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Abstract In the paper, tooth structured grating-assisted (GA) configuration for 2
× 2 compact directional coupler (DC), two-mode interference (TMI) coupler and
multimode interference (MMI) coupler have reported for an intensive study using
a sinusoidal mode simple effective index method (SM-SEIM) centric mathemat-
ical model. It is found that beat length of GA-TMI coupler is ~22.3 μm which is
almost 50% compact in size with comparison to the conventional TMI coupler and is
~25% that for conventional directional coupler. The power imbalance with grating-
assisted structures increases as that of fabrication tolerances which are slightly higher
compared to conventional TMI coupler.

Keywords Integrated optics · Planar waveguide · Grating · Simple effective index
method · Directional coupler · Grating coupler

1 Introduction

The compact planarwaveguide-based optical device and its components have become
obligatory for implementation of large-scale integration in photonic integrated device
(PID) [1–6] for accomplish of increasing bandwidth requirements in contemporary
high speed communication. As the fundamental components of integrated circuit,
such as optical couplers (DC/TMI/MMI) and switches with smaller in size have
been growing interests due to the compactness and simple fabrication process. The
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grating-assisted geometry has appeared highly promising and is thus introduced in the
integrated optical couplers for further compactness that are very much obligatory for
large-scale-integration of PID. Polarization sensitiveness along with higher fabrica-
tion tolerances gives additional advantage. The previous works [7–9] have discussed
the coupling characteristics with a few detail study such as polarization sensitiveness
and fabrication tolerances based on finite difference time domain (FDTD) method
for the tooth structure grating-assisted TMI coupler.

In this paper, a detail intensive analysis of compact directional coupler (DC),
two-mode interference (TMI) coupler and multimode interference (MMI) coupler
with tooth structured grating geometry have been carried out using a sinusoidal
mode centric simple effective index method (SM-SEIM) [2, 10–13] based mathe-
matical model for accurate analysis of modal coupled power. Dependence of beat
length on coupling separation gap between access waveguides with a fixed value
of S bending loss for tooth structured grating-assisted directional coupler (GA-
DC), grating-assisted two-mode interference (GA-TMI) coupler and grating-assisted
multimode interference (GA-MMI) coupler are shown. Coupling behavior for DC,
TMI and MMI couplers with tooth structured grating geometry have discussed and
then compared with conventional structures.

2 Grating-Assisted Structure and the Principle

Figure 1 shows three-dimensional (3D) schematic view of 2 × 2 tooth structured
grating-assisted directional coupler (GA-DC) having tooth-shaped grating-assisted
coupling region with dimensions (length ~ L, coupling separation gap ~ h between

Fig. 1 Schematic 3D view of 2 × 2 directional coupler with tooth structured grating geometry
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the two-channel waveguides), one pair of input single mode access waveguides
(Waveguide-1 and Waveguide-2) of core size (width ~ a, thickness ~ b) and another
pair of single mode output access waveguides (Waveguide-3 and Waveguide-4) of
similar dimensions, respectively. The coupling region with tooth structured grating
geometry is consisting of two-channel waveguides incorporatedwith tooth structured
grating placed close to each other. In the coupling region, the guiding layer of width
Wm (~2a + h) and grating layer of widthWg (~Wm + 2�W ) are placed alternatively
where �W is the width of grating teeth. In this study, rectangular tooth structured
grating is used for higher compactness and simplification of implementation. The
grating structured coupling section is consisting of N total number of grating period,
� = lm + lg; where lm denotes the guiding layer’s length of width (S = m) and lg
gives grating layer’s length of width (S = g), respectively. Refractive index of core
layer and cladding layer are n1 and n2 respectively, whereas n3 is refractive index
of coupling gap cladding section. For input power ~ P1 launched at input lower
most access Waveguide-2, the respective output optical powers obtained through the
Waveguide-3 (as bar state) ~ P3 and Waveguide-4 (as cross state) ~ P4.

Once the mode field with propagation constant β i (λ) is launched as input signal
through single mode input access Waveguide-2, inside the tooth structured grating-
assisted coupling region modes are excited. In coupling section, based on compar-
ative phase difference among the excited modes, light powers are coupled at end
of the section through the output single mode access waveguides (Waveguide-3 and
Waveguide-4). As fundamental and first-order mode are carrying most of optical
power, the beat lengthwhich defines the coupling length required for a phase shift ~π;
of optical coupler with N total number of grating period (~�) is found as,

Lπ = [
(N + 1) lm + Nlg

] = π
[(

βm
00 − βm

01

) + (
β
g
00 − β

g
01

)] (1)

where β S
00 and β S

01 denote propagation constant for the fundamental and first-order
modes irrespective to guiding layer (S ~m) and grating layer (S ~ g), respectively. As
(S ~m, ~g), thewidth,Wm =Wg andEq. (1) signifies coupling length for conventional
structures.

