
et al. 2019a). Fos immunoreactivity shows
overlapping hypothalamic and amygdalar activa-
tion after an aggressive or sexual encounter in
males, indicating aggression and mating
behaviors may be regulated by the same type of
neurons (Veening et al. 2005). This concept is
supported by a recent study showing that

increasing photostimulation power on VMHvl
Esr1+ neurons in male mice shifted behavior dur-
ing a single interaction with a male or female
mouse from investigation, to mounting, to attack,
whereas non-cell-specific optogenetic activation
in the same area was associated with attack but
not mounting (Lee et al. 2014). Collectively,
these results suggested that the VMHvl Esr1+
neurons coordinate scalable control of two dis-
tinct behaviors, namely aggression and mating.

Interestingly, roles of VMHvl Esr1+ neurons
seem to be varied in different mouse strains and
sexual history. Optogenetic activation of VMHvl
Esr1+ neurons in virgin C57 female mice was
associated with attack on an intruder female
mouse, whereas activation of the same cells in
virgin Swiss Webster and lactating C57 female
mice was associated with mounting of a female
intruder (Hashikawa et al. 2017). Unexpectedly,
knockdown of estrogen receptor α in ventrome-
dial hypothalamus increased female aggression
against juveniles (Spiteri et al. 2010). In addition
to Esr1+ neurons, other cell types in VMH are
also involved in aggression. For example, genetic
ablation of progesterone expressing neurons in
ventromedial hypothalamus inhibited sexual
receptivity in females and mating and aggression
in males (Yang et al. 2013). In addition, a subset
of neurons in VMHvl has been shown to mediate
social fear (Sakurai et al. 2016).

Pheromone and olfactory receptors participate
in hypothalamic circuits modulating aggressive
behavior, but comprehensive descriptions are
lacking (Sternson 2013). Deficiency of TRP2-
expressing neurons in vomeronasal organ impairs
intermale aggression and sex discrimination
(Stowers 2002). A component of urine acts as a
phermone to instigate intermale aggression in
mice via vomeronasal organ neuronal circuits
(Chamero et al. 2007).

2.5.3 Prefrontal Cortex

Post-weaning social isolation was associated with
increased aggression in later life, reduced prefron-
tal cortical thickness, and was associated with
abnormal aggressive behavior such as reduced

2 Neurobiology and Neural Circuits of Aggression 13



signaling and attack of vulnerable body areas
(Biro et al. 2017). Optogenetic activation of excit-
atory neurons decreased the intensity of an
aggressive bout and the propensity to initiate it,
but was not associated with change in aggression
termination; optogenetic suppression was
associated with opposite effects (Takahashi et al.
2014).

2.5.4 Lateral Septum

Projections from lateral septum to ventrolateral
part of ventromedial hypothalamus are inhibitory,
and photoactivation of lateral septum cells
terminates attack behavior (Wong et al. 2016).
Loss of a calcium-activated chloride channel in
a subpopulation of lateral septum neurons
increased aggressive display in the resident-
intruder paradigm (Wang et al. 2019b).

GABAA receptor agonist injected into lateral
septum increased aggression (McDonald et al.
2012).

Animals bred for short attack latency or high
anxiety behavior are more aggressive, and show
reduced vassopressinergic neurotransmission in
lateral septum, in addition to altered
hypothalamo-pituitary-adrenal axis response and
increased serotoninergic neurotransmission
(Veenema and Neumann 2007). Vasopressin
released in lateral septum modulates social behav-
ior but not aggression (Beiderbeck et al. 2007).

2.5.5 Other Brain Areas

Winning fights increased neurogenesis in hippo-
campus and aggression in males, and decreased
Fos immunoreactivity in amygdala; these effects
discontinue with absence of further opportunities
to aggress (Smagin et al. 2015). Dopamine
decreased in nucleus accumbens in anticipation
of an aggressive episode (Ferrari et al. 2003).
Knockdown of progestin receptors in ventral teg-
mental area in female mice is associated with
increased male rejection and aggression (Frye
et al. 2014). Neural activity in dorsal midbrain
central gray is associated with offensive and

defensive aggressive behavior (Adams 2006).
pCREB-positive cells increased in caudal
periaqueductal gray and lateral septum after
maternal aggression (Gammie and Nelson 2001).

2.5.6 Synthesis

Research summarized above suggests environ-
mental signals to aggress are relayed through one
of two possible main systems as shown in Fig. 2.1:
(i) medial amygdala to extended amygdala, lateral
septum, and hypothalamic areas, and therefrom to
periaqueductal gray; (ii) hypothalamic attack area,
the ventrolateral part of the ventromedial hypothal-
amus coordinating afferent and efferent brain sig-
naling in the initiation and processing of
aggression with afferents and efferents from and
to prefrontal cortex, lateral septum, amygdala,
other areas of hypothalamus, and brainstem
(Aleyasin et al. 2018; de Boer et al. 2015; Nelson
and Trainor 2007). Olfactory cues obviously play
an important role in rodent social dynamics, but
their contribution to human aggression is
unknown. Signals from prefrontal cortex modulate
or inhibit aggressive behavior. Data from human
studies support a central role for amygdala, hypo-
thalamus, and periaqueductal gray for processing
and initiating aggressive impulses, and prefrontal
cortex in processing action values and the decision
to aggress (Blair 2016).

2.6 Translational Implications

Aggression in human history is obviously com-
plex, and attempts at interpretation are placed in a
socioeconomic context (Fortman and Bas de
2005).

Human aggression can be reactive or impul-
sive associated with anger and autonomic arousal,
and instrumental which is thought to be more
goal-oriented and involves less autonomic
arousal; similarly aggression can be clustered
into impulsive-affective and controlled-predatory
subtypes (Nelson and Trainor 2007; Vitiello and
Stoff 1997). Human conditions in which aggres-
sive behavior is problematic include antisocial
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personality disorder, borderline personality disor-
der, intermittent explosive disorder, post-
traumatic stress disorder, irritable and
depression-linked aggression, schizophrenia,
bipolar disorder, attention-deficit hyperactivity
disorder, dementia and associated illness, and
alcohol-related aggression (Coccaro et al. 2011;
Nelson and Trainor 2007; Pompili et al. 2017). It
was suggested that aggressive conditions can be
classified into those associated with
neurocircuitry pathology, hypoarousal and low
circulating glucocorticoids, and emotional and
physiological hyperarousal (Haller and Kruk
2006). Establishing animal model validity as
related to human conditions is suggested
(Haller 2018b).

Studies in animals and humans suggest
neurocircuitry underlying aggression involves
subcortical systems producing aggressive
impulses, circuits predicting outcome of
aggressing and making a decision to aggress or
not, and notably circuits in prefrontal and medial

temporal cortex regulating emotion (Anderson
et al. 1999; Bufkin and Luttrell 2005; Coccaro
et al. 2011; Davidson 2000). Aggression in
humans associated with neurological damage or
degeneration includes frontotemporal lesions,
epilepsy, and Alzheimer’s disease (Haller and
Kruk 2006). Violent behavior in humans is
associated with functional impairments in pre-
frontal cortex (Yang and Raine 2009). Bilateral
amygdalar destruction in humans to treat intracta-
ble aggression has a “taming effect” but does not
abolish aggressive outbursts (Lee et al. 1998).
Deep brain stimulation of posterior medial hypo-
thalamus and nucleus accumbens reduced aggres-
sion (Harat et al. 2015).

Borderline personality disorder is associated
with volume loss in amygdala, hippocampus,
and left orbitofrontal and right anterior cingulate
cortex (van Elst et al. 2003). Psychopathy is
associated with hypoactive frontolimbic circuit
and hippocampal asymmetry (Raine et al. 2004;
Veit et al. 2002).

Fig. 2.1 Models of brain regions and circuitry
mediating aggression. Neurocircuitry mediating aggres-
sive behavior is processed either mainly through MeA, to
BNST, LS, and hypothalamic areas, or through the hypo-
thalamic attack area and VMHvl which communicates
with amygdala, PFC, and LS. The output of these
pathways is the PAG. Environmental stimuli of aggression

are mostly social in nature. Olfactory cues are received by
the olfactory bulb and relayed to MeA, hypothalamic
areas, or both. Visual and auditory cues are processed by
MeA as well as PFC. BNST bed nucleus of the stria
terminalis, LS lateral septum, MeA medial amygdala,
MPOA medial preoptic area, PAG periaqueductal gray,
PFC prefrontal cortex
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Early to exposure to violence and cruelty may
consolidate an attraction to aggression in an indi-
vidual, and is associated with higher incidence of
post-traumatic stress disorder (Hinsberger et al.
2016; Raine et al. 2004). Aggression during
development is highly predictive of maladaptive
behavior in adulthood; theories of aggression
development combine genetics of
neurotransmitter-receptor systems, most notably
monoamine oxidase A, brain structure, micro-
and macrodynamic psychosocial factors such as
parenting and sociocultural background, and hor-
monal factors (Austerman 2017; Kim-Cohen
et al. 2006; Lansford 2018).

Experiments in rodents are needed to improve
pharmacotherapy of aggressive conditions, and
which presently includes the following:
(i) atypical antipsychotics such as clozapine and
risperidone; (ii) anticonvulsants such as
topiramate; (iii) mood stabilizers such as lithium;
(iv) adrenergic receptor agonists such as cloni-
dine; (v) typical antipsychotics such as haloperi-
dol; (vi) benzodiazepines such as midazolam;
(vii) combinations of drugs which may include
histamine blockers such as promethazine; (viii)
drugs acting on brain serotonin notably selective
serotonin reuptake inhibitors; (ix) beta blockers
such as propranolol; (x) drugs acting on nicotine
receptors (Brieden et al. 2002; Buitelaar et al.
2001; Granic 2014; Hoptman 2015; Huf et al.
2016; Knapp et al. 2012; Pompili et al. 2017;
Robb et al. 2019; Swann 2003). Studies in
animals and humans show that oxidative stress
plays an important role in alcohol toxicity and
aggressive behavior (Tobore 2019).

In short, we have a wealth of data spanning
across genetics, neurophysiology, brain structure,
pharmacology, and behavior from animal and
human studies on aggression; a comprehensive
integration of this data may provide novel
insights into how we can better screen for and
manage conditions associated with or
predisposing to aggression early in life, and shed
light on common and disparate mechanisms
underlying this complex phenomenon. Further
integrating neuroscientific findings into the

broader context of society would need a meaning-
ful science of neurosociology, which has not yet
developed a common language between the
sociological and phenomenological on the one
hand, and the biological and deterministic on the
other (Meloni et al. 2016). There is reason for
optimism toward further integrating the neurol-
ogy of development within a sociological context
(Vasileva and Balyasnikova 2019).

Acknowledgments This work was supported by grants
from the National Natural Science Foundation of China
(31970940, 31671100, and 31622027), the Zhejiang Pro-
vincial Natural Science Foundation of China
(LR18H090001), the Non-profit Central Research Institute
Fund of the Chinese Academy of Medical Sciences
(2018PT31041), the Program for Introducing Talents in
Discipline to Universities, and the Fundamental Research
Funds for the Central Universities (2019QNA5001).

References

Adams DB (2006) Brain mechanisms of aggressive behav-
ior: an updated review. Neurosci Biobehav Rev 30
(3):304–318. https://doi.org/10.1016/j.neubiorev.
2005.09.004

Agrati D, Fernández-Guasti A, Ferreño M, Ferreira A
(2011) Coexpression of sexual behavior and maternal
aggression: the ambivalence of sexually active mother
rats toward male intruders. Behav Neurosci 125
(3):446–451. https://doi.org/10.1037/a0023085

Albert DJ, Walsh ML, Gorzalka BB, Mendelson S, Zalys
C (1986) Intermale social aggression: suppression by
medial preoptic area lesions. Physiol Behav 38
(2):169–173. https://doi.org/10.1016/0031-9384(86)
90151-4

Albert DJ, Walsh ML, Jonik RH (1993) Aggression in
humans: what is its biological foundation? Neurosci
Biobehav Rev 17(4):405–425

Aleyasin H, Flanigan ME, Russo SJ (2018) Neurocircuitry
of aggression and aggression seeking behavior: nose
poking into brain circuitry controlling aggression. Curr
Opin Neurobiol Neurobiol Behav 49:184–191. https://
doi.org/10.1016/j.conb.2018.02.013

de Almeida RM, Ferrari PF, Parmigiani S, Miczek KA
(2005) Escalated aggressive behavior: dopamine, sero-
tonin and GABA. Eur J Pharmacol 526(1–3):51–64.
https://doi.org/10.1016/j.ejphar.2005.10.004

de Almeida RM, Ferreira A, Agrati D (2014) Sensory,
hormonal, and neural basis of maternal aggression in
rodents. In: Miczek KA, Meyer-Lindenberg A (eds)
Neuroscience of aggression, Current Topics in Behav-
ioral Neurosciences. Springer Berlin Heidelberg,

16 M. Helmy et al.

https://doi.org/10.1016/j.neubiorev.2005.09.004
https://doi.org/10.1016/j.neubiorev.2005.09.004
https://doi.org/10.1037/a0023085
https://doi.org/10.1016/0031-9384(86)90151-4
https://doi.org/10.1016/0031-9384(86)90151-4
https://doi.org/10.1016/j.conb.2018.02.013
https://doi.org/10.1016/j.conb.2018.02.013
https://doi.org/10.1016/j.ejphar.2005.10.004


Berlin, Heidelberg, pp 111–130. https://doi.org/10.
1007/7854_2014_312

Anderson SW, Bechara A, Damasio H, Tranel D, Damasio
AR (1999) Impairment of social and moral behavior
related to early damage in human prefrontal cortex. Nat
Neurosci 2(11):1032–1037. https://doi.org/10.1038/
14833

Ase AR, Reader TA, Hen R, Riad M, Descarries L (2008)
Altered serotonin and dopamine metabolism in the
CNS of serotonin 5-HT(1A) or 5-HT(1B) receptor
knockout mice. J Neurochem 75(6):2415–2426.
https://doi.org/10.1046/j.1471-4159.2000.0752415.x

Austerman J (2017) Violence and aggressive behavior.
Pediatr Rev 38(2):69–80. https://doi.org/10.1542/pir.
2016-0062

Barber N (2008) Evolutionary social science: a new
approach to violent crime. Aggress Violent Behav 13
(3):237–250. http://www.sciencedirect.com/science/
article/pii/S1359178908000190

Been LE, Gibbons AB, Meisel RL (2019) Towards a
neurobiology of female aggression. Neuropharmacol-
ogy 156:107451. https://doi.org/10.1016/j.
neuropharm.2018.11.039

Beiderbeck DI, Neumann ID, Veenema AH (2007)
Differences in intermale aggression are accompanied
by opposite vasopressin release patterns within the
septum in rats bred for low and high anxiety. Eur J
Neurosci 26(12):3597–3605. https://doi.org/10.1111/j.
1460-9568.2007.05974.x

Biro L, Toth M, Sipos E, Bruzsik B, Tulogdi A,
Bendahan S, Sandi C, Haller J (2017) Structural and
functional alterations in the prefrontal cortex after post-
weaning social isolation: relationship with species-
typical and deviant aggression. Brain Struct Funct
222(4):1861–1875. https://doi.org/10.1007/s00429-
016-1312-z

Blair RJR (2016) The neurobiology of impulsive aggres-
sion. J Child Adolesc Psychopharmacol 26(1):4–9.
https://doi.org/10.1089/cap.2015.0088

de Boer SF, Koolhaas JM (2005) 5-HT1A and 5-HT1B
receptor agonists and aggression: a pharmacological
challenge of the serotonin deficiency hypothesis. Eur
J Pharmacol 526(1–3):125–139. https://doi.org/10.
1016/j.ejphar.2005.09.065

de Boer SF, Olivier B, Veening J, Koolhaas JM (2015)
The neurobiology of offensive aggression: revealing a
modular view. Physiol Behav 146(July):111–127.
https://doi.org/10.1016/j.physbeh.2015.04.040

Bosch OJ (2013) Maternal aggression in rodents: brain
oxytocin and vasopressin mediate pup defence. Philos
Trans R Soc Lond B Biol Sci 368(1631):20130085.
https://doi.org/10.1098/rstb.2013.0085

Bosch OJ, Neumann ID (2010) Vasopressin released
within the central amygdala promotes maternal aggres-
sion. Eur J Neurosci 31(5):883–891. https://doi.org/10.
1111/j.1460-9568.2010.07115.x

Bosch OJ, Meddle SL, Beiderbeck DI, Douglas AJ,
Neumann ID (2005) Brain oxytocin correlates with
maternal aggression: link to anxiety. J Neurosci Off J
Soc Neurosci 25(29):6807–6815. https://doi.org/10.
1523/JNEUROSCI.1342-05.2005

Brieden T, Ujeyl M, Naber D (2002) Psychopharma-
cological treatment of aggression in schizophrenic
patients. Pharmacopsychiatry 35(3):83–89. https://doi.
org/10.1055/s-2002-31523

Bufkin JL, Luttrell VR (2005) Neuroimaging studies of
aggressive and violent behavior: current findings and
implications for criminology and criminal justice.
Trauma Violence Abuse 6(2):176–191. https://doi.
org/10.1177/1524838005275089

Buitelaar JK, van der Gaag RJ, Cohen-Kettenis P, Melman
CT (2001) A randomized controlled trial of risperidone
in the treatment of aggression in hospitalized
adolescents with subaverage cognitive abilities. J Clin
Psychiatry 62(4):239–248. https://doi.org/10.4088/jcp.
v62n0405

Caramaschi D, de Boer SF, Koolhaas JM (2007) Differen-
tial role of the 5-HT1A receptor in aggressive and
non-aggressive mice: an across-strain comparison.
Physiol Behav 90(4):590–601. https://doi.org/10.
1016/j.physbeh.2006.11.010

Cases O, Seif I, Grimsby J, Gaspar P, Chen K, Pournin S,
Müller U, Aguet M, Babinet C, Shih JC (1995)
Aggressive behavior and altered amounts of brain sero-
tonin and norepinephrine in mice lacking MAOA.
Science (New York, N.Y.) 268(5218):1763–1766.
https://doi.org/10.1126/science.7792602

Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR,
Saghatelian A, Cravatt BF, Stowers L (2007) Identifi-
cation of protein pheromones that promote aggressive
behaviour. Nature 450(7171):899–902. https://doi.org/
10.1038/nature05997

Chiavegatto S, Dawson VL, Mamounas LA, Koliatsos
VE, Dawson TM, Nelson RJ (2001) Brain serotonin
dysfunction accounts for aggression in male mice
lacking neuronal nitric oxide synthase. Proc Natl
Acad Sci U S A 98(3):1277–1281. https://doi.org/10.
1073/pnas.031487198

Coccaro EF, Sripada CS, Yanowitch RN, Luan Phan K
(2011) Corticolimbic function in impulsive aggressive
behavior. Biol Psychiatry 69(12):1153–1159. https://
doi.org/10.1016/j.biopsych.2011.02.032

Davidson RJ (2000) Dysfunction in the neural circuitry of
emotion regulation--a possible prelude to violence.
Science 289(5479):591–594. https://doi.org/10.1126/
science.289.5479.591

Demas GE, Kriegsfeld LJ, Blackshaw S, Huang P,
Gammie SC, Nelson RJ, Snyder SH (1999) Elimina-
tion of aggressive behavior in male mice lacking endo-
thelial nitric oxide synthase. J Neurosci Off J Soc
Neurosci 19(19):RC30

van Elst T, Ludger BH, Thiel T, Geiger E, Haegele K,
Lemieux L, Lieb K, Bohus M, Hennig J, Ebert D

2 Neurobiology and Neural Circuits of Aggression 17

https://doi.org/10.1007/7854_2014_312
https://doi.org/10.1007/7854_2014_312
https://doi.org/10.1038/14833
https://doi.org/10.1038/14833
https://doi.org/10.1046/j.1471-4159.2000.0752415.x
https://doi.org/10.1542/pir.2016-0062
https://doi.org/10.1542/pir.2016-0062
http://www.sciencedirect.com/science/article/pii/S1359178908000190
http://www.sciencedirect.com/science/article/pii/S1359178908000190
https://doi.org/10.1016/j.neuropharm.2018.11.039
https://doi.org/10.1016/j.neuropharm.2018.11.039
https://doi.org/10.1111/j.1460-9568.2007.05974.x
https://doi.org/10.1111/j.1460-9568.2007.05974.x
https://doi.org/10.1007/s00429-016-1312-z
https://doi.org/10.1007/s00429-016-1312-z
https://doi.org/10.1089/cap.2015.0088
https://doi.org/10.1016/j.ejphar.2005.09.065
https://doi.org/10.1016/j.ejphar.2005.09.065
https://doi.org/10.1016/j.physbeh.2015.04.040
https://doi.org/10.1098/rstb.2013.0085
https://doi.org/10.1111/j.1460-9568.2010.07115.x
https://doi.org/10.1111/j.1460-9568.2010.07115.x
https://doi.org/10.1523/JNEUROSCI.1342-05.2005
https://doi.org/10.1523/JNEUROSCI.1342-05.2005
https://doi.org/10.1055/s-2002-31523
https://doi.org/10.1055/s-2002-31523
https://doi.org/10.1177/1524838005275089
https://doi.org/10.1177/1524838005275089
https://doi.org/10.4088/jcp.v62n0405
https://doi.org/10.4088/jcp.v62n0405
https://doi.org/10.1016/j.physbeh.2006.11.010
https://doi.org/10.1016/j.physbeh.2006.11.010
https://doi.org/10.1126/science.7792602
https://doi.org/10.1038/nature05997
https://doi.org/10.1038/nature05997
https://doi.org/10.1073/pnas.031487198
https://doi.org/10.1073/pnas.031487198
https://doi.org/10.1016/j.biopsych.2011.02.032
https://doi.org/10.1016/j.biopsych.2011.02.032
https://doi.org/10.1126/science.289.5479.591
https://doi.org/10.1126/science.289.5479.591


(2003) Frontolimbic brain abnormalities in patients
with borderline personality disorder. Biol Psychiatry
54(2):163–171. https://doi.org/10.1016/S0006-3223(
02)01743-2

van Erp AM, Miczek KA (2000) Aggressive behavior,
increased accumbal dopamine, and decreased cortical
serotonin in rats. J Neurosci Off J Soc Neurosci 20
(24):9320–9325

Falkner AL, Dollar P, Perona P, Anderson DJ, Lin D
(2014) Decoding ventromedial hypothalamic neural
activity during male mouse aggression. J Neurosci
Off J Soc Neurosci 34(17):5971–5984. https://doi.
org/10.1523/JNEUROSCI.5109-13.2014

Falkner AL, Grosenick L, Davidson TJ, Deisseroth K, Lin
D (2016) Hypothalamic control of male aggression-
seeking behavior. Nat Neurosci 19(4):596–604.
https://doi.org/10.1038/nn.4264

Ferrari PF, Van Erp AMM, Tornatzky W, Miczek KA
(2003) Accumbal dopamine and serotonin in anticipa-
tion of the next aggressive episode in rats:
microdialysis and anticipation of aggression. Eur J
Neurosci 17(2):371–378. https://doi.org/10.1046/j.
1460-9568.2003.02447.x

Ferris CF (2000) Adolescent stress and neural plasticity in
hamsters: a vasopressin-serotonin model of inappropri-
ate aggressive behaviour. Exper Physiol 85 Spec
No:85S–90S

Field EF, Whishaw IQ, Pellis SM,Watson NV (2006) Play
fighting in androgen-insensitive tfm rats: evidence that
androgen receptors are necessary for the development
of adult playful attack and defense. Dev Psychobiol 48
(2):111–120. https://doi.org/10.1002/dev.20121

Fortman G, Bas de. (2005) Violence among peoples in the
light of human frustration and aggression. Eur J
Pharmacol 526(1–3):2–8. https://doi.org/10.1016/j.
ejphar.2005.09.035

Frye CA, Walf AA, Kohtz AS, Zhu Y (2014)
Progesterone-facilitated lordosis of estradiol-primed
mice is attenuated by knocking down expression of
membrane progestin receptors in the midbrain.
Steroids 81:17–25. https://doi.org/10.1016/j.steroids.
2013.11.009

Gammie SC, Nelson RJ (1999) Maternal aggression is
reduced in neuronal nitric oxide synthase-deficient
mice. J Neurosci Off J Soc Neurosci 19
(18):8027–8035

Gammie SC, Nelson RJ (2001) CFOS and PCREB activa-
tion and maternal aggression in mice. Brain Res 898
(2):232–241. https://doi.org/10.1016/s0006-8993(01)
02189-8

Gammie SC, Huang PL, Nelson RJ (2000) Maternal
aggression in endothelial nitric oxide synthase-
deficient mice. Horm Behav 38(1):13–20. https://doi.
org/10.1006/hbeh.2000.1595

Giovenardi M, de Azevedo MS, da Silva SP, do E S
Hermel E, Gomes CM, Lucion AB (2005) Neonatal
handling increases fear and aggression in lactating rats.
Physiol Behav 86(1–2):209–217. https://doi.org/10.
1016/j.physbeh.2005.07.011

Golden SA, Aleyasin H, Heins R, Flanigan M,
Heshmati M, Takahashi A, Russo SJ, Shaham Y
(2017a) Persistent conditioned place preference to
aggression experience in adult male sexually-
experienced CD-1 mice. Genes Brain Behav 16
(1):44–55. https://doi.org/10.1111/gbb.12310

Golden SA, Heins C, Venniro M, Caprioli D, Zhang M,
Epstein D, Shaham Y (2017b) Compulsive addiction-
like aggressive behavior in mice. Biol Psychiatry 82
(4):239–248. https://doi.org/10.1016/j.biopsych.2017.
03.004

Gorlova AV, Pavlov DA, Ushakova VM, Zubkov EA,
Morozova AY, Zorkina YA, Inozemtsev AN,
Chekhonin VP (2019) Chronic exposure to ultrasonic
frequencies selectively increases aggression in rats.
Dokl Biol Sci 486(1):69–71. https://doi.org/10.1134/
S0012496619030074

Granic I (2014) The role of anxiety in the development,
maintenance, and treatment of childhood aggression.
Dev Psychopathol 26(4 Pt 2):1515–1530. https://doi.
org/10.1017/S0954579414001175

Halász J, Liposits Z, Meelis W, Kruk MR, Haller J (2002)
Hypothalamic attack area-mediated activation of the
forebrain in aggression. Neuroreport 13
(10):1267–1270. https://doi.org/10.1097/00001756-
200207190-00010

Haller J (2017) Studies into abnormal aggression in
humans and rodents: methodological and translational
aspects. Neurosci Biobehav Rev 76(Pt A):77–86.
https://doi.org/10.1016/j.neubiorev.2017.02.022

Haller J (2018a) The role of central and medial amygdala
in normal and abnormal aggression: a review of classi-
cal approaches. Neurosci Biobehav Rev 85:34–43.
https://doi.org/10.1016/j.neubiorev.2017.09.017

Haller J (2018b) Preclinical models of conduct disorder -
principles and pharmacologic perspectives. Neurosci
Biobehav Rev 91:112–120. https://doi.org/10.1016/j.
neubiorev.2016.05.032

Haller J, Kruk MR (2006) Normal and abnormal aggres-
sion: human disorders and novel laboratory models.
Neurosci Biobehav Rev 30(3):292–303. https://doi.
org/10.1016/j.neubiorev.2005.01.005

Harat M, Rudaś M, Zieliński P, Birska J, Sokal P (2015)
Deep brain stimulation in pathological aggression.
Stereotact Funct Neurosurg 93(5):310–315. https://
doi.org/10.1159/000431373

Hasen NS, Gammie SC (2005) Differential Fos activation
in virgin and lactating mice in response to an intruder.
Physiol Behav 84(5):681–695. https://doi.org/10.1016/
j.physbeh.2005.02.010

Hasen NS, Gammie SC (2006) Maternal aggression: new
insights from Egr-1. Brain Res 1108(1):147–156.
https://doi.org/10.1016/j.brainres.2006.06.007

Hashikawa K, Hashikawa Y, Tremblay R, Zhang J, Feng
JE, Sabol A, Piper WT, Lee H, Rudy B, Lin D (2017)
Esr1+ cells in the ventromedial hypothalamus control
female aggression. Nat Neurosci 20(11):1580–1590.
https://doi.org/10.1038/nn.4644

18 M. Helmy et al.

https://doi.org/10.1016/S0006-3223(02)01743-2
https://doi.org/10.1016/S0006-3223(02)01743-2
https://doi.org/10.1523/JNEUROSCI.5109-13.2014
https://doi.org/10.1523/JNEUROSCI.5109-13.2014
https://doi.org/10.1038/nn.4264
https://doi.org/10.1046/j.1460-9568.2003.02447.x
https://doi.org/10.1046/j.1460-9568.2003.02447.x
https://doi.org/10.1002/dev.20121
https://doi.org/10.1016/j.ejphar.2005.09.035
https://doi.org/10.1016/j.ejphar.2005.09.035
https://doi.org/10.1016/j.steroids.2013.11.009
https://doi.org/10.1016/j.steroids.2013.11.009
https://doi.org/10.1016/s0006-8993(01)02189-8
https://doi.org/10.1016/s0006-8993(01)02189-8
https://doi.org/10.1006/hbeh.2000.1595
https://doi.org/10.1006/hbeh.2000.1595
https://doi.org/10.1016/j.physbeh.2005.07.011
https://doi.org/10.1016/j.physbeh.2005.07.011
https://doi.org/10.1111/gbb.12310
https://doi.org/10.1016/j.biopsych.2017.03.004
https://doi.org/10.1016/j.biopsych.2017.03.004
https://doi.org/10.1134/S0012496619030074
https://doi.org/10.1134/S0012496619030074
https://doi.org/10.1017/S0954579414001175
https://doi.org/10.1017/S0954579414001175
https://doi.org/10.1097/00001756-200207190-00010
https://doi.org/10.1097/00001756-200207190-00010
https://doi.org/10.1016/j.neubiorev.2017.02.022
https://doi.org/10.1016/j.neubiorev.2017.09.017
https://doi.org/10.1016/j.neubiorev.2016.05.032
https://doi.org/10.1016/j.neubiorev.2016.05.032
https://doi.org/10.1016/j.neubiorev.2005.01.005
https://doi.org/10.1016/j.neubiorev.2005.01.005
https://doi.org/10.1159/000431373
https://doi.org/10.1159/000431373
https://doi.org/10.1016/j.physbeh.2005.02.010
https://doi.org/10.1016/j.physbeh.2005.02.010
https://doi.org/10.1016/j.brainres.2006.06.007
https://doi.org/10.1038/nn.4644


Hernandez-Lallement J, van Wingerden M, Kalenscher T
(2018) Towards an animal model of callousness.
Neurosci Biobehav Rev 91(August):121–129. https://
doi.org/10.1016/j.neubiorev.2016.12.029

Hinsberger M, Sommer J, Kaminer D, Holtzhausen L,
Weierstall R, Seedat S, Madikane S, Elbert T (2016)
Perpetuating the cycle of violence in south African
low-income communities: attraction to violence in
young men exposed to continuous threat. Eur J
Psychotraumatol 7(January):29099. https://doi.org/10.
3402/ejpt.v7.29099

Hong W, Kim D-W, Anderson DJ (2014) Antagonistic
control of social versus repetitive self-grooming
behaviors by separable amygdala neuronal subsets.
Cell 158(6):1348–1361. https://doi.org/10.1016/j.cell.
2014.07.049

