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Abstract

The interactions of plant—microbe enable various types of transformations in the
rhizosphere, which might be harmful, neutral, or beneficial. These interactions
are proved helpful to plants for enhancing the biological, chemical, and physical
properties of soil by facilitating the nutrients balance of the soil. Mutualistic
plant—microbe interaction in the rhizosphere can enhance the nutrient uptake
from roots, improve the biomass productivity and potentially, the ability to toler-
ate environmental stress. The microbial communities present in the rhizosphere
influences the development of phytopathogens, the fitness of the ecological plants,
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and resistance of heavy metals and acquisition of nutrients. For improving the
yields, varieties, and sustainability of the crops, the plant-microbe interaction
is now getting considered as a valuable asset. Bioprospecting, the rhizospheric
microorganisms with the ability to confer tolerance towards stress to host plant
and using their symbiotic interaction with plants to improve the overall plant
growth and crop productivity, could significantly aid in decreasing the adverse
effects of stress on plants. The emerging field of engineering of ecosystems and
rhizosphere marks a promising opportunity to fill critical research gaps and to
develop sustainable solutions. Exploration of plant-microbe interactions is the
key to understand the mechanism of rhizosphere priming, management of the
carbon cycle in soil, and improve the crop productivity under current and future
climatic conditions.
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7.1 Introduction

In the year 1904, Hiltner coined the term “rhizosphere”. It is referred to the soil zone
present around the legume roots, which supports the bacterial activity. The rhizo-
sphere is divided into three different types of regions (Lynch and de Leij 2012).
These include the ecto-rhizosphere, rhizoplane, and endo-rhizosphere zone. The
root tissue, which includes the layers of cortical and endodermis, is known as endo-
rhizosphere. The rhizoplane includes the root surface area with the polysaccharide
layer of mucilaginous and along with epidermis layer, whereas ecto-rhizosphere is
defined as the region soil, which is adjacent to the root (Linderman 1991). Since
various organic compounds get accumulated and released by roots exudation in the
rhizosphere, this region is enriched with the nutrients (Ligaba et al. 2004). These
nutrients are utilized by the microorganisms occurring in these regions as the
sources of energy and carbon to increase their microbial activity and growth
(Lugtenberg and Kamilova 2009). The microbial communities present in the rhizo-
sphere influences the development of phytopathogens (Nehl et al. 1997), the fitness
of the ecological plants (Barriuso et al. 2008), resistance of heavy metals (Kuffner
et al. 2008), and acquisition of nutrients (Lynch 1990; Kour et al. 2020c).

The different types of organisms are found in the rhizosphere, namely archaea,
nematodes, bacteria, protozoa, algae, fungi, arthropods, and oomycetes (Raaijmakers
et al. 2009; Kour et al. 2019b; Yadav et al. 2018). The released nutrients from the
plants are utilized by the different groups of the rhizospheric microbiome. It has
been observed that in the regulation of plant roots activity and microbial diversity,
the rhizodeposits (i.e. exudates) provides the major driving force to them. The
pathogenic fungi, nematodes, oomycetes, bacteria, and fungi are the deleterious
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rhizosphere organisms (Van Baarlen et al. 2007; Tyler and Triplett 2008; Thakur
et al. 2020). The defence of the frontline for the roots of plants against the pathogens
of soil-borne attack is provided by the rhizosphere (Cook et al. 1995). This book
chapter covers different aspects of plant—microbe interactions; new, improved engi-
neering methods for bio-formulations. Efforts have also made to summarize the use
of recombinant DNA technology to modify rhizosphere populations and their pos-
sible role of rhizospheric microbes in agricultural sustainability.

7.2 Plant-Microbe Interaction

The bacteria which are associated with the plant and capable of colonizing the roots
are known as “rhizobacteria”. They are classified into three groups, namely: (1)
neutral, (2) beneficial, and (3) deleterious depending on their effects on plant
growth. The bacteria stimulating the growth of plant referred to as beneficial rhizo-
bacteria or also known as plant growth-promoting rhizobacteria (PGPR) (Kour et al.
2020b; Singh et al. 2020a). PGPR enhances crops growth indicating their potential
in the agriculture field as biofertilizers (Timmusk et al. 1999; Kour et al. 2020f).
The rhizospheric microorganisms are capable of forming the NH,* by decomposing
the proteins into amino acids via the ammonification process. The nitrification
(NO;~ formation) occurs after the ammonification at a rapid rate in most soils;
hence, both NH,* and NO;™ are available for the plants but majorly NO;™ is the main
nitrogen source for the plants (Sylvia et al. 1999; Marschner 2011).

