Cooperative Spectrum Sensing )
with Improved Absolute Value oo
Cumulation Detection Based on Additive
Laplacian Noise in Cognitive Radio

Khushboo Sinha® and Y. N. Trivedi

Abstract In this paper, the performance of cooperative spectrum sensing (CSS)
with absolute value cumulation detection (AVCD) based improved energy detector
(IED) in additive Laplacian noise environment is proposed. Each cognitive radio
(CR) uses improved AVCD (i-AVCD) as a test statistic. Decision from each CR
is then forwarded to the fusion center (FC) where the final decision on the pres-
ence or absence of primary user (PU) is made. Performance of CSS in the form
of receiver operating characteristic (ROC) and the total error probability (P.) is
discussed. Besides this, the optimum value of p, optimum number of CRs (n) out of
K CRs, and optimum number of K to achieve a specified target total error probability
(sum of false alarm probability and missed detection probability is also obtained.
Results are presented here using Monte Carlo simulations and it is concluded that by
carefully choosing the optimum value of p, performance can be improved in case of
CSS with OR rule while the same is not necessarily applicable in case of CSS with
AND and majority rule (n/K) rule.

Keywords Spectrum sensing - Cooperative spectrum sensing + Cognitive radio *
Receiver operating characteristic - Laplacian noise

1 Introduction

Cognitive radio is one of the most promising techniques for the efficient utilization
of the available radio frequency spectrum. According to the FCC report [1], a large
portion of radio frequency (RF) spectrum remains under-utilized. Motivated by it,
the concept of cognitive radio (CR) was first proposed in [2] as a possible solution
to the under-utilization of the limited RF spectrum. CR exploits the under-utilized
frequency bands by identifying spectrum holes. Spectrum sensing is one of the most
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important functions of CR system where unlicensed user or secondary user (SU)
at the CR terminal continuously monitors the spectrum to detect the presence or
absence of licensed user or primary user [2]. Most spectrum sensing algorithms such
as energy detection (ED) and improved energy detection (IED) [3], the eigenvalue
based spectrum sensing [4], the goodness-of-fit based spectrum sensing [5] assumes
Gaussian noise (AWGN) into consideration. In real scenarios, the noise may be non-
Gaussian. Possible impairments which result in non-Gaussian background noise
include artificial impulsive noise, co-channel interference from other PUs, emission
from microwave ovens etc. [6]. Further, the previously mentioned detection schemes
degrade heavily in non-Gaussian noise.

It has been shown in [6, 7] that Gaussian mixture model, Middleton class A noise
model, and Laplace distribution (Laplacian noise) are used for approximately charac-
terizing the statistics of multiple access interference (MAI) in TH-UWB communica-
tion system. It has been shown that Laplacian noise accurately model MAI than other
noise models [7]. Motivated by it, Laplacian noise has been addressed by advanced
test-statistics such as suprathreshold stochastic resonance (SSR) [8], polarity coinci-
dence array (PCA) [9], non-linear function Kernel function [10], soft limiting PCA
(SL-PCA) [11], AVCD [12], i-AVCD [13] among others. AVCD is based on fixed
fractional lower order statistics (FLOS) while i-AVCD is based on a flexible FLOS
strategy with exponent p ranging from O to 2 [13].

In this paper, i-AVCD based on the CSS scheme is proposed as a test statistic to
improve the detection performance in additive Laplacian noise. Performance of CSS
is shown for AND, OR, and majority (n/K) rule. Optimum value of p for all three
CSS schemes (AND, OR, majority rule) is derived using simulations. Optimum
number of CRs out of a specified number of CRs is also expressed analytically.
Performance of CSS schemes for AVCD, i-AVCD, SL-PCA, SSR is compared and
it is shown here that by choosing optimum p for CSS based i-AVCD test-statistics,
performance can be improved greatly in case of CSS-OR rule but the same is not
necessarily true in case of AND (CSS-AND) rule and majority (CSS-n/K) rule.

