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Preface

Microbial biotechnology is an emerging field with greater applications in diverse sec-
tors involving food security, human nutrition, plant protection, and overall basic
research in the agricultural sciences. The environment has been sustaining the burden
of mankind since decades, and indiscriminate use of the resources has led to the degra-
dation of the environment, loss of soil fertility, and has created a need for sustainable
strategies. The major focus in the coming decades would be on the green and clean
environment by utilizing the soil- and plant-associated beneficial microbial communi-
ties. The plant—microbes interaction included the association of microbes with plant
systems in the form of epiphytic, endophytic, and rhizospheric. The microbes associ-
ated with plant ecosystems play an important role in plant growth, development, and
soil health. The soil and plant microbiomes promote plant growth directly or indirectly
mechanisms by using diverse plant growth-promoting mechanisms, viz. releasing plant
growth regulators; solubilization of phosphorus, potassium, and zinc; biological nitro-
gen fixation or by producing siderophores, ammonia, HCN, and other secondary
metabolites. The PGP microbes belong to all three domains of archaea, bacteria, and
eukarya. The most dominant and efficient plant growth-promoting microbes belong to
different genera of Arthrobacter, Azospirillum, Azotobacter, Bacillus, Burkholderia,
Gluconoacetobacter,  Methylobacterium, Paenibacillus, Pantoea, Penicillium,
Piriformospora,  Planomonospora, Pseudomonas, Rhizobium, Serratia, and
Streptomyces. These beneficial microbial communities represent a novel and promis-
ing solution for agro-environmental sustainability. Microbial communities possess a
huge sink of capability by which they act as biofertilizers, bioprotectants, and bios-
timulants as well as for mitigation of different abiotic stress in plants. The utilization of
beneficial soil and plant microbiomes will surely support sustainable agriculture.

The aim of the book “Current Trends in Microbial Biotechnology for
Sustainable Agriculture” is to provide understanding of microbial diversity associ-
ated with plant systems and their role in plant growth and soil health. The book will
be useful to scientists, research, and students related to microbiology, biotechnol-
ogy, agriculture, molecular biology, environmental biology, and related subjects.

Sirmour, Himachal Pradesh, India Ajar Nath Yadav
Phagwara, Punjab, India Joginder Singh
Lucknow, Uttar Pradesh, India Chhatarpal Singh

Jaunpur, Uttar Pradesh, India Neelam Yadav
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Soil Microbiomes for Healthy Nutrient
Recycling

Shiv Prasad, Lal Chand Malav, Jairam Choudhary,
Sudha Kannojiya, Monika Kundu, Sandeep Kumar,
and Ajar Nath Yadav

Abstract

Nutrient cycling is a vital process in the ecosystem by which movement and
exchange of nutrients in available forms from the environment into living organ-
isms and then subsequently are recycled back into the atmosphere. Chemical
elements such as C, O, H, S, N, and P are necessary to live. These elements must
be recycled for organisms to live and to sustain plant growth and yield. In this
context, microbes in the soil play a dynamic role. They help to release mineral
nutrients through matter organic decomposition and mineral recycling. These
mineralized nutrients are then absorbed by plant roots with water and used to
make new organic material. They are also crucial to maintain soil structure and
soil quality for sustainable plant growth. Currently, most of the world’s soils are
distinguished deficient in these nutrients, and there would be high demand for
chemical fertilizers to meet the deficiency of nutrients. Synthetic chemical
fertilizers are undoubtedly necessary for the healthy growth of plants. But, their
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injudicious application is also harmful to the environment and living beings.
However, the entire range of microbes associated with plants and their potential
to replace synthetic farm inputs has only recently started. Accordingly, there is a
need to explore the potent soil microbes for efficient nutrient recycling and iden-
tify alternative eco-friendly options for reducing chemical fertilizer’s use and its
adverse impacts. In this scenario, maintaining soil fertility and crop productivity
using natural microbial diversity could be the best approach for enhancing the
bioavailability of nutrients and improving soil health.

Keywords

Cycling - Microbes - Nutrient - Plants and soil quality - Soil - Sustainability

1.1 Introduction

Over the last decades, the global demand for food products has increased dramati-
cally (Elferink and Schierhorn 2016). Global food demand is projected to enhance
by 59-98% by 2050. In developing nations, food demand is also increasing, where
the expansion of croplands resources is limited. In this scenario, for enhancing food
production from existing land is hard to contribute to meet such an essential require-
ment (Bargaz et al. 2018). In order to address this problem, there is a need to enhance
agricultural production sustainably through the use of efficient agro-bioresources,
whereas soil microbial diversity can play an important role and also help to mitigate
many problems associated with soil fertility, abiotic stress, insect pests, and diseases
(Tilman et al. 2011; Utuk and Daniel 2015; Timmusk et al. 2017).

Soil serves as a plant growth medium and a major source of plant nutrients for
quality food production. Nitrogen (N), phosphorus (P), potassium (K), and iron (Fe)
are essential nutrients in crop production. Since most of the world’s soils are known
to lack in these nutrients, and there would be a high demand for chemical fertilizers
to meet the deficiency of nutrients. Hence, there is an urgent need to explore the
potential of soil microbes for proper nutrient recycling and to recognize alternative,
sustainable, environment-friendly options for reducing the use and impacts of syn-
thetic fertilizers (Malav et al. 2015). In this scenario, maintaining soil fertility and
crop productivity through the use of natural microbial diversity could be a well-off
approach for enhancing the bioavailability of nutrients and increasing soil health
(Singh et al. 2015; Timmusk et al. 2017; Bargaz et al. 2018; Rana et al. 2020a, b).

Soils are regarded as home to a wide range of macro- and microorganisms of
rhizospheric nature. Soil microbe diversity is the fundamental key component in
regulating biogeochemical cycles (e.g., C, N, P, and many more). Biogeochemical
cycling affects soil ecosystems, composition, and functions as well as the capacity
of soils to provide readily available nutrients to plants and animals by converting
dead organic matter into various nutrient forms and many auxiliary services to liv-
ing beings (Aislabie et al. 2013). Biofertilizers and organic manure could be
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regarded as a better choice in the crop integrated nutrient management approach
(Chaer et al. 2011; Kour et al. 2020b).

In this integration, soil microbes such as bacteria, archaea, and fungi play various
crucial roles. Though very little is acknowledged about the small creature that is
accountable for countless soil mechanisms in natural and managed agro-ecosystems
(Yadav and Sidhu 2016; Sahu et al. 2017). Soil microbes have an immense impact
on relations between soil and plant and microbe and play a vital role in sustaining
soil fertility (Yadav et al. 2020c). Nutrient cycling is the most significant of these
relationships. This chapter explains the potential of soil microbes for proper nutrient
recycling, including diversity, abundance, and distribution, and their role in nutrient
cycling of soil microbe organisms.

1.2  Soil Health and Sustainability

Soil health is defined as functional ability within agro-ecosystem boundaries that
support biological productivity, promote plant and animal fitness, and sustain envi-
ronmental quality (Doran and Parkin 1994). Healthy soil functions are to resist ero-
sion, support water, and nutrient cycling, inactivate toxic pollutants, suppress
pathogens, maintain soil organic matter, and enhance overall system productivity
and sustainability (Singh et al. 2015; Dubey 2016; Sahu et al. 2017). The soil health
directly or indirectly impact plant health, environmental health, and food safety and
quality (Singh et al. 2020a; Takoutsing et al. 2016). The soil serves as a biological
filter for removing unwanted solids and gaseous constituents from air and water
(Singer and Ewing 2000; Sahu et al. 2017). Healthy soils produce nutritious crops
that, in turn, nourish humans and animals. Certainly, soil quality is directly linked
with food quality and quantity. Maintaining healthy soil implies managing land
sustainably (FAO 2015). Managing soil health is not only necessary for agricultural
sustainability but also for ecosystem function. However, erosion, deforestation, and
intensive agriculture have led to the degradation of many soils. As we know, soils
constitute the foundation for sustainable agricultural development. Therefore, keep-
ing healthy is essential to maintain food production for future generations.

1.3  Soil Quality

Soil quality is the capability of the soil to perform functions that are crucial to agri-
culture and the environment. Soil Science Society of America established soil qual-
ity as the ability of particular kind of soil to function, within a natural or managed
ecosystem, to support plants and animals productivity, maintain or improve quality
of water and air, and promote human health and habitation (Carter et al. 1997). Soil
quality is not limited to agricultural lands although most soil quality work has been
done in agrarian systems. It is a blend of inherent and dynamic soil properties. Soil
properties include soil organic matter, nutrient, soil structure, water infiltration rate,



4 S.Prasad et al.

bulk density, and water holding capacity. Soil properties can change over months
and years in response to land use.

Soil properties are dynamic and changed, depending on land management prac-
tices and the inherent properties of parental material (rocks). The soil quality is
necessary for the integrity of ecosystems and sustainably supports human and ani-
mal health, plant growth (Pankhurst and Doube 1997). Declining soil quality is a
vital concern worldwide (Singer and Ewing 2000). Healthy soils improve crop
yields, drought and flood tolerance, and air and water quality and balance a range of
other functions to satisfy the demands of both farmers and the community. Soil
quality is a critical part and basic features of sustainable agro-ecosystem manage-
ment, similar to water and air quality. The relationship between soil quality, envi-
ronmental quality, and agricultural sustainability is shown in Fig. 1.1.

1.4  Soil Quality Indicators

Soil quality indicators are used to assess and identify soil properties that are respon-
sive to management, affect, or associated with environmental consequences. There
are three primary levels of soil indicators: chemical, physical, and biological. Soil
quality integrates all of these indicators. Table 1.1 below shows the relationship
between indicator type and soil function. Organic matter or soil carbon is itself an
indicator of soil quality (Doran and Parkin 1996). It further affects other indicators
like soil aggregate-stability (physical), nutrient availability (chemical), and nutrient
cycling (biological). Chemical indicators give knowledge about equilibrium within
soil solution (water and nutrients) and exchange sites (clay particles, soil organic

Soil Quality Environmental Quality Agricultural Sustainability

Water . Economic
Quality P Sustainability

Chemical

Viability \

Factors

Fig. 1.1 Relationship between soil quality, environmental quality, and agricultural sustainability

Table 1.1 Indicator type and Category of indicators | Related soil functions
soil function relationship

Chemical Cycling of nutrient, water
relation, buffering capacity

Physical Stability and physical support,
water relation, habitats

Biological Biodiversity, cycling of
nutrient, filtering
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matter), plant health, nutritional demands of plant and soil communities, levels of
soil contaminants, and their availability for uptake by plants and animals.

Physical indicators give knowledge about soil hydrologic properties, such as
water retention, that affects the availability of water to plants. Some indicators are
related to nutrient availability by their impact on rooting volume and aeration status.
Other measures tell us about the erosional situation. Biological indicators provide
information regarding the organisms that form the soil food web that is responsible
for organic matter decomposition and cycling of nutrients. Soil microbial respira-
tion indicates the soil’s ability to sustain plant growth (Doran and Parkin 1996).

1.5 Potential Role of Microbes for Soil Health

Soil microorganisms are responsible for making nutrient and organic matter cycling,
in improving soil fertility, and leading to ecosystem productivity. Soil microbes
form symbiotic relationships with plant roots (rhizobia, actinomycetes, mycorrhizal
fungi, diazotrophic bacteria). They have the potential to improve nutrient mineral-
ization and availability, produce plant growth hormones, and are antagonists of
plant pests, fungi, or diseases (biocontrol agents). These organisms typically live in
the soil, although, in some situations, they may help increase their communities by
either inoculation or using several farm management techniques that improve their
abundance and activity.

1.5.1 Soil as a Microbial Habitat

Soil represents a hospitable and dynamic habitat for microorganisms and is occu-
pied by a wide range of microbial species. Microbes hold a fraction (<0.5%) of the
total soil volume of topsoil. Usually, per gram of soil between one and ten million
with a dominant number of bacteria and fungi is present (Fig. 1.2). The decomposi-
tion of organic residues and the cycling of nutrients is the significant role played by
microbial species in soil (Pankhurst and Doube 1997). However, the soil also con-
tains countless microorganisms capable of causing human disease (Rastegari et al.
2020b). Microbes are connected with the decay, and the nutrient cycling process is
capable of sustaining and responding to quick changes in the environment. Hence,
they rapidly adapt to environmental conditions, changes in microbial populations,
and activities. Therefore, it can be considered as an excellent indicator of change in
soil health (Singh et al. 2015; Sahu et al. 2017).

Soil microbes are classified as bacteria, actinomycetes, fungi, algae, and proto-
zoa. The interactions of gases, water, organisms, and organic and inorganic constitu-
ents can be visualized in a per gram of soil (Fig. 1.3). Up to ten billion bacterial cells
survive each gram of soil in and nearby plant roots, a sphere is known as the rhizo-
sphere. Rhizobacteria are the most abundant group of soil microbes, both in abso-
Iute number and in diversity. They perform a vital role in nutrient cycling and
decomposition of organic residues (Pankhurst and Doube 1997).
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Fig. 1.2 A soil aggregate or ped is a naturally formed assemblage of sand, silt, clay, organic mat-
ter, root hairs, microorganisms, and their secretions, and resulting pores. (Source: Fortuna 2012)

—— Aerobic bacteria ——Anaerobic bacteria —— Actinomyces —— Fungi
83
[k
z 0
£ 65
= &0
-
w 20
S 435
E 40
B35
5 30
o
§ 13
€ 10
%03
G 00 See

3-8 20-25 3540 65-75 135
Soil depth (cm)

Fig. 1.3 Distribution of soil microorganisms with depth

1.5.2 Soil Microbes and Agro-Ecosystem Stability

Ecosystem stability is an essential part of sustainability, where microbes play a criti-
calrole. Stability of equilibrium of any system has two components: (i) Resistance—
the ability of the ecosystem to continue to function without any change when
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stressed by disturbance (ii) Resilience—the strength of the ecosystem to recover
after disturbance (Odum 1989; Seybold et al. 1999). Soil is the junction between the
air, water, minerals, and organisms and is performing various functions in the natu-
ral and agro-ecosystem that we call ecosystem services. Soils play an essential role
in the entire natural ecological cycles—C, N, oxygen, water, and nutrient, and also
provide benefits through their contribution in several unique processes called eco-
system services. Suggested practices to increase agro-ecosystem stability and func-
tion are given in Table 1.2. Soil microbial biodiversity reflects the variability among
living microorganisms extending from the countless of invisible microbes to more
familiar macro-fauna like earthworms and termites. Soil microbes play an essential
role in agro-ecosystem stability, including rich biodiversity, healthy biological
cycles, and soil microbial activity; consequently, they are contributing to the build-
up of stable soil agro-ecosystem (Doran and Parkin 1996; Pankhurst and Doube
1997; Madsen 2005; Fortuna 2012; Yadav et al. 2020a, b).

Table 1.2 Suggested practices to increase agroecosystem stability and function

Stability factor ‘ Examples
Disturbance (frequency and intensity)

Suggested factors

Chemical Fertilizers and pesticides Account for mineralization of organic
amendments, be aware of non-target
effects of pesticides

Biological Introduction of exotic or weed

species

Physical How often and what kind of Reduced, minimum or no-till practices

tillage

Diversity

Species Genetic resources (crop) or Intercropping of varieties

competition for water and
nutrients (weeds)
Type of plant heights (e.g., to

Structure or Intercropping of species

habitat increase niche space among
insect predators)
Temporal Variety of plants through time Rotations
Complexity
Trophic groups | How many functions are (For all types of complexity) Practices
represented that improve habitat for soil
Redundancy How many populations perform | Organisms, such as organic matter
each function amendments, reduced disturbances
Food web How do all of these groups Increased diversity of resources and
structure interact niches (habitat) (see above)

Nutrient or
energy flux

How fast nutrients or energy
move through the system
Input: Output efficiencies

Low input and high organic matter
Eliminate over-applications

Source: Doran and Parkin (1996)
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1.5.3 Microorganisms and Soil Functions

Soil functions provide many benefits, such as cycling of nutrients, maintaining bio-
diversity and habitat, water relations, and maintaining water quality, acting as a
biofilter and buffering providing physical stability and support crop production, and
carbon sequestration. The summary of soil functions and its advantages for humans
is given in Table 1.3. It is vital to maintain or improve soil quality over time and
provide essential services in the face of disturbance, whether it is natural or human-
induced. Typically, soil is not considered healthy if it is managed for short-term
productivity at the cost of future degeneration (Doran and Parkin 1994).

The soil can store, govern the discharge and cycling of nutrients and elements.
During these biogeochemical processes, similar to the water cycle, nutrients can be
transformed into plant-available forms, contained in the soil, or even lost to air or
water. Soil promotes the growth of a variety of plants, animals, and soil microorgan-
isms, regularly by giving a different physical, chemical, and biological habitat. Soil
acts as a filter to maintain water and air quality. Excess nutrients and toxic com-
pounds can be degraded or otherwise made unavailable to plants and animals. Soil
can maintain its porous structure to allow passage of air and water, resist erosive
forces, and give a mechanism for plant roots. Soils also provide anchoring support
for social structures (Doran and Parkin 1994).

Table 1.3 Summary of soil functions and advantages for humans

Advantages for humans
Soil function On-site value Oft-site value
Cycling of nutrient |— Nutrients delivery to crops and plants | — Improves air and water
— Storage of carbon to improves a kind quality
of soil functions — N and C storage to reduce
greenhouse gas emissions
Maintaining — Supports the growth of crops, — Helps maintain genetic
biodiversity and rangeland plants, and trees diversity
habitat — May increase resistance and Supports wild species and
resilience to stress reduces extinction rates
— Reduces pesticide resistance — Improves esthetics of
landscape.
Water relations — Provides erosion control — Provides flood and
— Allows on-site water recharge of sedimentation control
streams and ponds — Groundwater recharge
— Makes water available for plants and
animals
Filtering and — Can maintain salt, metal, and — Improves water and air
buffering micronutrient levels within range quality
tolerable to plants and animals
Physical stability — Acts as a medium for plant growth — Stores archeological items
and support — Supports buildings and roads — Stores garbage
Multiple functions | — Sustains productivity — Maintains or improves air
and water quality

Source: Doran and Parkin (1994)
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Nutrient cycling and water regulation functions are natural soil processes
occurring in each ecosystem. These functions provide various opportunities to
humans for betterment of quality life, achieve sufficient food, quality water, flood
control, and several more. Soil pollution can happen either because of anthropo-
genic activities or because of the natural process. However, it is mostly due to
anthropogenic activities. A human can enhance the value of soil and take its maxi-
mum benefits because land management choices affect soil functions. Thus, it is
necessary to realize what benefits we obtain from the earth. So we can have the
greatness of achieving land management in a way that maintains essential soil
functions. Several main benefits are long term or go beyond if the land is being
managed properly. The community should respect the value of many off-site ser-
vices and profits and the extent to which the landowner or community should pay
to maintain these soil functions.

1.6  Role of Microorganisms in Nutrient Cycling

Soil microbes perform various functions in the pedosphere. They are essential in
controlling biogeochemical processes (Table 1.4). The critical soil microbes regu-
lated roles are: (i) soil organic matter formation and turnover which includes miner-
alization and carbon sequestration, (ii) nutrient cycling, (iii) disease dissemination
and prevention, (iv) contaminant depletion, and (v) soil structure improvement
(GHGsS) (CO,, CH,, and N,0, etc.) are the by-products of metabolic redox reactions
of carbon and nitrogen compounds in soils (Madsen 2008). Nitrogen fertilizer
application and cultural practices in soil management can stimulate microbial pro-
cesses such as nitrification, denitrification, and mineralization that play a major role
in the emission of GHG (Pathak et al. 2003; Rastegari et al. 2020a).

The quantity and composition of the microbial biomass depend on soil character-
istics and the abundance of carbon (C) for energy and cell metabolism. Soil carbon
inputs varied in chemical composition and nutrient content. Carbon recycling, deg-
radation, and microbial function frequently contribute to an increased organic mat-
ter, which leads to soil aggregation. Various ecosystems have different types of
potential to support biota and sequestration of soils C in organic matter. Soil organic
carbon (SOC) is the backbone of organic matter, which is the source of energy for
most of the soil biota. Microbiological decomposition of crop residues and organic
matter provides access to carbon and the nutrients needed by most living species.
Mineralization of organic-nitrogen into ammonium and the use of nitrogenous
chemical fertilizers containing ammonium promote nitrification with the help of
nitrifying bacteria and archaea that turn ammonium into nitrate. Therefore, nitrate
undergoes a further microbially induced stage, denitrification (Maier et al. 2009;
Fortuna 2012).

The food web present in the soil consists of various groups of microbes and helps
for nutrients transfers and flow between the biotic and abiotic components (Sylvia
et al. 2005). Mesofauna (collembolan and mites) perform a prominent role in nutri-
ent cycling by slicing stocks into smaller pieces and directly helping to enhance the
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Table 1.4 Examples of essential biogeochemical processes catalyzed by microorganisms in bio-

sphere habitats

Process

Process

Carbon cycle

Nature of process

Nitrogen cycle

Nature of process

Photosynthesis

Light-driven CO, fixation
into biomass

N, fixation

N, gas becomes NHj;

C Respiration

Oxidation of organic C to
CO,

NH,* oxidation

NH;becomesNO,™,NO;~

Cellulose Depolymerization, Anaerobic NO,~ and NH; becomes
decomposition respiration NH,*oxidation N, gas
Methanogenesis | CH, production Denitrification NOs™ is used as an
Aerobic CH, CH, becomes CO, electron acceptor and
oxidation converted to N, gas
Anaerobic CH, CH, becomes CO, Sulfur cycle S, S?- and S° become SO,>
oxidation oxidation
SO~ reduction SO,*~ is used as an
electron acceptor and
converted to N, gas
Biodegradation | Nature of process Other elements Nature of process

Synthetic organic

Decomposition, CO,

H, oxidation

H, is oxidized to H*;

compounds formation electrons reduce other
substances

Petroleum Decomposition, CO, Hg methylation Organic Hg is formed

hydrocarbons formation and reduction and Hg** is converted to
Hg

Fuel additives Decomposition, CO, (per)chlorate Oxidants in rocket fuel
(MTBE) formation reduction and other sources are
converted to chloride
Nitroaromatics Decomposition, CO, U reduction U oxyanion is used as an
formation electron acceptor,
therefore immobilized
Pharmaceuticals, | Decomposition As reduction As oxyanion is used as
personal care an electron acceptor;
products thus toxicity is
diminished
Chlorinated Compounds are chlorinated | Fe oxidation, FeS ores are oxidized,
solvents through respiration in acid mine strong acidity is
anaerobic habitats drainage generated

As, arsenic; C, carbon; CH,, methane; CO,, carbon dioxide; Fe, iron; FeS, Iron sulphide; H, hydro-
gen; Hg, mercury; Hg?*, mercuric ion; MTBE, methyl tertiary butyl ether; N,, nitrogen; NHs,
ammonia; NH,*, ammonium; NO,™, nitrite; NO;~, nitrate; S, elemental sulfur; S?>-, sulfide; SO,
sulfate; and U, uranium

Source: Madsen (2005), Fortuna (2012)

surface area. It has greater exposure to microbes that are key to carbon cycling. All
food webs include many trophic levels in a food chain. If organic carbon is derived
from living animals, the term grazing is used. Soil microbes form an essential part
of the detrital type of food chain because they obtain their organic carbon from dead
substances. Elemental ratios of C:N:P:S relatively are constant in the biological
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systems and organisms. Those ratios and mass balance allow researchers to estab-
lish biochemical changes between species.

Most soil microbe members are chemo-heterotrophs, suggesting they receive
carbon and energy by the oxidation of organic materials (Kumar et al. 2019b; Singh
et al. 2020b). C-sequestration restricts the mineralization mechanism mediated by
the CO, producing chemo-heterotrophs. Mineralization process by-products are
metabolites, heat, and CO,. CO, production can minimize concentrations of O, pro-
ducing anoxic sites within micro-aggregates resulting in variation of micro-
environments (Van Elsas et al. 2007; Sylvia et al. 2005). These microsites are
habitats in which CO, is converted by archaea known as methanogens into CH, a
GHG by anaerobic respiration. In neighboring microsites, methane can undergo
oxidation into CO, with the help of a group of bacteria known as methanotrophs.

Microbes play a vital role in nutrient cycling and organic substances decomposi-
tion. This transforms the natural materials into biomass or mineralizes them to CO,,
water, and nutrients (Bloem et al. 1997; Pankhurst and Doube 1997; Malyan et al.
2019). Such effective microbes are also concerned with the production and oxida-
tion of waste products, including organic industrial substances (Singh et al. 2016;
Kumar et al. 2019a). The functions of these productive rhizospheric organisms own
the potential to have a useful test of soil sustainability. This attribute cannot be
obtained with higher organism diversity analysis and physical/chemical tests.
Microorganisms respond quickly to environmental changes; hence, they adapt
quickly to ambient conditions. This adaptation makes it possible for microbial stud-
ies to differentiate in the assessment of soil health. Thus, improvements in soil biota
communities and activities can be an excellent predictor of soil health (Singh et al.
2015; Sindhu et al. 2016).

Soil is a diverse environment for several life forms and provides vegetation with
mechanical assistance from which nutrients are derived. Soil microbes regularly
interact with each other; at times, these relationships are beneficial to both parties
(mutualism), symbiotic, and competitive. It increases soil health because the
“healthy” soil biota may fight against the “poor” ones and also contribute signifi-
cantly by degrading organic compounds to make nutrients available. Thus, the simi-
lar basic soil structure in the different geographical regions is found to support
different biocommunities. Soils have different texture due to the percentage contri-
bution of sand, silt, and clay, and that includes a diversity of microhabitats that
sustain a wide variety of microbes. The atmosphere within soil shows less oxygen
content from the above-ground due to the utilization of the available O, by soil biota
and other metabolisms. Similarly, the concentration of CO, in the soil is higher than
the level at the above-ground due to the generation of it as a by-product of microbial
reactions (Sarkar et al. 2017; Kumar et al. 2017).

Microbes’ reaction to environmental changes/stress is rapid relative to higher
species, owing to their top surface to volume ratio. Those productive microbial
communities may be regarded as soil architects (Rajendhran and Gunasekaran
2008). Several environmental functions, including plant growth, drinking water pro-
tection, or carbon sequestration, are strictly related to microbial service and its func-
tional characteristics (Torsvik and Ovreas 2002; Lombard et al. 2011). A study on
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the development of abiotic and biotic interactions is very complex microbes func-
tion on a 3 pm scale and form biogeochemical soil interfaces (Totsche et al. 2010;
Monier et al. 2011). Furthermore, most functional features, such as plant litter
depletion or the formation of food web systems and nutrient cycling, are not the
function of a single organism, but of closely associated microbial communities
(Aneja et al. 2006; Sharma et al. 2012).

1.6.1 Organic Matter Decomposition

The decomposition of various forms of soil organic matter is one of the essential
functions of soil biota. To make these organic compounds accessible to the autotro-
phic organisms, they must be processed into simple inorganic forms. Mineralization
is the process of organic matter conversion into simpler inorganic forms, which is
rendered primarily soil microbes, mostly fungus and bacteria (Gupta and Germida
1988; Xu et al. 2015). The organic substances that are brought into the soil are
divided into three groups: the easily decomposable, moderately decomposable, and
difficult to degrade, distinctly attached by various microbiota types. The conse-
quence of microbial mineralization is, on the one hand, the release of energy, water,
gases, etc., and, on the other, the creation of complex amorphous material humus
through the process of humification.

1.6.2 Carbon Cycling

The balance between respiration and photosynthesis dominates terrestrial carbon
cycling. Carbon is transferred into the soil from the atmosphere by autotrophic
carbon-fixing species, primarily photosynthetic crop/plants and also photo- and
chemoautotrophic microorganisms, which synthesize carbon dioxide (CO,) in
organic matter. Respiration is the primary process behind the transfer of carbon
back to the atmosphere with the help of both autotrophic and heterotrophic organ-
isms. The reverse pathway involves the decomposition of organic matter by hetero-
trophic carbon consuming bacteria, which use plant, animal, or microbial origin
carbon as a metabolism base, retaining part of few carbons in their biomass and
adding the remainder back into the environment as metabolites or as CO, (Gougoulias
etal. 2014).

1.6.3 Nitrogen Cycle

All organisms require nitrogen because the protein and nucleic acids are essential
elements. Animals derive nitrogen from organic sources, whereas plants derive inor-
ganic nitrogen sources like NH,* and NO;— (Schimel and Bennett 2004). Nitrogen
fixation is the reduction of atmospheric N, gas to NH,*. Nitrogen fixation is the only
natural mechanism by which new nitrogen reaches the biosphere, and is thus
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necessary for the ecosystem’s functioning. The enzyme nitrogenase catalyzes
N-fixation. The ammonium generated by N-fixation is assimilated into amino acids
and then converted into proteins. Under nitrogen-scarce conditions, N-fixing micro-
organisms have an advantage. Nitrogen fixation is carried out by free-living micro-
organisms such as Azotobacter, Burkholderia, Clostridium, and few methanogens,
some of which may be kept associated with the rhizosphere of crops plants, and
bacteria that shows symbiotic relationships with plants like Rhizobium,
Mesorhizobium, and Frankia (Maier et al. 2009; Fortuna 2012; Santi et al. 2013).
The nitrogen-fixing microbes have been reported from different habitats and host
worldwide belonging to different genera of Arthrobacter, Azoarcus, Azospirillum,
Azotobacter, Bacillus, Enterobacter, Gluconoacetobacter, Herbaspirillum,
Klebsiella, Pseudomonas, and Serratia (Subrahmanyam et al. 2020; Suman et al.
2016; Yadav 2020).

Exudates from crop plants provide some of the energy needed to fasten nitrogen
fixation. In agricultural soils, a significant source of N is rhizobia, which forms root
nodules in symbiotic relationships with introduced legumes such as clover, lucerne,
or lotus. Symbiotic interaction N-fixation levels are sometimes two to three orders
of magnitude higher than free-living bacteria in the soil. Ammonia or ammonium
ions are oxidized to nitrite and then to nitrate during nitrification. The two steps in
nitrification—first are the formation of nitrite and then nitrate—are carried out by
two distinct microbes. In soils, ammonia oxidation to nitrite is conducted by bacte-
ria such as Nitrosospira and Nitrosomonas, while bacteria such as Nitrobacter and
Nitrospira oxidize nitrite to nitrate. Nitrifying microbes utilize the energy derived
from nitrification to assimilate CO,. Nitrification is especially vital in soils as the
degradation of nitrite and nitrate ions from ammonium to nitrite shifts their charge
from positive into negative.

1.6.4 Siderophores Production

Iron is a vital nutrient, and part of many compounds that regulate and promote plant
growth and development. In the soil, naturally, iron is present as a ferric ion (Fe**),
which is too low to promote and facilitate soil microbial growth. It has been reported
that some bacteria possess the ability to assimilate unavailable iron to overcome
iron stress by producing ferric-specific ligands, referred to as siderophores, which
are usually of low molecular weight (400-10,000) (Neiland and Nakamura 1997).
Such microorganisms or bacteria are real iron scavengers as they have a high affin-
ity for iron (Fe**) chelators that transfer iron to bacterial cells (Leong 1986). Soil
microorganisms, especially rhizobacteria, are of great interest for siderophore pro-
duction. Under iron stress conditions, these bacteria have a high chelating affinity
for Fe** than Fe** ions, and Fe**ions are transferred to bacterial cells (Neiland 1995).
Recent studies have indicated that biological control of different phytopathogenic
organisms could be achieved using siderophore producing microorganism such as
Alcaligenes, Bacillus, Clavibacter, Curtobacterium, Flavobacterium, Kluyvera,
Microbacterium, and Pseudomonas (Verma et al. 2016, 2017; Yadav et al. 2017a).
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1.6.5 Hormones Production

Microbial synthesis of the phytohormone has been known for a long time. Plant
growth-promoting rhizobacteria (PGPR) is a group of microorganisms that colonize
several plant species’ rhizosphere and roots. They confer beneficial effects to plants
by a variety of mechanisms, including indole-3-acetic acid synthesis of phytohor-
mone auxin (IAA), which is essential for plant growth (Patten and Glick 1996; Kour
et al. 2020a; Rana et al. 2020a, b). Eighty percent of microorganisms isolated from
the rhizosphere of various crops have the potential to synthesize and release [AA as
secondary metabolites (Patten and Glick 1996; Yadav et al. 2017b). The most com-
mon phytohormone produced by PGPR is indole-3-acetic acid, which participates
in root growth and increases root surface area, thereby enabling plants to absorb
more nutrients from the soil. Gibberellins associated with plant extension, mainly
stem tissue, have been reported to be produced by Bacillus pumilus and B. licheni-
formis in the form of gibberellic acid. The phytohormone-producing rhizospheric
microbes, when inoculated to crops, help plant growth promotion, enhance yield,
and increase soil fertility for sustainable agriculture (Kumar et al. 2016; Singh and
Yadav 2020; Yadav et al. 2018b).

1.6.6 Phosphate Solubilization

Phosphorus, after nitrogen, holds a second essential role in various critical pro-
cesses in plant growth and development, including the division of cells, photosyn-
thesis, and decomposition of sugar, energy, and nutrient conversion in a crop plant.
Plants utilize phosphate ion the form of phosphate anions, but phosphate anions are
incredibly reactive and get immobilized through precipitation with cations present
in the soil such as Ca**, Mg?*, Fe**, and AI**. Rhizobacteria help in the decomposi-
tion of organic compounds and make phosphorus available by the action of minerals
and acids released by soil bacteria. Phosphorus mineralization is greatly affected by
the microbial community, and phosphate-solubilizing bacteria such as species of
Bacillus and Paenibacillus have been applied to soils to enhance the phosphorus
status of plants specifically. Pseudomonas, Bacillus, and Rhizobium are the most
potent phosphate solubilizers in the cropping system (Rodriguez and Fraga 1999;
Kour et al. 2019).

Possible mechanisms for solubilization from organically bound phosphate
involve either enzymes, namely C-P lyase, nonspecific phosphatases, and phytases.
However, most of the bacterial genera solubilize phosphate through the production
of organic acids such as gluconate, ketogluconate, acetate, lactate, oxalate, tartrate,
succinate, citrate, and glycolate (Yadav et al. 2015). The rhizospheric phosphate
utilizing bacteria could be a promising source for plant growth-promoting agent in
agriculture (Rana et al. 2019; Yadav et al. 2018a). The rhizospheric phosphorus-
solubilizing microbiomes may be used for mitigation of abiotic stress in plants such
as high/low temperatures, alkaline/acidic, drought, and saline environments (Kour
et al. 2018, 2019; Kumar et al. 2019¢).
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1.6.7 Manganese (Mn) Solubilizers

Redox condition and hydrogen ion concentration (pH) are two significant factors
that influence the availability of Mn in the rhizosphere. Some rhizosphere bacteria
such as Bacillus, Pseudomonas, and Geobacter can reduce oxidized Mn** to Mn**
form, which is metabolically useful for crops (Wani et al. 2015). Consequently,
Mn-reducer function in the rhizosphere is strongly favored. Products of organic
matter can also help reduce Mn (Hue et al. 2014). Gaeumannomyces graminis is
also an Mn oxidizer that impairs root lignification at infection sites. Effective rhizo-
sphere Mn reducers like Pseudomonas sp. could have beneficial effects on plant
nutrition and also help in biocontrol of pathogens. In comparison, Mn oxidization
by rhizosphere bacteria supports plant growth in flooded soils where the abundance
of Mn?* can be high.

1.6.8 Iron Solubilizers

Iron dynamics in the rhizosphere is almost similar to that of manganese (Mn). Fe in
the soil is a part of the structure of insoluble minerals Goethite (FeOOH) or hema-
tite, in oxidized forms Fe*. Rhizosphere bacteria, such as Bacillus, Pseudomonas,
Geobacter, Alcaligenes, Clostridium, and Enterobacter, can reduce oxidized Fe* to
reduced Fe?* form required by crop plants. Electrons and hydrogen ions are avail-
able in the rhizosphere, and consequently, Fe is diminished. However, it can be
reprecipitated (Kaur et al. 2020; Wani et al. 2015).

1.6.9 Soil Enzymes

Soil enzymes act as a booster in the redox reaction through which plant residues
decompose and make nutrients available. The material on that soil enzyme that has
worked is considered the substrate. The enzymatic reaction releases a product,
which may be a substrate-containing nutrient. There are so many sources of enzymes
in the soil, such as living and dead microorganisms, soil animals, plant roots, and
plant residues. Enzymes that are stable in the soil matrix retained or form complexes
with humus, clay, and humus-clay compounds, which are no longer associated with
sustainable cells. Stabilized enzymes contribute 40-60% of the total enzyme activ-
ity. It is believed that 40-60% of enzyme activity can come from stabilized enzymes.
Thus, behavior is not strongly associated with microbial biomass or respiration.
Enzyme activity is then the combined effect of long-term microbial development
and viable sampling population activity.

Enzymes respond to changes in soil management long before more changes in
soil quality indicators can be identified. Soil enzymes play a crucial part in the
decomposition of organic matter and nutrient cycling (Table 1.5). There is no sub-
stantial evidence, apart from phosphatase activity, that directly relates enzyme
activity to nutrient availability or crop production. The relation may be indirect
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Table 1.5 Role of soil enzymes

Organic
matter
substances Predictor of soil
Enzyme acted on End product Significance function
Beta Carbon Glucose Energy for Organic matter
glucosidase | compounds (sugar) microorganisms decomposition
FDA Organic Carbon and Energy and nutrients | Organic matter
hydrolysis matter various for microorganisms, | decompositionnutrient
nutrients measuremicrobial cycling
biomass
Amidase Carbon and Ammonium Plant-available NH, | Nutrient cycling
nitrogen (NH,)
compounds
Urease Nitrogen Ammonia Plant-available NH, | Nutrient cycling
(urea) (NH;) and
carbon
dioxide (CO,)
Phosphatase | Phosphorus Phosphate Plant-available P Nutrient cycling
(PO,
Sulfatase Sulfur Sulfate (SO,) | Plant-available S Nutrient cycling

because nutrient mineralization is achieved with the contribution of enzyme activity
to plant-available sources. Limited enzymatic activity (e.g., pesticide degrading
enzymes) may contribute to dangerous chemical accumulation for the environment.
Many of these toxic chemicals can also impede soil enzymatic activity.

Apart from these, as we know, plant growth and yield depend on the availability
of nutrients and their efficient management. Therefore, it is essential to adopt the
4R Nutrient Stewardship concept of right nutrient application (i) Right source, (ii)
Right rate, (iii) Right time, and (iv) Right place (Johnston and Bruulsema 2014).
This concept integrates soil health with sustainable and precision farming prac-
tices. Right source means matching the source of the nutrient to the crop need and
soil properties. A significant part of the source is balanced between the various
nutrients, a considerable challenge globally in improving nutrient use efficiency.
The right amount means balancing the nutrients added to the need for the seed as
basic as that.

The applications of too much fertilizer contributes to excess soil nutrients and
environmental degradation. Ultimately, striking a balance between the crop needs,
environmental conditions, and the farmer’s economic situation is required. Here,
microbial biofertilizers can play a vital role in such cases. The right timing ensures
that fertilizer nutrients are made available for the crop when needed. Efficiency in
nutrient usage can be significantly improved when its supply is matched with crop
demand. The right position means attempting to preserve nutrients so crops can use
them. This is a question that presents the most significant challenge in smallholder
farming systems, where most fertilizers are distributed, and in many cases, without
incorporation (Johnston and Bruulsema 2014). Adaptation of 4R Nutrient
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Stewardship concept of right nutrient application with the potential soil microbes
helps to better nutrient recycling and long-term sustainability goal of our agriculture
production system.

1.7  Conclusion and Future Perspectives

In soil processes, including nutrient cycling, soil organisms and their products play
a crucial role. These mechanisms are essential for agriculture as well as water, air,
and habitat quality protection. Agriculture is currently facing excessive pressure due
to population development and related rises in urbanization, resource extraction,
etc. However, cultural practices are influenced by the microbial activities. Therefore,
it is necessary to consider the potential role of soil microbes for proper nutrient
recycling and its impacts on soil health.

Furthermore, expanding our core knowledge regarding diversity and function of
soil microbial component is a necessary task to alleviate the harmful effects of soil
degradation. Research focusing more on the credentials of innovative microbial
diversity in the soil remains essential practices. In the future, that would play a more
critical role favorably for enhancing plant growth and yield as well as contribute
towards a more environment-friendly alternative to support sustainable development.
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Abstract

The significant use of land and climate leads to the projection of worldwide
transformation and finally leads to an increased rate of extension for microbes.
The equators of the earth and the countries residing on the same have threatened
species, and their frequencies are too high on the same. It is reported that the
pollution and fragmented lands coupled with previous are responsible for the
loss of microbial diversity in the soil. This chapter describes the sustainable man-
agement of soil microbial diversity. A diverse group of microorganisms is found
in plants that grow in metallic polluted soil effectively tolerating a high level of
steel and providing various benefits to both soil and plant life. Rhizospheric bac-
teria are particularly well represented in the microorganisms involved in phytore-
mediation of heavy metal, as these can at the same time increase how to plant
remediation takes place by changing soil bioavailability by modifying the pH of
the soil, releasing the chelators and the reactions oxidation/reduction. In the
same manner, in hyperaccumulators produced in metallic contaminated fields,
steel-resistant fungus was frequently cited suggesting that this fungus progressed
heavy metal resistance and could also be active in the phytoremediation. The
microbe attached to the plant causes the metal to accumulate from the soil via the
sorption mechanism. “The definition of biosorption is the microbial adsorption
by metabolism dependent and active process of soluble/insoluble organic/inor-
ganic metals”. Some authors focused on the mechanism for bacterial absorption
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that reduced plant metal absorption. Research shows that metal bioavailability
can be minimized through metal binding and/or metal bioavailability restricts the
plant’s root/shoot ratio.
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2.1 Introduction

The existence of life and its diversity are the outstanding features of the earth. It
leads to the extensive observation of the distribution of the natural habitat for plants,
animals, and microbes. The biosphere of the earth consists of diverse biodiversity
with special reference to the diversity of microorganisms, viz. bacteria, protozoa,
fungi, unicellular algae (Yadav et al. 2020b). Its contribution to support the life form
on the earth is extraordinary. The genetic information concerned with microbes is a
virtually limitless pool for the information about its biodiversity. The soil has been
reported as a source of the rich biodiversity of microbes. For example, the single
pinch of the soil contains thousands of species of microbes. In terms of fungi diver-
sity, a total 15,00,000 species have been reported. Limited knowledge is available
for the fungi present in the soil concerning the pathogenic common fungi and
mycorrhiza present in the soil (Yadav et al. 2019b). As we all know, agriculture is
an artificial ecosystem, and it implies lots of implementation and practices, which
leads to the destruction of diversity and promotes the smoothness of the areas in
terms of its diversity. It has been reported that the grain crops of 12 species, 23 veg-
etable crops, and 35 fruit and nut crops have been cultivated mostly on the agricul-
tural land species. In general, no more than 70 plant species spread over
approximately 1440 million hectares of presently cultivated in the world. It is a
general observation that a tropical rainforest contains over 100 species of trees in a
given area. About 440 million species on the earth are unknown and unmonitored.

India is one of the world’s top 12 mega-diversity countries, rich in biological
diversity with about 81,000 species of animals and 47,000 species of plants. Myers
et al. 2000, reported that the world harbors are full of plants, microorganisms, and
animals, and its estimate is about ten million organisms, which includes algae,
fungi, mosses, and higher plants. The total number of flowering plants is 15,000,
algae 2000, fungi 15,000, bryophyte 2500, ferns 1000, gymnosperm 64 species of
gymnosperm (Kumar and Dwivedi 2011). The key driver for biodiversity and eco-
system loss is the human transformation of land cover. The land cover and land use
are two important acknowledged aspects in terms of microbial diversity. The physi-
cal surface of land comes under the land cover, and it includes vegetation and built
structure. The shifting of one land cover to another form leads to habitat loss and
finally leads to loss of habitat. The way to loss of habitat is different and the persis-
tence of a species depends on factors, viz. the ability to migrate and adaptation
evolution with interspecific interaction.
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2.2  Soil Microbial Diversity

Soil microbial diversity is essential for the ecosphere’s health, stability, and healthy
and complete process. Everyday millions of people obtain their living from the soil.
The effective biodiversity of agricultural system exists in the soil. Then the interac-
tion of food web among the living things has a potential impact on crop quality, the
interaction of soil-borne plant and animal pests and disease (affecting production
levels) and the beneficial organisms. On this planet, 50% of the living protoplasm is
microbial (Chakrabarti 2010). Microorganisms represent the richest repertoire of
molecular and chemical diversity in nature, as they comprise the most diverse form
of life and also they are the extraordinary reservoir of life in the biosphere (Biswas
et al. 2018; Saxena et al. 2016; Verma et al. 2019). In nature, molecular and chemi-
cal diversity can be represented by the microorganism because it creates a huge
source for the benefits of men.