Hoptman MJ (2015) Impulsivity and aggression in schizo-
phrenia: a neural circuitry perspective with
implications for treatment. CNS Spectr 20
(3):280–286. https://doi.org/10.1017/
S1092852915000206

Hsu Y, Earley RL, Wolf LL (2006) Modulation of aggres-
sive behaviour by fighting experience: mechanisms
and contest outcomes. Biol Rev Camb Philos Soc 81
(1):33–74. https://doi.org/10.1017/
S146479310500686X

Huf G, Alexander J, Gandhi P, Allen MH (2016) Haloper-
idol plus promethazine for psychosis-induced aggres-
sion. Cochrane Database Syst Rev 11:CD005146.
https://doi.org/10.1002/14651858.CD005146.pub3

de Jong TR, Neumann ID (2018) Oxytocin and aggres-
sion. Curr Top Behav Neurosci 35:175–192. https://
doi.org/10.1007/7854_2017_13

Juntti SA, Tollkuhn J, Wu MV, Fraser EJ, Soderborg T,
Tan S, Honda S-I, Harada N, Shah NM (2010) The
androgen receptor governs the execution, but not pro-
gramming, of male sexual and territorial behaviors.
Neuron 66(2):260–272. https://doi.org/10.1016/j.neu
ron.2010.03.024

Kim-Cohen J, Caspi A, Taylor A, Williams B,
Newcombe R, Craig IW, Moffitt TE (2006) MAOA,
maltreatment, and gene-environment interaction
predicting children’s mental health: new evidence and
a meta-analysis. Mol Psychiatry 11(10):903–913.
https://doi.org/10.1038/sj.mp.4001851

Kisko TM, Wöhr M, Pellis VC, Pellis SM (2017) From
play to aggression: high-frequency 50-khz ultrasonic
vocalizations as play and appeasement signals in rats.
Curr Top Behav Neurosci 30:91–108. https://doi.org/
10.1007/7854_2015_432

Knapp P, Chait A, Pappadopulos E, Crystal S, Jensen PS,
T-MAY Steering Group (2012) Treatment of maladap-
tive aggression in youth: CERT guidelines
I. engagement, assessment, and management. Pediat-
rics 129(6):e1562–e1576. https://doi.org/10.1542/
peds.2010-1360

Kudryavtseva NN, Smagin DA, Bondar NP (2011)
Modeling fighting deprivation effect in mouse repeated
aggression paradigm. Prog Neuro-Psychopharmacol

Biol Psychiatry 35(6):1472–1478. https://doi.org/10.
1016/j.pnpbp.2010.10.013

Lansford JE (2018) Development of aggression. Curr Opin
Psychol Aggres Viol 19(February):17–21. https://doi.
org/10.1016/j.copsyc.2017.03.015

Laredo SA, Orr VN, McMackin MZ, Trainor BC (2014)
The effects of exogenous melatonin and melatonin
receptor blockade on aggression and estrogen-
dependent gene expression in male California mice
(Peromyscus Californicus). Physiol Behav 128
(April):86–91. https://doi.org/10.1016/j.physbeh.
2014.01.039

Lee GP, Bechara A, Adolphs R, Arena J, Meador KJ,
Loring DW, Smith JR (1998) Clinical and physiologi-
cal effects of stereotaxic bilateral amygdalotomy for
intractable aggression. J Neuropsychiatry Clin
Neurosci 10(4):413–420. https://doi.org/10.1176/jnp.
10.4.413

Lee H, Kim D-W, Remedios R, Anthony TE, Chang A,
Madisen L, Zeng H, Anderson DJ (2014) Scalable
control of mounting and attack by Esr1+ neurons in
the ventromedial hypothalamus. Nature 509
(7502):627–632. https://doi.org/10.1038/nature13169

Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P,
Anderson DJ (2011) Functional identification of an
aggression locus in the mouse hypothalamus. Nature
470(7333):221–226. https://doi.org/10.1038/
nature09736

Martín-Sánchez A, McLean L, Beynon RJ, Hurst JL,
Ayala G, Lanuza E, Martínez-Garcia F (2015) From
sexual attraction to maternal aggression: when
pheromones change their behavioural significance.
Horm Behav 68(February):65–76. https://doi.org/10.
1016/j.yhbeh.2014.08.007

McDonald MM, Markham CM, Alisa N, Elliott Albers H,
Huhman KL (2012) GABAA receptor activation in the
lateral septum reduces the expression of conditioned
defeat and increases aggression in Syrian hamsters.
Brain Res 1439(February):27–33. https://doi.org/10.
1016/j.brainres.2011.12.042

McHenry JA, Robison CL, Bell GA, Bolaños-Guzmán
CA, Vialou VV, Nestler EJ, Hull EM (2016) The
role of ΔFosB in the medial preoptic area: differen-
tial effects of mating and cocaine history. Behav
Neurosci 130(5):469–478. https://doi.org/10.1037/
bne0000160

Meloni M, Williams S, Martin P (2016) The biosocial:
sociological themes and issues. Sociol Rev Monogr 64
(1):7–25. https://doi.org/10.1002/2059-7932.12010

Miczek KA, Maxson SC, Fish EW, Faccidomo S (2001)
Aggressive behavioral phenotypes in mice. Behav
Brain Res 125(1–2):167–181. https://doi.org/10.1016/
s0166-4328(01)00298-4

Miczek KA, Fish EW, Almeida RMM, Faccidomo S,
Debold JF (2006) Role of alcohol consumption in
escalation to violence. Ann N Y Acad Sci 1036
(1):278–289. https://doi.org/10.1196/annals.1330.018

Miczek KA, Takahashi A, Gobrogge KL, Hwa LS, de
Almeida RMM (2015) Escalated aggression in animal

2 Neurobiology and Neural Circuits of Aggression 19

https://doi.org/10.1016/j.neubiorev.2016.12.029
https://doi.org/10.1016/j.neubiorev.2016.12.029
https://doi.org/10.3402/ejpt.v7.29099
https://doi.org/10.3402/ejpt.v7.29099
https://doi.org/10.1016/j.cell.2014.07.049
https://doi.org/10.1016/j.cell.2014.07.049
https://doi.org/10.1017/S1092852915000206
https://doi.org/10.1017/S1092852915000206
https://doi.org/10.1017/S146479310500686X
https://doi.org/10.1017/S146479310500686X
https://doi.org/10.1002/14651858.CD005146.pub3
https://doi.org/10.1007/7854_2017_13
https://doi.org/10.1007/7854_2017_13
https://doi.org/10.1016/j.neuron.2010.03.024
https://doi.org/10.1016/j.neuron.2010.03.024
https://doi.org/10.1038/sj.mp.4001851
https://doi.org/10.1007/7854_2015_432
https://doi.org/10.1007/7854_2015_432
https://doi.org/10.1542/peds.2010-1360
https://doi.org/10.1542/peds.2010-1360
https://doi.org/10.1016/j.pnpbp.2010.10.013
https://doi.org/10.1016/j.pnpbp.2010.10.013
https://doi.org/10.1016/j.copsyc.2017.03.015
https://doi.org/10.1016/j.copsyc.2017.03.015
https://doi.org/10.1016/j.physbeh.2014.01.039
https://doi.org/10.1016/j.physbeh.2014.01.039
https://doi.org/10.1176/jnp.10.4.413
https://doi.org/10.1176/jnp.10.4.413
https://doi.org/10.1038/nature13169
https://doi.org/10.1038/nature09736
https://doi.org/10.1038/nature09736
https://doi.org/10.1016/j.yhbeh.2014.08.007
https://doi.org/10.1016/j.yhbeh.2014.08.007
https://doi.org/10.1016/j.brainres.2011.12.042
https://doi.org/10.1016/j.brainres.2011.12.042
https://doi.org/10.1037/bne0000160
https://doi.org/10.1037/bne0000160
https://doi.org/10.1002/2059-7932.12010
https://doi.org/10.1016/s0166-4328(01)00298-4
https://doi.org/10.1016/s0166-4328(01)00298-4
https://doi.org/10.1196/annals.1330.018


models: shedding new light on mesocorticolimbic
circuits. Social Behavior 3(June):90–95. https://doi.
org/10.1016/j.cobeha.2015.02.007

Mucignat-Caretta C, Cavaggioni A, Caretta A (2004) Male
urinary chemosignals differentially affect aggressive
behavior in male mice. J Chem Ecol 30(4):777–791

Munley KM, Rendon NM, Demas GE (2018) Neural
androgen synthesis and aggression: insights from a
seasonally breeding rodent. Front Endocrinol 9:136.
https://doi.org/10.3389/fendo.2018.00136

Nakata M, Sano K, Musatov S, Yamaguchi N,
Sakamoto T, Ogawa S (2016) Effects of prepubertal
or adult site-specific knockdown of estrogen receptor β
in the medial preoptic area and medial amygdala on
social behaviors in male mice. Eneuro 3(2):
ENEURO.0155-15.2016. https://doi.org/10.1523/
ENEURO.0155-15.2016

Natarajan D, de Vries H, Saaltink D-J, de Boer SF,
Koolhaas JM (2009) Delineation of violence from
functional aggression in mice: an ethological approach.
Behav Genet 39(1):73–90. https://doi.org/10.1007/
s10519-008-9230-3

Nautiyal KM, Tanaka KF, Barr MM, Tritschler L, Le
Dantec Y, David DJ, Gardier AM, Blanco C, Hen R,
Ahmari SE (2015) Distinct circuits underlie the effects
of 5-HT1B receptors on aggression and impulsivity.
Neuron 86(3):813–826. https://doi.org/10.1016/j.neu
ron.2015.03.041

Nelson RJ, Trainor BC (2007) Neural mechanisms of
aggression. Nat Rev Neurosci 8(7):536–546. https://
doi.org/10.1038/nrn2174

Niederkofler V, Asher TE, Okaty BW, Rood BD,
Narayan A, Hwa LS, Beck SG, Miczek KA, Dymecki
SM (2016) Identification of serotonergic neuronal
modules that affect aggressive behavior. Cell Rep 17
(8):1934–1949. https://doi.org/10.1016/j.celrep.2016.
10.063

Nyberg J, Sandnabba K, Schalkwyk L, Sluyter F (2004)
Genetic and environmental (inter)actions in male
mouse lines selected for aggressive and nonaggressive
behavior. Genes Brain Behav 3(2):101–109

Olivier B, van Oorschot R (2005) 5-HT1B receptors and
aggression: a review. Eur J Pharmacol 526
(1–3):207–217. https://doi.org/10.1016/j.ejphar.2005.
09.066

Pavlov DA, Gorlova AV, Ushakova VM, Zubkov EA,
Morozova AY, Inozemtsev AN, Chekhonin VP
(2017) Effects of chronic exposure to ultrasound of
alternating frequencies on the levels of aggression
and anxiety in CBA and BALB/c mice. Bull Exp
Biol Med 163(4):409–411. https://doi.org/10.1007/
s10517-017-3815-x

Pompili E, Carlone C, Silvestrini C, Nicolò G (2017)
Focus on aggressive behaviour in mental illness. Riv
Psichiatr 52(5):175–179. https://doi.org/10.1708/2801.
28344

Raine A, Ishikawa SS, Arce E, Lencz T, Knuth KH,
Bihrle S, LaCasse L, Colletti P (2004) Hippocampal
structural asymmetry in unsuccessful psychopaths.

Biol Psychiatry 55(2):185–191. https://doi.org/10.
1016/S0006-3223(03)00727-3

Rice CJ, Sandman CA, Lenjavi MR, Baram TZ (2008) A
novel mouse model for acute and long-lasting
consequences of early life stress. Endocrinology 149
(10):4892–4900. https://doi.org/10.1210/en.2008-
0633

Robb AS, Schwabe S, Ceresoli-Borroni G, Nasser A,
Yu C, Marcus R, Candler SA, Findling RL (2019) A
proposed anti-maladaptive aggression agent classifica-
tion: improving our approach to treating impulsive
aggression. Postgrad Med 131(2):129–137. https://
doi.org/10.1080/00325481.2019.1574401

Sakurai K, Zhao S, Takatoh J, Rodriguez E, Lu J, Leavitt
AD, Min F, Han B-X, Wang F (2016) Capturing and
manipulating activated neuronal ensembles with cane
delineates a hypothalamic social-fear circuit. Neuron
92(4):739–753. https://doi.org/10.1016/j.neuron.2016.
10.015

Seo D, Patrick CJ, Kennealy PJ (2008) Role of serotonin
and dopamine system interactions in the neurobiology
of impulsive aggression and its comorbidity with other
clinical disorders. Aggress Violent Behav 13
(5):383–395. https://doi.org/10.1016/j.avb.2008.06.
003

Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase:
from genes to behavior. Annu Rev Neurosci
22:197–217. https://doi.org/10.1146/annurev.neuro.
22.1.197

Smagin DA, Park J-H, Michurina TV, Peunova N,
Glass Z, Sayed K, Bondar NP, Kovalenko IN,
Kudryavtseva NN, Enikolopov G (2015) Altered hip-
pocampal neurogenesis and amygdalar neuronal activ-
ity in adult mice with repeated experience of
aggression. Front Neurosci 9:443. https://doi.org/10.
3389/fnins.2015.00443

Spiteri T, Musatov S, Ogawa S, Ribeiro A, Pfaff DW,
Agmo A (2010) The role of the estrogen receptor
alpha in the medial amygdala and ventromedial
nucleus of the hypothalamus in social recognition,
anxiety and aggression. Behav Brain Res 210
(2):211–220. https://doi.org/10.1016/j.bbr.2010.02.
033

Sternson SM (2013) Hypothalamic survival circuits:
blueprints for purposive behaviors. Neuron 77
(5):810–824. https://doi.org/10.1016/j.neuron.2013.
02.018

Stowers L (2002) Loss of sex discrimination and male-
male aggression in mice deficient for TRP2. Science
295(5559):1493–1500. https://doi.org/10.1126/sci
ence.1069259

Summers CH, Winberg S (2006) Interactions between the
neural regulation of stress and aggression. J Exp Biol
209(Pt 23):4581–4589. https://doi.org/10.1242/jeb.
02565

Summers CH, Korzan WJ, Lukkes JL, Watt MJ, Forster
GL, Øverli Ø, Höglund E et al (2005) Does serotonin
influence aggression? Comparing regional activity

20 M. Helmy et al.

https://doi.org/10.1016/j.cobeha.2015.02.007
https://doi.org/10.1016/j.cobeha.2015.02.007
https://doi.org/10.3389/fendo.2018.00136
https://doi.org/10.1523/ENEURO.0155-15.2016
https://doi.org/10.1523/ENEURO.0155-15.2016
https://doi.org/10.1007/s10519-008-9230-3
https://doi.org/10.1007/s10519-008-9230-3
https://doi.org/10.1016/j.neuron.2015.03.041
https://doi.org/10.1016/j.neuron.2015.03.041
https://doi.org/10.1038/nrn2174
https://doi.org/10.1038/nrn2174
https://doi.org/10.1016/j.celrep.2016.10.063
https://doi.org/10.1016/j.celrep.2016.10.063
https://doi.org/10.1016/j.ejphar.2005.09.066
https://doi.org/10.1016/j.ejphar.2005.09.066
https://doi.org/10.1007/s10517-017-3815-x
https://doi.org/10.1007/s10517-017-3815-x
https://doi.org/10.1708/2801.28344
https://doi.org/10.1708/2801.28344
https://doi.org/10.1016/S0006-3223(03)00727-3
https://doi.org/10.1016/S0006-3223(03)00727-3
https://doi.org/10.1210/en.2008-0633
https://doi.org/10.1210/en.2008-0633
https://doi.org/10.1080/00325481.2019.1574401
https://doi.org/10.1080/00325481.2019.1574401
https://doi.org/10.1016/j.neuron.2016.10.015
https://doi.org/10.1016/j.neuron.2016.10.015
https://doi.org/10.1016/j.avb.2008.06.003
https://doi.org/10.1016/j.avb.2008.06.003
https://doi.org/10.1146/annurev.neuro.22.1.197
https://doi.org/10.1146/annurev.neuro.22.1.197
https://doi.org/10.3389/fnins.2015.00443
https://doi.org/10.3389/fnins.2015.00443
https://doi.org/10.1016/j.bbr.2010.02.033
https://doi.org/10.1016/j.bbr.2010.02.033
https://doi.org/10.1016/j.neuron.2013.02.018
https://doi.org/10.1016/j.neuron.2013.02.018
https://doi.org/10.1126/science.1069259
https://doi.org/10.1126/science.1069259
https://doi.org/10.1242/jeb.02565
https://doi.org/10.1242/jeb.02565


before and during social interaction. Physiol Biochem
Zool 78(5):679–694. https://doi.org/10.1086/432139

Swann AC (2003) Neuroreceptor mechanisms of aggres-
sion and its treatment. J Clin Psychiatry 64(Suppl
4):26–35

Takahashi A, Quadros IM, de Almeida RMM, Miczek KA
(2012) Behavioral and pharmacogenetics of aggressive
behavior. Curr Top Behav Neurosci 12:73–138.
https://doi.org/10.1007/7854_2011_191

Takahashi A, Nagayasu K, Nishitani N, Kaneko S, Koide
T (2014) Control of intermale aggression by medial
prefrontal cortex activation in the mouse. PLoS One 9
(4):e94657. https://doi.org/10.1371/journal.pone.
0094657

Tobore TO (2019) On the neurobiological role of oxida-
tive stress in alcohol-induced impulsive, aggressive
and suicidal behavior. Substance Use Misuse 54
(14):2290–2303. https://doi.org/10.1080/10826084.
2019.1645179

Tóth M, Halász J, Mikics É, Barsy B, Haller J (2008) Early
social deprivation induces disturbed social communi-
cation and violent aggression in adulthood. Behav
Neurosci 122(4):849–854. https://doi.org/10.1037/
0735-7044.122.4.849

Toth M, Fuzesi T, Halasz J, Tulogdi A, Haller J (2010)
Neural inputs of the hypothalamic ‘aggression area’ in
the rat. Behav Brain Res 215(1):7–20. https://doi.org/
10.1016/j.bbr.2010.05.050

Trainor BC, Workman JL, Jessen R, Nelson RJ (2007a)
Impaired nitric oxide synthase signaling dissociates
social investigation and aggression. Behav Neurosci
121(2):362–369. https://doi.org/10.1037/0735-7044.
121.2.362

Trainor BC, Lin S, Sima Finy M, Rowland MR, Nelson RJ
(2007b) Photoperiod reverses the effects of estrogens
on male aggression via genomic and nongenomic
pathways. Proc Natl Acad Sci U S A 104
(23):9840–9845. https://doi.org/10.1073/pnas.
0701819104

Tulogdi A, Biro L, Barsvari B, Stankovic M, Haller J, Toth
M (2015) Neural mechanisms of predatory aggression
in rats—implications for abnormal intraspecific
aggression. Behav Brain Res 283(April):108–115.
https://doi.org/10.1016/j.bbr.2015.01.030

Unger EK, Burke KJ, Yang CF, Bender KJ, Fuller PM,
Shah NM (2015) Medial amygdalar aromatase neurons
regulate aggression in both sexes. Cell Rep 10
(4):453–462. https://doi.org/10.1016/j.celrep.2014.12.
040

Vasileva O, Balyasnikova N (2019) (Re)Introducing
Vygotsky’s thought: from historical overview to con-
temporary psychology. Front Psychol 10:1515. https://
doi.org/10.3389/fpsyg.2019.01515

Veenema AH (2009) Early life stress, the development of
aggression and neuroendocrine and neurobiological
correlates: what can we learn from animal models?
Front Neuroendocrinol 30(4):497–518. https://doi.
org/10.1016/j.yfrne.2009.03.003

Veenema AH, Neumann ID (2007) Neurobiological
mechanisms of aggression and stress coping: a com-
parative study in mouse and rat selection lines. Brain
Behav Evol 70(4):274–285. https://doi.org/10.1159/
000105491

Veenema AH, Neumann ID (2009) Maternal separation
enhances offensive play-fighting, basal corticosterone
and hypothalamic vasopressin MRNA expression in
juvenile male rats. Psychoneuroendocrinology 34
(3):463–467. https://doi.org/10.1016/j.psyneuen.2008.
10.017

Veenema AH, Torner L, Blume A, Beiderbeck DI,
Neumann ID (2007) Low inborn anxiety correlates
with high intermale aggression: link to acth response
and neuronal activation of the hypothalamic
paraventricular nucleus. Horm Behav 51(1):11–19.
https://doi.org/10.1016/j.yhbeh.2006.07.004

Veening JG, Coolen LM, de Jong TR, Joosten HW, de
Boer SF, Koolhaas JM, Olivier B (2005) Do similar
neural systems subserve aggressive and sexual
behaviour in male rats? Insights from c-Fos and phar-
macological studies. Eur J Pharmacol 526
(1–3):226–239. https://doi.org/10.1016/j.ejphar.2005.
09.041

Veit R, Flor H, Erb M, Hermann C, Lotze M, Grodd W,
Birbaumer N (2002) Brain circuits involved in emo-
tional learning in antisocial behavior and social phobia
in humans. Neurosci Lett 328(3):233–236. https://doi.
org/10.1016/S0304-3940(02)00519-0

Vitiello B, Stoff DM (1997) Subtypes of aggression and
their relevance to child psychiatry. J Am Acad Child
Adolesc Psychiatry 36(3):307–315. https://doi.org/10.
1097/00004583-199703000-00008

Wang Y, He Z, Zhao C, Li L (2013) Medial amygdala
lesions modify aggressive behavior and immediate
early gene expression in oxytocin and vasopressin
neurons during intermale exposure. Behav Brain Res
245(May):42–49. https://doi.org/10.1016/j.bbr.2013.
02.002

Wang L, Talwar V, Osakada T, Kuang A, Guo Z,
Yamaguchi T, Lin D (2019a) Hypothalamic control
of conspecific self-defense. Cell Rep 26
(7):1747–1758.e5. https://doi.org/10.1016/j.celrep.
2019.01.078

Wang L, Simms J, Peters CJ, Fontaine MT-L, Kexin L,
Michael Gill T, Jan YN, Lily Y (2019b) TMEM16B
calcium-activated chloride channels regulate action
potential firing in lateral septum and aggression in
male mice. J Neurosci 39:3137–3118. https://doi.org/
10.1523/JNEUROSCI.3137-18.2019

Wong LC, Wang L, D’Amour JA, Yumita T, Chen G,
Yamaguchi T, Chang BC et al (2016) Effective modu-
lation of male aggression through lateral septum to
medial hypothalamus projection. Curr Biol 26
(5):593–604. https://doi.org/10.1016/j.cub.2015.12.
065

Yang Y, Raine A (2009) Prefrontal structural and func-
tional brain imaging findings in antisocial, violent, and
psychopathic individuals: a meta-analysis. Psychiatry

2 Neurobiology and Neural Circuits of Aggression 21

https://doi.org/10.1086/432139
https://doi.org/10.1007/7854_2011_191
https://doi.org/10.1371/journal.pone.0094657
https://doi.org/10.1371/journal.pone.0094657
https://doi.org/10.1080/10826084.2019.1645179
https://doi.org/10.1080/10826084.2019.1645179
https://doi.org/10.1037/0735-7044.122.4.849
https://doi.org/10.1037/0735-7044.122.4.849
https://doi.org/10.1016/j.bbr.2010.05.050
https://doi.org/10.1016/j.bbr.2010.05.050
https://doi.org/10.1037/0735-7044.121.2.362
https://doi.org/10.1037/0735-7044.121.2.362
https://doi.org/10.1073/pnas.0701819104
https://doi.org/10.1073/pnas.0701819104
https://doi.org/10.1016/j.bbr.2015.01.030
https://doi.org/10.1016/j.celrep.2014.12.040
https://doi.org/10.1016/j.celrep.2014.12.040
https://doi.org/10.3389/fpsyg.2019.01515
https://doi.org/10.3389/fpsyg.2019.01515
https://doi.org/10.1016/j.yfrne.2009.03.003
https://doi.org/10.1016/j.yfrne.2009.03.003
https://doi.org/10.1159/000105491
https://doi.org/10.1159/000105491
https://doi.org/10.1016/j.psyneuen.2008.10.017
https://doi.org/10.1016/j.psyneuen.2008.10.017
https://doi.org/10.1016/j.yhbeh.2006.07.004
https://doi.org/10.1016/j.ejphar.2005.09.041
https://doi.org/10.1016/j.ejphar.2005.09.041
https://doi.org/10.1016/S0304-3940(02)00519-0
https://doi.org/10.1016/S0304-3940(02)00519-0
https://doi.org/10.1097/00004583-199703000-00008
https://doi.org/10.1097/00004583-199703000-00008
https://doi.org/10.1016/j.bbr.2013.02.002
https://doi.org/10.1016/j.bbr.2013.02.002
https://doi.org/10.1016/j.celrep.2019.01.078
https://doi.org/10.1016/j.celrep.2019.01.078
https://doi.org/10.1523/JNEUROSCI.3137-18.2019
https://doi.org/10.1523/JNEUROSCI.3137-18.2019
https://doi.org/10.1016/j.cub.2015.12.065
https://doi.org/10.1016/j.cub.2015.12.065


Res Neuroimaging 174(2):81–88. https://doi.org/10.
1016/j.pscychresns.2009.03.012

Yang CF, Chiang MC, Gray DC, Prabhakaran M,
Alvarado M, Juntti SA, Unger EK, Wells JA, Shah

NM (2013) Sexually dimorphic neurons in the ventro-
medial hypothalamus govern mating in both sexes and
aggression in males. Cell 153(4):896–909. https://doi.
org/10.1016/j.cell.2013.04.017

22 M. Helmy et al.

https://doi.org/10.1016/j.pscychresns.2009.03.012
https://doi.org/10.1016/j.pscychresns.2009.03.012
https://doi.org/10.1016/j.cell.2013.04.017
https://doi.org/10.1016/j.cell.2013.04.017


Neural Regulation of Feeding Behavior 3
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Abstract

Food intake and energy homeostasis determine
survival of the organism and species. Informa-
tion on total energy levels and metabolic state
are sensed in the periphery and transmitted to
the brain, where it is integrated and triggers the
animal to forage, prey, and consume food.
Investigating circuitry and cellular
mechanisms coordinating energy balance and
feeding behaviors has drawn on many state-of-
the-art techniques, including gene manipula-
tion, optogenetics, virus tracing, and single-
cell sequencing. These new findings provide
novel insights into how the central nervous
system regulates food intake, and shed the
light on potential therapeutic interventions for
eating-related disorders such as obesity and
anorexia.

Keywords
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3.1 Introduction

Feeding determines the survival and reproductive
fitness of an organism, and it is a powerful selec-
tive pressure in the evolution of a species (Cox
et al. 2012). External and internal cues, including
food appearance, taste, smell, emotional state,
and food preferences together, have a profound
impact on feeding regulation. Appropriate feed-
ing decisions are made by integrating sensory
information and higher-order brain functions to
balance environmental circumstances and internal
needs. For example, a long-term shortage of
energy resources will reduce the threshold of an
animal’s risk aversion, and animals are more
likely to enter unfamiliar or dangerous territory
to find food (Krebs 1980; Magnhagen 1988).

While appetite and food intake are essential for
the maintenance of energy homeostasis, in
modern human society, easy access to low-cost,
high-calorie foods and sedentary lifestyle has dra-
matically increased the prevalence of obesity and
related disorders such as diabetes and cardiovas-
cular disease. Another feeding disorder related to
modernization is undereating relating to problem-
atic conditions such as anorexia. Central
mechanisms integrate environmental and
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physiological factors controlling appetite.
Investigating the mechanisms underlying neural
regulation of feeding behavior is necessary to
gain insight into the pathophysiology of feeding
disorders.

Appetite, or the motivation to eat, is discussed
in the context of either a homeostatic or a hedonic
system (Saper et al. 2002). In homeostatic feed-
ing, the animal is in an energy-deficient state. In
hedonic feeding, the animal consumes highly pal-
atable food in the absence of an energetic or
nutritional need.

Homeostatic feeding occurs in four distin-
guishable phases: (i) detection of an energy defi-
cit; (ii) goal-directed foraging; (iii)
consummatory behavior or food intake; and
(iv) termination of feeding. Carrying out of
these processes relies on intimate crosstalk
between peripheral metabolic organs and the
brain. Complex neural networks have evolved to
coordinate this essential activity. In this review,
we will discuss the molecular and neural circuitry
mechanisms of the different stages of homeostatic
feeding, as well as hedonic feeding.

3.2 Homeostatic Feeding

3.2.1 Sensing Metabolic State

Homeostatic feeding behavior starts by sensing
metabolic state, which is largely dependent on
peripheral metabolic organs. Fat tissue, liver, pan-
creas, gastrointestinal tract (GIT), muscles, and
bones are all involved in producing molecular
signals that represent body energy state. Upon
energy deficit, the appetite-promoting or
orexigenic hormone ghrelin is secreted by
enteroendocrine cells in the gastrointestinal tract
into systemic circulation (Muller et al. 2015).
Simultaneously, secretion of insulin from the pan-
creas and fat-derived hormone leptin is reduced
(Ahrén 2000; de Lartigue et al. 2014; Reno et al.
2015). These molecules transmit the information
that the body is energy-deficient via blood circu-
lation to the brain, which consequently initiates
feeding behavior.

The hypothalamus is a nodal brain structure
maintaining energy homeostasis. Specific

neuronal subtypes in the hypothalamus detect
circulating cues of energy deficit. Neurons
expressing agouti-related peptide (AGRP) in the
hypothalamic arcuate nucleus (ARC) also express
orexigenic peptide neuropeptide Y (NPY) and are
GABAergic. These neurons are proximal to the
median eminence and are not fully protected by
the blood–brain barrier (Yulyaningsih et al. 2017;
Schwartz et al. 2000). AGRP neurons directly
sense circulating hormones such as leptin
(Marco et al. 2004), insulin (KöNner et al.
2007), and ghrelin (Nakazato et al. 2001). Ele-
vated levels of ghrelin in systemic circulation
stimulate ARC AGRP/NPY (ARCAGRP) neurons
to release GABA, AGRP, and NPY (Kennedy
1950). A broad range of research methods includ-
ing neural ablation, chemogenetic and
optogenetic manipulations of these ARCAGRP

neurons showed that stimulation of these neurons
triggers feeding behavior while inhibition
reduced food intake, even in starved animals
(Aponte et al. 2011; Atasoy et al. 2014; Krashes
et al. 2013; Krashes et al. 2011). Optogenetic
manipulation of ARCAGRP neurons showed that
greater recruitment of neurons was associated
with larger amounts of food being consumed
(Stachniak et al. 2014). Collectively, these results
strongly suggest that ARCAGRP neurons work as
the “gas pedal” for controlling feeding (Fig. 3.1).

A recent study showed that somatostatin (SST)
neurons in the tuberal nucleus (TN) of hypothala-
mus (TNSST) are directly activated by ghrelin.
Ablation of TNSST neurons reduced food intake
and weight gain (Luo et al. 2018). There results
suggest that in addition to well-characterized
ARCAGRP neurons, other neuronal subtypes in
the hypothalamus also contribute to sensing an
energy deficit.

