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Abstract Pedestrian detection is a subfield of object detection that is necessary for
several applications such as person tracking, intelligent surveillance system, abnor-
mal scene detection, and intelligent cars. We prepared a dataset for addressing the
false positives that occur during the person detection process. Some objects have
very similar features to those of a person. If a model is trained using a dataset con-
taining only persons, it leads to several false positives since it cannot differentiate
such objects from that of a person. Our dataset includes person and person-like
objects (PnPLO). Person-like objects that we introduce in our dataset are statues,
mannequins, scarecrows, and robots. We used the SSD model to show that, on train-
ing a model using our dataset, we can significantly reduce the false positives during
detection when compared to models trained on standard person datasets, thereby
improving the precision. The dataset consists of 944 training images, 160 validation
images, and 235 images for testing, with a total of 1626 person and 1368 nonhuman
labelling.

Keywords Pedestrian detection - Nonhuman detection - Deep learning + SSD -
Computer vision

1 Introduction

Humans can instantly recognise any object in an image. We can also simultaneously
interpret the location of any object, as well as how the objects interact. The human
visual system is very fast as well as accurate, helping us to perform even highly
complex tasks such as driving a vehicle, with little conscious thought. Computer
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vision is a research area, wherein the researchers try to make the computers work
in the same way as to how the human visual system works. The recent trend in this
field is the use of deep learning models, which is because various researches [1-5]
show that deep learning models have made the computers much faster and accurate
in object detection, classification, recognition, and various other computer vision
problems. Until the year 2016, state-of-the-art object detection systems with the best
accuracy were computationally intensive and too slow to run in real-time (e.g. faster
RCNN [1]). Also, the models which ran on real-time were not accurate enough,
especially for safety-critical applications. With the advent of SSD model [2], there
was a significant improvement in the speed for detection with high accuracy.

Dataset plays a crucial role in problems of object classification, detection, recog-
nition, segmentation, etc. There are many popular datasets widely accepted as bench-
marks for object detection problem. ImageNet [6], PASCAL VOC [7], COCO [8],
and SUN [9] datasets are few examples. Each of these differs in the type of images,
number and type of object labels, and size of datasets.

Pedestrian detection is an object detection problem. It has several real-time appli-
cations such as person tracking, robotics, video surveillance, and driverless cars.
Research works over the years have been using various approaches for the problem
of pedestrian detection, such as part-based detection [10], holistic detection using
features like HOG [11], motion-based detection [12], patch-based detection [13],
and detection using multiple cameras. As in other object detection problems, deep
learning is currently the most used approach in the research related to pedestrian
detection [14].

All the research works related to pedestrian detection which use deep learning
for training their models make use of person datasets as the benchmark [11, 15,
16]. These datasets consist of only the images of persons in various postures and
under different lighting conditions. The popular object detection datasets [6—8] also
have person as a class but no object classes to differentiate the person from objects
having similar features as persons. Since there are objects such as mannequins and
statues that have very similar features as that of a person, a model that is trained
with datasets containing only person images will have higher false positives on
encountering such objects. Considering this problem, we prepared a dataset (PnPLO)
[17] containing persons as well as the objects having features very close to that of
a person such as mannequins, statues, scarecrows, and robots. We train SSD model
with 300*300 image input size (ssd_300) and show the improvements in precision
on testing the newly trained model compared to the model trained on benchmark
datasets, namely, COCO [8], INRIA [11], and PASCAL VOC [7]. We can observe
considerable improvement in precision with the model trained on our dataset, on
testing the models on PnPLO test dataset.
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2 Recent Works

Computer vision is a field of study where extensive research is going on, especially
with the use of deep learning models. Pedestrian detection or person detection, in
general, is one of the topics of eminence in the field of computer vision, because of its
wide variety of applications in real-world problems. Video surveillance, driverless
cars, and person tracking are some of the applications. Deep learning gained pop-
ularity with the advent of AlexNet [3] in the year 2012, followed by many notable
research works such as [4, 5, 18].

Most of the recent object detection research works use either faster RCNN [1]
or single-shot multibox detector [2] as their backbone network because of their
accuracy and speed of SSD. Before the advent of SSD, faster RCNN was widely
used because of its excellent accuracy. This model is based on a region proposal
network, which is class agnostic. This class agnostic nature of RPN networks leads
to high time consumption, as the network needed two rounds of predictions—first,
to predict the regions which may contain an object, and then to predict the class
of the object present in that region. YOLO [19] considered this disadvantage and
proposed to have only one round of prediction by making the region proposals to be
class-specific so that the network needs to look at an image only once, thus, saving
a great deal of time. As the image passes through the deep convolutional network
only once, the model was speedy and could be run real time. Though YOLO worked
in real time, it compromised the accuracy by a great deal when compared to the
previous state-of-the-art model [1]. Problem with the first version of YOLO was
that it could not capture scale variation and failed to detect very small objects. SSD
provided a solution for this problem by proposing an auxiliary structure that can
perform detections at multiple scales. SSD, therefore, can run in real time with an
accuracy comparable to that of faster RCNN.