According to the root exudates quantity and quality, microbes associated with
the rhizosphere are often transient (Biswas et al. 2018; Rana et al. 2020a). The
rhizosphere-associated microbe’s variation depends on the parameters influencing
the chemical and biological aspects of the root (Yang and Crowley 2000; Morgan
et al. 2005). The interactions of plant-microbe enable various types of transforma-
tions in the rhizosphere; for example, nutrient cycling mainly the sequestration of
carbon and nitrogen (Philippot et al. 2013). The interaction between the plant and
microbe might be harmful, neutral, or beneficial. The plant-microbe interaction is
considered as a valuable asset due to their capabilities to improve the yields, variet-
ies, and sustainability of the crop (Gopal and Gupta 2016). The primary factors
which are involved in the inhibition or attraction of microbe’s proliferation in the
rhizosphere are the root exudates (Moore et al. 2014). Positive and beneficial inter-
actions among rhizospheric microorganisms are favourable for good practices of
agriculture. These interactions are not only important for the plant growth and
development but also enhances the biological, chemical, and physical properties of
soil by facilitating the nutrient balance of soil via biogeochemical cycles
(Velmourougane et al. 2017). There are many ecological benefits due to this interac-
tion, such as the availability of nutrients to the plants and promoting the plant growth
(Boddey and Dobereiner 1995; Yadav et al. 2020c). The rhizospheric microbiome is
able to protect the plant against the abiotic and biotic stress (Verma et al. 2017;
Yadav et al. 2019).
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Fig. 7.1 Interaction of rhizosphere region with the other components of the plant ecosystem

The belowground diversity of the plant may perform as insurance under the dif-
ferent conditions of the environment for maintaining the productivity of the plants
(Wagg et al. 2011). The rhizospheric microbes are considered as the soil quality
bioindicators for the plants (Schnitzer et al. 2011; Yadav et al. 2020b). These rhizo-
spheric microorganisms protect plants from the attack of the phytopathogens
(Lugtenberg and Kamilova 2009). These include abiotic stress and disease control,
root growth stimulation, biofertilization, and rhizoremediation (Kumar et al.
2019a, c). They can also facilitate the trace elements uptake, i.e. iron. In soil, iron is
an abundant element under the conditions of alkaline and neutral (Andrews et al.
2003; Buckling et al. 2007). The interaction of the rhizosphere region with the other
components of the plant ecosystem is illustrated in Fig. 7.1.

7.3  Engineering of Rhizosphere

Plant preservation is essential because of various reasons as it provides feed, food,
fuel, aid in regulating carbon as well as the water cycle, climate, nutrition entrap-
ment, and serve as habitat for wildlife. Considering, the massive diversity in the
genotype of collected as well as generated plant species, the assessment of their
genetic diversity of these plants has become highly important (Shishido et al. 2019).
It could maintain the plant ecosystem and its values by stabilizing and generating
stress tolerance in both cultivated and native ecosystem, and by retaining both cul-
tivation and functioning of the ecosystem. These opinions direct that the selection
of both species and genotypes should be taken into consideration while designing
the breeding programme (Turnbull et al. 2016).
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Hence, plant ecosystems can be engineered to improve carbon storage involving
the allocated carbon in both above and belowground biomass for separating into the
structural form or transport them to the soil for the conversion of recalcitrant miner-
als like calcite (Nogia et al. 2016). In 2010, Jansson and his colleagues compre-
hended and reviewed the potential of engineered plants in enhancing the carbon
storage capacity and also introduced the term “phytosequestration”(Jackson and
Baker 2010), whereas another group of scientists discussed the potential of terres-
trial ecosystems in improving carbon storage. In the long run, storage of carbon in
soil will become necessary. Therefore, a better understanding of the metabolic pro-
cesses of microbial communities in rhizosphere and their interaction with the host
plant and mechanism involved in carbon deposition is required (Dignac et al. 2017).