The hindbrain is also well-recognized as a
brain region responsible for processing hunger
signals. Vagal afferent fibers from the stomach
and intestines sense tension and osmotic pressure.
As well as physical signals, nutrients and
hormones secreted upon digestion of food convey
information from the GIT to the nucleus tractus
solitaries (NTS) in hindbrain. NTS also expresses
receptors for several hormones and metabolic
mediators including leptin (Scott et al. 2009),
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ghrelin (Zigman et al. 2006), and glucose trans-
porter 2 (GLUT2) (Arluison et al. 2004).

Area Postrema (AP) in hindbrain is adjacent to
the NTS, and senses circulation signals associated
with metabolism such as amylin (Lutz 2013) and
leptin (Patterson et al. 2011). The AP sends
projections to the NTS. The NTS integrates
chemical and electrical inputs that converge
upon it and send signals to downstream
feeding-related neural networks to start or termi-
nate food consumption.

Bone-derived molecule might also transmit
body energy status to the brain and participate in
feeding regulation. Lipocalin2 (LCN2) is derived
from osteoblasts, crosses the blood–brain
barriers, and is a ligand for G-protein subunits
αs-coupled melanocortin 4 receptor (MC4R)
(Mosialou et al. 2017), and may therefore modu-
late feeding through the melanocortin system.

3.2.2 Foraging and Hunting for Food

It is important to reiterate that foraging or hunting
for vs. consuming food are two distinguishable

phases, though both of them are initiated by a
detected energy deficit. That separate circuits
mediate these two activities are supported by
several lines of evidence. Activation of the
GABAergic inputs from the central amygdala
(CeA) to ventrolateral periaqueductal gray
(vlPAG) in mice induces chasing, pursuing, and
killing bite movements, but not consumption of
prey (Han et al. 2017). Consistently, during hunt-
ing, superior colliculus neurons send out neural
signals that are temporally correlated with preda-
tory attacks, but not with feeding after prey cap-
ture (Shang et al. 2019).

Additionally, calcium imaging and electro-
physiological recording showed that food depri-
vation augment the activity of ARCAGRP neurons,
whereas refeeding quickly reduced the neuronal
activity, even before the food is consumed
(Betley et al. 2015; Chen et al. 2015;
Mandelblat-Cerf et al. 2015). However, sustained
inhibition of AGRP neurons requires food con-
sumption. Similarly, evidence from in vivo deep-
brain calcium imaging shows that most ARCAGRP

neurons activity is reduced upon just the sight of
food, presumably through the GABAergic

Fig. 3.1 Summary diagram illustrating the neural circuits
for homeostatic feeding. AP area postrema, Arc arcuate
hypothalamic nucleus, BNST bed nucleus of the stria
terminalis, CeA central amygdaloid nucleus, DBB diago-
nal band of Broca, DRN dorsal raphe nucleus, IC insular

cortex, LH lateral hypothalamus, NTS nucleus of the soli-
tary tract, PBN parabrachial nucleus, PVH paraventricular
hypothalamic nucleus, PVT paraventricular thalamic
nucleus, TN tuberal nucleus, vlPAG ventrolateral
periaqueductal gray
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innervations from the ventral compartment of the
dorsomedial nucleus of the hypothalamus
(vDMH) (Betley et al. 2015; Garfield et al.
2016). These results suggest that ARCAGRP

neurons are involved in food seeking, but not
food consumption.

3.2.3 Consuming Food

After sensing the energy deficit, activation of
ARCAGRP neurons modulates feeding behavior
through their projections to a number of nuclei
including paraventricular hypothalamic nucleus
(PVH), bed nucleus of the stria terminalis
(BNST), lateral hypothalamus (LH), and
paraventricular thalamus (PVT). ARCAGRP

neurons induce feeding behavior in different
timescales from minutes to hours through distinct
mechanisms. One important mechanism for
ARCAGRP neurons mediating fast regulation is
through inhibition of the PVH satiety neurons
expressing the MC4R (PVHMC4R) by the release
of NPY and GABA (Atasoy et al. 2012; Krashes
et al. 2013). In a recent study, it was shown that
the ARCAGRP neurons could be divided into sev-
eral subpopulations based on their projection pat-
tern to distinct downstream nuclei in a one-to-one
configuration. Among these, activation of the
ARCAGRP projections to the anterior BNST, LH,
and PVT was sufficient to induce feeding within
minutes (Betley et al. 2013).

Slow regulation of energy homeostasis by
ARCAGRP neurons is partially attributed to the
release of AGRP, which acts as an antagonist to
the MC4R in the PVH. In addition, ARCAGRP

release GABA which inhibits the anorexigenic
proopiomelanocortin (POMC)-expressing
neurons in the ARC (ARCPOMC). These
ARCPOMC neurons directly detect anorexigenic
molecules such as leptin and insulin in circula-
tion. ARCPOMC neurons release alpha
melanocyte-stimulating hormone (α-MSH) to
reduce food intake and promote weight loss,
which plays an opposite role in contrast to
ARCAGRP neurons in energy homeostasis. Opto-
and chemogenetic activation of ARCPOMC

neurons inhibits feeding with minor effect and

long latency (Aponte et al. 2011; Zhan et al.
2013; Fenselau et al. 2017). Interestingly, studies
shown that ARCAGRP and ARCPOMC neurons
converge upon the same PVHMC4R neurons
(Atasoy et al. 2014). Therefore, both of these
slow-acting factors, AGRP and α-MSH, are
engaged at PVH MC4Rs-expressing neurons in
modulating feeding behavior.

Taken together, these results suggest that
redundant, parallel circuits centered on ARC
neurons regulate food consumption behavior
(Betley et al. 2013).

Numerous studies suggest that the PVH is a
key structure in homeostatic feeding regulation.
Firstly, inhibition of the PVH dramatically
increases food intake (Kelly et al. 1979; Atasoy
et al. 2012). Lesions of the PVH (Simson et al.
1977; Leibowitz et al. 1981) and haploinsuf-
ficiency of SIM1, a transcription factor required
for PVH development, cause obesity (Holder
Jr. et al. 2000; Michaud et al. 2001). Secondly,
silencing PVHMC4R neurons increases appetite
(Garfield et al. 2015). Thirdly, activation of the
LHGABA-PVH pathway induces feeding behavior
(Wu et al. 2015). Finally, studies suggest that
PVHMC4R satiety neurons are glutamatergic, and
chemo-inhibition of glutamatergic inputs from
PVH to dorsal raphe nucleus (DRN) and vlPAG
increase food intake, whereas activation of
PVHMC4R neurons projections to parabrachial
nucleus (PBN) reduce food intake even in starved
mice (Garfield et al. 2015). Consistently, DRN
neurons are activated by hunger. Stimulation of
GABAergic DRN neurons (DRNGABAergic)
increases food intake, while activation of
glutamatergic DRN neurons suppresses food
intake. Using single-cell sequencing, specific
receptors on DRN neurons were identified for
targeting to control food intake (Nectow et al.
2017). GABAergic neurons in the vlPAG also
participated, but had an opposite role compared
to DRNGABAergic neurons in feeding regulation.
Suppression of GABAergic neurons in the vlPAG
directly, or through long-projection GABAergic
inputs from either BNST or LH, is sufficient to
induce feeding behavior quickly in well-fed mice
(Hao et al. 2019).
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Recent studies revealed a profound role for
basal forebrain in appetite control. Cholinergic
neurons from the diagonal band of Broca (DBB)
in basal forebrain potently suppress food intake
through cholinergic inputs to downstream targets
in the ARC of hypothalamus (Herman et al.
2016). Additionally, activation of the LHGABA-
DBBGABA pathway reduces anxiety and causes
indiscriminate feeding (Cassidy et al. 2019).

Two molecularly defined cell subpopulations
in the LH, namely orexin/hypocretin-expressing
neurons and melanin concentrating hormone
(MCH)-producing cells, are important for their
role in increasing appetite (Qu et al. 1996; de
Lecea et al. 1998; Sakurai et al. 1998). Intracer-
ebroventricular injection of pharmacologic agents
showed that both peptides increase food intake
and body weight (Qu et al. 1996; Sakurai 1999).
Importantly, these neurons not only regulated
feeding but also modulated other behaviors such
as arousal and sleep (Adamantidis et al. 2007;
Jego et al. 2013).

Neurons in hindbrain, specifically NTS, also
contribute to feeding behavior. Growth hormone
secretagogue receptor (GHSR) is expressed in
NTS and other hindbrain areas and is stimulated
by ghrelin (Zigman et al. 2006). Direct infusion of
ghrelin in NTS/AP increases food intake
(Faulconbridge et al. 2003). Orexinergic neurons
in LH partially project to tyrosine hydroxylase
expressing neurons in A2/C2 region of NTS
(Zheng et al. 2005) and their activation increases
feeding (Parise et al. 2011). Given that the NTS
receives and integrates GIT satiation signals, LH
orexinergic projections on it would block the
satiation signal, and potentially serve as a disinhi-
bition signal to perpetuate food consumption.

3.2.4 Termination of Feeding

In the process of digestion, several molecules
including leptin, amylin, and insulin are released
into circulation and suppress appetite (Lutz
2013). Glucagon-like-peptide I (GLP-1) induces
satiation and facilitates insulin release into circu-
lation by the pancreas. GLP-1 receptor agonist
has been used in the clinical treatment of obesity

and diabetes (Finan et al. 2015). Cholecystokinin
(CCK) (Fan et al. 2004) and peptide YY (PYY)
(Batterham et al. 2007) are also thought to gener-
ate satiation. When nutrients are digested by the
GIT, enterochromaffin cells release serotonin and
stimulate vagal fibers, which facilitates the satia-
tion signal (Alcaino et al. 2018). Distension of the
GIT also contributes to inhibition of feeding by
sending visceral inputs to the brain (Eisen et al.
2001).

Elevated circulation levels of leptin and insulin
after a meal directly activate ARCPOMC neurons
(Poggioli et al. 1986). Activity of ARCPOMC

neurons increases onefold after standard diet,
but not after high-fat diet, suggesting their spe-
cific role in homeostatic feeding. Astrocytes
surrounding ARCPOMC retract during hyperglyce-
mia, which makes ARCPOMC neurons more
exposed to satiation circulation signals (Nuzzaci
et al. 2020). Disinhibition through silencing of
GABAergic ARCAGRP inputs is another factor
that augments ARCPOMC neuronal activity. Satia-
tion signals are transmitted to downstream brain
regions such as PVH and act through the MC4R
system to terminate feeding (Huszar et al. 1997).

A subpopulation of glutamate-releasing
neurons, which co-express leptin and oxytocin
receptors, is found in the ARC (ARCGlut). The
projections of these ARCGlut neurons converge
with GABAergic ARCAGRP projections to form
synapses on PVHMC4R neurons. Chemo- or
optogenetic excitation of the ARCGlut to
PVHMC4R pathway rapidly caused satiety and
reduced food intake. Therefore, ARCGlut neurons
provide fast satiety control of feeding (Blevins
and Ho 2013; Blevins and Baskin 2015; Fenselau
et al. 2017).

The PBN, a nucleus that relays taste and vis-
ceral sensory information from NTS, has been
shown to be essential for producing satiety and
terminating food intake. After sensing metabolic
mediators, the NTS transmits signals via
glutamatergic innervations to the PBN.
Optogenetic activation of a subpopulation of
excitatory neurons in the PBN that expresses cal-
citonin gene-related peptide (PBNCGRP) dramati-
cally reduced food intake. The PBNCGRP neurons
project to the laterocapsular division of the CeA
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forming a functionally important circuit for
suppressing appetite (Carter et al. 2013).

As mentioned above, in addition to circulating
metabolic mediators, mechanosensory signaling
can also inhibit feeding. Neurons in PBN that
express prodynorphin gene (PBNpdyn) receive
inputs from trigeminal nuclei and subregions of
NTS, which receive oral, oropharyngeal, and vis-
ceral sensory information. PBNpdyn neurons
respond to mechanical pressure in digestive tract
which is caused by drinking, eating, or other
physical stimuli-like tongue touching or gavage
needle insertion into esophagus. Stimulation of
PBNpdyn reduced appetite by inhibiting eating
bout initiation, but did not terminate eating after
the bout is already in progress. Several nuclei in
LH, PVH, and vlPAG involved in feeding behav-
ior are innervated by PBNpdyn, forming a feed-
back control circuit which responds to
mechanosensory information from the GIT (Kim
et al. 2020).

Higher cortical areas are also involved in
processing satiation signals. Neuronal activity in
dorso-lateral prefrontal cortex (dlPFC) increased
during food consumption as satiation was
approached. Compared to lean individuals,
obese individuals showed a lower increase in
dlPFC neuron activity after digestion (Gluck
et al. 2017).

Different neuronal populations in insular cor-
tex were selectively activated or inhibited by food
cues during hunger. These neurons no longer
responded to a food cue when animals were in a
state of satiety (Yamamoto 1984; Livneh et al.
2017; Livneh et al. 2020). The calcium/calmodu-
lin-dependent protein kinase II (CAMKII)-
expressing neurons in right anterior insular cortex
send projections to LH to suppress feeding in the
presence of aversive visceral stimuli (Wu et al.
2020).

3.3 Hedonic Feeding

Beyond metabolic needs, animals prefer to eat
more when presented with highly palatable food.
This is because palatable food is rich in energy
and activates the brain reward system. High-

energy food can stimulate reward brain centers
starting from taste, which is relayed by the NTS to
LH via PBN (Norgren 1974; Moga et al. 1990).

The LH is involved in homeostatic feeding
regulation as discussed above, and together with
nucleus accumbens (NAc) and ventral tegmental
area (VTA), these areas form a reward circuit for
hedonic feeding (Fig. 3.2). Neurons in the LH are
composed of a number of genetically and func-
tionally distinct cell types. GABAergic and
glutamatergic neurons play opposing functions
in feeding and reward. Optogenetic activation of
VGAT-expressing LH neurons causes voracious
feeding, as well as optical self-stimulation behav-
ior (Jennings et al. 2015), whereas activation of
LH Vglut2-expressing neurons reduces food
intake and produce aversive responses (Jennings
et al. 2013; Li et al. 2018). Similarly, a recent
study combining single-cell RNA sequencing and
in vivo two-photon calcium imaging showed that
the transcriptional profile of LH glutamatergic
neurons was affected by obesity. Encoding
properties of individual LH glutamatergic
neurons showed greatly attenuated reward
responses in obese mice (Rossi et al. 2019).

GABAergic inputs from ventral BNST prefer-
entially target LH glutamatergic neurons. Activa-
tion of this vBNSTGABA-LH pathway evoke
voracious feeding of highly palatable food and
induce self-stimulation (Jennings et al. 2015).
Another major input onto LH is from NAc shell
medium spiny principal neurons (MSNs) which
express D1R. D1R-expressing MSNs preferen-
tially innervate LH GABAergic neurons, and not
orexin- or MCH-producing neurons. Optogenetic
stimulation of the NAc shellD1R-LHGABA path-
way suppresses licking for a palatable reward,
whereas optogenetic inhibition of postsynaptic
LH GABAergic neurons suppresses consumption
of food (O’Connor et al. 2015). Another subpop-
ulation of NAc neurons which express D2R proj-
ect to the ventral pallidum, and activation of this
pathway is involved in processing taste palatabil-
ity (Smith and Berridge 2007), and increases
feeding via the LH (Stratford and Wirtshafter
2013).

LHGABA neurons directly project to the VTA.
Activation of this pathway induces feeding, and
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mice will readily engage in optical self-
stimulation of this pathway (Nieh et al. 2015).
LHVglut2 neurons have a pronounced excitatory
projection to the lateral habenula (LHb), a brain
area known to mediate the negative emotional
valence (Matsumoto and Hikosaka 2007;
Stamatakis and Stuber 2012). Optogenetic inhibi-
tion of LHVglut2-LHb projections selectively
increases licking for a caloric reward and causes
place preference (Stamatakis et al. 2016).

A couple of recent literatures has linked some
new nuclei with hedonic feeding. Optogenetic
stimulation of GABAergic cells in the zona
incerta or their projections to PVT rapidly
induced binge-like eating and showed positive
hedonic association (Zhang and van den Pol
2017). Optogenetic activation of basal forebrain
SST neurons or their projection to the LH specifi-
cally leads to high-calorie food intake but not
normal chow, and induces anxiety-like behaviors.
This study indicated a selective role of basal
forebrain SOM neurons in hedonic feeding (Zhu
et al. 2017). A subpopulation of GABAergic cells
in the ARC, prepronociceptin-expressing neurons
(ARCPNOC), were found to be activated by a
short-term high-fat diet. The ARCPNOC neurons
provide inhibitory synaptic input to nearby

POMC neurons and BNST to regulate hedonic
feeding. ARCPNOC neurons selectively increase
consumption of palatable food, but not normal
chow (Jais et al. 2020).

3.4 Conclusion

Recent advances in neuroscience methods have
greatly advanced our understanding of neural
circuits of feeding behavior. Homeostatic and
hedonic feeding have distinct circuitry
mechanisms, and share some nodal structures
such as the ARC and LH. However, considering
the multitude of heterogeneous of neuronal
subtypes and spatiotemporal activity dynamics
of neurons, a detailed map the neural correlates
of feeding behavior is far from complete. High-
throughput single-cell transcriptional profiling is
a powerful technique that may greatly accelerate
our efforts toward mapping central systems
coordinating feeding. How the brain interacts
with peripheral organs is an emerging and excit-
ing area of research. More comprehensive inte-
gration studies of neurobiology,
neuroendocrinology, and metabology would
enrich our understanding of the brain–body

Fig. 3.2 Summary diagram showing the neural circuits
for hedonic feeding. Arc arcuate hypothalamic nucleus,
BF basal forebrain, BNST bed nucleus of the stria
terminalis, LH lateral hypothalamus, LHb lateral habenular

nucleus, Nac nucleus accumben, NTS nucleus of the soli-
tary tract, PBN parabrachial nucleus, PVT paraventricular
thalamic nucleus, SN substantia nigra, VTA ventral teg-
mental area, ZI zona incerta
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interface in feeding (Levinthal and Strick 2020).
Systematic screening of metabolic organ-derived
mediators under different energy states, including
fasting, refeeding, and excessive calorie intake, as
well as mouse models of obesity, would inform
novel molecular and circuitry mechanisms under-
lying feeding regulation.
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Neural Circuits for Reward 4
Wen Zhang

Abstract

Innate behaviors often viewed as geneti-
cally predetermined behaviors. However, in
the environment animals often are subjected
to external stimuli conflicting with those.
Thus, animals subsequently need to change
those behaviors to survive and reproduce. In
the brain, the reward pathway is well-known
for its role to adjust behaviors according to
external stimuli, or rewards. However, only
recently the relationship between reward path-
way and innate behavior begins to be explored.
In this review, we summarize the recent data
on this subject from rodent studies which sug-
gest an important role of this crosstalk between
circuits involved in reward pathway and innate
behaviors. We also discuss some of the
neurotransmitters and neuromodulators under-
lying this crosstalk and the related
mechanisms.

Keywords

Innate behavior · Reward pathway ·
Dopamine · Circuit

4.1 Introduction

Innate behaviors, programmed by genetically
determined neural circuits, are stereotyped and
robust to be observed in generations of the same
species. While it is believed to be “hardwired,”
which indicates it is hard to change, however,
those behaviors are often found to be flexible
and subjected to both internal and external envi-
ronment states or contexts. For example, most
animals exhibit ingestional neophobia when
exposed to a new food, that is animals would
only eat a little of this novel food presented to
them (Domjan et al. 1977). This behavior has
significant advantage to those animals as many
foods in natural environment is poisonous or
indigestible. By limited consumption of food,
animals could value whether food can be safely
consumed and not detrimental to their health.
After multiple exposure and consumption of the
food, the ingestional neophobia could subside and
the animal consumes greater amount of food. This
behavior change to overcome ingestional
neophobia is advantageous for animal since it
promotes energy storage and prevents energy
deficit or hunger. Besides it satisfies basic needs
of the animal, food also is a potent reward to
promote change in the feeding behavior.

Studies have identified neurons in multiple
brain structures that have a critical role in reward
processing and behavior change. This brain
regions also form connections between them and
form an important brain circuit often called
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“reward pathway” (Koob and Volkow 2016).
Reward pathway includes ventral tegmental area
(VTA), substantia nigra, striatum, prefrontal cor-
tex, orbitofrontal cortex, amygdala, hippocam-
pus, and associated structures (Fig. 4.1). Among
these brain regions, VTA is important for reward
and motivation, ventral striatum is important for
habitation and locomotion, amygdala has a criti-
cal role in fear and negative emotions, and the
cortical regions are important for processing
memories and emotions. One of the best
characterized circuit in the reward pathway is
dopaminergic projection from the ventral tegmen-
tal area (VTA) to the nucleus accumbens (NAc),
which localized at the ventral part of the striatum.
In NAc, the major type of neurons is medium
spiny neurons (MSNs), which is GABAergic
and comprises more than 90% of neurons in
NAc (Kreitzer 2009). MSNs can be further
categorized into two groups: those that expressing
dopamine receptor subtype 1 (D1-MSNs) and
those that expressing dopamine receptor subtype
2 (D2-MSNs). Those two types of MSNs not only
express different dopamine receptor subtypes, the
intracellular downstream molecules activated by
dopamine receptor activation are also different,
and furthermore they project to different brain

regions. For example, D1-MSNs in NAc directly
innervate the VTA (Xia et al. 2011), whereas
D2-MSNs innervate the VTA by impeding
GABAergic neurons in the ventral pallidum
(Soares-Cunha et al. 2018). Beside projections
to the NAc, VTA dopaminergic neurons also
project to several other brain regions in the
reward pathway, such as the prefrontal cortex,
central and basolateral amygdala, and the hippo-
campus (Robison and Nestler 2011). These brain
regions in reward pathway are also
interconnected besides dopaminergic innervation
from VTA. For example, NAc receives extensive
glutamatergic inputs from the PFC, ventral hip-
pocampus, and amygdala. And the PFC, hippo-
campus, and amygdala form reciprocal excitatory
glutamatergic projections with one another.
Besides the three neurotransmitters mentioned
above, brain regions in the reward pathway are
also modulated by cholinergic interneurons in
those regions, the serotonergic inputs from dorsal
raphe, and noradrenergic inputs from locus
coeruleus. Furthermore, studies have shown that
the VTA dopaminergic neurons could also
co-release glutamate or GABA with dopamine at
terminals (Tritsch et al. 2012; Hnasko et al.
2012).

Fig. 4.1 The reward pathway. A simplified diagram of the reward pathway and brain regions involved in the rodent
brain. The major glutamatergic, dopaminergic, and GABAergic projections between those brain regions are illustrated
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4.2 Dopamine and Innate Behavior

In reward pathway, dopamine is a key neurotrans-
mitter to modulate reward. The aforementioned
VTA–NAc circuit has a crucial role in the reward
recognition and subsequently initiating reward
consumption (Koob and Le Moal 2008), and
this circuit is all important in brain response to
aversive stimuli as well. In the brain, dopamine is
classically viewed as an enforcer for motivation
and reinforcement (Wise 2004). Dopamine was
first identified with motivational function by a
study showing that damage to the nigrostriatal
dopamine fibers led to feeding and drinking
deficits (Robbins et al. 1986), and damage to the
mesolimbic dopamine fibers decreased locomo-
tion (Cools 1986). Dopamine is also shown to be
the key neurotransmitter in the reinforcement
learning (Schultz 1998). Animals do not learn to
lever-press for food or water if dopamine function
is impaired during training, and blockage of dopa-
mine system led to decline in performance in
well-trained animals (Wise and Schwartz 1981).
By this role of dopamine, it could modulate ani-
mal behaviors, even those “hardwired” innate
behaviors. Indeed, under some pathological
conditions, change of dopamine in the brain led
to suppression of innate behaviors. For example,
cocaine addiction is one of the most prevalent
addictions globally. Cocaine inhibits dopamine
uptake, leads to buildup of extracellular dopamine
(Giros et al. 1996), which is viewed as the basis
for addiction. Cocaine addiction not only led to
change in abnormal goal-directed learning and
habit formation but also suppressed neophobia
in rats to novel objects in the environment
(Stansfield and Kirstein 2007) and novel food
(Goudie et al. 1978).

A study on human subject showed increased
dopamine release in dorsal striatum when palat-
able food is ingested is correlated with self-
reported pleasure from eating the food (Small
et al. 2003). These studies indicate that reward
pathway, especially dopamine release in brain
regions of the reward pathway, could modulate
innate behaviors. Indeed, in rodents lesion of the
dopamine innervation in medial shell of the

nucleus accumbens, which is part of the ventral
striatum, led to elongated neophobia to sucrose
(Martinez-Hernandez et al. 2012). Meanwhile,
the same female mice showed no change in the
preference to sexual hormone of male mice after
lesion (Martinez-Hernandez et al. 2012). These
results suggest that reward pathway might only
affect some kinds of innate behaviors and the
activity of their related circuits. Besides foods,
animals often show neophobia to other novel
stimuli, such as novel objects introduced into
their environment. Studies have shown a similar
important role of striatum and dopamine in mod-
ulation of this behavior. Lesion of dorsal striatum
also reduced neophobia to novel object (Cigrang
et al. 1986). Knockdown of dopamine transporter
(Dat1) gene in mice increased extracellular dopa-
mine in the brain, and mice showed enhanced
investigation of objects (Pogorelov et al. 2005).

Although studies have shown the possible
roles of dopamine and reward pathway in innate
behaviors, however, the related field only recently
begin to dissect the circuit in reward pathway
involved in innate behavior. Recently this ques-
tion begins to be addressed by researchers
utilizing genetic tools, especially optogenetic
method. In below, we summarized recent prog-
ress on this subject.

4.3 Medium Spiny Neurons
in Striatum and Innate
Behavior

In striatum, the majority of neurons are
GABAergic medium spiny neurons (MSNs).
More than 90% neurons in striatum are MSNs.
Striatal MSNs can be classified into two groups,
those expressing dopamine receptor D1-like and
others expressing dopamine receptor D2-like.
Dopamine receptors are G-protein-coupled
receptors, D1-like dopamine receptor includes
D1 and D5 receptor subtypes, D2-like dopamine
receptor includes D2, D3, and D4 subtypes
(Beaulieu and Gainetdinov 2011). Those two
classes have opposite influence on adenylyl
cyclase, and the MSNs expressing those two
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classes also have opposite functions on animal
behavior. Generally, MSNs expressing D1-like
receptors (D1-MSNs) promote action, while
those expressing D2-like receptors (D2-MSNs)
inhibit action. Besides dopamine receptor subtype
difference, those two types of MSNs are involved
in different circuits. D1-MSNs directly project to
GPi/SNc, while D2-MSNs project to GPI/SNc
relays in the globus pallidus and subthalamus.
Thus D1-MSNs are involved in “direct pathway,”
and D2-MSNs are in “indirect pathway.” The
output of striatum is generally viewed as to reflect
the balance between these two projections
(Kreitzer 2009). Between these two types of
MSNs, activation of D2-MSNs is shown to be
vital in innate risk-avoidance task. Inhibition of
D2-MSNs via Chemogenetic modulation reduced
innate risk avoidance of mice to the odor of fox
urine (Blomeley et al. 2018). Those D2-MSNs
also are modulated by orexins (hypocretin)
released from hypothalamic neurons (Gutierrez
et al. 2011). Orexin excited D2-MSNs in ventral
striatum, but not D1-MSNs or interneurons
(Blomeley et al. 2018). Orexin is required for
context-dependent brain control of behavior, and
orexin-releasing neurons are activated by internal
and external stresses, and orexin release is neces-
sary for inducing anxiety-like states, such as
increased innate risk avoidance in animals or
panic attack in human subjects (Johnson et al.
2010; Suzuki et al. 2005). Application of orexin
receptor antagonist reduced risk avoidance in
mice. The finding that orexin-releasing targets
D2-MSNs in the ventral striatum, suggests a pos-
sible mechanism of crosstalk between circuits
controlling innate behavior and reward pathway.
However, there still is discrepancy between stud-
ies as one reported no effect of orexin-releasing
output from hypothalamic neurons on D1-MSNs,
while others reported orexin excited more than
80% of ventral striatum neurons (Mori et al.
2011). More than 90% of ventral striatum neurons
are MSNs, and the two types of MSNs, D1-MSNs
and D2-MSNs, roughly each represents half of
the MSNs in striatum. This implies more delicate
dissection of this circuit is necessary to under-
stand this circuit and its function.

4.4 Ventral Tegmental Area (VTA)
Neurons and Innate Behavior

Among brain regions involved in reward path-
way, VTA is one of the most important structure
which includes dopaminergic neurons that project
to many other brain regions in the reward path-
way. Studies have shown that VTA not only
contains projecting dopaminergic neurons but
also GABAergic and glutamatergic neurons
(Yamaguchi et al. 2007; Dobi et al. 2010).
Those GABAergic neurons not only inhibit dopa-
minergic neurons in VTA, but they also project to
other brain regions (Beier et al. 2015). A recent
study showed that besides projections to nucleus
accumbens (Brown et al. 2012), GABAergic
neurons in VTA also send long projection to the
central nucleus of the amygdala (CeA), lateral
hypothalamus, lateral habenula, and the
periaqueductal gray (Zhou et al. 2019). CeA is
important for the innate defensive behaviors of
rodents (Isosaka et al. 2015), and the VTA
GABAergic neurons majorly project to the
medial CeA (Zhou et al. 2019). In the presence
of innate looming threat that mimic the diving
movement of mouse predators, such as hawks,
the VTA GABAergic projection neurons
activated and inhibited CeA neurons which pro-
moted defensive behavior of mice as blocking
GABAergic transmission in CeA delayed the
latency of looming-evoked defensive-like behav-
ior. This circuit is enervated by projections from
superior colliculus, which conveys visual infor-
mation to VTA neurons (Zhou et al. 2019).

4.5 Prefrontal Cortex and Innate
Behavior

Among brain regions in reward pathway, the pre-
frontal cortex (PFC) is important for multiple
vital brain functions, such as decision-making,
attention, and working memory. Recent studies
also showed modification of innate behavior by
prefrontal activity change. In cortex, besides
parvalbumin- and somatostatin-expressing
neurons (Zhang et al. 2016; Zhang et al. 2017;
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Kawaguchi 1993), neuropeptide Y-expressing
neurons are also GABAergic neurons; they
made up less than 10% of GABAergic interneu-
ron in cortex, and they also often express somato-
statin (Kubota et al. 2011). Reduction of GABA
synthesis in neuropeptide Y-expressing (NPY+)
GABAergic neurons of PFC enhanced innate
behaviors, such as anxiety-like activity, nesting
construction, and social dominance, but not
innate fear expression (Corder et al. 2018).
Besides GABAergic inhibition, changes of
D2-like dopamine receptor subtype 4 (D4R) in
PFC also could modulate innate fear expression.
Inhibition of D4R reduced fear expression when
rats were exposed to cat odor (Vergara et al.
2017). D4R is expressed in GABAergic neurons,
including parvalbumin-positive (PV+) interneu-
ron, suggesting the involvement of multiple
types of GABAergic neurons in the modulation
of innate behaviors by PFC. Interestingly, these
studies suggest that NPY+ and PV+ interneurons
might be involved in different innate behaviors,
whether these results suggest different circuits
that these two types of neurons are involved in
is not clear.

