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Abstract

Nitrogen (N) and phosphorus (P) are two significant macronutrients for the
growth and development of the plant. These two nutrients represent the highest
percentage of fertilizer manufacturing and consumption in the agriculture sector.
Though applied in versatility, N and P are subjected to huge losses in terms of
fixation, leaching and volatilization. Nitrogen and P fertilizers have a net effi-
ciency of 30–35%, and 18–20%, respectively. To cope with this issue, many
advances have been made in terms of N sources and application methods. From
split application to coating, and using nitrification inhibitors to minimize its
losses, a wide range of techniques are reported. Application of organic
amendments also contributes to net stabilization of N in the soil for a longer
period. For coping with P losses, phosphatic fertilizers having an acidic residual
effect is preferred in alkaline soil, along with indigenous P solubilization, slow-
release P fertilizer modulation and use of coated fertilizers are some prominent
options. Use of plant growth-promoting rhizobacteria (PGPR) to ensure sustain-
able N and P availability, uptake and utilization in crop plants are being
advocated in this context. This chapter is an effort to comprehensively explain
sources and fates of N and P in soil with special emphasis on modern ways and
techniques for better management of these resources in agriculture.
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Abbreviations

μg Microgram
Al Aluminium
AMF Arbuscular mycorrhizal fungi
BNF Biological nitrogen fixation
Ca Calcium
CDU Crotonylidene di-urea
cm Centimetre
DAP Diammonium phosphate
DPR Dolomite phosphate rock
FC Filter cake coated MAP
Fe Iron
FYM Farmyard manure
g Gram
ha Hectare
IBDU Isobutylidene di-urea
kg Kilograms
MAP Monoammonium phosphate
Mg Magnesium
MMT Million metric tons
MPP Monopotassium phosphate
Mt Metric tons
N Nitrogen
N2O Nitrous oxide
NBP Nitrogen broadcast application
NBPT N-(n-butyl) thiophosphoric triamide
NDP Nitrogen deep placement
NH3 Ammonia
NH4

+ Ammonium
NO3

� Nitrate
NPK Nitrogen, phosphorus, potassium
NRE Nitrogen recovery efficiency
NUE Nitrogen use efficiency
P Phosphorus
PCU Polymer-coated urea
PGPR Plant growth-promoting rhizobacteria
PM Poultry manure
POL Polymer-coated MAP
PUE Phosphorus use efficiency
RP Rock phosphate
RZF Root zone fertilization
SC Compost coated MAP
SCU Sulphur coated urea
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SRF Slow-release fertilizers
Tg Tera-grams
TSP Triple superphosphate
UF Urea-formaldehyde
WSF Water soluble fertilizers

7.1 Introduction

Sustainable food production that can meet the demand of the growing population is
one of the biggest challenges of the twenty-first century (Tilman et al. 2002). A wide
range of nutrients is being sufficiently applied into agroecosystem around the globe
out of which phosphorus (P) and nitrogen (N) are of esteem importance. Both
nutrients are a structural and integral part of the plant and human body making
them the inevitable ones which must be applied exogenously in agriculture fields to
get sustainable yield. Nitrogen in its available forms can be up taken from the soil
and assimilated into plant body via various mechanisms (Vidal et al. 2014; Waqar
et al. 2014) and can act as limiting nutrient for plants (Glass 2003; Waqar et al.
2014). Regardless of extreme importance and extensive application of N fertilizers in
the agriculture sector, nitrogen use efficiency (NUE) is of major concern as it ranks
in-between 30 and 35% around the globe because of the great variability in NUE
determining parameters; efficiency of plants to utilize N, the efficiency of plants to
uptake N and N harvest index (Ciampitti and Vyn 2013; Meena et al. 2018, 2020;
Kakraliya et al. 2017). Over the last 50 years, an increase in the crop yields is less
than threefolds, while the fertilizer application has increased tenfolds (Tilman et al.
2002; Verzeaux et al. 2017). This shows a considerable decrease in NUE over the
period. The uncontrolled, non-stoichiometric and irregular application of N
fertilizers without considering soil pool chemistry and plant needs lead to major
flaws in NUE (Fageria and Baligar 2005). Extensive and uncontrolled application of
N fertilizers is not only an economically unfit practice but also can leave long-lasting
effects on the biosphere with the ultimate effects on humans (Hirel et al. 2007:
Waqar et al. 2014). Nitrogen fertilizer application following other nutrients is the
need of the hour to maintain a consistent and sustainable supply of N for sustainable
agriculture production worldwide (Robertson and Groffman 2009). To reduce the
losses of N, slow or controlled-release fertilizers are considered as a promising tool
(Bedmar et al. 2005). Slow-release fertilizers (SRF) release N for several weeks,
unlike the conventional fertilizers. Several products consist of low water-soluble
compounds, urease and nitrification inhibitors which release N slowly after micro-
bial or chemical decomposition. Tian et al. (2016) reported that the use of controlled-
release fertilizer (CRF) increased the NUE (13.66%) and yield of rapeseed (Brassica
napus L.) (12.37%) as compared to conventional fertilizer. Similarly, reduction in
the emission of nitrous oxide (N2O) by the use of urea-dicyandiamide was explained
by Akiyama et al. (2015). However, organic amendments application such as poultry
manure (PM), crop residues, farmyard manure (FYM), etc. significantly improve the
soil fertility and health. It was also reported that organic amendments release
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nutrients more slowly as compared to inorganic fertilizers (Al-Gaadi et al. 2019). It
was reported that 240 μg N g�1 (μg—microgram; g—gram) of soil was released in
clover amended soil followed by 76–100 μg N g�1 of soil in manure and compost
amended soil during a 97 days incubation experiment (Masunga et al. 2016). Apart
from different fertilizer amendments, biological nitrogen fixation (BNF) is corre-
spondingly very helpful in enhancing NUE and crop N demands. The BNF is a
process in which microorganisms of different species use enzymes such as nitroge-
nase and convert the unavailable atmospheric N2 to the plant-available forms (Varley
et al. 2015). The exponential increase in NUE was reported with an increase in BNF
(Islam and Adjesiwor 2017). The BNF of about 465, 452 and 102 kg (kilograms)
N ha�1 year�1 was reported by alfalfa (Medicago sativa L.), red clover (Trifolium
pratense L.) and white clover (Trifolium repens L.), respectively (Islam and
Adjesiwor 2017).

After N, P is an essential nutrient needed for proper growth of the plants and is
subjected to a wide range of issues in agroecosystem from its rock reserves limitation
to its least availability and higher fixation in soil (Hammond et al. 2009; Hasan et al.
2016). Due to the wide range of environmental constraints, current phosphorus use
efficiency (PUE) rarely exceeds 25% and mainly falls in-between 18 and 20%
worldwide (Syers et al. 2008; Mitran et al. 2018). The limiting constraints derived
pressure become worse when a consistent supply of P to plants become inevitable for
plant growth and sustainable yield production. Global P reserves are shrinking at a
very fast rate with little-to-no renewability thus making smart use of P reserves
inevitable (Roberts and Johnston 2015). At the current rate of consumption, rock
phosphate (RP) reserves can be depleted within two to four centuries depending
upon the cost, demand–supply relation, exploration of the reserves, future techno-
logical development and other factors (Kauwenbergh and Hellums 1995; Scholz and
Wellmer 2013). The only way for increasing the life of current P reserves is the smart
use of P fertilizers. It was reported that the use of SRF of P (Struvite) significantly
enhanced the PUE as compared to conventional P fertilizers (Talboys et al. 2016).
Several coating materials such as oil, polyethylene, latex, sulphur, polyvinyl chlo-
ride and other chemically synthesized compounds have been used to formulate SRF
fertilizers (Xiang et al. 2008). Teixeira et al. (2016) used the organic acid-coated
SRF of P. Results showed a significant recovery of P (+41%) by maize (Zea mays L.)
as compared to conventional fertilizer. The addition of organic amendments
enhanced the P nutrition and use efficiency. Luo et al. (2018) reported about 48%
P acquisition by wheat crop (Triticum aestivum L.) from the soil with organic
amendments. In the case of phosphatic fertilizers method of application significantly
influenced the P use efficiency and the P availability to the crops. Applied P showed
higher fixation and precipitation problems in the soil. A significant increase in wheat
crop yield was recorded by side dressing of P fertilizer compared to the conventional
broadcast method (Ali et al. 2012).

Use of biofertilizer or the microbial inoculants is also an important strategy to
enhance the nutrient use efficiency. Many of the microbial inoculants can also act as
biofertilizers because they can make nutrients accessible such as P and N from soil
unavailable pools, from organic amendments, they can also fix N, improve the
drought and salt tolerance of crops, improve the health of plants by reducing the
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disease incidence (Arora et al. 2013). Potential of arbuscular mycorrhizal fungi
(AMF) and PGPR as biofertilizer is a well reported (Berruti et al. 2016; Rubin
et al. 2017).