7.4  Plant Metabolism Through Rhizosphere Engineering

The conventional approach of plant breeding and advanced plant genetic engineer-
ing has been a success to accumulate desirable genes associated with stress response
and tolerance in the plant genome. Most commonly employed strategy by plants to
modify the rhizosphere is by altering exudation potential of roots; in view of this,
researchers have attempted to develop transgenic plants that can alter the rhizo-
spheric region by regulating the efflux of organic anions and H* in roots (Backer
et al. 2018). Since the identification of several genes involved in root exudation, it
has become possible to regulate the expression of those genes in plants for the incor-
poration of new features in the redesigned rhizosphere (Mark et al. 2005). For
example, insertion of Arabidopsis vacuolar H* pyrophosphatase gene AVPI in
tomato and rice plants resulted in enhanced malate and citrate efflux, approximately
50%, on treatment with AIPO,. This can be attributed to the increase of the tolerance
in Al*-induced stress conditions and enhance the utilization of the insoluble form
of phosphorus (Pasapula et al. 2011; Singh et al. 2020b). However, rhizosphere
engineering is a complex process depending on several factors such as (1) inactiva-
tion of the engineered trait of the plant in the soil; (2) inability of the low rate of root
exudation to affect the rhizosphere; (3) limited information about the composition
of root exudates; and (4) variation in concentration and release time of root exudates
during the development of plant and external stimuli.

Another approach involves exploring genetically diverse crops with desirable
characters for partitioning and allocation of carbon (Canarini et al. 2019). It is
debatable that increased distribution of photosynthate in rhizosphere will occur at
the expense of carbon partitioning into harvestable compounds. However, reports
suggest that inadequate sink demand can inhibit the process of photosynthesis
through feedback response and make it sink limited. Thus, there is an immense
potential for belowground allocation of carbon for long-term storage without imper-
illing crop productivity (Kaiser et al. 2015).
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7.5 Genetic Modification of Rhizospheric Microbes

Genetic modification of microorganisms presents a unique opportunity to promote
plant growth, confer resistance towards various diseases, and induce stress toler-
ance. Till now, numerous bacterial species have been identified to possess many
advantageous effects but selecting and engineering a sustainable organism remains
a challenge (Ortiz-Castro et al. 2009). For example, considering the inhabitation of
two microbes in a niche, there can be six broad ecological interactions between
them, namely commensalism, competition, predation, amensalism, cooperation,
and null interaction. With the increase in microbial species in a niche, the perplexity
of the ecological interactions among them increases linearly (Mougi 2016). The
major challenge is to maximize positive interactions like cooperation and eliminate
negative interactions like competition and parasitism. In view of this, it is an ardu-
ous task to minimize the competition between two strain co-cultures. The rate of
plant growth, rate of seeding, sensitivity to pathogenic organisms, stabilization in
adverse conditions, and sustainability of the microbiota are greatly influenced by
the environmental factors such as pH, temperature, availability of nutrients, and
exudates of the host plant (Bashey 2015). Besides these challenges, knowledge
about interactions of natural soil microorganisms, including PGPR, can be exploited
to develop a synthetic microbial community with desirable traits.

Numerous rhizosphere colonizing microorganisms have been identified as
belonging to a wide range of genera whose genome sequences are publicly avail-
able, which are amenable to genetic modifications (Devi et al. 2020; Jacoby et al.
2017). These genera comprise of Pseudomonas, Streptomyces, Rhizobium, and
Bacillus. Complete genetic sequences are available for Streptomyces spp., espe-
cially the ones used as PGPR. Still, they have certain limitations such as they have
large genomes and possess mobile components which pose difficulty in engineer-
ing. Bacillus species are considered as an ideal organism to develop the synthetic
microbial community as it is comparatively easy to modify genetically, has detailed
information on genome sequences, contains many strains that promote plant growth,
and are currently utilized as biocontrol agents (Vurukondaetal. 2018; Subrahmanyam
et al. 2020). A consortium comprising of three different microbes, genetically modi-
fied Bacillus spp. and two other nitrogen-fixing microbes (natural or engineered)
like Bradyrhizobium, Pseudomonas, and Rhizobium can provide many of the advan-
tages of the complex natural microbiota of rhizosphere (de Souza et al. 2015;
Yadav 2020).

To promote cooperation over competition, each strain can be engineered to make
it deficient in certain essential genes such as elimination of gene synthesizing an
essential enzyme or co-factor that is required by all strains (Hibbing et al. 2010). For
instance, this could be understood as the system where Bacillus requires a co-factor
produced by Pseudomonas, on the contrary, the Pseudomonas depends on the genes
of Rhizobium, and Bacillus has the ability to remediate the waste generated by
Rhizobium and recycle it for mutual use. This functional interaction among the
strains on subsequent addition of the other strains as a consortium of three strains
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will have >729 predicted interaction, whereas a consortium of four strains will have
about 531,441 predicted interaction (Gupta and Diwan 2017).