Anterior cingulate cortex (ACC) locates rostral
in the prefrontal lobe area. It is well-known for its
role in emotion, pain, and cognitive control, and
studies have also shown that it plays a critical role
in regulating fear responses (Shackman et al.
2011). The ACC is extensively interconnected
with limbic nuclei including the amygdala, hip-
pocampus, and ventral striatum (Cassell and
Wright 1986; Christie et al. 1987; Reep and
Corwin 1999). In amygdala, glutamatergic
projections from ACC innervate both basolateral
(BLA) and central nucleus (CeA) of amygdala,
while the glutamatergic input from ACC to CeA
is very sparse (Jhang et al. 2018; McDonald et al.
1996). As mentioned before, CeA is important for
the innate defensive behaviors, while BLA is
shown to be involved in innate freezing behavior
(Vazdarjanova et al. 2001). Modulation of the
ACC-BLA circuit function contributes to innate
fear response to a predator odor in mice. Inactiva-
tion of this projection enhanced freezing response
to fox urine without affecting conditioned freez-
ing, meanwhile excitation of ACC projection

robustly inhibits both innate and conditioned
freezing (Jhang et al. 2018).

4.6 Conclusion

It is well established that dopamine and reward
pathway in the brain are important in goal-
directed behaviors. Besides this, this complexed
neurotransmitter and circuit system is also shown
to be the circuits and homeostatic signals that
control hunger, satiety, and motivations. Sitting
at the crossroad for both environment and innate
behavior, we would expect more researches to
address the important role of this system in the
crosstalk of nature with nurture. Furthermore, our
understanding of the role of the dopamine system
and reward pathway in innate behaviors will not
only help us understand the environment role in
behavior but also shed light on novel
interventions to symptoms of psychologic and
neurological diseases.
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Neuronal Response and Behavioral
Modulation in Social Interactions 5
Yang Zhan

Abstract

Social behavior is a complex behavior that
requires processing of sensory cues and inte-
gration of internal states. Social interaction
involves two or more individuals to approach
each other and engage communications.
Although sensory, motivational, emotional,
or reward cues may all play roles in directing
the sociability and social preference during
social interaction, how neural activities from
different brain regions are modulated during
the behavioral process of social interaction are
only beginning to be studied. Multiple brain
regions including prefrontal cortex, hippocam-
pus, and amygdala contain active neurons dur-
ing social interaction. This review examines
the neural responses in behaving rodents dur-
ing social behavior and discusses how manip-
ulation of specific neural pathways can
modulate social behavior. Neural activities
during social interaction provide direct
measurements about how social information
is coded and are beneficial in understanding
the neural mechanisms underlying social
behavior.

Keywords

Social interaction · Prefrontal cortex ·
Hippocampus · Neural coding · In vivo neural
recordings

Social interaction refers to a process of reciprocal
stimulation or response between two or multiple
individuals. In this review, I focus on the brain
areas that are responsive during the social inter-
action. Emphasis is put on the single-unit activity
of the neurons so that evidence of the involve-
ment of the neural circuits about encoding of
socially relevant information is given. Next, I
put together the recent results on behavioral
manipulation of social behavior using circuitry
manipulation tools, mainly based on optogenetic
or pharmacogenetic approaches. Much of the
knowledge about how the brain substrates
underly the social behavior come from mouse
models. Hopefully the fundamental studies on
social interaction will contribute to the under-
standing of behavioral deficits associated with
abnormal social behavior.
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5.1 Neuronal Response in Social
Behavior

5.1.1 Neuronal Response in Social
Interaction

5.1.1.1 Medial Prefrontal Cortex
In the social interaction, medial prefrontal cortex
(mPFC) plays important roles (Bicks et al. 2015).
In the mouse behavioral tests, social interaction
can be measured when the test mouse approaches
a stimulus mouse and they engage interaction.
The test mouse takes the initiative to approach
the target stimulus, and it touches the other mouse
on the face or other body parts by the nose. The
mPFC single units recorded by the extracellular
electrophysiology showed response during the
nose poke (Lee et al. 2016). Analysis of the social
approach period shows that neural activities show
difference between investigation of the social
stimulus and the object stimulus. The proportion
of the neurons that were found to be responsive is
about 15%. Using miniature fluorescence micro-
scope and GCamp indicators, mPFC neurons
showed response during two consecutive stages
of sociality and social novelty (Liang et al. 2018).
Both increased and decreased neurons were
found. The specific responses to the social stimuli
demonstrate that mPFC neurons can code infor-
mation during approach to social target. It seems
that mPFC neurons show overlapping responses
to familiar and novel social stimuli, probably due
to the properties of mixed selectivity (Rigotti
et al. 2013; Parthasarathy et al. 2017).

PFC has many outputs to the other brain
regions (Hoover and Vertes 2007). With virus
labeling tools, the PFC neurons projecting to the
specific downstream targets have been
investigated. In three-chamber tasks, it was
found that PFC neurons projecting to the nucleus
accumbens displayed social response or spatial
response. This probably indicates that
PFC-nucleus accumbens pathway contains either
social or spatial information, or a combination of
both (Murugan et al. 2017).

5.1.1.2 Amygdala
Amygdala is an area that is responsive to socially
relevant stimuli (Adolphs 2009). A recent study
described the neuronal activities in the medial
amygdala (MeA) during social interaction using
miniature fluorescence microscope (Li et al.
2017). A sizable proportion of neurons showed
increased and decreased response to the social
stimuli. In both male and female mice, the pro-
portion of the responsive neurons is similar. Inter-
estingly, after the mice had sexual experience, the
number of neurons responsive to the social
stimuli became higher.

5.1.1.3 Ventral Tegmental Area
Ventral tegmental area (VTA) area is involved in
processing emotionally salient stimuli. Using
fiber photometry approach measuring the bulk
calcium signals in the VTA, it has been found
that VTA dopamine positive neurons responded
to social stimuli when another social stimulus was
introduced to a homecage with test mouse
(Gunaydin et al. 2014). As the test mice repeat-
edly investigated the social targets, the calcium
signals became less prominent.

5.1.2 Neuronal Response
in Aggression

5.1.2.1 Hypothalamus
In aggressive behavior, mice can attack other
conspecifics or objects by biting. The aggressive
behavior is instinctive and threatening cues from
external stimuli can elicit aggression. The electro-
physiological single-unit recordings from the
hypothalamus have found neurons that were
responsive during male–male attack (Lin et al.
2011; Falkner et al. 2014). The ventrolateral sub-
division of ventromedial hypothalamus (VMH)
contains neurons that respond exclusively during
attack. The male responsive neurons seemed to be
selective since many of them remained silent to
the female stimulus.
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5.1.3 Neuronal Response
in Dominance

5.1.3.1 mPFC
Dominance behavior is reflected by hierarchical
structure in a group of mice. The tube test can
measure the dominance hierarchy in which a
dominant mouse can push out the subordinate
one in a tube contest. mPFC has been found to
be important in dominance behavior measured in
the tube test (Wang et al. 2011; Zhou et al. 2017).
In the tube test, mPFC neurons in the dominant
mouse display elevated response related to the
push and effortful behavior during the contest.
Mice with established dominance hierarchy may
utilize the critical information processing within
the mPFC to win the contest. Furthermore, it has
been shown that the mPFC plasticity depends on
the inputs from the mediodorsal thalamus.

5.1.4 Neuronal Response in Social
Defeat

In contrast to the dominant mouse, the subordi-
nate mouse can display behavioral and neural
changes. mPFC is thought to play roles in social
defeat behavior. Using ΔFosB labeling technique
which indicates neuronal activity changes under
chronic conditions, mPFC was found to be
involved after social defeat (Hinwood et al.
2010). With local field potential recordings,
mPFC and dorsal periaqueductal gray (dPAG)
synchronization has been examined after social
defeat (Franklin et al. 2017). A subchronic 3-day
social defeat caused a reduction in the coherence
between the mPFC and the dPAG, demonstrating
that the functional connectivity of this pathway
was compromised. Further examination of the
directed relationship by Granger causality (Zhan
2015) between the dPAG and mPFC reflected that
social defeat resulted in an increased information
flow from the dPAG to the mPFC. The
descending mPFC to dPAG pathway therefore
can process the stress-related information induced
by the social defeat.

5.1.5 Neuronal Response in Social
Memory

Social memory reflects the ability of the mice to
recognize a new conspecific from a remembered
one. The social memory test comprises the com-
parison of interacting time between a previously
encountered stimulus mouse and a novel stimulus
mouse. During the preference test in which both
the familiar mouse and the novel mouse are pres-
ent, the test mouse is considered to form social
memory if more visits are spent with the novel
mouse. Using a long-term social memory test and
c-fos approach (Lüscher Dias et al. 2016), it was
found that amygdala, prelimbic area of the PFC,
and hippocampus can contribute to the represen-
tation of social memory.

5.1.5.1 Hippocampus
Ventrial hippocampus (vHPC) is considered to
process different information from the dHPC.
vHPC is involved in anxiety and emotion. In
social memory test, vHPC has been found to be
activated by a remembered mouse (Okuyama
et al. 2016). By miniature fluorescence micro-
scope, it was found that vHPC had a higher pro-
portion of neurons responding to a social stimulus
after familiarization with it. In contrast, neurons
in the dorsal hippocampus (dHPC) did not show
increased proportion. vHPC can hold the infor-
mation of a familiar social stimulus.

During facial whisker contact, vHPC neurons
from the rats display elevated response (Rao et al.
2019) when the stimulus rat was in presence com-
pared to the periods when the test rat was alone.
The response in the vHPC were similar when the
same conspecific was subject to repeated
presentations. In male rats, female conspecifics
evoked stronger responses than males. The
dHPC was not found to be socially responsive
(von Heimendahl et al. 2012). Therefore, vHPC
contains socially relevant information.

Hippocampal CA2 region is involved in social
processing. Genetic lesion of this region has been
implicated in social memory (Hitti and
Siegelbaum 2014). Recordings of the rat CA2
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neurons did not reveal a marked change on the
firing rates when the test mouse was exposed with
social stimuli (Alexander et al. 2016). Although
there was lack of social response for CA2
neurons, spatial correlations before and after the
social stimulus were different. The social stimu-
lus can modify the spatial representation in the
hippocampus.

Parvalbumin positive neurons in the vHPC
were found to be responsive to the social stimuli
(Deng et al. 2019). Using fiber photometry and
transgenic mice labeling the parvalbumin
neurons, the bulk calcium signals of the
labeled neurons had a stronger response to the
novel stimuli, compared to the familiar stimuli.
The distinct response of the parvalbumin neurons
in the vHPC demonstrates that this class of
neurons may play important roles for
distinguishing novel mice and familiar mice.

5.2 Neural Circuit Manipulation
and Social Behavior

5.2.1 Social Interaction

5.2.1.1 mPFC
mPFC has extensive input and output brain
structures. Prefrontal lesions of the nicotinic
receptors produced abnormal social interaction
behavior with increased investigation time
(Avale et al. 2011). Conditional knockout of
SHANK3 gene in the anterior cingulate cortex
produced social interaction deficits (Guo et al.
2019). The requirements of mPFC neural
functions contribute to the normal expression
of social interaction in mice. The mPFC-nucleus
accumbens projections were found to decrease
the social interaction time (Murugan et al.
2017).

5.2.1.2 VTA
VTA and the VTA to nucleus accumbens path-
way have been investigated in social interaction
(Gunaydin et al. 2014). Social interaction may
involve processing of stimuli with positive

valence. Optogenetic stimulation of channelr-
hodopsin-2 (ChR2) expressed in tyrosine hydrox-
ylase (TH)-positive neurons in the VTA
promoted social interaction in homecage direct
social interaction assay (Gunaydin et al. 2014).
When these neurons were inhibited with
halorhodopsin (eNpHR3.0), the social interaction
time was reduced. Therefore, it seems that VTA
dopamine neurons have a modulatory role for
social behavior. Furthermore, activation of VTA
to NAc pathway increased social interaction in
the three-chamber social interaction assay.

5.2.1.3 Amygdala
Basolateral complex of amygdala (BLA) to vHPC
pathway has been investigated in social interac-
tion (Felix-Ortiz and Tye 2014). Using
optogenetic method, it has been shown that
inhibiting BLA-vHPC pathway increased social
interaction time in a resident-intruder assay. On
the other hand, activation of the BLA-vHPC path-
way decreased the social interaction. Although
both structures of the BLA and vHPC are
involved in the social behavior, how the interac-
tion in the BLA-vHPC connectivity modulates
social behavior needs further investigation.

5.2.2 Social Memory

5.2.2.1 Hippocampus
Manipulation of the CA2 and vHPC has
demonstrated that these regions can modulate
social interaction. Genetic targeting of the pyra-
midal cells in the dorsal CA2 has shown that
social memory was impaired when these cells
were ablated (Hitti and Siegelbaum 2014)
though sociability or other spatial memory was
not affected. Furthermore, it has been shown that
dorsal CA2 projections to the ventral CA1 can
modulate the encoding, reconsolidation, and
retrieval during the social memory processes
(Meira et al. 2018). Using c-fos and optogenetic
labeling techniques, it has been demonstrated that
reactivation of the labeled ventral CA1 neurons
contributes to the memory retrieval of the
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previously encounter mouse (Okuyama et al.
2016). In the ventral CA1, social isolation caused
reduction of parvalbumin neurons and ablating
parvalbumin neurons resulted in impairments of
the social memory (Deng et al. 2019). These
studies about the functions of CA2 and the
vHPC in social memory have underlined the
role of the hippocampus in social memory.

5.2.3 Dominance Behavior

5.2.3.1 mPFC
Direct mPFC synaptic manipulation has shown
that decreasing the synaptic efficacy within the
mPFC can lead to the hierarchy changes in a
group of mice in the tube test (Wang et al.
2011). Further, thalamic inputs from the medial
dorsal thalamus (MDT) to the mPFC can modu-
late the hierarchy changes (Zhou et al. 2017). This
is dependent on the long-term potentiation of this
MDT-mPFC pathway. Optogenetic manipulation
of the mPFC during the social contest in the tube
test has shown that activation of the pyramidal
neurons in the mPFC can induce instant wining
thus augmenting the social hierarchy.

5.2.4 Aggression

5.2.4.1 Hypothalamus
The ventrolateral part of the ventromedial hypo-
thalamus (VMHvl) is involved in mediating
aggressive behavior. Optogenetic activation of
VMHvl induces attack behavior and inactivation
of this region suppressed aggression (Falkner
et al. 2016). In female mice, it has also been
shown that activation of VMHvl caused attacks
toward other targets (Hashikawa et al. 2017).
Therefore, VMHvl may play a prominent role in
the regulation of aggressive behavior.

To summarize, social interaction forms funda-
mental basis for establishing social relationships
in species living in a group. It contributes to
recognition, cooperation, and competition. Social
interaction can lead to positive social and emo-
tional development. On the other hand, deficient
or lack of social interaction can have negative

impacts on physiological or neurological devel-
opment. The study of the brain substrates under-
lying the social interaction can help to understand
how this important behavior is modulated.
Although social interaction integrates complex
cues of sensory information or internal
processing, new tools and novel findings about
this behavior is beginning to bring in new
advances in this area.
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Neural Circuit Mechanisms That Underlie
Parental Care 6
Zi-Xian Yu, Xing-Yu Li, and Xiao-Hong Xu

Abstract

In mammals, parental care is essential for the
survival of the young; therefore, it is vitally
important to the propagation of the species.
These behaviors, differing between the two
sexes, are innate, stereotyped, and are also
modified by an individual’s reproductive expe-
rience. These characteristics suggest that neu-
ral mechanisms underlying parental behaviors
are genetically hardwired, evolutionarily
conserved as well as sexually differentiated
and malleable to experiential changes. Classi-
cal lesion studies on neural control of parental
behaviors, mostly done in rats, date back to the
1950s. Recent developments of new methods
and tools in neuroscience, which allow precise

targeting and activation/inhibition of specific
populations of neurons and their projections to
different brain structures, have afforded fresh
opportunities to dissect and delineate the
detailed neural circuit mechanisms that govern
distinct components of parental behaviors in
the genetically tractably organism, the labora-
tory mouse (Mus musculus). In this review, we
summarize recent discoveries using modern
neurobiological tools within the context of
traditional lesion studies. In addition, we dis-
cuss interesting cross talk between neural
circuits that govern parent care with those
that regulate other innate behaviors such as
feeding and mating.

Keywords
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6.1 Introduction

Parental behavior can be defined as any behavior
carried out by a member of a species toward an
immature conspecific that facilitate the survival of
young and promote their well-being (Numan and
Insel 2003a; Dulac et al. 2014). It can be further
classified, according to the sex of the executor,
into maternal behavior by females and paternal
behavior by males. In most mammalian species,
as females lactate they undertake most of the
responsibilities to care for the young, while
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bi-parental care, in which both males and females
take parts in raising the offspring, occurs only in
about 5–10% of mammalian species (Lonstein
and De Vries 2000; Lukas and Huchard 2014;
Kleiman and Malcolm 1981). Here, we focus
our discussion to rats and mice as the majority
of studies on the neurobiology of parental
behaviors are carried out in these two species.

Parental behaviors in rodents consist of multi-
ple stereotyped yet coordinated motor patterns
that are often sequentially displayed and that are
accompanied by suppression of other activities
such as feeding and mating. Broadly speaking,
maternal behaviors typically include several dis-
tinct pup-related behaviors (Numan and Insel
2003b; Hedrich 2013), including the following:
(1) licking/grooming, which serve to clean the
pups’ body and stimulate defecation; (2) nest-
building, building and maintaining a nest that is
~2–3 times larger and more completely enclosed
than a common nest to provide a more comfort-
able environment for pups and better shield them
from intruders; (3) pup retrieval, retrieval of pups
that have strayed away back to the nest;
(4) crouching, huddling over pups to ensures
their warmth as they are still underdeveloped for
proper thermoregulation; (5) the arched-back lac-
tation/nursing posture. In addition, during the
final days of pregnancy and throughout lactation,
females will readily defend the nest and
vigorously attacking the intruders, a behavior
termed maternal aggression (Numan and Insel
2003b; Lonstein and Gammie 2002). The inten-
sity of maternal aggression depends on litter size
(Maestripieri and Alleva 2010) as well as food
availability (Maestripieri 1991), suggesting a
strict relationship to pup defense thus
differentiating it from other forms of aggressive
behaviors such as territorial aggression.

By comparison, virgin males are negligent
toward pups and sometimes even attack and kill
them (infanticide). Strikingly, male mice switch
to become paternal following mating and cohabi-
tation with a female, roughly around the time
when its offspring is about to be born (Numan
and Insel 2003a; Brown 1993; Tachikawa et al.
2013). This transition from infanticide to paternal
care is thought to serve as an adaptive mechanism

to prevent a male mouse from killing its own pups
while still maintaining the ability to eliminate
pups sired by other males (Elwood 1977). More
importantly, when male mice do care for the
young in the role of a father, their behaviors
toward pups are very similar to those of females
with some quantitative differences in extents and
the fact that they do not lactate (Numan and Insel
2003a; Tachikawa et al. 2013; Elwood 1977).
This indicates that maternal and paternal
behaviors likely share some common neural
mechanisms at a very basic level.

6.2 Factors That Influence
the Display of Parental
Behaviors

Parental behaviors are sensitively modulated by
external cues from pups and by internal state that
signals an individual’s reproductive experience
(Numan and Insel 2003a, b; Brown 1993). There-
fore, before discussing brain areas and neural
circuits that govern parental behaviors, it helps
to first review these external and internal factors
that influence the display of parental behaviors.

6.2.1 Olfactory and Auditory Cues
Emitted by Pups

As rodents are nocturnal animals living in dark
tunnels, females mainly locate pups through
olfactory and auditory cues. A dam (mother)
uses olfactory cues in milk and urine to establish
a unique identity for her litters. Interfering with
this olfactory identity by adding unwanted scents
risks disrupting maternal behavior, particularly
during the first week after parturition (Wilkinson
and Miller 2010; Weber and Olsson 2008). In
addition, pups emit a variety of ultrasonic
vocalizations (USVs) when isolated from the
dam or when they are away from the nest
(Branchi et al. 2015). These USVs are crucial to
direct the dams’ attention and to trigger a mater-
nal response (Ehret 2005; Ehret and Bernecker
1986). Manipulation of either the female’s
hearing ability (Ehret and Bernecker 1986;
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Cohen-Salmon et al. 1985) or pups’ vocal activity
(Hood et al. 2010) decreases maternal responses
and increases the latency for pup retrieval. Litter
size (Priestnall 1972) as well as litters’ sex com-
position (Paul 1991) also affect the duration of
maternal caring. Females that rear large litters
spend less time in the nest than females rearing
small litters (Priestnall 1972). Similarly, females
that nurse mixed litters (1 male + 3 female) spend
more time on maternal behaviors and wean litters
later than females that nurse all-male litters (Paul
1991).

6.2.2 Environmental Stressors

Moreover, maternal care is also influenced by
environmental stressors in mice (Numan and
Insel 2003a; Weber and Olsson 2008). Stressors
of different intensity levels and kinds, including
food and/or water deprivation, cage tilt, light,
high temperature, and loud noise, have varying
effects on the female’s behavior toward pups with
some stressor decreasing pup grooming and
nursing and others eliciting infanticide and canni-
balism (Meek et al. 2001; Macrì and Würbel
2007; Pardon et al. 2000).

6.2.3 Reproductive Status

Parental behaviors are also strongly modulated by
an individual’s parous or sexual experience. Nul-
liparous or virgin female rats avoid neonatal pups
during the first encounter but can be induced to
display maternal care after ~4–7 days of continu-
ous exposure to pups (Numan and Insel 2003a;
Weber and Olsson 2008) or by treatment of hor-
mone regimens that are characteristic of parturi-
ent females (Siegel et al. 1978; Pedersen et al.
1982; Rosenblatt 1967). This process, called
“sensitization” of maternal behaviors, is much
quicker in virgin female mice (Dulac et al. 2014;
Rosenblatt 1967). As mentioned before, virgin
male mice, which typically neglect or attack
pups (Elwood 1977), shift to paternal care after
mating and/or lengthy cohabitation with a preg-
nant female (Numan and Insel 2003b; Brown

1993), indicating a slow experience-dependent
“awakening” of paternal behaviors in males.

6.3 Brain Areas Involved
in Parental Care

Given the complex behavioral repertoire of paren-
tal care and the multiple internal and external
factors that influence its expression, it is not
surprising that extensive brain areas/regions
have been implicated in its regulation. These
areas include olfactory and auditory system,
regions of the hypothalamus, ventral tegmental
area (VTA) and nucleus accumbens (NAc),
periductal gray (PAG), and the medial prefrontal
cortex (mPFC). These brain regions are highly
interconnected and are thought to mediate the
aspects of sensory processing, neural integration,
motivation, motor output, and high cognitive con-
trol in the regulation of parental behaviors.
Below, we will discuss the distinctive role played
by each region with an emphasis on recent
developments using cutting-edge tools (for
review of these tools, please see references
(Adamantidis et al. 2015; Atasoy and Sternson
2018; Zha and Xu 2015; Sternson et al. 2016)).

6.3.1 Main Olfactory Epithelium &
Vomeronasal Organ (MOE &
VNO)

In rodents, odors are detected by specialized sen-
sory neurons that reside in the main olfactory
epithelium (MOE) and the vomeronasal organ
(VNO), which further relay the information to
the main olfactory bulb (MOB) and the accessory
olfactory bulb (AOB), respectively (Levy and
Keller 2009). Olfactory cues play facilitatory
roles in maternal behaviors but are not absolutely
necessary for the initiation of the behavior in rats
as grossly normal onset is found in primiparous
females following destruction of either the MOE
or VNO (Jirik-Babb et al. 1984; Fleming et al.
1992; Kolunie and Stern 1995). While in mice
olfaction seems to play a more essential role in
maternal behaviors. Irrigation of zinc sulfate
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within the MOE, which renders animals anosmic,
results in the majority of the treated females
eating their offsprings (Seegal and Denenberg
1974). Moreover, deficits in pup retrieval and
maternal aggression are also observed in female
mice null for Cnga2 and Trpc2, two obligatory
channels for odor-evoked neural activities in the
MOE and VNO, respectively, demonstrating that
maternal behaviors in mice require normal MOE
and VNO function (Fraser and Shah 2014). On
the other hand, detection of pup cues by VNO
appears to promote pup attack behaviors in virgin
males as surgical removal of the VNO or loss of
VNO function in Trpc2 knockouts results in dra-
matic suppression of infanticide and even emer-
gence of paternal behaviors in some males
(Tachikawa et al. 2013; Mennella and Moltz
1988; Wu et al. 2014).

6.3.2 Auditory Cortex

Detection of pup USV calls is lateralized to the
left auditory cortex in rodents (Marlin et al.
2015), which mirrors lateralization of language
processing to the left hemisphere in humans
(Loring et al. 1990; Bishop 2013). Functionally,
infusion of the GABAA receptor agonist
(muscimol) into the left auditory cortex impairs
pup retrieval in females (Marlin et al. 2015).
Interestingly, neural responses to pup calls in the
auditory cortex undergo significant changes after
parturition with higher neural correlation and
higher signal-to-noise ratio observed in dams
compared to pup-naive adult females (Gideon
et al. 2013). Such changes are thought to better
represent and transmit pup call information and
the behavioral saliency of the stimuli (Gideon
et al. 2013; Lior et al. 2011). Multisensory inter-
action is also reported as exposure to pups’ odor
reshape neuronal responses in the auditory cortex
(Lior et al. 2011).

Curiously, Marlin et al. (2015) find that the left
cortex expresses more oxytocin receptors than the
right auditory cortex. Moreover, the display of
pup retrieval is accelerated in virgin females fol-
lowing oxytocin injection into the left auditory
cortex or stimulation of oxytocin neurons. Pairing

pup calls with oxytocin delivery or activation of
oxytocinergic fibers in the auditory cortex
modulates population neural responses by acutely
reducing inhibition but at the same time increas-
ing the temporal correlation of inhibition and
excitation over minutes to hours, thereby balanc-
ing the magnitude and timing of excitation and
inhibition. Thus, oxytocin-induced plasticity in
the auditory cortex likely underlie sensitization
of behavioral response to pup calls in dams.

6.3.3 Medial Amygdala (MeA)

The amygdala represents a major brain region
that processes olfactory information down-
stream of the MOB and the AOB (Sosulski
et al. 2011; Ben-Shaul et al. 2010; Bergan
et al. 2014). The AOB and MeA are more
activated by pup interaction in virgin males
than in fathers, indicating a role in infant aver-
sion (Tachikawa et al. 2013; Li et al. 2017).
Indeed, bilateral lesions of the MeA or unilateral
lesion of the MeA paired with unilateral lesion
of the anterior/ventromedial nuclei in the hypo-
thalamus facilitate the expression of maternal
behaviors in virgin female rats (Fleming et al.
1980; Sheehan et al. 2001), leading to the view
that the MeA prevents the expression of mater-
nal behavior through activation of hypothalamic
nuclei. This view is further expanded by recent
studies in mice showing that neurons in the
posterodorsal division of the MeA (MeApd)
encode pup cues and that such representation
is potentiated by sexual experience in virgin
animals of both sexes (Bergan et al. 2014; Li
et al. 2017). Furthermore, stimulation of MeApd
GABAergic neurons promotes pup grooming in
virgin females, while inhibition of these neurons
suppresses pup grooming (Chen et al. 2019).
Interestingly, stimulation of the same popula-
tion of MeA neurons in virgin males results in
activity-level-dependent behavioral outputs:
promoting pup grooming at low intensity and
infanticide at high intensity (Chen et al. 2019).
Together, these results show that the MeApd
regulates paternal behaviors in a sex and
experience-dependent manner.
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6.3.4 Medial Preoptic Area (mPOA)

The medial preoptic area (mPOA) is a small brain
region at the anterior tip of the hypothalamus and
is perhaps the best studied brain region in the
control of parental behaviors. The mPOA
receives olfactory information via inputs from
the MeA and from the bed nucleus of the stria
terminalis (BNST) (Kohl et al. 2017; Kohl et al.
2018). Lesion or pharmacological inhibition of
the mPOA blocks all consummatory components
of maternal behaviors with no pup retrieval, nest-
building, crouching or maternal aggression
observed yet with pup contact remaining intact
(Lee et al. 1999; Numan et al. 1988; Numan
1974; Arrati et al. 2006), which demonstrates
that the mPOA is absolutely required for the
initiation and execution of the consummatory
aspects of maternal behaviors. Furthermore,
lesion of the central part of the mPOA switch
fathers from paternal care to infanticide, while
activation of the same region attenuates infanti-
cide in virgin males (Tsuneoka et al. 2015),
suggesting an active role for this region to inhibit
infanticide in fathers.

Using single cell profiling methods, it is
recently revealed that the mPOA is an
extremely heterogeneous structure consisting
of many distinct neuronal subtypes which
express different molecular markers such as
neurotransmitters and hormone receptors (Kohl
et al. 2018; Simerly et al. 1986; Tsuneoka et al.
2013; Tsuneoka et al. 2017). Along the same
line, it is known that the mPOA regulates
homeostatic processes such as thermoregulation
(Szymusiak and Satinoff 1982), sleep (Chung
et al. 2017) as well as parental behaviors. So
the important question becomes what the
identities of the neuronal populations that regu-
late parental behaviors are. Great progress has
been made on this front using cell-type-specific
tools that provide much improved spatial and
temporal resolution on the function of defined
neuronal populations than previous lesion and
electrical stimulation methods (Wu et al. 2014;
Kohl et al. 2018; Wei et al. 2018; Fang et al.
2018).

6.3.4.1 mPOA Galanin+ Neurons
Dr. Catherine Dulac’s group of Harvard
pioneered the field to explore the role of geneti-
cally defined populations of mPOA neurons in
parental behaviors (Wu et al. 2014; Kohl et al.
2018). By screening various genetic markers,
they first find that the neuropeptide galanin is
enriched in mPOA neurons that are highly
activated during parental behaviors. Via fiber
photometry recordings of Ca2+ transient signals,
they find that mPOA galanin+ (mPOAgalanin)
neurons are highly activated during pup-directed
behaviors (sniff, retrieval) but not during non-
pup-directed behaviors (nest-building, crouching)
or during social interactions with other adults in
females or fathers (Kohl et al. 2018). More impor-
tantly, ablation of mPOAgalanin neurons impairs
all components of parental care and renders the
ablated animals more likely to ignore or attack
pups regardless of their sex or reproductive status,
while ablation of a nearby population of mPOA
neurons that express tyrosine hydroxylase
(TH) has no effects. Furthermore, optogenetic
activation of mPOAgalanin neurons switches virgin
male mice from pup avoidance/attack to pup
grooming. Together, these results show that acti-
vation of mPOAgalanin neurons suppresses aggres-
sive behaviors toward pups and promotes pup
grooming. However, as stimulation of
mPOAgalanin neurons fails to elicit other maternal
behaviors such as pup retrieval and nest-building,
it is likely that other populations of mPOA
neurons play more prominent roles in these
behaviors.

6.3.4.2 mPOA Esr1+ Neurons
Indeed, two independent studies recently point to
the population of mPOA neurons that express
estrogen receptor α (Esr1) as the vital player in
controlling pup retrieval behavior (Wei et al.
2018; Fang et al. 2018). Esr1 is expressed in
about ~50% of mPOA neurons and is the canoni-
cal nuclear receptor for estrogen, which upon
binding of estrogen translocates from the plasma
to the nucleus to regulate multiple gene transcrip-
tion (Wei et al. 2018). Classical studies show that
estrogen injection intraperitoneally or directly
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into the mPOA facilitates the onset of maternal
behaviors (Mayer et al. 1990; Rosenblatt and
Ceus 1998; Siegel and Rosenblatt 1975), imply-
ing a function for mPOAEsr1 neurons in parental
behaviors. Noteworthy, a subset of mPOA Esr1+
(mPOAEsr1) neurons (15–30%), higher in males,
co-express galanin and account for about half of
the mPOAgalanin neurons (Wei et al. 2018).