A small increase in P and N use efficiency can lead to long-lasting, huge
economic and environmental benefits worldwide. Aiming to the great need of
N and P in crop production with enormous application rate and various drawbacks
in current application techniques leading to their wastage. The current chapter is an
effort to summarize sources, fate and provide an overview of potential ways to
enhance N and P use efficacies and increase their availability for agroecosystems.

7.2 Sources and Fate of Nitrogen and Phosphorus
in the Environment

Application of N and P fertilizer was one of the major contributors to the green
revolution aiming to produce enough food to feed the world. Among sources of N,
plant and animal residues (Neff et al. 2002) and synthetically produced nitrogenous
fertilizers using atmospheric N and natural gas (Mackenzie 1998; Galloway et al.
2013) are important. Nitrogen being an integral part of plant and animal bodies can
make its way back in the form of plant residues and animal remains into the soil.
Phosphorus in the soil is also present as organic and inorganic forms (Tomar 2003;
Rosling et al. 2016). Organic forms of N and P does not contribute to the plant-
available pool unless it gets decomposed and changed to inorganic ionic forms
which can be taken up by crop plants. Inorganic forms of N and P readily available
but are subjected to various constraints leading to their wastages like N leaching,
fixation and volatilization, and P fixation in soil.

7.2.1 Nitrogen

The atmosphere contains about 79% of N, which is not available to plants as plants
only uptake N when it is in nitrate (NO3

�) or ammonium (NH4
+) forms (Näsholm

et al. 2009). Nitrogen added to the soil through several sources like fertilizers, crop
residues, animal manures, natural fixation of N and sewage sludge is ultimately
changed to mineral constituents and taken up by plants. Nitrogen mineralization,
nitrification, denitrification and fixation are important domains of N cycle
controlling its availability in soil (Ghaly and Ramakrishnan 2015).

7.2.1.1 Natural Sources of Nitrogen
Atmospheric N2 needs to be converted into plant-available forms via breaking the
strong triple bond (N�N) requiring a lot of energy (Schlögl 2008) which can be
provided by industrial and biological N fixation (Robertson and Groffman 2007).
Though industrial N fixation seems major contributor, biological N fixation is more
important as it is economical and independently occurring in agroecosystem
resulting into the fixation of 200 million tons N year�1 into agricultural soils (Rascio
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and La Rocca 2008). In biological N fixation, free-living and symbiotic bacteria use
nitrogenase enzyme responsible for the conversion of elemental N into mineral
(NH4

+) form (Postgate 1998; Mosberger and Lazzaro 2008). Various microbial
species present in the soil contribute to N fixation in huge amounts, out of which
some lives freely, and some make relations with plants called symbiotic association.
Free-living N fixing bacteria contribute to 10–320 tons N ha�1 (Hectare) annually
while bacteria in association with plant species (symbiosis) are responsible for
13–300 tons of N fixed per ha of soil annually (Bohlool et al. 1992).

Besides biological fixation, atmospheric N may enter soil N cycle through dry
and wet atmospheric deposition in organic (urea, amines protein and nucleic acid) or
inorganic forms i.e. ammonia (NH3), NH4, nitric oxide (NO), N2O, nitric acid
(HNO3) and NO3. Dry deposition is mainly caused by diffusion and wet deposition
mainly happens by in-cloud developments and scavenging of below-cloud (He et al.
2010). Wet and dry atmospheric deposition contributes 11% of global N input
(Whelan et al. 2013a, b). Application of organic amendments is also responsible
for N contribution into the soil via mineralization process in which the most
important thing is C:N ratio (carbon: nitrogen) of the amendment (Cherr et al.
2006; Fließbach et al. 2007; Whelan et al. 2013a, b).

7.2.1.2 Synthetically Produced Nitrogenous Fertilizers
Mineral fertilizers are a chief source of N for plant growth in current exhaustive
agricultural practices in which soil indigenous N fixing capacity cannot surpass N
losses from the soil. A wide range of nitrogenous fertilizers are available to be used
including anhydrous ammonia (NH3), ammonium sulphate [(NH4)2SO4], calcium
ammonium nitrate [Ca(NO3)2 NH4�NO3], and mixed N-P fertilizers such as
di-ammonium phosphate [(NH4)2HPO4] and monoammonium phosphate
(NH4H2PO4) (Whalen and Sampedro 2010). Industrially derived N fertilizers always
use the basic mechanism of the Haber–Bosch process which involve the conversion
of molecular N into NH4 forms (Vojvodic et al. 2014). In the time of utmost need,
inorganic N fertilizers act as quick supplementation when applied in agricultural
fields at agronomic rates generally less than 200 kg N ha�1 (Fließbach et al. 2007).
The fate of N in soil upon application as mineral fertilizer is mainly dependent upon
the composition of fertilizer and soil conditions (Minet et al. 2012). Nitrogen
fixation, nitrification, denitrification, leaching and volatilization are major possible
fates of N in soil upon application primarily depending upon fertilizer composition
and indigenous physicochemical properties of soil (Ghaly and Ramakrishnan 2015).

7.2.2 Phosphorus

Phosphorus is frequently available in the environment even it is not in the top
10 elements of hydrosphere or lithosphere. In the lithosphere, it is placed at 11th
position having concentration 90–200 � 103 MMT (Million Metric Tons) P. In the
hydrosphere, it has 13th position with a rough estimation of the P reserves of
80–120 � 103 MMT (Liu and Chen 2008). In the lithosphere, rock reserves of P
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are a major source of extractable P but have very less solubility and poor availability
if applied untreated into the soil. The calcium phosphate apatite (Ca10PO46X2),
where X may indicate F (fluoride), OH (hydroxide) or Cl (chloride), fluorapatite,
hydroxyapatite and chlorapatite contribute 95% for the total P of the lithosphere
(Stumm 1977; Fleet et al. 2011; Korzeniowska et al. 2013). Another source of P in
agroecosystem is an organic form consisting of plant and animal remains. Applica-
tion of P into the soil is often accompanied by its fixation, precipitation, running off
with water and immobilization making its recovery 10–30% (Brady and Weil 1999;
Chien et al. 2011).

7.2.2.1 Natural Sources of Phosphorus
Out on the earth, millions of tons of phosphate reserves are presently being cited at
oceans (93,000 Mt (metric tons) P), Soil (40–50 Mt P), Phytomass (570–625 Mt P)
Zoomass (30–50 Mt P) and Anthropomass (30–50 Mt P) (Smil 2000). Hydrosphere
P reserves are higher than that of the lithosphere, while volcanic and metamorphic
contain short reserves of P element. Lithosphere P reserves although enormous (Soil
40–50 Mt P) are entirely plant unavailable (Smil 1999; Kesler et al. 2015). Since mid
of the nineteenth century, we have been extracting most accessible and wealthy
source of phosphate rock for industrial use and production of fertilizer to meet the
crop requirements. According to an estimate in the top layer of soil (50 cm—

centimetre), average P is only 0.05% (Stevenson and Cole 1999) and yields about
50 gigatons (Gt) P, or unevenly 3.75 tons P ha�1. Organically fixed P (in phytates
and nucleic acids) contribute up to 20–80% (Tomar 2003) of element existing in the
soil and its existence naturally positively correlate with soil organic N.

7.2.2.2 Synthetic Sources of Phosphorus
There is no synthetic way to produce P without using natural mineral reserves.
Conversion of natural reserves into more applicable plant fertilizer is observed in
industrial manipulation of P. The current fertilizer industry initiated P compound
production depends upon Liebig’s law that P solubility in water will increase if
bones were treated with sulphuric acid (Brock et al. 2007). Major synthetically
produced phosphatic fertilizers are Monocalcium phosphate (MCP), Dicalcium
phosphate (DCP), Diammonium phosphate (DAP), Monoammonium phosphate
(MAP), Triple superphosphate (TSP), and Monopotassium phosphate (MPP) (Smil
2000).

Worldwide, out of total phosphate reserves, 95% are present in only 12 countries
out of which America contributes 33% and China + Morocco own 66% of natural
reserves while remaining 27 countries control the rest of it. There is a lot of
discussion going on regarding average richness of already available RP in terms of
their use as phosphatic fertilizer as only 2% or even less is being used in acidic soils
directly as P fertilizer (Van Kauwenbergh 1995). For its conversion to more suitable
fertilizer P, its industrial manipulation and treatments are done in almost every major
P fertilizer producing country.
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7.3 Concerns with Nitrogen and Phosphorus in Agriculture

Improper, unguided and unbalanced utilization of nitrogenous and phosphatic
fertilizers have raised a huge concern regarding their contribution to environmental
pollution. Nitrogen cycle involves the process of N transformation in the environ-
ment as NH4-fixation, NH3-volatilization, NO3-leaching, runoff, denitrification,
microbial mediated mineralization and fixation. Similarly, with phosphatic
fertilizers, major fates are P fixation and runoff with later responsible for the process
of eutrophication. Nitrogen leaching in well-irrigated lands has shown deep concerns
regarding NO3 pollution in surface and groundwater (Oenema et al. 2005), and
nitrous oxide contributes to global warming (Reay et al. 2012) having the 300 times
more potent than carbon dioxide (Robertson and Groffman 2009).