Hence, there is a need to limit the strain number to three in synthetic microbial
community system so that their interaction among each other and with host plant
could be controlled. In order to design the microbial consortium for an engineered
rhizosphere, some critical realms need to be followed for their competence (McCarty
and Ledesma-Amaro 2019; Mondal et al. 2020). Numerous traits need to be assessed
prior to their selection for developing engineered microbial consortium: (a)
Proficiency of microbes on colonizing the host plant roots in the rhizosphere, (b) Do
the microbes colonize effectively on the host plant? (c) Are the microbes capable of
surviving as well as competing with the other microbes in the consortium? (d) Is the
adherence of microbes with the surface of root effective? (e) Does the microbe aid
in promoting the plant growth or enhancing the growth of member of the consor-
tium? (f) Do the microbes multiply themselves to reach the desired density? (g) Do
the strains involved in consortium enable them to survive under abiotic stress?
(Compant et al. 2019). The most important factor is the growth density irrespective
of the reason that microbes will have a positive effect on the plant or not.

For instance, Pseudomonas spp. requires the growth density about 10°-10° CFU/g
of root to save the plant pathogens like G. tritici as well as Pythium spp. (Kwak and
Weller 2013). If these standards are taken into consideration, then these microbial
consortia could be used in the engineered rhizosphere, and these microbial consortia
will help the plant in tolerating the effects induced by fertilizers, herbicides, and
pesticides without losing their beneficial effects (Woo and Pepe 2018).

7.6  Molecular Mechanisms in the Rhizosphere

Previous studies mentioned the potential of PGPR in improving the growth of plants
under stress conditions. Even advancement in molecular techniques has unveiled
information regarding the genetic basis of PGPR that is showing the advantageous
effect on plants (Shivakumar and Bhaktavatchalu 2017). Some of the studies that
provide information regarding the molecular basis of PGPR have been compre-
hended in Table 7.1. Therefore, screening of the mechanism regulating the activities
of PGPR will open the new avenue for genetic modifications of the microbe and
host plant to improve their plant growing ability, especially under stress conditions.

In a study reported by Wang and collaborators, a microarray-based study was
conducted to expand their knowledge about biochemical and physiological changes
that take place in the plant. For this, they inoculated Pseudomonas fluorescens strain
FPT9601-T5 (PGPR) in Arabidopsis plant. The result obtained on the analysis
revealed that 200 genes out of 22,810 genes of Arabidopsis plant were showing dif-
ferent expression, i.e. two-fold increase in expression in PGPR-treated plant (Wang
et al. 2005). Later, the majority of genes were found to be involved in different cel-
lular processes like metabolic processes, stress response, and signal transduction.
Moreover, upregulation of auxin-regulated genes, as well as nodulin-like genes and
downregulation of ethylene-responsive genes, was observed (Markakis et al. 2012).
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Table 7.1 The molecular studies involving PGPR under stress conditions
Molecular method
Species of plant | Microbial species used References

Arabidopsis Bacillus megaterium BP17 Microarray Vibhuti et al. (2017)
thaliana
Arabidopsis Bacillus subtilis GB0O3 RT-PCR Zhang et al. (2010)
thaliana
Arabidopsis Pseudomonas fluorescens Microarray Wang et al. (2005)
thaliana FPT9601-T5
Arabidopsis Pseudomonas fluorescens Microarray and van de Mortel et al.
thaliana strain SS101 LC-QTOF-MS (2012)
Arabidopsis Pseudomonas putida Microarray Srivastava et al.
thaliana MTCC5279 (2012)
Cucumis Acinetobacter calcoaceticus GC and enzyme- Khan et al. (2014)
sativus SE370 and Burkholderia based assay

cepacia SE4
Abelmoschus Enterobacter sp. UPMR18 RT-PCR Habib et al. (2016)
esculentus

Piper nigrum Bacillus licheniformis K11 2D-PAGE and PCR | Lim and Kim (2013)