They underlie the processes of the basic ecosystem which are the biogeochemi-
cal cycles and food chains, also maintain vital and often elegant relationships
between themselves and higher organisms. The major sources for antimicrobial
agents are microorganisms, and it produces a wide range of important medicinal
compounds which are including with enzymes, enzyme inhibitors, antitumor agents,
insecticides, vitamins, immunosuppressant, and immunomodulatory. To demon-
strate the diversity of microorganisms which is extraordinary in terms of specialized
metabolism, it is sensible to consider secondary metabolites of the genus
Streptomyces with around 140 species or groups. Secondary metabolites have been
recognized approximately 3500 antibiotics from the genus Streptomyces alone
(Greene et al. 2000). In laboratory cultures, Streptomyces griseus can be induced to
produce more than 50 antibiotics and over 180 secondary metabolites are produced
by Streptomyces hygroscopicus alone. Given the endless combination of terrestrial,
aquatic, and marine habitats and such enormous potential of secondary metabolite
production in microorganisms and opportunities available for manipulation of the
types and quantities produced in a laboratory, the biotechnology industry has a tre-
mendous resource at hand for the discovery of new chemicals for biotechnological
application.

2.2.1 TheIndian Biodiversity Scenario

Biological diversity of the Indian subcontinent is found one of the richest in the
world because of its vast geographical area, diverse topography along with climate
with different biogeographically regions. For rich floral and faunal diversity in
India, the popular place is Western Ghats, North-western, Eastern Himalayas,
North-East Region, and Andaman and Nicobar Islands. The richness in diversity
leads to the recognition of India on the 12 mega-diversity regions of the world.
There are huge numbers of microbes as plant microbiomes (Kour et al. 2020b, c, d;
Verma et al. 2016, 2015) and extremophilic microbes (Kumar et al. 2014; Pandey
et al. 2013; Rajawat et al. 2020; Suman et al. 2015; Yadav et al. 2016, 2015d) have
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been isolated, identified, and characterized for potential applications in agriculture,
medicine, and environment for sustainable development. Brussaad (2007) reported
72% of India’s bio-wealth. The contribution of fungi, insects, and angiosperm in
India’s bio-wealth are 18, 40, and 13%, respectively. The world contribution of
India’s bio-wealth is around 8%. The most important mega-diversity centers are the
Western Ghats, North-Eastern Hill regions, Bastar region inhabited by tribals,
Andaman Nicobar Islands, mangrove forests of Sundarbans area, the Silent Valley
of Kerala, Chilika Lake of Orissa, Sonar Lake of Maharashtra, and the
Himalayan region.

Due to the richness of biodiversity, the Indo-Burma and Western Ghats/Sri Lanka
considered as the hotspots of biodiversity in the subcontinent of India. The impor-
tance of biodiversity is commercial and the scientific lines are required for its man-
agement. The diverse population of microorganisms includes various places such as
boiling waters (Kumar et al. 2014; Sahay et al. 2017), salt pans (Yadav et al. 2019a,
2015c), acid mine drainage, deep-sea vents (Yadav et al. 2017), and cold environ-
ment (Yadav et al. 2015a, b). The biodiversity and its protection along with conser-
vation are considered as crucial for the living being (Tables 2.1, 2.2, and 2.3).

Table 2.1 Species richness Species

of key soil eukaryotes Taxonomic group described Species estimated
Protozoa 40,000 200,000
Fungi 70,000 1500,000
Nematodes 5000 20,000
Collembola 6500 15,000
Acari 20,000 80,000
Isoptera 2600 10,000
Earthworm 3700 8000

Source: Coleman (2001)

Table 2.2 Example of important heterotrophic surface soil bacteria

Organism Characteristics Function

Streptomyces Gram +ve, aerobic, Produce geosmins “earthy odor” and antibiotics
filamentous

Bacillus Gram +ve, aerobic, Carbon cycling, production of insecticides and
spore former antibiotics

Clostridium Gram +ve, anaerobic, | Carbon cycling, toxin production

spore former
Aerobic

Methane oxidizer that can metabolize trichloroethane
(TCE) using methane monooxygenase

Methylosinus

Alcaligenes

Gram —ve, aerobic

2,4-p degradation via plasmid pJP4

eutrophus
Rhizobium Gram —ve, aerobic Symbiotic nitrogen fixation with legumes
Frankia Gram +ve, aerobic Symbiotic nitrogen fixation with nonlegume

Agrobacterium

Gram +ve, aerobic

Important plant pathogens, cause crown gall disease

Source: Coleman (2001)
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Table 2.3 Dominant cultural soil bacteria in surface soils

Organism Characteristics Function
Arthrobacter Heterotrophic, aerobic, Gram variable. | Nutrient cycling and biodegradation
Up to 40% of culturable soil bacteria
Streptomyces Gram +ve, heterotrophic, aerobic Nutrient cycling and
actinomycete. 5-20% of culturable biodegradation, antibiotic
bacteria production by Streptomyces scabies
Pseudomonas | Gram —ve, heterotroph, aerobic or Nutrient cycling and
facultatively anaerobic, possess wide biodegradation, including
array of enzyme systems, 10-20% of | recalcitrant organics, a biocontrol
culturable bacteria agent
Bacillus Gram +ve, aerobic heterotrophy, Nutrient cycling and
produces endospores, 2—10% of biodegradation, biocontrol agent
culturable soil bacteria (Bacillus thuringiensis)

Source: Sharma (2011)

2.3  Soil Microbial Diversity and Its Impacts

on Ecosystem Function

Studies have revealed the evidence of the significant relationship between processes
and different components of plant diversity components, viz. the richness of spe-
cies, richness of function, and composition of function. These were followed in
natural and synthetically assembled groups of grassland species worldwide (Fig. 2.1;
Tables 2.4 and 2.5) (Diaz and Cabido 2001). The range and more particularly the
functional traits of plants (e.g., whether they harbor nitrogen-fixing symbionts,
warm-season grasses, or rosette forbs) are generally strong drivers of ecosystem
processes. These studies combined simplified microcosms and natural field sites, so
extrapolation from them is limited. In terms of linkage, they are neither global nor
simple, but its significant trends are found where the nitrogen-fixing symbionts.
Although it is remarkable that a large portion of the research demonstrated that spe-
cies abundance and functional composition had helpful effects over the ground
biomass.

Ecosystem and biodiversity are the two faces of a single coin. On the one hand,
creating a generation of biodiversity the ecosystem function exerts pressure while
the other hand ecosystem of microbes is influenced by biodiversity (Loreau et al.
2001). The ecosystem is an unpredictable circumstance, which is an easy method
that implies a functional system that covers the microorganisms and their ecosys-
tem. Degradation of the environment occurs due to human exploitation. Well-being
and prosperity of the environment have a direct impact on human well-being. A new
biological specialty is emerging that supports the development of new diseases. The
ecosystem functions and human health affected by environmental degradation, cli-
mate changes, and global warming. The biochemical and biogeochemical cycles of
the microorganisms influence the physical, chemical conditions of the environment
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Fig. 2.1 Schematic phylogenetic tree of life based on current molecular knowledge (SSU rRNA
and other molecular evidence). Green/light triangle represents phyla, divisions, or groups of high
taxonomic rank for which one member has been cultivated and/or properly described (e.g., many
protist species); the red/dark triangle represents high divergent lineage without cultivated or
described species. (Adapted with permission from Lopez-Garcia and Moreira 2008)

Table 2.4 Diversity of microorganism (per gram) of typical garden soil at various depths

Depth (cm) Bacteria Actinomycetes Fungi Algae
3-8 9,750,000 2,080,000 119,000 25,000
20-25 2,179,000 245,000 50,000 5000
35-40 570,000 49,000 14,000 500
65-75 11,000 5000 6000 100
135-150 1400 — 3000 -

Source: Kumar and Dwivedi (2011)

contributing to the livelihood of the sustainable life (Naeem 2002). The microbial
ecosystem manages with cellular interaction, the existence of fittest and terrestrial
production. The ecosystem inside the human body keeps up a stable interior condi-
tion through symbiotic living (Table 2.4).
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Table 2.-5 Range of appro?ci— Component of soil biota | Biomass (tons/ha)
mate biomass of ea<':h major Plant roots Up to 90 but generally about 20
component of the biota in a ;
. Bacteria 1-2
typical  temperate  grass- -
land soil Actinomycetes 0-2
Fungi 2-5
Nematodes 0-0.2
Earthworms 0-2.5
Other soil animals 0-0.05
Viruses Negligible

Source: Sharma (2011)

2.4  Soil Biodiversity and Its Role in Coping with Stress
and Disturbances

Microorganisms play a crucial role in soil fertility and its maintenance. Human
encroachments and disturbances such as the addition of pesticides affect the micro-
bial components of an ecological niche (Magu 1998) and thus a simultaneous effect
is observed on biotransformation reactions occurring in soil. For the assessment of
adaptation of land use in a particular place and time, the microbes can be used as an
indicator. Dilly and Blume 1998 reported that the combination of the concepts for
suitability and improvement leads to the integrated of the ecophysiology of
microbiota.

2.4.1 Abiotic Stress and Disturbance

Disturbances like rainfall, flood, fire, storms, nutrient availability, and soil erosion
are natural occurrences in the environment, interrupting the development to a cli-
max state and resulting in different patches of habitats at the landscape level. There
are different abiotic stress including temperature (—2 to 20 °C—psychrophiles; 60
to 115 °C—thermophiles), salinity (2-5 M NaCl—halophiles) and pH (<4 acido-
philes and >9—alkaliphiles), and drought. Microorganisms have been reported
from diverse abiotic stress conditions and play significant roles in sustainable agri-
culture (Verma et al. 2017; Yadav et al. 2020a).

2.4.2 Biotic Stress and Disturbance

Plant production are detrimental by many soil organisms. It has been reported that, the
living being viz., moles, rodents, snails, slugs, termites, ants, beetles and nematodes
may significantly harm crops or become trouble in both rural and urban households.
Numerous types of bacteria and actinomycetes can cause plant disease, but fungi
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are the most harmful cause for plant disease, which leads to maximum soil-borne crop
diseases like wilts, blight, root rot, and club rot. Net primary productivity (NPP) is
similar to the ecosystem nutrient use efficiency over soil nutrient supply. There is a
proof which indicated that increasing trend with soil biodiversity, the nutrient use
efficiency. Importance of the soil microbial biodiversity in increasing the water use
efficiency studied by many scientists.

2.5 Dynamics of Microbial Communities
in Metal-Polluted Areas

For the biological classification, the species are considered as the fundamental unit.
For the measurement of biodiversity, spices can be taken as the measurement unit
(Claridge et al. 1997). It is earlier described that microorganisms play vital roles in
nutrient cycles and food webs. Microorganisms are present in high quantities in all
kinds of habitats because of that reason microorganisms are selected as “test organ-
isms.” The increased value of the ratio between surface and volume represents the
closest intimate and their interaction with the given climate. It would be the repre-
sentation of higher sensitivity of microorganisms and their quick response. All the
microbes are found reactive along with their respective given environment, viz.
types of pollution, probiotics, xenobiotics, radioactivity, agricultural waste, and
metals pollution.

The scientific results show that microbial population and its activity fall because
of the presence of pollution which leads to the genetic and physiological character-
ization from standard communities. Studies reveal that heavy metal toxicity and
microbial population can influence each other. The significant contribution of cop-
per, zinc, iron, and nickel has been proved in the plant system for their optima activ-
ity (Kour et al. 2019; Malyan et al. 2019). But its higher concentration leads to the
toxicity symptoms. The vital physiological process of microbes depends on these
metals. Because of its trace in nature, its application is limited at the time of its
application. The factors which influenced the metal toxicity are its total concentra-
tion, its availability to its organism. The mode of action depends on the types of
organisms and metals, respectively. The mode of action includes the (1) binding
with macromolecules like DNA, RNA, protein, etc., (2) malformation of enzymatic
activity, (3) Reactive Oxygen Species formation, etc. For example, copper is an
essential element, but its higher concentration leads to toxicity in plants. The forma-
tion of radicals leads to the damage of the cell. That is why the intercellular concen-
tration of the copper and its level should be controlled. An ecosystem is calling the
citizen for the mitigation of heavy metal toxicity in concern environment. A large
number of studies has been conducted in terms of metal and ecosystem interaction
(Kour et al. 2020a; Subrahmanyam et al. 2020). Even though, we all are facing the
critical challenges for the discrimination between metals and its negative impact on
the environment.
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2.6 Bioinformatics in Soil Microbial Research

Bioinformatics is definite as an interdisciplinary field that creates software tools,
databases, and methods to support genomic and post-genomic research. It includes
the study of gene and protein expression, protein and DNA structure and function,
protein production, genetic regulatory system, and clinical application. In many
realms, biodiversity information is essential for decision-making, and it is critical to
a governmental, scientific, and educational wide range of uses.

2.6.1 Biodiversity Database

The Global Invasive Species Database was developed by the IUCN/SSC Invasive
Species Specialist Group (IISC) as part of the global initiative on invasive species led
by the Global Invasive Species Programme (GISP). It delivers worldwide information
to agencies, interested individuals, resource managers, and decision-makers on inva-
sive alien species. The database covers invasive species and all groups of taxonomic
from microorganisms to animals and plants which threaten biodiversity. Information
on species is provided by skilled suppliers from all over the world, and it includes
native and alien range, species biology, ecology, links and image, reference, and con-
tacts. The biodiversity digitalization data includes various process, globally. Some of
the important biodiversity databases are Phukan 2007.

2.6.2 Bacteria

The List of Bacterial Names with standing in Nomenclature (www.bacterio.cict.ft/).

2.6.3 Fungi

e National Fungus Collection, USDA (nt.ars-grin.gov/sbmlweb/collections/fun-
gusCollection/Index.cfm)

e Oregon State University Mycological Collection (ocid.nacse.org/research/her-
barium/myco/)

e University of Michigan Fungus Collection (www.herb.Isa.umich.edu/)

2.6.4 \Viruses

e The Universal Virus Database (www.ncbi.nlm.gov/ICTVdb/)


http://www.bacterio.cict.fr/
http://nt.ars-grin.gov/sbmlweb/collections/fungusCollection/Index.cfm
http://nt.ars-grin.gov/sbmlweb/collections/fungusCollection/Index.cfm
http://ocid.nacse.org/research/herbarium/myco
http://ocid.nacse.org/research/herbarium/myco
http://www.herb.lsa.umich.edu/
http://www.ncbi.nlm.gov/ICTVdb/
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2.6.5 Genetics

e National Microbial Germplasm and Invertebrate Genetic Resources Program
(www.nscalliance.org/Bioinformatics/database.asp)

2.6.6 General All Biota

e Australian Biodiversity Information Facility (ABIF) (www.deh.gov.au/biodiver-
sity/digir/)

e All Taxa Biodiversity Inventory (ATBI) (www.dlia.org/atbi/)

* Biodiversity and Biological Collections (biodiversity.uno.edu)

e European Natural History Specimen Information Network (ENHSIN) (www.
nhm.ac.uk/science/rco/enhsin)

e Expert Center for Taxonomic Information (ETI) (www.eti.uva.nl/)

¢ Integrated Taxonomic Information System (ETIS) (www.eti.uva.nl/)

e National Biological Information Infrastructure (NBII) (www.itis.usda.gov/)

e National Biological Information Infrastructure (NBII) (www.nbii.gov/)

e World Biodiversity Information Network (REMIB) (www.conabio.gob.mx/
remib_ingles/doctors/remib_ing.html)

e World Biodiversity Database (www.eti.uva.nl/Database/WBD.html)

e The Species Analyst (speciesanalyst.net)

e Species 2000 (www.sp2000.0rg)

e Nature Serve: An Online Encyclopedia of Life (www.natureserve.org)

In science, it is identified that we have defined the area where we can utilize
information technology and computers together and it leads to significant social and
scientific benefits. Its focuses are on biodiversity and ecosystem domains. Their
synergistic opportunities fall into three major categories: Acquisition, Analysis and
synthesis, and Dissemination.

2.7 Some Specific Opportunities
2.7.1 Modernizing the Biological Library

It seems to observe that the gathered data of biological information and data com-
posed over the past 250 years is enormous. The organization, storing, and retrieving
records are critical. New systems and devices must be produced for data extraction,
content comprehension, and cross-lingual data recovery, making this a significant
non-business application area for examining information incorporation, informa-
tion purifying, information warehousing, and chronicling.


http://www.nscalliance.org/Bioinformatics/database.asp
http://www.deh.gov.au/biodiversity/digir/
http://www.deh.gov.au/biodiversity/digir/
http://www.dlia.org/atbi/
http://biodiversity.uno.edu
http://www.nhm.ac.uk/science/rco/enhsin
http://www.nhm.ac.uk/science/rco/enhsin
http://www.eti.uva.nl/
http://www.eti.uva.nl/
http://www.itis.usda.gov/
http://www.nbii.gov/
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2.7.2 Digitizing the Biological Legacy

There is an earnest need to change over the documentation and new examples kept
up in the exhibition halls and research centers overall which ranges more than bil-
lions of records, into metric-quality advanced arrangements. This gives a magnifi-
cent chance to propel explore on lossless picture pressure, 3D picture getting, apply
autonomy, and the issue of coordinating physical ancient rarities into advanced
libraries.

2.7.3 Multidimensional Observation and Recording

Endeavors are expected to empower the gathering of nitty-gritty data about the earth
in various measurements and at different scales. This gives rich chances to investi-
gate scaling sensor-combination strategies to huge fields, coordinated in situ nano-
sensing and creating and testing worldly spatial information get to techniques.

2.7.4 Mobile Computing

New instrumentation is expected to bring information and to gather, store, and
transmit information from the field. Explicit open doors here incorporate the utiliza-
tion of human—PC cooperation research to the multi-modular interface, sans hands
frameworks, wearable PCs, remote nearness, mechanical autonomy, and human
expansion.

Bioinformatics is a segment created by the merger of two hot areas: information
technology and biotechnology. Without bioinformatics, new research in most fields
of medicine and soil biodiversity would come to standstill. The technology is versa-
tile and can be applied whenever gene, protein, and cell research are used for the
diversity of soil microbial organisms. To foster biotechnology education and
research in the country, the culture of DBT-supported courses have a huge impetus
to the human resource generation.

2.8 Managing the Soil Biodiversity: Priorities

Soil animal and microbial diversity is a part of the biological resources of agro-
ecosystems and must be considered in management decisions.

e The selection of plants and their spatial-transient association in the framework

e Adjustment of plant’s protection from malady, or the nature of deposits (roots
and shoots) created, through hereditary plant improvement

e Change in the sum or potentially nature of the natural deposits entering the dirt
(outer or inward to the framework)
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e Least soil unsettling influence and utilization of pesticides, water system,
and manures

« Utilization of organic control rehearses.

e Vaccination of gainful soil life forms for illness control and soil fruitfulness
improvement

2,9 Bioaugmentation Assisted Phytoextraction Mediated
Through Microbes

The lack of natural capital becomes catastrophic during mankind’s development
and culture contributes to degradation by lethal deficiencies. The key casualties of
the same were water and land resources. The biotic and abiotic pressure treatment
with the human is the product of the anthropic operation. The SOIL, regarded as the
essence of everlasting creation, seems to be the initial perpetrator, to one degree, of
a multitude of waste products and chemical products (Aafi et al. (2012), arwidsson
et al. (2010).

The addition of a substance to the soil can be called soil contaminants, leading
to adverse effects on their function and ability. Contamination of heavy metals in
India and abroad is of particular concern. The presence of heavy metals can lead to
different diseases and disorders. All people and animals and live populations expe-
rience the same. The main cause is mercury, cadmium, plum, chromium, and arse-
nic. Cadmium is the seventh most harmful element causing cardiovascular and
kidney diseases. Cr, Ni, and Pb may contribute to mutagenic, lung and brain injury.
Such pathogens were blamed for the deaths. Based on the research, sorghum, in
particular, the form of drilling for the scavenger of heavy metals from contami-
nated soil, is found to be responsible. So if we develop the same, it can contribute
to polluted soil shaping strong scavenging metals (Azcén et al.(2010); Babu &
Reddy (2011); Beolchini et al. (2009).

Different strategies are needed for the metals concerning organic contaminants.
Metals cannot mineralize because of the fats. Thus, organic and inorganic pollutant
remediation is generally different. Metal processing is one of the key methods to
eliminate transmission and translocation in the atmosphere or food chain. Mulligan
et al. (2001) document that such techniques can only be implemented in situ soil
remediation following digging compared to soil flushing.

The soil recovery approach is only effective for point source exposure although
non-point source contamination—i.e., low metal content with large ground emis-
sion—is less studied. The soil is contaminated due to the repeated use of fertilizers,
trace metal pesticides, and atmospheric deposition. The concentration of metal in
industrial sites is reported to be lower although enough to create a risk of damage to
human beings and the environment through the food chain. Conversion through
point source contamination due to concentration may also be feasible, depending
upon several evidence, including metal species (Bubb et al. 1991; Santschi et al.
1997; Nguyen et al. 2005; Amaraneni 2006). The group in current technology usu-
ally calls phytoextraction green cures or phytoremediation. It is projected that a day
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of pollution from a non-point source is now allocated (Fominar et al. (2004); Gadd
(2004); Gonzalez-Chavez et al.(2004). This technique could be used to remove the
very low concentration of pollutants from soil, according to Scientist. Where
Brassica juncea is extracting Pb, it has been quantified by Blaylock (2000) that lead
area is one of the main contaminants where only the metal concentration of no more
than 1500 mg/kg can be obtained. Besides, as a result of low metal availability at
one particular time, the main limit is the leniency of treatment (Baker et al. 2000).
It is considered that a sensible remediation period is lower than 5 years (Khan et al.
2000) while the cleaning of the soil usually takes a lot longer than that (Baker et al.
2000; Dickinson and Pulford 2005). Generally, these should be less expensive than
the physical ones if you have established ecosystems generated during the process
(Glass 2000). There are many drawbacks in the phytoremediation process; a slug-
gish translocation speed from the roots to the flames. Smaller surface density, which
is typically no greater than half a meter based upon the size of the field settlement
(Hoberg et al.(2005); Hrynkiewicz et al.(2012); Joshi & Juwarkar (2009); Jurkevitch
et al.(1988). The slowness of treatment was a major restriction reported by Baker
et al. (2000).

A large number of chemical chelates, for instance, diethylenetriaminepentaacetic
acid (DTPA), ethylenediamine tetra-acetic acid (EDTA), are already used to raise
awareness of dangerous toxic metals found on the farm. The biodegradability of
these compounds in soil, alternately low or may be considered to be the limiting
factors for equal (Lombi et al. 2001) and additionally poisonous (Lasat 2002;
McGrath et al. 2002; Romkens et al. 2002; Bouwman et al. 2005) for plants, micro-
organisms (biomass and diversity), and nematodes. When the soil value is taken into
account, it certainly acts as a hazard (Chatterjee et al.(2009); Di Gregorio et al.
(2011); Di Simine et al.(1998). Besides, it was shown that Pb mobilization by EDTA
is quicker than using flora (Shen et al. 2002; Chen et al. 2004). With Pb leaching
hazard in the soil, flora suggested no short-length extraction of high quantities of
metals (Barona et al. 2001). Such compounds are ultimately costly, based on the
amount used per hectare (Barona et al. 2001).

The alternative is to maximize a plant life and microorganism’s synergistic effect
(Glick 2003) through the application of coupling phytoextraction to soil biologic
increase, also known as rhizoremediation (Kuiper et al. 2004). This method has
been used extensively to remediate surface pollutant contaminants (Barac et al.
2004; Van Aken et al. 2004), but not now for metals. Two harmonizing ways are
used to strengthen the overall use of metals through flowers; (1) an increase in soil
metal mobility, followed by multiple plant metal concentrations. In that case, we
simply deliver siderophores (Diels et al. 1999; Dubbin and Louise Ander 2003) and
organic acids, through microorganisms that produce biosurfactants (Herman et al.
1995; Mulligan et al. 1999, 2001). These are used as a herbal chelating agent,
together with the steel and organometallic co-ordinate compounds and/or types; and
(2) increased vegetation productivity by connecting them with PGPR (Zhuang et al.
2007) and/or Arbuscular Mycorrhizal Fungi (AMF) plants (Khan 2006). This is the
only way to improve plant biochemical effectiveness. For sorghum, the Glomus EM
fungus has been applied to enhance cadmium absorption from contaminated soils
and important repercussions have been found (Dimkpa et al.(2008, 2009a, b).
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2.10 Metal Extraction and Its Mechanism from Soil by
Microorganism-Assisted Plant

Many microorganisms decrease the metal toxicity in flowers through growing their
aggregation through increasing the amount of metal collected from flora or with the
use of certain items. Either plant life’s biomass (dilution effects) or the knowledge
of metals collected in plants are increased. Microorganisms simply limit the stress
caused by additional metallic accumulation in plants.

1
Concentration of metals per unit biomass

+Increasein Biomass of plant =

2.11 Significant Metal Accumulation by Plants
2.11.1 Bioavailability of Metals

One of the major factors that contribute to less metal extraction using plant life from
the soil is the low concentration of metals in the soil solution. The scientist has gen-
erally said that the total amount of soil metallics are less than 1% (Whiting et al.
2001; Braud et al. 2006) and that the price for availability is influenced by a variety
of physical and chemical soil characteristics, such as pH, CEC, and organic counts
(Kayser et al. 2001). He said that, if we practice soil bioaugmentation, the superb
results will be calculated. This is because more metal is found in the soil solution. It
is a concern. Braud et al. (2006) have shown that to remediate heavy metallic lead,
taking Pseudomonas aeruginosa and Pseudomonas fluorescens, it increases the
awareness of lead in a soil solution by 11.3%. Therefore, it is, of course, best suit-
able for remediation because of the bio rise in crops. The binding of lead with
Fe-Mn oxides and organic matter has been discovered (Duijff et al.(1991); Duss
et al. (1986); Fasim et al.(2002). An extension of the extractable niche with the aid
of an element up to 15 with an appreciation of Ni sensitivity in the soil has been
shown by Abou-Shanab et al. (2006).

The presence of minerals frequently affects the essence of the soil’s physico-
chemical and structural frameworks. The pH has an inverse relationship with the
metals present in the soil while the acidity indicates an excellent relationship to the
metals supply. Concentrations are up to 1.22 and 1.11, 1.33 and 1.33 times higher
than those reported in non-bioaugmentable soil, respectively, in soils with the ecto-
mycorrhizal fungus Paxillus involutus, depending on soil composition, in NH,NO;-
extractable Cd, Cu, Pb, and Zn (Baum et al. 2006). Because the use of techniques is
not equal to all microbial efficiency. Indeed, several extractants are used such as
water (Chen et al. 2005; Di Gregorio et al. 2006; Wu et al. 20064, b), MgCl, (Braud
et al. 2006), NH,NO; (Baum et al. 2006), DTPA (Chen et al. 2004; Di Gregorio
et al. 2006), KNO; (Di Gregorio et al. 2006), and HCl (Wang et al. 2007).
Bioavailability of metals is even divided into three unique swimming pools (Cao
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et al. 2007): right now soluble metals (with water), exchangeable metal forms (with
KNO3), and complexes or adsorbed metallic structure (with EDTA).

Microbial siderophores, mainly localized in the rhizosphere (Bossier et al. 1988),
enhance the Fe (III) mobility and additionally various other cations (Hofte et al.
1993; Diels et al. 2002). Principle factor analysis (PCA) shows shut fantastic rela-
tionships between the microorganisms that produce siderophores and the quantity
of Cr and Pb in the exchangeable fraction (Braud et al. 2006). Bacteria such as
Azotobacter chroococcum (N-fixing bacteria), Bacillus megaterium (P-solubilizer),
Bacillus mucilaginous (K-solubilizer) (Wu et al. 2006a, b), and Bacillus sp. RJ 16
(Sheng and Xia 2006) can decrease the pH value, in all likelihood by using excret-
ing low molecular weight natural acids, enhancing the bioavailability of Cd, Pb, and
Zn (Chen et al. 2005).

In the bio-increased method, metal concentrations were shown to increase in the
majority of genuinely extractable groups (Sheng and Xia 2006). However, after 6
months, in contrast with non-bioaugmented soil (Baum et al. 2006), concentrations
of accessible metals are expanded inside the bio-amplified soil, which means that
they remain alive and are metabolically active in the intention of inoculation micro-
organisms. Nevertheless, a host of other studies show that the reverse, i.e., the bio-
logical rise, results in a rejection of metal speciation. For example, Cd and Zn, Cr
and Ni hypothesis were influenced without impact on Cd’s and Zn’s, Cr’s or Ni’s
speciation, for example, by Glomus Caledonian (Chen et al. 2004) and Glomus
mosseae (Citterio et al. 2005).

2.11.2 Metal Extraction by Plants

The metal sensibility of flowers in contrast to the engineered (non-augmented)
ground, metal-dependent (Bi et al. 2003; Baum et al. 2006), and/or soil conscious-
ness is enhanced and/or decreased (Chen et al. 2003). In response to heavy metal,
PGPR reduces metallic toxicity by reducing the amount of ethylene produced from
plants. On the other side, the more popular auxin synthesized by rhizobacteria was
indole-3 acetic acid (IAA). In metallic absorption, the role of rhizobacteria is
reported (Zaidi et al. 2006). Nevertheless, bio-increasing prices for metal harvested
from plants will almost always rise. Simultaneous addition of rhizobacterial-
synthesized EDTA and IAA in hydroponic conditions will increase Pb extraction by
plant utilizing of EDTA (Lopez et al. 2005). The PGPR reduces the metallic toxicity
in response to heavy metal by decreasing the amount of plant-generated ethylene.
On the other hand, indole 3 acetic acid (IAA) was the most common auxin synthe-
sized by rhizobacteria. It was shown to be involved in metal absorption (Souza et al.
1996) and by the fungi (Liao et al. 2003; Malcova et al. 2003; Leung et al. 2006).
PGPR such as Agrobacterium, Alcaligenes, Arthrobacter, Azospirillum,
Azotobacter, Bacillus, Burkholderia, Serratia, Pseudomonas, and Rhizobium
(O’Sullivan and O’Gara 1992; Hoflich et al. 1994; Carlot et al. 2002; Glick 2003)
are mainly fascinating for metal extraction with the addition of vegetation.
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Siderophores concerned with the alteration of metallic speciation in the soils are
frequent productions of pseudomonads. Siderophores synthesized by P. fluorescents
improve the intake of Fe with the absence of peanut chlorosis phenomena employ-
ing tomatoes (Duss etc., 1986), carnations and oats (Dujiff et al. 1997), vine and
maize (Sharma and Johri 2003a, b). Some hydroxamate siderophores, for example,
desferrioxamine B, can be complicated with Pb and potentially support Pb uptake
through plants (Dubbin and Louise Ander 2003).

Nonetheless, Cd, Cu, and Zn complexation are considerably increased as
opposed to desferrioxamine B (Neubauer et al. 2000) with Cd, Cu, and Zn nitrilo-
triacetate. Additionally, AMF can increase metal recovery from plants such as Cd
in bean and maize (Guo et al. 1996). AMF can be used in soil characteristics and
pH for alfalfa (El-Kherbawy et al. 1989), clover (Joner and Leyval 1997), and soy-
bean (Heggo et al. 1990). The aggregation and translocation of Pb in plant lives
have shown soil enhancement with Glomus intraradices, but the effect depends on
plant species and steel locations. For example, the concentration of Pb in roots and
Zea mays leaves are reduced but Pb in Agrostis capillaries is extended to the root
(Malcova et al. 2003).

2.12 Plant-Associated Microbes Improve Heavy Metal
Mobilization/Immobilization

A diverse group of microorganisms (Idris et al. 2004; Zarei et al. 2008, 2010) is
found in plants that grow in metallic polluted soil effectively tolerating a high
level of steel and providing various benefits to both soil and plant life. Rhizospheric
bacteria are particularly well represented in the microorganisms involved in phy-
toremediation of heavy metal, as these can at the same time increase how to plant
remediation takes place by changing soil bioavailability by modifying the pH of
the soil, releasing the chelators and the reactions oxidation/reduction (Gadd 2000;
Khan et al. 2009; Kidd et al. 2009; Ma et al. 2011). In the same manner, in hyper-
accumulators produced in metallic contaminated fields, steel-resistant fungus was
frequently cited suggesting that this fungus progressed heavy metal resistance and
could also be active in the phytoremediation (Gohre and Paszkowski 2006;
Miransari 2011). For example, cellulosimicrobe microorganism inoculation of
Cr-resistant cellulose into unexperienced soil chilli grown in Cr (VI) lowered Cr
uptake by 37% and root by 56% compared to uninoculated controls (Li et al.
(2010); Majewska & Kurek (2005); Martino et al.(2003). This study shows that
cell- and toxic Cr (IV) decreased to Cr in soil. Where (a) plant-associated microbes
enhance plant nutrients and water intake. Microbial metabolites reduce the toxic-
ity of steel; (b) metal biosorption; (c) metal reductions and reactions to complex-
ing. Plant-associated microbes reduce the stress of heavy steel in plants utilizing
(d) increasing the protection of antioxidants and/or producing ACC deaminases
(Miguel (1999); Rajkumar et al. (2010); Saravanan et al. (2007); Sheng
et al. (2008).
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2.13 Metal Reduction and Oxidation

It has the ability for heavy metal to influence movement by certain microorganisms
that are plant related and by corrosion or reduction reaction. Phytoextraction views
show a great deal of curiosity in mostly metal corrosion by the microbiota of the
rhizosphere. Many sulfur-oxidizing rhizosphere bacteria, for instance, may increase
Cu mobilization as well as the intake in contaminated soils of plant tissue (Yang
et al. (2012). The soil pH of rhizosphere via sulfur sulfate conversion is reduced by
sulfur-oxidizing bacteria, which means that Cu is available to make the plant intake
available. Similarly, Chen and Lin (2001) believed that through acidification reac-
tion, the potential Fe/S oxidizing bacteria (Rajkumar et al. 2012) will increase metal
bioavailability in soil (Shi et al. (2011); Tripathi et al. (2005), Venkatesh &
Vedaraman (2012); Vivas et al.(2003).

2.14 Biosorption

The microbe attached to the plant causes the metal to accumulate from the soil via
the sorption mechanism. “The definition of biosorption is the microbial adsorption
by metabolism dependent and active process of soluble/insoluble organic/inorganic
metals (Ma et al. 2011).” Some authors focused on the mechanism for bacterial
absorption that reduced plant metal absorption. For example, in Magnaporthe ory-
zae and Burkholderia sp., Madhaiyan et al. (2007) report that deposition of Cd and
Ni at shootings and roots of tomatoes are reduced. Research shows that metal bio-
availability can be minimized through metal binding and/or metal bioavailability
restricts the plant’s root/shoot (Rajkumar et al. 2012). Filter barriers from roots to
plant shoots can also play a role in mycorrhizal fungi, and these filtration barriers
are also contrary to moving heavy metals (Rajkumar et al. 2012). Pine seedlings
experimentation discovered that translocation of Pb, Zn, and Cd can reduce the
EMF inoculation Lactarius rufus, Scleroderma citrinum, and Amanita muscaria
from the plant roots to shoots as compared to the controls.

The mycelial on the outside and the inside surface has increased the amount of
metal biosorption (Krupa and Kozdréj 2007). Mycorrhiza and roots combine to
produce a wider surface area. This changes the root metal absorption rate. The fun-
gal cells and their intracells link metals and control cell mobility (Meharg 2003).
Though these investigations suggest the inoculation of plants for those metal-
binding microbes, heavy metals, and phytostabilization metal-polluted soils, this is
a good approach to plant protection. Some writers focused on the mechanism of
microbial biosorption/bioaccumulation, which was not solely responsible for reduc-
ing metal accumulation and the translocation of plants. All of these results show that
plant microorganisms associated with the use of metallurgical agents vary in their
ability to modify the bioavailability of heavy metals and plants. The quality and type
of metal deposition in the rhizosphere determines the microbial ability for coloniza-
tion and survival. It occurs due to the physical, chemical, and biological properties
of the earth. Examples include metal toxicity, indigenous microbial, changing pH
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levels, nutrient deficiencies, etc., which has the a greater potential to alter the
microbe colonization in the soil. In the end, it changes the mobilization and immo-
bilization of metals (Rajkumar et al. 2012). As all contaminated soils have a unique
profile, the potential of plants can vary greatly to take up metals, their concentration,
their microbial partner survival, and their potential for colonization, plant types, and
conditions for growth (Rajkumar et al. 2012). Since plant microbes that may pro-
mote plant growth and/or mobilize/immobilize metals, there are several kinds of the
interaction of plant microbes in soils that are contaminated by metals and concerns
are evolved when the microbe interaction is manipulated.

Plant growth is promoted through the mobilization/immobilization of in vivo
metal by microbial metabolites/processes but is unable to confer valuable traits on
your host in soils contaminated with metal (Rajkumar et al. 2012). Alongside the
isolation of a plant species linked to microbes and the reporting of its useful metab-
olites and processes, time is needed since it requires an analysis of over thousands
of isolates (Rajkumar et al. 2012). For the option of single associated biomarkers
with microbes, which can be used to efficiently help with phytoremediation by a
microbe, impactful molecular research action is therefore required. Since the effect
of the inoculated and necessary microbes is a significant factor in colonization and
existence in the metal stress field environment, as well as the useful conduct for the
plant growth and the total phytoremediation process in metal contaminated soils.
Knowledge of different metal resistance, the existence, and adaptability of microbes
can, therefore, be necessary to use their capabilities as a phytoremediation infection
(Rajkumar et al. 2012). This information can also be used. Meanwhile, important
progress in accepting the role of microbe plants in mobilizing/immobilizing mat-
tresses and in the aim of such heavy metal phytoremediation methods has been
made (Braud et al. 2009).

2.15 Conclusion and Prospects

The stability of the method, which still involves being reputable on the ground, easy
to implement is like microbial leguminous seeds, used primarily in agriculture, and
the scope for cleaning pollutant toxic soils varies between the pollutant and organic
pollutant. Human actions that result in a loss of microbial diversity should be the
central concern to scientists, the general public, regulatory agencies, and interna-
tional organizations. The value of soil biodiversity is also to be recognized by soci-
ety at large. We recommend that distinguishing the estimation of soil biodiversity as
far as monetary advantages is an important stride in an examination program
planned for supporting soil biodiversity, its utilization and as a feature of a wide
procedure of preserving and utilizing agro-biodiversity. It is essential to underscore
microbial decent variety as a wellspring of biotechnology just as proceeding to
monitor, comprehend, and oversaw biodiversity while getting new data on assorted
variety in the biosphere.

The majority of research on microbial biodiversity in soil has been concentrated
on the soil of temperate regions. Knowledge of this respect for all tropical soils is
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poor. The soil in the tropics deserves particular attention. The future thrust areas of
research may include the following aspects:

e Comparative study on the influence of chemical agriculture to that of organic
agriculture.

e The rate intensification of agriculture in the tropic is greater than in other regions
of the world. Some ecosystems are under particular threat of major changes
or loss.

e Soil can be contaminated with a variety of inorganic pollutants, such as heavy
metals through aerial deposition, fertilizers, and other human activities.
Surprisingly, there is still a paucity of information on the effect(s), if any, of such
contaminants on bacterial/microbial biodiversity under varying climatic condi-
tions and land management practices. A decrease in bacterial/microbial diversity
may result from a reduction in species richness due to pollutant toxicity.

e There is a paucity of information on the impact of crop rotation and monocul-
tural cropping system on soil biodiversity.

e There is substantial information on the efficacy of biofertilizers in normal soils.
Little is known about their efficacy in problem soils, i.e., acid and saline soils.
The total inventory of N,-fixing and phosphate-solubilizing microorganism in
the saline tracts are desperately needed.
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Abstract

Medicinal plants hold a very important place in therapeutics. Plant growth is
affected by a number of abiotic and biotic factors. Among these factors, micro-
organisms associated with these plants play an important role in the plant
health and thus indirectly influence humans as well. Many of these microbes
are known to be involved in the production of compounds that are not only use-
ful for the host plant, but also have commercial importance. For in-depth anal-
ysis of these plant-associated microbiomes, metagenomic approaches provide
the necessary platform of robust, high-throughput techniques. This chapter
discusses the microbial communities associated with different medicinal
plants, and how metagenomics can be helpful in studying their diversity and

versatility.
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3.1 Introduction

Plants are multicellular, autotrophic, and predominantly photosynthetic living
organisms found on terrestrial as well as in aquatic ecosystem. The Kingdom
Plantae has been divided on the basis of two factors: Flowering and Vasculature. On
the basis of flowering, they can be classified into flowering plants such as
Angiosperms and Gymnosperms and non-flowering plants including Bryophytes,
Pteridophytes, and Thallophytes. On the basis of vasculature, they can be classified
into vascular plants which contain a vascular system and non-vascular plants that do
not have differentiation of xylem and phloem in them. They can also be classified
on environmental basis, i.e., terrestrial and aquatic plants. Aquatic plants include
diverse variety of algae while terrestrial include ferns mosses, gymnosperms, and
angiosperms (flowering plants). Approximately 374,262 plant species are present
worldwide (Christenhusz and Byng 2016).

3.2 Habitat-Based Diversity of Plants
and Associated Microbes

On the basis of habitat, plant diversity has been classified into following categories
with associated microbial flora.

3.2.1 Hydrophytes

These are wetland plants that particularly grow where plenty of water is available such
as in wetlands and shallow rivers, lakes, ponds and marshes. They have adapted them-
selves according to such habitat. They are deprived of proper root systems and instead
of stomata, they just have air spaces. Being residents of wetlands, they do not need to
conserve water (Lefor 1999). They are classified as submerged, such as Hydrilla ver-
ticillata, which are rooted in mud of water bodies. The other is amphibious which is
partly submerged; some part is present beneath the water while some above the water
as in the case of Limnophila heterophylla, Typha, Sagittaria, etc. The last classifica-
tion is free floating hydrophytes such as Eichornia, Pistia, Wolffia, and Lemna which
float freely on the surface of water and are not present in rooted form. They are in
contact with water as well with air. With the help of metagenomic approach such
as clone libraries of the 16S rRNA genes, some epiphytic bacterial communities
present on the Hydrilla verticillate have been identified; Delta proteobacteria,
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Verrucomicrobiae, Armatimonadia and Deinococci (Gordon-Bradley et al. 2014). In
a study done on microbial association with hydrophytes, it was seen that they are
associated mostly with Cyanobacteria, Chlorophyta, and Bacillariophyta. Analysis
also identified that the loosely attached algae included majority of cyanobacteria such
as Oscillatoria spp., Lyngbya spp., Microcystis spp., and Anabaena spp., in addition
to Chlorophyta members Pediastrum spp., Scenedesmus spp., Quadrigula spp.,
Botryococcus, and Cladophora spp. (Aboellil and Aboellil 2012).

3.2.2 Hygrophytes

These are plants which grow in shade and moist conditions. They have spongy root
system in which their roots are adapted in the form of rhizomes. Their leaves have
stomata, but the rate of transpiration is slow as they grow in a humid environment.
Examples include aroids, ferns, bryophytes, Begonias, Juncus, and sundews
(Stanford and Moran 1978). Microbial associations related to bryophytes are
Burkholderia, Serratia, Hafnia, Pantoea, Methanobacteria, and Methylobacteria
and were present abundantly inside and outside as well (Bragina et al. 2013). Several
strains of Pseudomonas putida, Xanthomonas sp., Serratia sp., and Bacillus sp. are
also known to be associated with moss (Opelt and Berg 2004).

3.2.3 Halophytes

These are unique plants which grow in hyper saline conditions. They have the
ability to tolerate relatively high amounts of different salts especially sodium and
magnesium salts such as NaCl, MgSO,, and MgCl,. To adapt in such harsh envi-
ronment, they have a salt-expelling root system, named pneumatophores.
Sonneratia, Avicennia, Rhizophora, Ceriops, and Suaeda salsa are a few exam-
ples of halophytes. Associated microbes are often seen to gain benefits from their
hosts under stressful conditions. With the help of 16S rRNA-targeted metage-
nomics of Suaeda salsa, it was seen that microorganisms belonging to
a-proteobacteria, Bacteroidetes, Verrucomicrobia and y-proteobacteria were
found associated with the plant. Moreover, analysis of soil rhizosphere of Suaeda
salsa showed that Curvularia protuberate, Fusarium culmorum, Microbulbifer
(Alteromonadales), Pelagibius (Rhodospirillales), Halomonas (Oceanospirillales)
Marinoscillum (Sphingobacteriales), Fulvivirga (Flexibacteraceae), Haloferula
(Verrucomicrobiales), Pelagicoccus (Puniceicoccales), and Marinobacter
(Alteromonadales) genera were also abundantly found (Yuan et al. 2016).