Phosphorus is quite different from that of the N. The long-term addition of P in
agricultural lands and its loss to water bodies by runoff hasten the eutrophication and
reduce crop uptake (Sharpley et al. 1995; Yang et al. 2008). Therefore, the manage-
ment of P loss to water bodies must be a priority. Uptake of P by plants from
chemical fertilizers and soil may be influenced by many environmental and soil
factors i.e., the temperature of the soil and environment, soil compaction, moisture,
aeration, pH, percentage texture, P status and other nutrients status in the soil
(Munson and Murphy 1986; Hasan et al. 2016).

7.3.1 Nitrogen Gains and Losses in the Environment

Nitrogen is a complex and important element likewise carbon and oxygen in the
plant and soil system. Use of N fertilizer has increased from the last 50 years and has
contributed significantly to the up-gradation of the cereal production up to 40% per
capita (Mosier et al. 2001). According to an estimate, synthetic N supplies around
40% of the dietary protein of the world and dependency on N fertilizer through the
Haber–Bosch process will rise in the coming decades (Smil 2004). Some fates of N
in the soil–plant system when it undergoes different processes are nitrous oxide
formation, nitrification, leaching of NO3 to groundwater, denitrification and volatili-
zation in the form of NH3 (Fig. 7.1). Nitrogen is broadly known as responsible for
hypoxia (low oxygen) that changing the bio network and production of the bottom
waters in a large area. In the environment, N can be removed from soil through the
water and wind erosion. By water and wind erosion the top fertile layer of the soil
removes and causes a reduction in soil fertility (Fageria 2002).

Leaching of inorganic N pool as NO3 with water is a common problem in sandy
type of soil and varies with climatic conditions; leaching losses in arid, semi-arid
areas are negligible (Wang et al. 2014). Under extreme deficient conditions, N
deficiency in agriculture soils can lead to stunted growth and decrease the produc-
tivity of crop plants (Zhu et al. 2019). Nitrogen fertilizer application method is
another contributor in managing N losses in agricultural soils.

Methods like broadcasting, leave more N prone to atmospheric factors increasing
chances of losses as volatilization (contributing up to 20%losses in alkaline soils),
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fixation and leaching (Fageria 2002). Soil physicochemical properties, fertilizer
application methods and improper irrigation scheduling can contribute to N losses
ultimately affecting plant physiology and biochemical machinery (Xu et al. 2012: Li
et al. 2013).

7.3.1.1 Leaching
Aiming high solubility and mobility of NO3

� in alkaline soil, N movement is more
via mass flow thus increasing chances of losses via leaching (Jury and Nielsen 1989)
degree of which is controlled by irrigation water source and availability (Meisinger
and Delgado 2002). Nitrate leaching losses are more in coarse-textured soils receiv-
ing enough water necessary for net inflow/ percolation of water into the soil profile.
Leaching losses of N are less in semi-arid to arid areas where net water movement is
upward in the soil profile (Wang et al. 2014).

7.3.1.2 Volatilization
One of the many causes of low NUE in agroecosystems is the N volatilization in the
NH3 form. Nitrogenous fertilizers of NH3-based composition are more prone to NH3

volatilization if applied irregularly (Dominghetti et al. 2016; Pan et al. 2016). The
leading concern for decades in agriculture is to improve the NUE of applied
nitrogenous fertilizers (Chien et al. 2009). Vindicating NH3 volatilization is imme-
diately needed, a quantitative synthesis is lacking to assess the usefulness of mitiga-
tion strategies for NH3 volatilization from synthetic fertilizers applied in agricultural
systems (Pan et al. 2016). Smart formulation of N fertilizers having a balanced
composition of NO3 and NH3 can be a suitable option if opted along with modern
modifications to ensure long persistence of N in soil (Fan and Li 2010; Trenkel
2010). Though N volatilization is a significant cause of N loss, very little countries
are working to solve this problem (Behera et al. 2013). Improper and unchecked
addition of nitrogenous sources is a major cause for increased volatilization losses
(Black et al. 1985; Turner et al. 2012; Bosch-Serra et al. 2014) which we can make
47–90% lower by adopting smart agriculture practices (Holcomb et al. 2011; Zaman
et al. 2013; He et al. 2014).

7.3.2 Phosphorus Gains and Losses in the Environment

Various natural sources of P are present in the biosphere contributing to fulfilling P
requirement for plants. In lithosphere, the soil is the most abundant and most related
source of plant available P but it is subjected to various losses (Liu and Chen 2008;
Liu et al. 2017) (Fig. 7.2). Some constraints regarding P availability in the soil are
discussed below.

7.3.2.1 Fixation
Phosphorus fixation in agricultural soils is a well-known and established fact with
various factors responsible for its (Kanwar and Grewal 1990) decreasing availability
of P from exogenously applied fertilizers (Chien et al. 2012). Both chemical and

7 Nitrogen and Phosphorus Use Efficiency in Agroecosystems 223



Fi
g
.7

.2
P
ho

sp
ho

ru
s
ga
in
s
an
d
lo
ss
es

in
th
e
so
il–

pl
an
ts
ys
te
m

224 W. Umar et al.



biological (into the microbial body) fixation of P in the soil are present but chemical
fixation is a dominant phenomenon. In acidic soils, P gets fixed with iron (Fe) and
aluminium (Al) ions (Gerke 1992), while in alkaline calcareous soils, calcium (Ca) is
the dominant cation for phosphatic precipitation (Kanwar and Grewal 1990). The
labile pool of P experiences two kinds of the phenomenon on exchange sites;
adsorption and desorption responsible for homeostasis of ionic phosphate in soil
solution.

7.3.2.2 Adsorption-Desorption
Regarding P availability in soil, adsorption–desorption phenomenon is also quite
significant in which phosphate ions are detained on exchange sites of soil (Khan
et al. 2010) and/or on Al & Fe minerals (Wang et al. 2013a, b). Soil solution and
exchange sites adsorption-desorption of P is of great concern regarding the mainte-
nance of P balance in the rhizosphere (Hongshao and Stanforth 2001; Kim et al.
2002).

7.4 Enhancing Nitrogen Use Efficiency for Sustainable
Agriculture

In the past few decades malpractices regarding agrochemicals have given an
immense push to soil degradation (Galloway et al. 2004) and excessive N flush
from agroecosystem can lead it directly to the human food chain (Robertson and
Groffman 2009). Loss of N fertilizer depends on agroecosystems, characteristics of
soil, application method and chemical form of fertilizer (Chen et al. 2008). The only
way of decreasing nitrogenous fertilizer losses is to increase its use efficiency via
adopting several modern and precision agriculture based techniques involving the
use of more persistent forms and modifications in application methods.

7.4.1 Innovations in Nitrogen Sources

Nitrogenous fertilizers are highly water-soluble, and this property of N fertilizers
leads to the loss of N from agricultural systems. Different physical and chemical
methods can be used to reduce the solubility of N fertilizers, i.e. coating or encapsu-
lation and the conversion of N to polymeric less soluble forms (Tables 7.1 and 7.2).

7.4.1.1 Condensation Polymers
Condensation polymers include isobutylidene di-urea (IBDU), urea-formaldehyde
(UF) and crotonylidene di-urea (CDU). Urea-formaldehyde is one of the oldest slow-
release N fertilizers. Urea-formaldehyde fertilizer can be produced in different forms
like solid granules, suspensions, powders and liquids. Many agronomic studies
provided evidence of the slow release of N from UF and UF-modified fertilizers.