Oryza sativa Azospirillum brasilense qRT-PCR Vargas et al. (2012)
Sp245

Saccharum Gluconacetobacter Illumina Vargas et al. (2014)

officinarum diazotrophicus PALS sequencing

Triticum Dietzianatronolimnaea STR1 | qRT-PCR Bharti et al. (2016)

aestivum

Triticum Acinetobacter guillouiae 16S rRNA-PCR Rana et al. (2020b)

aestivum EU-B2RT.R1

Triticum Pseudomonas libanensis 16S rRNA-PCR Kour et al. (2020d)

aestivum EULWNA-33

Setaria italica Acinetobacter calcoaceticus 16S rRNA-PCR Kour et al. (2020e)
EU-LRNA-72

Sorghum Streptomyces laurentii 16S rRNA-PCR Kour et al. (2020c)

bicolor EU-LWT;-69

Whereas another group of researchers with the help of RNA-Seq technology, i.e.
Ilumina, revealed that the inoculation of Gluconacetobacter diazotrophicus strain
PALS in sugarcane triggered the ABA-dependent signalling genes and made its
resistance to drought (Vargas et al. 2014). In 2015, Kim and his group showed that
VOC:s synthesized by Bacillus subtilis strain JS influenced the gene expression pro-
files of the tobacco. The upregulation in genes related to photosynthesis pathways
was observed, signifying the VOC-mediated improvement in the growth of the plant
(Tahir et al. 2017).

Other than the previous studies discussing gene expression profiles, proteomic
analysis has also been conducted to gather more information about proteins as well
as pathways triggered during host—-PGPR interaction. As recognition of candidate
protein among different PGPR could serve as a valuable resource for promoting the
growth of the targeted plant in the near future (Singh et al. 2017). In 2008,
Buensanteai and collaborators conducted an experiment on Bacillus
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amyloliquefaciens strain KPS46 inoculated in soybean plant to investigate the role
of synthesized extracellular protein in improving plant growth and inducing sys-
temic resistance (Radhakrishnan et al. 2017). For the separation of extracellular
proteins synthesized by strain KPS46 (wild-type), KPS46 (mutant-type), N19Gl1,
the methods like mass spectrometry (MS), two-dimensional polyacrylamide gel
electrophoresis (2D-PAGE), and exploring of protein database were employed. The
results obtained showed the presence of 20 extracellular proteins which could have
a role in inducing resistance and plant development (Atshan et al. 2015). Another
study revealed the presence of six different stress proteins on the molecular assess-
ment of the pepper plant inoculated with Bacillus licheniformis strain K11 under
drought stress. Even though there are technical constraints of using proteomic tech-
niques for assessing the PGPR-host interaction but advancement in molecular tech-
niques involving top-down proteomics and MALDI-TOF promises to extend our
knowledge about the molecular basis for PGPR-host plant interaction in the near
future (Lim and Kim 2013).

Furthermore, metabolic profiling of bacteria and plant is an alternative approach
to understand the mechanism of symbiotic interactions. For instance, GC-MS anal-
ysis of drought-stressed wheat seedlings revealed the presence of seven stress-
related VOCs in the rhizosphere and secondary metabolites were found to be
B-pinene, benzaldehyde, and geranyl acetone. These three VOCs are likely to be
considered as a promising candidate for rapid assessment of crop under drought
stress. Hence, the deep insight about the genes, secondary metabolites, and proteins
involved in plant—-PGPR interaction and are responsible for abiotic stress resistance
can be used for developing engineered plants. These engineered plants will harbour
genes that control stress or microbes that alleviate the stress (Vaishnav et al. 2017).

7.7 Role of Rhizospheric Microbes
for Agricultural Sustainability

7.7.1 Mutual Plant-Microbe Interactions

To overcome the adverse effects caused by environmental stresses, various strate-
gies have been demonstrated. Transcriptome engineering is one such method to
develop crops tolerant to abiotic stress (Cohen and Leach 2019). To date, the com-
monly used strategy to combat environmental stress in plants is to overexpress the
single genes that encode for enzymes involved in the transportation of ions and
scavenging of ROS. The application of this approach is limited due to the resultant
pleiotropic effects on growth of the plant and comprehended multiple pathways in
response to environmental stress (Xie et al. 2019). Utilization of agrochemicals is
another method to enhance crop productivity in boosting crop productivity, but it is
cost-intensive and has adverse effects on the environment on long-term use (Aktar
et al. 2009). Employment of beneficial microbes in the rhizosphere of plants is
another strategy to reduce the harmful effects of climatic fluctuations on the growth
of plants and crop productivity. Mutualistic plant-microbe interaction in the
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Fig.7.2 Role of PGPR under the stress conditions