3.2.4 Maesophytes

Mesophytes are plants which are present in moderate conditions of temperature as
well as water. They have fully differentiated vascular system to transport the water
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from roots to the stem. They have herbaceous or woody stem and proper roots with
root hairs to absorb water from the soil. They have stomata to transpire water into
the environment. Mostly angiosperms fall into this category. Examples include
Jastropha curcas, Jastropha gossypifolia, Canna indica, and Zea mays. When
microbial associations of Zea mays was assessed through culture-dependent and
culture-independent methods, various bacterial genera, i.e., Enterobacter, Erwinia,
Klebsiella, Pseudomonas, and Stenotrophomonas were found. Culture-based analy-
sis revealed that the predominant group was Firmicutes, mainly of Bacillus genus,
while Achromobacter, Lysinibacillus, and Paenibacillus genera were rarely found
in association with the roots (Pereira et al. 2011).

3.2.5 Xerophytes

These are the plants which are found in dry or xeric environment where water is
scarce. These plants have adapted to store water in their stems, e.g., Opuntia, in
leaves, e.g., Bryophyllum and Aloe vera, and in roots, e.g., Asparagus. That is why
xerophytes are also known as succulents as they can retain water in different plant
tissues during water scarcity. Metagenomics analysis of Aloe vera root revealed its
microbiome predominantly consisting of Proteobacteria followed by Firmicutes,
Actinobacteria, and Bacteroidetes (Akinsanya et al. 2015).

3.3 Microbes Associated with Medicinal Plants

Medicinal plants are important for their biologically active chemicals “phytochemi-
cals.” However, with the discovery of plant-associated microbiomes the focus has
shifted to microorganisms and their interactions with their host plants (Huang et al.
2018). Phytotherapeutic compounds are not only important in medicine but also
serve agricultural and industrial niches (Mohamad et al. 2019). Therefore, medici-
nal plants and their microbiomes are a reservoir of important compounds waiting to
be explored.

Plant microenvironments are largely inhabited by bacteria which are crucial to
plant health (Berg 2009; Hartmann et al. 2008). For instance, the nutrient-rich
region of the rhizosphere contains about 10'' microorganisms per gram of root with
~30,000 species of prokaryotes (Berendsen 2012). Some of these are well studied
and ubiquitous genera, Pseudomonas and Bacillus (Berg et al. 2011). However,
some degree of specificity in microhabitats is observed owing to the varying factors
of the microenvironments such as plant species, soil type, pedoclimate, pesticides,
and various other biotic and abiotic factors (Berg et al. 2005; Berg and Smalla 2009;
Fiirnkranz et al. 2012; Koberl et al. 2013a; Singh and Mukerji 2006).

These microbiomes (containing both pathogens and commensals) are also known
to be transmitted through generations by seeds and pollens (Fiirnkranz et al. 2012;
Hardoim et al. 2012; Hirsch and Mauchline 2012). For instance, take the case of
ancestor land plants such as mosses; they are known to transfer a very diverse and
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primarily non-pathogenic microbiome from their sporophytes to gametophytes
(Bragina et al. 2012).

In the case of medicinal plants, however, the microbiome possesses a higher
degree of specificity owing to their host plant’s distinctive exudates and divergent
secondary metabolites (Qi et al. 2012; Singh and Mukerji 2006). Actinobacteria are
a phylum of Gram-positive bacteria, known for their antibiotic production potential,
for example, the genus Streptomyces has yielded many novel antibiotics over the
years (Goodfellow and Fiedler 2010; Raaijmakers and Mazzola 2012).

Several studies done on various medicinal plants have reported that each of them
hold a definitive microbiome majority of which are actinobacteria, producing com-
pounds with antimicrobial as well as anticancer potential (Li et al. 2008; Zhao et al.
2012, 2011).

In retrospect, plant derivatives have been part of healthcare in traditional capaci-
ties, for instance, Australia’s aboriginal medicine, traditional Chinese medicine
(TCM), and the Mayan history are all rich with traditional methods of phytothera-
peutics. These have also provided a platform for the discovery of new bioactive
agents over the years (Huang et al. 2018). TCM is a hub for ethnopharmaceutical
information for about 5000 species of plants and has been a basis for anticancer
drugs as well (Miller et al. 2012b).

From 1981 to 2010, plant-derived medicines were about 26% of the entire phar-
maceutical market, which boomed to 50% in 2010, and to 85% in 2017 (Ahn 2017,
Newman and Cragg 2012). With the shift in research from plant extract composi-
tions to their associated microorganisms instead, plant microbiomes particularly
endomicrobiome are found to be directly involved in phytotherapeutic compounds
(Chandra 2012; Egamberdieva et al. 2017).

However, with the increase in antibiotic resistance and the absence of new anti-
biotics to combat this situation, a decrease in the medicinally relevant microorgan-
isms from the microbiome of plants has been observed (Miller et al. 2012a).
Previously, phytotherapeutic compounds have yielded antimycotic, antiphlogistic,
and hypertension treatment therapies (Abdel-Aziz et al. 2011; Li et al. 2003; Strobel
etal. 2004). It is essential to study plant microbiomes and host-microbe interactions
to understand and discover new bioactive compounds for chronic inflammations
and infections (Nalini and Prakash 2017; Newman and Cragg 2012). Some of the
many medicinal plants which will be discussed here are Dandelion (Taraxacum),
Gingko (Ginkgo biloba), Turmeric (Curcuma longa), Evening primrose (Oenothera),
Flax (Linum usitatissimum), Tea tree (Melaleuca alternifolia), Echinacea
(Echinacea), Grapeseed extract (Vitis vinifera), Lavender (Lavandula), and
Chamomile (Matricaria chamomilla).

3.3.1 Taraxacum

The genus Taraxacum, commonly known as dandelions, are plants rich in sugars
and minerals and produces a lactone saturated white colored latex. The European
pharmacopeia in 2005, along with the Committee on Herbal Medicinal Products of
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the EPA, European Medicines Agency, declared this genus as a medicinally impor-
tant plant (Maggi 2019). Over the years, it has been used as a cholagogue, diuretic,
choleretic, and as an appetizer. Its medicinal importance can be traced back to the
tenth century A.D., when Arabs used it to treat liver and spleen disorders (Brown
2008). The extracts of dandelions have reportedly shown biological activities such
as anti-inflammatory, antiangiogenic, hypoglycemic, antirheumatic, anticarcino-
genic, and antinociceptive (Park et al. 2011; Shidoji and Ogawa 2004). To date,
<1% of all species have been identified and studied which include 7. platycarpum,
T. officinale, T. coreanum, and T. mongolicum (Martinez et al. 2015). Taraxacum
and its endobiome have been widely researched for new antimicrobials and antifun-
gals (Machavariani et al. 2014).

A study done on Taraxacum coreanum showed extensive association with vari-
ous fungal genus, many of which were new to Korea, isolated from roots, stems, and
leaves of the plant. The endophytic fungi belonged to the phylum Ascomycota and
Basidiomycota, out of which dominant species were Alternaria, Cladosporium,
Fusarium, and Phoma. Novel isolates found belonged to the genera: Apodus,
Ceriporia, Dothideales, Leptodontidium, Nemania, Neoplaconema, Phaeosphaeria,
Plectosphaerella, and Terfezia. About 14% of the endophytic fungi showed promis-
ing antifungal activity against known plant pathogens such as Botrytis cinereal,
Phytophthora capsica, and Alternaria panax (Paul et al. 2006). Phoma sp., an endo-
phytic fungus isolated from Taraxacum mongolicum, is reported to produce an anti-
microbial compound 2-hydroxy-6-methylbenzoic acid, particularly active for
poultry and aquatic diseases (Wei-nan 2008; Zhang et al. 2013). In 2014, from the
dandelion specie Taraxacummongolicum’s root, a novel actinomycete was isolated
which was given the name Micromonospora taraxaci (Zhao et al. 2014a), noted to
have potential bioactivity reported against bacterial pathogens (Boumehira et al.
2016; Carro et al. 2018).

3.3.2 Ginkgo Bilboa

Ginkgo Biloba is a native ancient Chinese tree, which has survived evolution as
compared to its phylogenetic relatives, hence it is called a “living fossil” (Zhou
2009). It is used for illnesses like Alzheimer’s (Rimbach et al. 2001), as a dietary
supplement and is also widely researched for its flavonoids producing leaves (Ni
etal. 2018a, b, 2017).

A spatial study done on Ginkgo biloba for bacterial communities on the plant
showed a diversity of Acidobacteria, Actinobacteria, Bacteroidetes, Proteobacteria,
and Firmicutes (Leff et al. 2015). Pandey and co-workers in 2009 also isolated a
Pseudomonas sp. from roots of Ginkgo biloba, which took a significant part in plant
growth by solubilizing tricalcium phosphate, increasing plan biomass in rice and
barley (Pandey et al. 2009).

Endophytes from G. Biloba have been reported to show antimicrobial, cytotoxic,
and antioxidant properties, for instance, the endophytic fungus Chaetomium globo-
sum’s flavipins, are known to have antioxidant activity (Li et al. 2014; Ye et al. 2013;
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Yuan et al. 2014). The cytotoxic, anticancer compounds found from the endophytic
fungus studied by Li and co-workers are reported to be chaetoglobosins A, G, V, Vb,
and C which were active against Artemia salina and Mucor miehei (Li et al. 2014;
Qin et al. 2009). Penicillium sp. isolated from the plant produces adenosine, ade-
nine, and 2-deoxyadenosine which are strong antioxidants (Yuan et al. 2014).
Another fungus, Xylaria sp. is also reported to show antioxidant activity owing to
its phenols and flavonoids (Liu et al. 2007). Compounds like 7-Amino-4-
methylcoumarin extracted from Xylaria sp. YX-28, have shown antibacterial and
antifungal activity as well (Liu et al. 2007). Ginkgo biloba also harbors Aspergillus
sp. and is reported to produce Xanthoascin; a potent antimicrobial compound
(Zhang et al. 2015).

3.3.3 Curcumalonga

Curcuma longa, which is colloquially known as turmeric, is a herb quite common
as an ingredient in the southeast Asian cuisine. The desiccated rhizome of C. longa
is known for its antipyretic and antiseptic properties owing to its curcuminoid and
sesquiterpenoid compounds. Curcuminoid is used as an antimicrobial, antioxidant
as well as anti-inflammatory agent (Aggarwal and Sung 2009; Jalgaonwala
et al. 2010).

A study done on the bacterial endobiome of C. longa yielded Pseudomonas
putida, Clavibacter michiganensis, and three Bacillus sp., namely Bacillus pumi-
lus, Bacillus thuringiensis, and Bacillus cereus. Strains solubilized phosphate
and produced indole 3 acetic acid (IAA) in addition to P. putida’s siderophore
production, all of which promote and regulate plant growth (Kumar et al. 2016).
Strains were able to show antifungal as well as antibacterial activity against
Alternaria alternata and Fusarium solani, and Klebsiella pneumoniae and
Escherichia coli, respectively (Kumar et al. 2016). Another study reported
Paenibacillus spp. colonization of the rhizome of C. longa which were active
producers of IAA (Aswathy et al. 2013). C. longa also produces silver nanopar-
ticles owing to endophytic species of penicillium which are used as an antibacte-
rial particularly against Staphylococcus aureus and Escherichia coli (Singh et al.
2014). A fungal endophyte Phoma herbarum produces gentisyl alcohol which
shows promising activity against plant leaf pathogen Colletotrichum gloeospori-
oides (Gupta et al. 2016). An Indonesian study done on C. longa screening for
endophytic fungi with antioxidant activity revealed 44 associated strains, out of
which six strains had DPPH scavenging activity significant enough to achieve
inhibition more than 65% (Rachman et al. 2015). An endophytic specie of
Eurotium has been associated with the production of asparaginase enzyme, which
is an important component of medications against various types of leukemia
(Jalgaonwala and Mahajan 2014).
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3.3.4 Oenothera biennis

Oenothera biennis is a medicinal plant, the seed oil of which is mostly used for vari-
ous health issues like asthma, eczema, arthritis, and other inflammations as well as
premenstrual syndrome (Dante and Facchinetti 2011; Nikfarjam et al. 2016;
Triantafyllidi et al. 2015). The seed oil contains gamma linoleic acid in addition to
other phenolic compounds which constitute its potency for medical use (Mehmood
et al. 2019; Munir et al. 2017). Some studies have associated the gamma linoleic
acid production to endophytic fungus (Jiang et al. 2004).

A study done on roots of O. biennis showed a rich 88% of arbuscular mycorrhizae
(Zubek and Btaszkowski 2009). Another study found a rich diversity in the root endo-
biome in varying percentages: Arthrobacter, Variovorax, Rhizobium, Bradyrhizobium,
Microbacterium, Agrobacterium, Bosea, Xanthomonas, Actinobacterium, Bacillus,
Cellulomonas, Nocardioides, Paenibacillus, Caulobacter, Pseudoxanthomonas, and
Sphingomonas (Brannock 2004). O. biennis is known to grow at highly hydrocarbon
contaminated places, and an endophyte study revealed colonization majorly by
Alphaproteobacteria, Gammaproteobacteria (highest), or Actinobacteria most of
which were IAA, siderophore, hydrogen cyanide and cellulase producers, and phos-
phate solubilizers with genes encoding hydrocarbon degradation potential (Pawlik
et al. 2017). Oenothera sp. have also been reported to grow in gypsum-rich soil, with
colonizations of Pleosporales, Sordariales, and Diaporthales in their root endospheres
(Porras-Alfaro et al. 2014).

3.3.5 Linum usitatissimum

Linum usitatissimum, colloquially known as linseed, is rich in a-linolenic acid and
the best dietary source of fiber mucilage (Cunnane et al. 1993). It is widely used to
control diarrhea, gastrointestinal infections, and heart illnesses (Muir and Westcott
2003). L. usitatissimum’s endosphere is primarily composed of proteobacteria,
actinobacteria, and acidobacteria in the same order of degree of colonization
(Wijesinghe et al. 2015). Major members of the proteobacteria were found to be
Xanthomonadales, Pseudomonadales, Methylophilales, and Burkholderiales
(Wijesinghe et al. 2015).

3.3.6 Melaleuca alternifolia

Melaleuca alternifolia is the source of tea tree oil which is abundant in terpenes out
of which terpinen-4-ol is the main antimicrobial component (Hart et al. 2000). Tea
tree oil is also used for antifungal [Botrytis control (Abbey et al. 2019)], antiviral,
and antiacne purposes (Brand et al. 2001; Miller et al. 2010). A study done for
screening aluminum-resistant endophytic bacteria from tea tree showed 53 associ-
ated bacteria. Among these, Burkholderia cepacia showed phytohormone and sid-
erophore production, regulating plant growth and seed germination (Zhao et al.
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2014b). Given the potent antifungal and antibacterial capacity of tea tree oil, still not
much research has been done on its endosphere.

3.3.7 Echinacea

Purple coneflowers, scientifically known as Echinacea is a member of commonly
perceived medicinal plants used for healthcare. It is most known for its root’s immu-
nomodulatory properties and less-researched potential for the treatment of respira-
tory infections (Zhao et al. 2014b). Some of the common genera used in medicine
are Echinacea purpurea, Echinacea angustifolia, and Echinacea pallida.

It also exhibits antifungal potentials owing to its diversity of endophytic fungi
mostly belonging to the genera Cladosporium, Colletotrichum, Fusarium,
Glomerella, Ceratobasidium and Mycoleptodiscus. Out of these the most abundant
organisms were reported to be Colletotrichum gloeosporioides, Fusarium oxyspo-
rum, and Cladosporium cladosporioides (Rosa et al. 2012). Forty-one percent of
theseisolates had promising antifungal activity against plant pathogen Colletotrichum
species (Rosa et al. 2012). A study of two species of medicinal importance from the
purple coneflowers, Echinacea purpurea and Echinacea angustifolia, showed that
these two plants also possessed a characteristic biome of endophytic bacteria. The
most abundant were known to be Pseudomonas, Actinobacteria and Bacillus spp.,
Staphylococcus, Curtobacterium, Mycobacterium, Arthrobacter, and Sphingomonas
(Chiellini et al. 2014). A study in 2015 focused on immunomodulatory functions of
Echinacea extract and found that the ability to stimulate TNF-« by ethanolic extracts
of Echinacea purpurea are due to LPS of endophytic bacteria present in the plant
(Todd et al. 2015). Further studies showed that different plant tissues possess differ-
ent bacterial communities, i.e., Gammaproteobacteria; Pseudomonas spp. in roots
and rhizosphere and Actinobacteria in stem and leaves. Pseudomonas genera, which
was ubiquitous in all plant parts, as well as other endophytes showed varying anti-
biotic resistance due to different interactions with the environment (Mengoni et al.
2014). Echinacea plant endophytes Acinetobacter, Pseudomonas, Bacillus,
Stenotrophomonas, and Wautersia (Ralstonia) are also involved in IAA production
(Lata et al. 2006). Fungal endophyte and entomopathogen Beauveria bassiana
modulates Echinacea purpurea’s growth, pigment, and bioactive product formation
(Gualandi 2010). Other endosphere studies on Echinacea purpurea show an abun-
dance of Colletotrichum dematium, Stagonosporopsis sp. and Alternaria alternata,
out of which a less prevalent fungus Biscogniauxia mediterranea produces fatty
acid compounds (—)-5-methylmellein and (—)-(3R)-8-hydroxy-6-methoxy-3,5-
dimethyl-3,4-dihydroisocoumarin with antifungal activities against Phomopsis
obscurans, P. viticola, and Fusarium oxysporum (Carvalho et al. 2016).

3.3.8 Vitis vinifera

Extract of Vitis vinifera has been used for medicinal purposes since the Greek civi-
lization. The extract is known to act as an antioxidant, as a remedy for obesity since
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it inactivates lipases, antimicrobial and antiulcer remedy (Mielnik et al. 2006;
Moreno et al. 2003; Nuttall et al. 1998; Piccolo et al. 2016; Saito et al. 1998). Seed
endophytes are important for seed germination and seedling development, initial
plant growth, and some of them are even vertically transferred to the offspring
(Truyens et al. 2015). Vitis vinifera’s seed is reported to be associated with fir-
micutes (Truyens et al. 2015) and the plant’s growth is known to be modulated by a
root-associated Burkholderia phytofirmans (Compant et al. 2008, 2005). A deeper
analysis of different plant parts and their associated microbes revealed that seeds
had populations of Bacillus altitudinis, Bacillus altitudinis, Staphylococcus aureus
subsp. Aureus, and Paenibacillus amylolyticus, while pulp of the plant fruit also has
Bacillus weihenstephanensis associated (Compant et al. 2005). Flowers of the plant
were home to Pseudomonas fulgida, Bacillus pumilus, and Bacillus thuringiensis
(Compant et al. 2005). The study also indicated that various stages of plant develop-
ment harbor various microbial populations due to succession (Compant et al. 2005).
The plant also hosts the fungus Beauveria bassiana in its endosphere which is a
parasite to insects, protecting the plant from them (Rondot and Reineke 2018).
Another variety of Vitis vinifera called “glera” is inhabited mostly by Bacillus along
with  Microbacterium, Paenibacillus, Curtobacterium, Stenotrophomonas,
Variovorax, Micrococcus, and Agrococcus (Baldan et al. 2014). Another study seek-
ing to find antagonistic fungi isolated 68 different taxa from V. vinifera with most of
strains belonging to Acremonium, Gibberella Alternaria, Fusarium, Botryotinia,
Epicoccum, Penicillium, Nectria Cladosporium, Phoma, Aureobasidium and
Trichoderma species, out of which species of Chaetomium, Phoma (P. glomerata),
and Acremonium were identified as antagonistic fungi (Gonzalez and Tello 2011).
Several species of Nigrospora and Fusarium are known to modulate grape charac-
teristics such as flavonoids, reducing sugars and phenols (Yang et al. 2016).

3.3.9 Lavandula

Lavandula is a genus of flowering plants, mostly cultivated for their fragrance and
oils. Lavandula angustifolia is the source of lavender oil used commercially and in
medicines. The major uses of lavender oil include treatment of rheumatic pain, flat-
ulent dyspepsia, as an antibacterial, and is used in aromatherapy as well (Evans
2009; Hammer et al. 1999).

Different tissues of Lavandula angustifolia were found mostly inhabited by
Pseudomonas (51% of the total endosphere), followed by (in descending order) by
Stenotrophomonas, Rhizobium and Pantoea, along with small quantities of
Actinomycetes and Bacillus sp. Some of the strains showed strong antibacterial
activities against Burkholderia cepacia (Emiliani et al. 2014). Arbuscular mycor-
rhizae are reported in Lavandula angustifolia indicating the presence of endophytic
fungus in the root (Zubek and Blaszkowski 2009; Zubek et al. 2012). Upon research
some fungal species were found to be: Ambispora gerdemannii, Claroideoglomus
claroideum, Glomus aureum, Funneliformis constrictum, Funneliformis mosseae,
Paraglomus majewskii. The cultivation conditions when shifted from a mineral
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fertilization regime to a manure fertilization regime showed an addition of a fungal
specie, Archaeosporatrappei, to the set of fungal endobiome formerly discussed:
(Zubek et al. 2012). A study done in Iran showed the association of Planomicrobium
chinense with lavender root (Beiranvand et al. 2017).

3.3.10 Matricaria chamomilla

Chamomile is an eminent medicinal plant; its uses range from dry cough treatment,
oils for therapy massages, digestive stimulant, aromatherapy, and colic treatment
for infants (Singh et al. 2011; Weizman et al. 1993). Chamomile is known to possess
bacterial endophytes with antifungal activities against A. alternata, Chaetomium
sp., P. variotii Byssochlamys sp., Aureobasidium sp., Fusarium sp. (Goryluk-
Salmonowicz et al. 2016). Paenibacillus polymyxa isolated from root of M. chamo-
milla reportedly showed antagonistic activity against phytopathogenic fungi,
namely Verticillium dahliae, Rhizoctonia solani, and Fusarium culmorum. It is also
detrimental to Meloidogyne incognita, a nematode, and acts as an antimicrobial to
the human pathogen Escherichia coli (Koberl et al. 2013b, c, 2015). It was reported
that volatile organic compounds, specifically pyrazine, from endophytic
Paenibacillus play a role in the antibacterial and antifungal activities (Rybakova
et al. 2016). Chamomile roots are also occupied by Sebacinales which help stimu-
late plant growth (Riess et al. 2014). Matricaria recutita, another member of the
chamomile family, harbours rhizospheric microorganisms Bacillus megaterium,
Trichoderma harzianum, and Glomus intraradices which communally modulate
antioxidants in various ways for the plant, i.e., production of flavonoids and pheno-
lics and scavenging free radicals (Gupta et al. 2017).

3.4 Metagenomics

The term metagenomics was introduced in 1998 where the importance of uncultur-
able microorganisms and the potential of new metabolites and ecological pathways
leading to knowledge beneficial to humans was discussed (Dubey et al. 2020;
Handelsman et al. 1998; Shah et al. 2011; Thomas et al. 2012; Zarraonaindia et al.
2013). However, the concept was previously applied by Schmidt, when a A phage
library was constructed from seawater and analyzed for 16S rRNA genes (Schmidt
et al. 1991). Metagenomics is the analysis of microbial sequence data sets obtained
collectively from an environment (Handelsman et al. 1998). More precisely,
“Metagenomics” provides a platform to study the DNA of all the microbial species
present at a particular habitat independent of individual species’ culturing and iden-
tification (Hugenholtz and Tyson 2008). Metagenomics analysis, or the culture-
independent analysis, allows the study of DNA of microbial consortia isolated from
different environments. This approach depends on the high-throughput sequencing
techniques which are necessary for sequence analysis with both coverage and depth.
This method of study not only allows the researcher to study the structure of
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microbial communities but also helps us to assign a particular function to a specific
microbial community inhabiting different environments (Zhou et al. 2015). Various
environments have been the focus of metagenomic studies including soil, feces, oral
cavity, aquatic habitats, and hospital metagenomes for nosocomial infection studies
(Coque et al. 2002). Soil metagenomes are particularly difficult to clone as com-
pared to aquatic sources given the complex chemical composition of soil and the
risks of unwanted molecules like polyphenolics clinging to DNA or interfering
enzymes needed for cloning (Tsai and Olson 1992). However, with advances in the
metagenomic techniques, today we have a deeper understanding of the soil micro-
bial community (Rondon et al. 2000).

To put it crudely, metagenomics studies usually involve assembly, phylogenetic
analysis, binning and analysis at community level. After environmental samples are
collected, a metagenomic small-insert (<10 kb) library is constructed by extracting
DNA, cloning it and transforming with a suitable vector into E. coli (Henne et al.
1999). Large insert libraries such as cosmid (pWE15 vector, 25-35 kb), bacterial
artificial chromosomes (200 kb) and fosmids (40 kb) allow detection of operons as
compared to small inserts (Béja et al. 2002, 2000; Entcheva et al. 2001). Gram-
negative hosts other than E. coli are also reported such as Streptomyces lividans,
involved in the discovery of genes encoding novel antibiotics (Courtois et al. 2003).
Direct sequencing is also possible courtesy of Next Generation Sequencing tech-
nologies (Roche 454, Illumina, ABISOLID).

This metagenome can then be analyzed for a particular sequence by PCR or
hybridization, screened for expression of a specific phenotype, or can be randomly
sequenced to obtain microbial populations of a certain environment (Riesenfeld
et al. 2004). Over the years, metagenomics has been used to study single genes and
functional annotation such as in the discovery of novel cellulases, lipases, and pro-
teases (Healy et al. 1995; Marco 2010), pathways such as antibiotic synthesis
(Rondon et al. 2000), organisms, and phylogeny, for instance, in the discovery of
archaeal enzymes which remain active only under extreme temperatures (Marco
2010; Stein et al. 1996), as well as communities (Tyson et al. 2004). Data analyza-
tion and searching for functional genes is a cumbersome process (Aguiar-Pulido
et al. 2016; Rodriguez-R and Konstantinidis 2014) and, although performed by
sophisticated automated pipettors, it often takes 100,000 clones to be screened to
achieve <10 active clones (Henne et al. 2000; Majerniks et al. 2001). Computational
analysis usually involves either the functional metagenomics or the characterization
of genes from millions of reads. Lack of effective transcription in the host due to
codon usage bias, imperfect or weak translation, poor folding of protein due to lack
of native cofactors and chaperons and poor secretion are some of the hindrances in
metagenomic library analysis (Streit and Schmitz 2004). Sensitive screening method
employing fluorogenic substrates, novel vectors, and host strains have been devel-
oped to overcome these difficulties (Streit and Schmitz 2004). Rapid analysis can
now be done using microarray profiling of clones carrying conserved genes (Sebat
et al. 2003). In addition, degenerate primers can also serve the same purpose.

For instance, by using robust techniques in metagenomics, genes encoding
a-halocarboxylic acid degrading enzymes and novel hydrolases have been
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discovered (Bell et al. 2002; Marchesi and Weightman 2003). Numerous studies, for
instance, biofilm studies like those carried out by European laboratories on metage-
nomics of highly diverse biofilms (Schmeisser et al. 2003) and of Tyson and co-
workers studying low diversity acidophilic biofilms (Tyson et al. 2004) also take
benefit of new and improved metagenomic techniques. Similarly, a sequence-based
metagenomic study of the Sargasso Sea by Craig Venter was a large-scale project
which fruited in many novel genes (Venter et al. 2004). Metagenomic studies have
mostly focused on enzymes such as lipases and esterases (Schmeisser et al. 2003),
oxidoreductases (Knietsch et al. 2003), nicotine amide (NAM)-dependent alcohol
reductases (Hummel 1999), proteases (Santosa 2001), and nitrilases (DeSantis et al.
2002). Genes for vitamin biosynthesis (ascorbic acid) (Eschenfeldt et al. 2001),
biotin biosynthesis (Streit and Entcheva 2003), and various novel therapeutic mol-
ecules such as antibiotics are also the focus of metagenomic research (Brady et al.
2002; Brady and Clardy 2003; MacNeil et al. 2001; Nikolouli and Mossialos 2012;
Wang et al. 2000; Yan et al. 2014).

3.5 Approaches in Metagenomics

Current metagenomics approaches address taxonomic diversity by targeting and
amplifying genes such as 16S rRNA, 18S rRNA, NifH, ribosomal internal tran-
scribed region (ITS) prior to sequencing (Morgan and Huttenhower 2012). However,
functional metagenomics permits us to study roles of microorganisms in a commu-
nity, which is quite often not directly related to abundance (Vieites et al. 2008). For
instance, if nitrogen fixers are 0.1% in a soil community, their role is far more cru-
cial compared to other populations (Dinsdale et al. 2008).

Metagenomic approaches are divided broadly into two categories; whole genome
shotgun sequencing and amplicon-based methods which include 16S rRNA
sequencing for bacteria, 18S for eukaryotes, and ITS for fungi. Shotgun metage-
nomics identifies both culturable and unculturable organisms. Generally, biodiver-
sity profile of the selected community is analyzed and then functionally annotated
to lineages (Tringe et al. 2005). Therefore, shotgun sequencing can be of two types;
sequence-based screening telling us about microbial diversity in an environmental
sample or functional screens, identifying gene products without relating it to its par-
ent organism (Madhavan et al. 2017). Metagenomic studies when launched must
keep in mind the potential community to be found in the sample, for instance, com-
plexity of soil sample vs. human skin would possibly be higher, for which more data
for soil should be generated. As a result of deep sequence probing, novel and rare
taxa could be identified (Sharpton 2014). This also makes shotgun sequencing
expensive as compared to 16S (Quail et al. 2012).

16S rRNA gene sequencing relies on the variable regions V1-V9 of the bacterial
ribosomal RNA gene for assigning bacteria to taxa (Chakravorty et al. 2007). Soil
(Chong et al. 2012), human gut (Dethlefsen et al. 2008), and other environments’
biodiversity can also be studied employing 16S rRNA sequencing. While assessing
sequence similarities, divergence is permitted. Sequences with >97% similarity are
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clustered together into “Operational Taxonomical Units (OTUs)” or taxa (Morgan
and Huttenhower 2012). However, strains or closely related species cannot be dis-
tinguished in this type of metagenomic analysis. For instance, strains O157: H7 and
K-12 of E. coli cannot be differentiated with their 16S analysis (Weinstock 2012)
nor Shigella flexneri from E. coli (Hilton et al. 2016). Therefore, taxa can be deter-
mined but specie level identification is blurry (Ranjan et al. 2016).

18S rRNA is fungal ribosomal component with conserved and variable regions
mainly used for taxonomic analysis of fungi in microbial communities. ITS is found
between 18S and 5.8S rRNA with higher variability and is used for studying fungal
diversity in the environment (Bromberg et al. 2015). Pipelines for taxonomic and
functional analysis include MG-RAST (Glass et al. 2010), Mothur (Schloss et al.
2009), and QIME (Caporaso et al. 2010). QIIME uses UNITE database of ITS
sequences of fungal rDNA (Koéljalg et al. 2005). Other genes are also checked by
amplicon studies to identify secondary but pivotal functions like diversity of nitro-
genase reductase (nifH) and nitrogen fixation activity (Igai et al. 2016). Metagenomic
studies of fungal root communities revealed symbiotic arbuscular mycorrhizal fungi
by analyzing SSU rRNA gene (Vasar et al. 2017).

3.6 Metagenomics and Diversity of Medicinal Plants

It has been reported by (Raynaud and Nunan 2014) that 1 g of soil holds 10%-10'°
microbial species. All these species are playing important roles especially in recy-
cling of nutrients and bio-geochemical cycles and improving the productivity and
biomass of the plant (Prakash et al. 2015). Metagenomics provides the platform for
investigating how the microbial communities interact with each other and with their
host plants that may result in healthier and high-yielding plants (Melcher et al.
2014). A huge diversity of microbes is associated with plants and is known to be
involved in nitrogen fixation, enhancement of plant growth, and increasing resis-
tance against different kinds of biotic and abiotic stresses (Lugtenberg and Kamilova
2009; Yang et al. 2009).

Medicinal plants are reported to have developed complex relations with the
microbial communities of the rhizosphere, termed as the rhizomicrobiome where
the bacterial species propagate by the phenomenon of quorum sensing. Such micro-
bial communities are reported to have symbiotic (legume-rhizobium nitrogen fixa-
tion) and mycorrhizal associations. The medicinal plants together with microbial
association are able to resist pathogenic strains and their compounds as well. Such
communication highly influences the yield and health of the plant. Thus, omics
approaches have allowed us to study the microbial consortia along with their func-
tions and have added remarkable knowledge related to the economical and
environment-friendly production of medicinal plants that will ultimately lead
towards the reduced use of chemical-based plant promoting substances (fertilizers,
herbicides, etc.). All this results in the overall improvement of medicinal plants,
healthcare and quality of life (Hao and Xiao 2017).
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3.6.1 Cannabis Microbiome

The plant microbiome can have harmful effects on human health, but when the plant
health is considered, it is providing a number of benefits like stimulation of growth
and conferring insect or microbial resistance (Turner et al. 2013). The microbiome
of leaves and flowers of Cannabis residing on the exterior are called as the epiphytes
and those within the tissues are called as endophytes. Endophytes usually gain entry
within the plant via the rhizosphere and root junctions which are then translocated
to other plant tissues via the xylem (Reinhold-Hurek and Hurek 2011). All these
microbial communities whether they inhabit the part within the soil or above, are
responsible for providing the optimum conditions for growth of Cannabis
(Berendsen et al. 2012; Winston et al. 2014). A number of bacterial and fungal spe-
cies have been identified in the endophytic microbiome of Cannabis. The fungal
species include Penicillium citrinum, Penicillium copticola, and various species of
Aspergillus (Kusari et al. 2013). The bacterial endophytic species include Bacillus
subtilis, Bacillus licheniformis, and Bacillus pumilus which are known to be benefi-
cial for the plant growth (McKernan et al. 2016; Shi et al. 2010).

3.6.2 Ocimum sanctum Microbiome

Ocimum sanctum commonly known as basil plant is known for its medicinal prop-
erties. This plant is also in association with endophytic bacterial communities of
which the most abundant is Bacillus pumilus. This bacterial specie is reported to be
beneficial as a bio-inoculant that can enhance the growth of plant. The microbial
specie is also reported to be used as a probiotic (El-Badry 2016; Murugappan
et al. 2013).

3.6.3 Maytenus spp. Microbiome

Maytenus is a shrub-like plant found in the tropical rainforests of Xishuangbanna
in China. As reported by Qin et al. (2012), metagenomics approach was used to
reveal the presence of Actinomycetales and newly reported Acidimicrobiales
which were not reported before this particular study (Qin et al. 2012). The plants
are reported to be used as a treatment for infectious and inflammatory diseases
(Da Silva et al. 2011).

3.6.4 Centella asiatica Microbiome

Metagenomics analysis of C. asiatica was performed using PCR-DGGE analysis
targeting the 16S rRNA gene. This study revealed the presence of novel endophytic
Actinobacteria having medicinal potential due to their ability to produce bioactive
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metabolites. The plant species is also reported for its use in wound healing, diabetes,
hypertension, etc. (Ernawati et al. 2016).

3.6.5 Crocus sativus L (Saffron) Microbiome

Culture-independent 16S rRNA analysis of plant rhizosphere and cormosphere
showed the presence of 22 different genera isolated from rhizosphere whereas cor-
mosphere was dominated by genus Pantoea. Statistical analysis on metagenomics
data was also applied showing that the microbial load was diverse in different parts
of the same plant (Ambardar et al. 2014).

3.6.6 Ficus deltoidea Microbiome

The diverse microbial community of Actinobacteria was studied using culture-
dependent and culture-independent techniques. The culture-independent, i.e.,
metagenomics approach for 16S rRNA using DGGE showed the presence of a num-
ber of operational taxonomic units (OTUs) such as Rhodococcus, Verrucosispora,
and Streptomyces. The associated microbial community is under research for pro-
duction of bioactive compounds as the plant is medicinally important in treating
cancer, diabetes, and cardiovascular diseases (JANATININGRUM et al. 2018).

3.6.7 Tinospora crispa Microbiome

Microbial diversity of plant 7. crispa was usually done with culture-dependent tech-
niques but the study conducted by Primanita et al. (2015) was performed using
PCR-DGGE for metagenomics analysis. This study revealed the presence of endo-
phytic Actinomycetes in abundance from various parts of the plant which include
the stem, roots, and leaves. Metagenomics approach showed high percentage of
Actinomycetes among which novel species were also identified showing less than
97% similarities from the already known species. The associated microbial consor-
tia play an important role in the production of bioactive compounds which are used
against several diseases (Primanita et al. 2015).

3.6.8 Anoectochilus roxburghii Microbiome

This wild plant is most commonly used in traditional Chinese medicine as a treat-
ment of diabetes and tumors. Endophytic species associated with the plant are con-
sidered to be potential candidates for bioactive molecules. Metagenomics analysis
revealed the presence of novel species like Paenibacillus spp. and Brevibacillus spp
(Chen et al. 2014).
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3.6.9 Dendrobium officinale Microbiome

D. officinale is considered to be a traditional and rare herbal plant found in China.
Taxonomic classification of metagenomic data reveals the abundance of Ascomycota,
Glomerella, Cladosporium, Mycena, Colletotrichum, and Alternaria as endophytic
microbial species associated with the plant (Liu et al. 2017).

3.7 Conclusion

Metagenomics has led to the discovery of many novel microbes and microbial pro-
cesses. Omics of medicinal plants has unveiled their microbiomes which are
involved in conferring support to the plant and in the production of compounds of
therapeutic importance. In the near future, with much more advanced and evolving
technologies, scientists will be able to counter diseases which seem to be life-
threatening today, and in doing so omics, especially metagenomics, will prove to be
very useful.

3.8 Terminologies

e Annotation: Assigning functions to the genes in DNA sequence analysis.

e Arbuscular mycorrhizae: A symbiotic association between the fungus and a plant
where the fungal hyphae penetrates the cortical root cells forming arbuscules.

e Arbuscules: Characteristic branched finger-like hyphae.

e Assembly: One major step in genomics/metagenomics analysis where DNA
sequence reads are assembled together for contig formation.

e Bacterial artificial chromosomes (BAC): Vectors used for the insertion of gene of
interest/large fragment of DNA in the host cell.

e Biofilms: A microbial consortium characterized by the production of exopoly-
saccharide layer for adherence of cells to surfaces.

¢ Bio-inoculant: Microorganisms introduced in the soil that make nitrogen and other
nutrients available to the plants, thus reducing the use of nitrogen fertilizers.

e Corms/cormosphere: A swollen underground part of a plant that acts as a storage
organ to fight against drastic climatic conditions. The microbial community
associated with corm is referred to as cormosphere.

e Cosmid: A combination of plasmid having cos-sites integrated within. Cosmids
are used in genetic engineering.

e Culture-dependent: Techniques which involve growing microorganisms in labo-
ratories under artificial conditions.

e Culture-independent: Techniques that bypass the need of culturing microbes and
allow the analysis of diverse microbial community within an environment or
ecosystem.

e DGGE: Denaturing gradient gel electrophoresis. A culture-independent tech-
nique used in DNA fingerprinting.
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Endo-microbiome: A collective term used for all endophytic microbial strains
residing in the plant tissues.

Endophytes: Microbial communities residing within the plant tissues.
Endo-spheres: All the associated microbial endophytes of a plant.

Epiphytes: Any organism such as a plant or microorganism that inhabits the outer
surface of plant.

Fosmid: DNA constructs functioning in accordance with the replication and par-
titioning mechanisms of F plasmid to clone large DNA fragments.

ITS: Internal transcribed spacer. A region of spacer DNA (non-coding DNA
between genes) in small and large ribosomal subunits.

Metagenomics: The study of environmental DNA or the study of DNA isolated
directly from the environment.

MG-RAST: Online metagenomic analysis tool for the phylogenetic and func-
tional analysis of the metagenomic DNA.

Mothur: Online tool for the analysis of metagenomic DNA obtained from
environment.

OTU: Operational taxonomic units which are used for the taxonomic classifica-
tion of bacteria according to similarities.

PCR: Molecular technique used for the amplification of small quantity of DNA.
Pedoclimate: A micro-climate exhibiting the fusion of abiotic factors affecting
the soil such as temperature, air, and water content.

Pneumatophores: Also called as “air root” that grows vertically upwards out of
soil or water for gaseous exchange.

Probiotic: Bacteria inhabiting the digestive tract of humans, conferring a
healthy system.

QIIME: A next-generation online platform used for the analysis of microbiome
from raw DNA reads.

Quorum sensing: The release of chemicals called as auto-inducers which play a
significant role in the cell density and biofilm formation.

Rhizo-microbiome: An essential component of the plant ecosystem influencing
plant health in physiological and pathological/stressful conditions.

SSU rRNA gene: The gene encodes 16S rRNA used in the synthesis of small
ribosomal subunit.

UNITE: A database of ITS sequences of fungal rDNA.

Vector (in terms of transformation): A molecule of DNA used as a vehicle carry-
ing genetic material (foreign gene) to a host cell. A vector containing foreign
DNA is known as recombinant DNA.
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Abstract

The physiological development of the plant system is significantly affected by
microbial communities. Selected members of the microbial community are
advantageous while few are unfavorable to the plant growth. Few pathogens
rather colonize the rhizosphere to break the defense mechanism of the plant to
trigger disease whereas others propagate through the various aerial parts of the
plant to spread disease pertaining to human. However, the significance of micro-
bial communities related to rhizosphere has been widely recognized recently. To
improve the plant growth and development, it will be beneficial to know the
microbial structure present in the rhizospheric microbiome. This can enhance the
present situation of sustainable growth of agro-ecosystem related to soil micro-
biome by enhancing the final yields. In this chapter, we summarize the commu-
nity structure of the microbes in the rhizosphere of various economic important
plants through metagenomic approach.
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4.1 Introduction

The role of microbial diversity in plant growth and development is always consid-
ered of special interest to biologists. Plant rhizosphere is colonized with huge popu-
lation of microorganisms that attain higher densities at a short span of time. This
results in higher number of microbial genes in the microbiome than the plant genes.
Several reports on plant—-microbe interaction has been reported which suggests the
influence of the interaction on seed germination, seedling growth, and plant produc-
tivity. Predominantly found microbes in rhizosphere are bacteria, nematodes,
worms, fungi, and algae (Bonkowski et al. 2009). The microbes active in the rhizo-
spheric zone survive predominantly on the nutrients released by the plant roots.
Plant roots mostly secrete mucilage and exudates, also known as rhizodeposits
which regulate the microbial diversity of the zone. A study by Cook et al. (1995),
suggested that plant cells may regulate the microbial diversity of the rhizosphere by
alternating the rhizodeposits as per their benefit. Microbial diversity related to nitro-
gen fixers, mycorrhiza present in the rhizospheric region has been reported to have
advantageous influence on plant growth and development. However, pathogenic
bacteria, fungi, and worms account as non-beneficial to the plant development.
Also, proliferation of human pathogens inside and on the surface of the leaf epider-
mis has been reported by several studies (Kaestli et al. 2012). Hence, understanding
the structural and functional diversity of microbial world in the rhizospheric zone is
an important step to improve the plant growth, health, and productivity.
Metagenomics approach has allowed examining and identifying microbial diversity
and richness from culturable to the unculturable forms leading to enhanced analysis
of microbial genome evolution and heterogeneity.

The latest sequencing technologies have made way for unraveling the microbial
diversity and the genomic content in the rhizosphere (Table 4.1). The rhizospheric
microbial population has been reported with capabilities of nitrogen fixation and
helping in plant growth and development (Lugtenberg and Kamilova 2009; Yang
et al. 2009). Suitable literature reports have found that microbes invade the root and
tissue of the healthy plant. Such microbial growth affects the plant health by induc-
tion of certain phenotypes in favor of the plant development and disease resistance
(Ryu et al. 2003). However, studies are required for better understanding and higher
specificity to learn about the relationship between plant and microbial interactions.
To combat such scenario, metagenomic approach was employed in several studies
relating soils from different geographical region for comparing microbial popula-
tions (Taghavi et al. 2009; Fierer et al. 2012; Unno and Shinano 2013; Luo et al.
2014). Report by Fierer et al. (2012) suggested low abundance of biotic genes in
desert soil microbiome thus indicating the predominance of genes related to abiotic
conditions in such microbiome. In past few decades, with the advent of metagenom-
ics approach, biological sciences relating to study of microbial interactions have
reached new heights. This technique has permitted extension to the soil microbial
interactions in rhizospheric zone with more understanding towards novel genes,
hidden genetic features, and newer metabolic pathways. The main purpose of this
review is to provide brief insights on the current advances of metagenomics
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Table 4.1 Case studies relating metagenomics approach to microbial interactions

S1.