Recently, via fiber photometry recording of
Ca2+ transients, Wei et al. (2018) reveal ramping
neural activates in mPOAEsr1 neurons prior to the
initiation of pup retrieval behavior. This finding is
independently validated by Fang et al. (2018),
using single-unit recording of these neurons.
Interestingly, this pattern of neural activity is
specific to pup retrieval and is not observed in
other components of maternal behaviors such as
nest-building. Optogenetic activation of
mPOAEsr1 neurons elicits pup retrieval in virgin
animals of both sexes and even promotes
retrieval or gathering of fake pups (Wei et al.
2018). Moreover, time-locked optogenetic inhibi-
tion of mPOAEsr1 neurons during pup contact
significantly decreases the initiation of pup
retrieval, while optogenetic inhibition after the
initiation of a pup retrieval bout reduces the rate
that the pup is successfully retrieved to the nest
without affecting the duration of the retrieval
behavior (Wei et al. 2018; Fang et al. 2018),
indicating mPOAEsr1 neurons regulate not only
the motor but also the “goal-directness” aspect
of pup retrieval behavior.

6.3.4.3 mPOA Vgat+ Neurons
The majority (~80%) of mPOA neurons are
inhibitory and express the vesicular GABA trans-
porter (Vgat) as the marker, of which about half is
Esr1+ (Wei et al. 2018). As mPOAgalanin and
mPOAEsr1 neurons seem to regulate pup
grooming and pup retrieval, respectively, is
there a specific population of mPOA neurons
that regulate maternal nest-building? Single-unit
recording of mPOA neurons show that ~20%
mPOA neurons are activated during pup retrieval
while ~5% are activated during nest-building
(Fang et al. 2018). Moreover, neurons activated
during retrieval tend to be inhibited during nest-
building (Fang et al. 2018). Interestingly, Li et al.

(2019) show that optogenetic activation of mPOA
Vgat+ (mPOAVgat) neurons elicits both pup
retrieval and nest-building, while stimulation of
mPOAEsr1 neurons elicits only pup retrieval. Con-
sistently, behavioral-locked optogenetic inhibi-
tion of mPOAVgat neurons disrupts both pup
retrieval and maternal nest-building. Thus, it
seems that a distinct subset of mPOAVgat neurons
that does not express Esr1 may underlie maternal
nest-building. This hypothesis remains to be
tested more directly.

6.3.5 Ventral Tegmental Area (VTA)

One of the major downstream targets of the
mPOA outside of the hypothalamus is the ventral
tegmental area (VTA), which sends out dopami-
nergic projections throughout the brain to regions
such as the nucleus accumbens (NAc) and is
critically involved in motivation and reinforce-
ment learning (Salamone and Correa 2012;
McHenry et al. 2017). Pharmacological inactiva-
tion of the VTA reduces pup licking and retrieval
in postpartum females and blocks the expression
of place preference for pup-paired context (Seip
and Morrell 2009; Numan and Smith 1984; Keer
and Stern 1999), while destruction of VTA dopa-
mine neurons or depletion of dopamine terminals
in the ventral striatum also causes a persistent
deficit in pup retrieval (Hansen et al. 1991a, b).
Similarly, lesion of the shell but not the core of
the NAc significantly disrupts pup retrieval
behavior without affecting other components of
maternal behavior such as pup licking, nest-
building, and nursing (Li and Fleming 2003),
while infusion dopamine receptor antagonist in
NAc inhibits pup retrieval and pup licking but
enhances nursing in lactating rats (Keer and
Stern 1999).

Via fiber photometry recordings of Ca2+

transients, Fang et al. (2018) find that VTA dopa-
mine neurons are acutely and strongly activated
during pup retrieval and that optogenetic stimula-
tion of mPOAEsr1 ! VTA projections promotes
pup retrieval behavior. Consistent with the vast of
majority mPOAEsr1 being GABAergic, they fur-
ther show that mPOAEsr1 neurons send strong
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inhibitory inputs preferentially to VTA
non-dopaminergic cells, which locally inhibit
VTA dopamine neurons. Thus, stimulation of
mPOAEsr1 neurons would result in a net activa-
tion of VTA dopamine neurons via a
dis-inhibitory mechanism. Indeed, pharmacologi-
cal inhibition of the VTA blocks pup retrieval
behavior elicited by activation of mPOAEsr1

neurons. Similarly, mPOAgalanin neurons also
project to the VTA. Activation or inhibition of
mPOAgalanin ! VTA projections bidirectionally
change the animal’s motivation to interact with
pups as measured by the number of times that the
animal crosses a barrier that separates it from the
pups (Kohl et al. 2018).

6.3.6 Periaqueductal Gray (PAG)

The periaqueductal gray (PAG) is composed of
several distinct longitudinal neuronal columns
and is thought to convey motor outputs of various
innate behaviors including parental care (Zha and
Xu 2015; Deng et al. 2016; Watson et al. 2016).
Paradoxically, cytotoxic lesions of PAG
facilitates maternal response (Sukikara et al.
2010), while injection of GABAA receptor antag-
onist into the PAG dose-dependently promotes
pup grooming but impairs maternal aggression
in lactating females (Lee and Gammie 2010).
Indeed, mPOAgalanin neurons send strong projec-
tion to the PAG and preferentially synapse onto
PAG GABAergic neurons (Kohl et al. 2018).
Moreover, optogenetic activation of
mPOAgalanin ! PAG projections suppresses pup
attack in virgin males and promotes pup
grooming and pup-directed sniffing in both
males and females without affecting other paren-
tal behaviors or affecting the parental motivation
to cross a barrier to interact with pups. Further-
more, optogenetic inhibition of
mPOAgalanin ! PAG projections significantly
reduces pup grooming and pup-directed sniffing
without affecting other behaviors. Given that
~90% of mPOAgalanin neurons are GABAergic
and that mPOAgalanin neurons preferentially target
PAG GABAergic neurons, it is possible that stim-
ulation of the mPOA may recruit different subsets

of PAG excitatory neurons via a dis-inhibitory
mechanism; however, the detailed cellular mech-
anism through which mPOA ! PAG projections
coordinate different components of parental
behaviors remains to be investigated.

6.3.7 Paraventricular Nucleus
of the Hypothalamus (PVN)

The mPOA also project to the paraventricular
nucleus of the hypothalamus (PVN). Electrolytic
lesions of the PVN on day 15 of gestation in rats
disrupts nearly all maternal behaviors while
lesion performed on day 4 postpartum has little
effects, suggesting that PVN specifically
regulates the initiation but not the maintenance
of maternal behavior in rats (Insel and Harbaugh
1989). Oxytocin, a neuropeptide critical for par-
turition and lactation, is synthesized in a subset of
neurons in the PVN (Richard et al. 1991; Gimpl
and Fahrenholz 2001). Intraperitoneal injection of
oxytocin or infusion of oxytocin into brain
regions such as the auditory cortex, mPOA, or
VTA accelerates the expression of maternal
behaviors in virgin females (Pedersen et al.
1982; Marlin et al. 2015; Pedersen et al. 1994),
while infusions of an oxytocin receptor antagonist
into the VTA or the mPOA blocks pup retrieval
and nursing postures in dams (Pedersen et al.
1994). These results support that PVN oxytocin
(PVNOXT) neurons regulate the initiation of
maternal behavior (Insel and Harbaugh 1989).
Indeed, optogenetic stimulation of PVNOXT

neurons or their projections in the auditory cortex
accelerates pup retrieval and decreases retrieval
latency in virgin females (Marlin et al. 2015).
Interestingly, Scott et al. (2015) identify a sexu-
ally dimorphic projection (more prominent in
females than males) from TH-expressing neurons
in the anterior periventricular nucleus (AVPe) to
PVNOXT neurons that modulate oxytocin secre-
tion. Ablation of AVPe TH+ (AVPeTH) neurons
decreases oxytocin level and disrupts pup
retrieval along with other maternal behaviors,
while optogenetic stimulation of these neuron
positively promotes maternal behaviors. Interest-
ingly, AVPeTH neurons do not appear to regulate
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paternal behaviors in males but rather act to sup-
press aggression toward other males, suggesting a
sexually dimorphic function.

6.3.8 Medial Prefrontal Cortex
(mPFC)

While the medial prefrontal cortex (mPFC) is
thought to control high cognitive functions, sev-
eral studies have also reported its role in maternal
behaviors. By c-Fos staining, increased neural
activities are observed in the infralimbic area of
the mPFC in maternal rats that develop place
preference for pup-paired context (Mattson and
Morrell 2005). Rodent neuroimaging studies have
also reported increases in blood oxygen level-
dependent (BOLD) signals in the mPFC in lactat-
ing rats in response to suckling stimulation from
pups (Febo and Ferris 2007; Marcelo et al. 2005).
In addition, functional MRI (fMRI) studies have
also implicated the mPFC in maternal care in
humans (Bartels and Zeki 2004; Ranote et al.
2004; Lane et al. 2008). Moreover, excitotoxic
lesion of the mPFC prior to pregnancy impairs
some maternal behaviors such as pup retrieval
and pup licking but spare other behaviors such
as nest-building (Afonso et al. 2007), while
tetrodotoxin (TTX)-mediated inactivation or
GABA-mediated inhibition of the mPFC leads
to dramatic reduction in pup retrieval in rats
(Febo et al. 2010). Together, these results show
that the mPFC also participates in the regulation
of parental care.

6.3.9 Ventrolateral Division
of the Ventromedial
Hypothalamus (VMHvl)

While the above sections focus on pup-directed
aspects of parental behaviors, some progress has
also been made on the neural control of maternal
aggression. Specifically, Esr1+ neurons in the
ventrolateral division of the ventromedial hypo-
thalamus (VMHvl), a population known to con-
trol male territorial aggression and female sexual
behaviors (Falkner et al. 2016; Lee et al. 2014;

Yang et al. 2013; Lin et al. 2011), are recently
shown to be activated when lactating females
attack stranger intruders (Hashikawa et al.
2017). Furthermore, inactivation of VHMvlEsr1

cells reduces maternal aggression, whereas acti-
vation of these neurons elicits attack in virgin
females (Hashikawa et al. 2017). Interestingly,
two seemingly topographically separable
subdivisions of VMHvlEsr1 neurons, which differ
in gene expression and projection patterns, may
distinctively regulate female sexual behaviors
versus maternal aggression. In particular, the
more medially located division of VMHvlEsr1

neurons, which preferentially projects to the
PAG, is more activated during maternal aggres-
sion, whereas the other more laterally located
division that projects to both AVPV and PAG is
more activated during female sexual behavior
(Hashikawa et al. 2017).

6.4 Cross Talk Between Neural
Control of Parental Care
and Other Innate Behaviors

Ethologists have long noted hierarchical and
antagonistic control of behaviors. Indeed, neural
control of parental behaviors must be coordinated
with neural control of other behaviors such as
mating and aggression to achieve a balance
among different behaviors and to maximize fit-
ness. This is most likely achieved via lateral
interactions between neural structures that regu-
late each behavior at many different levels.

6.4.1 Overlaps Between Neural
Control of Paternal Care
and Other Social Behaviors

It is found that ablation of mPOAgalanin neurons
results in not only marked impairments of paren-
tal responses but also in defects in mating
behaviors in males (Wu et al. 2014). Along the
same line, optogenetic activation of mPOAgalanin

neurons while promoting pup grooming and
suppressing pup-directed aggression also
suppresses inter-male territorial aggression
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(Wu et al. 2014), indicating the complex roles that
mPOAgalanin neurons play in pup-directed
behaviors versus social behaviors with other
adult conspecifics. Interestingly, a subset of
mPOAgalanin neurons specifically project to the
MeA and are broadly activated during parental
behaviors. Optogenetic activation of this
mPOAgalanin ! MeA projection has little effects
on parental behaviors but rather inhibits inter-
male aggression and decreases the amount of
time that a female spent chemo-investigating a
male intruder (Kohl et al. 2018), suggesting that
this pathway may function to inhibit interactions
with adult conspecifics during parental behaviors.

Similarly, mPOAEsr1 neurons, the population
that is both necessary and sufficient for pup
retrieval behavior in both sexes, also regulate
male mating behavior. Wei et al. (Wei et al.
2018) find that mPOAEsr1 neuron activities
ramped before the onset of pup retrieval as well
as male mating. Furthermore, optogenetic activa-
tion of mPOA Esr1 neurons elicits male-typical
mating behaviors in both sexes when the mice
are presented with a female intruder while abla-
tion or optogenetic inhibition of mPOAEsr1

disrupts mating behavior in males (Wei et al.
2018). It is further shown that neurons activated
in response to pups or females are not the same
but are two separable subpopulations that over-
lap. Together, these results reveal the shared lay-
out within which mPOAEsr1 neurons function to
broadly regulate sexually dimorphic behaviors in
both male and female mice.

6.4.2 Reciprocal Antagonisms
Between Neural Control
of Maternal Care and Feeding

In species such as mouth-breeding cichlid fish or
domestic chicken, females endure lengthy volun-
tary anorexia during brood care, spending time
sitting in the nest or caring for the offspring
instead of feeding or food foraging (Mrowka
1986; Mrosovsky and Sherry 1980). Similar phe-
nomenon is also observed in rodents where
mothers spend almost all her time in the early
postpartum period curling around the pups in the

nest and are not seen resting alone without body
contacts to pups until day 9 postpartum (Numan
and Insel 2003b; Konig and Markl 1987).
Recently, Han et al. (2017) find that the presence
of pups strongly delays and decreases food con-
sumption in physiologically fasted virgin female
and male mice and even when Agrp neurons in
the arcuate nucleus (ARCAgrp), the quintessential
hunger neurons, are optogenetically activated.
Furthermore, chemogenetic activation of Vglut2
+ but not Vgat+ neurons in the mPOA is suffi-
cient to suppress hunger-induced feeding. Mean-
while, Li et al. (2019) find that ARCAgrp neurons
form inhibitory synapses onto ~30% of
mPOAVgat neurons, and activation of these
projections in females dramatically inhibits
maternal nest-building without affecting pup
retrieval behavior. Together, these data support a
model that hunger-induced activation of ARCAgrp

neurons inhibits mPOA Vgat to suppress mater-
nal nest-building, whereas in parallel activation of
mPOA Vglut2 neurons by pup-derived cues
delays feedings. Such reciprocal antagonism
between hunger and maternal care may allow a
female to better balance feeding with different
components of pup care and to prioritize
behaviors that are more urgent.

6.5 Toward a Neural Circuit
Mechanism for Parental Care

Brain regions and neural pathways discussed here
do not function in isolation but rather form a large
interconnected network that integrate external
pup-derived sensory cues with internal hormonal
factors and experience-induced plasticity to con-
trol discrete components of parental care such as
pup grooming, pup retrieval, nest-building, and
maternal aggression as well as the motivation to
interact with pups, within the frame of a much
larger neural network that controls and
coordinates all behaviors. Thus, behavioral con-
trol is not instantiated by a single group of
neurons but is mediated by concerted neural
activities distributed across the entire neural net-
work. Nevertheless, identification of genetic
defined populations of neurons provides the
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essential entry points to delineate the architecture
and the logic of the underlying neural circuit.

Using pseudorabies virus, Kohl et al. (2018)
trans-synaptically labeled presynaptic inputs to
mPOAgalanin neurons and identified >20 brain
regions including MeA, BNST, ARC, VMH,
and PVN. Interestingly, ~20% presynaptic inputs
originate within the mPOA, indicating extensive
local processing, while another ~40% of presyn-
aptic inputs are from other hypothalamic regions,
of which the ARC provides the most abundant
inputs. By combining retrograde tracing with
c-Fos staining, the authors show that the majority
of these upstream regions are activated during
parental behaviors, albeit in a sex and reproduc-
tive state-dependent manner. For instance, while
local mPOA inputs are activated during parent
behaviors in virgin females, mothers, and fathers,
more activation of neurons in the pheromone-
processing pathway (MeA and BNST) is
observed in fathers and virgin females but not
mothers, suggesting that the MeA-BNST path-
way, which mediates pup-directed aggression, is
silenced in mothers but remains partially active in
sexually experienced males and parental virgin
females.

Next, by tracing neuronal projection patterns,
Kohl et al. (2018) further show that mPOAgalanin

neurons project to >20 brain regions, many of
which overlap with the regions that provide pre-
synaptic inputs to these neurons, indicating exten-
sive reciprocal connectivity within the circuit.
Inside the hypothalamus, mPOAgalanin neurons
densely project to the PVN and AVPe, while
outside of the hypothalamus they project to the
VTA, PAG, and MeA along with other regions.
mPOAgalanin neurons that project to a given target
show minimum overlap, occupy anatomically
distinctive positions within the mPOA, and
receive broad but pathway-specific combinations
of inputs that show characteristic enrichment or
depletion patterns. For example, inputs from the
NAc and lateral septum preferentially target
VTA-projecting mPOAgalanin neurons. In addi-
tion, there are great cellular specificity within
the connectivity patterns. For instance,
mPOAgalanin neurons receive synaptic inputs
from PVN arginine vasopressin (AVP) neurons

(PVNAVP) but not from PVNOXT neurons. In
return, mPOAgalanin neurons project to PVNAVP,
PVNOXT, and PVN corticotropin-releasing hor-
mone (PVNCRH) neurons, in a sexually dimorphic
manner with more mPOAgalanin neurons
projecting to PVNAVP and PVNCRH neurons in
males and more mPOAgalanin neurons projecting
to PVNOXT neurons in females. Similarly,
mPOAgalanin neurons do not receive inputs from
but send projections to AVPeTH neurons, which
further send a female-biased projection to
PVNOXT neurons, further supporting an intimate
connection between the mPOAgalanin neural cir-
cuit and sex-specific activation of PVNOXT

neurons.
Additionally, PAG, VTA, and

MeA-projecting mPOAgalanin neurons are tuned
to different aspects of parental behaviors with
the PAG-projecting population specifically
activated during pup grooming, the
MeA-projecting population broadly activated
during nearly all pup-directed behaviors and the
VTA-projecting population show minimum
activity except some minor activation in a subset
of females when they enter an empty nest. Func-
tionally, optogenetic activation or inhibition of
mPOAgalanin ! PAG projections promote or
suppresses pup grooming, respectively, without
affecting the parental motivation to interact with
pups. By comparison, optogenetic activation
mPOAgalanin ! VTA projections increase the
number of times that the stimulated animals
cross a climbable barrier to interact with pups,
indicating increased parental motivation, without
affecting the actual duration or quality of pup
interactions such that a non-parental male bearing
the mPOAgalanin ! VTA stimulation would actu-
ally cross the barrier to attack pups. Interestingly,
activation mPOAgalanin ! MeA projections has
little effects on either the motivation or motor
aspects of parental behaviors, but rather suppress
male–male aggression and the amount of time
that a female investigate a male intruder,
indicating inhibition of other competing social
behaviors or interests. Taken together, these
findings support a model in which largely
non-overlapping, projection-defined MPOAgalanin

subpopulations form functional modules to

58 Z.-X. Yu et al.



integrate broad input combinations and regulate
specific aspects of parental behaviors. Future
studies are required to determine whether the
function circuits that other genetic defined
populations of neurons (such as mPOAEsr1,
mPOAVgat) act in to regulate parental behaviors
are also organized in a similar manner.

6.6 Conclusion & Perspective

Parental care is essential for the survival of the
young. While the mPOA represents a key node
for the control of parental behaviors behavior, the
neural network that it functions in is distributed.
Great progress has been made on the neural cir-
cuit mechanism that govern parental behaviors,
aided mainly by recent tool developments that
allow cell-type-specific monitoring and manipu-
lation of neuronal activities. Nevertheless, out-
standing questions remain. In particular, as
neuronal subtypes can be defined according to
gene expression, connectivity, and developmental
profiles, the exact role that each neuronal type
play in various components and aspects of pater-
nal behaviors await more complete and compre-
hensive investigations. Built on such knowledge,
it will be interesting to determine whether mater-
nal or paternal behaviors, which appear similar
from outside, rely on similar neuronal
populations. Along this line, how are such
neurons modified by experience, activated or
suppressed by pup-derived cues in a sex and
state-dependent manner, and how do they com-
pete with neurons that govern other behaviors to
select a particular motor output? In summary, it is
an exciting time for the study of parental care, and
many great questions await further explorations.
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Spatial Navigation 7
Wenjun Jin, Han Qin, Kuan Zhang, and Xiaowei Chen

Abstract

The hippocampus is critical for spatial naviga-
tion. In this review, we focus on the role of the
hippocampus in three basic strategies used for
spatial navigation: path integration, stimulus–
response association, and map-based naviga-
tion. First, the hippocampus is not required for
path integration unless the path of path inte-
gration is too long and complex. The hippo-
campus provides mnemonic support when
involved in the process of path integration.
Second, the hippocampus’s involvement in
stimulus–response association is dependent
on how the strategy is conducted. The hippo-
campus is not required for the habit form of
stimulus–response association. Third, while
the hippocampus is fully engaged in
map-based navigation, the shared
characteristics of place cells, grid cells, head
direction cells, and other spatial encoding
cells, which are detected in the hippocampus
and associated areas, offer a possibility that
there is a stand-alone allocentric space percep-
tion (or mental representation) of the environ-
ment outside and independent of the
hippocampus, and the spatially specific firing
patterns of these spatial encoding cells are the

unfolding of the intermediate stages of the
processing of this allocentric spatial informa-
tion when conveyed into the hippocampus for
information storage or retrieval. Furthermore,
the presence of all the spatially specific firing
patterns in the hippocampus and the related
neural circuits during the path integration and
map-based navigation support such a notion
that in essence, path integration is the same
allocentric space perception provided with
only idiothetic inputs. Taken together, the hip-
pocampus plays a general mnemonic role in
spatial navigation.

Keywords

Hippocampus · Path integration · Space
perception · Place cells · Grid cells

7.1 Introduction

Spatial navigation is one of the most fundamental
functions necessary for animals to survive. Suc-
cessful navigation allows animals to find food,
water, mates, and breeding grounds and to avoid
predators. To effectively navigate from one place
to an unseen destination, animals need to choose
the proper course or trajectory in accordance with
the available information. Animals may take
advantage of the information from both proprio-
ceptive and exteroceptive sources using three
basic strategies (Fig. 7.1), corresponding to the
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ways in which the space can be represented in
different reference frames (Gallistel 1993;
O’Keefe and Nadel 1978; Moser et al. 2017).
First, animals can rely on internally generated
signals to make the movement. It has been
shown that information from the vestibular, pro-
prioceptive, and somatosensory systems together
with efference copies of motor commands and
optic flow signals allows the animal to keep
track of its position relative to the point of depar-
ture. This type of navigation, which is referred to
as path integration, or dead reckoning in marine
navigation, allows the animals to navigate in the
dark or in situations when other external informa-
tion is not available or is unnecessary. Second,
when information from external sources, such as
visual landmarks, sounds, or olfactory or tactile
cues, is available, this information could be
exploited for spatial navigation in two other
ways. In the stimulus–response (S–R) association
strategy, which is relevant to the route strategy in
the taxon system (O’Keefe and Nadel 1978), a
particular cue or landmark is strictly linked with a
certain movement for the animals to follow or
avoid. It was also found that multiple landmarks
can be treated as a snapshot or single integrated
cue of the environment to guide the movement
(Cartwright and Collett 1982; Collett and Collett
2002). In addition to the S–R strategy where the
cue or landmark is individually used, animals
have evolved a way to construct a mental

representation of the environment from the spatial
relationship of the landmarks and choose a navi-
gation course based on the cognitive map of the
environment (Tolman 1948). This strategy, which
is termed map-based navigation, allows more
reliable and flexible navigation to the destination
when compared to the path integration and S–R
strategy (O’Keefe and Nadel 1978). These three
basic strategies can be adapted in various
combinations in the real world. For example, an
ant may adopt a map-based strategy to look for
home only when it identifies that it is in the
vicinity of the home (Gallistel 1993).

Previous studies have demonstrated that the hip-
pocampus is essentially involved in map-based spa-
tial navigation (O’Keefe and Nadel 1978; Morris
et al. 1982). However, the exact role of the hippo-
campus in cognitive map-based spatial navigation
remains controversial as there are two conflicting
opinions (Eichenbaum et al. 2007, 2016; O’Keefe
and Nadel 1978; Lisman et al. 2017). In addition,
there are inconsistent reports regarding whether the
hippocampus is involved in spatial navigation using
path integration strategy (Alyan and McNaughton
1999; Maaswinkel et al. 1999; McNaughton et al.
1996; Shrager et al. 2008). In this chapter, we will
review the potential role of the hippocampus in
spatial navigation under different strategies. More
specifically, we focus on the role of the hippocam-
pus in map-based spatial navigation.

Fig. 7.1 Three navigation strategies. (a) Path integration
allows the animals to keep track of the vector information
relative to the departed nest based on idiothetic inputs. (b)
Using the stimulus–response strategy, the mouse may
reach the reward through several left and right turns on

viewing the block and the cue on the wall. (c) Map-based
navigation allows the mouse to flexibly choose a path to
the reward location according to the mental representation
(insert) of the environment in the brain
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7.2 Role of the Hippocampus
in Three Navigation Strategies

The hippocampus is a hub receiving information
from multiple sensory modalities (Bellistri et al.
2013; Bickford-Wimer et al. 1990; Hartley et al.
2000; Lopez and Blanke 2011; Pereira et al.
2007). More specifically, visual and spatial infor-
mation typically arrives in the hippocampus
through the postrhinal cortex (POR) and then
the medial entorhinal cortex (mEC); the other
polymodal sensory information, such as auditory
and tactile information, reaches the hippocampus
through the perirhinal cortex (PER) and lateral
entorhinal cortex (lEC) pathway (Witter and
Amaral 2004). Besides the input from the afferent
cortical structures, the hippocampus receives
heavy subcortical input, such as that from the
thalamus, via the PER and POR. The vast amount
of information input into the hippocampus is con-
sistent with the important role of the hippocam-
pus in spatial navigation.

7.2.1 Role of the Hippocampus
in Path Integration

Path integration has been found in a broad range
of animals, including insects, birds, rodents, and
humans (Etienne and Jeffery 2004; Gallistel
1993; Heinze et al. 2018; Mittelstaedt and
Mittelstaedt 1982, 1980). Considering the vast
anatomical differences between these species,
we will discuss path integration only in mammals.

Currently, whether the hippocampus is
involved in path integration in mammals is con-
troversial. Patients with hippocampal or entorhi-
nal lesions are able to point out the direction to a
start location and estimate the distance as accu-
rately as controls while blindfolded (Shrager et al.
2008), suggesting that the hippocampus is not
required for path integration in humans. Although
path integration has been reported to be impaired
in some animals after fimbria-fornix (FF), mEC,
or direct hippocampal lesions (Kim et al. 2013;
McNaughton et al. 1996; Parron and Save 2004;
Whishaw et al. 2001; Whishaw and Maaswinkel

1998), the overall conclusions from these
experiments in animals remain mixed (Alyan
and McNaughton 1999; Etienne and Jeffery
2004; Poucet and Benhamou 1997). A close
inspection of these results shows that the typical
kinematic profiles of the impaired path integration
in animals with vestibular lesions are very differ-
ent from the ones recorded in hippocampal-
lesioned animals in the dark (Fig. 7.2). Animals
with vestibular lesions usually run to the correct
destination through an indirect route, yielding a
markedly longer path (Wallace et al. 2002). In
contrast, animals with hippocampal lesions often
take a direct route to the wrong destination
(Parron and Save 2004; Whishaw and
Maaswinkel 1998). Notably, the movement of
vestibular-lesioned animals is quickly restored to
the direct route once the light is turned on
(Wallace et al. 2002). Therefore, the path integra-
tion in the animals with hippocampal lesions may
have been intact, and the reported impairment in
path integration tasks may be simply because the
animals lost the memory of the refuge to return
to. Actually, the involvement of the hippocampus
in path integration has been uncertain from the
beginning, and instead, working spatial memory
may take part in path integration (Whishaw and
Maaswinkel 1998).

The distinct results from the path integration
tests in animals and humans may be due to the
differential capacity of spatial working memory
between humans and rats, as revealed by a study
with a classic path integration task in the Squire
lab (Kim et al. 2013). Patients with hippocampal
lesions carried out the path integration task as
well as the controls did when the outward path
was relatively direct and the task could be fin-
ished within 20 s. This time range is consistent
with the failure time observed in H.M. in the
delayed paired comparison test (O’Keefe and
Nadel 1978). On the other hand, it was found
that the performance of path integration
deteriorated quickly in normal rats once the travel
distance was longer than 2 m, more than one turn
or a time range longer than 6 s was used (Kim
et al. 2013). Therefore, the hippocampus seems to
not be required for the performance of path inte-
gration until the demands on spatial working
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memory are high with large information loading
(De Nigris et al. 2013; Jones and Wilson 2005;
Leszczynski 2011; Spellman et al. 2015; Yoon
et al. 2008). Thus, it is not surprising to observe
the recruitment of the hippocampus in navigation
with path integration in humans (Suthana et al.
2012).

7.2.2 Role of the Hippocampus
in the S–R Strategy

It has been suggested that the hippocampus is
involved only during the early phase of the S–R
strategy practice and that the caudate nucleus is

required when the pairing of the stimulus and
response becomes automatic and turns into a
form of procedural memory or habit after exten-
sive training (McDonald and White 1993;
Packard and Knowlton 2002; Packard and
McGaugh 1996; Seger and Spiering 2011).
Greater activation of the caudate nucleus was
observed when following a well-learned route,
which is in contrast with the greater hippocampal
activation during searching for a new route in the
same individuals (Hartley et al. 2003). Similarly,
distinct involvement of the hippocampus and stri-
atum was also observed during context memory
and reinforcement learning (stimulus–response
associations) in attention tests (Goldfarb et al.

a b
training-cued

place probe-light

place probe-dark

VestibularControl

Sham

Entorhinal
lesion

Fig. 7.2 Comparison of animal movements with entorhi-
nal and vestibular lesions in the dark. (a) Examples of
typical kinematic profiles from animals with sham and
entorhinal lesions (Parron and Save 2004). Rats leave a
refuge from the starting holes (gray circle) to find the food
pellet hidden in the reward cup (black circle) and carry it
back to the refuge. The outward and return paths are
plotted with full and dotted lines, respectively. In both
the sham and entorhinal lesion groups, the food pellet is
either located in the central cup (top row) or randomly
chosen cup (second row). Rats in the sham group always
directly return to the refuge. Entorhinal-lesioned rats typi-
cally randomly choose a destination hole and run directly
to it. (b) Movements of animals with vestibular lesions and
control animals (Wallace et al. 2002). Similar tasks as in

(a) are undertaken, and rats need to find the food pellet and
carry it back to the refuge. The outward paths are shown as
solid lines, and the return paths are shown as dotted lines.
The top, middle, and bottom rows are the representative
kinematic profiles of the control and vestibular-lesioned
animals during cued training, probe testing with normal
vision, and probe testing in the dark, respectively. The
black rectangle indicates that there is a black box posi-
tioned over the home base and is clearly visible to the rats
on the table. The black box is absent during the probe tests,
and the home base is marked with a black dot. While all
rats can find the home base correctly, the path of rats with
vestibular lesions is typically indirect in the dark; there-
fore, animals take much more time and a longer path to
return
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2016). Consistently, lesions of the hippocampus
cause impairments in the Morris water maze, and
lesions of the dorsal striatum result in defects in
the Morris water maze with a visible platform
(Devan et al. 1999; McDonald and White 1994;
Morris et al. 1982). However, while the hippo-
campus was not required for the animals to make
left and right turns in the continuous T-maze
spatial alternation task, hippocampal-lesioned
animals failed the behavior task once a 2- or
10-s delay was imposed between the alternations
(Ainge et al. 2007a). Therefore, the involvement
of the hippocampus in the S–R strategy is depen-
dent on how this strategy is conducted. The hip-
pocampus is not required in the S–R strategy only
when it becomes a habit or procedural memory.