2 System Model

Let y = [y1, ¥2,..., yn] be a vector of N observations of a PU received at the
cognitive terminal where N > 1. It is assumed that all the received observations are
real, independent, and identically distributed (i.i.d.). Each received observations y;
can be represented as

Hoy: yi = w;
Hy @y = Jvhxi + w;, (D

where & is the channel coefficient and it is assumed to be constant (2 = 1),i =1, 2,
..., N,y denotes the average signal-to-noise ratio (SNR), n; is Laplacian noise which
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follows Laplace distribution with mean 0 and variance 2b% ie., w; ~ L(0, b), b is the
scale parameter of Laplace distribution, x; is BPSK PU signal, i.e., x; € {—1, 1} pis
the exponent (power) of received samples at the cognitive terminal (SU).

2.1 Decision Statistics

i-AVCD based decision rule can be expressed as

N
z=7) Wl @
i=1

Decision statistics of i-AVCD can be expressed as

Hy: Z < A, PU absent,
H,: Z > X, PUpresent,

where y is the detection threshold of AVCD. It is should be noted that p = 1 denotes
AVCD. Here, CSS scheme is applied where multiple CRs are present in a cognitive
radio system. Each CR makes independent binary decisions in the form of O or
1. Then each CR forwards their independent binary decisions (hard decisions) to
the fusion center (FC). FC then combines the received decisions to determine the
presence or absence of PU as shown below:

K
S = ZS,‘, (3)
i=l

where K is the total number of CRs present, S is the sum of independent binary
decisions from each CR. s; is the hard decision made by each CR based on i-AVCD
test-statistics. The hypotheses Hy (null hypothesis) and H (alternative hypothesis)
at the FC using the CSS scheme can be expressed as

Hy: S <n, PUabsent,
H,: S >n, PUpresent

where n < K denotes majority rule, n = 1 denotes OR rule and n = K denotes
AND rule.
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3 Detection Probability and False Alarm Probability

Probability density function (pdf) of received samples y; ateach CR under hypotheses
Hy and H; can be expressed as

I w
Sy, (X) = e “4)
L el ol
foim @) = 7[e7 7 47 5)
Using (4) fiy,m, (x) can be expressed as [13]
Lelox]
ﬁ}’iHHo (x) = Ee ’
=0,x <O. (6)
Mean E||y;|”|Hy | and variance D{|y;|”|Hy | can be expressed as [13]
E[lyil"|Ho] = b"T'(p + 1) (7
D[Iyil"|Ho] = b*' I 2p + 1) = B>’ T*(p + 1). 8)
False alarm probability (Pg) at each CR can be expressed as
A — N x E[lyi|"|H
Pr=0Q [ ] €))
JN X D137 Ho]
Similarly, detection probability (Pp) at each CR can be expressed as
A — N x E|ly;|"|H,
Po=0 [ ] (10)

N x D[|y;|”|H; |

Similarly, expressions of E[|y;|”|H;] and DI[|y;|?|H;] can be derived [13]
similarly as done in case of Py.

Finally, at FC, detection probability (Qp) and false alarm probability (Qp) can
be expressed as [14]

K
QF=Z<’Z(> PL( = P! (1)
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K

0=y (’f) Ph(1 = Pp)s~! (12)

I=n

Total error probability (P.) at the FC can be expressed as

Pe:Qm+QFv (13)

where O, = 1 — Qp is the missed detection probability at the FC.

3.1 Optimum Values of p, N, and K

Optimum values of p(p*) at each CR can be obtained by partially differentiating Pp
w.r.t. p and equating it to zero.

p* = argmax(Pp) (14)
p

Similarly, optimum values of #n can be obtained as

n* = argrrEn(Pe) = min(K, ’71 —IEOZ—D (15)

ln(%)
_Pm

—Pp
Thus, for specified values of K, and Py,, n* can be easily found out.

where @ =

and [.] denotes ceiling function.