For high-index contrast waveguide, mode field penetration in lateral outside direc-
tion of waveguide is negligibly small where input modal field profile of the ith mode,
Hi(x) for tooth structured grating-assisted coupling section can be approximated as,

Hi (x) = sin

[
(i + 1)

π x

Wg

]
(2)

Thus, the optical powers at end of tooth structured grating-assisted coupling region
are either coupled towardoutput accesswaveguides or diminishes out at endof grating
structured channel waveguide. Since all guided modes traveling through the grating
structured coupling sectionwill contribute tomode field of output accesswaveguides,
thus, mode fields in Mth access waveguide can be express as
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HS
M(x, L) =

1∑

i=0
S=m,g

H S
M,i (x, L)

=
1∑

i=0
S=m,g

cM,i Hi (x) exp
[
j
(
β S
0 − β S

i

)
L
]

(3)

where L = [(N + 1)lm + Nlg] and cM,i ≈
√
CS

M,i are contribution coefficient of
ith mode at Mth access waveguide, estimated using sinusoidal mode centric simple
effective index method (SM-SEIM) [10–12] based numerical model as,

CS
M,i

C0
= π2

16b2k2
(
n21 − n22

)
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{
−hk

(
n2eff − n22

)1/2} [
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{
bk

(
n21 − n22

)1/2} − exp
{
−bk

(
n21 − n22

)1/2}]

+ π2

16b2k2
(
n21 − n23

)

exp
{
−hk
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n21 − n23

)1/2} [
exp

{
bk

(
n21 − n23

)1/2} − exp
{
−bk

(
n21 − n23

)1/2}]

(4)

where for TE mode,

C0 = 0.4

FC
×

(
n21 − n2eff(TE),S

)√
n2eff(TE),S − n22

neff(TE),S
(
n21 − n23

)[
WS + 2

k0
√

n2eff(TE),S−n22

] (5)

Fc = 3(1 + 0.2h)
{
13.5 + 185

(
β S
0 − β S

i

)}
h

(6)

neff(TE),S = β S
TE(i)

(
λ

2π

)
; S = m, g (7)

The normalized output coupling power at Mth access waveguide of tooth
structured grating-assisted directional coupler (GA-DC) can be written as,

PM,i (x, L)

P1,i (x, o)
=

∣∣∣∣
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≈
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i (x)
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S
M, j Hi (x)Hj (x)
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[
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⎫
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⎤

⎥⎥
⎦ (8)

where Pi
M = ∣∣HS

M,i (x, L)
∣∣2 and i, j= 0, 1 denotes evenmode and oddmode such that

j > i, qS = 0, 1 refers to grating layer (S ~ m) and guided layer (S ~ g), respectively,
total number of grating period ~ N and CS

M,i ,C
S
M, j are the contribution coefficients

for ith, jth modes that signifies the field contribution into output access waveguides
which can estimated from Eqs. (4), βi, βj = propagation constants for ith and jth
mode that are calculated using dispersive equations [2]. The guiding width length ~
lm and grating width length ~ lg are determined by using the following relation (9)
[8, 9],

lS = λ

4neff( j,S)

; S = m, g (9)

2.1 Result and Discussion

Figure 2 shows schematic layout of three-dimensional (3D) tooth structured 2 ×
2 grating-assisted directional coupler (GA-DC) along with the beam propagation
results at the bar coupling (P3/P1) state and cross-coupling (P4/P1) state with Wm

= 3.0 μm, h = 0.5 μm, �W = 0.25 μm, �n = 5%, a = 1.5 μm, b = 1.5 μm, λ ~
1.55μmobtained by using optiBPM software. It is also show light wave propagation
on half coupling (3-dB) state of GA-DC coupler and cross-coupling point obtained
by optiBPM software that is based on finite difference time domain (FDTD) method
[6, 12]. From the study found that the cross-coupling point is obtained at coupling
length of 45.1μmwhich is almost close to that obtained by SEIMbased on sinusoidal
modes.