No. | Case studies References

1 | The study introduces a new term known as metaphenome which Jansson and
combines genetic potential of the microbiome and available resources Hofmockel

(2018)

2 | Samples from reference, rehabilitated and non-rehabilitated mine site of | Gastauer et al.
Urucum massif, Brazil, is compared. Results suggested similar (2019)
microbiome composition for reference and rehabilitated sites samples

3 | The microbial populations present in the rhizospheric zone of the barley | Kumar et al.
and alfalfa planted soil contaminated are predominated by (2018)
Proteobacteria, Bacteroidetes, and Actinobacteria phylum

4 | 16S gene profiling and metagenomic shotgun sequencing was done to Bulgarelli
find out the microbial interactions in the wild and domesticated roots of | et al. (2015)
barley. Bacterial families such as Commamonadaceae,

Flavobacteriaceae, and Rhizobiaceae predominated the rhizospheric
zone of the barley plant

5 | Amplicon sequencing approach was utilized to find the microbial Gupta et al.
population present in the roots of Vitis vinifera. Predominance of (2019)
Alphaproteobacteria, Rhizobiales, Acidobacteria-GP4 was found

approaches in deciphering the different microbial communities associated to rhizo-
sphere of different economic important plant.

4.2  Achievements with Metagenomics in Economic

Important Plant and Microbial Interactions

Metagenomics is a promising tool which provides fundamental knowledge on
microbe—-microbe and plant—microbe interactions and has remarkable potential to
enhance sustainable plant productivity (Bramhachari et al. 2017). Several reports
have been documented on a metagenomic approach to explore the microbial
diversity in plants (Unno and Shinano 2013; Mendes et al. 2014; Yadav et al.
2015). The first metagenomic library was prepared from the samples of pico-
plankton by Schmidt et al. (1991) which was followed by Healy et al. (1995) for
generating metagenomic libraries for a variety of cellulase from cellulose digest-
ers. In the year 2000, a term metagenomic library was named to bacterial artificial
chromosomes with DNA inserts from soil sample (Rondon et al. 2000). Huge
volume of metagenomic data is generated utilizing this approach which influences
the findings of novel genes and enzymes, metabolic pathways, and microbial
interaction. In this section, we will highlight recent achievements in scientific
studies relating metagenomic approach for microbial interactions in various eco-
nomic important plants.
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4.2.1 Maedicinal Plants

Medicinal plants are mostly used as herbal remedies and play an essential role in
traditional healthcare in most of the developing countries. The word allelopathy is
commonly used to define the chemical involvements of two or more plant species
possibly due to the release of biochemicals in the rhizosphere (Duke 2010). With
reference to allelopathy, allelopathic toxicity is described as a phenomenon where a
particular plant variety negatively affects itself due to repeated plantation in the
same soil. Huge number of medicinal plants (approx. 70%) suffers due to allelo-
pathic toxicity. Wu et al. (2018) reported the change in microbial population in the
rhizosphere due to allelopathic toxicity of Rehmannia glutinosa, a traditional
Chinese herbal plant. The toxicity phenomenon resulted in reduction of bacterial
population of Burkholderiaceae and Pseudomonadaceae and an increase in
Sphingomonadaceae and Streptomycetaceae. Also, comparative metagenomics
suggested a reduction in abundance of Azotobacter, Pseudomonas, Burkholderia,
and Lysobacter in 2-year monocultured soil.

Similarly, McKernan and his group studied the microbiome composition of the
rhizosphere of medicinally important Cannabis sp. (McKernan et al. 2016).
Metagenomic analysis suggested the abundance of pathogenic bacterial and fungal
species such as E. coli, Salmonella enterica, Penicillium citrinum, Pseudomonas
aeruginosa, and Clostridium botulinum. As found in the results of the study, P. citri-
num is a growth-promoting endophyte for Cannabis sp. and also had higher abun-
dance in the study. However, this pathogenic strain produces nephrotoxin citrinin
which in case present in the plant extracts might pose for a serious health threat.

Tian and Zhang (2017) studied the microbial diversity of the rhizosphere related
to the halophyte Messerschmidia sibirica. The 16S rRNA gene sequencing was
accomplished using [llumina HiSeq platform to identify the bacterial diversity relat-
ing the halophyte. The halophyte M. sibirica has traditional medicinal values along
with significant commercial and ecological importance. In addition, they also help
in soil improvement, phytoremediation. The metagenomic throughput study indi-
cated the predominance of Proteobacteria and Actinobacteria. The genera observed
to be abundant were Pseudomonas, Bacillus, Sphingomonas, and Rhizobium.

4.2.2 Plants Producing Cereals

The next-generation throughput sequencing technique has been applied widely to
examine the gut microbiome and interactions between host and microbial metabo-
lism (Broderick 2015, Martin et al. 2014; Table 4.2). Ina report by Mendes et al.
(2014), the microbial population from the soil reservoir used for soybean farming in
Amazon forest soils is examined. With the help of shotgun sequencing, predomi-
nance of Deltaproteobacteria, Sphingobacteria, and Chloroflexi along with
Gammaproteobacteria and Solibacteres were found. In another study by Unno and
Shinano (2013), the metagenomic study indicated a variation in the abundance of
bacterial community that improves the phytic acid utilization and the plant health.
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Table 4.2 Examples for microbial community diversity in rhizospheric zone for host plants
SL.
No. | Host plant Microbial community References
1 Rice Proteobacteria, Acidobacteria, Firmicutes, Arjun and
Bacteroidetes Harikrishnan (2011)
2 Arabidopsis Proteobacteria, Actinobacteria, Bacteroidetes Bodenhausen et al.
(2013)
3 Wheat Pseudomonas aeruginosa, Bacillus cereus, Egamberdiyeva
Alcaligenes faecalis et al. (2008)
4 Arachis Proteobacteria, Actinobacteria, Firmicutes, Haldar and
hypogaea Bacteroidetes, Acidobacteria Sengupta (2015)
5 Wheat Proteobacteria, Archaea, Firmicutes, Hernandez-Leon
Actinobacteria, Fungi etal. (2012)
6 Rice Firmicutes, Actinobacteria, Gammaproteobacteria, | Knief et al. (2012)
Methanobacteriales, Methanomicrobiales,
Methanosarcinales

Table 4.3 List of rhizodeposits released by host plant in rhizospheric zone

S1.
No. | Rhizodeposit Host plant | References
1 Strigolactone (plant hormone) Rice Cardoso et al. (2014)
2 Malic acid, citric acid Tomato de Weert et al. (2002)
3 Sugar (fructose, maltose), amino acid, organic Maize Carvalhais et al.
acid (2011)
4 Salicylic acid, gamma-amibobutyric acid Arabidopsis | Badri et al. (2013)
5 Mugineic acid Barley Takagi et al. (1984)
6 Mucilage Maize Iijima et al. (2000)

The microbial community included Bacteroidetes, Betaproteobacteria, Chlorobi,
and Methanobacteria. In a recent study by Kumar et al. (2018), metagenomic analy-
sis showed the rhizospheric microbial structure in alfalfa and barley planted oil
contaminated soil samples. The sequencing study revealed the abundance of
Proteobacteria, Bacteroidetes, and Actinobacteria of approx. 46%, 21.4%, and
10.4%, respectively. Plants can significantly alter the microbial structure by produc-
ing rhizodepositions (Table 4.3). The 16S rRNA amplicon sequencing was employed
to reveal the rhizospheric microbial structure for Brassica oleracea (O’Brien et al.
2018). The rhizosphere of the organic fertilized 12-wee- old cabbages showed
increased abundance of Thiobacillus and reduced abundance of cyanobacteria
Phormidium in synthetic fertilized soils.

4.2.3 Leguminous Plants
In the late nineteenth century, scientists grouped mycorrhiza and bacterial commu-

nities present in root nodules of the leguminous plant as root symbionts (Morton
1981). The symbiotic nitrogen fixation is one of the most significant mutualistic
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functions among microbes present in close vicinity of leguminous rhizosphere. The
mutualistic approach by the microbe allows the conversion of atmospheric nitrogen
into nutrient which can be further taken by the plant (van der Heijden et al. 2006).
In a recent study by Dinnage et al. (2019), metagenomic sequencing was done to
isolate the rhizospheric microbial population from the bulk soil near Acacia acumi-
nata. Results suggested the predominance of Bradyrhizobiaceae clade along with
Rhizobiaceae.

Since Beijerinck’s experimentation with Rhizobium and leguminous plant sym-
biosis which further resulted in root nodule formation, biochemistry-relating nitro-
gen fixation made substantial progress (Quispel 1974). In leguminous plants,
formation of root nodules is somehow significantly influenced by flavonoid path-
way which attracts rhizobial microbes and activates the nod gene expression.
Several reports have been found with respect to the flavonoid pathway influence on
nod gene expression induction (Fig. 4.1). The mycorrhizal interaction with nodules
permit increased nitrogen fixation which in turn allows higher nutrient uptake.
However, signaling pathways for various plant—microbe interactions varies. While a
lot many studies have inferred by analyzing the mutant plant varieties that the can-
didate genes are related to metabolite transfer to rhizospheric zone (Carvalhais et al.
2015; Foo et al. 2013; Zhang et al. 2009).

The flavonoid metabolism pathway is one of the most studied biosynthetic
metabolisms (Fig. 4.1). Flavonoid metabolism is primarily initiated by the phenyl-
propanoid metabolites which are formed from malonyl CoA and p-coumaroyl CoA
(Stafford 1990). There are certain types of flavonoids which are produced from CoA
ester compounds such as cinnamic acid. The flavonoid diversity ranges due to vari-
ous basal flavonoid structures such as flavonols, flavones, flavonones, and many
more (Fig. 4.1).

Phenylalanine
v
Cinnamic acid

P- coumaric acid

4- coumaroyl CoA

l

MNaringenin chalcone

i //_/_/) Isoflavone — |soflavonoids
Naringenin
\ Phlobaphenes — Flavones

3- OH- Flavonones——> Anthocyanins

Fig. 4.1 The flavonoid metabolism pathway in plant systems
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4.2.4 Essential Oil-Bearing Plants

A plant resource comprises several types of natural products including essential
oils. Essential oils (non-toxic compounds) are natural bioactive products and have
potential applications and economic value. Recent study by Shaikh et al. (2018)
revealed the rhizospheric study of Mentha arvensis via metagenomic approach.
M. arvensis is widely cultivated aromatic plant mostly for essential oil utilized to
treat skin ache and pain. The metagenomic study resulted in predominance of
Aspergillus niger followed by Rhizopus stolonifer and Rhizopus nigricans.
Abundance hit for Aspergillus flavus, A. terricola, Trichoderma viride, and
Zygorhynchus molleri was also found. The study revealed a hike by 0.88% when
treated with Trichoderma viride whereas when treated with A. niger an increase of
0.78% in essential oil production was observed. The experimental set inoculated
with T. viride showed highest production of menthol (approx. 98%) when compared
with the set inoculated with rhizospheric fungi. As per a recent study by Xu et al.
(2018), rhizospheric microbiome has a significant role in enhancing the fruit quality
and health of citrus plant. The amplicon sequencing revealed the predominance of
Proteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria as taxa. Also, the
highly abundant microbes found in the rhizosphere are Pseudomonas,Agrobacterium,
Burkholderia, Rhizobium, and Bradyrhizobium which later were observed to be
core microbes in the near vicinity of the plant root often helping for stress tolerance
and disease resistance. In the year 2010, Kaewkla and Franco (2010) isolated
Pseudonocardia eucalypti from the roots of native Australian eucalyptus tree. The
P. eucalypti is an endophytic actinobacteria-bearing Gram-positive characteristics.
The 16S rRNA phylogenetic studies also showed sequences having 96.1% and
96.3% similarity to Pseudonocardia acaciae and Pseudonocardia spinosispora,
respectively. Metagenomic study of Aloe vera microbiome suggested the presence
of Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria in a study by
Akinsanya et al. (2015).

In 2017, Pereira et al. (2017) revealed the variation in microbiome composition
in the rhizosphere of Eucalyptus grandis and Acacia mangium. Quantitative PCR
was performed on soil samples with a depth of 0-800 cm. Results reported pre-
dominance of Proteobacteria in subsurface layers of soil with a depth of 0-300 cm
and Acidobacteria in surface layer. A change in microbial composition was possibly
due to the rhizospheric effect of A. mangium in mixed stands with E. grandis. Also,
A. mangium increases the acidification of rhizosphere by absorption of cations and
simultaneous release of H* ions leading to microbiome composition variation. The
monospecific cultivation of E. grandis suggested an abundance of Firmicutes and
Proteobacteria.
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4.3 Insight on Plant Growth-Promoting Rhizobacteria

Plant growth-promoting rhizobacteria (PGPRs), an important group of microorgan-
ism, belongs to rhizosphere bacteria and involved in to promote plant growth and
health via different mechanism (Ali et al. 2015; Yadav et al. 2020b). The PGPRs
play a vital role in plant-based agricultural system, mostly as biofertilizers for the
replacement of pesticides and chemical fertilizers which often contaminate the
environment (Kour et al. 2020; Singh et al. 2020b). Recent advances with regard to
utilizing metagenomics approaches expanded overall understanding to characterize
soil microbial communities and plant-microbe interactions in the rhizosphere
(Souza et al. 2015; Goel et al. 2017).

A range of microbial population share mutualistic relationship with leguminous
plants by producing biological minerals, and hence improving soil fertility and plant
growth (Rosenberg and Rosenberg 2016; Verma et al. 2017). Simultaneous evolu-
tion of plants with rhizospheric microbial community is necessary to withstand
biotic and abiotic stresses and improving the sustainability (Khan et al. 2016; Kumar
et al. 2019; Singh et al. 2016). The PGPRs show positive association with plant
hosts. The PGPRs help in improving barren lands to fertile zones for cultivation,
soil quality, and enriches the plant health (Bhardwaj et al. 2014; Yadav et al. 2018).
The soil fertility along with plant health can be improved by various ways such as
by producing certain compounds in vicinity of plant roots which enhance plant
health, nitrogen fixation, phosphate, and potassium solubilization, enhance hor-
mone production and by reducing the harmful effects of pathogenic microbes by
inducing systemic resistance, enzyme, and volatile organic compound production
and antibiosis (Tripathi et al. 2012; Rastegari et al. 2020; Yadav et al. 2020a)
(Table 4.4). The PGPRs act as biofertilizers which can increase the nutrient uptake
from rhizosphere. The direct mechanism of PGPRs invades the host root and
improves plant health by nitrogen fixation, production of siderophores, indole-
3-acetic acid (IAA); by degradation of environmental pollutants and mitigation of
different abiotic stress such as temperature, pH, drought, radiation, and salinity (Ma
et al. 2011; Tank and Saraf 2010; Kour et al. 2019; Singh et al. 2020a; Singh and
Yadav 2020). Furthermore, the applications of metagenomics not only provide
insights to microbial/taxonomic diversity but also access to metabolic diversity of
genes. In addition, metagenomics can be utilized for the development of next-
generation fungicides and pesticides to improve the organic agriculture efficiency.
However, a detailed metagenomic approach of the PGPRs is highly recommended
to explore the new rhizospheric flora to improve the sustainable agricultural/plant
productivity.



4 Role of Metagenomics in Deciphering the Microbial Communities Associated... 87

Table 4.4 Role of plant growth-promoting rhizobacteria in enhancing plant growth and
development

SI.
No. | Name of the microbe | Important role References
1 Azotobacter aceae Nitrogen fixation Bhattacharyya and
Jha (2012)
Bacillus circulans Phosphate solubilization Oteino et al. (2015)
3 Azospirillim Polycyclic aromatic hydrocarbon Orlandini et al.
brasilence degradation (2014)
4 Azospirillim Indole acetic acid synthesis Orlandini et al.
brasilence (2014)
5 Burkholderia sp. Induction of ethylene production Islam et al. (2016)
6 Bacillus subtilis Nickel accumulation Prathap and Ranjitha
(2015)
7 Pseudomonas putida | Ethylene, salicylic acid production Tiwari et al. (2016)
8 Bacillus Maintenance of elicitors, secondary Srivastava et al.
amyloliquefaciens metabolite production (2016)
9 Pseudomonas Degradation of trichloroethylene and Ramadan et al.
fluorescens resistance against halo blight (2016)
10 | Bacillus Enhanced potassium intake Liu et al. (2012)
mucilaginosus

4.4 Biotechnological Impact of Next-Generation
Sequencing Technologies

In the year 1986, a group of scientists (Pace et al. 1986) initially coined the concept
of DNA cloning directly from environmental samples to understand the structural
diversity of microbial communities. This strategy was a modified version of shotgun
cloning of DNA extracted from natural samples based on 16S rRNA genes. However,
in the year 1998, Handelsman along with the scientific group proposed the term
“metagenome” through a study based on extracting soil microbial communities and
its underlying importance as initial source of novel natural compounds (Handelsman
etal. 1998). The study proved that metagenomics approach had significant contribu-
tion in new chemical compound mining from uncultured microorganisms.

Metagenomics approach can be further classified into two major sections known
as structural and functional metagenomics, which focus on various outlooks of
determining the microbial community linked to a particular microbiome. The struc-
tural metagenomics allows the examination of the structural diversity of uncultured
microbial population for reconstruction of metabolic pathways (Handelsman 2005).
In this way, the microbial community study will allow to examine underlying con-
nections of various microbes in a specific ecosystem with respect to different biotic
and abiotic stresses. However, the functional metagenomic approach focuses to
identify genes related to a specific function. This technique involves preparation of
gene expression libraries associating different metagenomic clones based on
activity-based screening.
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Table 4.5 Novel gene discovery through metagenomics

Sl. | Target gene

No. | identified Screening technique | Functions References

1 Naphthalene Functional Applicable in heavy metal/ | Ono et al.
dioxygenase metagenomics oil contaminated soil (2007)

samples

2 | Salt resistance Functional Aids in resisting varying Mirete et al.
genes metagenomics salt concentrations (2015)

3 | Nickel resistance Functional Helps in resisting nickel Mirete et al.
genes metagenomics present in near vicinity (2007)

4 | Antimicrobial Functional Confers antibiotic attributes | Ia et al.
molecules metagenomics (2001)

5 | Dioxygenase- Sequencing-based Degradation of Zaprasis et al.
degrading cluster metagenomics phenylalkanoic acid (PAA) | (2009)

6 | Cellulase Functional Thermotolerant enzyme Garg et al.

metagenomics (2016)

The Sanger sequencing technology was one of the initial sequencing platforms
employed for metagenomics (Sanger et al. 1977). However, with evolution of time,
the rise of next-generation sequencing platforms allowed higher sequencing capaci-
ties at lower cost (Klindworth et al. 2013). Also, current versions of NGS platform
have higher capacities of up to 5000 Mb of DNA sequences per day in comparison
to 6 Mb data generated by Sanger sequencing (Kircher and Kelso 2010).

The advent of metagenomics has a significant contribution in the field of biotech-
nology with deciphering the microbial roles in commercially available enzymes,
production of antibiotics, and in biochemical transformations for biotechnological
advancements (Fernandez-Arrojo et al. 2010). Structural and functional-based
metagenomics has been widely employed (Table 4.5) for identifying the new genes
providing resistance against harsh conditions, antibiotics, salinity, and heavy met-
als. Also, functional metagenomics can provide the deeper understanding towards
biochemical pathways employed by the microbes in varying biotic and abiotic
stresses (Table 4.5). Thus, the similar property can be utilized further to enhance the
survival capacity of the microbes being employed in industry.

4,5 Conclusion and Future Prospects

Over the last few years with the advent of metagenomics, significant advancements
have been made. To deduce the interlinking biochemical processes that control the
microbial organization in the subsurface, an elaborated examination of the micro-
bial structure, diversity, and its dynamics is a prerequisite. The findings presented
reveal that metagenomic approaches have emerged as a modern tool that controls
diverse aspects of microbial communities and has potential application in the plant—
microbes interaction. The microbiome structure beneath the surface significantly
helps in plant growth and development. These microbial communities have undis-
putable contribution towards soil fertility, enhanced nutrient accession to plant,
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resisting from biotic and abiotic stresses and phytoremediation of organic com-
pounds. In some cases, microbial community has been observed to vary with soil
depth; however, in deeper horizon, no distinct population has been detected. In
majority of the studies, Proteobacteria has been observed to be in high abundance
which indicates active nitrogen fixation, nutrient uptake capacity, and polycyclic
aromatic hydrocarbon degradation. Apart from Proteobacteria, Bacteroidetes,
Firmicutes, and Acidobacteria have also been obtained in higher number. Also, inte-
grated omics technology such as next-generation sequencing and metagenomics has
made it possible to unlock the rich microbial potential from the subsurface horizons.
However, more elaborated research needs to be conducted along with other omics
analyses such as meta-transcriptomics and meta-proteomics to discover the in situ
functions associated with the microbial structures. In addition, the use of novel
approaches will certainly elucidate the novel and diverse mechanisms of PGPRs
activity as well as new PGPRs identity which will provide a new look on applica-
tions of PGPRs biology. Further research will provide novel insights for better
understanding of metagenomic approach related to microbes. Ideally, this will inev-
itably improve the modern metagenomic approaches for microbial communities to
associate with economically important plant.
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Abstract

The beneficial associations of plants and microbes exemplify a complex and multi-
organ system composed of participatory organisms and the environmental forces
acting on them. Current knowledge of plant-microbe symbiosis involves a series of
associations with varying degrees of intimacy and mutual dependence. Generally,
rhizosphere microbes can help the plant by maintaining nutrient recycling, hormones
production, preventing microbial infections and improving tolerance towards poten-
tially hazardous compounds. Symbiotic relationships are known to be extremely
beneficial for the enhancement of overall plant growth, especially in those soils that
are deprived of certain minerals like P or N. However, in case of well-fertilized arable
soils, symbiotic microbial growth is found to reduce significantly due to the improved
bioavailability of nutrients in the soil. In addition to the vast benefits of symbiotic
microbial growth in the rhizosphere, it also offers an overall increase in crop produc-

tivity, therefore making it an essential area of research.
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5.1 Introduction

Plants are well-known to co-operate with the large microbial community in nature.
This plant-associated microbiota involves various groups of organisms like bacteria,
archaea, fungi, efc. and acts as symbiont or pathogen (Berendsen et al. 2012; Vorholt
2012; Hussain and Khan 2020). These complex interactions between plants and
microbes have a significant impact on plant growth and productivities (Hussain
et al. 2020a; Kumar et al. 2020a, b; Singh et al. 2020a, b, c). Several studies high-
lighted the beneficial activities of these microbial communities in plant health such
as increasing nutrient availability (De Mandal et al. 2018; Yadav et al. 2018), adap-
tation to environmental variations and abiotic stresses (Garbaye 1994), disease sup-
pression (Haney et al. 2015), stimulating plant hormone (Laskar et al. 2018),
priming of the plant immune system, establishment of mycorrhizal associations
(Rolli et al. 2015), and induced systemic resistance (Van der Ent et al. 2009; Van
Der Heijden et al. 2016; Zamioudis et al. 2015). In turn, the host plant also secretes
secondary metabolites that favour the growth of specialized microorganisms
(Hassani et al. 2018; Thrall et al. 2007). Plant root can synthesize and secrete sev-
eral compounds in the form of root exudates, which plays a significant role in medi-
ating the interaction between the plant and the microorganisms (Rastegari et al.
2020a; Singh and Yadav 2020; Yadav et al. 2020f). Two different types of com-
pounds are identified in the root executes, i.e., low molecular weight compounds
such as amino acids, sugars, phenolics, organic acids, secondary metabolites, and
high molecular weight compounds like proteins, mucilage, efc. (Bais et al. 2002;
Weir et al. 2004).

Rhizospheric microorganisms influenced by these metabolites and, in turn, inter-
acts with the plant roots in a positive (symbiotic), negative (e.g., parasitic/patho-
genic) or neutral ways and affect plant physiology (Kour et al. 2019; Yadav et al.
2020e). It has been stated that plant synthesizes the root exudates, which allows the
aggregation of the particular microbial community in the rhizosphere, and the
microbial densities were 100 times more in the rhizospheres as compared to the
bulk soil. These further illustrate the significance of root exudates in shaping the soil
microbiota (Ciccazzo et al. 2014; Faure et al. 2009; Lareen et al. 2016).

The growing demand for crop production encourages the use of sustainable agri-
cultural practices around the world. Several research have been undertaken to meet
environmental and economic sustainability (Rastegari et al. 2020b; Yadav et al.
2020b, d). The exploitation of rhizosphere microorganisms is considered as an
important way for sustainable and healthy crop production. However, the interac-
tion of the plants and microbes is affected by several ecological factors (Yadav et al.
2020c). Optimization of the root-associated microorganisms by improving their
abilities to supply nutrients, protection against pathogens, and tolerance in hostile
environments improve the overall agricultural productivity (Barea 2015; Zolla
et al. 2013).

Plants were known to evolve with their adaptation to survive in the abiotic and
biotic stresses. However, they often rely on other partners to combat the pathogens
(Turner et al. 2013). In nature, plants have been associated with microbial
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communities for millions of years. The mycorrhizal fungi have evolved with the
plants for more than 400 MY. During this process, they acquired several mecha-
nisms that modulate plant-microbe interactions to survive in hostile environments
(Oldroyd 2013; Pirozynski and Malloch 1975). There have been several studies on
plant microbiota as well as hosts; however, the underlying mechanisms of plant—
microbes interaction have not yet been fully revealed (Kumar et al. 2019b;
Subrahmanyam et al. 2020). This chapter is an overview of the different microbial
associations between microbial groups and host plants. We discuss and review the
progress of recent research on microbial services for the benefit of plant species.
This knowledge will be useful for the detailed understanding of plant-microbiome
interactions that can be exploited for the improvement of agricultural practices.

5.2 Plants—-Microbes Association
5.2.1 Endophytic Microbiome

Plant-associated microbiota may present in the rhizospheric soil or rhizoplane and
within the tissues (endophytes) of the plant. The endophytes can escape the immune
protection of the plant defense system and colonize inside without causing any dis-
ease. They produce several bioactive molecules which play an imperative role in
plant development and protection against various pathogens and hostile environ-
ments (Datta et al. 2020; Suman et al. 2016). However, most of the endophytes are
unculturable, and thus their interaction mechanism with the plant is mostly studied
using the molecular-based approach, while some microorganisms colonize the inte-
rior of plants, such as mycorrhizal fungi, rhizobia, and pathogens. They are not
considered among the core groups of endophytes because they transfer nutrients
from external sources like atmosphere or appearance of symptoms of disease in the
host plant (Barea 2015; Brader et al. 2014; Mercado-Blanco 2015) (Table 5.1).

5.2.1.1 Bacterial Endophytes

The bacterial endophytes enter the plant via rhizosphere through root epidermis and
cortex. They are further divided into three categories such as passenger endophytes
(limited to root cortex), opportunistic endophytes (limited to particular tissues in
roots of plants like root cortex and also show root proliferating properties), and
competent endophytes (that have the capability to spread to vascular tissues or other
tissue of the plant) (Hardoim et al. 2008; Rana et al. 2019a). Once vascular tissue is
invaded, the endophytes can spread and colonize to the vegetative parts like fruits,
flowers, and seeds. Selection for the colonization of endophytes in the seeds could
provide beneficial bacteria to the next generation (Compant et al. 2010; Jambon
et al. 2018; Truyens et al. 2015).

Rhizosphere colonizing microbes are known to promote the growth of plant
growth, in addition to that confer them the ability to adapt to extreme environmental
conditions. It has been reported that rice seed is colonized by diverse endophytic
bacteria that serve as a source of beneficial bacterial communities in the growing



98

S. De Mandal et al.

Table 5.1 Plant-microbe association and PGP attributes of different microbes

Microbes

PGP attributes

Host/association

Archaea

Halobacterium sp., Halococcus hamelinensis,
Haloferax alexandrinus, Haloterrigena
thermotolerans, Methanobacterium bryantii,
Methanosarcina, Methanospirillum sp.,
Natrialba sp., Natronoarchaeum annanilyticum,
Nitrosomonas communis

P-solubilization,
TAA, siderophore,
nitrogen fixation

Abutilon, cressa,
maize, rice,
sporobolus, Suaeda
nudiflora

Actinobacteria

Arthrobacter humicola, A. methylotrophus,
Arthrobacter sp., Cellulosimicrobium sp.,
Kocuria, Micrococcus luteus, Streptomyces

P-solubilization,
TAA, biocontrol

Cowpea, millet,
mustard, wheat

Bacteroidetes

Flavobacterium psychrophilum, Flavobacterium
sp., Sphingobacterium sp.

P-solubilization,
K-solubilization

Barley, millet, wheat

Proteobacteria

Achromobacter piechaudii, Acinetobacter sp.,
Advenella sp., Agrobacterium larrymoorei,
Alcaligenes sp., Azotobacter tropicalis,
Bradyrhizobium sp., Enterobacter sp.,
Methylobacterium phyllosphaerae, M.
radiotolerans, Nitrinicola lacisaponensis,
Pantoea agglomerans sp., Providencia
rustigianii, Pseudomonas cedrina, P.
fluorescens, P. gessardii, P. putida, P. rhodesiae,
P. thivervalensis, Serratia marcescens,
Tetrathiobacter sp., Variovorax

Multifunction PGP
attributes including
solubilization of P,
K, Zn; production of
ammonia, HCN
siderophore, and
biocontrol

Amaranth, barley,
buckwheat, cotton,
cowpea, gram,
maize, millet,
mustard, oat, rice,
sunflower, tomato,
wheat

Firmicutes

Bacillus aerophilus, B. alcalophilus, B.
altitudinis, B. amyloliquefaciens, B. cereus, B.
circulans, B. endophyticus, B. flexus, B.
fusiformis, B. licheniformis, B. megaterium, B.
methylotrophicus, B. mojavensis, B. pumilus, B.
solisalsi, B. sphaericus, B. tequilensis, B.
thuringiensis, Exiguobacterium acetylicum,
Lysinibacillus, Paenibacillus alvei, P.
dendritiformis, P. polymyxa, P. xylanexedens,
Planococcus salinarum, Staphylococcus

Multifunction PGP
attributes

Amaranth, apple,
barley, buckwheat,
maize, mustard, oat,
pepper, rice,
sorghum, sunflower,
tomato, wheat

Fungi

Gliocladium, Leptosphaeria, Metarhizium,
Penicillium, Piriformospora indica,
Sporotrichum thermophile, Trichoderma, T.
longibrachiatum, Williopsis saturnus

TAA, siderophore
P-solubilization,
biocontrol

Amaranth, barley,
buckwheat

cotton, maize, oat,
rice, sorghum,
soybean, wheat

Sources: Verma et al. (2017b)

plant and help in plant growth and development (Walitang et al. 2019). Under both
stress and normal conditions, these endophytes help in seed germination and seed-
ling development (Bent and Chanway 1998; Gond et al. 2015a, b). These seed endo-
phytes also showed antifungal activity against various plant pathogens. Endophytic
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bacteria isolated from the seeds of commercial wheat cultivar demonstrated high
biocontrol activities against Fusarium graminearum (Herrera et al. 2016). Similarly,
seed endophytic bacteria such as Bacillus and Pseudomonas were found to have
antagonistic effects on F. oxysporum f. sp. lycopersici (Fol.) (Gagne-Bourgue et al.
2013; Sundaramoorthy and Balabaskar 2013). Similarly, colonization of the endo-
phytic bacteria in the root causes enhanced expression and activity of vacuolar pro-
ton pumps H*-ATPase (V-PPase) that confer drought tolerance in pepper plants
(Vigani et al. 2019).

Endophytic bacteria derived from the halophytes helps to alleviate stress induced
by salinity in plants by regulating the plant hormones, assisting in the uptake of
nutritional compounds and modulating the synthesis of ROS via various mecha-
nisms such as enhancing the solubilization of phosphate compounds, increase the
process of nitrogen fixation, improving the catalytic activity of enzyme 1-aminocyc
lopropane-1-carboxylic acid deaminase and elevating the production of compounds
like siderophores, abscisic acid (ABA), volatiles, and indole-3-acetic acid (IAA)
(Kour et al. 2020a; Rana et al. 2020a). Under the saline conditions, plant growth-
promoting endophytic bacteria can be involved in the growth stimulation, nutrient
acquisition, symbiotic performance, and stress tolerance in chickpea. It was found
that the plants inoculated with Bacillus subtilis (BERA 71) showed enhanced stabil-
ity of the membranes when subjected to saline conditions, which can be attributed
to the suppression of lipid peroxidation, reduction in the production of ROS and the
accumulation of proline (Abd_Allah et al. 2018).

5.2.1.2 Fungal Endophytes

The fungal endophytes may be present inside the roots, leaves, stems, and forms an
association with plants which can be neutral, mutualistic, or antagonistic (Chadha
et al. 2014). They are divided into two groups, clavicipitaceous and the non-
clavicipitaceous endophytes. These non-clavicipitaceous endophytes can be further
subdivided into three classes: Class 2 endophytes (grow in rhizomes, roots, and
shoots), class 3 endophytes (reside only in shoots of plants), and class 4 endophytes
(present only in the roots of plants) (Rodriguez et al. 2009; Yadav 2019). Similar to
bacterial endophytes, fungal endophytes also contribute to the plant fitness in biotic
(plant pathogens, insects, and nematodes) and abiotic stress (drought, extreme pH,
nutrient limitation, salination, temperature) (Rana et al. 2020a, b, c). They can pro-
duce several bioactive secondary metabolites, including volatile organic compounds
that act as a defense substance against pests and pathogens. These metabolites also
act in specific interaction and communication within the host (Lugtenberg et al.
2016; Rana et al. 2019b).

The sugarcane endophyte Epicoccum nigrum was reported to possess biocon-
trol activities against several pathogens such as Sclerotinia sclerotiorumin,
Pythium, and Monilinia spp. (de Lima Favaro et al. 2012). Fungal endophytes also
involve the reduction of the growth of pathogen through fungal-fungal interac-
tions. For example, the secondary metabolites released from the endophyte antago-
nistic Fusarium verticillioides break down the plant compounds that suppress the
growth of the plant pathogen Ustilago maydis (Estrada et al. 2012). However, it has
been proved that specific physiological and environmental conditions are needed to
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express the secondary metabolites by endophytic fungi. For example, the genome
of the host is essential for the optimum expression of the secondary metabolites by
Epichloe (Brakhage 2013; Lugtenberg et al. 2016; Netzker et al. 2015; Schardl and
Panaccione 2005). Endophytic fungi also involved in the higher yield and quality
medicinal plants. The endophytic fungus AL12 (Gilmaniella sp.) promotes plant
growth by improving the primary metabolism of plants by enhancing the rate of
glycolysis, photosynthesis, and the TCA cycle, which provides sufficient energy
and carbon for the synthesis of sesquiterpenoid in the traditional Chinese herb
Atractylodes lancea. This further explains the importance of the interaction
between plant- endophytic fungal (Yuan et al. 2016).

5.2.2 Plant Growth-Promoting Rhizobacteria

The narrow zone of soil near the root system is termed as the rhizosphere (Walker
et al. 2003). The bacterial group inheriting in the rhizosphere is named as “rhizo-
bacteria” (Kloeppe et al. 1999; Koul et al. 2019; Ahmad et al. 2019; Kumar et al.
2020a, b). These colonized bacterial communities residing nearby root aid in
plant growth are also known as Plant Growth-Promoting Rhizobacteria (PGPR)
(Beneduzi et al. 2012; Kaur et al. 2018). Other than this, these bacterial communi-
ties also serve as the ecological method for managing plant diseases (Compant
et al. 2005). Moreover, PGPR acting as BCA has an additional advantage over
traditional chemical practices as they are non-toxic naturally occurring microbes
(Rai et al. 2020; Singh et al. 2020a). Numerous reports have suggested the use of
PGPR as a control method for regulating root diseases (Lucy et al. 2004; Whipps
2001). Diverse bacterial species have been isolated, which could act as a potential
biocontrol agent for cereals. For instance, Azotobacter, Bacillus, and Pseudomonas
isolated from the root of the plant have been accorded to show antagonistic activ-
ity against phytopathogens and can act as an effective disease controlling system
(Berg and Smalla 2009).

Many reports on various crops like chickpea, tomato, and wheat have highlighted
the biocontrol ability of both Bacillus spp. and Pseudomonas sp. against soil-
dwelling pathogenic microbes (Perez-Montano et al. 2014). Moreover, Bacillus
species like Bacillus cereus, Bacillus thuringiensis, and Bacillus licheniformis has
also been comprehended as biocontrol agents (Thakur et al. 2020). For instance, one
study reported Bacillus spp. from the rhizosphere of chickpea, which was found to
be effective in regulating the growth of Fusarium oxysporum responsible for caus-
ing Fusarium wilt disease. Another study reported the Bacillus strains isolated from
the rhizosphere soil of wild grass and sorghum in South Africa and Ethiopia, respec-
tively. The isolated Bacillus strains showed antagonistic activity against F. oxyspo-
rum responsible for root rot disease and Pythium ultimum responsible for crown rot
disease (Idris et al. 2007).

Furthermore, PGPR involves different mechanisms to reduce the phytopatho-
gens and induce system resistance in the plant via antibiotic, by secreting toxic
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bio-surfactant and volatile compounds and cell-wall degrading enzymes (Van Loon
et al. 1998; Whipps 2001; Compant et al. 2005; Perez-Montano et al. 2014). The
primitive proposed mechanism discussed only the siderophores, which degrade the
iron and eradicate the plant pathogens (Raaijmakers et al. 2002).

5.2.3 Breeding Microbe-Optimized Plants

There are certain microbial communities which can interact with different types of
plant. For example, inoculation of Pseudomonas simiae WCS417r in the soil used for
growing Arabidopsis thaliana showed a four-fold increase in its yield (Wintermans
et al. 2016). It also illustrated the potential of microbial interaction, which influences
the gene expression of the plant (Smith et al. 1999). Therefore, breeding horticultural
plants aids in optimizing and maintaining the microbial community beneficial for
both, which is the chief intention of this approach (Kumar et al. 2015; Kumar et al.
2018; Singh et al. 2016, 2018). So far, such attempts have not been initiated in this
direction, but to initiate to overcome the cumbersome process of breeding, we must
understand how beneficial microbes are attracted and established by the plants (Yadav
et al. 2020a). Further, genetically modified plants and their breeding allows us to gen-
erate the microbe-optimized which exudates to attract the particular rhizospheric
microbes to colonize at either root or leaf at the right time (Trivedi et al. 2017).

5.2.4 Engineering Microbiome, Plant-Optimized Microbiomes

The method involves the genetic amendment of either consortium of beneficial
microbes or individual microorganisms, which helps in developing an optimized
plant/soil environment. These genetically engineered microbes can be used as the
inoculum for several horticultural crops growing in a diverse type of soil to improve
the crop yield. This approach has not been implemented in agricultural fields yet, but
the available literature supports the adaptation of engineered soil microbes to crops
with time, which would result in improved plant-microbe interactions (Berendsen
et al. 2012). The evidence suggests that naturally occurring plant microbiomes are
significant in the development and progression of disease in plants (Bulgarelli et al.
2013). Therefore, it is necessary to study the detailed mechanism of attraction of
microbes to the rhizospheric region and their colonization in the roots.

5.2.5 Pairing Microbe-Optimized Plant Seed
with the Optimal Microbiome

Still, researchers are making continuous efforts to microbes that allow or improve
the yield of a particular crop. One of the approaches to optimize plant-microbe
interaction is to coat the seeds with suitable microbes keeping the type of soil into



102 S. De Mandal et al.

consideration. While considering the transient nature of the microbiomes, this
approach is considered far better than the other methods of application like root
soaks or sprays. The consortium of microbes used as inoculum enhances nutrient
absorption in plant and also act the biocontrol agent against phytopathogens and
pest. To ensure the effectiveness and viability of the beneficial soil microorganisms,
certain amendments in the soil become necessary.

Rhizobium, beneficial microbes for legume, is now commercially available to
improve the yield. In addition, to assist in the formation of root nodules by nitrogen-
fixing bacteria in leguminous plants for improved growth, they also aid in the sup-
pression of disease-causing microbes and limit nutrient availability and assimilation.
Studies have demonstrated the potential application of microorganism-derived
growth-promoting compounds in the production of effective vermicompost formu-
lations (both aqueous extracts and granular), which can stabilize and increase the
shelf life of bio formulations (Kalra et al. 2010). Improved nodulation of soybean
was noticed when soybean was co-inoculated with Bradyrhizobium and B. megate-
rium (Liu and Sinclair 1990). Lately, it was established that concoctions of PGPR
improve the biocontrol ability against multiple phytopathogens and promote the
growth of the plant (Liu et al. 2018).

5.3  Current Scenario and the Need for Adopting
of Biocontrol Agents in India

Securing food has become the top priority around the world (Porter et al. 2014). It
is due to an exponential increase in the population in developing countries, so to
fulfill the demand of the growing population, there is a need for advancement in the
approaches to substantially increase the crop yield. Although chemical fertilizers
and pesticides have been employed to improve the yield, excessive use has induced
a detrimental effect on both environment and health.

Despite the awareness about environmental issues, most of the countries has not
started the use of biocontrol agents in agricultural practices. Hence, it has become
prominent to discover and assess the biocontrol ability of PGPR against various
phytopathogens. Pilot studies involving mass production of Trichoderma have
already been initiated to inhibit the growth of phytopathogens (Korolev et al. 2008;
Cumagun 2014). Trichoderma has been reported to modify the signalling pathway
to contend Botrytis cinerea, Cucumber mosaic virus (CMV), and Fusarium (Elad
et al. 1998; Wang et al. 2005; Vitti et al. 2015).

Another study reported about the biocontrol potential of Pseudomonas fluores-
cens against Ralstonia solanacearum responsible for causing in wilting in tomato
(Vanitha et al. 2009). Therefore, BCA holds a special place and can be used to
decrease the dependency on pesticides and other chemical agents. This approach
requires the government to bring awareness and supports research and development
for studying the biocontrol agents in collaboration with industries and research
institutes.
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5.4 Plant-Microbe Interactions at the Post-genomic Era

The advance of modern technologies, including the advancement in sequencing
technologies along with advanced bioinformatics tools, has impressively acceler-
ated the studies of plant-microbe interactions. This method allows us to produce a
massive amount of sequencing data in less time and with a low cost and thus improve
our understanding of gene, genome, pathways, regulatory network of plants,
microbes, and their associations. The bioinformatics tools and comparative analysis
of genomic DNA have unveiled the information regarding the biological pathway,
gene function, genome make-up, regulatory networks, and phylogenetic variation
among the microbes, which has substantially improved our knowledge about the
metabolism of microbes. Several NGS methods such as shotgun, amplicon, whole
genome, transcriptomic, and metatranscriptomic sequencing has been introduced to
analyze the plant microbial interactions.

The most used NGS method is the amplicon sequencing-based approach, where
a particular marker gene is sequenced from all the microbial species present in a
microbial community and frequently used to study the plant—microbe interaction.
Several studies used this technique to analyze the rhizosphere and phyllosphere
microbial communities, which play a significant role in plants by interfering the
fitness, growth, protection, and other traits. These phyllosphere microbes can influ-
ence plant biogeography as well as ecosystem function by regulating plant systems
under different ecological conditions (Friesen et al. 2011; Meyer and Leveau 2012).
High-throughput sequencing was used to study the functional biogeography of
plants and plant—microbe interactions. Kembel et al. (2014) investigate the poorly
understood association between bacterial biodiversity on leaves vs. host tree attri-
butes. They showed that bacterial leaf communities were highly correlated with the
host evolutionary relatedness as well as functional traits (Kembel et al. 2014). This
technique is used to reveal how the interaction between plant and microbes ecosys-
tem processes during early succession (Knelman et al. 2012).

Shotgun sequencing used to study the microbial communities as well as their
functional aspects by sequencing all the genes present inside the metagenome—
several studies focusing the sequencing of the entire microbial communities instead
of a single species using NGS approaches, whereas very few metagenomic-related
studies have been conducted to assess the microbial community surrounding the
plant via shotgun sequencing. Analysis of WGS is now growing interest day by day
and used to answer various biological answers. The halotolerant endophyte Bacillus
Sflexus KLBMP 4941 of the halophyte Limonium sinense can improve host seedling
growth under salt stress conditions. Analysis of the complete genome of this bacte-
ria identified the presence of genes associated with plant growth promotion (PGP)
including nitrogen fixation, siderophore, spermidine, and acetoin synthesis as well
as high salinity tolerance (Na+/H+ antiporter, glycine betaine transporter, and
betaine-aldehyde dehydrogenase) were identified (Wang et al. 2017). Bacillus para-
licheniformis KMS 80 (MTCC No. 12704) plays a vivacious role in the biological
nitrogen fixation and growth promotion in Oryza sativa L. WGS analysis revealed



104 S. De Mandal et al.

21 genes for nitrogen metabolism pathway and two main transcriptional factor glnR
and tnrA that regulates the nitrogen fixation (Annapurna et al. 2018).