2.1 SSD Overview

SSD model was the first model that worked in real time with an accuracy as good as
the previous state-of-the-art models in object detection. Before SSD, models such as
the RCNN series [1, 20, 21] used RPN-based approach, which was time-consuming
because of two stages—region proposal, followed by detecting objects in each pro-
posal. The most significant advantage of SSD is its simplicity, with a single network
encapsulating all the computations, eliminating the need for a proposal generation
as well as the feature resampling stages. Figure 1 shows the architecture of the ssd
model.

SSD takes an image and ground truth boxes as input. The model used VGG-
16 network [5] as the base network. This network forms the first layers, following
which, an auxiliary structure was added to the network to produce detections. For
each location in feature maps of different scales, a small set of default boxes of
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Fig. 1 SSD architecture

varying aspect ratios are evaluated in a convolutional manner. For each default box,
confidence scores of all object categories, and the shape offsets are predicted. During
training, the default boxes and the ground truth boxes are matched, and the model
loss is calculated, which is the weighted sum of confidence loss and the localisation
loss. The overall loss is given by :

1
L()C, cl, g) = N(Lconf(xa C) +0[L10C()C, [ g))

where Lonr and Ly are confidence loss and localisation losses, respectively, and « is
the weight term. Confidence loss is the Softmax loss over multiple class confidences
(c). Localisation loss is the smooth L1 loss [21] between the parameters of ground
truth box and the predicted box (7).

2.2 Datasets

Pedestrian detection is a subject of interest in various researches because of its
widespread real-life applications. Hence, there are multiple standard datasets avail-
able, consisting of person as a class, used for these research works. We have con-
sidered three datasets used as benchmarks viz., COCO, INRIA, and PASCAL VOC
datasets.

221 COCO

This dataset contains images of complex everyday scenes of common objects in their
natural context. It is a large-scale dataset for object detection. It defines 91 classes,
but only 80 classes are used by the data. Segmentations of 11 other classes were not
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collected because of problems like too many instances, ambiguity, and difficulty in
labelling, too few instances, etc. Compared to the previous datasets such as Imagenet
and PASCAL VOC, COCO dataset has more object instances per image and also
gives an additional focus on segmenting individual instances of different objects.
Person is one among the 80 classes considered in the dataset.

2.2.2 INRIA

The INRIA person dataset has a training set constituting 1128 negative images and
614 positive images, and a testing set with 288 images. First created and used by Dalal
and Triggs [11], the static person dataset comprised of people in various positions
and orientations, taken in a variety of backgrounds and lighting conditions.

2.2.3 PASCAL VOC

The PASCAL visual object classes (VOC) challenge had been organised annually
since the year 2005. The dataset associated with this challenge is publicly available
and has been accepted as a benchmark in object detection. It constitutes images as
well as annotations in XML format. The dataset consists of 20 classes which include
‘person’ as one among them.

3 PnPLO Dataset

Data plays a critical role in any deep learning research work, enabling the computers
to work in the same way as to how the humans do. This is especially true in the field
of object detection, where the number and the type of images used for training a deep
learning model play a crucial role while applying the model to real-world problems.
All the datasets used as benchmarks for person detection problem contains only
images labelled with person objects. Training with such a dataset leads to several false
positives while testing, when the images include many objects having features close
to that of a person. If an image contains a statue, then a model that was trained with
only person images tends to identify the statue as a person, leading to a false positive.
To address this problem of false positives, we prepared a dataset containing persons as
well as the objects having features similar to a person—person and person-like objects
(PnPLO) dataset [17]. We have labelled the person-like objects as ‘nonhuman’.
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3.1 Image Acquisition

Person images and their corresponding annotation files used for training are consid-
ered from the PASCAL VOC 2012 person training dataset, and images for testing
are taken from PASCAL VOC 2007 person test set. The nonhuman images are taken
from the Internet. These images are completely random, not taken for a specific pur-
pose or a specific event, or from any particular angle. Because of this randomness, we
get an unbiased dataset. Some of the nonhuman images also contain person objects
in them.

3.2 Labelling

The dataset consists of a total of 944 images for training, 160 images in the validation
set, and 235 for testing. In the training set, there are 1106 person and 960 nonhuman
labellings. In the validation set, there are 203 person and 130 nonhuman labellings.
The test set consists of 317 and 278 labellings of person and nonhuman, respectively.

We labelled the nonhuman images using the labellmg tool [22], which is a graphi-
cal tool for generating image annotations. This tool saves the annotations in the form
of XML files in the format of PASCAL VOC dataset. We have labelled the images for
two classes, person and nonhuman class. In the XML annotations of PASCAL VOC
dataset, we have removed the annotations marked as difficult since such objects will
have similar features for both the classes considered and are difficult for even the
human eye to differentiate correctly. We have taken 526 person images for training
from the PASCAL VOC 2012 dataset, and 125 images from PASCAL VOC 2007
test list for testing. The number of person and nonhuman objects in the dataset are
comparable to avoid any over-fitting or under-fitting problems.