rhizosphere can enhance the nutrient uptake from roots, improve the biomass pro-
ductivity and potentially, the ability to tolerate environmental stress (Igiehon and
Babalola 2018). Bioprospecting, the rhizospheric microorganisms with the ability
to confer tolerance towards stress to host plant and using their symbiotic interaction
with plants to improve the overall plant growth and crop productivity, could signifi-
cantly aid in decreasing the adverse effects of stress on plants. This approach has
several advantages such as the ability of PGPR to confer multiple environmental
stress tolerance to host plant, their application to diverse plant hosts and enhanced
crop productivity as illustrated in Fig. 7.2 (Odelade and Babalola 2019).

7.7.2 Mitigation of Drought Stress

Among the environmental factors, drought is considered as the most critical factor
that hampers plant growth and threatens crop productivity. Drought stress can be
attributed to climatic changes, agronomic and edaphic factors (Rastegari et al.
2020a). Researchers predict that in the future, drought stress will worsen if the
global supply of freshwater and climatic hitches remain a hurdle (Nadeem et al.
2019). In view of fluctuations in precipitation and global temperature, drought will
hinder the production of biomass, feed, and most importantly, food. Thus, to ensure
food security, the development of drought-tolerant crops becomes a necessity for a
sustainable future. Most bioenergy crops used for biofuel production are tolerant
towards drought conditions like poplar, miscanthus, etc. Therefore, there is an
urgent need to enhance the tolerance of bioenergy crops towards drought and sig-
nificantly improve their water use efficiency (WUE) for sustainable production of
biomass in semi-arid and arid regions (Von Cossel et al. 2019).
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Genetic engineering techniques have been extensively used to induce drought
tolerance in plants, despite the efforts, there has been slow progress owing to the
involvement of numerous genes and sophistication associated with the traits (Khan
et al. 2019a, b; Rastegari et al. 2020b). It has been observed that the rhizosphere and
microbiota associated with it play a vital role in constraining the capability of plants
to manage the drought stress (Kour et al. 2019a; Verma et al. 2014, 2019; Yadav and
Yadav 2018). The rhizosphere of plants is colonized by diverse microorganisms
including plant growth-promoting rhizobacteria (PGPR) which provides them with
the ability to cope with drought by aiding in the production of exopolysaccharides
(EPS), phytohormones, and volatile organic compounds (VOCs) (Naseem et al.
2018; Tiwari et al. 2020). They also help in accumulating various antioxidants and
osmolytes. Moreover, they can also alter the morphology of root in response to
stress and regulate the stress-responsive genes (Sharma et al. 2019). For instance, it
has been observed that the drought tolerance of wheat plant was enhanced by the
inoculation of indole acetic acid (IAA) producing Azospirillum species which
improved the growth of roots and induced lateral roots formation (Vurukonda et al.
2016). Similarly, the growth of Lavandula dentata in drought was stimulated by
IAA producing plant growth-promoting bacteria, Bacillus thuringiensis that
increased nutrient availability and improved the metabolic activities of the plant
(Armada et al. 2016). In another study, grapevine and Arabidopsis plants were able
to adapt to drought conditions when they were inoculated with GFP-labelled
Pseudomonas species and Acinetobacter species which induced a water-stress
mechanism to cope with drought (Rolli et al. 2015).

Upon inoculation of leaves of Platycladus orientalis with Bacillus subtilis, an
increase in ABA concentration in shoots and stomatal conductance was observed,
that provided drought resistance to the plant. Due to increased ABA levels, the
water content in leaves enhanced, water potential improved, and cytokinin levels
increased drastically (Liu et al. 2013). In another study, an isolate from the rhizo-
sphere of Brassica napus, Phyllobacterium brassicacearum strain STM196 inocu-
lated in Arabidopsis plants aided in acclimation of drought stress by enhancing
ABA concentrations, reducing transpiration in leaves and increasing tolerance
towards osmotic stress (Ahkami et al. 2017). Also, an inoculation of soybean plants
with gibberellin-producing rhizobacterium, Pseudomonas putida strain H-2-3, an
increase in fresh weight and length of shoots under drought conditions was reported
(Kang et al. 2014b). In response to drought stress, they produced more chlorophyll,
abscisic acid, and salicylic acid in comparison to control plants (Radhakrishnan
etal. 2014).