Transcriptomic and metatranscriptomic approaches are used to study the protein-
coding genes of any organism and have been widely used for the study of plant—
microbe interaction. This approach was used to study the role of rhizosphere
microbial communities in different developmental stages of the plants. This study
identifies the potential role of microbial genes in the regulation of various metabolic
pathways (Chaparro et al. 2014; Kumari et al. 2017). The mass spectrometry-based
quantitative proteomic analysis was performed to study the interaction between the
endophytic plant growth-promoting Gluconacetobacter diazotrophicus and sugar-
cane. This experiment shows that plants associated with G. diazotrophicus have
higher nitrogen fixation ability as well as the overexpression of signal cascade pro-
teins (Lery et al. 2011). The metabolomic approach was used to study the complex
nodulation process in Soybean by Bradyrhizobium japonicum. It was found that 166
metabolites significantly regulated during bacterial inoculation, and trehalose was
the most strongly induced metabolite (Brechenmacher et al. 2010). It has been
found that lipophilic secondary metabolites produced by Macrophomina phaseolina
might play a significant role in the plant—fungus interactions responsible for severe
diseases of E. globules (Salvatore et al. 2020).

5.5 Importance of Microbes in Agriculture Farming

Plant growth-promoting bacteria are most widely used for sustainable agriculture
all over the world. PGPRs are widely used inoculants in agriculture soils. They
can enhance the nutrient uptake and inhibit the growth of various phytopathogens
by producing secondary metabolites and other substances (Ahemad and Kibret
2014). Based on the effects on plants, PGPR roles can be divided into direct and
indirect impacts, illustrated in Fig. 5.1.

5.5.1 The Direct Impact of PGP Microbes on Plant Nutritions

Nutrients are one of the major limiting factors for plants as some are required in
small quantities or some in large. These elements also play a vital role in plant
metabolism. PGP bacteria provide nutrients to the plant by solubilization of miner-
als as well as help in various hormones production.

5.5.1.1 Nitrogen Fixation

Nitrogen is another vital element for the growth and development of the plants.
Plant species are unable to convert atmospheric nitrogen into ammonia. This pro-
cess is mediated by different microorganisms using a complex nitrogen system
known as nitrogenase (Babalola 2010; Backer et al. 2018; Sharma et al. 2019).
PGPR bacteria perform the nitrogen fixation by making the symbiotic and non-
symbiotic relationship with plants bacterium (Kapoor et al. 2019; Singh et al. 2019).
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Exudates

Direct mechanisms

Fig. 5.1 Mutual relationship between plants, microbes, and soil

Twenty nif genes have been reported which are classified into eight operons: nifUS-
VWZ, nifENX, nifl], nifHDKTY, nifBQ, nifLA, nifF, and nifM. The nifD and nifK
genes encode the FeMo-protein, and nifH encodes the Fe-protein (Gupta et al.
2017). Example of symbiotic bacteria: Rhizobium with the leguminous plant,
Frankia with the non-leguminous plant.

5.5.1.2 Phosphorus Solubilization

After nitrogen, phosphorus is one of the essential minerals for the plant. Phosphorus
plays a vital role in various metabolic and biochemical pathways such as photosyn-
thesis, Adenosine Triphosphate (ATP). Phosphorus fertilizers are used by the farmer
to provide these nutrients but this source is a costly, less productive and environ-
mentally unsafe method. To compensate for this problem, PGPRs are used to offer
an eco-friendly approach, by improved uptake of phosphorus from soil either by the
release of phosphorus by substrate degradation, biochemical phosphate mineraliza-
tion (Gupta et al. 2017; Singh et al. 2020b). Some examples are B. megaterium from
chickpea, B. licheniformis from both wheat and spinach, Enterobacter agglomerans
from tomato, P. chlororaphis as well as P. putida from soybean, (Abd-Alla 1994;
Ahemad and Khan 2011; Rajkumar et al. 2008). There are many reports of
P-solubilization by diverse groups of microorganisms including archaea, fungi, and
bacteria, and these potential P-solubilizing microbes could be used as bio-inoculant
to fulfill the requirement of chemical fertilizers for sustainable agriculture (Singh
et al. 2020b; Verma et al. 2016, 2015; Yadav et al. 2015).

5.5.1.3 Potassium Solubilization

Similar to nitrogen and phosphorus, potassium is also important for the high yield
of crops. Potassium (K) is the most abundant inorganic cation in plants comprising
up to 10% of dry weight plants and is not assimilated into the organic matter rather



106 S. De Mandal et al.

remains in its ionic form only throughout its “life” in the plant. Potassium plays an
essential role in root development, stomata opening and closing, and plant growth
(Abd-Alla 1994; Khan et al. 2002; Backer et al. 2018). Examples: phosphate solu-
bilization was mediated by the bacterial member Bacillus mucilaginosus and
Azotobacter chroococcum associated with the wheat plants and Rhizobium, Bacillus
edaphicus in cotton. A wide range of potassium-solubilizing microbes have been
reported, viz. Acidithiobacillus, Agrobacterium, Arthrobacter, Aspergillus, Bacillus,
Burkholderia, Enterobacter Pantoea, Flectobacillus, Klebsiella, Microbacterium,
Mpyroides, Paenibacillus, Pseudomonas, and Stenotrophomonas (Rajawat et al.
2020; Verma et al. 2017a; Yadav et al. 2017).

Verma et al. (2014) reported several plant growth-promoting bacterial members
such as Paenibacillus dendritiformis, Bacillus megaterium, Paenibacillus amylo-
Iyticus, Duganella violaceusniger, Pseudomonas thivervalensis, Psychrobacter
fozii, Stenotrophomonas maltophilia, Pseudomonas monteilii, Pseudomonas lini
that can solubilize K and phosphorus and zinc; producte IAA, siderophores, GA,
HCN, ammonia, ACC and perform nitrogen fixation as well as biocontrol activities.
Verma et al. (2015) reported Bacillus megaterium, Bacillus horikoshii, Bacillus
amyloliquefaciens, Exiguobacterium antarcticum, Achromobacter piechaudii,
Stenotrophomonas maltophilia, Klebsiella sp. as K-solubilizers which showed other
plant growth-promoting attributes including phosphorus and zinc solubilization,
production of IAA, siderophores, HCN, ammonia, ACC, GA, nitrogen fixation as
well as biocontrol activity. Verma et al. (2016) reported potassium-solubilizing
Bacillus aerophilus, Bacillus atrophaeus, Bacillus cereus, Bacillus circulans,
Bacillus endophyticus, Bacillus horikoshii, Bacillus licheniformis, Bacillus megate-
rium, Bacillus mojavensis, Bacillus pumilus, Bacillus sphaericus, Exiguobacterium
antarcticum, Paenibacillus amylolyticus, Paenibacillus dendritiformis, Paenibacillus
polymyxa, Planococcus citreus, and Planococcus salinarum which also showed the
production of GA, TAA, ACC, siderophores, ammonia, HCN, chitinase, protease,
lipase, p-glucanase, solubilization of phosphorus and zinc as well as nitrogen fixa-
tion capability and biocontrol activity.

Potassium-solubilizing bacteria are an essential constituent of soil microbial
community as they play a significant part in the K cycle (Kour et al. 2020d; Kumar
et al. 2019a). The mechanism behind solubilization of K from the soil is a complex
phenomenon as various factors affect this process, such as involvement of microbes,
the nutritional quality of soil, amount and type of mineral available in the soil, and
various other environmental factors. One of the most efficient ways of utilizing K
from the soil is the use of K-solubilizing microbes that can utilize a reservoir of K
from the soil and make available to the plants as various literature have reported
about the use of KSM has proved to be useful (Kour et al. 2020c).

5.5.1.4 Siderophores Production

Siderophores are low molecular weight iron-chelating compounds produced by
PGPR, which transport elements into the cells (Kumar et al. 2019). As Fe** form of
iron is abundantly found in soil but its insoluble nature restricts its use by the plants
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(Burd et al. 2000). Examples: Phyllobacterium strain (siderophore producing).
Siderophores are responsible for iron solubilization and transportation into the bac-
terial cells. Bacteria produce either hydroxamate or catecholate type of sidero-
phores. Under conditions of iron limitations, siderophore producers are able to bind
and transport iron-siderophore complex by the expression of specific proteins. The
siderophores production is favorable for plants as it can inhibit the growth of plant
pathogen. Siderophores influence the growth of the plants both directly and indi-
rectly. Siderophores and their substituted derivatives have varied applications in
agricultural, environmental, and medical sciences (Sharaff et al. 2020).

5.5.2 The Indirect Impact of PGP Microbes on Plant Nutritions

PGPR has shown to produce numerous volatile compounds that show antagonist
effects towards the disease-causing microorganism (Whipps 2001). Several bio-
control agents have been included: decyl alcohol, 3,5,5-trimethylhexanol,
kanosamine, 2, 4 diacetylphloroglucinol (2, 4-DAPG), xanthobaccin, phenazine-
1-carboxylic acid, pyrrolnitrin, zwittermycin A, viscosinamide, etc (Rezzonico
et al. 2007; Whipps 2001). Antibiotics produced by these PGPRs help in the inhibi-
tion of growth of phytopathogens and lead to the improvement of the total yields.
Bacillus sp. such as Bacillus strain D13 produces decyl alcohol which inhibits the
growth of Xanthomonas species (Whipps 2001). Pseudomonas is one of the most
common soil bacteria that produces 2,4-diacetyl phloroglucinol (2,4-DAPG)
(Rezzonico et al. 2007). 2,4-DAPG is the most effective antibiotic and has a broad
species spectrum and shows antifungal and antibacterial activities (Saraf et al.
2014). Several Pseudomonas species were associated with the production of rham-
nolipids, for example, P. fluorescens DR54 and DSS7 producing CLPs showing
antimicrobial and surfactant properties (Din et al. 2019). PCA and pyrrolnitrin
have proved to be effective against various classes of bacteria and fungi including
ascomycete, deuteromycete, and basidiomycete. The use of these biocontrol agents
also results in the destruction of plant-promoting pathogens such as arbuscular
mycorrhizal (AM) fungi and hence requires further research before their applica-
tion (Bhale et al. 2018).

5.5.2.1 Enzymes Production

The plant produces enzymes in response to biotic and abiotic stresses which includes
ethylene, responsible for the stunted root growth and ageing effects on plants
(Karnwal et al. 2019; Singh et al. 2019; Sidhu, et al. 2019). Some of the PGPRs
including Aspergillus, rhizobacteria, Pseudomonas, and Bacillus sp. have shown to
produce 1-aminocyclopropane-1-carboxylate (ACC) deaminase results in stimula-
tion of plant growth and reduction in the ethylene production in plants (Zain et al.
2019). PGPRs producing chitinases and lytic enzymes can efficiently reduce phyto-
pathogens leading to the removal of biotic stress (Chowdhury and Bagchi 2017;
Kour et al. 2020b; Mondal et al. 2020).
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5.5.2.2 Hydrogen Cyanide Production

Apart from the above-mentioned antibiotics and enzymes, some of the plant-
promoting bacteria also helps in plant growth by inducing HCN production in plants
(Chowdhury and Bagchi 2017). HCN is mainly associated with inhibition of the
growth of plant pathogens and produced from the glycine via the use of HCN syn-
thase enzyme which is present on the surface of PGPRs lipid bilayer (Siddiqui et al.
2006). PGPRs which can produce HCN include Bacillus, Bacillus subtilis HussainT-
AMU, Pseudomonas, Rhizobium, etc. and are associated with growth of major
disease-causing nematodes, for example, Meloidogyne javanica, M. incognita and
Thielaviopsis basicola and thereby disease such as “root-knot galling” and black rot
(Van 2006; Hussain et al. 2020c¢).

5.5.2.3 Induced System Resistance

Induced systemic resistance (ISR) or immunization of plants against a pathogen is
a recent term and involves the development of resistance mechanism in plants
against a disease either by stimulating with chemicals or root colonization with
PGPRs (Hussain et al. 2020c). The following term known as ISR and PGPR can
stimulate root colonization of the bacteria such as Pseudomonas sp., Bacillus
sp. etc. (Chalam et al. 1997; Hussain et al. 2020b; Singh et al. 2020a). The induction
of ISR can be achieved with various parts and products of PGPRs like flagella, sali-
cylic acid, LPS, and siderophores.

5.5.2.4 Emerging Biocontrol Strategies

Implementation of Plant Exudates to Attract Beneficial

Biocontrol Microbes

The exudates discharged by plant plays an imperative role in determining the
composition of soil and functioning of the microbial community. Exudates attract
certain group of the microbial community by performing a specific function
(Rahman et al. 2017). For example, legumes release flavonoids to attract the defi-
nite nitrogen-fixing rhizobacteria (Cooper 2007) and in return, these microbial
species help in activating defense system of the plant to fight against foliar dis-
eases (Ryu et al. 2004). Moreover, now soil microbial community are extensively
explored and used in agricultural practices to improve nutrient uptake in plant and
generate resistance against plant diseases (Cao et al. 2011; Kavoo-Mwangi et al.
2013; Singh et al. 2018). The interlink between microbial diversity and different
exudate has been well establishing in hormone-treated plants (Carvalhais et al.
2013, 2015). Additionally, strigolactone has been reported to attract Mycorrhiza
and other microbes which were having the ability to improve water availability,
defense system, and phosphate solubilization ability (Rahman et al. 2017). Other
organic composites like fumarate, malate, and succinate have been found effective
in attracting Pseudomonas fluorescens, which acts as an effective BCA against
various phytopathogens (Oku et al. 2014). Considering the evidence about the
using of plant exudates to attract useful microbes is the viable solution to combat
pathogens responsible for various plant diseases. In addition, the microbial
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community residing in rhizosphere could be influenced by treating plants with
signalling chemicals to attract useful microbes (Carvalhais et al. 2015; Wintermans
et al. 2016).

Use of Substrates to Maintain Beneficial Biocontrol Microbes

One of the essential components for effective growth, metabolic activity as well as
the functioning of microbes is “substrate.” The substrate plays a vital role in cultur-
ing the beneficial biocontrol microbes. Most of these microbes can be cultured in
in vitro conditions via traditional culturing procedures (Bai et al. 2015). This
approach allows us to isolate beneficial microbes from their natural environment
and maintain the microbial population in the rhizosphere to control as well as regu-
late the growth of plant pathogens, by providing the suitable substrate. Additionally,
nutrition also allows the microbes to adapt themselves to survive in a varied
environment.

Phyllosphere Biocontrol

The fungi responsible for causing foliar diseases have been reported to affect differ-
ent types of crops (Madden and Nutter 1995). Six of the fungus has been compre-
hended throughout the world to the causative agent of foliar diseases (Dean et al.
2012). Therefore, extensive knowledge about these foliar causing agents will be a
decisive step for protecting crops. The use of microbes as BCA has emerged as an
eco-friendly substitute for synthetic chemical (Maksimov et al. 2011). Additionally,
spraying of BCA formulation has been found effective in curbing the foliar diseases
(Heydari and Pessarakli 2010). Moreover, the liquid formulation was also tested on
the avocado plant affected stem-end rot pathogen (Demoz and Korsten 2006). Other
than this, various bacteria having antagonistic potential were isolated to cease the
growth of Erwinia chrysanthemi responsible for causing stem rot disease in tomato
(Aysan et al. 2003). A study reported about serenade compound, which was obtained
from B. subtilis strain and was exhibiting the antagonistic activity against fungi
affecting the blueberries (Scherm et al. 2004). Additionally, plants also synthesize
antimicrobial agents on their leaf surface to defend themselves and produce exu-
dates to attract the growth-promoting microbes (Vorholt 2012). There is numerous
evidence available in previously published literature highlight the leaf-colonizing
microbes which aid in developing defense mechanism to cease the progression of
foliar disease in plants (Morris and Monier 2003). Strategies like niche occupation
and pre-emptive colonization have also been proposed as an effective way to protect
crops from pathogens (Lindow 1987). It is believed that pioneer strategies like phyl-
losphere microbiome profiling (Vorholt 2012) and plant and microbial interaction
could pave new opportunities to improve plants defense system and meet the
demand for food security.

Fungi as Biocontrol Agents

Presently, fungi have emerged as effective BCA and predominantly used to improve
the yield of crops (Malyan et al. 2019). In 2019, Adnan and his colleagues reported
about the Trichoderma species which acted as the effective BCA against
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phytopathogen. The antagonistic activity of Trichoderma spp. was because of the
synthesis of a bioactive molecule having antagonistic potential against both Pythium
ultimum and Rhizoctonia solani (Harman and Nelson 1994). Pochonia chlamydo-
sporia, another fungal isolated exhibiting antagonistic potential against root-knot
nematodes of different crops conditions (Manzanilla-Lopez et al. 2013). And, endo-
phytic colonization of P. chlamydosporia in the plant has been found to be effective
antagonistic potential against pathogen and also found to improve the plant growth
(Macia-Vicente et al. 2009).

Various studies have proved the potential of mycorrhizal associations in confer-
ring resistance to plant against numerous pathogenic diseases and have been
employed to provide the plant roots with lasting protection against pathogens
(Akhtar and Siddiqui 2008). Mycorrhizal associations are the predominant type of
fungal associations found in roots of most plants. The mycorrhizal association can
be described as the establishment of the beneficial fungi in the root cortical tissue
during growth and development of plant which creates an unfavorable microenvi-
ronment that inhibits the proliferation of pathogens. The utility of these mycorrhizal
fungal associations as a biocontrol agent to prevent the onset of pathogenic diseases
in plants is noble and eco-friendly. Several studies have proved that tree seedlings
with mycorrhizal associations exhibit more resistance to feeder roots against patho-
genic fungi/bacteria/nematodes than non-mycorrhizal roots (Schouteden et al. 2015).

Ectomycorrhizae grow on the surface of roots and do not penetrate inside the
root cells producing a net-like structure known as the Hartig net. They prevent the
pathogenic attack through various mechanisms like the synthesis of antifungal
agents, antibiosis, and development of fungal mantle that obstructs the entry into
plant roots. (Duchesne 1994).

Vesicular arbuscular mycorrhizal fungi (VAM) is another important part of the
microbial soil community which provides significant benefit for plants (Sukhada
et al. 2011). VAM fungi not only benefits the plant by improving overall develop-
ment and growth but also confers resistance to host plant against pathogenic
microbes. (Ziedan et al. 2011). The application of VAM fungi belonging to the
genus Glomus is more pronounced than others and includes various species like
G. mosseae, G. fasciculatum, G. monosporum, G. constrictum, and G. macrospo-
rum. They enhance the natural defense system of host plants and restrict the entry
of soil-borne pathogens into the roots, thus preventing the infection. Moreover,
studies have reported a decrease in the incidence of root-knot infection caused by
nematodes in plants (Linderman 1994). The infection caused by Pseudomonas
syringae in tomatoes results in huge productivity loss, which can be overcome to a
significant level by establishing the mycorrhizal fungi in the roots of the host plant
(Song et al. 2015). The mycorrhizal association serves a physical barrier and
involves certain chemical reactions inducing some direct as well as indirect effects
(Fitter and Garbaye 1994). The indirect effect involves the enhancement of nutrient
uptake potential in plants, elevating the lignification in roots, mitigating the environ-
mental stresses and altering the microenvironment in the mycorrhizospheric zone
thereby promoting the growth of other beneficial microbes (Tripathi et al. 2008;
Linderman 1994).
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Arbuscular mycorrhizal fungi (AMF) are well established in the treatment of
several plant diseases, especially those infecting the root system of plants (Xavier
and Boyetchko 2004). They are known to provide systemic resistance to host plants
which aid in suppressing most pathogenic diseases (Pozo and Azcén-Aguilar 2007).
Studies have reported that the mycorrhizal induced resistance (MIR) is the outcome
of exhaustion of intermediate compounds formed in the salicylic acid (SA)-
dependent defense pathway of active depletion of components in the SA-dependent
defense pathway, which causes systemic priming of jasmonic acid-dependent
defenses (Pozo and Azcén-Aguilar 2007). However, the actual mechanism and role
of jasmonates in mycorrhizal induced resistance are still unclear (Hause et al. 2007)
and the long-distance signals supervising MIR remain to be resolved.

5.6  Conclusion and Future Prospects

The advancement in the field of agriculture considerably relies on the progressive
development in the biotechnology, especially considering the conventional breeding
practices and genetic modification concerning to improve interactions among plants
and microbial communities. In conventional plant biotechnology, the plant breeding
approach mainly emphasizes on the inheritance of beneficial traits but did not con-
sider the benefit of plant-microbe interaction. In contrast, the genetic approach
focuses on enhancing the colonization potential of beneficial of rhizospheric
microbes within a soil microbial community and improving the plant-microbe
interactions by alteration of certain factors in the plants as well as microbes.
Considering the hazardous effects of fertilizers on the environment, it becomes a
necessity to prioritize the research focus towards the plant-microbe interactions
involved in the uptake of nutrients to enhance crop productivity in the specified
arable agricultural land. However, the specific mechanisms that stimulate the colo-
nization of rhizospheric microorganisms and their regulation according to the nutri-
tional status of the plant are surpassingly complicated and difficult to predict.
Conserving the microscopic diversity of the soil is considered overly beneficial in
all aspects. Various research studies could be conducted to observe the variations in
the diversity in response to specific treatments, which would confer resistance to
plants towards various treatments. Moreover, design management strategies may
allow the maintenance of oil diversity and productivity.
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Abstract

Plant microbiome refers to the diverse microbial counterparts that are associated
with plants and plays a crucial role in host biology, ecology, and evolution.
Though plant microbiomes have history of co-evolution with the host plants,
certain members other than the core-microbiomes are shaped by various factors
including plant genotype, plant age, associated host plant tissue or organ,
other interacting microbial associates, arthropods, various environmental fac-
tors such as soil physio-chemistry, and human inference such as crop domestica-
tion, intensive and extensive cultivation, and use of agrochemicals especially in
case of agro-ecosystems. Classical knowledge based on microbial culturing tech-
niques and biochemical analysis prejudiced that when a plant interacts with a
microbial partner the relationship could be detrimental as with pathogen interac-
tion or promote plant growth in case of symbiotic associations. Advances in
molecular techniques such as culture-independent approaches, next-generation
sequencing, and high-throughput screening methods helped us to understand the
robust nature of plant-associated microbiomes and their crucial role in plant fit-
ness, environmental protection, and human health. This chapter gives a glimpse

J. Pathma (0)
Department of Entomology, School of Agriculture, Lovely Professional University,
Phagwara, Punjab, India

Department of trans-disciplinary research, Division of Research and Development,
Lovely Professional University, Phagwara, Punjab, India

A. Debnath
Department of Genetics and Plant Breeding, College of Agriculture, Narendra Deva
University of Agriculture and Technology, Kumarganj, Ayodhya, Uttar Pradesh, India

J. B. Patil - L. S. Bhushan
Department of Entomology, School of Agriculture, Lovely Professional University,
Phagwara, Punjab, India

© Springer Nature Singapore Pte Ltd. 2021

A. N. Yadav et al. (eds.), Current Trends in Microbial Biotechnology for
Sustainable Agriculture, Environmental and Microbial Biotechnology,
https://doi.org/10.1007/978-981-15-6949-4_6

123

6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6949-4_6&domain=pdf
https://doi.org/10.1007/978-981-15-6949-4_6#DOI

124 J.Pathmaetal.

of patterns of plant microbiome associations and their importance in plant health
and emphasise the importance of both basic and applied research which will
enlighten us with deeper insights on the plant microbiomes. This will help us
identify economical, eco-friendly, and effective strategies of manipulating the
plant-associated microbiomes which can open up new avenues in maintaining
plant health and ecological fitness and sustain crop production in a clean green
way preserving the nature’s serenity and human health.

Keywords
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6.1 Introduction

Population growth is predicted to be 9.8 billion in 2050 and reach 11.2 billion by
2100. Shrinkage of land, depletion of non-renewable resources, over utilisation of
renewable resources, and climate change due to increased human activities pose a
threat to global food security and life subsistence. Though certain technologies such
as precision agriculture, use of genetically modified (GM) crops that tolerate stress
and give higher yield have been formulated, there are objections for use of GM
crops from many parts of the world. Problems such as environmental pollution,
pesticide resistance, and pest resurgence that arise due to use of agrochemicals and
growing awareness on health benefits of organic farming, etc. had changed prefer-
ence of consumers to organically grown produce which resulted in the shift of inter-
est of the agrochemical industries to search for better performing microbial
inoculants and their products. The compound annual growth rate (CAGR) of global
biopesticide and biostimulant market is estimated to be 17% and 10.9%, respec-
tively. Microbial products were accounted to occupy more than 60% of the biofor-
mulations (Arora et al. 2020; Kour et al. 2020f). The predicted estimate of
biopesticides market is 7-11 billion $ by 2025 while that of biostimulants is $ 3.12
billion in 2022 (Sessitsch et al. 2018). This had insisted the global investors to invest
in plant microbiome research so as to find better commercial alternatives to chemi-
cal molecules. Plant microbiomes apart from playing a key role in crop production
also have diverse applications in the field of medicine and health care and bioreme-
diation of polluted environment (Rastegari et al. 2020a; Yadav et al. 2020g). Above
all, the plant microbiomes are repositories of biodiversity and play an important role
in overall fitness of plants, healthy self-sustaining environment, and ecological
functions, with wide applications in food and agriculture industry as well as human
health care thereby contributing to the Nation’s economic growth (Rastegari
et al. 2020b).
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6.2 Plant Microbiomes

Plant microbiomes are dynamic and are controlled by various biotic and abiotic fac-
tors and their interactions. An individual’s phenotypic expression is said to be the
combined expression of complex interactions between the genomes of the host and
their microbial associates (hologenome) and the individual is referred to as ‘holobi-
ont’ (Bordenstein and Theis 2015). Lynn Margulis in 1991 introduced the term
‘holobiont’ to refer to the host and its inherited single microbial symbiont and later
the term was extended to refer to the microbial community associated with the host
(Margulis and Fester 1991; Yadav et al. 2020a). This relationship between plants
and microbes is predicted to have prevailed from the time of evolution of terrestrial
plants 450 million years ago. The selection pressure from various biotic and abiotic
components would have shaped the structure of the holobiont with ‘microbe—
microbe’ interactions playing a significant role in architecturing the microbial com-
munity structure associated with the host plant (Singh et al. 2020b; Yadav et al.
2020g). Holobiont research has brought a paradigm shift in the way we see a living
organism and the living world and helps us understand how to optimise ecological
interactions to reap the benefits of ecosystem services.

The first International Conference on ‘Holobionts’ was held in Paris in April
2017 (Faure et al. 2018). Plant microbiome comprises of diverse gene pool with
respect to its origin and function and may include those from prokaryotes and
eukaryotes associated with the host environment (agro-ecosytem, forest ecosystem,
etc.) and is majorly influenced by the host plant genotype though many other factors
also play a notable role in shaping the associated microbes. Host plant tissue (veg-
etative parts like root, stem, leaf, and reproductive parts like flowers, fruits, and
seeds) harbouring the microbiota plays a significant role in structuring a habitat-
specific microbiome and had evidenced variation of associated microbial commu-
nity within the same plant. The microbiome in turn imparts a significant impact on
the respective host plant tissue and the plant as a whole by influencing the physiol-
ogy and biochemistry of the associated plant tissue.

In addition to host plant, the physiochemical characteristics of soil including soil
type, nutritional status, and the interactional effect of root exudates with the soil
chemistry in the rhizosphere region co-ordinates the microbiome assemblage espe-
cially the ‘rhizosphere microbes’. Similarly, the microbial community composition
above ground is determined by environmental conditions such as radiation, precipi-
tation, microclimate, physiological conditions, nutrient availability, and phyto-
chemistry of the above ground plant parts (the phyllosphere) which might vary at a
large scale between plant species and at a lesser scale within plant parts (Andrews
and Harris 2000; Mercier and Lindow 2000; Bednarek and Osbourn 2009). The
plant immune system is another important factor sculpturing the associated micro-
biomes (Yadav 2020; Yadav et al. 2020e). In general, microbes activate plants
immune response by jasmonic acid (JA) and ethylene (ET) signalling pathways and
plants recognise both pathogenic and beneficial microbe as a non-self, but still how
they recruit and assemble beneficial counterparts needs further research (van Wees
et al. 2008).
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Certain members represent core-microbiomes with long history of association
with the host plants since their evolution. Tailoring of host microbiomes may be
influenced by ecological and evolutionary factors and are shaped by four major
process, viz. dispersal (organisms are moved across space), speciation (new species
creation), selection (reveals deterministic fitness among species), and drift (change
in species abundance stochastically) (Vellend 2010). ‘Hologenome evolution the-
ory’ defines ‘holobiont’ as a unit of evolutionary selection and states that the
genomes of the host and that of associated microbiota behaves together as a consor-
tium and tackles environmental changes. The diverse microbial partners co-evolve
as well as aid in the survival of holobiont and provide necessary time for the evolve-
ment of the host genome (Zilber-Rosenberg and Rosenberg 2008; Rosenberg and
Zilber-Rosenberg 2018).

Plants offer an exclusive habitat to diverse microbes including bacteria, archaea,
fungi, oomycete, and viruses (Yadav et al. 2017a, b). The outcome of plant-microbe
interaction under the influence of abiotic factors prevailing in the environment
might be mutualistic (beneficial to both), commensal (silent- no pain or gain), or
pathogenic (detrimental to the host plant) (Rodriguez et al. 2009). Based on their
ecological niche, plant microbiomes could be classified as above ground dwellers
(those colonising phyllosphere: leaves, stem, flower, fruits, and seeds) below ground
dwellers (those which colonise the rhizosphere) (Yadav et al. 2020b). Based on their
type of association with the plant tissues, they can be classified as ephiphytes which
dwell on the plant surface (phylloplane-leaf surface, cauloplane-stem surface,
anthoplane-flower surface, carpoplane-fruit surface, and rhizoplane-root surface)
and endophytes that dwell within the plant tissues (Fig. 6.1). Few investigations
show that certain rhizosphere microbes enter the plant tissues and establish them-
selves as endophytes both below and above ground plant parts. However, each plant
part harbours distinct microbial community profiles with respect to diversity and
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Fig. 6.1 Ecological habitats of plant microbiome and factors shaping them
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abundance. Endophytes of roots may differ from those from shoots of the same
plant species. This is because few members especially endophytes are transferred
vertically from parent to the progeny via seeds or plant parts used for propagation
while others get horizontal entry into the plant during its life cycle (Rosenblueth and
Martinez-Romero 2006; Ryan et al. 2008; Yadav et al. 2020f). Members of plant
microbiomes play an important role in plant growth promotion and biocontrol of
diseases and are of great commercial value as biofertilisers and biopesticides
(Table 6.1). Additionally, plant-associated microbiomes are important components
of multi-tropic interactions and influence a myriad of interactions in the ecology
(Mondal et al. 2020; Rai et al. 2020). One such example is induction of volatiles
(allelochemicals) that initiate plant—arthropod interactions (Beck and Vannette
2017). The interaction might positively affect the host plant as in case of pollination
(Rering et al. 2018) and attraction of natural enemies of insect pests, while in some
cases be detrimental to the host plant by attracting herbivorous insects that feed on
plants or deter natural enemies of the pest (Pineda et al. 2017; Sugio et al. 2015) or
attract herbivores with vector potential to spread phytopathogenic disease (Jimenez-
Martinez et al. 2004; Mann et al. 2012). Thus, understanding the complex interac-
tions can help us harness the existing microbiomes so as to favour sustainable crop
production.

6.2.1 Rhizosphere Microbiome

Rhizosphere microbes refer to the microbes inhabiting the root surface (rhizoplane)
as epiphytes, root tissues internally as endophytes as well as those inhabiting the
thin layer of soil adhering to the roots (rhizosphere) which is a continuum of the
rhizoplane (Mwajita et al. 2013; Subrahmanyam et al. 2020; Verma et al. 2017).
Microbial community structure of rhizosphere is rich both in diversity and abun-
dance as compared to the bulk soil (Reinhold-Hurek et al. 2015). Rhizosphere is a
nutritionally rich region attributed by plants root exudates, mucilage factors, and
signalling molecules curating microbial associations (Kent and Triplett 2002;
Lebeis et al. 2015). Though reduced oxygen availability, high osmotic pressure and
extreme variations in moisture, water content, availability of minerals, and certain
heavy metals are certain glitches to microbes interacting with rhizosphere, rhizo-
spheric soil is the richest reservoir of immense microbial diversity that plays an
important role in plant health as well as support human health by acting as source of
novel biomolecules of therapeutic properties supporting human health.
Approximately 10" microbial cells with 30,000 different species were reported to
inhabit 1 g of root (Berendsen et al. 2012). They include bacteria, fungi, protozoans,
and algae with bacterial population dominating other microbes (Saharan and Nehra
2011; Yadav et al. 2018a; Rana et al. 2020d).

Root microbiome plays a key role in plant health and ecological fitness. Numerous
factors including plant genotype, age, soil physio-chemistry as well as human inter-
ference in terms of crop domestication and fertilisation for yield enhancement
shapes root microbiomes (Pathma et al. 2019a). Profiling of the root microbiome of
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Table 6.1 Elite microbes from plant microbiomes of commercial value

Plant/plants
Microorganisms species Beneficial effects References
Serratia plymuthica HRO-C48 | Strawberry Growth promotion Berg (2009)
Methylobacterium extorquens | Strawberry Flavour biosynthesis and | Zabetakis
enhancement (1997)

Alcaligenes xylosoxidans,
Bacillus pumilus,
Pseudomonas marginalis, P.
brassicacearum,

P. putida, P. oryzihabitans,
Rhodococcus spp.

Indian mustard

Improved root growth
under heavy metal
toxicity

Belimov et al.
(2005)

Pseudomonas aeruginosa,
Serratia liquefaciens

Broad beans

Bioremediation by
associated bean plants
grown in oil-polluted
sand

Radwan et al.
(2005)

Pseudomonas fluorescens Arabidopsis Increased fresh weight Ryu et al.
89B-61, Bacillus (foliar growth) (2005)
amyloliquefaciens IN937a, B.
subtilis GBO3, B. pasteurii C9,
Paenibacillus polymyxa E681,
S. marcescens 90-16
Bradyrhizobium sp. Green gram Improved nodulation Shaharoona
along with increased root | et al. (2006)
and shoot growth
Serratia marcescens Betelvine Increase in shoot and Lavania et al.
NBRI1213 root length and dry (2006)
weight, biocontrol of
Phytophthora
Pseudomonas spp. Wild plants Increased shoot and root | Ahn et al.
length, total dry weight, | (2007)
and total microbial
activity
Azospirillum amazonense Rice Increase in number of Rodrigues
panicles, grain dry et al. (2008)
matter and nitrogen at
grain maturation stage
Acinetobacter spp., Wheat Improved plant growth Egamberdieva
Alcaligenes faecalis, Bacillus and nutrition under salt (2008)
cereus, Pseudomonas stress
aeruginosa, Enterobacter
hormaechei, Pantoae spp.
Pseudomonas fluorescens G Pea Increased root and shoot | Zahir et al.
(ACC-5), P. fluorescens length, fresh and dry (2008)

(ACC-14), P. putida A (Q-7)

weight, number of leaves
per plant and water use
efficiency under drought

(continued)
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Table 6.1 (continued)
Plant/plants
Microorganisms species Beneficial effects References
Azospirillum spp. Paddy, millets, | Biopromoter Berg (2009)
oilseeds, fruits,
sugarcane,
banana
Bacillus megaterium M-3, Radish Increased seed Kaymak et al.
Pseudomonas putida BA 8, germination percentage (2009)
Burkholderia gladii BA7, under saline conditions
Agrobacterium rubi A16
Bacillus cepacia OSU-T Stored potatoes | Biocontrol of Fusarium | Recep et al.
(2009)
Bacillus subtilis FZB24 Potatoes, Plant growth promotion | Berg (2009)
vegetables and disease control
Bacillus OSU-142, Bacillus Strawberry Increased total sugar, Pirlak and
M-3, Pseudomonas BA-8 reduced sugar, and total Kose (2009)
soluble solids.
Bradyrhizobium japonicum Soybean Nitrogen fixation and Berg (2009)
plant growth promotion
Ampelomyces quisqualis M-10 | Apples, grapes, | Biocontrol of powdery Berg (2009)
cucurbits, and mildew
tomatoes
Bacillus amyloliquefaciens Wheat Plant growth promoting | Verma et al.
IARI-HHS2-30 and mitigation of cold (2015b)
stress
Halolamina pelagica CDK2 Suaeda P-solubilisation Gaba et al.
nudiflora (2017)
Acinetobacter guillouiae Wheat Plant growth promotion | Rana et al.
EUB2RT.R1 and nutrient uptake (2020c)
Pseudomonas libanensis ‘Wheat, maize, Alleviation of drought Kour et al.
EU-LWNA-33 rice, sorghum, stress and plant growth (2020d)
and finger promotion
millet
Streptomyces laurentii Amaranthus, Microbe-mediated Kour et al.
EU-LWT;-69, buck wheat, alleviation of drought (2020c¢)
Penicillium sp. EU-DSF-10 millets, and stress and acquisition of
maize phosphorus in great
millet (Sorghum bicolor
L.
Acinetobacter calcoaceticus Wheat, maize, Amelioration of drought | Kour et al.
EU- LRNA-72 Penicillium sp. | foxtail millet, stress in Foxtail millet (2020e)

EU-FTF-6

and finger
millet

(Setaria italica L.)

Arabidopsis by culture-independent technique documented a consistency in the
composition of associated microbiomes among different lineages of Arabidopsis as
well as among those grown in diverse soils across different continents evidencing
evolutionary conservation of the associated microbiomes
Rhizosphere microbiomes of tomato varied between cultivars and transfer of a

(Beattie 2015).



130 J.Pathmaetal.

Flavobacterium TRMI1 from the rhizosphere of tomato variety Hawaii 7996 resis-
tant to wilt pathogen Ralstonia solanacearum, to a susceptible variety Moneymaker
conferred resistance in Moneymarker evidencing the use of the beneficial bacteria
as probiotics for plants to maintain plant health (Kwak et al. 2018). Until last few
decades, rhizosphere microbiome lured the attention of microbiologists due to their
potentrole in plant growth promotion and biocontrol of phytopathogens. Rhizosphere
microbes include plant growth-promoting rhizobacteria (PGPR) belonging to vari-
ous genera such as Pseudomonas, Bacillus, Microbacterium, Azotobacter,
Azospirillum, Rhizobium, and Streptomyces as well as numerous beneficial fungi
(Trichoderma) and mycorrhiza (Globus, Gigaspora, etc.) (Kent and Triplett 2002;
Mwajita et al. 2013; Pathma et al. 2019b; Kour et al. 2019).

PGPR promote plant growth directly by aiding nutrient availability for host plant
(mechanisms include fixing atmospheric nitrogen, solubilising and mobilising
phosphorous, potassium, silica, and other essential mineral nutrients) and phytohor-
mone production (IAA, cytokinins, ACC deaminase) (Kour et al. 2020a, b; Singh
et al. 2020c).

PGPR indirectly support plant growth by protecting host plants from phyto-
pathogens (mechanisms include competition, parasitism, production of antibiotics,
siderophores, hydrogen cyanide, fungal cell wall degrading enzymes, and induction
of systemic resistance in plants) (Kent and Triplett 2002; Pathma et al. 2010b, 2011,
2019a, b, Mwajita et al. 2013). Bioformulations of Azospirillum, Azotobacter, and
Rhizobium have been used as biofertiliser for decades (Mohanram and Kumar 2019;
Kour et al. 2020f). Similarly, numerous species of soil dwelling Trichoderma espe-
cially T harzianum and T. viride which are highly interactive with the plants roots
have been reported to play an active role in protecting plants against a wide range of
soil and seed-borne fungal pathogens, viz. Fusarium, Phytophthora, Sclerotium,
Rhizoctonia, Ustilago, Sclerotinia, and Pythium causing diseases on various species
of agriculturally important plants (Rana et al. 2020a, b, c; Yadav et al. 2018b).

Numerous biocontrol mechanisms including mycoparasitism, competition, pro-
duction of fungal cell wall degrading enzymes, antibiotics, and siderophores have
been reported (Singh et al. 2014). Trichoderma was also reported to enhance nutri-
ent uptake and produce hormones involved in phytostimulation (Fiorentino et al.
2018; Kaur et al. 2020). Harman et al. (2019) documented that endophytic
Trichoderma has the potential to increase the photosynthetic ability of the plant.
Thus, Trichoderma also received greater attention and commercial value as biopes-
ticide. Similarly, Pseudomonas spp. and Bacillus spp. in the rhizosphere region due
to their potent plant growth promotion and biocontrol properties have also been
commercialised for use in eco-friendly crop production (Van Peer and Schippers
1988; Vessey 2003; Araujo et al. 2005; Pathma et al. 2010a, 2019b; Sharma
et al. 2019).

Apart from protecting the plant from phytopathogens, certain rhizobacterial spe-
cies have evidenced to deter pest infestation by inducing production of secondary
metabolites or defensive compounds in plants that deters insect herbivores. For
instance, aphid infestation on barley was impacted by plant biochemistry induced
by associated rhizobacteria (Tetard-Jones et al. 2012; Pieterse and Dicke 2007).
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Badri et al. (2013) showed that the rhizosphere soil microbiomes apart from impact-
ing the plant growth patterns also influenced the plant phytochemistry especially the
leaf metabolome which deterred the feeding preference of the insect herbivore
Trichoplusia ni on Arabidopsis. Investigations showed that Pseudomonas fluores-
cens WCS417r-induced resistance in Arabidopsis and reduced the performance of
generalist feeder Spodoptera exigua but unaffected specialist feeder, Pieris rapae
(Van Oosten et al. 2008). Cosme et al. (2016) showed that a rice root endophytic
fungi Piriformospora indica induced GA signalling in plants making it tolerant to
rice root feeding weevil Lissorhoptrus oryzophilus.

6.2.2 Phyllosphere Microbiomes

Phyllosphere in a broader sense includes all the above ground plant parts, viz.
leaves, stems, buds, flowers, fruits, and seeds offering a diverse habitat for microbes.
Phyllosphere is claimed to be a largest habitat for microbes next to soil as leaf sur-
face area of terrestrial plants alone exceeds 6.4 x 10® km? worldwide with a rough
estimate to support bacterial population of around 10? cells (Lindow and Brandl
2003; Vorholt 2012). The phyllosphere is an ephemeral environment in contrast to
rhizosphere, and hence microbe-inhabiting phyllosphere should be able to adapt the
phyllosphere by establishing itself in newly expanding niches. Based on the area of
colonisation, microbes can be classified as epiphytes colonising surface of aerial
plant parts (phylloplane) and endophytes living within tissues of the aerial plant
parts (endosphere) (Singh et al. 2020a). The term phyllosphere was initially coined
by a plant pathologist Last in 1955 who worked on the effect of seasons on the rela-
tive abundance of Sporobolomyces sp. (pink yeast) and Erysiphe graminis (powdery
mildew pathogen) on cereals during which he enumerated and documented the
characteristic microflora inhabiting the phyllosphere. As compared to rhizosphere,
phyllosphere especially leaves are less rich in nutrients as well as subjected to envi-
ronmental pressure including radiation and extremities of temperature and moisture
which significantly impacts the associated phyllosphere microbiomes (Kumar et al.
2019a, b). The phyllosphere microbiomes included bacteria, archaea, fungi, oomyc-
tes, viruses, and nematodes (Koskella 2013; Vorholt 2012; Lindow and Brandl
2003) with bacteria exceeding other groups in numbers and diversity (Andrews and
Harris 2000).

6.2.2.1 Leaf and Stem Microbiomes

Phyllosphere microenvironment comprises of leaf surface and internal leaf tissues
as they are connected by natural openings, viz. stomata and hydathodes which pave
entry sites for associated microbes (Morris 2002). Doan and Leveau (2015)
described that phyllosphere includes the ‘phylloplane’ (leaf surface landscape) and
‘phyllotelma’ (leaf surface waterscape). Phyllosphere microbial communities
(PMCs) attracted the interest of microbiologists and pathologists in 1950s when
they realised the economic importance of the microbes inhabiting this micro-habitat.
Broadly, phyllosphere microbes were classified as residential microbial community



132 J.Pathmaetal.

(native to healthy plant leaves) and casual community (introduced accidently) and
foliar pathogens were considered as a part of this complex community (Leben
1965). Resident communities were hypothesised to produce antagonistic com-
pounds that directly hinder the growth of phytopathogens or indirectly hamper the
phytopathogens by competing for nutrient, alteration of plant physiology, etc. (Last
and Deighton 1965; Leben 1965). The leaf inhabiting microbiomes apart from
establishing in newly formed leaves should also adapt themselves to diurnal cycles
of light and plant metabolism as well as withstand UV-radiations to which they are
exposed constantly.