4 Experiment

We first tested the ssd_300 model trained on some standard datasets on the test
data of our dataset. The ssd_300 model trained on COCO, INRIA, and PASCAL
VOC datasets, respectively, are considered. Since the PASCAL VOC dataset includes
person as a class, we used the SSD model trained on this dataset as the initial setting
for the model to train on our dataset. This leads to a good initialisation for the model
instead of any random weight initialisation methods. We trained this model on our
train data for 50 epochs. We limited the number of epochs to 50 as further epochs did
not give any considerable improvement in the loss. We have trained the model with
a learning rate of 1073 for 10 iterations, then with a learning rate of 10~*, we trained
the model up to 30 iterations, and for the final iterations, we used a learning rate of
1077 to train the model. We then used the final trained model to evaluate the test data.
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Fig.2 Evaluation using model trained on PASCAL VOC 07+12 dataset: detecting robot, scarecrow,
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Fig.3 Evaluation using model trained on PnPLO dataset: robot, scarecrow, mannequins, and statues
are correctly detected as nonhumans

We noticed a significant improvement in the precision of person detection after
training on our dataset when compared to the precisions obtained on training on
datasets containing only persons. This improvement is achieved with the help of
PnPLO dataset [17] that considered the objects with features resembling those of a
person. Figure 2 shows the evaluation on test images of PnPLO dataset using model
trained on PASCAL VOC 07+12 dataset. We can see that the model wrongly detects
the person-like images as persons. Figure 3 shows evaluation on the same four images
using SSD model trained on PnPLO dataset. We can see that the model is able to
differentiate person from other person-like objects.

4.1 Evaluation Metric

Average precision (AP) is the evaluation metric used to compare the performances
of the SSD model trained on different datasets. Following metrics are involved in the
calculation of average precision.
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4.1.1 Intersection Over Union (I0U)

IoU is given by the following formula—the area of overlap over the area of the union
of the predicted and ground truth bounding boxes.

area of intersection
IoU =

area of union

IoU is used to measure whether the bounding box predicted by the model is true
positive (TP), false positive (FP), or false negative (FN). If the loU > 0.5, we consider
the predicted box to be a true positive. The bounding box is considered to be FP either
ifIoU < 0.5, or if there are duplicate boxes predicted for the same object in an image.
The predicted bounding box is an FN if IoU > 0.5, but a wrong prediction.

4.1.2 Precision

Precision is nothing but the measure of how accurate our predictions are.

TP

Precision = ———
TP + FP

4.1.3 Recall

Recall measures how well the model finds all the true positives.

TP

Recall = ———
TP 4+ FN

Once the above values are obtained, the precision-recall curve (PR curve) is plotted,
as shown in Fig. 4. Average precision is calculated by taking the area under the PR
curve.

Table 1 shows the improvement we achieved after training the SSD model on
PnPLO dataset. We have compared the performance of the model trained on PnPLO
dataset with that trained on three standard datasets, namely, PASCAL VOC 07+12
[7], COCO [8], and INRIA [11] person datasets. Average precision is the metric used
to compare the performances.

On evaluating the model trained on COCO, INRIA, and PASCAL VOC, on
the test set of our dataset, the average precision obtained was 53.6%, 55.3%, and
61.6%, respectively. After training on our training set, the performance significantly
improved to an average precision of 79.8%. Figure 4 shows the precision-recall curve
on evaluating the SSD model on our test data.
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Fig. 4 Precision-recall curve for person and nonhuman on SSD model evaluation on our test data

Table 1 Comparing performance of SSD300 trained on different datasets

Dataset Average precision (%)
COCO [8] 53.6
INRIA [11] 553
PASCAL VOC 07+12 [7] 61.6
PnPLO (ours) [17] 79.8

Bold represents the average precision of SSD300 model on the PnPLO dataset, which we created

5 Conclusion

Various research works are carried out focusing on detection of persons because of its
widespread applications such as video surveillance, person tracking, and intelligent
cars. These works use datasets comprising of only persons as benchmark dataset.
Many objects have features similar to that of a person. A model trained on only
persons fails to differentiate these objects from a person and person-like objects.
Usage of only person datasets as a benchmark leads to many false positives, detect-
ing person-like objects also to be persons. To overcome this problem, we prepared
a person and person-like object (PnPLO) dataset consisting of persons as well as
person-like objects such as statues, mannequins, scarecrows, and robots. We trained
ssd_300 model on our dataset and tested on PnPLO test data. We show that the perfor-
mance of the model trained on PnPLO dataset is better than performances of models
trained on three standard datasets, namely, COCO, INRIA, and PASCAL VOC. The
model trained on our dataset has an average precision of 79.8% compared to 53.3%,
55.6%, and 61.6% for SSD model trained on COCO, INRIA, and PASCAL VOC
datasets, respectively.
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