Nardi et al. (2018) conducted a study to evaluate the release of N from slow-
release fertilizers (SRF). Three SRF were added into the soil including CDU, UF and

7 Nitrogen and Phosphorus Use Efficiency in Agroecosystems 225



Table 7.1 Effect of different nitrogen and phosphorus fertilizers and application methods on crop
yields

Fertilizer
type Formulation Application method

Increase in
yield Reference

Nitrogen Urea 4 split application 57.8% Belete
et al.
(2018a, b)

Urea super granules
(USG)

Deep placement 1.66 t ha�1 Xiang et al.
(2013)

Urea Urea deep placement
(UDP)

10% Yao et al.
(2018)

Urea-ammonium
nitrate

Point-injected 0.66 t ha�1 Stevens
et al.
(2007)

Urea RZF 11.5% Jiang et al.
(2018)

Calcium nitrate [Ca
(NO3)2]

Drip fertigated 1 t ha�1 Danso
et al.
(2015)

Urea RZF 4.3–44.9% Liu et al.
(2016)

Single
superphosphate
(SSP)

Broadcast 0.55 t ha�1 Arif et al.
(2010)

Polymer-coated
urea (PCU)
broadcast

Subsurface band 39 kg ha�1 Barker and
Sawyer
(2005)

Urea Soil application 2.14 t ha�1 Alam et al.
(2010)

Urea LN�1 topdressing
(distances 15 cm)

3.87 t ha�1 Yong et al.
(2018)

Urea Fertilization banding
placement in one side of
seedling (FBPOSS)

46.15% Bakhtiari
(2014)

Phosphorus P2O5 Intra-row drilling 2.03 % Ali et al.
(2004)

Liquid (nitrophos) Fertigation 28.95% Alam et al.
(2003)

Polymer-coated
MAP (POL)

– 3.48 t ha�1 de
Figueiredo
et al.
(2012)

Glycerin +
polymer-coated
DAP

Three equal splits 3.04 t ha�1 Imran et al.
(2018)

Granules (DAP) Side dressing 49.43% Rahim
et al.
(2007)

(continued)
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IBDU and treatment includes simple urea. Results indicated that N release from
different fertilizers was as: UF (46–73%), urea (89–100%), CDU (44–56%) and
IBDU (59–94%), respectively. Xiang et al. (2018) formulated an SRF (GSRFEx)
using ammonium polyphosphate (APP), UF and amorphous silica gel (ASG) and
experimented on rape crop (Brassica spp.). Results showed that GSRFEx is a better
source to improve NUE dramatically. The efficient slow release of N was also
reported by a fertilizer developed using UF nanocomposites by Yamamoto
et al. (2016).

7.4.1.2 Coated Fertilizers
Coated fertilizers are made via physical or chemical coating of nitrogenous fertilizer
with any desired material. In coated fertilizers, nutrient release depends on the
properties of coating material, coating thickness and integrity of coating
(Varadachari and Goertz 2010). Different materials like sulphur, polymers, neem
oil, resins and gels, clays have been used for the coating of urea fertilizer (Tables 7.1
and 7.2).

Tong et al. (2018) experimented the evaluation of controlled release of urea on the
dynamics of NO3 and NH4. Polyurethane coated urea and sulphur coated urea (SCU)
were used. Results indicated that SCU reduced the concentration of NO3 and NH4,
while the PCU was even more efficient than SCU. Increased nitrogen recovery
efficiency (NRE) up to 60% was reported by SCU (Shivay et al. 2016). Halvorson
et al. (2014) reported that nitrous oxide emission is reduced up to 42% by urea coated
with polymer compared to conventional urea fertilizer. Wang et al. (2015) developed
a novel polymer from recycled plastics and coated urea with that polymer at the rate
of 6, 8 and 12%. Results indicated that coated urea fertilizer better met the plant N
demands, reduce the volatilization and increased 15N recovery. Bortoletto-Santos
et al. (2020) have reported most recent accepted work in which they used coated urea
using polyurethane derived from castor (Ricinus communis) and soybean (Glycine
max) oil and results showed that release of urea could be controlled by varying

Table 7.1 (continued)

Fertilizer
type Formulation Application method

Increase in
yield Reference

Controlled-release
phosphorus
pentoxide (P2O5)

Applied basal dosage 12.37% Tian et al.
(2016)

Granules (SSP) Fertigation 11% Iqbal et al.
(2013)

Orthophosphoric
acid (OP)

Fertigation 28% Badr et al.
(2015)

Water-soluble
monoammonium
phosphate

Fertigation four times 14.17% Li et al.
(2019)

Triple
superphosphate

Foliar application 0.69 t ha�1 Mosali
(2004)
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Table 7.2 Effect of different nitrogenous and phosphatic fertilizers on yield of different crops (%
difference compared to control)

Crop Variety
Rate of
fertilizer

Type of
fertilizer

% grain
yield
increase
(%) Reference

Wheat Menze 360 kg ha�1 Urea 302.55 Belete et al.
(2018a, b)

Ujala-2016 145 kg N ha�1 Urea 196.30 Ullah et al.
(2018)

Winter wheat 150 kg N ha�1 Coated urea 32.72 Fan et al.
(2004)

Yangmai 20 225 kg N ha�1 Urea 3.76 Zhang et al.
(2017)

Naseer 2000 90 kg ha�1 P2O5 21.9 Khan et al.
(2007)

Inqulab-91 81 kg ha�1 P2O5 149.36 Rahim et al.
(2010)

Yangmai 9 108 kg ha�1 P2O5 31.8 Zhu et al.
(2012)

Atta Habib-2010 144 mM foliar KH2PO4 35 Rafiullah
and
Muhammad
(2017)

Rice Proagro 6207 100 kg ha�1 Super Net 36.8 Chaturvedi
(2005)

BRRI Dhan-29 50% app. of N
Rec. Lvl.

Biofertilizer
(BRRh-5)

100 Khan et al.
(2017)

Sakha 108 220 kg N ha�1 Urea 102.52 Ghoneim
et al. (2018)

Not given 60 kg P ha�1 Minjingu mazao
(MM)

494.9
site 1
595.5
site 2

Massawe
and Mrema
(2017)

IRRI-6 90 kg ha�1 P2O5 75 Khan et al.
(2007)

BRRI Dhan-29 50%
application of
the
recommended
level of P

Biofertilizer
(BRRh-5)

100 Khan et al.
(2017)

Weiyu 64, Hybrid
78130, Dingyu,
Dofu, Hybrid
428, Eyou
938, Shuanyou
2292

104 kg N,
12 kg P,
113 kg K+
3750 kg cattle
manure

NPK fertilizer +
cattle manure
(NPKM)

97 Lan et al.
(2012)

Maize Rampur
Composite

200 kg N ha�1 Urea 154.74 Shrestha
(2015)

(continued)
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coating thickness and they also declare the better strategy to coat urea with the
eco-friendly polymer. A general mechanism of the release of nutrients from a coated
fertilizer is presented in Fig. 7.3.

Jadon et al. (2018) reported that NH3 volatilization was reduced up to 27.5, and
41.1% by neem coated urea and pine oleoresin coated urea, respectively, and the
leaching of NO3-N is reduced up to 18.3, 28, 25.7 and 35.1% by neem coated, resin
coated, nano-rock phosphate coated and ZnO nanoparticle (zinc oxide) coated urea,
respectively.

Table 7.2 (continued)

Crop Variety
Rate of
fertilizer

Type of
fertilizer

% grain
yield
increase
(%) Reference

ZM 621 180 kg N ha�1 Urea 44.93 Pokhrel
et al. 2009)

DEKALB C60-19 168 kg N ha–1 Anhydrous
ammonia +
polymer-coated
urea (PCU)

23 Noellsch
et al. (2009)

Elite 20T06 150 kg N ha�1 Polymer-coated
urea (PCU)

108 Gagnon
et al. (2012)

Single Hybrid 10 476 kg ha–1

and 20 t ha–1
Superphosphate
+ FYM

44.6 El-Eyuoon
and Amin
(2018)

Not given Desired
100 kg P ha–1

50:50 PM or
FYM+DAP

45.8 Ali et al.
(2019)

BH 660 18.3 kg P from
Tithonia +
2 kg p from
TSP ha�1

10% P (TSP)
+ 90% P
(Tithonia)

79 Endris
(2019)

Fig. 7.3 General nutrient release mechanism of coated fertilizers
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7.4.2 Stabilized Nitrogen Products

7.4.2.1 Nitrification Inhibitors
Nitrification inhibitors have been used in agriculture to lower down the losses of N in
gaseous form by slowing down the process of nitrification and to enhance the yield
of the crops (Randall and Vetch 2003; Frame 2017; Ren et al. 2017). The slowdown
of the nitrification process force N retention in the soil in the form of less mobile NH4

form which ultimately reduced the leaching losses of NO3-N (Rybárová et al. 2018).
Rybárová et al. (2018) conducted a study to evaluate the effectiveness of nitrifi-

cation inhibitors in soil. In this study, a nitrogen-sulphur fertilizer ENSIN which also
contains dicyandiamide and 1,2,4-triazole as nitrification inhibitors have been
added. Soil analysis showed that application of ENSIN reduced the NO3-N in soil
up to 32% when added in a single dose, while the split application of ENSIN reduced
NO3-N up to 62%. Application of Dicyandiamide as a nitrification inhibitor signifi-
cantly reduced nitrous oxide emissions up to 20% (Misselbrook et al. 2014). Lam
et al. (2017) claimed that nitrification inhibitors reduced the direct nitrous oxide
emissions up to 8–57%. Application of DCD at 5, 7 and 10 kg ha�1 reduced nitrous
oxide emissions of 25, 47 and 47%, respectively (Zaman and Blennerhassett 2010).
Very recently, Ashraf et al. (2019) reported decreased N losses via increased N
recovery, improved growth and yield of maize due to applied organic materials
(neem oil (Azadirachta indica), moringa leaf extract (Moringa oleifera), pomegran-
ate extract (Punica granatum)) coated on urea as nitrification inhibitors.