Apart from fighting leaf morphological defences like the waxy cuticle, etc., they
also need to withstand the plant defences triggered by the entry of these ephiphytes
into plant apoplast for their successful establishment as endophytes (Rana et al.
2019; Yadav et al. 2020d). Mechaber et al. (1996) showed that environmental varia-
tion (morphology and microclimate) across the leaves can affect the distribution
pattern of phyllosphere microbes. Bacteria belonging to families Pseudomonadaceae,
Enterobacteriaceae, and Microbacteriaceae are found to be common inhabitants of
the microbial communities of leaf surfaces irrespective of the plant species across
time and space (Ercolani 1991; Thompson et al. 1993; Yang et al. 2001; Lindow and
Brandl 2003; Krimm et al. 2005; Ostman et al. 2010). Phyllosphere supports bacte-
rial abundance with an average number from 10°-~107 cells/cm? leaf area (Lindow
and Brandl 2003; Leveau 2006). Certain phyllosphere microbes are detrimental
foliar phytopathogens while a few have beneficial effects on plant growth which
depicts their overall effect on plant growth and ecological fitness (Vacher et al.
2016). Beijerinckia and Azotobacter inhabiting the phyllosphere were reported to
fix atmospheric nitrogen which was mobilised by rain resulting in plant growth in
tropical and temperate plant species (Ruinen 1965; Jones 1970). Presence of diazo-
tropic nitrogen-fixing proteobacteria (Klebsiella) and Cyanobacteria (Scytonema,
Nostoc, and Stigonema) were reported from the phyllosphere which were beneficial
to host plants (Malyan et al. 2020). Rico et al. (2014) reported that apart from provi-
sion of nitrogen to plants the presence of these N-fixing bacteria increased the
drought tolerance and environmental adaptability of host plants.

Advent of meta-omics and advancement in techniques of fingerprinting as well
as big data analysis helped us realise the complex nature of phyllosphere microbes
with respect to taxonomic and functional diversity (Jumpponen and Jones 2009;
Delmotte et al. 2009; Vacher et al. 2016). Leaf morphology, viz. cuticular layer, wax
layer, specialised cells, trichomes, stomatal openings, hydathodes, and leaf physiol-
ogy including respiration, photosynthesis, and evapotranspiration modulates the O,
and CO, fluxes, water vapour, production of ROS (in response to PAMPs), etc. and
plays an important role in microbial colonisation (Torres 2010). By-products of
plant cell growth, namely methanol which is released through stomata has been
documented as a carbon source for growth of some phyllosphere microbes (Vacher
etal.2016). Iguchi etal. (2015) reported the presence of beneficial Methylobacterium
spp. in abundance on the phyllosphere of rice plants which induced plant growth by
N, fixation and production of phytohormones such as ACC deaminase in addition to
induction of systemic resistance in plants against phytopathogens (Madhaiyan et al.
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2004; Maliti et al. 2005; Abanda-Nkpwatt et al. 2006; De Costa et al. 2008;
Chinnadurai et al. 2009).

Apart from plant growth-promoting activity, certain phyllosphere microbes are
found to degrade organic pollutants and can be commercially exploited for bioreme-
diation (Van Aken et al. 2004; Ilori et al. 2006; Wei et al. 2017; Sharaff et al. 2020).
Phyllosphere bacteria induced plant defence signalling which not only evaded foliar
phytopathogens but also influenced insect herbivory (Humphrey et al. 2014).
Bacillus amyloliquefaciens, an endophyte reported from vanilla was found to pos-
sess potent biocontrol and plant growth-promoting properties and played an impor-
tant role in the health of host plant (White et al. 2014). Studies showed that epiphytic
nitrogen-fixing bacteria Herbaspirillum seropedicae could penetrate the leaf tissues
of pineapple through the stomata and establish themselves as endophytes aiding
plant nutrition (Baldotto et al. 2011). Studies on spray application of a diazotroph,
Azospirillum brasilense on wheat and maize plants evidenced their colonisation and
endophytic growth into leaf tissues via stomata though they failed to establish as
epiphytes (Fukami et al. 2016).

Among phyllosphere microbes, many studies focussed on an epiphytic phyto-
pathogenic bacterium Pseudomonas syringae documented across many plant spe-
cies (Mansfield et al. 2012). It can grow endophytically into plant tissues and is also
prevalent in waterbodies, snow, rain, and clouds. Morris et al. (2014) stated that this
cosmopolitan distribution is the nature of phyllosphere ephiphytes including
P. syringae which are swept and absorbed into atmosphere and catalyse ice and
cloud formation and are involved in rainfall induction. Hirano and Upper (2000)
documented the presence of conserved genes ‘ice’ or ‘ina’ that leads to ice forma-
tion and this was claimed to be a nutrient access mechanism by inducing frost dam-
age in phyllosphere (Morris et al. 2013).

P. syringae was used as a model to study microbial interactions in phyllosphere
(Melotto et al. 2008; Innerebner et al. 2011) and to decipher microbial adaptations
to epiphytic regime (Burch et al. 2014). Leaf morphology (cuticular wax, tri-
chomes), physiology, and biochemistry (nutrient composition and metabolites) vary
among plant species and genotypes, and these are certain factors which aid the
selection of associated phyllosphere microbiomes (Inacio et al. 2010; Kembel and
Mueller 2014; Kembel et al. 2014; Hunter et al. 2015; Mason et al. 2015). Also leaf
phosphorous and aluminium content influenced associated bacterial and fungal
communities, respectively (Kembel et al. 2014; Kembel and Mueller 2014). Also
leaf microclimate including temperature (Bernard et al. 2013) and water content
(Morris 2002; Yadav et al. 2005) influenced the phyllosphere microbes by modify-
ing the pH and water availability.

Among prokaryotes, bacteria, viz. Methylobacterium, Pseudomonas,
Sphingomonas, Azotobacter, Beijerinckia, and Klebsiella; cyanobacteria, Viz.
Nostoc, Scytonema, and Stigonema (Delmotte et al. 2009; Kembel et al. 2014;
Vacher et al. 2016) were found in abundance. Among eukaryotes, fungi, viz.
Cladosporium, Aureobasidium, and Taphrina belonging to Ascomycota (Coince
et al. 2014; Kembel and Mueller 2014) and yeasts genera Sporobolomyces and
Cryptococcus belonging to Basidiomycota (Cordier et al. 2012; Ottesen et al. 2013)
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were common phyllosphere microbes. The community composition was dynamic
and season dependent (Penuelas et al. 2012). Density of yeast was as high as
500 cells/cm? with minor variation among the plant species (Inacio et al. 2010).
Aureobasidium pullulans was found to have antagonistic potential against phyto-
pathogens (Cordier et al. 2012). Rodriguez et al. (2009) reported that certain endo-
phytic fungi lives inside leaf tissues without causing noticeable symptoms and has
an epiphytic stage at times of horizontal transmission between mature plants prior
to entry into leaf tissues. These endophytic fungi benefit plant growth by inducing
resistance in plants against biotic (pathogens, herbivores) and abiotic (extreme tem-
perature, drought and salinity) stress (Rodriguez et al. 2009; Porras-Alfaro and
Bayman 2011; Kennedy et al. 2020). Certain phyllosphere dwelling endophytic
fungi acts as latent pathogens as in case of Diplodia mutila which is triggered by
strong light to generate ROS which is detrimental to the host, the tropical palm tree
Iriartea deltoidea at the seedling stage (Alvarez-Loayza et al. 2011). Certain phyl-
losphere fungi also acts as phytopathogens and includes Erysiphe, Podosphaera,
Phyllactinia, Blumeria, Colletotrichum, Helminthosporium, Puccinia, Septoria,
Pseudocercosporella, Pyrenopeziza, Leptosphaeria, Botrytis, etc. (McCartney and
Fitt 1998; Glawe 2008).

Leaves of raw eaten green vegetables and herbs, viz. Lepidium sativum,
Cichorium endivia, and Thymus vulgaris were reported to harbour beneficial bacte-
ria, viz. Bifidobacterium, Lactobacillus, and Streptococcus in a good concentration
(1073 CFU per gram of plant tissue) which are probiotic in nature and cause health
benefits to humans comparable to that caused by administering probiotic supple-
ments. Additionally, bacteria belonging to genera, viz. Enterococcus, Pediococcus,
Leuconostoc, Bacillus, Propionibacterium, Akkermansia, Staphylococcus, and
Clostridium were also reported from phyllosphere of different plant species utilised
as herbs and eaten raw (Patz et al. 2019).

Culture-dependent and metagenomic approach to study the impact of nitrogen
fertilisation on phyllosphere microbiomes of spinach and rocket showed the pres-
ence of genera Bacillus, Pseudomonas, Phyllobacterium, Exiguobacterium,
Pantoea, and unclassified Enterobacteriaceae in both the host plants; however, it
evidenced variation in species diversity and their population percentage (Kumar
et al. 2019a). Additionally, the study evidenced that nitrogen fertilisation impacted
the microbial population in a characteristic pattern in each hosts. Core fungal micro-
biome included members of Ascomycota and Basidiomycota in both the crops;
however, the dominance of specific members varied. This study also revealed that
the microbial diversity was influenced by plant species, leaf nutrition, and time
(Darlison et al. 2019). Studies on bacterial community composition of leaf and pet-
als of plants, viz. Lotus corniculatus and Saponaria officinalis showed the presence
of similar taxa in the leaves of the plants tested and similar results were obtained
with the leaf microbiomes.

However, there was a considerable variation among the plant parts of the same
species indicating the habitat specificity of microbes. Flowers had less bacterial
diversity as compared to leaves (Junker et al. 2011). Studies involving comparison
on sugarcane microbiomes in different plant parts showed a variation in species
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diversity and their relative abundance. de Souza et al. (2016) showed that Rhizobiales
dominated rhizosphere while Saprospirales and Rhodospirillales intensively colo-
nised roots and young shoots, respectively, as endophytes. Enterobacteriales colo-
nised sugarcane stalks and leaves both as endophytes and epiphytes at a higher
extent as compared to roots, young shoots and soil and sugarcane stalks had abun-
dance of endophytic Pseudomonadales. Among the fungal communities, Polyporales
were enriched in roots, bulk soil, and young shoots while stalks and leaves were
dominated by Capnodiales. Saccharomycetales intensively colonised stalks both as
endophytes and epiphytes. Armanhi et al. (2018) reported that members of
Moraxellaceae, Pseudomonadaceae, and Enterobacteriaceae occurred as endo-
phytes of sugarcane stalks and leaves, while Sphingomonadaceae and Rhizobiaceae
occurred in leaves. Additionally, Rhizobiaceae also occurred as epiphytes in stalk
and that many of these members were reported to possess plant growth-promoting
activity.

6.2.2.2 Floral Microbiomes
Flowers are important reproductive structures, and their microbial inhabitants play
an important role in the reproductive success in terms of yield, food safety as well
as conservation of the plant species (Aleklett et al. 2014). Floral (anthosphere)
microbiomes were found to have certain distinct members which were not present
in vegetative parts (Ottesen et al. 2013). Floral structures, viz. sepals, petals, ova-
ries, stigma, style, nectaries, stamens, and pollens differ considerably in anatomy,
physiology, and biochemistry and provide a unique habitat for the microbial cells
(Junker et al. 2011). For instance, the petals lack lignin which increases its colonisa-
tion by fungal endophytes as compared to the sepals which are rich in lignin (Ngugi
and Scherm 2006). Also the sepals contain trichomes and few oil glands while pet-
als are rich in conical cells and bright pigments which affect the surface temperature
and wettability and in turn select microbes preferring the microclimate. Similarly,
the physio-chemistry of the stigma plays an important role recruiting the microbes.
Stigma has been identified as a primary site of entry for the pathogen Erwinia
amylovora causing fire blight. Stigma-style pathway is considered as one of the
routes exploited by fungus to colonise the ovary (Ngugi and Scherm 2006; Aleklett
et al. 2014). Analyses of epiphytic bacterial community of apple blossoms showed
the presence of microbial agonists, viz. Pantoea agglomerans, Pseudomonas spp.
and Cryptococcus spp. which deterred the growth of Erwinia (Pusey et al. 2009).
Few investigations have documented certain novel species of yeasts,
Wickerhamomyces and Candida in flowers (Groenewald et al. 2011; Jindamorakot
et al. 2008; Rosa et al. 2007). Various studies documented that fungal communities
belonging to Ascomycota dominated the floral microbiome, and this was followed
by bacterial members. Very few studies represented archaea and viruses as a part of
floral microbiomes. Metschnikowia, Cryptococcus, Pseudomonas, and Acinetobacter
were found to be common inhabitants of anthosphere over a large geographical
range. Ottesen et al. (2013) documented that an unidentified fungi was the most
prevalent member in tomato flowers by 18S rRNA sequences analyses. Analyses of
16S rRNA sequence of apple floral microbiota showed the dominance of
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Deinococcus-Thermus and TM7-affiliated bacteria (Shade et al. 2013). Comparative
analyses of microbiomes of leaves and petals of Lotus corniculatus and Saponaria
officinalis evidenced that microbial community composition has higher degree of
habitat specificity as compared to host plant genotype specificity and that flowers
relatively harboured less bacterial diversity. The floral scents emitted by the flower
volatiles played a critical role in tailoring the associated microbes. This reflects the
natural defence mechanisms of avoiding microbes that are pathogenic to plants and
affect their reproductive ability (Singh and Yadav 2020). Thus, floral scents apart
from playing a role in attraction of pollinators also play an equally important role in
deterring factors detrimental to plant health and fitness (Junker et al. 2011). Several
bee species have been documented to play an important role in transferring natu-
rally occurring antagonistic bacteria that evade pathogens across plants and thereby
shape up establishment of bacterial communities in flowers (Johnson et al. 1993;
Maccagnani et al. 2009).

Nectar Microbiome

Nectar biochemistry is strongly impacted by nectar microbiomes. Nectar microbi-
omes are influenced by host plants genetics, intra-specific variation of the floral
traits, microbial members of the community, their order of succession, herbivory,
and other environmental conditions (Tucker and Fukami 2014; Samuni-Blank et al.
2014). The role of nectar microbiomes in plant-pollinator mutualism and plant fit-
ness is inevitable. Sandhu and Waraich (1985) reported that the nectar microflora
are transferred among flowers and between other plant parts by means of nectar
consumers such as insects, birds, and bats. As compared to other plant parts, floral
nectar is reported to nurture relatively less microbes comprising of bacteria, yeasts,
and fungi that can tolerate high osmotic pressure, toxic secondary metabolites, lytic
enzymes, H,O,, and ROS. The bacterial and yeast population inhabiting the nectar
is estimated to be approximately >107 cells/mm? and >10° cells/mm?®, respectively
(de Vega et al. 2009; Herrera et al. 2009; Fridman et al. 2012). Along with the host
plant, nectar microbes play an important role in composing the nectar biochemistry,
viz. composition of various sugars, volatile compounds, etc. as well as the volume
of nectar produced which alters the foraging behaviour of the pollinators, thereby
impacting seed setting and plant health (Vannette and Fukami 2018; Alvarez-Perez
etal. 2019).

Lenaerts et al. (2017) showed that bacteria altered the nectar chemistry which
affected the life history of a generalist parasitoid of aphid. It has been hypothesised
that nectar biochemistry as influenced by the inhabiting microbes also plays an
important role in recruiting specialist pollinators and repelling nectar robbers
thereby altering the pollination behaviour (Gonzalez-Teuber and Heil 2009;
Richardson et al. 2016). Good et al. (2014) showed that honey bee, Apis mellifera
avoided floral nectar inhabited by bacteria Lactobacillus kunkeei, Asaia astilbes and
Erwinia tasmaniensis but the preference was unaffected by the presence of yeast
Metschnikowia reukaufii. The preference was not based on the presence or absence
of microbe but was depended on the secreted microbial metabolite which alters the
floral scent and acts as chemical cues. Rering et al. (2018) evidenced that M.
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reukaufii produced distinct compounds that were more attractive to bees. He also
reported that fungi present in floral nectar microbiomes were known to produce
volatiles 2-ethyl-1-hexanol and 2-nonanone which attracted bees thereby improving
pollination. Profiling the nectar microbiomes of different plant species of the
Mediterranean region showed the frequent occurrence of certain bacteria—yeast
associations such as Leuconostoc sp. with M. reukaufii, Acinetobacter spp. with
Metschnikowia gruessii and M. reukaufii (Alvarez-Perez and Herrera 2013).
Structuring of microbiomes of nectar followed specific patterns. Certain hypoth-
esis assumes floral nectar to be sterile and that microbial communities are intro-
duced initially by the visitors recruited by the nectar chemistry. Studies on nectar
microbiome of dioecious shrub Eurya emarginata showed a variation in the micro-
bial composition of male and female flowers. It also evidenced that reduced visit of
the pollinators in male flower reduced the occurrence of yeasts which in turn
increased the bacterial abundance (Tsuji and Fukami 2018). Thus, the microbial
community composition is affected by the order of microbial colonisation termed as
‘priority effects’. Studies showed that prior introduction of bacterium Neokomagataea
sp. in monkey-flower (Diplacus aurantiacus) nectar caused its domination across
multiple generations and even eliminated a common yeast inhabitant M. reukaufii
(Toju et al. 2018). Alvarez-Perez et al. (2019) documented that opportunistic bacte-
ria and yeasts inhabit the floral nectar and the yeast—bacterium interactions influ-
ence the mutualistic interactions between host plants and their floral visitors.
Interaction mechanisms include cross talk signalling, physical complex formation,
nutrition exchange, antibiosis, and horizontal gene transfer. Certain nectar dwelling
species of yeasts such as Metschnikowia and bacteria of genera Pseudomonas and
Pantoea are known to produce antimicrobial compounds that inhibit the growth of
plant pathogens (Parret and De Mot 2002; Dufty et al. 2006; Pusey et al. 2009;
Walterson and Stavrinides 2015). Acinetobacter baylyi reported from floral nectar is
reported to aid in horizontal gene transfer by killing and extracting genes from the
co-existing species (Fridman et al. 2012; Cooper et al. 2017). Fridman et al. (2012)
reported that members of Gammaproteobacterium, viz. Acinetobacter spp., Erwinia
spp., Pantoea spp., and Pseudomonas spp. dominated nectar microbiomes of three
different plants, viz. Amygdalus communis, Citrus paradise, and Nicotiana glauca.
The microbiomes also included members of other species, namely Bacillus spp.,
Paenibacillus spp., Staphylococcus spp., Chryseobacterium sp., Arthrobacter spp.,
Curtobacterium spp., Kocuria spp., Asaia sp., and Bartonella sp. at comparatively
lower frequencies. Thus, microbial members of the nectar produce a variety of
semiochemicals including volatiles, metabolites, and quorum-sensing molecules
that inhibits, repels, or attracts other microbial species, arthropods, and bird species
inhabiting the ecosystem. Certain compounds of microbial origin such as Farnesol,
an important quorum-sensing molecule found in various fungal species is also a
constituent of insect pheromone which when present in the floral nectar triggers a
behavioural responses in the insect attracting it towards the flowers (Sobhy et al.
2018; Rering et al. 2018). Better understanding of the factors and mechanisms
orchestrating the nectar microbiomes and their effects on plant-pollinator
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mutualisms as well as plant—pest interactions can help us forecast the future as well
as tailor microbiomes to improve pollination and plant health.

6.2.2.3 Fruit Microbiomes
Microbes inhabit the fruits both externally on the surface (carpoplane) as epiphytes
and internally as endophytes as they do with other plant parts. Ottesen et al. (2013)
made a comparative study on the microbiomes harboured in different tissues of
tomato by sequencing 18S and 16SrRNA moieties and shotgun metagenomics
which evidenced that the microbial communities present in each plant organ was
distinct; however, the flowers and fruits shared few common members of
Brachybacterium, Chryseomonas, Microvirga, Microbacterium, Microbacteriaceae,
Microvirga, Microbacteriaceae, Paracocccus, Rhizobium, and Sphingomonas
which were not found in any other plant tissue. Research shows that these microbi-
omes play an important role in the fruit physiology and health, and their role
becomes essential in fruits after harvest. Setati et al. (2012) documented the pres-
ence of antagonistic yeast-like fungi Aureobasidium pullulans previously reported
from phyllosphere on fruit surfaces which could be used as potential biocontrol
agent. Studies on the fungal microbiome of apple fruits managed organically and
conventionally showed that members of Ascomycota were dominant followed by
Basidiomycota, Chytridiomycota, and unidentified fungi. Organic apples had mem-
bers of Ascomycota, viz. Phaeoramularia, Phaeosphaeria, Stagonospora, and
unidentified Mycosphaerellaceae in abundance while members of Basidiomycota,
viz. Cystofilobasidium, Leucosporidiella, and Guehomyces, were dominant in con-
ventionally grown apples (Abdelfattah et al. 2016). Wassermann et al. (2019) in an
attempt to study microbiomes associated with apple fruit by employing 16S rRNA
gene analyses, q-PCR, and (FISH-CLSM) identified that each part of the fruit, viz.
peel, fruit pulp, seeds, calyx, and stem harboured distinct microbiomes among
which fruit pulp and seed showed more bacterial colonisation while the peel has less.
Bacterial members belonging to Proteobacteria dominated followed by
Bacteroidetes, Actinobacteria, and Firmicutes with differences in bacteria genera,
viz. Ralstonia, Sphingomonas, Pseudomonas, Massilia, Methylobacterium,
Burkholderia, Pantoea, and Hymenobacter among the fruit tissues. The investiga-
tion also showed that apples harboured bacterial members supporting human health
and that the bacterial community composition varied between conventionally and
organically grown apples. Organic apples had abundance of Methylobacterium,
Spirosoma, Hymenobacter, and Zymomonas while conventional apples had
Burkholderia, Acinetobacter, Erwinia, and Pantoea in abundance. Thus, knowledge
on fruit microbiomes will help us to understand the beneficial microbes, and the role
played by them in avoiding post-harvest damages including physiological disorders
and microbial contaminations by food-borne pathogens. This will enable us to
design microbial consortia for biological control of post-harvest diseases as well as
enhance the quality, palatability, and preserve the nutritional value of the fruits and
vegetables after harvest (Droby and Wisniewski 2018).
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Seed Microbiomes

Seeds play the most important role to initiate the life cycle, reproduce the species,
and also facilitate dispersal, adaptation, and persistence of the plant species in new
environments (Fenner and Thompson 2005). Seed-to-seedling transition is one of
the most important bottlenecks in a plant’s life cycle as various biotic (soil and seed-
borne pathogens, granivores) and abiotic stress (drought, nutrient deficiencies,
heavy metal toxicities, soil temperature, etc.) affects seed germination and seedling
growth (Leck et al. 2008; Bever et al. 2015). Microbes with a co-evolutionary his-
tory with plants interact with seeds at all stages leading to the development of
microbiome which will be essential for the overall development and performance of
plants (Hardoim et al. 2015). Symbiotic microbial communities (primarily bacteria
and fungi) are present in seeds which are essential for nutrient acquisition in seed-
lings, modulation of plant development, and defence from pathogen. Microbes
occur in various parts of seeds including embryonic tissues, endosperm, and seed
coat (Suman et al. 2016; Yadav et al. 2020c). Ephiphytes found on the seed surface
(on seed coat) are transmitted vertically and horizontally while endophytic microbes
colonising the internal seed tissues (embryo and endosperm) are transmitted verti-
cally to the progeny. At times, the ephiphytes also enter into endophytic life style
and vice versa (Rodriguez et al. 2009; Barret et al. 2016). Though many studies
document endophytes as mutualistic or silent partners of host plant, there are excep-
tions where endophytes (bacteria, fungi, virus) act as pathogens to the host plants
emphasising that mutualism and pathogenicity are not strictly inherent microbial
properties but are environment-specific expressions (Hume et al. 2016). Certain
studies reported that endophytic microbes dwelling in seeds are distinct from those
present in the soil substrate proposing that they might be recruited from the parent
plant while few others report that rhizosphere microbes can colonise the plants sys-
tematically and enter the flowers and contribute partially to the seed microbiomes
(Compant et al. 2008, 2010, 2011).

Johnston-Monje and Raizada (2013) showed that few bacterial endophytes har-
boured in the seeds are capable of colonising the seedlings systemically as the seeds
germinate and grow thereby expanding their territory into different plant organs as
well as exit into rhizosphere via roots. In general, eukaryotes belonging to
Ascomycete and Basidiomycete and prokaryotic bacteria of the phyla Proteobacteria,
Actinobacteria, Firmicutes, and Bacteroidetes were commonly found associated
with seed tissues (Barret et al. 2015; Johnston-Monje et al. 2016). However, the
seed inhabiting microbial species and microbial community composition varied
with plant species (Links et al. 2014), genotype (Barret et al. 2015), seed develop-
mental stage (Liu et al. 2013), eco-geographical location (Klaedtke et al. 2016), and
counteracting phytopathogens (Rezki et al. 2016). Thus, seed microbiomes are out-
comes of numerous interlinked factors and processes (Frank et al. 2017).

Johnston-Monje and Raizada (2011) and Liu et al. (2012) documented that seeds
of different maize genotypes including hybrids as well its wild ancestor teosinte
harboured similar bacterial genera evidencing the long-term conservation of seed
endophytic microbial community. These experiments proved that the seed bacterial
community of maize was unaffected by ecology, evolutionary boundary, and
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ethnography but was determined by the host genetics. Seeds of Brassica plants were
dominated by Ascomycetes (class: Dothideomycetes, FEurotiomycetes,
Leotiomycetes, Sordariomycetes) and Basidiomycetes (class: Tremellomycetes)
(Barret et al. 2015). Bacteria belonging to genera Pseudomonas, Bacillus,
Paenibacillus, Acinetobacter, Pantoea, Micrococcus, and Staphylococcus were
found to be the common inhabitants of seeds as endophytes of which many of them
were beneficial to host plant (Truyens et al. 2015). Many studies showed that epi-
phytic and endophytic bacterial communities of seeds were similar in diversity.
However, this was not true in case of seed inhabiting fungal communities where the
ephiphytes were dominated by phytopathogenic species of Fusarium, Alternaria,
Leptosphaeria, Phoma, and Pyrenophora. This was in line with research investiga-
tions involving Centaurea stoebe and its ancestral relative Centaurea jacea where
majority of the seed endophytes were found to be pathogenic in nature while its
roots harboured non-pathogenic endophytes. This is because of the inability of
pathogenic seed endophytes of Centaurea to systemically colonise the plants which
evaded the risk of the seeds acting as vectors of these pathogens (Geisen et al. 2017).

Microbes inhabiting seeds have been evidenced to provide services essential for
seed germination and survival which includes breaking of seed dormancy by cyto-
kinin production; induction of seed germination and growth by phytohormone pro-
duction and provision of macro- and micronutrients (by N, fixation, P, K, S
solubilisation); protecting seeds from abiotic stress such as heavy metal toxicity and
from biotic stress caused by phytopathogens and pests (Thakur et al. 2020; Tiwari
et al. 2020). Evidence of bacterial occurrence as endophytes on surface sterilised
seeds of different plant species, namely paddy, maize, barley, annual ryegrass, com-
mon bean, pumpkin, grapevine, alfalfa, coffee, tobacco, quinoa, giant cardon cac-
tus, several eucalyptus species, Norway spruce, etc. have been reported and reviewed
(Frank et al. 2017). Seed inhabiting fungal endophytes Epichloe sp. and
Neotyphodium sp. associated with poaceae plants was evidenced to play a signifi-
cant role in protection of plants from phytopathogenic infections (Perez et al. 2016).

Thus, knowledge on seed microbiome and their role can help us understand and
nurture them in a way to benefit crop production. However, globalisation and global
seed trade which had centralised seed production and distribution had posed a
potential risk to seed microbiomes as it might lead to loss in heterogeneous micro-
biomes as structured by the plant genotype and environmental interactions. This
will slowly favour establishment of highly homogenous plant microbiomes posing
danger to some key microbial players which might be endangered (Berg and
Raaijmakers 2018). Thus, ways to preserve the heterogeneous nature of seed-
associated microbiomes should be an objective of prime focus in case of centralised
seed production programmes to improve the ecological fitness of the seed material
produced.
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6.3  Tools in Microbiome Analysis

Metagenomics revealed the identity and deciphered the role of the majority (>90%)
of unculturable microbes harboured in the host plants which was not possible with
conventional microbial culturing techniques. Meta-analysis and high-throughput
screening unveiled the fact that differences occur in pattern of microbiome assem-
blage and their activity in host plants with respect to plant species, genotypes, plant
age, plant tissue, soil biochemistry, and geography. Metagenomics and proteomics
untangled large microbial metabolic clusters, their tissue-specific interactions with
host plants, etc. and help us appreciate nature’s creation and identify novel lead
compounds and molecules with improved bio-efficacy and high degree of target
specificity that could be harnessed and utilised for sustainable crop production.
Advances in next-generation sequencing and bio-informatics tools had opened up
pathways to study the molecular taxonomic and functional diversity of the plant
microbiota and has elucidated how plants coordinate with core microbial partners
belonging to certain phyla, viz. Proteobacteria, Firmicutes, Bacteroidetes, and
Actinobacteria which have been found across a variety of host species including
arabidopsis, brassica, soya bean, grapevine, and few tree species studied. Advanced
molecular biology techniques widened the traditional perspective that host—-microbe
interactions not only refers to specific pathogenic interactions leading to disease or
symbiotic interactions leading to nitrogen fixation, etc. but has much more beyond.
Whole genome sequencing provides deeper insights on the impact of microbiome
functions on the host plant that is engrained at different strata, viz. species, sub-
species and strain (Beattie 2015). Tools used to decipher plant—-microbiome interac-
tion is summarised (Table 6.2).

Sequencing of marker genes and internal transcribed spacer (ITS) regions are
efficient tools for quantitative surveys and reveals the patterns of microbiome
assemblage and community compositions in different plant parts over diversified
environmental conditions (Hacquard et al. 2017). Mitter et al. (2017) profiled seed
endophyte community of crops such as wheat and soya bean using 16S rRNA gene
sequences and analysed the bacterial colonisation by q-PCR and fluorescence in situ
hybridisation using double labelling of oligonucleotide probes (DOPE-FISH/
CSLM) microscopy. Use of appropriate techniques such as metataxonomic primer-
based amplicon sequencing (16S rRNA for bacteria and archaea or intergenic spacer
(ITS) region for eukaryotes), short gun sequencing of entire genome (metagenomic,
metagenomic, and metaproteomic studies) coupled with use of liquid chromatogra-
phy mass spectrometry (LC-MSMS) and nuclear magnetic resonance (NMR) for
detection of metabolites (metabolomics) for exometabolic profiling of plant exu-
dates (Zhalnina et al. 2018), breeding techniques such as multi-generation plant trait
selection experiments (Panke-Buisse et al. 2015), crop mutant line experiments
(Senga et al. 2017) coupled with microscopy (Rybakova et al. 2017) will provide us
better insights of the taxonomic and functional diversity of the members of the
microbiomes (Bulgarelli et al. 2015; Sergaki et al. 2018).
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6.4 Engineering Plant Microbiomes for Eco-Friendly,
Sustainable Crop Production

Engineering a ‘healthy microbiome’ requires in-depth knowledge on the host—
microbiome interactions, their co-evolutionary signatures aiding their assemblage
and functioning. Success of microbiome research involves large culture collections,
cataloguing the molecular and functional diversity of the microbes associated with
plants, identifying the responsible genes, creation of data banks, affordable genome
sequencing techniques, bio-informatics tools, molecular docking studies, gnotobi-
otic reconstitution system, economic and high quality meta-analysis and high-
throughput systems that will provide information with high fidelity.

Ardanov et al. (2012) showed that the microbial community composition of veg-
etative plant parts could be modified by infecting the plant with endophytes.
Infection of potato plants with endophytic, Methylobacterium induced resistance
against a phytopathogen Pectobacterium atrosepticum causing black leg in potato.
Similar experiments carried out on different plants with different pathogen combi-
nations evidenced that certain endophytic bacteria could directly or indirectly pro-
tect plants against phytopathogens and hence could be introduced to various plant
species to induce plant defences. However, intensive research is required to assess
the compatibility of the introduced endophyte with the host plant so as to establish
and exhibit its maximum potential in plant protection. In an attempt to colonise
gnotobiotic Arabidopsis plants devoid of microbes with synthetic microbial com-
munities colonising the root and phyllosphere of the test plants and evaluation of the
established communities by gene sequencing evidenced the consistent assemblage
of microbiomes resembling native microbiomes as that of wild Arabidopsis rather
than being influenced by applied strains thereby indicating the robust mechanisms
involved in microbiome assemblage (Bai et al. 2015). Mitter et al. (2017) attempted
anew method of modifying the seed microbiomes of wheat by introducing an endo-
phytic bacterium Paraburkholderia phytofirmans PsJN through flowers of the par-
ent plant. The results evidenced that the bacterium introduced through flowers not
only established themselves in the seeds produced by the plant but also altered the
microbial community structure by altering the proportion of the members belonging
to different taxa in the treated samples.

Plant microbiomes can be used as models to unveil the mechanisms underlying
microbiome assembly and functioning. With advanced molecular techniques that
flood us with data and methodologies for big data analyses now the challenge is on
the conceptual networking of the results with underlying evolutionary and ecologi-
cal mechanisms (Vacher et al. 2016). This will provide us better understanding of
their ecological role. Hence, extensive research and region-specific field trials are
required to engineer health microbiomes with a foresight to avoid perturbing syn-
thetically engineered microbial communities and maintain harmony with nature.
Progress in DNA sequencing techniques and high-throughput screening technolo-
gies such as metagenomics, metatranscriptomics, metaproteomics, and metametab-
olomics has revolutionised the field of microbiome research and had provided us
deeper insights on host—microbiome associations and interactions which will enable
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us tailor beneficial microbiomes in plants by using simple techniques and support
crop production sustainably without the risk of introducing GMO, ecological dilapi-
dation, and environmental pollution.

6.5 Conclusion and Future Perspective

Population explosion, expansion of demographic activities and climate change had
put agriculture under pressure. Addressing the demand by establishing sustainable
production systems is a great challenge to agriculturists and human community.
Plant microbiomes play an important role in hosts nutrient assimilation, growth
promotion, and biocontrol of phytopathogens. They influence the chemical ecology
of the host plant and thereby its interaction with other living organisms at different
tropic levels including pollinators, insect pests, and their natural enemies. Plant
microbiomes acting as an interface between plant and environment also act as an
interface between humans and natural microbiomes. They act as a nodal route of
exposure of humans to antibiotic resistance through direct contact, food chain, and
globalisation (Chen et al. 2019). Thus, plant microbiomes apart from influencing
the plant health and fitness also tremendously impact human health. Extensive
research on microbiomes associated with different plants and plant tissues specifi-
cally and community profiling using both culturable and non-culturable methods
will help us identify the key microbial players that shape the host plant microbiomes
as well as impact the host plant fitness and in turn human health. In-depth studies
will reveal the possibilities of engineering the plant microbiomes and laying a clean
green road which utilises nature’s assets so as to improve crop protection and pro-
duction in an economical and eco-friendly manner. Deciphering plant microbiomes
and devising simple methods to efficiently harness them so as to provide a profound
effect on plant growth and plant protection will open up new avenues of breeding
plants by introducing required beneficial traits without controversial genetic manip-
ulation of the plants or use of pollution causing agrochemicals thereby laying a
clean green road to sustainable agriculture.
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Abstract

The interactions of plant—microbe enable various types of transformations in the
rhizosphere, which might be harmful, neutral, or beneficial. These interactions
are proved helpful to plants for enhancing the biological, chemical, and physical
properties of soil by facilitating the nutrients balance of the soil. Mutualistic
plant—microbe interaction in the rhizosphere can enhance the nutrient uptake
from roots, improve the biomass productivity and potentially, the ability to toler-
ate environmental stress. The microbial communities present in the rhizosphere
influences the development of phytopathogens, the fitness of the ecological plants,
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and resistance of heavy metals and acquisition of nutrients. For improving the
yields, varieties, and sustainability of the crops, the plant-microbe interaction
is now getting considered as a valuable asset. Bioprospecting, the rhizospheric
microorganisms with the ability to confer tolerance towards stress to host plant
and using their symbiotic interaction with plants to improve the overall plant
growth and crop productivity, could significantly aid in decreasing the adverse
effects of stress on plants. The emerging field of engineering of ecosystems and
rhizosphere marks a promising opportunity to fill critical research gaps and to
develop sustainable solutions. Exploration of plant-microbe interactions is the
key to understand the mechanism of rhizosphere priming, management of the
carbon cycle in soil, and improve the crop productivity under current and future
climatic conditions.

Keywords

Agricultural sustainability - Environment - Nutrient uptake - Roots exudates -
Soil microbiomes

7.1 Introduction

In the year 1904, Hiltner coined the term “rhizosphere”. It is referred to the soil zone
present around the legume roots, which supports the bacterial activity. The rhizo-
sphere is divided into three different types of regions (Lynch and de Leij 2012).
These include the ecto-rhizosphere, rhizoplane, and endo-rhizosphere zone. The
root tissue, which includes the layers of cortical and endodermis, is known as endo-
rhizosphere. The rhizoplane includes the root surface area with the polysaccharide
layer of mucilaginous and along with epidermis layer, whereas ecto-rhizosphere is
defined as the region soil, which is adjacent to the root (Linderman 1991). Since
various organic compounds get accumulated and released by roots exudation in the
rhizosphere, this region is enriched with the nutrients (Ligaba et al. 2004). These
nutrients are utilized by the microorganisms occurring in these regions as the
sources of energy and carbon to increase their microbial activity and growth
(Lugtenberg and Kamilova 2009). The microbial communities present in the rhizo-
sphere influences the development of phytopathogens (Nehl et al. 1997), the fitness
of the ecological plants (Barriuso et al. 2008), resistance of heavy metals (Kuffner
et al. 2008), and acquisition of nutrients (Lynch 1990; Kour et al. 2020c).

The different types of organisms are found in the rhizosphere, namely archaea,
nematodes, bacteria, protozoa, algae, fungi, arthropods, and oomycetes (Raaijmakers
et al. 2009; Kour et al. 2019b; Yadav et al. 2018). The released nutrients from the
plants are utilized by the different groups of the rhizospheric microbiome. It has
been observed that in the regulation of plant roots activity and microbial diversity,
the rhizodeposits (i.e. exudates) provides the major driving force to them. The
pathogenic fungi, nematodes, oomycetes, bacteria, and fungi are the deleterious
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rhizosphere organisms (Van Baarlen et al. 2007; Tyler and Triplett 2008; Thakur
et al. 2020). The defence of the frontline for the roots of plants against the pathogens
of soil-borne attack is provided by the rhizosphere (Cook et al. 1995). This book
chapter covers different aspects of plant—microbe interactions; new, improved engi-
neering methods for bio-formulations. Efforts have also made to summarize the use
of recombinant DNA technology to modify rhizosphere populations and their pos-
sible role of rhizospheric microbes in agricultural sustainability.

7.2 Plant-Microbe Interaction

The bacteria which are associated with the plant and capable of colonizing the roots
are known as “rhizobacteria”. They are classified into three groups, namely: (1)
neutral, (2) beneficial, and (3) deleterious depending on their effects on plant
growth. The bacteria stimulating the growth of plant referred to as beneficial rhizo-
bacteria or also known as plant growth-promoting rhizobacteria (PGPR) (Kour et al.
2020b; Singh et al. 2020a). PGPR enhances crops growth indicating their potential
in the agriculture field as biofertilizers (Timmusk et al. 1999; Kour et al. 2020f).
The rhizospheric microorganisms are capable of forming the NH,* by decomposing
the proteins into amino acids via the ammonification process. The nitrification
(NO;~ formation) occurs after the ammonification at a rapid rate in most soils;
hence, both NH,* and NO;™ are available for the plants but majorly NO;™ is the main
nitrogen source for the plants (Sylvia et al. 1999; Marschner 2011).

According to the root exudates quantity and quality, microbes associated with
the rhizosphere are often transient (Biswas et al. 2018; Rana et al. 2020a). The
rhizosphere-associated microbe’s variation depends on the parameters influencing
the chemical and biological aspects of the root (Yang and Crowley 2000; Morgan
et al. 2005). The interactions of plant-microbe enable various types of transforma-
tions in the rhizosphere; for example, nutrient cycling mainly the sequestration of
carbon and nitrogen (Philippot et al. 2013). The interaction between the plant and
microbe might be harmful, neutral, or beneficial. The plant-microbe interaction is
considered as a valuable asset due to their capabilities to improve the yields, variet-
ies, and sustainability of the crop (Gopal and Gupta 2016). The primary factors
which are involved in the inhibition or attraction of microbe’s proliferation in the
rhizosphere are the root exudates (Moore et al. 2014). Positive and beneficial inter-
actions among rhizospheric microorganisms are favourable for good practices of
agriculture. These interactions are not only important for the plant growth and
development but also enhances the biological, chemical, and physical properties of
soil by facilitating the nutrient balance of soil via biogeochemical cycles
(Velmourougane et al. 2017). There are many ecological benefits due to this interac-
tion, such as the availability of nutrients to the plants and promoting the plant growth
(Boddey and Dobereiner 1995; Yadav et al. 2020c). The rhizospheric microbiome is
able to protect the plant against the abiotic and biotic stress (Verma et al. 2017;
Yadav et al. 2019).
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Fig. 7.1 Interaction of rhizosphere region with the other components of the plant ecosystem

The belowground diversity of the plant may perform as insurance under the dif-
ferent conditions of the environment for maintaining the productivity of the plants
(Wagg et al. 2011). The rhizospheric microbes are considered as the soil quality
bioindicators for the plants (Schnitzer et al. 2011; Yadav et al. 2020b). These rhizo-
spheric microorganisms protect plants from the attack of the phytopathogens
(Lugtenberg and Kamilova 2009). These include abiotic stress and disease control,
root growth stimulation, biofertilization, and rhizoremediation (Kumar et al.
2019a, c). They can also facilitate the trace elements uptake, i.e. iron. In soil, iron is
an abundant element under the conditions of alkaline and neutral (Andrews et al.
2003; Buckling et al. 2007). The interaction of the rhizosphere region with the other
components of the plant ecosystem is illustrated in Fig. 7.1.

7.3  Engineering of Rhizosphere

Plant preservation is essential because of various reasons as it provides feed, food,
fuel, aid in regulating carbon as well as the water cycle, climate, nutrition entrap-
ment, and serve as habitat for wildlife. Considering, the massive diversity in the
genotype of collected as well as generated plant species, the assessment of their
genetic diversity of these plants has become highly important (Shishido et al. 2019).
It could maintain the plant ecosystem and its values by stabilizing and generating
stress tolerance in both cultivated and native ecosystem, and by retaining both cul-
tivation and functioning of the ecosystem. These opinions direct that the selection
of both species and genotypes should be taken into consideration while designing
the breeding programme (Turnbull et al. 2016).
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Hence, plant ecosystems can be engineered to improve carbon storage involving
the allocated carbon in both above and belowground biomass for separating into the
structural form or transport them to the soil for the conversion of recalcitrant miner-
als like calcite (Nogia et al. 2016). In 2010, Jansson and his colleagues compre-
hended and reviewed the potential of engineered plants in enhancing the carbon
storage capacity and also introduced the term “phytosequestration”(Jackson and
Baker 2010), whereas another group of scientists discussed the potential of terres-
trial ecosystems in improving carbon storage. In the long run, storage of carbon in
soil will become necessary. Therefore, a better understanding of the metabolic pro-
cesses of microbial communities in rhizosphere and their interaction with the host
plant and mechanism involved in carbon deposition is required (Dignac et al. 2017).

7.4  Plant Metabolism Through Rhizosphere Engineering

The conventional approach of plant breeding and advanced plant genetic engineer-
ing has been a success to accumulate desirable genes associated with stress response
and tolerance in the plant genome. Most commonly employed strategy by plants to
modify the rhizosphere is by altering exudation potential of roots; in view of this,
researchers have attempted to develop transgenic plants that can alter the rhizo-
spheric region by regulating the efflux of organic anions and H* in roots (Backer
et al. 2018). Since the identification of several genes involved in root exudation, it
has become possible to regulate the expression of those genes in plants for the incor-
poration of new features in the redesigned rhizosphere (Mark et al. 2005). For
example, insertion of Arabidopsis vacuolar H* pyrophosphatase gene AVPI in
tomato and rice plants resulted in enhanced malate and citrate efflux, approximately
50%, on treatment with AIPO,. This can be attributed to the increase of the tolerance
in Al*-induced stress conditions and enhance the utilization of the insoluble form
of phosphorus (Pasapula et al. 2011; Singh et al. 2020b). However, rhizosphere
engineering is a complex process depending on several factors such as (1) inactiva-
tion of the engineered trait of the plant in the soil; (2) inability of the low rate of root
exudation to affect the rhizosphere; (3) limited information about the composition
of root exudates; and (4) variation in concentration and release time of root exudates
during the development of plant and external stimuli.