7.2.3 Role of the Hippocampus
in Map-Based Navigation

Currently, there are two different opinions regard-
ing the role of the hippocampus in map-based
spatial navigation (Buzsáki and Moser 2013;
Eichenbaum 2000; Eichenbaum et al. 2016;
Eichenbaum and Cohen 2014; O’Keefe and
Nadel 1978; O’Keefe 1999) system. The cogni-
tive map theory, which was established with the
discovery of place cells (O’Keefe and Nadel
1978; O’Keefe and Dostrovsky 1971), holds that
the hippocampus constructs a spatial map of the
environment and shares it with the rest of the
brain (Eichenbaum et al. 2016; O’Keefe and
Nadel 1978; O’Keefe 1999). The cognitive map
theory was further strengthened with the
subsequent finding of head direction cells, grid
cells, border cells, and other spatially specific
cells in the medial entorhinal cortex and other
related structures (Hafting et al. 2005; Kropff
et al. 2015; Lever et al. 2009; Ranck 1984;
Solstad et al. 2008; Taube et al. 1990a; Taube
1995). Besides the view that the map-based spa-
tial navigation is the solo or primary function of
the hippocampus, the alternative view is that the
hippocampus plays a general role in memory
function, and the hippocampus is thought to sup-
port not only maps of physical space but also a
general map of cognition covering both spatial

and nonspatial relationships (Cohen and
Eichenbaum 1993; Lisman et al. 2017; Schiller
et al. 2015). This view is also supported by many
experiment data, such as the hippocampal
neurons encoding both the spatial and nonspatial
cognitive signals (Aronov et al. 2017). However,
the systematic comparison of all the spatial-
specific firing in the hippocampus and related
limbic circuits shed new light on the source of
these spatially specific firing pattern and therefore
brings about new consideration about the role of
the hippocampus in map-based spatial navigation.

7.3 Spatially Specific Activity
in the Hippocampus
and the Related Limbic Circuits

Since the discovery of place cells in the hippo-
campus, additional spatial encoding cells were
subsequently found in the entorhinal cortex and
other limbic circuits (Goodridge and Taube 1997;
Hafting et al. 2005; Kropff et al. 2015; Lever et al.
2009; Sargolini et al. 2006; Solstad et al. 2008).
In particular, head direction cells with preferred
directional discharges were recorded in the
postsubiculum (PoS) (Ranck 1984) and then in
other cortical and subcortical structures (Blair
et al. 1998; Chen et al. 1994; Cho and Sharp
2001; Sargolini et al. 2006; Taube et al. 1990a;
Taube 1995). In the mEC, grid cells with a regular
triangular spatial pattern (Fyhn et al. 2004;
Hafting et al. 2005), boundary cells with
specialized discharges along the border (Savelli
et al. 2008; Solstad et al. 2008) together with cells
encoding running speed (Kropff et al. 2015) and
carrying other conjunctive spatial firing patterns
were detected successively (Grieves and Jeffery
2017). These distinct spatial representations are
distributed in a broad range of structures with a
bunch of cells typically clustered in the mEC.
Next, we will focus on the firing properties of
place cells, grid cells, and head direction cells
(Fig. 7.3). These cell types were chosen because
they are the most frequently studied and are
distributed in different anatomical structures.

It is worth noting that all these types of spa-
tially specific firing patterns are allocentric, that
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is, constructed based on external references. The
advantage of allocentric spatial encoding is that
the represented allocentric spatial information is
stable and will not be changed when the animal
moves (Fig. 7.4). Theoretically, the constancy of
the allocentric spatial relationship may allow its
offline utilization, as long as the information is
saved and retrieved properly. The allocentric spa-
tial representation is believed to be converted
from the egocentric perspective (Gallistel 1993)
although the exact mechanism remains elusive.
Egocentric spatial encoding, which is self-
referential, has been detected in the parietal cortex

and associated regions but not in the hippocam-
pus (Snyder et al. 1998; Stein 1989; Wilber et al.
2014). In contrast to allocentric spatial firing,
egocentric spatial representations change
according to the animals’ standing location and
orientation and therefore best fit the purpose of
online information processing.

7.3.1 Place Cells

Place cells are hippocampal pyramidal cells that
fire specifically when the animal traverses a cer-
tain region of the environment (Alme et al. 2014;
Leutgeb et al. 2004; O’Keefe and Dostrovsky
1971). The area of high firing rate, which is
defined as the cell’s place field, usually takes up
a contiguous and irregular field (O’Keefe 1979;
O’Keefe and Conway 1978; Wilson and
McNaughton 1993). Although the discharge of
place cells can also be affected by direction or
other nonspatial factors (Ainge et al. 2007b;
Gothard et al. 1996; Lee et al. 2006; Moser
et al. 2017; Muller et al. 1994; Redish et al.
2000; Wood et al. 2000), the place field is deter-
mined and influenced primarily by the salient
cues or landmarks within the environment space
(Grieves and Jeffery 2017; O’Keefe and Nadel
1978; Poucet et al. 2000). For example, place
cells adapt their specific firing locations strictly
following the rotation of a cue card in a cylinder
with a uniform interior surface (Muller and Kubie

Fig. 7.3 Place cells, head direction cells, and grid cells.
(a) A typical experimental setup to measure the spatially
specific activity of cells from freely behaving rats chroni-
cally implanted with extracellular electrodes. (b) The
activity of the place cell and grid cell is typically illustrated
as a heat plot of the firing rate against the animal location.
Here, the place field is in the northeast part of the

enclosure, and the discharge of grid cells is occurred in
multiple small regions distributed throughout the environ-
ment in a regular hexagonal pattern. The middle polar plot,
presenting the firing rate as a function of head direction,
shows that this head direction cell has a preferred firing in
the northwest direction

Fig. 7.4 Allocentric versus egocentric spatial encoding.
Within the allocentric spatial representation, the location
of cheese is defined relative to the location of other objects,
including the block, and perhaps also the corner of the
enclosure (a). The egocentric location of cheese is defined
relative to the body axis of the observer (self) as left or
right, front or back (b). Thus, the egocentric location of
cheese is correct only when the animals stay at that posi-
tion. As a comparison, the allocentric location is constant
regardless of where the animal is, making it suitable for
offline planning
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1987). On the other hand, chronic recording up to
6 months shows that the place field is typically
retained within the same environment (Muller
et al. 1987; Thompson and Best 1990). Experi-
ment with multiple distal cues inside the environ-
ment further shows that the place field can resist
partial removal of the salient cues, suggesting that
the location of the place field is not determined by
individual cues, but rather by the overall configu-
ration of the cues (O’Keefe and Conway 1978).

Place cells change their location-specific firing
once the surrounding environment is changed
(Alme et al. 2014; Bostock et al. 1991; Colgin
et al. 2008; Kentros et al. 1998; Leutgeb et al.
2005; Markus et al. 1995). This phenomenon,
which is termed remapping, takes two essentially
independent forms as rate remapping and global
remapping (Leutgeb et al. 2005). Rate remapping
occurs when only the nonspatial features of the
environment, such as the wall color of the enclo-
sure, are changed. The firing rate, but not the
place field of the place cells, is changed during
the rate remapping. When animals are placed in
different containing boxes or moved into different
rooms, global remapping occurs with the change
of both the place field and the firing rate.

One unique feature of global remapping is the
unpredictable change in the place field. There is
no correlation between the place field in one
environment and the place field in another envi-
ronment (Muller and Kubie 1987; Wilson and
McNaughton 1993). Therefore, many place cells
are silent in some environments and present place
fields in other environments (Muller and Kubie
1987; O’Keefe and Speakman 1987; Thompson
and Best 1989). Such random remapping is con-
sistent with the irregular distribution pattern of
the place fields as there is no consistent topo-
graphical relation between the place fields and
the anatomical location of the corresponding
place cells (Dombeck et al. 2010; Leutgeb et al.
2004; Mizuseki et al. 2012; O’Keefe 1976;
O’Keefe et al. 1998; Wilson and McNaughton
1993). Such a random pattern of the place fields
is fit for the representation of distinct spatial
environments by the place cell population. This
phenomenon has been verified in a recording of

place cells in 11 different rooms with minimal
overlap (Alme et al. 2014).

While visual information takes precedence in
determining the firing field, visual cues is not
required for place cells to maintain their unique
spatially specific firing patterns. It was found that
place fields are retained in darkness if the animals
remain in the box before the lights are turned off
(Markus et al. 1994; Quirk et al. 1990; Zhang
et al. 2014). In contrast, place fields are disrupted
if the rats are put into the maze in the dark
(Mcnaughton et al. 1989). It has been suggested
that stable spatially selective firing when visual
information is absent is maintained through path
integration with idiothetic information from local
olfactory or tactile cues combined with motion-
related cues (Poucet et al. 2000). In another rele-
vant circumstance with masked external cues,
rotating the animal gently outside the enclosure
before putting it back in the recording box almost
always led to a corresponding rotation of the
place field, while rotating the recording box
alone seldom triggered field rotation (Jeffery
et al. 1997). What makes the situation more com-
plicated is that place cells exist in blind animals,
suggesting that the spatial representation could
also be supported by information from other sen-
sory modalities (Hill and Best 1981; Save et al.
1998). More interesting is that the place cells in
blind rats discharge only after the animals make
physical contact with the object after the animals
walk into the place field (Save et al. 2000).

The phenomenon of place coding is relatively
common, as place cells or place-like “spatial
view” neurons have been identified in rats and
mice, bats, monkeys, and humans (Ekstrom et al.
2003; Kentros et al. 2004; Matsumura et al. 1999;
Rolls 1999; Rolls et al. 1997; Ulanovsky and
Moss 2007). It is worth noting that the place-
like “spatial view” cells observed in the primate
hippocampus behave differently from those in the
hippocampus of rodents as they are activated
when the animal looks at a particular region of
the environment, independent of the animal’s
physical location (Rolls 1999; Rolls et al. 1997).
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7.3.2 Grid Cells

Grid cells are a set of pyramidal cells and satellite
cells in the mEC and the pre- and parasubiculum
which present firing in a hexagonal grid pattern
spanning the whole space of the environment
(Boccara et al. 2010; Fyhn et al. 2004; Hafting
et al. 2005; Sargolini et al. 2006). This unique
grid pattern is characterized by scale (distance
between firing fields), orientation (angle between
grid axes and environment), and phase (relative
position of firing peaks) (Fyhn et al. 2004;
Hafting et al. 2005; Stensola et al. 2012). It was
revealed that the grid cells are regularly
distributed as grid cells nearby present similar
scale and orientation (Hafting et al. 2005; Heys
et al. 2014), and there is a trend toward increased
scale for the cells distributed along the dorsal-
ventral axis of the mEC (Brun et al. 2008b;
Stensola et al. 2012). With all these unique spatial
properties, grid cells have been suggested to be
important for estimating the distance traveled
during navigation (Moser and Moser 2008).

Previous studies have identified factors affect-
ing the grid firing pattern. First, the grid firing
pattern is primarily determined by the environ-
mental geometry (Krupic et al. 2015). When the
landmarks of the environment are rotated, the grid
orientation and phase follow the rotation of the
landmark to the same degree, while the grid scale
remains unchanged (Hafting et al. 2005). Modifi-
cation of the geometry of the environment often
results in firing pattern changes (Barry et al. 2007;
Stensola et al. 2012). Local changes to the con-
figuration of the environment induce a shift in the
grid fields near the changed wall (Krupic et al.
2015, 2016, 2018; Stensola et al. 2015). Second,
grid firing has also been suggested to be con-
trolled by internal movement signals. When rats
walk into the interconnected arms of a modified
hairpin maze, the firing locations in the normal
and shortcut-modified arms with the same direc-
tion are equally determined by the walked dis-
tance (Derdikman et al. 2009). When rats are
placed into the box before the lights are turned
off, the firing patterns of grid cells are retained
under complete darkness (Fyhn et al. 2007;

Hafting et al. 2005). Although there have been
mixed results showing that the firing pattern of
grid cells is severely disrupted in darkness, the
conflicting results may be due to the interspecies
difference as all the results have been measured in
mice (Chen et al. 2016; Pérez-Escobar et al.
2016).

The grid firing pattern seems to be a common
phenomenon in the central nervous system of
mammals. Since the initial discovery of grid
cells in rats, grid or grid-like firing patterns have
been detected in other rodents (Fyhn et al. 2008;
Hafting et al. 2005), bats (Yartsev et al. 2011),
monkeys (Killian et al. 2012; Killian and Buffalo
2018), and humans (Doeller et al. 2010; Jacobs
et al. 2013; Julian et al. 2018; Nau et al. 2018).
More specifically, the grid firing pattern discov-
ered in rodents and bats is directly related to the
physical space, but the grid-like pattern detected
in the entorhinal cortex (EC) of monkeys (Killian
et al. 2012; Killian and Buffalo 2018) and humans
(Julian et al. 2018; Nau et al. 2018) covers the
visual space they are watching. Even more
intriguing, grid-like patterns of activation have
also been recorded in the mEC when subjects
imagine spatial content or engage in certain
forms of conceptual thinking (Bellmund et al.
2016; Constantinescu et al. 2016; Horner et al.
2016).

7.3.3 Head Direction Cells

Head direction (HD) cells are a set of neurons first
detected in the PoS of the rat that maximally fire
when the animal’s head is oriented to a particular
“preferred firing direction” in the horizontal plane
(Ranck 1984; Taube et al. 1990a, 1990b). The
preferred firing direction is relative to the spatial
configuration of the environment as the rotation
of the salient visual landmarks in the environment
leads to a corresponding shift in the preferred
firing direction of HD cells (Knierim et al.
1995). More specifically, HD cells bind more
strongly to distal landmarks when there is conflict
between the rotations of the proximal and distal
cues (Yoganarasimha et al. 2006; Zugaro et al.
2001). When visual cues are placed in conflict
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with idiothetic cues, the spatial information
derived from visual landmarks usually overrides
that of idiothetic inputs (Blair and Sharp 1996;
Goodridge and Taube 1995). When there is only
idiothetic information available, such as
situations with the lights off or the animals
being blindfolded, directional firing can be
retained as long as the HD cells have previously
established a directional preference (Goodridge
et al. 1998; Taube et al. 1990b) although small
drifts in the preferred firing direction can be
observed over long periods of time (Goodridge
et al. 1998; Knierim et al. 1995). The preferred
firing direction in the dark has been suggested to
be retained by the action of vestibular cues
through path integration (Blair and Sharp 1996).

Since the initial discovery of HD cells by
Ranck and his colleagues in the PoS, HD cells
have been recorded in multiple cortical and sub-
cortical regions, such as the anterodorsal nucleus
(ADN) of the anterior thalamus (Taube 1995),
lateral mammillary nuclei (LMN) (Blair et al.
1998; Stackman and Taube 1998), lateral dorsal
thalamic nucleus (LDN) (Mizumori and Williams
1993), retrosplenial cortex (RSC) (Chen et al.
1994; Cho and Sharp 2001), dorsal striatum
(Wiener 1993), posterior cortex (Chen et al.
1994), medial precentral cortex (PrCM) in the
frontal lobe (Mehlman et al. 2018), and mEC
(Sargolini et al. 2006). The tuning curves of HD
cells across different brain areas are remarkably
similar (Taube and Bassett 2003). As these
HD-containing regions generally have strong
anatomical interconnections, there seems to be a
hierarchical processing of head direction informa-
tion from the vestibular nuclei to the LMN, ADN,
and PoS (Dumont and Taube 2015).

The hierarchical structure of the HD system is
supported by the lesion experiments. Lesions of
the ADN disrupt HD cell activity in the PoS
(Goodridge and Taube 1997), while lesions of
the PoS (Goodridge and Taube 1997), LDN
(Mizumori and Williams 1993), or posterior pari-
etal cortex leave the HD cells intact in the ADN
(Calton et al. 2008). Bilateral lesions of the LMN
or dorsal tegmental nucleus (DTN) of Gudden
disrupt HD cell firing in the ADN and PoS
(Blair et al. 1998). Besides the hierarchical

processing, it seems that all the HD cells have
shared input as simultaneous recording in more
than one HD cell reveals that their preferred firing
directions always change in register with different
environmental contexts (Taube et al. 1990b).

7.3.4 The Relationship of Spatial
Encoding by Place Cells, Grid
Cells, and HD Cells

It is known that the location, distance, and direc-
tion information are dissociable in a conventional
map (Wood et al. 2000). How are the location,
distance, and direction representations different in
the nervous system? We tried to address this
question by examining the potential interactions
between place cells, grid cells, and HD cells.
Here, HD cells in the LMN, ADN, and PoS
circuits were considered since HD cells in these
structures are the most basic components of the
HD system (Brown et al. 2002).

7.3.4.1 Place Cells Versus Grid Cells
It is taken for granted initially that the firing of
place cells is influenced by grid cells (Brun et al.
2002). First, it has been verified that hippocampal
place cells receive inputs directly from grid cells,
together with border cells, HD cells, and some
other neurons in the mEC (Zhang et al. 2013). In
addition to direct projections from mEC layer II
neurons into the dentate gyrus (DG) and CA3,
there are projections from neurons in layer III of
mEC (MECIII) to the proximal part of CA1
(Henriksen et al. 2010; Witter and Amaral
2004). Second, simultaneous recording in the
hippocampus and mEC during environment
transformations has confirmed that the remapping
in the place cells occurs along with changes in
grid firing patterns in the mEC (Fyhn et al. 2007;
Stensola et al. 2012). Third, bilateral lesions of
the mEC result in unstable place fields (Brun et al.
2008a; Hales et al. 2014; Miller and Best 1980;
Schlesiger et al. 2015; Van Cauter et al. 2008),
and hyperpolarization of the superficial mEC
neurons leads to hippocampal remapping (Zhao
et al. 2016). Accompanying the unstable firing or
artificial remapping caused by mEC
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manipulation, the spatial memories in
hippocampus-dependent tasks are also impaired
(Hales et al. 2014; Kanter et al. 2017; Parron and
Save 2004; Steffenach et al. 2005).

However, subsequent experiments reject such
simplicity with controversial results. In one
approach, Kanter et al. developed a chemogenetic
method to depolarize or hyperpolarize almost
exclusively stellate cells in mEC layer II
(MECII) without modification of the grid firing
pattern (Kanter et al. 2017). They found that the
depolarization, but not hyperpolarization, of the
MECII stellate cells caused place cell remapping.
When the theta rhythm is reduced with local
fusion of lidocaine in the septum, the grid firing
pattern in the mEC is erased while the firing of
place cells, together with some other non-grid
spatial cells in the mEC, is largely retained
(Koenig et al. 2011). In another relevant study,
hippocampal global remapping occurs in a novel
environment when grid cell firing is disrupted
through the inactivation of the medial septum by
muscimol (Brandon et al. 2014). Remapping of
the hippocampal place field also occurs after
direct inactivation of mEC neurons with pharma-
cologic and optogenetic methods (Miao et al.
2015; Ormond and McNaughton 2015;
Rueckemann et al. 2016). A recent experiment
with a complete lesion of the bilateral mEC super-
ficial layers demonstrated that global remapping
occurred in a novel environment without any
input from the mEC (Schlesiger et al. 2018).

On the other hand, while there are only indirect
projections from the CA1 pyramidal cells to the
superficial layers of mEC via the subiculum
(Witter 1993), place cells seem to have a strong
influence over the grid cells. Bilateral hippocam-
pal lesions with ibotenate led to grid firing with
decreased spatial coherence and increased dis-
tance between neighboring grid fields (Fyhn
et al. 2004). When hippocampal activity was
inhibited through the local infusion of the
GABAA receptor agonist muscimol, the spatial
periodic grid pattern of the grid cells was erased
and turned into directional tuning (Bonnevie et al.
2013).

7.3.4.2 HD Cells Versus Place
Cells and Grid Cells

HD cells seem to fire independent of grid cells
and place cells. First, grid cells have little influ-
ence on HD cells as mEC lesions result in almost
intact direction-specific firing in the ADN HD
cells (Clark and Taube 2011). The control of
HD firing by salient visual cues is also retained
in mEC-lesioned animals. Second, HD cell
signals were generated and properly maintained
across days when hippocampus-lesioned animals
were put into a novel environment (Golob and
Taube 1997).

Instead, HD cells are differentially involved in
the proper firing of place cells and grid cells. The
firing of place cells is mainly intact in LMN- or
ADN-lesioned animals (Calton et al. 2003; Sharp
and Koester 2008), suggesting that the head direc-
tion information represented by HD cells is not
required for place cell activity. However, lesions
of the PoS, which is downstream from the ADN,
result in unstable place field representations when
the visual cue is removed. Place fields also pres-
ent random shifts following cue card rotations in
PoS lesioned animals (Calton et al. 2003). Mean-
while, the HD signal is required for grid cell
activity as the grid firing pattern is abolished
after ADN inactivation or lesion (Winter et al.
2015a, b). The grid pattern is further suggested
to be conveyed from the mixture of the place
information together with head direction and bor-
der information (Krupic et al. 2016). Consis-
tently, when rats are passively transported in a
clear plastic cart, grid-specific firing patterns are
abolished while the HD cell firing is spared
(Winter et al. 2015a, b).

The interaction between HD cells, place cells,
and grid cells is consistent with their distinct
developmental timing. HD cells develop earliest
as direction tuning is present before eye opening
around postnatal day 11 (P11), and mature-like
firing can be detected around P16-18 (Bjerknes
et al. 2015; Langston et al. 2010). Place cells are
present around P16-18, and the grid cells develop
slowest and appear around P18-28 (Bjerknes et al.
2018; Langston et al. 2010; Wills et al. 2010).
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Interestingly, border cells develop at the same
pace as HD cells (Bjerknes et al. 2014).

7.3.5 Shared Properties of Place
Cells, Grid Cells, and HD Cells

In addition to the distinct interactions among
place cells, grid cells, and HD cells, the spatially
specific firing pattern of these cells has many
common attributes. First, as mentioned earlier,
salient visual landmarks in the environment
have strong control over the firing of place cells,
grid cells, and HD cells. Simultaneous recording
across multiple neural circuits has revealed that
these spatially specific firing patterns change in
register following the rotation of the external cue
(Hafting et al. 2005; Knierim et al. 1995; Muller
and Kubie 1987). Second, all these different
patterns of spatial firing can be maintained in the
dark (Fyhn et al. 2007; Goodridge et al. 1998;
Hafting et al. 2005; Markus et al. 1994; Quirk
et al. 1990; Taube et al. 1990b; Zhang et al.
2014). However, two recent reports show that
the grid firing patterns in mice are disrupted in
darkness and only partially rescued after several
trials of training (Chen et al. 2016; Pérez-Escobar
et al. 2016). This disparity may be due to inter-
species differences since the results from place
cells, grid cells, and HD cells in rats are all con-
sistent. Third, when the vestibular system is
lesioned or inactivated, the directional firing in
the HD system, together with the hippocampal
place-specific firing and unique grid firing pattern
in the mEC, is all erased (Jacob et al. 2014;
Russell et al. 2003; Stackman et al. 2002;
Stackman and Taube 1997).

Notably, all these spatially specific activities
are influenced by animal constraints. When rats
are restrained tightly by hand, discharge of the
HD cells is almost abolished during passive
motion (Knierim et al. 1995; Taube 1995; Taube
et al. 1990b). In this case, the proprioceptive input
is unlikely the determining factors since the direc-
tional firing is retained but at a reduced rate when

the animals are relatively loosely restrained. The
activities of the place cells are also impaired when
rats are transported from one location to another
while being restrained by wrapping the body and
limbs in a towel fastened with clips (Foster et al.
1989). However, the firing of place cells, grid
cells, and HD cells is roughly normal in head-
restrained animals during virtual navigation
(Chen et al. 2018). It seems that it is not the
head restraint or proprioceptive input but rather
the external pressure or interference that leads to
impairments in the spatially specific firing.

Taken together, the existence of these shared
properties of place cells, grid cells, and HD cells
implies that these spatially specific firing patterns
may have shared mechanisms and are coherent
parts of an interconnected system. Within this
system, the tuning curves of HD cells, place fields
of place cells, and the firing vertices of grid cells
are tightly coupled following the cue card rotation
(Fyhn et al. 2007; Knierim et al. 1995; Stensola
et al. 2012; Yoganarasimha and Knierim 2005).
Knierim et al. showed that HD cells and place
cells always maintain the same bearing relative to
each other, regardless of whether these spatial
firing patterns follow the visual cue or drift
away during disorientation sessions (Knierim
et al. 1995). In addition, the coherent firing of
border cells together with grid cells and HD
cells in the mEC further implies that border cells
are also part of this shared system (Solstad et al.
2008). Considering the roughly independent fir-
ing of place cells and HD cells (here, the firing of
grid cells is not considered since it mainly
depends on both place information from the hip-
pocampus, direction information from the HD
system, and perhaps border information in the
mEC), the shared mechanism behind the spatially
specific firing of place cells, grid cells, and HD
cells is unlikely to be located in the hippocampus,
EC, or the HD circuits.

One cautionary note is that there is a contra-
dictory result reporting that the activities of place
and grid cells in mice are not necessarily coherent
(Chen et al. 2019).
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7.4 Allocentric Space Perception Is
Behind All the Spatially
Specific Firing Patterns

The term allocentric space perception is derived
from absolute, or non-egocentric space percep-
tion and can be traced back to the cognitive map
idea initially raised by Edward C. Tolman
(O’Keefe and Conway 1978). Tolman proposed
that the S–R theory could not provide the proper
explanation about the way-finding problem in a
complex maze design and that there should exist a
mental representation about the environment in
the rat brain that “in the course of learning, some-
thing like a field map of the environment gets
established in the rat’s brain. . . And it is this
tentative map, indicating routes and paths and
environmental relationships, which finally
determines what responses, if any, the animal
will finally release” (Tolman 1948). The thereaf-
ter discovery of place cells in the hippocampus
CA1 promoted this idea further, and the hippo-
campus was hypothesized to be the neural sub-
strate of this mental representation of the
environment (O’Keefe and Nadel 1978; O’Keefe
and Dostrovsky 1971). However, the many com-
mon characteristics of place cells, HD cells, grid
cells, and border cells, which are located in a
broad range of anatomical circuits, are in favor
of the argument that this mental representation of
the environment, which has also been termed
absolute, or non-egocentric space perception
(O’Keefe and Nadel 1978; Tolman 1948), may
be the final driving force behind all these
allocentric spatial firing patterns or at least
provides the allocentric components.

Contrary to the classic cognitive map theory
that the awareness of an animal’s location in
space depends on the activity of place cells in
the hippocampus, a further speculation is that
the hippocampus receives and processes the con-
tent of allocentric space perception for the pur-
pose of information storage or retrieval. Thus, all
the spatially related firing patterns in place cells,
grid cells, etc., are actually the unfolding of
these intermediate stages during the progressive
spatial information processing of the allocentric

space perception throughout the
hippocampus-entorhinal circuits (Behrens et al.
2018). Consistent with this speculation, a correla-
tion analysis of a large volume of simultaneously
recorded grid cells revealed that the correlation
within the same module was most likely derived
from common input (Tocker et al. 2015).
Allocentric spatial information may be simulta-
neously processed with other nonspatial or ego-
centric spatial information (Lisman et al. 2017;
Meshulam et al. 2017; Wood et al. 2000; Young
et al. 1994). While the significance of such com-
plex information processing that involves so
many regions, including the RSC, PoS, POR,
PER, mEC, CA1, CA3, and DG, remains unclear,
damage to any of these intermediate structures
will result in the impairment of spatial memory
(Alvarado and Bachevalier 2005; Epstein 2008).

It is now understood that allocentric space
perception and spatial information storage are
undertaken by two different anatomical domains.
The dissociation between these two functions can
be observed under certain clinical circumstances
with hippocampal resection (Maguire et al. 2006;
Rosenbaum et al. 2000; Teng and Squire 1999).
As reported, the amnesic patient (E.P.) could
navigate successfully from his old homes to dif-
ferent locations in a familiar area or make alterna-
tive routes during navigation within the familiar
area, but could not do almost any navigation in
his current (new) environment. While he had
normal allocentric space perception, he could
not save the content of allocentric space percep-
tion via the hippocampus for offline usage. In
another test with minimized demand on informa-
tion saving through the hippocampus, patients
presented proper navigation by following the
path instruction, which was printed and readable
on a hand-held map (Urgolites et al. 2016). Thus,
in this scenario, the declarative memory view and
the spatial navigation view of hippocampal func-
tion are reconciled (Eichenbaum 2017; Squire
and Zola 1996).

As perception is susceptible to prior experi-
ence, this is also true regarding the discharge of
place cells, grid cells, and HD cells. For example,
when animals are trained in a fixed sequence in an
environment with two identical compartments
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arranged in parallel, and the animals are tested
once to start in a reversed order, a firing pattern
similar to that in the default starting box is
detected during the first visit and reverts to the
familiar pattern thereafter (Skaggs and
McNaughton 1998). Sometimes, the allocentric
space perception may deviate far from the actual
environment. Muller et al. changed the position of
a visual cue on the wall in the presence of the rats
and found that the place field was completely
remapped when the cue had returned to its origi-
nal position after an initial 180� rotation followed
by four 45� rotations (Alexander and Muller
1997) (Fig. 7.5). In another experiment, O’Keefe
and Speakman showed that the place firing pat-
tern can be aligned only with the rat’s choice of
the goal arm, not the designated arm (O’Keefe
and Speakman 1987), suggesting that the place-
specific firing pattern reflects only what the ani-
mal gets.

7.4.1 Neural Substrate
of the Allocentric Space
Perception

The neural substrate underlying allocentric space
perception remains to be identified. One potential
candidate is the retrosplenial cortex (RSC) (Clark
et al. 2018; Mitchell et al. 2018). The RSC
projects to the EC and is interconnected with the
posterior parietal cortex (PPC) together with the
subicular complex (Witter 1993). The RSC is also
suggested to relay visual information directly
from the visual areas into the mEC via the PoS
(Kononenko and Witter 2012; van Groen and
Wyss 1992; Vogt and Miller 1983). Thus, its
anatomical location within the limbic system
makes it suitable to convert egocentric informa-
tion into an allocentric format (Chen et al. 1994;
Vann and Aggleton 2005). In addition to this
transform, the RSC has also been suggested to
transform allocentric representations into egocen-
tric representations (Vann et al. 2009). In the
human RSC, activation was observed when a
conversion from an egocentric viewpoint into an
allocentric reference frame was required
(Lambrey et al. 2012; Vass and Epstein 2013).