7.4.2.2 Urease Inhibitors
One of the strategies to enhance NUE and to reduce the pollutants generated by urea
hydrolysis is the use of urease inhibitors (Modolo et al. 2015; Li et al. 2017; Mira
et al. 2017). Urease is an enzyme that converts urea into NH3 and having wide
distribution, it can be found in soil, plants and microbes, etc. (Follmer 2008).

Li et al. (2015) proved that application of N (propyl) thiophosphoric triamide
(NPPT) along with urea reduced the NH3 volatilization up to 50% compared to
control treatment. According to (Ni et al. 2014) recently studied phosphoric triamide
(2-NPT) and N-(2-nitrophenyl) as a urease inhibitor to reduce the NH3 volatilization
up to 26–83%. Cantarella et al. (2018) conducted a study using N-(n-butyl)
thiophosphoric triamide (NBPT) as a urease inhibitor. Results showed that applica-
tion of NBPT with urea reduced NH3 volatilization up to 53%.

7.4.3 Innovations in Nitrogen Application Methods

Method of application of N fertilizer plays an important role in NUE (Zhu and Chen
2002; Wang et al. 2016). Inappropriate application method also leads to environ-
mental problems like atmosphere contamination, degradation of soil quality and
water pollution (Davidson 2009; Reay et al. 2012) (Table 7.1). Thus, efficient
nutrient management techniques are needed to increase NUE, crop yield and to
reduce environmental pollution (Guo et al. 2008; Chen et al. 2014). Efficient nutrient

230 W. Umar et al.



management techniques largely depend on application method, type of fertilizer and
the rate of fertilizer addition (Cui et al. 2010; Nash et al. 2013; Zheng et al. 2017).
Many researchers reported that splitting of N fertilizer dose enhances the NUE
significantly and reduces the losses of N which ultimately increased the crop yield
(Chen et al. 2011; Kettering et al. 2013). Wang et al. (2016) stated that recovery
efficiency of N for three split and two split fertilizer application is much higher than
the one-time application of whole fertilizer dose as basal dressing, this practice also
reduces N losses remarkably. Recently, Yao et al. (2018) stated that N recovery
efficiency has been improved up to 55%, and 91% decrease in NH4 volatilization
was recorded by deep placement at one point compared to surface split broadcasting.
According to the studies conducted previously, agronomic fertilizer efficiency and
crop yield by the deep placement of fertilizers are much higher compared to the
conventional split application by farmers (Mohanty et al. 1998; Jiang et al. 2018).
Wu et al. (2017) established a field and pot studies to access the effectiveness of
nitrogen deep placement (NDP) over nitrogen broadcast application (NBP). Results
indicated that NRE and grain yield of the crop were increased significantly by NDP
compared to NBP. Pot experiment results showed that NDP could maintain higher N
supply in 5–20 cm soil layer compared to NBP which enhances absorption of N in
plants and ultimately leads to higher NRE.

It is reported that N fertilizer application in the root zone (root zone fertilization)
proved a good application method to reduce N losses in rice (Oryza sativa) fields and
wheat–soil system (Chen et al. 2016; Liu et al. 2016). Root zone fertilization (RZF)
in summer maize 12 cm deep and 5 cm away from seed proved to be a good RZF
method (Jiang et al. 2017). Jiang et al. (2018) experimented to evaluate the effec-
tiveness of one-time RZF and the results showed that RZF enhanced the yield up to
7% and increased the 15N recovery remarkably up to 28.7%. Reduction in N losses
up to 30.2% was also recorded. According to Zenawi andMizan (2019) placement of
fertilizer 5–10 cm away and 3–5 cm deeper in soil from seed could be a better
strategy.

Shrestha et al. (2018) explained that addition of N source as a basal dose and split
application at critical growth stages like at knee height and flowering stage are
necessary to enhance crop yield. Bakhtiari (2014) reported that band placement on
one side of the seed of N fertilizer 5 cm deep and 10 cm away from seed was the best
method for N application. Yong et al. (2018) also stated that NUE, N uptake and
agronomic use efficiency of N significantly increased up to 12.4, 72.5 and 51.6%,
respectively, by top dressing compared to the conventional application method.

7.4.4 Use of Amendments for Better Nitrogen Conservation

Organic amendments application to the soil to maintain fertility status and soil health
is the soil management strategies (Killham 2011), including N which is one of the
most important nutrients in low input managed farming systems. Manure, litter from
animal farms, composts and green manure are considered as important soil
amendments and once they mineralize than these are considered as major nutrient

7 Nitrogen and Phosphorus Use Efficiency in Agroecosystems 231



sources (Nin et al. 2016; Niamat et al. 2019). Soil organic matter and N are important
components of soil fertility. Due to more effect on soil biological, chemical and
physical properties green manure considered as a more important and effective
amendment in soil fertility management by researchers, agronomists and
governments globally. Nowadays we can find several opportunities to grow green
manure crops on your farm like intercropping, crop rotation and cover crops (Power
et al. 1986; Nin et al. 2016). Intercropping of green manures enhances NUE,
increases weed control, reduce the N losses and ultimately increases the yield
(Jensen et al. 2015). The additional benefit of green manure crops is that they can
fix atmospheric N, which stores in organic N form and available when the residues
decomposed completely (Hardy 1993). Green manures can produce biomass up to
5–9 tons ha�1 year�1 which includes about 40% dry matter as carbon and about
2–4% as N (Nin et al. 2016). Different green manure crops have different N
productivity like 80 kg for berseem clover to 190 kg sub clover ha�1 (Nin et al.
2016). Fowler et al. (2004) conducted a study to evaluate the effect of three green
manure crops including oat (Avena sativa), lupin (Lupinus sp.) and oat-lupin mix on
NO3 leaching in winter and N uptake and yield of the following crop. Results
indicated that winter NO3 leaching was reduced significantly, and the N uptake
and dry matter production of upcoming ryegrass crops was increased significantly.
Islam et al. (2015) conducted research using different green manure crops and
various N chemical fertilizers in rice. Results showed that crop growth parameters
and N uptake and recovery have been increased significantly by green manure
incorporated crops in rice.

Returning of crop straw after harvesting the crop to the soil is an economical,
sustainable and promising approach to improve soil fertility and to sequester the
carbon (Dikgwatlhe et al. 2014). Double rotation of summer maize and winter wheat
is a common and intensive cropping system used in china mostly. In this system, the
main focus is on the chemical fertilizers so in this condition, returning of crop
stubbles to the soil is important to maintain soil fertility (Liu et al. 2014; Meena
et al. 2020). Residues of the crop change the primary macro nutrient (NPK) turnover
(Luxhoi et al. 2007; Damon et al. 2014). Maize crop residues act as an important
component of soil N pool because they contain about 80 kg N ha�1 (Burgess et al.
2002), and one of the major sources of N for the upcoming crop on the farm (Álvarez
et al. 2008; Akkal-corfini et al. 2010). Availability of N from crop residues in soil
crop system is entirely different than chemical N fertilizers because in this case
availability of N depends on the decomposition of residues (Douxchamps et al.
2011). Hu et al. (2015) applied 15N labelled crop residues to soil and the results
indicated that 8.4% of the N from residues was recovered in the first growing season
and the major part of the remaining N (61.9–91.9%) was recovered in the upcoming
seasons. The N concentration in the soil was increased up to 73.8% by sequential
application of crop residues.

Animal farm manure, PM and compost products are also consisting of higher
amounts of N and other nutrients as well which can reduce the demand of chemical
fertilizers to maintain soil fertility (Darzi 2012). Apart from supplying nutrients like
N organic manures also improve soil biological, chemical and physical properties
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(Najm et al. 2012). Pitta et al. (2012) applied a different amount of PM to the soil.
Results demonstrated that during the first 30 days the dry matter loss was highest and
40% of the N was released during the first 60 days. After completion of 1-year
residual N of PM in soil was 27%. Yeshiwas et al. (2018) conducted a field
experiment to evaluate the effectiveness of integrated use of FYM and chemical
fertilizers. Amount of FYM was 0, 15 and 30 t ha�1 and levels of N were 0, 75 and
150 kg ha�1. Results indicated that 30 t ha�1 FYM + 75 kg ha�1 N significantly
increased the lettuce (Lactuca sativa) yield. Many scientists evaluated the effect of
FYM alone and along with chemical N fertilizers and significant results of soil
fertility enhancement and crop yield improvement were recorded (Shakoor et al.
2015). Addition of pig slurry composting to soil at 4, 8 and 12 Mg (Mega-gram)
ha�1 significantly increased the growth and yield parameters of millet crop
(Pennisetum glaucum) (da Silva Mazareli et al. 2016). Horrocks et al. (2016)
added municipal compost which generally consists of 2–2.5% of N in the soil.
Results demonstrated that about 13–23% of N released from compost was used by
crops in 2–3 years. Niamat et al. (2019), in another study, reported increased
contents and uptake of N and P in maize with the application of Ca-fortified animal
manure.