Another approach involves exploring genetically diverse crops with desirable
characters for partitioning and allocation of carbon (Canarini et al. 2019). It is
debatable that increased distribution of photosynthate in rhizosphere will occur at
the expense of carbon partitioning into harvestable compounds. However, reports
suggest that inadequate sink demand can inhibit the process of photosynthesis
through feedback response and make it sink limited. Thus, there is an immense
potential for belowground allocation of carbon for long-term storage without imper-
illing crop productivity (Kaiser et al. 2015).
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7.5 Genetic Modification of Rhizospheric Microbes

Genetic modification of microorganisms presents a unique opportunity to promote
plant growth, confer resistance towards various diseases, and induce stress toler-
ance. Till now, numerous bacterial species have been identified to possess many
advantageous effects but selecting and engineering a sustainable organism remains
a challenge (Ortiz-Castro et al. 2009). For example, considering the inhabitation of
two microbes in a niche, there can be six broad ecological interactions between
them, namely commensalism, competition, predation, amensalism, cooperation,
and null interaction. With the increase in microbial species in a niche, the perplexity
of the ecological interactions among them increases linearly (Mougi 2016). The
major challenge is to maximize positive interactions like cooperation and eliminate
negative interactions like competition and parasitism. In view of this, it is an ardu-
ous task to minimize the competition between two strain co-cultures. The rate of
plant growth, rate of seeding, sensitivity to pathogenic organisms, stabilization in
adverse conditions, and sustainability of the microbiota are greatly influenced by
the environmental factors such as pH, temperature, availability of nutrients, and
exudates of the host plant (Bashey 2015). Besides these challenges, knowledge
about interactions of natural soil microorganisms, including PGPR, can be exploited
to develop a synthetic microbial community with desirable traits.

Numerous rhizosphere colonizing microorganisms have been identified as
belonging to a wide range of genera whose genome sequences are publicly avail-
able, which are amenable to genetic modifications (Devi et al. 2020; Jacoby et al.
2017). These genera comprise of Pseudomonas, Streptomyces, Rhizobium, and
Bacillus. Complete genetic sequences are available for Streptomyces spp., espe-
cially the ones used as PGPR. Still, they have certain limitations such as they have
large genomes and possess mobile components which pose difficulty in engineer-
ing. Bacillus species are considered as an ideal organism to develop the synthetic
microbial community as it is comparatively easy to modify genetically, has detailed
information on genome sequences, contains many strains that promote plant growth,
and are currently utilized as biocontrol agents (Vurukondaetal. 2018; Subrahmanyam
et al. 2020). A consortium comprising of three different microbes, genetically modi-
fied Bacillus spp. and two other nitrogen-fixing microbes (natural or engineered)
like Bradyrhizobium, Pseudomonas, and Rhizobium can provide many of the advan-
tages of the complex natural microbiota of rhizosphere (de Souza et al. 2015;
Yadav 2020).

To promote cooperation over competition, each strain can be engineered to make
it deficient in certain essential genes such as elimination of gene synthesizing an
essential enzyme or co-factor that is required by all strains (Hibbing et al. 2010). For
instance, this could be understood as the system where Bacillus requires a co-factor
produced by Pseudomonas, on the contrary, the Pseudomonas depends on the genes
of Rhizobium, and Bacillus has the ability to remediate the waste generated by
Rhizobium and recycle it for mutual use. This functional interaction among the
strains on subsequent addition of the other strains as a consortium of three strains
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will have >729 predicted interaction, whereas a consortium of four strains will have
about 531,441 predicted interaction (Gupta and Diwan 2017).

Hence, there is a need to limit the strain number to three in synthetic microbial
community system so that their interaction among each other and with host plant
could be controlled. In order to design the microbial consortium for an engineered
rhizosphere, some critical realms need to be followed for their competence (McCarty
and Ledesma-Amaro 2019; Mondal et al. 2020). Numerous traits need to be assessed
prior to their selection for developing engineered microbial consortium: (a)
Proficiency of microbes on colonizing the host plant roots in the rhizosphere, (b) Do
the microbes colonize effectively on the host plant? (c) Are the microbes capable of
surviving as well as competing with the other microbes in the consortium? (d) Is the
adherence of microbes with the surface of root effective? (e) Does the microbe aid
in promoting the plant growth or enhancing the growth of member of the consor-
tium? (f) Do the microbes multiply themselves to reach the desired density? (g) Do
the strains involved in consortium enable them to survive under abiotic stress?
(Compant et al. 2019). The most important factor is the growth density irrespective
of the reason that microbes will have a positive effect on the plant or not.

For instance, Pseudomonas spp. requires the growth density about 10°-10° CFU/g
of root to save the plant pathogens like G. tritici as well as Pythium spp. (Kwak and
Weller 2013). If these standards are taken into consideration, then these microbial
consortia could be used in the engineered rhizosphere, and these microbial consortia
will help the plant in tolerating the effects induced by fertilizers, herbicides, and
pesticides without losing their beneficial effects (Woo and Pepe 2018).

7.6  Molecular Mechanisms in the Rhizosphere

Previous studies mentioned the potential of PGPR in improving the growth of plants
under stress conditions. Even advancement in molecular techniques has unveiled
information regarding the genetic basis of PGPR that is showing the advantageous
effect on plants (Shivakumar and Bhaktavatchalu 2017). Some of the studies that
provide information regarding the molecular basis of PGPR have been compre-
hended in Table 7.1. Therefore, screening of the mechanism regulating the activities
of PGPR will open the new avenue for genetic modifications of the microbe and
host plant to improve their plant growing ability, especially under stress conditions.

In a study reported by Wang and collaborators, a microarray-based study was
conducted to expand their knowledge about biochemical and physiological changes
that take place in the plant. For this, they inoculated Pseudomonas fluorescens strain
FPT9601-T5 (PGPR) in Arabidopsis plant. The result obtained on the analysis
revealed that 200 genes out of 22,810 genes of Arabidopsis plant were showing dif-
ferent expression, i.e. two-fold increase in expression in PGPR-treated plant (Wang
et al. 2005). Later, the majority of genes were found to be involved in different cel-
lular processes like metabolic processes, stress response, and signal transduction.
Moreover, upregulation of auxin-regulated genes, as well as nodulin-like genes and
downregulation of ethylene-responsive genes, was observed (Markakis et al. 2012).
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Table 7.1 The molecular studies involving PGPR under stress conditions
Molecular method
Species of plant | Microbial species used References

Arabidopsis Bacillus megaterium BP17 Microarray Vibhuti et al. (2017)
thaliana
Arabidopsis Bacillus subtilis GB0O3 RT-PCR Zhang et al. (2010)
thaliana
Arabidopsis Pseudomonas fluorescens Microarray Wang et al. (2005)
thaliana FPT9601-T5
Arabidopsis Pseudomonas fluorescens Microarray and van de Mortel et al.
thaliana strain SS101 LC-QTOF-MS (2012)
Arabidopsis Pseudomonas putida Microarray Srivastava et al.
thaliana MTCC5279 (2012)
Cucumis Acinetobacter calcoaceticus GC and enzyme- Khan et al. (2014)
sativus SE370 and Burkholderia based assay

cepacia SE4
Abelmoschus Enterobacter sp. UPMR18 RT-PCR Habib et al. (2016)
esculentus

Piper nigrum Bacillus licheniformis K11 2D-PAGE and PCR | Lim and Kim (2013)

Oryza sativa Azospirillum brasilense qRT-PCR Vargas et al. (2012)
Sp245

Saccharum Gluconacetobacter Illumina Vargas et al. (2014)

officinarum diazotrophicus PALS sequencing

Triticum Dietzianatronolimnaea STR1 | qRT-PCR Bharti et al. (2016)

aestivum

Triticum Acinetobacter guillouiae 16S rRNA-PCR Rana et al. (2020b)

aestivum EU-B2RT.R1

Triticum Pseudomonas libanensis 16S rRNA-PCR Kour et al. (2020d)

aestivum EULWNA-33

Setaria italica Acinetobacter calcoaceticus 16S rRNA-PCR Kour et al. (2020e)
EU-LRNA-72

Sorghum Streptomyces laurentii 16S rRNA-PCR Kour et al. (2020c)

bicolor EU-LWT;-69

Whereas another group of researchers with the help of RNA-Seq technology, i.e.
Ilumina, revealed that the inoculation of Gluconacetobacter diazotrophicus strain
PALS in sugarcane triggered the ABA-dependent signalling genes and made its
resistance to drought (Vargas et al. 2014). In 2015, Kim and his group showed that
VOC:s synthesized by Bacillus subtilis strain JS influenced the gene expression pro-
files of the tobacco. The upregulation in genes related to photosynthesis pathways
was observed, signifying the VOC-mediated improvement in the growth of the plant
(Tahir et al. 2017).

Other than the previous studies discussing gene expression profiles, proteomic
analysis has also been conducted to gather more information about proteins as well
as pathways triggered during host—-PGPR interaction. As recognition of candidate
protein among different PGPR could serve as a valuable resource for promoting the
growth of the targeted plant in the near future (Singh et al. 2017). In 2008,
Buensanteai and collaborators conducted an experiment on Bacillus
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amyloliquefaciens strain KPS46 inoculated in soybean plant to investigate the role
of synthesized extracellular protein in improving plant growth and inducing sys-
temic resistance (Radhakrishnan et al. 2017). For the separation of extracellular
proteins synthesized by strain KPS46 (wild-type), KPS46 (mutant-type), N19Gl1,
the methods like mass spectrometry (MS), two-dimensional polyacrylamide gel
electrophoresis (2D-PAGE), and exploring of protein database were employed. The
results obtained showed the presence of 20 extracellular proteins which could have
a role in inducing resistance and plant development (Atshan et al. 2015). Another
study revealed the presence of six different stress proteins on the molecular assess-
ment of the pepper plant inoculated with Bacillus licheniformis strain K11 under
drought stress. Even though there are technical constraints of using proteomic tech-
niques for assessing the PGPR-host interaction but advancement in molecular tech-
niques involving top-down proteomics and MALDI-TOF promises to extend our
knowledge about the molecular basis for PGPR-host plant interaction in the near
future (Lim and Kim 2013).

Furthermore, metabolic profiling of bacteria and plant is an alternative approach
to understand the mechanism of symbiotic interactions. For instance, GC-MS anal-
ysis of drought-stressed wheat seedlings revealed the presence of seven stress-
related VOCs in the rhizosphere and secondary metabolites were found to be
B-pinene, benzaldehyde, and geranyl acetone. These three VOCs are likely to be
considered as a promising candidate for rapid assessment of crop under drought
stress. Hence, the deep insight about the genes, secondary metabolites, and proteins
involved in plant—-PGPR interaction and are responsible for abiotic stress resistance
can be used for developing engineered plants. These engineered plants will harbour
genes that control stress or microbes that alleviate the stress (Vaishnav et al. 2017).

7.7 Role of Rhizospheric Microbes
for Agricultural Sustainability

7.7.1 Mutual Plant-Microbe Interactions

To overcome the adverse effects caused by environmental stresses, various strate-
gies have been demonstrated. Transcriptome engineering is one such method to
develop crops tolerant to abiotic stress (Cohen and Leach 2019). To date, the com-
monly used strategy to combat environmental stress in plants is to overexpress the
single genes that encode for enzymes involved in the transportation of ions and
scavenging of ROS. The application of this approach is limited due to the resultant
pleiotropic effects on growth of the plant and comprehended multiple pathways in
response to environmental stress (Xie et al. 2019). Utilization of agrochemicals is
another method to enhance crop productivity in boosting crop productivity, but it is
cost-intensive and has adverse effects on the environment on long-term use (Aktar
et al. 2009). Employment of beneficial microbes in the rhizosphere of plants is
another strategy to reduce the harmful effects of climatic fluctuations on the growth
of plants and crop productivity. Mutualistic plant-microbe interaction in the
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rhizosphere can enhance the nutrient uptake from roots, improve the biomass pro-
ductivity and potentially, the ability to tolerate environmental stress (Igiehon and
Babalola 2018). Bioprospecting, the rhizospheric microorganisms with the ability
to confer tolerance towards stress to host plant and using their symbiotic interaction
with plants to improve the overall plant growth and crop productivity, could signifi-
cantly aid in decreasing the adverse effects of stress on plants. This approach has
several advantages such as the ability of PGPR to confer multiple environmental
stress tolerance to host plant, their application to diverse plant hosts and enhanced
crop productivity as illustrated in Fig. 7.2 (Odelade and Babalola 2019).

7.7.2 Mitigation of Drought Stress

Among the environmental factors, drought is considered as the most critical factor
that hampers plant growth and threatens crop productivity. Drought stress can be
attributed to climatic changes, agronomic and edaphic factors (Rastegari et al.
2020a). Researchers predict that in the future, drought stress will worsen if the
global supply of freshwater and climatic hitches remain a hurdle (Nadeem et al.
2019). In view of fluctuations in precipitation and global temperature, drought will
hinder the production of biomass, feed, and most importantly, food. Thus, to ensure
food security, the development of drought-tolerant crops becomes a necessity for a
sustainable future. Most bioenergy crops used for biofuel production are tolerant
towards drought conditions like poplar, miscanthus, etc. Therefore, there is an
urgent need to enhance the tolerance of bioenergy crops towards drought and sig-
nificantly improve their water use efficiency (WUE) for sustainable production of
biomass in semi-arid and arid regions (Von Cossel et al. 2019).
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Genetic engineering techniques have been extensively used to induce drought
tolerance in plants, despite the efforts, there has been slow progress owing to the
involvement of numerous genes and sophistication associated with the traits (Khan
et al. 2019a, b; Rastegari et al. 2020b). It has been observed that the rhizosphere and
microbiota associated with it play a vital role in constraining the capability of plants
to manage the drought stress (Kour et al. 2019a; Verma et al. 2014, 2019; Yadav and
Yadav 2018). The rhizosphere of plants is colonized by diverse microorganisms
including plant growth-promoting rhizobacteria (PGPR) which provides them with
the ability to cope with drought by aiding in the production of exopolysaccharides
(EPS), phytohormones, and volatile organic compounds (VOCs) (Naseem et al.
2018; Tiwari et al. 2020). They also help in accumulating various antioxidants and
osmolytes. Moreover, they can also alter the morphology of root in response to
stress and regulate the stress-responsive genes (Sharma et al. 2019). For instance, it
has been observed that the drought tolerance of wheat plant was enhanced by the
inoculation of indole acetic acid (IAA) producing Azospirillum species which
improved the growth of roots and induced lateral roots formation (Vurukonda et al.
2016). Similarly, the growth of Lavandula dentata in drought was stimulated by
IAA producing plant growth-promoting bacteria, Bacillus thuringiensis that
increased nutrient availability and improved the metabolic activities of the plant
(Armada et al. 2016). In another study, grapevine and Arabidopsis plants were able
to adapt to drought conditions when they were inoculated with GFP-labelled
Pseudomonas species and Acinetobacter species which induced a water-stress
mechanism to cope with drought (Rolli et al. 2015).

Upon inoculation of leaves of Platycladus orientalis with Bacillus subtilis, an
increase in ABA concentration in shoots and stomatal conductance was observed,
that provided drought resistance to the plant. Due to increased ABA levels, the
water content in leaves enhanced, water potential improved, and cytokinin levels
increased drastically (Liu et al. 2013). In another study, an isolate from the rhizo-
sphere of Brassica napus, Phyllobacterium brassicacearum strain STM196 inocu-
lated in Arabidopsis plants aided in acclimation of drought stress by enhancing
ABA concentrations, reducing transpiration in leaves and increasing tolerance
towards osmotic stress (Ahkami et al. 2017). Also, an inoculation of soybean plants
with gibberellin-producing rhizobacterium, Pseudomonas putida strain H-2-3, an
increase in fresh weight and length of shoots under drought conditions was reported
(Kang et al. 2014b). In response to drought stress, they produced more chlorophyll,
abscisic acid, and salicylic acid in comparison to control plants (Radhakrishnan
etal. 2014).

7.7.3 Mitigation of Salinity Stress

Salinity is another major environmental factor that adversely affects the productiv-
ity of plants globally. Presence of salt in excess in the soil creates ionic imbalance and
ion toxicity in plants which further triggers water deficiency in plants due to hyper-
osmotic stress and induces an imbalance in the metabolic activities (Shrivastava and
Kumar 2015; Rajawat et al. 2020; Yadav et al. 2015; Kang et al. 2014a). Plants cope
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with stress due to salinity in various ways such as by producing polyamines and
osmolytes, triggering defence mechanisms, preventing deposition of reactive oxy-
gen species and regulating the transport of ions (Khan et al. 2019a, b; Gaba et al.
2017; Yadav et al. 2020a).

A study demonstrated that uptake of Na* ions by the plant was reduced signifi-
cantly and the production of biomass enhanced when the wheat seedlings were
subjected to the application PGPR like Paenibacillus, Enterobacter, Bacillus, etc.
that synthesized exopolysaccharides (EPS) under highly saline conditions
(Egamberdieva et al. 2019). In another study, PGPR inoculation in tomato plants
reduced the adverse effects of ethylene, released under stress conditions, on the
growth of roots by the activity of enzyme ACC deaminase which resulted in
improved plant growth in water-deficit and saline conditions (Ilangumaran and
Smith 2017). A recent study described the use of Dietzia natronolimnaea strain
STRI1, i.e. carotenoid producing and halotolerant, in combating the effects of salin-
ity in wheat plants. Wheat plants inoculated with halotolerant PGPR showed higher
levels of proline and production of numerous antioxidants that conferred salinity
tolerance to the plants. Moreover, application of PGPR activated certain pathways
in a plant-like ABA signalling, Fe transport, SOS pathways, etc. (Bharti et al. 2016).

In comparison to the uninoculated peanut seedlings, the inoculated peanut seed-
lings showed enhanced ion homeostasis, less accumulation of ROS, and improved
growth under saline conditions. Another study showed the synergistic action of
Bacillus drentensis and Enterobacter cloacae to aid in withstanding salinity in
mung beans with foliar application of silicon (Ahkami et al. 2017). Moreover, when
peanut seedlings inoculated with Haererohalobacter, Brachybacterium saurasht-
rense, and Brevibacterium casei were subjected to highly saline conditions by incor-
poration of 100 MNaCl, grown plants showed overall improved growth (Shukla
etal. 2012).

7.7.4 Mitigation of Heavy Metals Stress

Heavy metals like Ni, As, Cr, Cd, Cu, Pb, Zn, etc. at low concentrations are essential
to microbes and plants for the growth and metabolic activities but can present a
major challenge if the concentration exceeds the tolerance limits (Singh et al. 2011).
The presence of toxic heavy metals in soil greatly influence the characteristics of the
plant and phytoremediation potentials; however, bacteria present in soil can signifi-
cantly enhance the phytoremediation potential of the plant through synergistic
action and hence the term, microbe-assisted phytoremediation (Ojuederie and
Babalola 2017; Sharaff et al. 2020).

Reports suggest that PGPR also aid in protecting host plant from ill effects of
toxicity caused by heavy metals. PGPR are known to possess this ability to cover a
wide range of genera such as Bradyrhizobium, Mesorhizobium, Sinorhizobium,
Rhizobium, Pseudomonas, Azotobacter, and Bacillus (Wani et al. 2008; Rai et al.
2020). For instance, a study showed that application of Bacillus licheniformis could
significantly improve the germination of rice plant seed and enhance the



7 Rhizosphere Biology: A Key to Agricultural Sustainability 173

biochemical characteristics of rice when subjected to stress induced by Ni.
Therefore, highlighting the potential of the strain in protecting the rice plant from
heavy metal toxicity (Jamil et al. 2014). Like most microorganisms, PGPR has also
evolved in certain unique ways to tolerate heavy metals such as mobilization, immo-
bilization, and transformation of heavy metals into either inactive form or less toxic
utilizable form (Tiwari and Lata 2018). PGPR are known to follow five mechanisms
broadly to increase heavy metal resistance: (1) Extrusion of heavy metals by trans-
portation through efflux pumps; (2) Exclusion of heavy metals by direct removal
from target sites; (3) Inactivation of heavy metals through the formation of com-
plexes like the formation of thiol-containing complex structures; (4)
Biotransformation of heavy metals from a toxic oxidation state to a less toxic oxida-
tion state such as the conversion of highly toxic Cr* into less toxicCr*®; and (5)
Addition or removal of methyl from heavy metals, i.e. methylation and demethyl-
ation (Ma et al. 2016).

Similarly, plants also possess various mechanisms to cope with heavy metal
resistance; however, the process by which microbes and plants interact at the molec-
ular level to combat heavy metal toxicity remains unclear. Furthermore, increasing
the knowledge about plant—microbe interactions, genes involved, and mechanisms
of regulation, it would be possible to engineer plants for enhanced growth heavy
metals contaminated sites (Mishra et al. 2017).

7.7.5 Mitigation of Heat Stress

Temperature is one of the abiotic stresses which negatively impact the growth,
homeostasis, and metabolic activities of plants and microorganisms. Bioprospecting
PGPR with the ability to promote plant growth at alleviated temperatures would
possibly enhance global crop productivity, especially concerning the increased rate
of global warming (Kour et al. 2020a). The experimental evidence supporting the
effect of PGPR isolates in enhancing crop production at high temperatures is less.
Till now, thermostable PGPR isolates stable even at 60 °C (Rodriguez et al. 2008)
have been reported in the literature, but they lack the ability to provide thermostabil-
ity to host plant. Nonetheless, some studies have shown the application of PGPR
isolates to cope with the negative impacts due to low temperature-induced stress
(Barka et al. 2006; Dimkpa et al. 2009). Low temperature-induced stress has resulted
in enhanced synthesis of certain compounds like proline, sugar, anthocyanin, etc.
(Dimkpaet al. 2009). In a study, grapevine plants inoculated with Burkholderia phy-
tofirmans lead to increased production of carbohydrates, proline, and phenols along
with the improved accumulation of starch (Barkaet al. 2006; Kumar et al. 2019b).
However, PGPR-inoculated grapevine plant showed reduced biomass production
and imbalance of electrolytes when subjected to low temperature (4 °C).
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7.7.6 Combating Elevation CO, Levels

The process of photosynthesis plays a significant role in the uptake of atmospheric
CO, and its conversion to organic carbon in plants biomass. The rise in CO, levels
in atmosphere enhances the photosynthetic process in C3 plants, helping the prolif-
eration of rhizospheric bacteria with enhanced localization of photosynthate in soil.
Climatic fluctuations greatly influence the composition of plants as well as the
diversity that threatens the soil microbes and edaphic characteristics of soil, includ-
ing quality and quantity of organic matter in the soil. It also has a negative impact
on various nutrient cycles like the carbon cycle, methane cycle, nitrogen cycle, and
terrestrial ecosystem climates (Dorrepaal et al. 2009; Malyan et al. 2019). The
PGPR utilization has enhanced the grassland management technology (Antoun
et al. 1998; Van Der Heijden et al. 2006), restoration of the ecosystem (Requena
et al. 2001), and reforestation (Chanway 1997). The PGPR have a remarkable abil-
ity to improve the accumulation of carbon in terrestrial systems by enhancing crop
productivity and reducing the carbon loss through respiration in microbial systems
at alleviated atmospheric CO, levels (Nie et al. 2015). However, the possibility of
escalation of atmospheric CO, concentrations in future will broaden the horizon of
PGPR application. The impact of microorganisms on the host plant through plant—
microbe interactions is well known, but the mechanisms involved at the molecular
level still remain unclear. Thus, it becomes important to study the plant growth
dynamics and mechanism of rhizobacteria colonization to exploit the potential of
PGPR further.

7.8  Conclusion and Future Prospects

Increasing crop productivity has become a global necessity. There is a need to
improve environmental management practices, revert the effects of changing cli-
mate, and forecast the interaction and impact of plant ecosystems on atmospheric
processes. To meet the ecological requirements, there is a need to understand plant
ecosystem dynamics in stressful environments. The emerging field of engineering
of ecosystems and rhizosphere marks a promising opportunity to fill critical research
gaps and to develop solutions. The interactions within ectophytic and endophytic
microbial communities along with mycorrhizal-rhizospheric relationship to pro-
mote plant growth and enhance nutrient uptake still remain unknown. Plant-microbe
interactions is the key to understand the mechanism of rhizosphere priming, man-
agement of the carbon cycle in soil, and improve the crop productivity under current
and future climatic conditions. Recent advancement in genetic engineering offers an
exciting opportunity to fulfil the research gaps. Future studies will explore the syn-
thetic approaches, which improves the production of bioenergy crops under abiotic
and biotic conditions.
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Abstract

Plant microbiome in rhizosphere plays the most critical role in plant growth promot-
ing (PGP), development, and fertilization of soil. Plants and rhizospheric soil are
natural resources that harbor microorganisms, and this plays important roles in the
maintenance of nutrient balance and ecosystem function. The diverse group of
microbes is significant components of soil plant systems, where they are bound in
an intense network of interactions within the (rhizosphere-phyllospheric-
endophytic). The microbes with PGP attributes have emerged as an important and
promising tool for sustainable agriculture. PGP microbes promote plant growth
directly or indirectly either by releasing plant growth phytohormones; solubilization
of phosphorus, potassium, and zinc; and biological process such as nitrogen fixation
or by producing siderophore, ammonia, and other secondary metabolites which
have antagonistic activity against pathogenic microbes. The PGP microbes belong
to different phylum of archaea (Euryarchaeota), bacteria (Acidobacteria,
Actinobacteria,  Bacteroidetes, = Deinococcus-Thermus,  Firmicutes, and
Proteobacteria), and fungi (Ascomycota and Basidiomycota).
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8.1 Introduction

Microbes are very important for the maintenance of life on Earth, until now we still
understand little about the majority of microbes in environments such as soils,
oceans, atmosphere, and even those living on and in our bodies (Turner et al. 2013).
The plant microbiomes (phyllospheric, endophytic, and rhizospheric) and microbi-
omes of extreme habitat (acidophilic, alkaliphilic, psychrophilic, halophilic, ther-
mophilic, and xerophilic) are natural bioresearches, which play vital roles in the
maintenance of global nutrient stability and ecosystem (Yadav 2017; Kour et al.
2020). Plant—microbe interaction resulted in adaptation, plant growth promotion,
uptake of micronutrient, and production of different groups of secondary metabo-
lites and bioactive compounds with potential applications in agriculture, medicine,
and industry (Yadav 2019; Kumar et al. 2019a; Yadav et al. 2020).

In general, there are three types of plant—microbe interactions. They are epi-
phytic, endophytic, and rhizospheric. The rhizosphere is the region of soil influ-
enced by roots through the release of substrates that affect microbial activity such as
rhizodeposition of exudates, mucilage, and sloughed cells. Root exudates contain a
variety of compounds, predominately organic acids and sugars, but also amino
acids, fatty acids, vitamins, growth factors, hormones, and antimicrobial compounds
(Turner et al. 2013; Yadav et al. 2017a). The phyllosphere or aerial surface of a plant
is a common niche for synergism between microbes and areal parts of plant is a
much more dynamic environment than the rhizosphere (Verma et al. 2016a, b).

The PGP microbes could be applied as biofertilizers instead of the chemical
fertilizers and for the improvement of different abiotic stresses in crops including
salinity, temperature, and drought (Yadav 2017; Kour et al. 2019a, b; Verma et al.
2017). Rhizobacteria showed beneficial traits for the development and growth pro-
motion of plants by means of direct and indirect ways and referred to as plant
growth-promoting rhizobacteria (PGPR) with their holistic association with plants
(Dheeman et al. 2017; Subrahmanyam et al. 2020). Among the fungal groups arbus-
cular mycorrhizal (AM) fungi are known to promote activities which can improve
agricultural developments. In exchange for the AM fungi providing all of these
nutrients, the plant in turn provides the mycorrhizae with carbon and other nutrients
(Yadav 2019). The endophytic microbes are referred to as microorganisms which
infect plant parts without causing any symptoms to their host, which colonize in the
interior of the plant parts such as root, stem, or seeds (Zabalgogeazcoa 2008).
Endophytic fungi are agriculturally important as they can enhance plant growth;
improve plant nutrition through different direct and indirect PGP attributes includ-
ing solubilization of phosphorus, potassium, and zinc; production of phytohor-
mones (indole acetic acids, gibberellic acids, and cytokinin) conditions (Rana et al.
2020a, b, 2019). Also due to protection of plant against biotic and abiotic stresses,
they are considered as ecofriendly bioresources (Yadav 2019).
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8.2 The Plant Microbiomes

Plants are exposed to huge numbers of microorganisms that are present in the top
soil and are found on leaves and stems (Sivakumar and Thamizhiniyan 2012).
Plant-microbe interactions play a vital role to ensure sustainability in agriculture
and ecosystem restoration (Badri et al. 2009). In the past, the interaction of microbes
with plants was simply thought of as being an effect, but today it is considered as a
process with a high level of complexity in which at least different types of microbes
share information without sharing the same spaces from a cellular perspective
(Yadav et al. 2017b). Plant—-microbe interaction is a mode of communication
between plants and microbes which is initiated by the secretion of different signal-
ing molecules (Rastegari et al. 2020; Singh et al. 2020). Plants have evolved unique
and sophisticated defense mechanism that involves innate immune system consist-
ing of two classes of immune receptors. These receptors can recognize the presence
of oneself molecules both inside and outside of host cells to distinguish a microbial
mutualist from pathogens (Jones and Dangl 2006).

Microbial communities affect the plant physiology directly or indirectly, in a
positive or negative manner, by various interactions like mutualism, commensalism,
amensalism, and pathogenic consequences. In plants, commensalism or mutualism
is one of the most common interactions found. The interactions may be categorized
as positive, negative, or neutral which largely depend on the nature of microorgan-
isms associating the host (Abhilash et al. 2012; Rai et al. 2020). Positive interac-
tions stimulate plant growth by conferring abiotic and/or biotic stress tolerance and
help the plants for the revitalization of nutrient-deficient and contaminated soils.
Negative interactions involve host—pathogen interactions resulting in many plant
diseases and adverse effects and host life (Akram et al. 2017). Moreover, some
microbes reside in the soil surrounding the plant roots just to obtain their nutrition
from root exudates. They do not influence the plant growth or physiology in a posi-
tive or negative way, thus forming neutral interactions (Akram et al. 2017).

The biodiversity of plant microbiomes ranged between archaea (Euryarchaeota),
bacteria (Actinobacteria, Acidobacteria, Bacteroidetes, Deinococcus-Thermus,
Proteobacteria, and Firmicutes), and fungi (Ascomycota and Basidiomycota) has
been characterized genetically for its beneficial attributes for human welfare (Kumar
et al. 2019b; Sharaff et al. 2020). All types of microorganisms (fungi, bacteria, and
actinobacteria) have been discovered as endophytes. The most frequently encoun-
tered endophytes are fungi (Khare et al. 2018). There are very few reports of halo-
philic archaea as PGP including rhizospheric as well as endophytic (Yadav et al.
2015; Gaba et al. 2017).

8.3  The Rhizosphere of Plant Microbiomes

The rhizosphere is the narrow zone of soil that is directly influenced by roots through
the release of substrates that affect microbial activity and root exudates, can contain
up to one thousand microbial cells per gram of root (Egamberdieva et al. 2008), and
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have prokaryotic species more than 30,000 (Mendes et al. 2011; Qiu et al. 2014). It
is considered as an important and active zone for microbial colonization and activity
depending on the distance away from plant roots and forms a system especially suit-
able for obtaining culturable beneficial microbes (Hartmann et al. 2008; Yadav et al.
2017b). The collective rhizosphere microbes’ genome is much larger than that of
the plant and is also referred to as the plant’s second genome (Berendsen et al. 2012;
Qiu et al. 2014). The rhizospheric microbes are influenced by several factors such
as soil type and moisture, temperature, PH, age, and conditions of plants (Verma
et al. 2015).

There are a variety of microbes that can be found growing in rhizosphere micro-
habitats. It is universally considering that members of any microbial group can
develop important functions in the ecosystem (Giri et al. 2005; Barea et al. 2005).
Most studies on rhizosphere microbiology, especially those describing co-operative
microbial interactions, are focused on bacteria and fungi (Bowen and Rovira 1999;
Barea et al. 2005). Bacteria and fungi have very different living habits and a variety
of saprophytic and symbiotic relationships, both detrimental (pathogenic) and ben-
eficial (mutualistic) (Barea et al. 2004). Barea et al. (2005) concluded that detrimen-
tal microbes included both the major plant pathogens and the minor parasitic and
non-parasitic deleterious rhizosphere, bacteria and fungi. Beneficial saprophytes,
from a diversity of microbial groups, are able to promote plant growth and health.
These include:

(i) Decomposing microbes of organic debris.
(ii) Plant growth-promoting rhizobacteria (PGPR).
(iii) Fungal and bacterial with antagonistic activity of root pathogens.

Most of the plant—microbe interaction research within the past has focused on the
traditional symbiosis between plants and arbuscular mycorrhizae (Parniske 2008),
nitrogen fixation by rhizobia within the nodules of legume roots (Oldroyd et al.
2011). However, the role of endophytes that reside in plants is yet to be explored to
its fullest potential. Endophytic microorganisms and their role in crop health are
now attracting great interest from researchers (Jain and Pundir 2017).

Among the sustainable efforts, the role of root-associated microbes especially
arbuscular mycorrhizal (AM) fungi in imparting stress tolerance has been exploited
by many researchers in the recent years (Garg and Singla 2012). Mycorrhizal sym-
bioses are ubiquitous system of green technology. In these symbioses, the fungal
mycelia scavenge through soil for resources (often phosphorus or nitrogen) and
provide these resources to plants in exchange of organic carbon. The associations
are mutualistic frequently but sometimes exist as parasitism depending upon fungal
nature (Prasad 2017). They are ubiquitous soil-borne fungi, whose origin and diver-
gence dates back to over 450 million years (Gutjahr and Parniske 2013).

Besides mycorrhizal endophytes, non-mycorrhizal endophytes (hereafter
referred to as endophytes) have been recovered from most plants. Fungal endo-
phytes are microfungi that internally infect living plant tissues without causing dis-
ease or any harm to plant and live in mutualistic association with plants for at least
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a part of their life cycle (Lugtenberg et al. 2016). Lynch and Whipps (1991) suggest
the three different zones of the rhizospheric soil: (a) Endorhizosphere means the
endodermis and cortical layers inside the roots. (b) Rhizoplane means the root sur-
face with mucilaginous polysaccharide layer. (c) Ectorhizosphere means the soil
particles past the root surface that are impacted by root exudates.

The zone of endorhizosphere is internal root colonization because it is a physical
location inside the plant (Fig. 8.1) Compared to bulk soil, the endorhizosphere is
abundant in various nutrients due to an aggregation of root exudates (Dakora and
Phillips 2002), including sugars, amino acids, vitamins, organic acids, and enzymes
(Gray and Smith 2005). Root exudates release water, oxygen, and ions, but most
importantly include carbon-containing compounds (Uren 2000). Some root exu-
dates act as repellents against pathogens while others function as attractants that
aggregate beneficial microbes (Ahemad and Kibret 2014) based on the physiologi-
cal status, species of plants, and microorganisms (Kang et al. 2010).

In the rhizosphere, various interactions occur between rhizobacteria and plant
root. For example, interactions of signal molecules between plant roots and rhizo-
bacteria are important and occur in the rhizosphere (Werner 2000); and these inter-
actions influence in plant growth and crop production (Shaikh et al. 2018). The role
of the rhizosphere is critical for PGP, nutrition, and crop quality (Berg and Smalla
2009; Hassan et al. 2019a, b) In addition, the rhizosphere is where plant roots com-
municate with beneficial rhizobacteria for energy and nutrition. Plant growth-
promoting rhizobacteria (PGPR) may affect plant growth, development, and disease
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Fig. 8.1 Types of different root zones in the rhizosphere where rhizodeposition, root exudates,
and root border cells provide nutrients for PGPR growth and root colonization (Bertin et al. 2003;
Prashar et al. 2014; Liu et al. 2017; Hassan et al. 2019a, b)
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suppression by one or more direct or indirect mechanisms. Bacterial genera such as
Bacillus and Pseudomonas have been extensively studied and utilized as biocontrol
agents, biofertilizers, and also have been shown to trigger induced systemic resis-
tance (ISR) (Kloepper et al. 2004; Takishita et al. 2018; Hassan et al. 2019a, b).

8.4  Plant Growth Promoting and Rhizospheric Microbiomes

Plant related with microbes have been shown to be beneficial by promoting plant
growth (PGP) either directly, for example, by fixation of atmospheric nitrogen, sol-
ubilization of minerals such as phosphorus, potassium, and zinc; production of sid-
eropores and plant growth hormones such as cytokinins, gibberellins, and auxins, or
indirectly, by production of antagonistic substances by inducing resistance against
plant pathogens (Tilak et al. 2005; Verma et al. 2016a; Kour et al. 2017).

8.4.1 Improving Soil Fertility

Rhizosphere is a field where microbes are under the influence of plant roots. Roots
are the sites for uptake of mineral elements and exudation of organic compounds
that act as carbon and energy sources for the indigenous microflora (Hinsinger et al.
2009). Plant—-microbe interactions in the rhizosphere are critical for regulating bio-
geochemical recycling of mineral elements and maintaining the microbial commu-
nity structure in the rhizosphere (Singh et al. 2007). In many cases, plant-microbe
interactions are evolved in such a way that some fungi appear to live non-patholog-
ically inside plant roots as endophytes and some form symbiotic relationship with
roots called mycorrhizae (Gehring et al. 2006; Suman et al. 2016; Yadav et al. 2018).

Mineral phosphate-solubilizing microorganisms are ubiquitous and have vari-
able cell numbers in different soil that differ in their mineral phosphate-solubilizing
ability from one medium to another (Chauhan et al. 2014). Among rhizospheric
fungi the most common P-solubilizing strains are Aspergillus, Penicillium,
Trichoderma, and Rhizoctonia solani (Wakelin et al. 2004; Sharma et al. 2013); spe-
cies of Glomus of AM fungi (Prasad 2017); and species of Pseudomonas and
Bacillus in bacteria (Mehta et al. 2015). In recent years, huge range of P-solubilizing
endophytic fungi have been identified including the genera Penicillium, Aspergillus,
Piriformospora, Curvularia, and other class of endophytic symbionts AM fungi
(Mehta et al. 2019; Mondal et al. 2020).

In soil, although phosphate-solubilizing fungi constitute only 0.1-0.5% of total
fungal populations they impart great benefits towards plant nutrition. Unlike bacte-
ria, fungal hyphae can easily go over long distances in soil and release more organic
acids than bacteria (Kucey 1983). Among many benefits provided by AMF, the most
significant one is to improve phosphorus nutrition of the host plant with low phos-
phate levels that is achieved by the large surface area of their hyphae and their high
affinity P mobilization mechanisms (Van der Heijden et al. 2006). The AMF are
probably the most abundant fungi commonly present in agricultural soils, and the
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arbuscules are the main sites for the exchange of P, N, and other minerals mobilized
by the thin fungal hyphae in soils (Rashid et al. 2016). Trichoderma harzianum can
solubilize P by chelating and reducing molecules (Altomare et al. 1999). Wahid and
Mehana (2000) reported that there is an increase of more than 30% in response to
P-solubilizing fungal inoculation in soil containing rock phosphate and superphos-
phate. Srivastav et al. (2004) reported significantly higher solubilization of rock
phosphate under in vitro conditions by fungal strains of Aspergillus niger, Curvularia
lunata, Rhizoctonia solani, and Fusarium oxysporum. A dark septate root endo-
phytic fungus Curvularia geniculata isolated from Parthenium hysterophorus roots
was known to enhance plant growth through P-solubilization and phytohormones
production (Priyadharsini and Muthukumar 2017).

In study reported by Efthymiou et al. (2018), the wheat crop inoculated with
Penicillium aculeatum significantly increased the shoot biomass and P content of
wheat. These results led to the development of novel bioinoculants containing
phosphate-solubilizing Penicillium fungi to increase the fertility value of P-rich bio-
char. The species of Rhizobium and Bradyrhizobium establish symbiotic associa-
tions with roots in leguminous plants such as soybean, pea, peanut, and alfalfa,
convert N, into ammonia, and make it available to the plants as a source of N
(Badawi et al. 2011). In agriculture, 80% of the biologically fixed N comes from
Rhizobium, Bradyrhizobium, Sinorhizobium, Azorhizobium, Mesorhizobium, and
Allorhizobium of the family Rhizobiaceae in association with the leguminous plants.
A lot of studies have shown P. indicia as phosphorus mobilizer (Singh et al. 2000).

A variety of nitrogen-fixing microbes like Arthrobacter, Azoarcus, Azospirillum,
Azotobacter, Bacillus, Enterobacter, Gluconoacetobacter, Herbaspirillum, and
Klebsiella, Pseudomonas are isolated from the rhizosphere of varied crops, which
contribute fixed nitrogen to the associated plants (Suman et al. 2016; Niste et al.
2013; Olivares et al. 2013). A study by Barazani et al. (2005) confirmed the growth
increase in Nicotiana tobaccum due to P. indica and showed that the growth promo-
tion was related to better aptness, as enhanced seed production was observed in
treated plants. Nath et al. (2012) studied Penicillium sp. isolated from tea leaves as
phosphate solubilizer. Penicillium sp. Significantly increased plant biomass, related
growth parameters, assimilation of essential nutrients such as potassium, calcium,
magnesium, and reduced the sodium toxicity in cucumber plants under salinity and
drought stress, when compared with control plants (Lata et al. 2018).

Aspergillus terreus also produces siderophores which chelate the iron and acti-
vate the plant defense mechanism (Chhipa and Deshmukh 2019). In the rhizosphere
of the many plant species, diverse rhizobacterial species with the potential to
enhance plant growth, crop production, and biological control activity were recorded
by many researchers. PGPR genera present in the rhizosphere include Azotobacter,
Azospirillum, Agrobacterium, Arthrobacter, Bacillus, Burkholderia, Caulobacter,
Chromobacterium, Erwinia, Flavobacterium, Pseudomonas, Micrococcus, and
Serratia (Gray and Smith 2005; Duy et al. 2015; Hassan et al. 2019a, b).
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8.4.2 Phytohormones Producing Microbes

Endophytic bacteria provide a large array of beneficial effects to their host plant. It
promotes plant growth by producing plant growth-enhancing substances such as
indole acetic acid (IAA) (Naveed et al. 2015; Tiwari et al. 2020), cytokinins (CK)
(Garcia de Salamone et al. 2001), gibberellic acid (GA) (Uma Maheswari et al.
2013), and improving nutrient absorption, including nitrogen fixation (Mirza et al.
2001). PGP activities of endophytes are attributed to the production of iron-chelating
agents, siderophores as in rice by Enterobacter spp. and Burkholderia spp. (Souza
et al. 2013), indole acetic acid (IAA), and other growth hormones as in cashew by
Staphylococcus saprophyticus and Escherichia coli (Lins et al. 2014). Endophytic
Azospirillum spp. is reported to accumulate the abscisic acid (ABA) in mitigating
water stress tolerance in maize. Plant growth-promoting hormones IAA and gib-
berellins further enhance the effect (Cohen et al. 2009). Few of the soil-borne patho-
gens like Fusarium oxysporum, Pythium spp., Phytophthora spp., Aphanomyces
spp., Sclerotium rolfsii, Gaeumannomyces graminis, Rhizoctonia solani, Verticillium
spp., and Thielaviopsis basicola are found to be negatively affected by PGPR (Sahu
et al. 2017).

Secondary metabolite like colletotric acid, isolated from the endophytic fungus
Colletotrichum gloeosporioides, dwelling in Artemisia annua (Zou et al. 2000). A
study by Sirrenberg et al. (2007) noted the production of indole acetic acid in sub-
merged culture of Piriformospora indica when colonized with Arabidopsis thaliana.
P. indica can synthesize a hormone and release it into the root tissue, influence a
phytohormone level by interfering with its synthesis, degradation, or modification,
or interfere with a phytohormone signaling pathways, or any combination of these
possibilities (Oelmiiller et al. 2009). The different species of Aspergillus genera
were also identified as gibberellin producers, such as Aspergillus flavus, A. niger,
which also induce the production of defense hormone salicylic and jasmonic acid
(Hasan 2002; Khan et al. 2011). Penicillium sp. from cucumber roots has been
found to synthesize GA and TAA. Inoculating these strains in cucumber plants
under drought stress has shown a significant increase in plant biomass, growth
parameters, and assimilation of essential nutrients and reduced sodium toxicity
(Wagqas et al. 2012). Direct effects of alkaloids by endophytes in host plants are a
standard phenomenon as in Fescue (by the endophytes Neotyphodium spp. and
Epichloé spp.), wherein the host plant leaves are shielded from herbivores by the
assembly of alkaloid, loline, produced by mutualistic fungal endophytes (Roberts
and Lindow 2014).