Defects in direction sensation were observed on
patients with right retrosplenial lesion (Takahashi
et al. 1997).

However, there are other conflicting results
about the RSC in spatial navigation (Mitchell
et al. 2018). Proper HD firing, together with the
intact control of the preferred firing direction with
the landmark, has been reported in RSC-lesioned
rats (Golob and Taube 1999). Inactivation of the
retrosplenial cortex with lidocaine results in
impaired place cell remapping, but only in dark
conditions (Cooper and Mizumori 1999, 2001).
Clark et al. proposed that the transformation of
information from the egocentric to the allocentric
format is not completely conducted in the RSC
but rather in both the RSC and PPC, with differ-
ent task divisions between them (Clark et al.
2018).

Another structure of interest is the claustrum.
The claustrum is listed as a candidate because
cells encoding place, boundary, and object infor-
mation are detected in the anterior claustrum of
the freely moving rats (Jankowski and O’Mara
2015). Spatial tasks are reported to be impaired
after claustrum lesions or optogenetic silencing
(Grasby and Talk 2013; Kitanishi and Matsuo
2017). Thus, as the claustrum receives major
input from all the neocortical areas and subcorti-
cal areas, including the thalamus and hypothala-
mus (John et al. 2014), either the claustrum itself
or one of its upstream regions may be the source
of the allocentric spatial signal. It is intriguing to
note that the claustrum has extensive direct and
indirect connections with the hippocampal
circuits (Park et al. 2012; Witter et al. 1988),
and there is limited afferent input from the RSC
into the claustrum (Zingg et al. 2018).

7.4.2 Path Integration Is
the Allocentric Space
Perception in Mammals
Provided with Idiothetic Inputs

Path integration has been demonstrated to be
involved in the firing of place cells, grid cells,
and HD cells (Fyhn et al. 2007; Hafting et al.
2005; Markus et al. 1994; O’Keefe 1976; Quirk
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et al. 1990; Zhang et al. 2014). Previous
experiments have further demonstrated that path
integration can only support the maintenance of
spatially specific activities, and path integration
itself is not enough to produce this spatially spe-
cific firing pattern. For example, the directional
firing of HD cells is abolished if rats are initially
placed in a maze in darkness as HD cells need a
certain period of light illumination to restore
directional firing (Mizumori and Williams
1993). Therefore, if the spatially specific firing
patterns reflect the allocentric space perception as
discussed above, what is the relationship between
path integration and allocentric space perception?
Under which conditions does path integration
have a similar or identical effect on spatially
specific firing patterns?

We argue that path integration is essentially
the allocentric space perception driven by
idiothetic information. The performance differ-
ence between path integration with the conven-
tional allocentric space perception with visual
inputs is due to the distinct properties of the
information input. Take the discharge of place
cells with the light on and off as an example.
When an animal moves within an environment,
it receives both visual and idiothetic inputs with
the lights on. However, in the dark, the animal
will have to rely solely on the idiothetic input.
Compared to the visual input, which could pro-
vide information reflecting distance and angles
relative to the environment, idiothetic input has

limitations in nature. The idiothetic, typically
describing vestibular input about motion, is trig-
gered only during acceleration or deceleration
and therefore does not encode movement with
constant velocity. More importantly, all idiothetic
inputs contain no information about the
surrounding environment. Therefore, path inte-
gration, or allocentric space perception, provided
with only idiothetic input, cannot generate similar
content of allocentric space perception provided
with visual inputs until appended to it
(Mcnaughton et al. 1989; Mizumori and Williams
1993; Quirk et al. 1990). Consistent with the
place-specific firing pattern in blind rats, path
integration, or allocentric space perception
provided only with idiothetic input, can also
append to the content of allocentric space percep-
tion provided with tactile information (Rochefort
et al. 2011). Thus, as two of the basic navigation
strategies, path integration and map-based navi-
gation have shared mechanisms working on sen-
sory inputs from different modalities.

The assumption above may be the most ratio-
nal though there could be other theories to explain
the relationship between path integration and
allocentric perception. Moreover, this hypothesis
can also explain the shifts in place fields or other
types of spatially specific firing patterns when the
animals stay in the dark for long and the necessity
to correct errors in the light period (Gallistel
1993). As path integration is present in a broad
range of animals, there is no data support to

Fig. 7.5 Perceptual representation of the place firing. The
two rows of place fields are results from two cells
undergoing a series of visible cue card rotations. After
combining visible 180� and 45� cue card rotation as

illustrated from session 1 to session 6, the place field
remaps into a new location within the identical environ-
ment (Alexander and Muller 1997)
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extend the current argument to path integration in
other species, such as insects (Heinze et al. 2018;
Pfeiffer and Homberg 2014). While birds are able
to conduct path integration, and there are certain
types of spatially specific firing patterns in the
hippocampus (Mittelstaedt and Mittelstaedt
1982; Sherry et al. 2017), more experiments are
needed to discuss this topic in birds.

What needs to be emphasized is that the nor-
mal vestibular information, which is an important
component of the idiothetic input, seems to be
required for the firing of both place cells and HD
cells along with the proper visual inputs (Russell
et al. 2003; Stackman et al. 2002). The signifi-
cance of these results is unclear as rats with ves-
tibular lesions are able to return to home base
quickly under lighting conditions (Wallace et al.
2002).

7.4.3 Allocentric Space Perception
in Place Field Repetition

In the allocentric space perception theory, each
place-specific firing pattern is the manifestation of
the allocentric space perception about the envi-
ronment space. Thus, the place field repetition
observed in the parallel arranged compartments
indicates that there are a certain number of inde-
pendent environments with identical spatial
configurations perceived by the animals (Spiers
et al. 2015). On the other hand, the disappearance
of place field repetition in the radially packed
compartments shows that there may be only one
or two independent environments perceived by
the animals (Grieves et al. 2016).

How could different configurations affect
space perception? The different overlap between
the corridors connected to the neighboring
compartments under the parallel or radially
packed compartments may be the cause. The
overlap or the shared space may allow the animals
to watch into the neighboring compartments and
treat them as integral parts of a large environment.
Instead, when there is no shared space to allow
the animals to simultaneously perceive the neigh-
boring compartments, such as the situation with
parallel packed compartments, each compartment

may likely be recognized by the animals as an
independent environment, with the firing of place
cells and grid cells being driven by local cues
(Derdikman et al. 2009; Krupic et al. 2015). In
this way, the repetition firing pattern observed in
parallel packed compartments is an incidental
phenomenon that occurs only with identical
compartments but not compartments with differ-
ent sizes (Derdikman et al. 2009; Spiers et al.
2015). Similarly, when the enclosure of two iden-
tical boxes is reoriented from the initial parallel
design and directly abutted, the repetition of the
place field disappears and remaps into a single
place field in most trials (Fuhs et al. 2005). In
another design, the same phenomenon as the grid
firing was obtained when the wall between two
compartments was removed (Wernle et al. 2018).
Consistent with the discussion above, the initially
replicated grid firing pattern in two identical
compartments packed side by side could be
turned into a single, continuous representation
spanning the two compartments after prolonged
experience (Carpenter et al. 2015), indicating that
the rats are able to perceive the two independent
compartments as integral parts of a large environ-
ment after extensive training. While the exact role
of HD firing remains unclear, HD firing seems to
facilitate the proper recognition of local
compartments as part of the large environment.
The probability of having more place-field repeti-
tion in the radial packed multicompartment is
significantly increased with LMN lesions
(Harland et al. 2017).

7.4.4 Spatial and Nonspatial
Information Processing
in the Hippocampal Pathway

The allocentric space perception about the envi-
ronment is not the only cognitive signal processed
in the hippocampal pathways. A new set of CA1
cells has been found to discharge at fixed
locations and directions relative to objects inside
the environment (Deshmukh and Knierim 2013).
There are object-vector cells in the mEC that were
found to encode similar vector information rela-
tive to spatially confined objects (Høydal et al.
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2019). When the animals have to consider the
other’s location, such ‘thinking’ about the loca-
tion of the other’s position is also identified in the
hippocampus (Danjo et al. 2018; Duvelle and
Jeffery 2018). In addition to thinking of the
other animals, a population of hippocampal CA1
cells was found to encode the distance and direc-
tion information relative to the goal location,
where the animals rest and get fed (Sarel et al.
2017). More intriguing about these goal-specific
firing patterns is that they are memory-based.
Similar to goal cells, a small population of cells
in CA1 and the subiculum was found to discharge
near the rewards (Gauthier and Tank 2018). In the
CA1 of the ventral hippocampus, neurons with
similar goal-directed firing were found to specifi-
cally project to the nucleus accumbens (Ciocchi
et al. 2015). The same neurons are capable of
encoding both the spatial and nonspatial cognitive
signal as discovered in both the hippocampus and
EC in a complex task (Aronov et al. 2017). In
addition to the location representation, more
abstract time representation has also been discov-
ered in the time cells in hippocampus CA1
(MacDonald et al. 2011; Salz et al. 2016). In
humans, a remarkable subset of medial temporal
lobe (MTL) neurons are selectively activated
when the subjects watch different pictures of
given individuals, landmarks, or objects (Quiroga
et al. 2005). Taken together, spatial and nonspa-
tial cognitive signals are all observed in the hip-
pocampal pathway, and thus the hippocampus has
been suggested to be a general map of cognition
(Bellmund et al. 2018; Lisman et al. 2017;
Schiller et al. 2015). However, the potential exter-
nal source of information for place cells, grid cells,
etc. promotes another possibility that all this cogni-
tive spatial and nonspatial information processing
observed in the hippocampal pathway may also be
externally imported. This possibility does not
exclude complicated information processing and
interactions within the hippocampal pathway.

It remains unclear whether the spatial and
nonspatial information is processed using the
same or differential computational algorithms in
the hippocampal pathway. There is an opinion
from the computational point of view that the
hippocampus may be “blind” to the information
inputs by processing the input messages the same

way irrespective of their modality and nature
(Lisman et al. 2017). However, this suggestion
is not aligned with the experiments. First, the
mEC and lEC have different prioritizations
among the allocentric and egocentric spatial
information together with the nonspatial informa-
tion (Hargreaves et al. 2005; Keene et al. 2016;
Knierim et al. 2014; Lisman 2007; Wang et al.
2018). For example, the mEC is specifically
required for a visual scene-based spatial task,
while the lEC is particularly involved when the
animals need to push or dig into a jar for a food
reward in the context of the same visual scene
(Yoo and Lee 2017). Wang et al. found lEC
neurons showing typical egocentric responses to
the border (Wang et al. 2018). Second, within the
hippocampus trisynaptic pathway, the path from
MECII to CA1 via DG and CA3 is thought to be
involved typically in spatial information
processing (van Strien et al. 2009; Zhang et al.
2013), the path fromMECIII to CA1 is crucial for
temporal association memory (Kitamura et al.
2015a; Remondes and Schuman 2004; Suh et al.
2011). Recording directly from the neuronal
afferents projecting from MECII to DG or from
MECIII to CA1 respectively with the fiber pho-
tometry demonstrated that visual-cue-dependent
persistent activity develops only in the MECII
pathway of the freely behaving mice during the
learning (Qin et al. 2018) (Fig. 7.6a). The inhibi-
tion of the MECII-DG activity disrupts the navi-
gation task in the Morris water maze, whereas
inhibition of the MECIII-CA1 projection is inef-
fective. Meanwhile, selective inhibition of the
synaptic transmission at the MECIII to CA1
synapses, but not the path from MECII to CA1
via DG and CA3 with the genomic methods,
leads to significant impairments of the temporal
association memory (Suh et al. 2011) (Fig. 7.6b).
More interesting is that the island cells, which are
a small population of neurons surrounding the
ocean cells in MECII and contain similar
proportions of grid cells as the ocean cells (Sun
et al. 2015), project directly to GABAergic
interneurons in stratum lacunosum of CA1 and
is indifferent to context-specific encoding but
indispensable for the temporal association mem-
ory (Kitamura et al. 2014, 2015b; Ray et al.
2014).
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7.5 Conclusion

Since the initial discovery of place cells in the
hippocampus, a population of specialized cells
representing distinct spatial information has
been discovered in a broad range of circuits
beyond the hippocampus (Fig. 7.7). Among
these spatially specific activities, the shared and
distinct properties of place cells, HD cells, and
grid cells suggest the possibility that there may be

a common mechanism behind the spatial firing of
all these cells, which we speculate to be the
allocentric space perception or mental representa-
tion of the environment as Tolman initially pro-
posed. This allocentric space perception is
generated outside and independent of the hippo-
campus though the neural circuits underlying the
allocentric space perception remain unknown.
The hippocampus is further hypothesized to
receive information from the allocentric space

Fig. 7.6 Differential involvement of hippocampus
trisynaptic pathway in spatial and nonspatial task. (a)
Persistent-task-associated activity induced solely in the
MECII-DG pathway. Top row: illustration of the fiber
photometry recording and histology of fiber recording in
axons from MECII to DG. Middle row: Ca2+ signal traces
during the naive (left), intermediate (middle), and well-
trained (right) states recorded from the MECII to DG
pathway. Bottom row is the correspondingly Ca2+ signal
traces recorded from MCIII-CA1 pathway during the
naive, intermediate, and well-trained states (Qin et al.
2018). (b) Distinct performance of MCIII-CA1 projection
in temporal association memory task. Top figure is the
illustration of MCIII-CA1, MCII-CA1 via DG and CA3
pathways. The second and third rows are the freezing level
measured in mutant and the corresponding control mice on
test day (the second day after training) where the synaptic

transmission from MECIII to CA1 and CA3 to CA1 are
inhibited, respectively (Suh et al. 2011). In both groups all
the animals were raised on a doxycycline (Dox) containing
diet for 10–12 weeks followed by 4 weeks of a Dox-free
diet before the training and test. On the second row, the red
line is the result from the transgenic mice with the synaptic
transmission inhibited at the MECIII to CA1 synapse
(MUT), and the blue line is from the control animals
(CTL). On the third row, the orange and blue lines are
the freezing level detected in transgenic mice with the
synaptic transmission inhibited at the CA3 to CA1 synapse
(CA3-MUT) and the corresponding control (CA3-CTL).
The right panels on both the second and third rows sum-
marize the freezing levels during the 60-s tone period and
the entire 240-s period over the tone and the three first 60-s
post-tone duration, respectively
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perception system and process it for mnemonic
purposes. As the same allocentric space percep-
tion is potentially behind the map-based spatial
navigation and path integration, the role of the
hippocampus in the spatial navigation using the
path integration strategy is also alike, when
involved. Thus, when required, the role of the
hippocampus in all three navigation strategies is
similarly mnemonic.

The mnemonic function of the hippocampus in
spatial navigation may present a powerful way to
study the mechanisms of memory formation, con-
solidation, and retrieval (Muller 1996). For exam-
ple, replays of previous activity in place cells and
grid cells observed during sleep and rest have
been suggested to be important for memory con-
solidation (Davidson et al. 2009; Diba and
Buzsáki 2007; Foster and Wilson 2006; Gupta
et al. 2010; Karlsson and Frank 2009; Lee and
Wilson 2002; Louie and Wilson 2001; Ólafsdóttir
et al. 2016; Wilson and McNaughton 1994). In
another report, the co-occurring patterns during
spatial navigation are preserved during the slow-
wave sleep (SWS) and rapid-eye-movement
(REM) sleep in grid cells (Gardner et al. 2019;
Trettel et al. 2019). Meanwhile, the hippocampal
circuits may also provide an accessible and effi-
cient platform to study spatial and other nonspa-
tial cognitive functions. For example, sequential

firing related to the future path is consistently
detected in place cells (Pfeiffer and Foster 2013).
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Neural Circuits for Sleep–Wake
Regulation 8
Ying Wu, Lieju Wang, Fen Yang, and Wang Xi

Abstract

The neural mechanisms of sleep, a fundamen-
tal biological behavior from invertebrates to
humans, have been a long-standing mystery
and present an enormous challenge. Gradually,
perspectives on the neurobiology of sleep have
been more various with the technical
innovations over the recent decades, and stud-
ies have now identified many specific neural
circuits that selectively regulate the initiation
and maintenance of wake, rapid eye movement
(REM) sleep, and non-REM (NREM) sleep.
The cholinergic system in basal forebrain
(BF) that fire maximally during waking and
REM sleep is one of the key neuromodulation
systems related to waking and REM sleep.
Here we outline the recent progress of the BF
cholinergic system in sleep–wake cycle. The
intricate local connectivity and multiple
projections to other cortical and subcortical
regions of the BF cholinergic system elaborately
presented here form a conceptual framework for

understanding the coordinating effects with the
dissecting regions. This framework also
provides evidences regarding the relationships
between the general anesthesia and wakeful-
ness/sleep cycle focusing on the neural circuitry
of unconsciousness induced by anesthetic drugs.

Keywords

Sleep-wake cycle · Cholinergic neurons ·
Basal forebrain

8.1 Introduction

Sleep, which takes up about one-third proportion
of mammal life, is a ubiquitous and essential
biological need for mammals. Based on diverse
behavioral states, electroencephalogram (EEG),
and electromyogram (EMG) characteristics, vigi-
lance states can be divided into wakefulness, rapid
eye movement (REM) sleep, and non-rapid eye
movement (NREM) sleep. The EEG shows low
amplitude, fast frequencies, and the EMG shows
variable amounts of muscle activity during wake,
while EEG is dominated by slower frequencies in
the delta (0–4 Hz) and theta (4–7 Hz) ranges during
NREM sleep. These three states can be intercon-
vertible between each other and are influenced by
environment and physiological signals (including
light, ecological niches, temperature, hunger, pain,
stress, hormones, metabolic factors, and
neurotransmitters) (Brown 2016; Gent et al. 2018).
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Clinical sleep disorders are closely bound up
with general health, including insomnia, narco-
lepsy (Luppi et al. 2011), paroxysmal activities
such as somnambulism, sleep terror disorder,
nightmare which occur in the specific sleep
period instead of overall time. Short-term sleep
deprivation may induce impaired desire to
socially interact and feel loneliness (Ben Simon
and Walker 2018). Long-term sleep–wake
perturbations may lead to chronic emotional, cog-
nitive, and endocrine disorders, including anxi-
ety, depression, Alzheimer’s disease (AD), and
diabetes (Wang et al. 2015; Cheng et al. 2018;
Boeve et al. 2007).

Sleep–wakefulness cycle is a highly complex
neural process like a flip-flop pattern (Lu et al.
2006). Dysregulation of neurochemical systems
may lead to sleep–awake disorders. It is regulated
by various cerebral neurotransmitters and
neuromodulators with corresponding specific
neuronal ensembles. However, the neural circuits
generating sleep–wakefulness cycle and the inter-
action to other systemic disorders remain a topic
of debate. So greater understanding of the neural
circuits with different chemical substances of
sleep–wakefulness switching is important for fur-
ther advances in the treatment of illnesses with
sleep disorders.

It has been shown that sleep–wake cycle is
modulated by a reciprocal interaction between
the brainstem and forebrain arousal systems like
noradrenergic neurons in the locus coeruleus
(LC) or hypocretin neurons in the lateral hypo-
thalamus (LH), and sleep-promoting systems like
GABAergic or galanin neurons in the ventrolat-
eral preoptic area (VLPO) (Hobson et al. 1975;
Pace-Schott and Hobson 2002). Here we review
one of the most popular central arousal neural
systems that regulate the sleep/wakefulness
cycle: the cholinergic system. The BF and
laterodorsal and pedunculopontine tegmental
nuclei (LDT/PPT) are the main regions
containing acetylcholine, and a 90% proportion
of cortical acetylcholine comes from BF. The
mazy BF local connectivity, diversity and reci-
procity connection pattern from different subcor-
tical systems of the BF cholinergic system, and
this cholinergic system to the cortical mantle

together forming a neural network modulate
arousal behavior (Fig. 8.1). The semblable behav-
ior and EEG characteristics in NREM sleep and
anesthesia suggest sleep/awake cycle and anes-
thesia may share similar neural pathway. The
neural network revolving around BF cholinergic
neurons can provide evidences and direction
about the prospective mainstream perception
that the anesthetic-induced loss of consciousness
may be due to acting upon the wakefulness/sleep-
regulated neural circuits.

8.2 BF Subregions and Cholinergic
Neurons Functions
in Wakefulness Regulation

A wide variety of studies over the last decades
have substantiated that the BF neurons acting as a
relay station with afferents from multiple
brainstem regions relay to the cortical and subcor-
tical limbic regions. A heterogeneous population
of neurons in BF, with the intermingled 5% cho-
linergic, 55% glutamatergic, 35% GABAergic
neurons (Gritti et al. 2006; Henny and Jones
2006, 2008), is topographically scattered in
extended forebrain territories across several dif-
ferent cytoarchitectonic areas. BF can be
anatomically divided into vertical diagonal band
nucleus (VDB), medial septal nucleus (MS), hor-
izontal diagonal band nucleus (HDB),
magnocellular preoptic nucleus (MCPO),
substantia innominata (SI), nucleus basalis
magnocellularis (NBM) (Semba 2004; Rye et al.
1984). The different subsets of BF cholinergic
neuron subregions can cast to the discrete areas
of cortical and subcortical regions (Zaborszky
and Duque 2000; Zaborszky et al. 1999; Rho
et al. 2018). For instance, caudal SI and NBM
cholinergic neurons innervating to medial frontal
cortex and amygdala are wake/REM active
(Poulin et al. 2006). The rostral MS and VDB
cholinergic axons to dorsal hippocampus can gen-
erate cortical theta oscillations (Dutar et al. 1995;
Cobb et al. 1999; Agostinelli et al. 2019; Salib
et al. 2019), while HDB and MCPO cholinergic
neurons to prefrontal cortex (PFC) and olfactory
bulb (OB) can promote neocortical activation and

92 Y. Wu et al.



process sensory (Chaves-Coira et al. 2018; Zheng
et al. 2018; Hamamoto et al. 2017).

In spite of the fewer amount of cholinergic
neurons in BF, the effect of BF cholinergic
neurons in arousal has been subsequently
substantiated as a necessity. Researchers have
provided a preliminary view of the dynamic
interplays between BF-specific cell types and

cortical activity via EEG, in vivo electrophysiol-
ogy, and expressed neurotransmitters (Zaborszky
and Duque 2000; Duque et al. 2000). Inconsistent
results with different methods or BF subsets func-
tion of sleep/awake cycle have been reported. The
direct evidence is the expression of c-Fos in the
cholinergic neurons during wakefulness,
displaying that the 12.9% of BF cholinergic

Fig. 8.1 Basal forebrain cholinergic neural circuits dia-
gram for wake–sleep cycles. (a) Basal forebrain choliner-
gic system acts as a relay station which accept various
neurochemical sources and own multiple projections to
cortical and subcortical regions, forming a general frame-
work. The BF cholinergic projections to cortex and hippo-
campus (dark green) take the main responsibility for the
neocortical activation and hippocampal theta oscillations
generation. Meanwhile, the afferents which drive the BF
cholinergic neurons mainly originate from the limbic sys-
tem, diencephalon, brainstem. Monoaminergic neurons
(light blue) which are mainly located in caudal hypothala-
mus and rostral brainstem may directly innervate to the
cortex as well as the BF and thalamus. The monoaminer-
gic territory includes LC-NE neurons, DRN and MRN
serotonergic neurons, VTA-DA neurons, and TMN hista-
minergic neurons. The wake-promoting region like LH
orexinergic neurons (orange) also cast to BF. PPT/LDT
and PB cholinergic neurons (dark green) give rise to

highly diffuse projections to BF. Existing glutamatergic
(purple) axon terminals in BF arise from multiple afferent
sources, including mPFC, vPFC, PB, thalamus, and amyg-
dala. (b) The BF cholinergic neurons are topographically
segregated within several subsets and may cast to different
brain regions, respectively. For example, MS/VDB to
hippocampus, SI/NBM to PFC and amygdala,
HDB/MCPO to olfactory bulb and PFC. (c) The heteroge-
neous population of neurons in BF is intermingled with
5% cholinergic (ChAT), 55% glutamatergic (Glu), 35%
GABAergic neurons, and the GABAergic neurons can be
divided into several kinds of subtypes including
parvalbumin-positive (PV) and somatostatin (SOM)
neurons. In the local microcirculation, SOM neurons
inhibit the neighboring wake-promoting Glu, ChAT, and
PV neurons, meanwhile, glutamatergic neurons power-
fully promote wakefulness through excitation of ChAT
and PV neurons directly or indirectly
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neurons expressed increased c-Fos during spon-
taneous wakefulness, while 1.8% of cholinergic
neurons in spontaneous sleep group (McKenna
et al. 2009). As discussed by microdialysis
study, the liberation of the slow excitatory neuro-
transmitter acetylcholine in neocortex, mainly
from BF cholinergic neurons, is increased during
REM and waking, which is related to the
desynchronized activation of the cortex in EEG
pattern (Celesia and Jasper 1966; Jasper and
Tessier 1971). In normal physiological
conditions, in vivo single-unit electrophysiology
recording has shown that the discharge pattern of
BF cholinergic neurons is positively
corresponding with gamma activity and nega-
tively coordinated with delta activity during the
sleep/wakefulness cycle, which are consistent
with the view that the BF corticopetal cholinergic
system exerts a general activational effect on the
cortical mantle (Lee et al. 2005; Kim et al. 2016;
Berntson et al. 2002).

The rostral MS and VDB in BF are identified
important for normal hippocampal activation and
theta oscillations generation (Zhang et al. 2011;
Kang et al. 2017; Dragoi et al. 1999). Subtypes of
nicotinic and muscarinic receptors in the hippo-
campus are present at presynaptic and postsynap-
tic location of both principal neurons and
inhibitory interneurons, where they exert pro-
found bidirectional influences on synaptic trans-
mission, portraying the key role for cholinergic
activation in the induction and maintenance of
synaptic plasticity. The cholinergic system is pos-
ited as the pacemaker of the hippocampus theta
oscillations and undertakes a vital role in vigi-
lance and cognitive function (Drever et al.
2011). Early pharmacological researches have
also proved the critical role of acetylcholine in
cortical activity, for example, the cholinergic
neurons have the capacity to discharge in rhyth-
mic bursts and stimulate cortical gamma and theta
activation along with the states of waking and
REM while neurotensin (particular agonists of
cholinergic neurons) or noradrenaline is
administered into the BF (Cape et al. 2000;
Jones 2004; Sainsbury and Bland 1981). To the
contrary, pharmacological infusion of muscarinic
cholinergic antagonist scopolamine or neurotoxic

lesions (e.g., 192 IgG-saporin, an immunotoxin
selective to cholinergic neurons), into the rostral
BF can reduce or abolish septohippocampal
neurons’ theta rhythmic activity (Leung et al.
2003; Apartis et al. 1998).

The cholinergic neurons in HDB and MCPO
projection to PFC, OB, S1 may be specialized in
cortical activation and sensory processing of
somatosensory stimuli via neuronal tracing and
optogenetic manipulations (Chaves-Coira et al.
2016). It has been proved that cortical acetylcho-
line (Ach), mainly from the BF cholinergic
neurons, aggrandize sensory information process
and enhance the responsiveness of somatosensory
cortical neurons via activation of nicotinic and
muscarinic receptors (Martin-Cortecero and
Nunez 2014; Sarter et al. 2014). The pyramidal
or interneurons cells in PFC are found to form
excitatory or inhibitory synapses, respectively, by
anterograde transport and dual-stained for
glutamic, GABAergic, or cholinergic neurons of
BF, verifying the postsynaptic constituents of
MCPO cholinergic projection to the PFC
(Henny and Jones 2008).

The SI/NBM of BF is deemed to be wake/
REM active and may promote neocortical activa-
tion. Nonspecific pharmacological adenosine
(AD, a modulator of the sleepiness by inhibiting
cholinergic and non-cholinergic wakefulness-
promoting BF neurons at the AD A1 receptor)
and muscimol along with specific immunotoxin
192 IgG-saporin administration into SI/NBM all
reduce gamma-EEG power and may promote the
transition from wakefulness to NREM. However,
other results showed that inactivation or lesion of
SI/NBM cholinergic neurons do not alter the
sleep–wake profile and reduce the amount of
wakefulness, suggesting that BF cholinergic
neurons play an enabling role but not necessary
in the maintenance of wakefulness (Berntson
et al. 2002; Bassant et al. 1995; Wenk et al.
1994; Strecker et al. 2000; Kalinchuk et al.
2008; Kaur et al. 2008; Blanco-Centurion et al.
2006). Thus, the slightly different effect of phar-
macologic lesions of BF cholinergic neurons may
be accounted for the inassimilable effect of the
BF subregions to cortical projection, and the dif-
ference release amounts of acetycholine in the
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various physiological conditions. Further
researches confirmed the specific contribution of
causal cholinergic SI/NBM neurons in arousal
behavior by using genetically targeted
optogenetic or chemogenetic manipulations.
Selective lesions or inhibition of the SI/NBM
cholinergic neurons by optogenetic or
chemogenetic manipulations combining with
electrophysiology also show the similar
consequences to the pharmacological effect
(Chen et al. 2016; Fuller et al. 2011). On the
contrary, selective optogenetical photoactivation
of the SI cholinergic neurons was adequate to
disrupt the ongoing sleep state, facilitate an
immediate switching to waking or REM sleep
from NREM sleep, and prolong the waking
durations, providing a direct causal link between
cholinergic BF neurons and both cortical activa-
tion and arousal behavior (Duque et al. 2000;
Chen et al. 2016; Anaclet et al. 2015; Han et al.
2014; Irmak and de Lecea 2014; Hassani et al.
2009). What is interesting among these results is
that photostimulation of the cholinergic BF
neurons evoked wakefulness only from NREM
but not from REM sleep, which present a not
quite same as the previous research about the
arousal-active cells, for instance, photosti-
mulation of the noradrenergic neurons in the
locus coeruleus (LC) or hypocretin neurons in
the lateral hypothalamus (LH) induced wake
transitions from both NREM and REM sleep
(Jones 2008; Adamantidis et al. 2007). In vivo
two-photon calcium imaging of neurons in layers
2/3 of mouse visual cortex shows that muscarinic
ACh receptors (mAChRs) can activate the excit-
atory and PV+ neurons in cortex during low
levels of cortical desynchronization, and on the
contrary, nicotinic ACh receptors (nAChRs)
suppressed the excitatory and PV+ neurons in
cortex when cortical desynchronization was
strong. Thus, cholinergic input from the BF
causes a significant shift in the relative activity
levels of different subtypes of cortical neurons
through increasing levels of cortical desynchro-
nization (Alitto and Dan 2012).

In addition, the cortical activity influenced by
the BF cholinergic inputs can undergo not only
directly but also indirectly through the reticular
thalamic nuclei, which consists of the relay

neurons that may affect the discharge pattern of
cortical neurons and can receive the cholinergic
afferents at the same time (Jourdain et al. 1989).
The projecting BF cholinergic neurons are not
restricted to the above well-known regions; they
also disseminate to the posterior hypothalamus
(Semba and Fibiger 1989). The posterior hypo-
thalamus was firstly put forward as a
wakefulness-promoting region because long-
playing sleep of encephalitis lethargica may be
affiliated with the lesion in posterior hypothala-
mus and midbrain (Economo 1930). Subsequent
studies have also identified the exact effect of
cholinergic inputs to posterior hypothalamus
that bilateral intracerebral microinjection of
muscimol into the posterior hypothalamus
induced a transient intensive hypersomnia and
can reverse the insomnia induced by preoptic
area of hypothalamus (POA) lesion (Sallanon
et al. 1989; Lin et al. 1989). In general, up to
now, BF cholinergic neurons of each subregions
to cortical or subcortical limbic regions form a
complex ascending and descending chains
regulating sleep/wake cycles (Table 8.1). The
diverse inconclusive terminal projected neurons
and its synapses from corticopetal BF cholinergic
populations make the mechanism of precise mod-
ulation of sleep/wakefulness cycles more difficult
to a higher degree.