7.4.5 Role of Symbiosis in Nitrogen Nutrition

Nitrogen fertilizers applied to the crops to increase food production so, in this
situation, it is needed to adopt more sustainable approaches like sustainable intensi-
fication and climate-smart agriculture (Jangir et al. 2016; Meena et al. 2016). The
process in which microorganisms fix atmospheric N2 to plant-available forms using
nitrogenase enzyme is called BNF (Unkovich et al. 2010; Varley et al. 2015). Before
the industrial revolution, it was the main source of N to crops (Vitousek et al. 1621).
Researchers agreed that BNF is the most sustainable approach and it is known that
NUE is increased by increasing biologically fixed N in the soil while the application
of chemical N fertilizers reduced NUE linearly (Lassaletta et al. 2014). Fixation of N
which is carried out by association between seed and rhizobacteria and leguminous
crops is considered as one of the major sources for the reduction of N in the
agricultural system (Liu et al. 2011; Peix et al. 2015). According to the stats
presented by Food and Agriculture Organisation (FAO) annual N fixation by oilseed
crops were 18.5 Tg (Tera-grams) N and 2.95 Tg N by pulses (Herridge et al. 2008;
Islam and Adjesiwor 2017). Contribution of biologically fixed N is 25 Tg N which is
dominated by 100 Tg N by chemical fertilizers (Lassaletta et al. 2014). It is reported
that nearly 80% of BNF resulted from plant–microbe (leguminous plants + Rhizobia
sp.) symbiotic relationship (Vance 1998; Mabrouk et al. 2018). Symbiotic relation of
plants with stress-tolerant rhizobia species can increase the N fixation by increasing
nodulation under stressful environment (Zou et al. 1995; Mabrouk et al. 2018).
Verzeaux et al. (2017) reported that conservation or no-till system increases the
AMF association with plants compared to the conventional tillage system.
According to studies it is reported that AMF plays an important role in the uptake
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of nutrients like N and P. Bücking and Kafle (2015) reported that N can be
transported to the host plant by AMF. Nowadays the use of biofertilizers is increas-
ing day by day. Biofertilizers is a material which consists of living microbes and can
be applied to soil, seeds and plants and after that, those living microbes start growing
in the root zone and inside of the plant body and improve plant health by increasing
the nutrient supply and by suppressing diseases (Bardi andMalusà 2012; Malusá and
Vassilev 2014; Ali et al. 2017). Biofertilizers play a major part in increasing fertility
of the soil by fixing atmospheric N and by the production of plant growth-promoting
materials (Mazid and Khan 2015). Plant growth-promoting bacteria include the
microbial species which are free-living, endophytes (which colonize some plant
tissues) and the species which make symbiotic associations with plants and
cyanobacteria (Farrar et al. 2014).

7.5 Enhancing Phosphorus Use Efficiency for Sustainable
Agriculture

7.5.1 Innovations in Phosphorus Sources

Fertilizer type is one of the main factors which influences the P availability and
adsorption (Tables 7.1 and 7.2). Fertilizers which are more soluble release P in soil
solution more rapidly compared to slow-released or less soluble fertilizers. Contact
time of P to soil colloids directly influence the intensity of P adsorption to soil
(Laboski and Lamb 2003; Stauffer et al. 2019). Currently, polymer-coated P
fertilizers have been used to increase the period in which P is available to plants
(Trenkel 2010). Polymer coatings on P fertilizers significantly slow down the release
of P and to reduce the adsorption of P by minimizing the direct contact of fertilizers
to the soil colloids (Stauffer et al. 2019). de Figueiredo et al. (2012) carried out an
experiment to evaluate the effect of polymer-coated and uncoated P fertilizers on
maize production and the results showed that polymer-coated fertilizers increased
the maize production up to 3.48 t ha�1 compared to uncoated fertilizer. Imran et al.
(2018) carried out a study to evaluate the effect of polymer-coated DAP, conven-
tional DAP, glycerine coated DAP. Results indicated that polymer-coated DAP
significantly increased the growth parameters and uptake of P in wheat. Similarly,
Rosling et al. (2016) evaluated the performance of slow-release fertilizers by using
commercial and polymer-coated MAP and DAP. Results of incubation study
showed that uncoated fertilizers released the total P within 10 days of the application,
while the coated P fertilizers released (MAP—77% and DAP—57%) of P in the first
45 days after application.

Another slow-release P fertilizer preparation technique is to mix the P fertilizer
with organic manure (Table 7.1) or coating with an organic acid (de Castro et al.
2015). In this technique adsorption of P to soil colloids is reduced and the organic
acids also protect the P in soil solution chemically by binding P around organic acid
granules (Stauffer et al. 2019). It is also reported that organic acids bind with Al and
Fe thus reducing P fixation to Al and Fe (Guppy et al. 2005). Stauffer et al. (2019)
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conducted a study to evaluate the release of P from commercial, polymer-coated and
organophosphate coated MAP. The commercial MAP, POL, filter cake coated MAP
(FC) and swine compost coated MAP (SC) were used. Results showed that the
release of P within 14 days of application compared to control was 54.9–54.2% SC,
83.2–84.4% FC, and 88.5–95.4% POL. So, it was estimated that coating of P
fertilizers with organic materials can be a good technique to maintain the release
of P with time. Teixeira et al. (2016) conducted a study using different organic acids
coated MAP. They used Commercial MAP (MAP1), MAP2 ¼ natural organic acid-
coated, MAP3 ¼ synthetic organic acid-coated, MAP4 ¼ Peat humic organic acid-
coated. Results indicated that maximum slow release was recorded with MAP4. It
was also noted that the agronomic efficiency of P is 11–13% higher in organic acid-
coated fertilizers compared to commercial MAP.

Dolomite phosphate rock (DPR) containing P, Ca and magnesium (Mg) is also
considered an important alternative P fertilizer in acidic sandy soils. An experiment
is established by Yang et al. (2012) to evaluate the effectiveness of DPR in acidic
sandy soils of Florida. They used DPR and other water-soluble fertilizers (WSF) in
ryegrass (Lolium). It was evaluated that DPR proved to be superior compared to
other WSF. DPR increased the growth and P uptake in ryegrass. It was also recorded
that DPR can increase the pH of acidic soils.

It was reported that the use of P with urea can enhance P-fertilizer use efficiency
(Giroto et al. 2017). Agreeing to Anstoetz et al. (2015), P fixation can be reduced by
mixing phosphate with urea in a single matrix. Giroto et al. (2017) carried out a study
to evaluate the availability of N and P by nanocomposite slow-release fertilizers. In
this experiment, nanocomposites were produced using urea and then mixing of
hydroxyapatite particles was done. Results showed that the interaction of hydroxy-
apatite with urea matrix released P slowly and reduced the adsorption on soil
colloids.

Another natural clay mineral attapulgite is also known as palygorskite also used
to coat micronutrient fertilizers. Attapulgite itself also used as a major source of
micronutrient and other beneficial elements as it consists of Ca, Mg, Fe, K, manga-
nese (Mn), Al and silicon (Si) (Xie et al. 2011a, b). Attapulgite shows some good
properties like higher surface area, higher water retention capacity, high adsorption
capacity and slow release of ions. Yang et al. (2010) reported that use of attapulgite
along with other compound fertilizers increased the crop yields. According to Guan
et al. (2014), attapulgite coated fertilizers showed slow-release behaviour and
increased the crop yield by 15.1–18.4% compared to control treatment.

7.5.1.1 Application Methods of Phosphorus
There are two main categories of P application methods broadcasting and band
placement (Noonari et al. 2016). Broadcast method is easy, economical and time-
saving but only valuable when after broadcasting you have to cultivate the soil using
cultivators of disk harrows. Broadcast method is a less efficient method of P
application because in this method contact area of P fertilizer to soil colloids is
greater which enhances the fixation of P to Al, Fe and Ca and reduce the availability
to plants (Vance et al. 2003; Syers et al. 2008; McLaughlin et al. 2011). Phosphorus
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losses and environmental problems related to the placement of P fertilizers in the soil
like runoff of P linked with the eutrophication of water bodies (Chien et al. 2009).
But some scientists also reported that broadcast application of P to some crops is a
better strategy rather than band placement. Ma et al. (2009) explained that as com-
pared to broadcast, deep placement of P source reduce the yield of the crop and
causes P deficiency at the seedling stage. Similarly, Hu (2016) stated that horizontal
placement of P 12 cm away from rice seedlings cause a reduction in crop yield
compared to the broadcasting of P fertilizer. Lu et al. (2018) evaluated the effective-
ness of broadcast and band placement of P fertilizer. Results showed that band
placement increased the yield of wheat as compared to broadcast application but the
placing of P fertilizer 12 cm apart from seed reduce the P uptake and yield compared
to a broadcast application.