4 Simulation Results

Figure 1 shows Pp versus SNR (in dB) comparison of i-AVCD with ED and AVCD
using CSS-n/K (majority) rule at SNR of —4 dB, N = 30 and Pr = 0.1. It can
be seen clearly that at low values of SNR, i-AVCD with n/K rule underperform the
test-statistics without n/K rule. However, as SNR increases, n/K rule improves the
performance of i-AVCD. Figure 2 shows Pp versus SNR comparison of i-AVCD
using CSS-AND rule. It is clear from figure that AND rule of CSS doesn’t perform
better than that without AND rule in case of the test-statistics ED, AVCD and i-
AVCD. Figure 3 shows Pp versus SNR comparison of i-AVCD using CSS-OR rule.
It is clear from figure that OR rule of CSS improves the performance of ED, AVCD
and i-AVCD significantly. Figure 4 shows optimum p of i-AVCD with CSS-OR rule
for different Pg. It can be clearly seen from the figure that optimum p(p*) increases
with decrease in Pg. Values p* at different values of Pg and at y = —4 dB are given
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Fig. 1 Performance comparison of i-AVCD, AVCD and ED with CSS (n/K rule) forn =2, K =
3Jaty = —4dB,N =30
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Fig. 2 Performance comparison of i-AVCD, AVCD and ED with CSS (AND rule) forn =3, K =
3Jaty = —4dB,N =30

in Table 1. Figure 5 shows the optimum values of K comparison to achieve a certain
target error probability for different Pr. From the simulation result, it is found that to
achieve total error probability of 0.001739, optimum values of CR are 30 out of total
60 taken CRs. Similarly, to achieve an error target of 0.02311, only 15 CRs will be
sufficient out of 60 CRs. Figure 6 shows performance comparison of i-AVCD with
SL-PCA, SSR, ED, AVCD using CSS-OR rule at Pr = 0.1 and N = 30. i-AVCD
at p* = 0.101 shows better performance than all the mentioned test-statistics at
optimum p. However, as p increases (p = 1.5), performance of i-AVCD decreases.
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Fig. 3 Performance comparison of i-AVCD, AVCD and ED with CSS (OR rule) forn =1, K =3
aty = —4dB, N =30
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Fig. 4 Pp versus p at y = —4 dB and N = 30 at different values of Pr showing optimum p

Table 1 Optimum values of p of i-AVCD with CSS at N =30 and y = —4 dB

Optimum p(p*)
Pr i-AVCD |i-AVCD with CSS-OR | i-AVCD with CSS-AND | i-AVCD with CSS-n/K
rule rule rule
0.1 0.101 0.101 0.101 0.101
0.05 |0.151 0.151 0.101 0.201
0.01 |0.251 0.251 0.101 0.301

*denotes optimum value
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Fig. 5 P, versus K at y = —4 dB and N = 30 with i-AVCD at p = 1 for different detection
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Fig. 6 Performance comparison of i-AVCD with other test-statistics using CSS scheme based on
OR rule at N =30 and Pg = 0.1.

Figure 7 shows receiver operating characteristic (ROC) plot of i-AVCD, AVCD, and
EDat N = 50 and y = —4 dB at different values of p. ROC improves as p decreases.
Further, both simulations and analytical results closely match for the three compared
test-statistics in the figure.
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5 Conclusion

Cooperative spectrum sensing with i-AVCD is discussed using different CSS rules:
AND, OR, and majority (n/K) rule. It is concluded that optimum p increases with a
decrease in Pg. Further, it is also concluded that OR rule shows better performance
over a wide SNR range as compared to AND rule and majority rule. n/K rule also
works well but shows improved performance over only alimited SNR range. i-AVCD
is compared with ED, AVCD, SSR, SL-PCA and it is concluded that by carefully
selecting optimum p, detection performance increases over a wide SNR range, as
compared with other test-statistics in case of CSS-OR rule.
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