7.7.3 Mitigation of Salinity Stress

Salinity is another major environmental factor that adversely affects the productiv-
ity of plants globally. Presence of salt in excess in the soil creates ionic imbalance and
ion toxicity in plants which further triggers water deficiency in plants due to hyper-
osmotic stress and induces an imbalance in the metabolic activities (Shrivastava and
Kumar 2015; Rajawat et al. 2020; Yadav et al. 2015; Kang et al. 2014a). Plants cope
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with stress due to salinity in various ways such as by producing polyamines and
osmolytes, triggering defence mechanisms, preventing deposition of reactive oxy-
gen species and regulating the transport of ions (Khan et al. 2019a, b; Gaba et al.
2017; Yadav et al. 2020a).

A study demonstrated that uptake of Na* ions by the plant was reduced signifi-
cantly and the production of biomass enhanced when the wheat seedlings were
subjected to the application PGPR like Paenibacillus, Enterobacter, Bacillus, etc.
that synthesized exopolysaccharides (EPS) under highly saline conditions
(Egamberdieva et al. 2019). In another study, PGPR inoculation in tomato plants
reduced the adverse effects of ethylene, released under stress conditions, on the
growth of roots by the activity of enzyme ACC deaminase which resulted in
improved plant growth in water-deficit and saline conditions (Ilangumaran and
Smith 2017). A recent study described the use of Dietzia natronolimnaea strain
STRI1, i.e. carotenoid producing and halotolerant, in combating the effects of salin-
ity in wheat plants. Wheat plants inoculated with halotolerant PGPR showed higher
levels of proline and production of numerous antioxidants that conferred salinity
tolerance to the plants. Moreover, application of PGPR activated certain pathways
in a plant-like ABA signalling, Fe transport, SOS pathways, etc. (Bharti et al. 2016).

In comparison to the uninoculated peanut seedlings, the inoculated peanut seed-
lings showed enhanced ion homeostasis, less accumulation of ROS, and improved
growth under saline conditions. Another study showed the synergistic action of
Bacillus drentensis and Enterobacter cloacae to aid in withstanding salinity in
mung beans with foliar application of silicon (Ahkami et al. 2017). Moreover, when
peanut seedlings inoculated with Haererohalobacter, Brachybacterium saurasht-
rense, and Brevibacterium casei were subjected to highly saline conditions by incor-
poration of 100 MNaCl, grown plants showed overall improved growth (Shukla
etal. 2012).

7.7.4 Mitigation of Heavy Metals Stress

Heavy metals like Ni, As, Cr, Cd, Cu, Pb, Zn, etc. at low concentrations are essential
to microbes and plants for the growth and metabolic activities but can present a
major challenge if the concentration exceeds the tolerance limits (Singh et al. 2011).
The presence of toxic heavy metals in soil greatly influence the characteristics of the
plant and phytoremediation potentials; however, bacteria present in soil can signifi-
cantly enhance the phytoremediation potential of the plant through synergistic
action and hence the term, microbe-assisted phytoremediation (Ojuederie and
Babalola 2017; Sharaff et al. 2020).

Reports suggest that PGPR also aid in protecting host plant from ill effects of
toxicity caused by heavy metals. PGPR are known to possess this ability to cover a
wide range of genera such as Bradyrhizobium, Mesorhizobium, Sinorhizobium,
Rhizobium, Pseudomonas, Azotobacter, and Bacillus (Wani et al. 2008; Rai et al.
2020). For instance, a study showed that application of Bacillus licheniformis could
significantly improve the germination of rice plant seed and enhance the
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biochemical characteristics of rice when subjected to stress induced by Ni.
Therefore, highlighting the potential of the strain in protecting the rice plant from
heavy metal toxicity (Jamil et al. 2014). Like most microorganisms, PGPR has also
evolved in certain unique ways to tolerate heavy metals such as mobilization, immo-
bilization, and transformation of heavy metals into either inactive form or less toxic
utilizable form (Tiwari and Lata 2018). PGPR are known to follow five mechanisms
broadly to increase heavy metal resistance: (1) Extrusion of heavy metals by trans-
portation through efflux pumps; (2) Exclusion of heavy metals by direct removal
from target sites; (3) Inactivation of heavy metals through the formation of com-
plexes like the formation of thiol-containing complex structures; (4)
Biotransformation of heavy metals from a toxic oxidation state to a less toxic oxida-
tion state such as the conversion of highly toxic Cr* into less toxicCr*®; and (5)
Addition or removal of methyl from heavy metals, i.e. methylation and demethyl-
ation (Ma et al. 2016).