Noonari et al. (2016) experimented to evaluate the response of two different P
placement methods—drilling method and broadcast method. They concluded that
drilling of P was a better method for increasing the uptake of P and the yield in
comparison to conventional broadcast method. Ali et al. (2012) experimented by
placing P fertilizer in different ways in wheat crop like broadcast (M1), side dressing
(M2), broadcast at the time of sowing + before 1st irrigation (M3) and broadcast at
1st irrigation (M4). Results showed that side dressing of P at the time of sowing
increased the fertile tillers, growth and grain yield as compared to other application
methods. Duarte et al. (2019) concluded that localized application of P was a better
strategy to apply P compared to a broadcast application. Tariq et al. (2012) also
determined that the side dressing of P fertilizer is a better application method for
increasing growth, yield and P uptake of plants.

Application of P using fertigation technique can also be a good strategy to
increase crop growth and production compared to conventional application methods.
Badr et al. (2015) led an experiment to evaluate the effectiveness of fertigation
technique on eggplant (Solanum melongena). They applied P as a pre-plant applica-
tion of superphosphate and fertigation of orthophosphoric acid. Results displayed
that fertigation of P increased the growth of plants, increased the number of fruits
and ultimately increased the overall yield of eggplants.

7.5.1.2 Use of Amendments for Better Phosphorus Conservation
Rock phosphate (RP) is the raw material used to prepare synthetic P fertilizers. Rock
phosphate is a non-renewable material and it is assumed that existing reserves of RP
can be depleted in 50–100 years (Cordell et al. 2009). Mainly in the agriculture
sector, P application is based on mineral P fertilizers. We need to explore new
fertilization strategies to maintain soil fertility and plant nutrition requirements and
to produce enough food to fulfil the requirements of the growing population (Faucon
et al. 2015). One of the solutions can be the recycling of P from organic wastes/
products like biochar, sewage sludge, PM and crop residues (Ott and Rechberger
2012; Lwin et al. 2017). Biochar is produced by the pyrolysis of biomass material
under low or no environmental oxygen (Lehmann and Joseph 2015; Placido et al.
2016). The application of biochar is reported to lower the precipitation of P with Fe
and; therefore, enhanced the P availability (Cui et al. 2011). In this regard, the
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application of biochar at 1.0 t ha�1 along with mineral fertilizers gave better
performance compared to mineral fertilizers alone, as concluded by Glaser et al.
(2015). Recently Santos et al. (2019) used granulated biochar with TSP specified that
dry matter production and P uptake was increased in maize. They also noticed the
increased soil available P with this combination. Likewise, the application of
compost and biochar made from pineapple waste increased the total P, available P,
and their organic and inorganic fractions in the soil (Ch’ng et al. 2014). Kizito et al.
(2019) added digestate enriched biochar to soil and reported that total P was
increased up to 450% by corn biochar and 170% by wood biochar.

Organic wastes and sewage sludge include various forms of P including organic
and inorganic fractions depending on the processes of treatments (Frossard et al.
1996). Mostly the dominant organic fractions are phytate and hexakisphosphate
(Toor et al. 2006; Darch et al. 2014), while the Fe-bound, Al-bound and Ca-bound
phosphates are coming under inorganic P fractions in sewage sludge (Xie et al.
2011a, b). It is needed to convert these unavailable P forms to plant-available forms.
It is reported that application of organic wastes along with carbon (Mäder et al. 2002;
Criquet et al. 2007) and plants itself releasing molecular signals (Schilling et al.
1998) can enhance microbial population, which ultimately increase the P acquisi-
tion. Root occupation with AMF increased the explored soil volume and also
increased the uptake of nutrients like P (Ferrol et al. 2019). Recently, Nobile et al.
(2019) described that barley and wheat uptake as much P from the sewage sludge
applied to soil as they uptake from mineral P fertilizer, while in the case of canola
crop more P was recorded in case of sewage sludge applied to soil compared to
mineral P fertilizer, which was due to the release of more acids from roots to
solubilize unavailable P from sewage sludge.

Poultry manure a growing waste product from poultry industry (FAO 2018) is
known for its high P content (Pagliari and Laboski 2012). Use of mineral P fertilizers
can be significantly reduced by applying it in its raw form or by composting it into
other organic amendments (Redding et al. 2016; Calabi-Floody et al. 2018). Soil P
forms and activities of phosphatase have been changed by the application of PM
(Waldrip et al. 2011). The combined use of RP and PM proved to be a good strategy
to meet plant nutrient requirements (Song et al. 2017). It was testified that chilli and
wheat yield has been increased by the application of the mixture of PM and RP
(Abbasi et al. 2013, 2015). Poblete-Grant et al. (2019) recently stated that the
application of PM + RP mixture to ryegrass significantly increased the growth and
P uptake.

7.6 Using Biofertilizers for Enhanced Nitrogen
and Phosphorus Availability

Sustaining agricultural production without harming the conservation of natural
resources and the quality of the environment are the main considerations of the
modern world. The soil is a dynamic matrix that supports plant production. How-
ever, in the soil environment plant growth is hampered by various biotic and abiotic
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stresses, for instance, plant pathogens, weeds, salinity, drought, heavy metals,
temperature and flooding conditions (Nadeem et al. 2014; Ali et al. 2017; Mustafa
et al. 2019). The excessive utilization of agrochemicals to combat such stresses and
recompenses the crop production losses, on the other hand, threatens environmental
quality. During the last few decades, significant advances have arisen in understand-
ing soil–microbe interactions for sustainable crop production in an economically
sound and ecologically viable option. The plant rhizosphere is home to millions of
bacterial species that exhibit growth-promoting effects to plants via direct and
indirect mechanisms and recognized as PGPR (Kloepper et al. 1986; Zahir et al.
2004; Kumari et al. 2019). Recently PGPR have gained significant attention of the
scientific community for use as biofertilizers for sustainable agricultural production
(Khalid et al. 2009). Numerous experiments hitherto have explained the increased
crop yield and growth via enhanced nutrient use efficiencies using PGPR-based
biofertilizers. Some aspects of PGPR-based biofertilizers in enhancing N and P use
efficiencies are discussed.

7.6.1 Plant Growth-Promoting Rhizobacteria and Biological
Nitrogen Fixation

Nitrogen is considered as a key mineral nutrient for proper development and growth
of the plants and one of the main factors affecting the crop production (Ali et al.
2017). Certain PGPR are equipped with the specialized mechanisms using nitroge-
nase enzyme to reduce N2 to NH4 through a process termed as BNF (Kim and Rees
1994; Jetiyanon 2015). The BNF is a well-studied phenomenon involved approxi-
mately two-thirds of the total N fixed globally through diazotrophic microbial
communities mostly archaea and bacteria (Dixon and Kahn 2004). Nitrogen-fixing
microbes are normally classified as symbiotic (rhizobium-legume/non-legume sym-
biosis), associative symbiotic (endophytes) and free-living (Azotobacter and
Azospirillum spp.) with most of the N fixed through symbiotic N fixing mechanisms
(Bashan and Levanony 1990; Zahran 2001; Bhattacharyya and Jha 2012; Kakraliya
et al. 2018; Kumar et al. 2018; Layek et al. 2018; Rani et al. 2019). In this regard,
symbiotic N fixers develop symbiotic relationships with legume roots and hence
leguminous crops took advantage through increased supply of biologically fixed N
(Ali et al. 2017; Ahmad et al. 2019; Naseer et al. 2019). However, other agricultur-
ally important crops especially grasses such as wheat, rice, corn, etc., are unable to
perform BNF and, hence there is an increasing trend of studies regarding the supply
of N through PGPR-based inoculants (Charpentier and Oldroyd 2010; Chamani
et al. 2015; Kamran et al. 2017; Picazevicz et al. 2017). Previously, Parmar and
Dadarwal (1999) suggested increased nodulation and N fixing ability of chickpea
(Cicer arietinum) due to inoculation of N fixing Fluorescent pseudomonads. In
another study, regulation of BNF in soybean production due to applied Brady
rhizobium spp. has been well reported (Okito et al. 2004). Very recently, Ahmad
et al. (2019) testified increased growth, nodulation and N fixing ability of chickpea
with the applied Paenibacillus spp. in a jar trial. Summary on a range of studies
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describing various PGPR mediated plant growth promotion via increased atmo-
spheric N2 fixation is given in Table 7.3. However, for obtaining maximum
on-farm benefits from diazotrophic PGPR-based biofertilizers, a systematic strategy
that allows for full utilization of all beneficial effects and increases crop yield while
minimizing the chemical fertilizer inputs is therefore required (Kennedy et al. 2004).