The schematic 3D layout of 2 × 2 tooth structured grating-assisted two-mode
interference (GA-TMI) coupler is shown in Fig. 3 along with the beam propagation
results at bar coupling (P3/P1) point and cross-coupling (P4/P1) point found by using
optiBPM software for Wm = 3.0 μm, h = 0 μm, a = 1.5 μm, b = 1.5 μm, �W =
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Fig. 2 Tooth structured 2 × 2 grating-assisted directional coupler (GA-DC) along with (a) 3D
schematic layout and BPM simulation results for (b) cross-state of beat length ~45.1 μm and
(c) 3-dB coupler of beat length ~23 μm

0.25 μm, �n = 5%, λ ~ 1.55 μm, respectively. It is found that cross-coupling beat
length ~22.3 μm which is equivalent to the result obtained by SM-SEIM.

Figure 4 shows 3D device layout of the tooth structured 2 × 2 grating-assisted
multimode interference (GA-MMI) coupler along with beam propagation simulation
results estimated using optiBPM software at the bar coupling (P3/P1) state and cross-
coupling (P4/P1) state withWm = 7.0μm,�n= 5%,�W = 0.25μm, h= 4μm, a=
1.5μm, b= 1.5μm, λ ~ 1.55μm. The coupling length of GA-MMI coupler obtained
as ~40.1 μm and 3-dB coupler of beat length ~20.2 μm, respectively. Further, a
comparative analysis for beat length (Lπ ) versus �n (%) for tooth structured GA-
MMI, GA-DC and GA-TMI couplers with teeth height �W ~ 0.25 μm and that of
conventional couplers (structures with �W ~ 0 μm) is shown in the plot Fig. 5. The
figure signifies that as �n increases, the beat length reduces. This is obtained that
GA-TMI coupler has the lesser beat length compared to other types of couplers.

In Fig. 6, the relative study of normalized bar and cross-states coupling powers
distribution has shown with respect to grating numbers (~N) which can be estimated
using Eqs. (1)–(9) for tooth structured grating-assisted two-mode interference (GA-
TMI) coupler of coupling separation gap, h ~ 0.0 μm, directional coupler (GA-DC)
for h ~ 0.5 μm and multimode interference (GA-MMI) coupler for h ~ 4.0 μm with
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Fig. 3 Tooth structured 2× 2 grating-assisted TMI (GA-TMI) coupler alongwith (a) 3D schematic
layout and BPM simulation results for (b) cross-coupling state of beat length ~22.3μmand (c) 3-dB
coupler of beat length ~11.5 μm

�n = 5%, cladding index ~ 1.45, a = b = 1.5 μm, �W ~ 0.25 μm, lm = lg =
0.27 μm and wavelength (λ) ~ 1.55 μm, respectively. From Fig. 7, it is observed that
the peak cross-state coupling power (P4/P1) is found at beat lengths corresponding
to the values of N ~ 41, 70, and 85 with respect to the tooth-shaped GA-TMI, GA-
MMI and GA-DC, respectively. Thus, the beat lengths for GA-DC, GA-MMI and
GA-TMI couplers calculated using Eqs. (1) are ~45.1 μm, 40.1 μm and 22.3 μm,
respectively.

Further, these planar waveguide-based conventional DC, TMI coupler and MMI
coupler with waveguide designed parameters are then fabricated and experimentally
tested using waveguide materials, SiON as the core layer along with SiO2 cladding
layer. From the experimental results as shown in Fig. 7, the beat lengths of conven-
tional TMI coupler (h = 0μm,�W = 0μm) and conventional MMI coupler (with h
= 4 μm, �W = 0 μm) are found as ~45 μm and ~80 μm, respectively, whereas for
conventional DC (with h = 0.5 μm, �W = 0 μm) is ~91 μm with �n = 5%. In the
graph, respective cross and 3-dB coupling points are indicated by the dot, and star
signs show optiBPM simulation results along with experimental results and SEM
photographs of developed DC, TMI coupler and MMI coupler, respectively.
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Fig. 4 Tooth-shaped GA-MMI coupler with (a) 3D layout and BPM results for (b) cross-coupling
state of Lπ ~ 40.1 μm and (c) 3-dB coupler of Lπ ~ 20.2 μm, respectively

Fig. 5 Beat length (Lπ )
versus index contrast
(�n) for tooth structured
grating geometry with �W
~ 0.25 μm and conventional
structures (where �W
~ 0 μm)
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3 Summary

In the paper, a detail comparative study of coupling behavior for tooth structured
grating-assisted two-mode interference (GA-TMI) coupler, multimode interference
(GA-MMI) coupler and directional coupler (GA-DC) have been presented using
a mathematical model based on sinusoidal mode centered simple effective index
method (SM-SEIM). The results are compared to the conventional coupler geom-
etry and verified with beam propagation method (BPM) simulation results obtained
by using commercially available optiBPM software. It is established that GA-TMI
coupler has shorter beat length compared to other couplers.
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