Similarly, plants also possess various mechanisms to cope with heavy metal
resistance; however, the process by which microbes and plants interact at the molec-
ular level to combat heavy metal toxicity remains unclear. Furthermore, increasing
the knowledge about plant—microbe interactions, genes involved, and mechanisms
of regulation, it would be possible to engineer plants for enhanced growth heavy
metals contaminated sites (Mishra et al. 2017).

7.7.5 Mitigation of Heat Stress

Temperature is one of the abiotic stresses which negatively impact the growth,
homeostasis, and metabolic activities of plants and microorganisms. Bioprospecting
PGPR with the ability to promote plant growth at alleviated temperatures would
possibly enhance global crop productivity, especially concerning the increased rate
of global warming (Kour et al. 2020a). The experimental evidence supporting the
effect of PGPR isolates in enhancing crop production at high temperatures is less.
Till now, thermostable PGPR isolates stable even at 60 °C (Rodriguez et al. 2008)
have been reported in the literature, but they lack the ability to provide thermostabil-
ity to host plant. Nonetheless, some studies have shown the application of PGPR
isolates to cope with the negative impacts due to low temperature-induced stress
(Barka et al. 2006; Dimkpa et al. 2009). Low temperature-induced stress has resulted
in enhanced synthesis of certain compounds like proline, sugar, anthocyanin, etc.
(Dimkpaet al. 2009). In a study, grapevine plants inoculated with Burkholderia phy-
tofirmans lead to increased production of carbohydrates, proline, and phenols along
with the improved accumulation of starch (Barkaet al. 2006; Kumar et al. 2019b).
However, PGPR-inoculated grapevine plant showed reduced biomass production
and imbalance of electrolytes when subjected to low temperature (4 °C).
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7.7.6 Combating Elevation CO, Levels

The process of photosynthesis plays a significant role in the uptake of atmospheric
CO, and its conversion to organic carbon in plants biomass. The rise in CO, levels
in atmosphere enhances the photosynthetic process in C3 plants, helping the prolif-
eration of rhizospheric bacteria with enhanced localization of photosynthate in soil.
Climatic fluctuations greatly influence the composition of plants as well as the
diversity that threatens the soil microbes and edaphic characteristics of soil, includ-
ing quality and quantity of organic matter in the soil. It also has a negative impact
on various nutrient cycles like the carbon cycle, methane cycle, nitrogen cycle, and
terrestrial ecosystem climates (Dorrepaal et al. 2009; Malyan et al. 2019). The
PGPR utilization has enhanced the grassland management technology (Antoun
et al. 1998; Van Der Heijden et al. 2006), restoration of the ecosystem (Requena
et al. 2001), and reforestation (Chanway 1997). The PGPR have a remarkable abil-
ity to improve the accumulation of carbon in terrestrial systems by enhancing crop
productivity and reducing the carbon loss through respiration in microbial systems
at alleviated atmospheric CO, levels (Nie et al. 2015). However, the possibility of
escalation of atmospheric CO, concentrations in future will broaden the horizon of
PGPR application. The impact of microorganisms on the host plant through plant—
microbe interactions is well known, but the mechanisms involved at the molecular
level still remain unclear. Thus, it becomes important to study the plant growth
dynamics and mechanism of rhizobacteria colonization to exploit the potential of
PGPR further.

7.8  Conclusion and Future Prospects

Increasing crop productivity has become a global necessity. There is a need to
improve environmental management practices, revert the effects of changing cli-
mate, and forecast the interaction and impact of plant ecosystems on atmospheric
processes. To meet the ecological requirements, there is a need to understand plant
ecosystem dynamics in stressful environments. The emerging field of engineering
of ecosystems and rhizosphere marks a promising opportunity to fill critical research
gaps and to develop solutions. The interactions within ectophytic and endophytic
microbial communities along with mycorrhizal-rhizospheric relationship to pro-
mote plant growth and enhance nutrient uptake still remain unknown. Plant-microbe
interactions is the key to understand the mechanism of rhizosphere priming, man-
agement of the carbon cycle in soil, and improve the crop productivity under current
and future climatic conditions. Recent advancement in genetic engineering offers an
exciting opportunity to fulfil the research gaps. Future studies will explore the syn-
thetic approaches, which improves the production of bioenergy crops under abiotic
and biotic conditions.
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