7.6.2 Plant Growth-Promoting Rhizobacteria and Phosphorus
Solubilization

Phosphorus is an essential nutrient as well as one of the main factors affecting the
plant growth despite its abundance in the soil as both (inorganic and organic forms).
Almost, 95–99% of P in the soil represents the insoluble pool and cannot be utilized
by plants (Vassileva et al. 2000). An increasing number of strategies have been
documented earlier to convert this insoluble form of P to soluble forms to facilitate
plant uptake. In this regard, exploiting the potentials of rhizosphere microbiome has
garnered considerable attention worldwide, especially the use of phosphate-
solubilizing rhizobacteria in agriculture. These bacteria under their P solubilizing
activity convert insoluble P to plant-available forms and are increasingly applied as
biofertilizers for better crop production since the 1950s (Kudashev 1956; Kumawat
et al. 2009; Anand et al. 2013; Samreen et al. 2019). A range of rhizosphere
inhabiting bacteria has shown the ability of insoluble phosphate solubilization
falling in the genera Bacilli, Pseudomonas, Escherichia, Serratia, Achromobacter,
Corynebacterium, Erwinia, Brevibacterium, Xanthomonas and Micrococcus spp.
However, among these all, Bacilli and Pseudomonas are the most dominant
inhabitants with varying compositions in plant rhizosphere and non-rhizosphere
soil (Kumawat et al. 2017). Certain commonly found PGPR are equipped with
specialized mechanisms by which they can solubilize unavailable phosphates to
plant-available HPO4

� (monohydrogen phosphate ion) and H2PO4
� (dihydrogen

phosphate ion) through lowering rhizospheric pH, dissolving metal phosphate
complexes by releasing organic acids and ion exchange processes, and, hence
improve crop yields through enhanced nutritional availability to main crop (Kumar
et al. 2014; Ali et al. 2017; Saeed et al. 2019; Ahmad et al. 2019). In addition, using
PGPR exhibiting P solubilization activity as biofertilizers would not only cut down
the high costs associated with mineral fertilizer application in agriculture but also
improves the overall quality of the environment (Banerjee et al. 2010). Application
of biofertilizers containing beneficial PGPR favours the development of beneficial
communities within the rhizosphere associated with increased crop yields (Noor
et al. 2020). For instance, in a study, the inoculation of PGPR showing P solubilizing
activity increased plant growth and root proliferation of alfalfa plants (Guiñazú et al.
2009). Summary of studies involving the application of biofertilizers based on PGPR
is given in Table 7.3.

7 Nitrogen and Phosphorus Use Efficiency in Agroecosystems 239



Table 7.3 Role of different biofertilizers in nitrogen and phosphorus nutrition in crop plants

Nutrient Biofertilizer type Crop Impact Reference

Nitrogen Ustilago maydis +
Bacillus pumilus

– Endosymbiotic
N2-fixing association

Ruiz-
Herrera
et al.
(2015)

Burkholderia
ambifaria Mex-5

Grain
amaranth
(Amaranthus)

Promote grain yield Parra-Cota
et al.
(2014)

S. paucimobilis
ZJSH1

Dendrobium
(D. officinale)

Improve N fixation Yang et al.
(2014)

Paenibacillus
polymyxa P2b-2R

Red cedar
(Juniperus
virginiana)

Promote N fixation Anand and
Chanway
(2013)

Paenibacillus
polymyxa P2b-2R

Lodgepole
pine (Pinus
contorta)

Enhances the growth
of pine seedlings

Anand
et al.
(2013)

RILs 34/104+
Rhizobium tropici
CIAT899

Common bean
(Phaseolus
vulgaris)

Improve N fixation Tajini and
Drevon
(2014)

Bacterium BJ-18T Wheat
(Triticum
aestivum)

Can improve N
fixation

Wang et al.
(2013a, b)

BNF Green foxtail
(Setaria
viridis)

Enhance growth Pankievicz
et al.
(2015)

Paenibacillus
polymyxa ANM59

Chickpea
(Cicer
arietinum)

Improve growth of
crop and soil fertility

Ahmad
et al.
(2019)

R. huautlense Dwarf willow
(Salix
herbacea)

Form nodules in
flooded and
non-flooded soils

Wang and
Martinez-
Romero
(2000)

Phosphorus Paenibacillus
sp. ANM76

Chickpea
(Cicer
arietinum)

Improve P
solubilization

Ahmad
et al.
(2019)

Phosphate-
solubilizing bacteria
+ organic acids

Rice (Orzya
sativa)

Enhance P
solubilization

Panhwar
et al.
(2013)

Phytate mineralizing
bacteria (PMB)

Common bean
(Phaseolus
vulgaris)

Increase P availability Maougal
et al.
(2014)

Phosphate-
solubilizing bacterial
(Ps-5, Ss-2)

Sunflower
(Helianthus
annuus)

Strong positive
relation b/w phosphate
solubilization and
organic acid
production

Shahid
et al.
(2015)

Bacillus circulans
(CB7)

Tomato
(Lycopersicon
esculentum)

Positive response for
seed germination, plant

Mehta et al.
(2015)

(continued)
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7.7 Conclusions

Nitrogen (N) and phosphorus (P) are the most important plant macronutrient, and
their management is necessary for sustainable agriculture. Managing N and P in
agroecosystem via smart use, limiting their losses and increasing use efficiency are
major pillars and very much needed in modern-day agriculture practices. Nitrogen
reserve in the atmosphere, though enormous, but require extensive utilization of
fossil fuel for its conversion to plant usable form. Biological nitrogen fixation can be
an alternative good option to opt. For P conservation, smart use of rock phosphate
must be adopted to increase the life of remaining reserves. Involvement of precision
agriculture, smart fertilizer modulation and minimizing fertilizer loss can be a major
contributor to efficient N and P use in agriculture.

Table 7.3 (continued)

Nutrient Biofertilizer type Crop Impact Reference

growth and P
solubilization

A. chroococum +
A. brasilense +
30 kg ha�1

Rice (Orzya
sativa)

Improve growth and
yield

Yadav
et al.
(2014)

Pseudomonas
fluorescens (DR54)

Maize (Zea
mays)

Enhance P soluble soil
pools at the early
growth stage

Krey et al.
(2013)

Arsenic-resistance
bacteria (P. vittata)

Tomato
(Solanum
lycopersicum)

Improve plant growth
and nutrition

Ghosh
et al.
(2015)

Burkholderia
sp. (MTCC 8369)
and
Gluconacetobacter
sp. (MTCC 8368)

Rice (Orzya
sativa)

Improve P uptake,
growth and yield

Stephen
et al.
(2015)

RILs 34/104+
Rhizobium tropici
CIAT899

Common bean
(Phaseolus
vulgaris)

Improve P utilization
efficiency

Tajini and
Drevon
(2014)

Potassium Potassium
solubilizing bacteria
(XF11) + k-feldspar
powder

Tobacco
(Nicotiana
tabacum)

Increase in K and N
uptake by tobacco
seedlings

Zhang and
Kong
(2014)

P-solubilizing
(Bacillus circulans
CB7)

Tomato
(Solanum
lycopersicum)

Improve plant growth
and K solubilization

Mehta et al.
(2015)
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7.8 Future Perspectives

Although, plenty of work has been done for increasing the efficiency and reducing
loses of nitrogen (N) and phosphorus (P) fertilizers in modern agricultural systems
and practices but still there is huge gap to improve. New methods of availing N and P
to plants can be found in which fewer natural resources are used. Integrated
approaches may be used to enhance nitrogen and phosphorus use efficiency,
i.e. good agricultural practices, 4R fertilizer placement, site specific application of
fertilizers, use of innovative fertilizers, organic fertilization and improving the soil
health and fertility status. Use of soil and atmospheric biota for providing N and P to
plants can be a good option but proper understanding of mechanism and adoption for
meeting the crop requirement is still needed. Soil fixed P can be converted to plant
usable forms by the means of chemical as well as biological approaches. As P stocks
of natural resources are very limited in the world and vanishing rapidly so there is a
need to enhance the fertilizer use efficiency and reducing its loses in agro-ecosystem.
P solubilizing microbes can be proved helpful for converting soil fixed P into labile
pools but extensive screening and selection of microbes is required for this purpose.
Climate smart fertilizers and slow-release fertilizers are good approaches to enhance
the fertilizer use efficiency and reducing the fertilizer loses up to a certain range but a
room is present in this field to further enhance the efficacy of these products.
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