8.3 The Local Microcirculation
of BF

The discrepancies between effects of selective
and non-selective lesions of the BF cholinergic
neurons, as well as the elaborate differential con-
trol of electrical stimulations BF on cortical mul-
tiunit activity suggested that except for the
cholinergic neurons, other types of neurons in
BF must become parts of the regulation systems
of cortical activity (JimenezCapdeville et al.
1997; Detari 2000). Cholinergic neurons consti-
tute only around 5% fraction in rats BF (Gritti
et al. 2006), while various cell populations con-
tain spatially intermingled sleep- and wake-active
neurons, including glutamatergic and different
subtypes of GABAergic neurons which are het-
erogeneously distributed across spatially distinct
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clusters (Nadasdy et al. 2010; Castaneda et al.
2005).

Except for doubtless cholinergic neurons
effect on sleep/wakefulness cycle, the
GABAergic BF neurons are heterogeneous
anatomically and functionally, subdivided on the
basis of immunostaining expression of
parvalbumin, calretinin, calbindin, somatostatin,
Kv2.2, and other markers (Lin et al. 2015; Gritti
et al. 2003). The GABAergic neurons can modu-
late wakefulness apart from NREM sleep beyond
expectation, and this effect of GABAergic
neurons depends on the cell subtypes and its
upstream and downstream neurons. Researchers
revealed a critical contribution of the BF
GABAergic neurons to drive wake and fast corti-
cal rhythms in behaving mice because
chemogenetic activation of the GABAergic
neurons reduces the activity of inhibitory cortical
interneurons and promote the cortical activation,
and these GABAergic neurons have indirect
effects via projections to the arousal-related mid-
line thalamus nuclei and many other subcortical
arousal regions (Anaclet et al. 2015; Kim et al.
2015). Further studies showed that the
parvalbumin-positive (PV+) GABAergic neurons
in BF are wake/REM active, and optogenetic
activation of this cell type can rapidly induce
wakefulness and elicit cortical gamma band
oscillations (GBOs, ~40 Hz activity), while
photostimulation of the somatostatin (SOM+)
neurons may increase NREM sleep mildly (Kim
et al. 2015; Xu et al. 2015). The expression of
biomarkers released by GABAergic neurons may
account for the distinct reaction, and further
experiments are needed to clarify the GABAergic
subtypes among the sleep/wakefulness
regulation.

The glutamatergic neurons account for about
55% proportion in BF (Gritti et al. 2006). Two
anatomical pathways of the BF glutamatergic
neurons consist of either direct projections to
entorhinal cortex and prefrontal cortex or indirect
projections to cortex by exciting the local cholin-
ergic neurons with the synaptic connections
(Henny and Jones 2008; Manns et al. 2001).
Optogenetic activation and recordings from
channelrhodopsin-2 (ChR2)-labeled neurons

revealed that BF glutamatergic neurons are
wake/REM active, and activation of this cell
type can rapidly induce wakefulness (Xu et al.
2015). Glutamatergic neuron-specific lesions of
BF and its upperstream pontine parabrachial
nucleus and adjacent precoeruleus area (PB-PC)
complex produced behavioral unresponsiveness
like vegetative state, increased EEG delta power,
and lack of cortical c-Fos expression during gen-
tle handling, indicating that the PB-PC-BF-corti-
cal pathway may play a critical role in arousal in
rats (Fuller et al. 2011; Saito et al. 1977). Then
researchers map the local synaptic connections of
the main cell types of BF by ultrastructural stud-
ies (Zaborszky and Duque 2000), in vitro phar-
macology (Yang et al. 2014), and in vivo
microdialysis (Zant et al. 2016). The excitatory
potential transmit gradationally with the sequence
of glutamatergic-cholinergic-PV+ GABAergic
neuron connections, and they all received strong
inhibition from SOM+ GABAergic neurons via
local synapses or long-range projections (Xu et al.
2015; Zant et al. 2016; Weber and Dan 2016). All
the above results suggested that noncholinergic
BF neurons promote cortical activation by
inhibiting delta waves, whereas cholinergic BF
neurons play a nonexclusive role in promoting
wake, deciphering the basic local organization
of the BF circuit for sleep–wake control.

8.4 Afferents to BF Cholinergic
Neurons in Mediating Arousal

Anatomical studies in rodents have shown that
the afferents which drive the BF cholinergic
neurons mainly originate from the limbic system,
diencephalon, brainstem (Semba and Fibiger
1989; Zaborszky et al. 1991), including locus
coeruleus (LC), ventral tegmental area (VTA)
(Trulson and Preussler 1984), median raphe
(MRN) (Hajszan and Zaborszky 2002; Smiley
et al. 1999; Zaborszky and Luine 1987), dorsal
raphenuclei (DRN) (Brown et al. 2002),
tuberomammillary nucleus (TMN) (Zant et al.
2012), lateral hypothalamus (LH) (Zaborszky
et al. 1993; Zaborszky and Cullinan 1989),
basolateral amygdala (Zaborszky et al. 1984)
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and laterodorsal and pedunculopontine tegmental
nuclei (LDT/PPT) in brainstem (Losier and
Semba 1993), many of these regions have been
certified as wakefulness-promoting nucleuses and
form interactional network to promote waking.
Nowadays, researchers have even suggested a
challenging viewpoint that the brainstem-BF-cor-
tex pathway may play a more important role in
arousal regulation than the limited contribution of
the traditional reticular formation-thalamus-cor-
tex ascending arousal system, which is necessary
for the cognition instead of the arousal state
(Fuller et al. 2011).

8.4.1 Monoaminergic Effects via BF
Cholinergic Neurons on Arousal

Monoaminergic neurons are mainly known as
wake-promoting neurons, including dopamine
(DA)-containing VTA neurons (Trulson and
Preussler 1984), serotonin-containing DRN
neurons (Kirby et al. 2003), NA-containing LC
neurons (Aston-Jones and Waterhouse 2016;
Schwarz and Luo 2015), or histamine-containing
TMN neurons (Haas and Panula 2003). These
monoaminergic neurons fire with similar patterns,
high-frequency firing rate while the host are
awake, slow frequency firing rate while NREM
sleep, and shutoff of firing rate during REM sleep
(Saper et al. 2010). The BF cholinergic neurons
acting as a relay station can take in the multiple
monoaminergic inputs to transmission to neocor-
tex in sleep–wake cycle.

NE has long been confirmed a critical
modulator of behavioral arousal that is necessary
for the maintenance of cortical tonic EEG activa-
tion (Jouvet 1972). In another early study, nor-
adrenaline was depleted by a mean of 85% in the
paleo- and neocortex after complete bilateral
lesions of the NE in cats. However the EEG
activation reappear within 12–48 h following the
lesion, indicating that the NE-LC neurons are not
necessary for the tonic maintenance of EEG
activation in wakefulness and in amphetamine-
produced arousal (Barbara et al. 1977). Further-
more, it is illustrated by optogenetic tool that
there is a causal relationship among LC firing,

cortical activity, sleep–wake switch, and locomo-
tor arousal (Carter et al. 2010). The excitatory
effect of noradrenalin into SI was blocked by
the alpha1-adrenergic receptor antagonist
prazosin and not by the alpha 2-antagonist yohim-
bine, suggesting the direct excitatory pathway
(Fort et al. 1995). On the other hand, alpha2A-
adrenergic receptors were found to be localized in
a large amount of non-cholinergic neurons (puta-
tive GABAergic neurons) except cholinergic
neurons. NE may disinhibit the GABAergic to
cholinergic link, thereby causing an indirect facil-
itatory action on cholinergic neurons. This indi-
rect excitatory effect of NE to BF cholinergic
neurons may be paralleled with direct excitatory
action. Noradrenaline microinjection to BF in
free-moving rats produced a dose-dependent
increase in gamma-EEG activity, a decrease in
delta activity, and an increase in arousal by
depolarizing and exciting the BF cholinergic
neurons, suggesting the adrenergic/cholinergic
direct link in BF cholinergic neurons may repre-
sent a critical component of a central network
coordinating autonomic regulation with cortical
activation and arousal (Hajszan and Zaborszky
2002; Cape and Jones 1998; Espana and Berridge
2006). Thus, considering the presence of hetero-
geneous neuronal populations of BF and the vari-
ous adrenergic receptors, LC-NE may affect
cortical activation by BF according to a compli-
cated cellular mechanism.

It is more widely accepted that VTA-DA
neurons drive the motivated behaviors
(Bromberg-Martin et al. 2010). The first study
indicating the possible capacity to arousal of the
DA is that DA could also be implicated in the
mechanism of action of neuroleptic drugs
(Carlsson and Lindqvist 1963). Then the
dopamine-containing neurons located in the
VTA and the substantia nigra pars compacta
(SNc) were proposed to involve in the mainte-
nance of behavioral arousal (Trulson and
Preussler 1984). Although the discharge pattern
of VTA-DA neurons and SNc are not signifi-
cantly regulated with the sleep/wake cycle or
anesthetics administration (Miller et al. 1983;
Steinfels et al. 1983), administration of DA-D1-
receptor agonists SKF 38393 produces dose-
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dependently EEG desynchronization related to
behavioral arousal. Deletion of the dopamine
transporter (DAT) gene in mice reduced NREM
sleep, increased wakefulness consolidation, and
moderately increased wheel-running activity only
during the latter portion of the dark period,
indicating that the VTA-DA neurons are
wakefulness-promoting (Ongini et al. 1985;
Wisor et al. 2001). The SNc/VTA-DA-containing
neurons have bidirectional interaction with the
other monoaminetic neurons, cholinergic
PPT/LDT neurons, Ach- and PV-containing BF
neurons, orexin-containing LH neurons that are
dominant cells in the process of sleep–wake tran-
sition (Eban-Rothschild et al. 2016; Moore and
Bloom 1978). The cholinergic neurons in slices
of BF were carried via whole-cell patch-clamp
recordings with the non-N-methyl-D-aspartate
(NMDA) glutamatergic excitatory postsynaptic
currents (EPSCs), illuminating D1-like receptor-
mediated presynaptic inhibition of glutamate
release onto cholinergic BF neurons (Momiyama
2010; Momiyama and Nishijo 2017). However, it
is interesting to note that VTA non-dopaminergic
(putative somatostatin-containing) neurons
increase firing rates during active wakefulness
and REM sleep and project to the GABAergic
SI and adjacent BF innervate cholinergic
corticopetal areas, forming VTA-GABAergic/
BF-GABA-ACh/cortex pathway that may be
another arousal-related route (Zaborszky 1989;
Marazioti et al. 2005; Smith et al. 2001).

Most forebrain and cortical serotonin emanate
from the DRN and MRN. Early studies have
identified that the early electrophysiological
properties of serotoninergic neurons in DRN
showing state-dependent changes during wake/
sleep cycles, like other wake-regulating monoam-
inergic cells (Kirby et al. 2003; Celada et al.
2013; McGinty and Harper 1976). Serotonin
brings about cortical activation directly by
enhancing the membrane excitability of neocorti-
cal pyramidal neurons, while serotonin-
dependent cortical activation is not disturbed by
cholinergic, dopaminergic, noradrenergic, or his-
taminergic blockade, suggesting that the excit-
atory effect of serotonin release is present by its

direct active impact to the cortex (Monti 2010;
Servos et al. 1994; Vanderwolf and Baker 1986).
Early studies showed that cholinergic neurons
and calretinin-containing GABAergic neurons in
MS have no serotoninergic fibers synapses inner-
vation, but PV-positive neurons in MS have sero-
toninergic fibers synapses innervation (Leranth
and Vertes 1999). Neuroanatomical evidence
have further shown that serotonergic terminals
were identified in immediate connection with the
cholinergic neurons in a subpopulation of SI, MS,
VDB, and NBM (Kia et al. 1996; Muzerelle et al.
2016), and the presynaptic inhibition of the
GABA release onto cholinergic neurons is
mediated by 5-HT1B receptors (Momiyama and
Nishijo 2017). Local microinjection of selective
serotonin 5-HT2C receptor agonist or 5-HT6
receptor agonist into HDB produces a dose-
dependent decrease in gamma-EEG activity and
REM sleep without significantly altering amounts
of wakefulness or SWS, suggesting that the effect
of serotoninergic system could be partly related to
the Ach release of cholinergic neurons in the
frontal cortex and hippocampus (Cape and Jones
1998; Monti et al. 2013; Monti and Jantos 2015;
Khateb et al. 1993). Thus the BF might be a relay
station conveying neural information from sero-
toninergic cells toward cortex.

The histaminergic neurons exist only in a pos-
terior hypothalamic region, TMN, spreading
widely to cortex, thalamus, and other arousal-
promoting regions and synergistically promote
cortical activation and wake (Zant et al. 2012;
Haas and Panula 2003; Yu et al. 2018; Thakkar
2011). Manipulations of extracellular histamine
concentrations in TMN and BF have consistent
link to behavioral state. Increased histaminergic
transmission increases the state of wakefulness,
while lessened histamine concentrations increase
NREM sleep. Lesioning the BF cholinergic
neurons abolished these links between levels of
BF and behavioral state (Thakkar 2011; Lin et al.
2011; Ramesh et al. 2004). Microinjection of H1
but not H2 or H3 receptor agonists to the NBM
imitated the effect of histamine into BF and
altered ACh spontaneous release from the cortex,
demonstrating that activation of histamine H1
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receptors in the NBM induced cortical activation.
On the contrary, the reductive wakefulness and
cortical activation were shown after histamine
receptor 1 antagonist perfusion (Cecchi et al.
2001). These experiments clarified that the hista-
minergic afferent to BF cholinergic neurons are
wakefulness-promoting, but the histaminergic
afferent projecting subsets of BF is still arcane.

8.4.2 Lateral Hypothalamus
Orexinergic Inputs to the BF
Cholinergic Neurons

The LH orexinergic neurons are wakefulness-
promoting system, while lack of orexin neuro-
transmission produces a chronic state of
hypoarousal characterized by excessive sleepi-
ness named narcolepsy, frequent transitions
between wake and sleep, and episodes of cata-
plexy (Thannickal et al. 2000; Mochizuki et al.
2011). Pharmacological infusion of orexin-A or
photoactivation or chemogenetic activation of the
orexinergic neurons can increase the probability
of transition to wakefulness from either SWS or
REM sleep by modulating the arousal threshold
(Adamantidis et al. 2007; Sutcliffe and de Lecea
2002). Thus, these studies are in favor of the
significance between the orexin neurons activity
and mammalian wakefulness state. Anatomical
studies have shown that these orexinergic neurons
project to diverse arousal behavioral-related
regions, such as the BF, TMN, DR, LC, pontine
reticular formation, and the PPT/LDT nuclei, in
addition to the neocortex (Nambu et al. 1999;
Peyron et al. 1998). Orexinergic fibers synapses
have been found on BF cholinergic neurons, and
orexin-A is released in the BF during waking.
Local microdialysis infusion of orexins excites
BF cholinergic neurons, induces cortical release
of acetylcholine, and strongly promotes wakeful-
ness for several hours (Arrigoni et al. 2010; Fadel
et al. 2005; Thakkar et al. 2001). Several in vitro
slice recording studies have also shed light on
how the orexinergic neurons activate BF, such
as MCPO, SI, and MS cholinergic neurons.

Orexin-A increases evoked excitatory postsynap-
tic currents in cholinergic and non-cholinergic
(putative GABAergic) corticopetal neurons
(Eggermann et al. 2001; Wu et al. 2004). Mean-
while, the orexinergic neurons may also
co-release the inhibitory neuropeptide dynorphin,
which have inhibitive effects on the sleep-active
GABAergic neurons of BF, suggesting orexins
and dynorphin may act synergistically in the BF
to promote arousal (Gerashchenko et al. 2001).
This evidence suggests that the BF is a key relay
site through which orexins activate the cortex and
promotes behavioral arousal.

8.4.3 LDT/PPT Afferents to the BF
Cholinergic Neurons

Since precursory study exhibit that the anesthetic
cat switch to the awakening-like EEG after elec-
trical stimulation of brainstem reticular formation,
the reticular formation has been proposed to play
a critical role in the initiation and maintenance of
cortical activation during wakefulness and REM
sleep state (Moruzzi and Magoun 1949). Apart
from the cholinergic neurons that are scattered
across a number of classically defined subregions
of BF, the other regions in brainstem including
medullary reticular formation, LDT/PPT are also
rich of cholinergic neurons (Hallanger et al. 1987;
Jones et al. 1986). The cholinergic neurons in
LDT/PPT discharge the highest during active
wake and REM sleep in positive correlation
with fast cortical activity while the low discharge
in SWS, which are also consistent with the slow
cortical activity, as “Wake/REM-max active
neurons” (Boucetta et al. 2014). Electrical stimu-
lation of the PPT during sleep leads to rapid
awakening, activation of the PPT cholinergic
cells by using chemogenetic or optogenetic tools
inhibits the slow wave activity during NREM
sleep and seizures (Van Dort et al. 2015; Kroeger
et al. 2017). Lesions or injection of cholinergic
agonist into the PPT/LDT of cats or rats triggers a
largely long-term REM with muscle atonia
(Shiromani et al. 1996; Baghdoyan et al. 1987;
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Webster and Jones 1988). Together, these studies
strongly suggest a role of cholinergic cells in
PPT/LDT in REM sleep control. However,
whether the PPT promotes wake itself still
remains unclear. The innervations of PPT/LDT
neurons give rise to highly diffuse projections to
many arousal-promoting brain regions, including
VTA, LH, BF, frontal cortex, and many thalamic
nuclei, but the fibers are sparse (Hallanger and
Wainer 1988). Only 8% PPT/LDT cholinergic
neurons become the BF afferents; however, the
detailed function of this pathway is still
perplexing (Losier and Semba 1993). The retro-
grade transport of horseradish peroxidase-
conjugated wheatgerm agglutinin (WAG) with
immunohistochemistry has shown the other
afferents to BF cholinergic neurons from PPT
monoamine neurons, including catecholamine,
serotonin, and acetylcholine neurons (Jones and
Cuello 1989). Single electrical pulses delivered to
the PPT area can produce excitatory effects in the
majority (72%) of BF fast cortical EEG waves
cells (F-cells) mediating the ascending excitatory
drive from the brainstem to the cerebral cortex
(Detari et al. 1997). Subsequent retrograde trace
and pharmacological studies unveiling a disagree-
ment that cortical ACh release and EEG activa-
tion evoked by PPT stimulation were not blocked
by either cholinergic muscarinic or nicotinic
antagonists applied to NBM , but were apparently
reduced by glutamate antagonists, suggesting that
the excitatory input to BF cholinergic neurons
from PPT may be via glutamatergic axons
(Rasmusson et al. 1994; Steriade 1995). Novel
studies also began to emphasize on the
non-cholinergic neurons of the PPT/LDT, such
as the glutamatergic and GABAergic neurons,
which may have distinct influence on cortical
activity and sleep/wake behavior (Boucetta et al.
2014; Kroeger et al. 2017). In general, the
connections from PPT/LDT to BF may contain
the cholinergic, monoamine and glutamatergic
pathway in regulating sleep–wake cycle.

8.4.4 Glutamatergic Afferents
to the BF Cholinergic Neurons
in Mediating Arousal

Interaction of glutamate and ACh in the BF cho-
linergic neurons has long been studied in vitro
and in vivo. The morphological evidence of the
presence of monosynaptic glutamate inputs to BF
cholinergic neurons in SI and the glutamatergic
receptors lying in the cholinergic neurons
suggests that the glutamate inputs affect choliner-
gic corticopetal neurons (Sim and Griffith 1996;
Hur et al. 2009). Moreover, the release of ACh in
the cortex and increased gamma and theta EEG
activity can be induced by local administration of
glutamate agonists kainic acid and N-methyl-d-
aspartic acid (NMDA) into the BF, suggesting
that glutamatergic inputs can excite BF choliner-
gic neurons (Cape and Jones 2000; Fournier et al.
2004; Fadel et al. 2001). The existing
glutamatergic axon terminals in BF arise from
multiple afferent sources, including mPFC, ven-
tral prefrontal cortex (vPFC) (Zaborszky et al.
1997), amygdala (Zaborszky et al. 1984), thala-
mus, hypothalamus (Carnes et al. 1990), and
brainstem reticulate formation (Jones and Cuello
1989; Lavoie and Parent 1994; Semba et al.
1988). The glutamatergic inputs from other
regions along with the local BF excitatory
glutamatergic neurons make the glutamatergic
inputs resources to cholinergic neurons more
diversification and make the network more
accordant.

For instance, anatomical evidence show that
projections from the amygdala terminate in the
SI. Systemic administration of centrally acting
muscarinic receptor antagonists could block the
cholinergically mediated neocortical arousal by
unilateral electrical stimulation of the amygdaloid
central nucleus (ACe). These results suggested
the involvement of the BF in amygdala-induced
arousal (McDonald 1991; Kapp et al. 1994;
Dringenberg and Vanderwolf 1996). However,
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microscopic studies showed that paradoxical
results, the existence of glutamatergic inputs and
the inhibitory GABAergic inputs from the amyg-
dala to BF (Zaborszky et al. 1984; Pare and Smith
1994), are in line with an early study that there
were antergic glutamatergic and GABAergic
systems in the basolateral amygdala that one
desynchronizes while another one synchronizes
the neocortex activity (Kreindler and Steriade
1964).

The posterior hypothalamic supramammillary
(SuM) nucleus has been considered as a key relay
station in the brainstem reticular nucleus pontis
oralis (PnO)-hypothalamic SuM-septo-hippo-
campal ascending pathway, and it has been
thought to be a key node in the generation of
hippocampal theta rhythm, arousal system, and
active movements (Vertes and Kocsis 1997;
Vertes 2015; Renouard et al. 2015; Pedersen
et al. 2017). Electrical stimulation of the posterior
hypothalamic nucleus or its upstream reticular
nucleus pontis oralis (RPO) induced cortical acti-
vation and hippocampal theta, and the
RPO-elicited discharge patterns of all theta-ON
cells can be blocked by procaine hydrochloride
administration into the MS/VDB, indicating
movement-related ascending activation of a
hypothalamo-septal pathway (Oddie et al. 1996;
Kirk et al. 1996). Early dissected studies by elec-
tron microscopic double-immunostaining
experiments showed that the glutamatergic fibers
of SuM calretinin neurons form synaptic contacts
and terminate on both PV-containing GABAergic
and cholinergic neurons in the MS/VDB complex
(Leranth and Kiss 1996; Borhegyi et al. 1998).
Novel results also suggest that tonic activation of
limbic cortical neurons during REM sleep is due
to projections from GABA/glutamate
co-releasing neurons of SuM (Luppi et al.
2017), suggesting that the circuitry from SuM to
BF is one of the pathway of regulating sleep/
awake cycle. Thus, whether the excitatory or
inhibited inputs to BF heterogeneous subsets
have different effects to sleep modulation awaits
for deeper investigation.

8.5 Interlink BF Cholinergic
Systems Between Sleep–Wake
Cycle and General Anesthesia

General anesthesia is a man-made neurophysio-
logical state comprising of unconsciousness,
amnesia, analgesia, and immobility, making it
possible to perform surgery of the patients. The
expected clinical general anesthetic drugs should
satisfy the desirable outcomes, such as surgery
without pain, awareness, and memory, and mini-
mize the undesirable adverse reaction, such as
cardiovascular depression, delirium, and even
death. To further study the neural mechanism of
general anesthetic, the neural mechanism of sleep
state is often put toward to imitate the anesthetic
process because they both exist invertible loss of
consciousness (LOC) and a lack of response to
environmental stimuli (Brown et al. 2010). The
recording EEG characters also showed depressed
neuronal unit activity between NREM sleep and
anesthetized animals, including spindles, high-
amplitude cortical slow waves of 0–4 Hz (delta
oscillations), and reduced muscle tone (Akeju and
Brown 2017; Massimini et al. 2005). What is
more, functional brain imaging studies regarding
propofol and sevoflurane administration showed
deactivation of the thalamus and brainstem
regions that are identified as the ascending reticu-
lar arousal system (Kaisti et al. 2003; Bonhomme
et al. 2001). However, whether the two states
share the same precise neural circuits remains
mysterious, while deciphering the interlink of
the two state is important for both neuroscience
and pharmaceutical research to facilitate the
development of new anesthetics. Among the mul-
titudinous effective brain regions, BF, a relay
station, especially the cortical Ach original loca-
tion, has been delineated an important regulator
of the state of consciousness during general
anesthesia.

The level of Ach in neocortex is declining
during isoflurane general anesthesia and NREM
sleep, while release of Ach is in line with the
high-frequency cortical activity during waking
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and REM sleep (Phillis 2005; Dong et al. 2006).
In clinical anesthetic operation patients, systemic
venous administration cholinesterase inhibitor
physostigmine increased central Ach levels and
promoted arousal via muscarinic cholinergic
receptors during halothane or propofol anesthe-
sia. In early rodents studied, debasement of BF
Ach by interventricular administration
hemicholinium-3 lower the MAC (minimal alve-
olar concentration, an index that reflexes the effi-
ciency of inhaled anesthetic), on the contrast,
systematic administration physostigmine
increased the isoflurane MAC, and cholinergic
agents can reverse the electroencephalogram-
depressant effect of isoflurane (Kenny et al.
2016; Hudetz et al. 2003; Zucker 1991). How-
ever, it is controversial about the effect of physo-
stigmine while it decreased halothane MAC in
dogs and was ineffectual in bispectral index
(BIS) and in scores assessing early recovery in
the emergence of sevoflurane anesthesia patients
(Paraskeva et al. 2002). Thus, the conflicting
effects of systemic pharmacological cholinergic
agonist or antagonist are too extensive to ensure
the precise anesthetic target in the brain.

Subsequent researches further overcame the
disadvantages of systemic administration of cho-
linergic agonist or antagonist and highlighted the
unique effect of BF and even its cholinergic
neurons in regulating anesthesia-induced loss of
consciousness. Rats with electrolytic lesion of the
MS (mainly projects to the hippocampus) showed
increased sensitivity with the reduced ED50 for
LORR and delayed the emergence from halo-
thane, isoflurane, pentobarbital, and propofol
anesthesia (Leung et al. 2013). Furthermore, to
identify the specificity of subtypes of cell in
anesthetic-induced unconsciousness, selective
192 IgG-saporin lesion of MS/VDB cholinergic
neurons showed increased anesthesia sensitivity
to cumulative doses of intraperitoneal injection of
propofol with the ED50 for LORR leftward
shifting and more decreased hippocampal
gamma power during isoflurane anesthesia
(Laalou et al. 2008; Tai et al. 2014).

Similarly, lesion by bilateral infusion of
192IgG-saporin into another BF subsets, NBM,
showed significantly longer duration of LORR

after propofol, pentobarbital but not after halo-
thane (2%) compared to control. Meanwhile,
reversible inactivation of NBM with local admin-
istration of GABAA receptor agonist muscimol
can increase slow waves in neocortex during
awake state, and prolonged the duration of
LORR and loss of tail-pinch response during
propofol, pentobarbital, and halothane. Thus,
lesion of NBM cholinergic neurons, playing sim-
ilar effect like inactivation of the NBM,
prolonged the LORR response to general anes-
thetic drugs (Leung et al. 2011).

Different inputted exogenous neurotransmitter
to BF also modulated the anesthetic-induced
unconsciousness behavior and sensitivity. Injec-
tion of orexin-A and orexin-B into the NBM
significantly increased the acetylcholine efflux in
the somatosensory cortex, reduced the depth of
1.2% isoflurane anesthesia (1 MAC) as indicated
by burst-suppression ratio of the recording epidu-
ral EEG and shortened the emergence time. The
infusion of orexin-A receptor antago-
nist (SB-334867A) into NBM delayed the emer-
gence time to sevoflurane and propofol,
illuminating the orexinergic afferent into BF
may also impact the efficiency of anesthetic
(Dong et al. 2009; Zhang et al. 2012). Compared
with orexin-B, NBM microinjection of orexin-A
was more potent in producing greater Ach efflux
in the cortex and greater relief from the burst
suppression induced by isoflurane (Zhang et al.
2012). In another study, microinjection of orexin-
A into BF facilitated the emergence of rats from
isoflurane anesthesia, while orexin-B did not,
indicating that orexin-A into BF plays a promo-
tive role in the emergence of isoflurane anesthesia
(Zhang et al. 2016).

Parallel results are also shown that histamine
and norepinephrine microinfusion into NBM has-
tened emergence time (recovery of righting) from
isoflurane or desflurane anesthesia and more
spontaneous movements and frontal EEG
desynchronization (Pillay et al. 2011; Luo and
Leung 2009).

But whether the above effective postsynaptic
neurons in BF are cholinergic neurons is still
sciolistic because not only the cholinergic
neurons have the orexinergic or histaminergic
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receptors and the interplay of matched heteroge-
neous neurons types of BF is intricate. As an
example, previous studies have demonstrated the
electrophysiological properties of cholinergic and
noncholinergic neurons of BF in whole-cell
patch-clamp recordings, the ChAT+ neurons
charged with lower frequencies than the ChAT–
neurons stimulated by tonic depolarization
(Lopez-Hernandez et al. 2017; Unal et al. 2012).
According to the electrophysiological properties,
propofol decreased the excitability of cholinergic
neurons in mouse BF via combing with GABAA
receptors (Chen et al. 2018). However, studies
that clarify the effect to cholinergic neurons by
accurate receptors that anesthetic acts on are
needed.

Moreover, there are still exceptional paradoxi-
cal reports about the probable effect that selective
lesion by intracerebroventricular administration
of 192 IgG-Saporin into cholinergic neurons in
BF alleviated the sedative potency of
subanesthetic low-dose propofol (30 mg/kg i.p.)
but elevated the anesthesia potency of the anes-
thetic high-dose propofol (>100 mg/kg i.p.), in
which the difference between subanesthetic low
dose and anesthetic high dose is still hard to
explain (Laalou et al. 2008; Pain et al. 2000).

Finally, the heterogeneity and complex circuits
of the BF neurons during sleep–wake cycle deter-
mined the general effect of increased NREM
sleep by administration of anesthetic is not so
simple. How the BF local neurons microcircuitry
and other wake/sleep-active nucleus interplay
with each other and form the network and its
function in anesthesia still have great study space.

In this review, the BF cholinergic sleep/wake-
fulness circuits are portrayed in a relatively sim-
ple pattern; however, the networks among the
plentiful neural systems may be much more com-
plicated, flexible, and may be affected by many
factors, such as light, temperature, stress,
hormones, and so on. New burgeoning technol-
ogy like genetical tools, optogenetic, calcium
imaging, and delicate computational analysis
will be required to elucidate the networks. Only
with deeper comprehension of the anatomy, phys-
iology, and dynamics of the wake/sleep circuits,
we can treat the sleep disorders and the sleep-

related cognitive and emotional diseases with
the more accurate targets in brain and optimize
the clinical general anesthetic drugs to a desirable
outcome.
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