8.4.3 Abiotic Stress Resistance Microbes

Rhizosphere microorganisms with their intrinsic metabolic and genetic capabilities
contribute to reduce abiotic stresses in plants (Gopalakrishnan et al. 2015).
Rhizosphere microorganisms also increase tolerance to low non-freezing tempera-
tures resulting in higher and faster accumulation of stress-related proteins and
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metabolites (Theocharis et al. 2012; Mohanram and Kumar 2019). Several microor-
ganisms of the genera Pseudomonas, Bacillus, Achromobacter, Enterobacter,
Azotobacter, Methylobacterium, and Trichoderma have been widely studied in PGP
by reduction of multiple kinds of abiotic stresses (Atieno et al. 2012; Sorty et al.
2016; Meena et al. 2017). Treatment of Indian mustard (Brassica juncea) with the
fungus, Trichoderma harzianum, improved the uptake of essential nutrients and
enhanced accumulation of antioxidants and decreased Na* uptake under saline con-
ditions (Ahmad et al. 2015). Better root colonizing capability of Pseudomonas sp.
along with its ability to produce exopolysaccharides led to enhanced tolerance
towards salinity (Sen and Chandrasekhar 2014).

Novel stress-tolerant bacteria such as Brachybacterium saurashtrense,
Zhihengliuella sp., and Brevibacterium casei have also been reported from plant
rhizospheres (Jha et al. 2012; Mohanram and Kumar 2019). The plant root colo-
nized with P. indica showed tolerance in different abiotic stresses like extreme tem-
perature, salinity, drought, and heavy metals (Chhipa and Deshmukh 2019). P. indica
readily colonizes the A. thaliana and increases the yield and salt tolerance in
Hordeum vulgare (Waller et al. 2005); and barley plant (Chadha et al. 2014).
P. indica showed drought and salt tolerance in cacao, barley, and Chinese cabbage
plants (Abo Nouh 2019). Tolerance to abiotic stress was induced in A. thaliana;
overall growth and biomass production was achieved in herbaceous mono- and
dicots, medicinal plants, and other important crops (Chadha et al. 2014). P. brevi-
compactum isolated from wild barley species was helpful in drought tolerance
improvement of barley plant in drought condition (Abo Nouh 2019). Curvularia sp.
also confers heat and drought stress to Lycopersicum esculentum (Rodriguez and
Redman 2008). Curvularia sp. confers thermos tolerance to grasses and also pro-
vides thermos tolerance ability to other plants like tomato, watermelon, and wheat
(Abo Nouh 2019). Colletotrichum magna and C. protuberata are well reported for
water stress tolerance in wheat (Triticum sp.), tomato (Solanum lycopersicum), and
watermelon (Citrullus lanatus) plants (Raghuwanshi 2018). Penicillium sp. and
Phomaglomerata significantly increased plant biomass, related growth parameters,
assimilation of essential nutrients such as potassium, calcium, and magnesium and
reduced the sodium toxicity in cucumber plants under salinity and drought stress,
when compared with control plants (Abo Nouh 2019). Epichloé species may
enhance the eco-physiology of host plants and enable plants to counter abiotic
stresses such as drought and metal contamination (Rodriguez et al. 2009). Penicillium
brevicompactum isolated from wild barley species was helpful in drought tolerance
improvement of barley plant in drought condition (Chhipa and Deshmukh 2019).

8.4.4 Plant Pathogen Resistance

In the early 1970s, several researchers identified microbial populations in the rhizo-
sphere a form the first barrier to pathogen infection (Barea et al. 2005). Currently, it
is well known that some soils are naturally suppressive to some soil-borne plant
pathogens including Fusarium, Rhizoctonia, Pythium, and Phytophthora (Thakur



192 S.A.Gezaf et al.

et al. 2020). Although this suppression relates to both physicochemical and micro-
biological features of the soil, in most systems the biological elements are the first
factors in disease suppression and therefore the topic of biological control of plant
pathogens (Weller et al. 2002). Among the prokaryotes, a broad range of bacteria
such as Agrobacterium, Bacillus spp. (e.g., B. cereus, B. pumilis, and B. subtilis),
and Streptomyces have been shown their ability against soil-borne pathogens.

Most bacteria studied as biocontrol are Pseudomonas spp., such as P. aeruginosa
and P. fluorescens which may be among the most effective root colonizing bacteria
(Barea et al. 2005). Some strains of Actinomycete genera such as Streptomyces,
Streptosporangium, Thermobifida, and Micromonospora display biological control
activity against some root fungal pathogens (Franco-Correa et al. 2010). Between
the eukaryotes, there are a variety of fungal species that display antagonistic proper-
ties and have been applied in biocontrol, but the ubiquitous Trichoderma species
clearly dominate. In addition, fungi non-pathogenic species such as Pythium and
Fusarium are receiving increasing interest as antagonists (Barea et al. 2005).

Pandey and Upadhyay (2000) reported that rhizosphere of healthy pigeon pea
plant was heavily colonized by resident Trichoderma and Gliocladium which were
highly antagonistic to the pathogen. 7. viride formed loops and coiling and ruptured
the cell wall of the pathogen. Some pathogenic diseases of plant controlled by AMF:
Verticillium wilt caused by Verticillium dahliae (Karagiannidis et al. 2002), root-
knot nematode caused by Meloidogyne incognita (Momotaz et al. 2015) in Tomato.
White rot onion caused by Sclerotium cepivorum in onion (Torres-Barragéan et al.
1996). Root rot caused by Aphanomyces euteiches in pea (Larsen and Bgdkar 2001).
Verticillium wilt caused by Verticillium sp. in cotton (Kobra et al. 2011). Aspergillus
terreus enhanced the sunflower growth (Helianthus annuus L.) and disease resistiv-
ity against the stem rot caused by Sclerotium rolfsii (Waqas et al. 2015). P. indica,
which can regulate development, is also able to act as a biofertilizer and also is a
good candidate to improve commercial plant production and might be especially
useful in agroforestry and flori-horticulture applications (Varma et al. 1999). In bar-
ley, the root endophyte P. indica confers disease resistance by a different mecha-
nism (Waller et al. 2005).

P. indica showed as a biocontrol agent against plant pathogen in maize, tomato,
wheat, and barley (Kumar et al. 2009). P. indica showed the reduced severity of
Verticillium wilt by 30% in tomato, caused by Verticillium dahliae, and increased
leaf biomass by 20% (Fakhro et al. 2010). Colonization of P. indica controlled vari-
ous plant diseases such as powdery mildew, eyespot, Rhizoctonia root rot, Fusarium
wilt, black root rot, yellow leaf mosaic, Verticillium wilt, cyst nematode, and leaf
blight in barley, wheat, maize, tomato, and Arabidopsis plants (Chhipa and
Deshmukh 2019).

Trichoderma is widely used as biocontrol agent against phytopathogenic fungi
and as a biofertilizer (Saba et al. 2012). Trichoderma sp. uses several mechanisms
such as antibiosis, mycoparasitism and competition for nutrients and space and is
also able to promote growth and development of plant and induce the defense
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response of plants (Talapatra et al. 2017). Trichoderma sp. has used as BCA against
plant pathogenic fungi like Botrytis cinerea, Fusarium spp., Pythium spp., and
Rhizoctonia spp. (Park et al. 2018). Trichoderma endophyte from an essential
medicinal plant of Assam, Rauwolfia serpentina, showed antagonistic activity
against Fusarium oxysporum and Phytophthora spp. (Doley and Jha 2010).

Mycoparasitic Trichoderma species are used commercially as biological control
agents against plant-pathogenic fungi such as Rhizoctonia solani, Botrytis cinerea,
Sclerotium rolfsii, Sclerotinia sclerotiorum, Pythium spp., and Fusarium spp. T. har-
zianum protected bean seedlings against pre-emergence damping off infection,
reduced the disease severity, and increased the plant growth in the presence of
R. solani pathogen (Paula et al. 2001). P. indica increased the resistance in barley
against root rot causing agent Fusarium culmorum and Blumeria graminis (Waller
etal. 2005). P. citrinum endophyte enhances the sunflower growth (Helianthus ann-
uus L.) and disease resistivity against the stem rot caused by Sclerotium rolfsii and
leaf spot and blight caused by Alternaria alternata (Waqas et al. 2015). P. brevicom-
pactum has been reported to suppress various seed-borne pathogens including
Rhynchosporium, Pyrenophora, Fusarium, and Cochliobolus and soil-borne patho-
gen Gaeumannomyces graminis var. tritici (Murphy et al. 2015). Curvularia sp.
endophyte from an essential medicinal plant of Assam, Rauwolfia serpentina,
showed antagonistic activity against Fusarium oxysporum and Phytophthora spp.
(Li et al. 2000; Doley and Jha 2010).

8.5 Conclusion

Plant microbiome in rhizosphere plays the most critical role in plant growth promot-
ing (PGP), development, and fertilization of soil. The diverse group of microbes is
significant components of soil plant systems. The microbes with PGP attributes
have emerged as an important and promising tool for sustainable agriculture. PGP
microbes promote plant growth and directly or indirectly development; either by
releasing plant growth phytohormones; solubilization of phosphorus, potassium,
and zinc; and biological process such as nitrogen fixation or by producing sidero-
phore, ammonia, and other secondary metabolites which have antagonistic activity
against pathogenic microbes. In coming time, biofertilizers will not only act as
potential alternative for feeding the emerging population but also will improve pro-
ductivity and support the growth of the plants during stress conditions. Therefore, it
is crucial to realize the importance of biofertilizers and their implementation in
modern agriculture. Sustainable agriculture should change rather from growing
plants, cultivation of plant—microbial communities must be done, which will ulti-
mately lead to high productivity with negligible energy and chemical investments
simultaneously with minimum pressures on the environment.
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Abstract

Population growth and high food demand is the biggest problem of the world. It
is necessary to find and apply new techniques in agricultural to enhance the pro-
ductivity. The chemicals used in agriculture increase yield, kill pathogens, pests,
and weeds but harm the ecosystem severely. With increasing concerns about the
agrochemicals side effects, a better alternative can be used of microorganisms to
the plants and rhizosphere microbial populations. Use of plant growth-promoting
rhizobacteria (PGPR) has been found to be a potential alternative and promising
technique compared to old routinely used technique which is increasing the bur-
den of pollution to the soil in agriculture. Naturally occurring soil microflora
present in the rhizosphere adheres to the surface of the plant roots and imparts
beneficial effect on plant growth and production. PGPR are known as biofertil-
izers and are used for soil quality improvement; they are key players for improve-
ment in agriculture yields. Phytopathogens affect plant health, which is a major
threat to sustainable agriculture worldwide. PGPRs apply different mechanisms
to protect plants from disease also help plant to grow healthy under environmen-
tal stresses. In this chapter, PGPR mediated different mechanisms are discussed
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that help plants in healthy growth. This approach to improve sustainable agricul-
ture with the use of PGPRs can be commercialized by using PGPR with global
applicability.

Keywords

Biofertilizers - Microorganism - Microflora - PGPR - Rhizobacteria - Stress
management

9.1 Introduction

Plant growth-promoting rhizobacteria (PGPR) are important resources due to their
ability to enhance productivity, profitability, and sustainability at the same time and
also food security and rural livelihood is achieved. Use of PGPRs or their by-
products is gaining more attention and their use in agriculture could help farmers by
providing the technology which is low-cost and environmentally safe. Agriculture is
facing arable land reduction and its expansion is impossible, which leads to impart
pressure for over-production of crops; therefore, an improved farming technology is
required to improve the fertility of the soil and crop production. For example, some
techniques being used are sustainable management practices, agricultural intensifi-
cation, and some other techniques like use of cultivars having disease resistance,
salt tolerance, drought tolerance, heavy metal tolerance, and better nutritional values.

Rhizosphere, the soil zone surrounding the plant roots are reservoir of the
microbes. Bacteria present in the rhizosphere can be categorized as symbiotic or
non-symbiotic, depending on whether they are beneficial for the plant or not
(Kundan et al. 2015). Rhizosphere is under control of plant roots through the release
of chemical substrates which affects the microbial activity (Barea et al. 2005; Yadav
et al. 2017). Rhizobacteria has to compete with other rhizospheric microbes for the
nutrients and other compounds secreted by the host plant roots.

Soil microbes are also beneficial to plants in stresses and have been reported in
sustained crop production (Khan et al. 2016; Compant et al. 2016). PGPR are the
best examples of plant—microbes association, which leads to enhance plant growth
and crop production (Yadav et al. 2020d). PGPR establishment with plants affect
soil characteristics and convert unfertile land into fertile and improved land. PGPR
work as biofertilizers by increasing the availability and uptake of nutrients from
poor nutrient containing soil (Kour et al. 2020g). Neutralization of plant stress is
also achieved through PGPR for biotic (insects, disease) and abiotic stress (water,
salt, light, temperature, etc.) that plants face in the environment (Fasciglione et al.
2015). PGPR are also involved in plant growth promotion by suppressing harmful
pathogens through induced systemic resistance (ISR) and competitive exclusion
(Tripathi et al. 2012; Thakur et al. 2020).

PGPR can be classified as extracellular PGPR (ePGPR) and intracellular (iPGPR)
(Martinez-Viveros et al. 2010). ePGPR reside in the rhizosphere or in the spaces
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between the root cortex, whereas iPGPR reach the nodular structures of roots. The
bacteria known to be ePGPR are Azotobacter, Micrococcus, Serratia, Azospirillum,
Bacillus, Arthrobacter, Caulobacter, Erwinia, Flavobacterium, and Pseudomonas.
Some endophytic iPGPR, for example, Rhizobia (Allorhizobium, Bradyrhizobium,
and Mesorhizobium) and Frankia, are known to fix atmospheric nitrogen
(Bhattacharyya and Jha 2012; Mondal et al. 2020; Rai et al. 2020).

9.2  Applications of PGPR in Agriculture

The green revolution was possible due to two major reasons: use of chemicals like
pesticides, herbicides, and chemical fertilizers; and development of improved
crop varieties through breeding and genetic manipulations. Intensive use of fertil-
izer and water and other sources increase the crop yield in the last decades, but
these inputs damage the soil health, affect water quality, cause imbalances in tro-
phic level, and lead to environmental degradation. The chemical fungicides are
not only creating resistant development in pathogens but also causing environ-
mental pollution to other trophic level as well. In spite of the green revolution in
agriculture, new options in agricultural are required to fulfill the requirement of
food for growing global population. The use of PGPR as fertilizer could be good
for agriculture and related sector both in economically and environmentally sus-
tainable productivity (Rana et al. 2020b; Yadav et al. 2020a). PGPRs can help in
security of food by enhancing crop productivity in sustainable manner (Table 9.1).
PGPRs are proved as environmentally safe for plant growth compared to synthetic
biofertilizers and fungicides. Considering the uses of PGPRs, it will be good for
agriculture production.

Studies have also demonstrated the use of PGPR in crop production, either by
synthesizing compounds with plant growth-promoting properties (Glick 1995),
making availability of essential nutrients such as phosphorus, nitrogen, calcium,
and magnesium (Cakmakgi et al. 2006; Belimov and Dietz 2000), or averting plant
diseases (Lugtenberg and Kamilova 2009). Improved growth and productivity of
many commercial crops have been achieved in maize (Sandhya et al. 2010), cotton
(Anjum et al. 2007), rice (Ashrafuzzaman et al. 2009), black pepper (Dastager et al.
2011), wheat (Cakmakgi et al. 2007), and cucumber (Maleki et al. 2010).

PGPR promotes plant growth by different mechanisms such as nitrogen fixa-
tion and nodulation. PGPR can be exploited for enhanced crop production for
sustainable agriculture (Gonzalez et al. 2015). PGPR are reported to enhance
plant growth by different mechanisms like biofertilization (nitrogen fixation,
phosphate solubilization) (Ahemad and Khan 2012; Glick 2012); induction of
phytohormones production like indole-3-acetic acid (IAA) (Tiwari et al. 2020)
and 1-amino-cyclopropane-1-carboxylate (ACC) deaminase, production of sid-
erophores (Jahanian et al. 2012) and hydrogen cyanide (Liu et al. 2016); produc-
tion of antibiotics or protective enzymes (Kour et al. 2019a; Yadav et al. 2016)
and xenobiotic degradation (Sharaff et al. 2020).
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9.3  Mechanisms of Plant Growth Promotion by PGPR

Rhizospheric soil is rich in several nutrients like amino acids and sugars useful for
rhizobacterial growth. Along with these, several other compounds like Strigolactones
are exudated by plant root system to attract the infection of friendly microbes
(Dobbelaere et al. 2003; Gray and Smith 2005; Aly et al. 2014). 1-2% of microbes
inhabiting in these regions can promote the plant growth called as PGPR colonizing
this rhizospheric region (Antoun and Kloepper 2001; Schroth and Hancock 1982).
Further, PGPRs also act against pathogens by inducing the ISR by jasmonic acid
and ethylene-mediated perception similar to salicylic acid-dependent SAR (sys-
temic acquired resistance) pathway (Beneduzi et al. 2012). Antagonistic nature of
PGPRs used in the development of several biocontrol agents. Further, these PGPRs
produce siderophores and antibiotics which help in improvement of plant fitness,
growth, and yield (Beneduzi et al. 2012).

Several reports have shown that PGPR help in growth promotion of plant by
increased yield, solubilization of phosphorus (Gaba et al. 2017; Yadav et al. 2015),
potassium (Kour et al. 2020c; Verma et al. 2017a), and nitrogen uptake and other
elements availability (Rana et al. 2020a). Further, PGPR also enhance root growth
and hairs with lateral branches. Several PGPRs modulate the phytohormone level of
indole-3-acetic acid (IAA), zeatin, ethylene, gibberellic acid (GA3), and abscisic
acid (ABA) thus helping in architecture maintaining of root system (Table 9.1).
PGPRs secrete organic acids which lowers rhizopsheric pH, that makes release of
phosphate compounds and becomes available to the plants. PGPRs indirectly
enhance the plant growth by producing antibacterial, antifungal elements and com-
peting with phytopathogens for niche and nutrients (Table 9.1). Applications of
PGPR lead to the development of resistance against several viruses attacking plants.
PGPR produce several antipathogenic enzymes, such as glucanases, chitinases, and
proteases, damaging the pathogenic cell walls (Beneduzi et al. 2012; Neeraja et al.
2010; Maksimov et al. 2011). Further, authors also suggested that production of
antibiotics (e.g., phenazines, phloroglucinols, pyoluteorin, pyrrolnitrin, cyclic lipo-
peptides, hydrogen cyanide (HCN), siderophores, and bacteriocins) also help in
inhibiting the phytopathogenic proliferation (Haas and Défago 2005; Beneduzi
et al. 2012). Along with fertilization activity PGPRs also help in managing the
plants during different stresses (Lugtenberg and Kamilova 2009; Kumar et al.
2019d; Verma et al. 2017b; Yadav et al. 2018).

9.3.1 Biofertilization

9.3.1.1 Nitrogen Fixation

Atmospheric nitrogen fixation is carried out by symbiotic or non-symbiotic microbes
in association with plants (Shridhar 2012). Some examples of atmospheric N,-fixing
symbiotic PGPR are Rhizobium spp. (Ahemad and Kibret 2014) Azoarcus sp.
(Egener et al. 1999), Herbaspirillum seropedicae and Burkholderia spp. (Baldani
etal.2000), Serratia marcescens (Gyaneshwar etal. 2001), and Rhizobia (Chaintreuil
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et al. 2000). However, such processes are limited to legumes but developing symbi-
otic or non-symbiotic association in other non-leguminous plants can be applied to
increase human food supply and soil fertility as well. However, combination of
rhizobacteria inoculums can improve soil quality by enhancing N, fixation mediated
by nif gene along with other structural genes. Inoculation of N,-fixing PGPR to the
crops in the field activates growth and disease management of plants and maintains
higher nitrogen level in agricultural soil (Damam et al. 2016).

9.3.1.2 Phosphate Solubilization

Rhizobium and phosphorus (P)-solubilizing bacteria like Pseudomonas and Bacillus
sp. are important to plant nutrition. They play a role as PGPR by biofertilization of
soil for better growth of crops. Organic acids (e.g., carboxylic acid) are secreted by
these bacteria which help in releasing the bound forms of phosphates from calcare-
ous soils by lowering the pH in the rhizosphere. Use of these PGPRs is an
environment-friendly biofertilizer which helps to reduce the use of expensive phos-
phate fertilizers by increasing the availability of free phosphate (by solubilization)
and thus, increasing the efficiency of biological nitrogen fixation and also increase
the availability of Fe and Zn in rhizosphere (Kaur et al. 2020; Subrahmanyam
et al. 2020).

9.3.1.3 Potassium Solubilization

Potassium is the major macronutrient crucial for the plant growth. More than 90%
of potassium exists in the form of insoluble rock and silicate minerals so very small
fraction of potassium is available for plants as soluble form in soil (Parmar and
Sindhu 2013). The low availability of potassium for plants leads to slow growth,
poor root growth, and less seed production. This leads to reduced crops yield (Verma
et al. 2016). PGPR have been reported to solubilize this insoluble potassium present
in rock by secreting organic acids which lower pH and help in phosphate solubiliza-
tion (Satyaprakash et al. 2017). Potassium-solubilizing PGPR, such as
Acidithiobacillus sp., Paenibacillus spp., Bacillus edaphicus, Ferrooxidans sp.,
Bacillus mucilaginosus, Pseudomonas sp., and Burkholderia have the capacity to
solubilize K from the soil minerals (Etesami et al. 2017; Kour et al. 2020b; Rajawat
et al. 2020).

9.3.1.4 Exopolysaccharide Production

Exopolysaccharides (EPSs) are heterogeneous mixture composed of: polysaccha-
rides, proteins, nucleic acids, and lipids (Sutherland 1972; Wingender et al. 1999).
EPSs help plants to maintain water potential, aggregate soil particles, and help plant
roots to make contact with rhizobacteria, and help host plant to sustain during abi-
otic stress conditions (like salinity drought or water stress) or pathogens and enhance
plant growth and crop production (Pawar et al. 2013). PGPR, for example,
Azotobacter vinelandii, Enterobacter cloacae, and Rhizobium sp. are reported to
produce EPS and enhance soil fertility and help plants’ growth for sustainable agri-
culture (Mahmood et al. 2016).
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9.3.2 Stress Management

Plants face various abiotic and biotic stresses in the field which affect their growth
and productivity though plants respond to these stresses on their own, but PGPR
that help plants against stress management for plants have also been studied (Yadav
2017; Yadav et al. 2019; Yadav and Yadav 2018). PGPR help plants to grow under
abiotic stresses or from pathogens (Akhgar et al. 2014). PGPR produce neutralizing
substances against phytopathogens to increase resistance in the host plants (Singh
and Jha 2015). PGPR mediate stress management in plants by means of production
of ROS-scavenging enzymes, siderophores, various antibiotics and protective
enzymes (chitinases, cellulases, proteases, etc.) against plant pathogen or disease
resistance, and induction of systematic resistance against various pathogens and
pests (Nivya 2015; Gupta et al. 2014; Kour et al. 2019b; Kumar et al. 2019b).

9.3.2.1 Abiotic Stress

Environmental cues like salinity, drought, heat, and cold adversely affect survival
and production of crops and are responsible for reduction of food supply to the
population worldwide. Abiotic stress tolerance is multigenic trait and includes accu-
mulation of osmoprotectants, eeactive oxygen-scavenging enzymes like ascorbate
peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), glutathione reduc-
tase, antioxidants like ascorbic acid, a-tocopherol, and glutathione (Agami et al.
2016). Apart from crops’ abiotic stress tolerance, it can also be achieved by applica-
tion of PGPR; it is also proved to mitigate the deleterious effect of stress that has
been discussed with respect to the effect of PGPR association with plants (Goswami
and Deka 2020). The improvement in drought tolerance in association with PGPR
has been observed in crops like maize, soybean, chickpea, and wheat (Ngumbi and
Kloepper 2016). Application of PGPR Brachybacterium saurashtrense strain JG-06,
Brevibacterium casei strain JG-08, and Haererohalobacter sp. strain JG-11 pro-
moted growth of peanut plants in salt stress (Shukla et al. 2012). PGPR application
to okra resulted in salinity tolerance in terms of improved water-use efficiency
(WUE) mediated by ROS-scavenging enzymes (Habib et al. 2016).

Arthrobacter protophormiae and Dietzia natronolimnaea application to wheat
enhanced A A contentand reduced abscisic acid (ABA) and/1-aminocyclopropane-1-
carboxylate (ACC) content which modulated expression of genes like CTRI as well
as DREB? transcription factor (Barnawal et al. 2017) conferred salinity tolerance in
wheat. Maize plants inoculated with the PGPRs Azospirillum brasilense and
Herbaspirillum seropedicae improved drought tolerance (Cura et al. 2017).

9.3.2.2 Biotic Stress

Biotic stress imposed by phytopathogens like bacteria fungi, protists, nematodes,
and viruses results in loss of agricultural yield (Haggag et al. 2015). Biotic stress is
a major reason for loss in crop yield, and hence it is required to develop resistant
crops against biotic stress. Application of PGPR like Paenibacillus polymyxa,
Bacillus amyloliquefaciens, B. licheniformis, B. thuringiensis, and B. subtilis can
solve the problem of biotic stress. PGPR strains belonging to Pseudomonas and
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Bacillus sp. have been described to induce and respond against phytopathogens like
virus, fungus, and bacteria (Bhattacharyya and Jha 2012). Plants inoculated with
PGPR showed enhanced disease resistance (Ngumbi and Kloepper 2016). Several
crops including rice, wheat, maize, pepper, tomato, chickpea, etc. have shown
development of biotic stress-resistant trait against attacking pathogen during post-
treatment of PGPRs (Jha and Subramanian 2018; Valenzuela-Soto et al. 2010;
Mathiyazhagan et al. 2004). For example, tomato plant shows the resistant against
whitefly Bemisia tabaci during post-treatment of Bacillus subtilis strain BEB-DN
(BsDN) (Valenzuela-Soto et al. 2010). Further, Bacillus subtilis (BSCBE4),
Pseudomonas chlororaphis (PA23), endophytic P. fluorescens (ENPF1) like PGPR
treated Phyllanthus amarus plant showed resistant against stem blight Corynespora
cassiicola due to increased production of defense-related enzymes such as peroxi-
dase, polyphenol oxidase, chitinase, and p-1,3 glucanase (Mathiyazhagan et al.
2004). Further, Pseudomonas fluorescens-mediated resistant against various bacte-
rial and oomycete pathogens in Arabidopsis have been reported (Ton et al. 2002).

9.3.2.3 Rhizoremediation

The increase in soil and water pollution causes problem in ecosystem and becomes
a threat to the life of organisms throughout the world. Pollution can be alleviated by
bioremediation; being time consuming, it can be a better alternative to remediate
soil and water pollution. Techniques like phytoremediation, bio-slurry, bio-
augmentation, bio-pile, land farming, and bio-venting can be applied to remove
pollutants from contaminated sites. However, a combined approach of using phy-
toremediation and bio-augmentation known as rhizoremediation can be applied for
better results (Kumar et al. 2019a, c; Malyan et al. 2019).

PGPR are best suited candidates for rhizoremediation which show symbiotic and
non-symbiotic relationships with plants. Rhizospheric plant—microbe interaction is
essential for remediation of hazardous pollutants (Chaudhry et al. 2005). Studies on
rhizoremediation are limited to few microbes like Pseudomonas aeruginosa, genet-
ically engineered Pseudomonas fluorescens, and certain Bacillus species (Kuiper
et al. 2004). So identification of more PGPRs for rhizoremediation is the need for
removal of specific and large-scale pollutants from soil and water. The use of PGPR
like Pseudomonas putida and Pseudomonas fluorescens has also been studied to
impart protecting barley plants from cadmium toxic effect in soil (Baharlouei
etal. 2011).

9.3.3 Biocontrol

PGPR produce substances that also protect them against various diseases. PGPR
also show the biocontrol properties against a wide range of soil-borne plant patho-
gens to protect plants by mediating antagonistic interactions between the biocontrol
agent and the pathogen to develop host resistance. The PGPRs are known to inhibit
the growth of harmful bacteria and fungi by siderophore, antibiotics, and HCN pro-
duction (Kour et al. 2020a; Saxena et al. 2020; Singh et al. 2020).
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9.3.3.1 Siderophores Production

PGPR are reported to use secretion of extracellular metabolites called siderophores.
Siderophores are microbial low molecular weight organic compounds which che-
late Fe and are produced under Fe-stressed condition. Their primary function is to
sequester iron (III) from rhizosphere in higher plants and direct accumulation in
micro-biota from rhizospheric soil solution. The resulting iron-chelates are recog-
nized by specific receptor proteins (iron-regulated outer membrane proteins—
IROMPs) and transported into the cell by their respective permeases. Typically,
these are categorized into the following three classes—catecholates, hydroxymates,
and alpha-carboxylates depending upon the coordination site for iron in the ligand
and side-chain chemistry (Ali and Vidhale 2013). Yersiniabactin, a siderophore iso-
lated from Yersinia pestis and several strains of Enterobacter comes under pheno-
lates (Haag et al. 1993). The other category is “mixed” for having characters of both
catecholates and hydroxymates, for example, Pyoverdine (Meyer and Abdallah
1978). Under limiting iron condition, siderophores chelate iron from the soil solu-
tion and create hindrance in the nutrition of pathogens. The PGPRs are also known
for their role in induced systemic resistance via siderophore production (Rastegari
et al. 2020a, 2020b).

This approach is being explored in biocontrol of pathogenic forms (Lemanceau
and Albouvette 1993). Nanogram amount if present in the rhizospheric soil solution
is sufficient for induction of systemic resistance (Pieterse et al. 2001). PGPRs are
being implied in versatile ways for increasing the growth and yield of crop plants
(Yadav et al. 2020b, 2020c). Their iron-chelating attribute is studied for enhanced
rhizospheric iron concentration mechanism and thus making Fe more bio-available
in the soil for crop plants.

9.3.3.2 Disease Resistance by Antibiotics

The production of antibiotics is considered to be one of the most powerful and stud-
ied biocontrol mechanisms of plant growth-promoting rhizobacteria against phyto-
pathogens (Shilev 2013; Ulloa-Ogaz et al. 2015). A wide variety of antifungal
antibiotic compounds like amphisin, 2,4-diacetylphloroglucinol (DAPG), oomycin
A, phenazine, pyoluteorin, pyrrolnitrin, tensin, tropolone, and cyclic lipopeptides
are produced by Pseudomonads (Loper and Gross 2007) and oligomycin A,
kanosamine, zwittermicin A, and xanthobaccin produced by Bacillus, Streptomyces,
and Stenotrophomonas sp. to suppress growth of plant pathogens (Compant et al.
2005). A wide variety of antibacterial antibiotics are also produced by Bacillus sp..
Bacillus amyloliquifaciens that produces lipopeptide antibiotics like surfactin, itu-
rins, and bacillomycin (Wang et al. 2015).

9.3.3.3 Induced Systemic Resistance

ISR is the first line of defense that provides protection against invasion. PGPR pro-
moted ISR confers broad spectrum pathogen resistance (Van der Ent et al. 2009).
PGPRs produce signals which activate defense mechanism during pathogenic inva-
sion which involve defense enzymes like ROS-scavenging enzymes SOD, CAT, and
APX and plant defense-related enzymes like -1, 3 glucanase, chitinase, polyphenol
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oxidase, peroxidase, and some proteinase inhibitors. ISR is a nonspecific mecha-
nism used and it helps plant to resist against any pathogens (Kamal et al. 2014).

Pseudomonas strains are known to induce systemic resistance in carnation, rad-
ish, and Arabidopsis in which “O antigenic side chain” of the bacterial outer mem-
brane lipopolysaccharides act as an inducer of response. Another type of
siderophores, pseudomanine produced by strains of Pseudomonas induces salicylic
acid production in radish which responds for enhancing plant’s defense (Van Loon
and Bakker 2007). The translocatable signal induced by rhizobacteria in the plant
roots spreads systemically within the plant and increases the defensive capacity
against pathogens defense (Van Loon and Bakker 2007).

Rhizobacteria-mediated ISR signaling involves JA and ethylene-mediated sig-
naling induces defense responses (Pieterse et al. 2001). A variety of bacterial com-
pounds like acetoin, 2,3 butanediol, acyl homoserine lactones, cyclic lipopeptides,
lipopolysaccharides, and siderophores are reported to induce ISR (Ryu et al. 2004;
Berendsen et al. 2015). Majority of PGPR have been confirmed for inducing ISR
which can be utilized in improving tolerance against pathogen of the crop plants.

9.3.3.4 Protective Enzymes

PGPR-induced plant growth is mediated by secretion of protecting enzymes like
chitinase, ACC deaminase, and f-1,3-glucanase against phytopathogenic agents.
Protecting enzymes are involved in lysis of cell walls of plant pathogens to reduce
plant loss (Goswami et al. 2016). Fungal cell wall is made up of N-acetyl-
glucoseamine and chitin; thus can be controlled by the p-1,3 glucanase- and chitinase.
Beta-glucanases and chitinase producing Pseudomonas fluorescens and
Sinorhizobium fredii are known to control fusarium wilt caused by Fusarium oxys-
porum and Fusarium udum (Ramadan et al. 2016). The major crop pathogens like
Phytophthora capsici and Rhizoctonia solani are also reported to be controlled by
PGPRs application (Islam et al. 2016; Devi et al. 2020).

9.3.4 PGPR as Plant Growth Regulators

Plant growth and development is coordination of organized cell division, cell expan-
sion, and cell differentiation. The interactions of plants with PGPRs is responsible
for influencing these processes that have long been of interest, as they can be the
option for sustainable agricultural applications. PGPRs produce growth regulators
which are responsible for plant growth promotion that include indole-3-acetic acid
(IAA), cytokinin, and gibberellins. Growth is also promoted by breakdown of eth-
ylene produced by plants through bacterial 1-aminocyclopropane-1-carboxylate
deaminase (ACC deaminase). Growth regulators are also applied exogenously as
extracted substances or synthetic analogues to plants or plant tissues.

Plant growth regulators are organic molecules, which can promote, inhibit, or
modify growth and development of plants at very low concentrations (Bisht et al.
2018). PGPRs association with plants can also influence plants to synthesize plant
growth regulators. Microbes like Rhizobium leguminosarum, Rhodospirillum
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rubrum, Pseudomonas fluorescens, P. aeruginosa, P. putida, Bacillus subtilis,
Azotobacter chroococcum, Paenibacillus polymyxa, Mesorhizobium ciceri, and
Klebsiella oxytoca are reported to induce the production of phytohormones which
are regarded as PGPR (Prathap and Ranjitha 2015). Application of IAA-producing
rhizobacteria for long term increased the plant growth (Amara et al. 2015; Kaymak
2011) and highly developed roots that helped plants in uptake of better nutrients for
plant growth (Aeron et al. 2011). Combined effect of PGPR and growth regulator
has also been investigated in chickpea by 3 PGPR: Bacillus subtilis, Bacillus
thuringiensis, and Bacillus megaterium and PGR was observed to enhance chloro-
phyll, protein, and sugar contents in seedlings (Khan et al. 2018).

9.4  Future Prospects and Perspective

Use of excess herbicides, pesticides, fertilizer, and different biotic/abiotic factors
limit the PGPR growth-promoting effect. Application of biosensors and nano-
fertilizers in Agricultural biotechnology has improved in agriculture. An approach
for combined application of biotechnology, nanotechnology, and other disciplines
can be used in farming practices to enhance food production and security to fulfill
the need of growing world population. Nanoparticles application can be used in
targeting plant pathogens for crop protection and their management, and enhance-
ment of shelf-life of fruits and vegetables. Application of PGPR as biofertilizer can
be achieved by conjugation of gold, aluminum, and silver nanoparticles, with
PGPRs like Bacillus subtilis, Paenibacillus elgii, Pseudomonas fluorescens, and
Pseudomonas putida and used in eliminating harmful fungal parasite in rhizosphere.
Encapsulation of nano biofertilizers will also help in prolonged fertilizer release to
target cell. Application of titanium nanoparticles to the roots of oilseed rape-
mediated adhesion of beneficial bacteria which protected the plants from fungal
pathogens. Use of nano-biofertilizers is eco-friendly and is also a good alternative
for harmful chemicals. Precision farming can also be used to minimize input of
harmful chemicals to the soil although maximize crop production by focusing on
environmental variables. Zeolites like crystalline aluminum silicates are best option
to improve soil water retention. Rhizoremediation can be utilized for the removal of
metal toxicity by cleaning contaminants/from the environment which will help
plant in better establishment and growth and finally increasing the productivity. An
alternate way of engineering the PGPRs to improve their growth-promoting traits
can also be done by genetic manipulations which will be low-input, sustainable, and
environment-friendly. The PGPR-based crop growth and production strategies are
farmer-friendly and eco-friendly and can supplement the long-term goals of sustain-
able development.

Applications of PGPRs in agriculture will help in reducing the use of chemical
fertilizers and pesticides. Biocontrol agents derived from applications of PGPRs
are safe and no cost-benefit ratio will surpass the chemical pesticides.
Biotechnological methods of identification and characterization of genes relating
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to siderophorogenesis, antibiosis, and other antagonistic aspects would be imper-
ative in developing new strategies for crop improvement.

9.5 Conclusion

Excess exploitation of resources due to increased population and their limited
occurrence has led to find alternative sources for fulfillment of needs. PGPR can be
used in enhancing plant growth and crop production; removing pollutants from
wastelands and water bodies; and pesticides degradation in soil. To fulfill the human
needs excessively used chemical fertilizers and pesticides have also interrupted
plant—microbe interactions. Utilization of modern tools in farming along with appli-
cation of PGPR can play game changer role in improving soil fertility, crop produc-
tivity, and nutrients availability in soil along with tolerance against pathogens.
Further research can be focused on developing a rhizosphere with diverse microbial
communities and application of multidisciplinary research approaches to utilize
PGPR potential in growth enhancement and stress tolerance. Future goal for under-
standing PGPR mechanism of growth promotion and ability to colonize in rhizo-
spheric area can be used to develop as key player in the management of sustainable
agriculture.
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Abstract

Fertilizer plays an important role in increasing crop productivity though chemi-
cal fertilizer demand is increasing, and due to this reduction in soil organic mat-
ter, natural chemistry and its health is decreasing day by day. Beneficial
microbiomes are economical, organic, and biodegradable than chemical fertiliz-
ers. Beneficial microbiomes have the capacity of improving the organic microor-
ganisms in the soil and also build up the quality of the soil. The microorganisms
present in the biofertilizers play an important role because they produce the
nutrients which benefit the plants. Biofertilizers are also less costly, safe which
provide wide scope for the research areas and fields related to organic farming.
Overall, the significant role of biofertilizers in plant growth and development is
great so it makes them an integral and important tool for the organic and sustain-
able agriculture. This book chapter describes about the various biofertilizers,
their types, their mode of actions, and their benefits.
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10.1 Introduction

With the past 50 years of Indian history, the chemical pesticides and fertilizers have
played an important role in increasing the agricultural productivity. But the large use
of chemical fertilizers has negative effects on human health. Indiscriminate use of
chemical fertilizers and chemical pesticides contributed in loss of soil productivity
along with addition of salts to the soil. In future, the requirement of different types of
chemical fertilizers will be less for soil improvement. It will lower the opportunities
of water pollution along with unsustainable difficulty on agricultural system. Stewart
(1969) described that various microbiologists (Beijerinck 1901; Lipman 1903) were
pioneer in the isolation of Azotobacter spp., whereas scientist, Winodgradsky isolated
the basic strain of Eubacterium pasteurianum. After a long time, the invention of the
biological development in cyanobacteria was recognized. Subsequently then, analysis
efforts in this fields have gradually overstated resulting in the choice of various strains
displaying many advantageous options (Podile and Kishore 2007).

These extra adoptions of fertilizers which are chemical in nature in agriculture
are costly with negative effect chemical and physical properties of soils (Aggani
2013). Therefore, with the obvious harmful and serious consequences of the chemi-
cals, Khan et al. (2007) also described the introduction of many organic fertilizers
that may stimulate the growth process in the plant in a positive way.

Abdul Halim (2009) also submitted that the role of these natural stimulants has
an early history that goes from generation to generation on small-scale manure pro-
duction and generation of farmers. A particular group of such fertilizers includes
products in the form of microorganisms that promote bio-growth, called biofertil-
izers, which are nitrogen-fixing, phosphate-solubilizing, or living or cellulolytic
microorganisms. They are used for the application of seeds, soil, or compost areas
with the aim of increasing the number of such microorganisms and to increase the
availability of nutrients by accelerating some microbial process, which is done by
plants (Khosro and Yousef 2012). These biofertilizers play an important role as a
major component of integrated nutrient management in soil, which will be helpful
for soil productivity and sustainability.

Biofertilizers may contain living microorganisms that, when applied to the seeds
(seed treatment) of plants, result in growth of the plant with improvement in hard-
ness property along with increased availability of nutrients to the host plant (Kour
et al. 2020c; Rana et al. 2020; Singh et al. 2020b). These biofertilizers are ecologi-
cally renewable sources of plant nutrients, which may replace the costing of chemi-
cal fertilizers effectively. Three important groups of microbes such as arbuscular
mycorrhizal fungi (AMF), plant growth-promoting rhizobacteria (PGPR), and
nitrogen-fixing rhizobia act as a biocontrol agents that are extensively used globally
(Podile and Kishore 2007).

In 1886, German scientists Hellerl and Wilfarth were responsible for the dis-
covery of nitrogen fixation, which stated that legumes with root nodules can use
gaseous (molecular) nitrogen. Dutch microbiologist Beijerinck, in the year
1998, isolated a bacterial strain from root nodules. It was later found to be a
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Rhizobium leguminosarum strain. Stewart (1969) reported that in the year 1901,
a microbiologist Beijerinck was responsible for isolating Azotobacter spp. and
subsequently, Lipman in 1903. Apart from this, Winodgradsky in (1901) iso-
lated the first strain of Clostridium pasteurianum (Thakur et al. 2014). Stewart
1969 reported that nitrogen fixation was found much later in cyanobacteria
(blue-green algae). Podile and Kishore (2007) reviewed that there has been a
steady increase in research efforts in these areas, resulting in the selection of
several beneficial characteristics to many strains. The uses of fertilizers in fields
for crop production showed the adverse effects on soil health. Today, several
fertilizers are made available for us which act may as growth enhancer sub-
stance. Such kind of information about natural stimulators or microbial inocu-
lums that passes from one generation to another farmer generation includes the
use of culture of small-scale production. Plant growth enhancing microbes are
known as biofertilizer or “microbial inoculants” (live and dormant microbes)
they are economical and feasible in nature.

Biofertilizers can be applied to seed (as seed treatment), soil, and composting
areas with a purpose to encourage the number of microbes and to improve the
reactions for enhancing the supply of required plant materials which can be eas-
ily available to the plant (Khosro and Yousef 2012; Kaur et al. 2020; Kour et al.
2020a, b). Use of such biofertilizers is mandatory part of integrated nutrient
management (INM) within soil but its role in productivity and property of soil
is significant and indispensable. With passage of time, chemical fertilizers are
replaced by these biofertilizers as they are cost-effective because of their eco-
friendly approach and recycled supply of plant nutrients. Three primary teams
of biocontrol are arbuscular mycorrhizal fungi (AMF), nitrogen-fixing rhizobia
(Franche et al. 2009) and plant growth-promoting rhizobacteria (PGPR).
Nevertheless, we should focus towards fixing of the chemical elements.
Rhizobium lives in the nodules of leguminous plants such as peas, beans, or
grams. Rhizobium has a symbiotic relationship with the plant. These bacteria
transform the nitrogen from the air into nitrogen substances that the plant
can use.

The rhizobia enter into the plant nodule tissue through a plant-derived infection
thread—a tubular structure—to enable the entry of bacterium to deeper layers.
These infection-causing threads may grow transcellular and ultimately, rhizobia
enveloped into a plant-derived sheath, presently referred to as symbiosome mem-
brane, are transported into plant cells.

10.2 National Scenario

Indian Government and various State Governments are encouraging the usage of
biofertilizers through subsidies on sales, grants, and extension programs and with
degrees of stress. Over time, farmers are taking practical information related to
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technology based on the scientific realities of their fields. Thus, farmers are being
inspired to adopt the utilization of biofertilizers. The government of Asian countries
has been implementing the theme for the promotion of biofertilizers since under-
neath this theme, one national center-NCOF, and six regional centers—RCOFs are
established.

The most frequent operations of those centers include the promotion of bio-
fertilizer through coaching, demonstration, and often providing an economic cul-
ture for combining biofertilizers. The theme additionally aims for giving grants up
to Rs. 40 large integers per unit of a 150 tons per annum to line up biofertilizer
manufacturing units. Since origination, the biofertilizer production capability often,
525 tons, has been envisaged by putting in 83 biofertilizer production units. Out of
those units, 9 units are sanctioned by the Department of Fertilizers underneath their
theme of providing monetary help for the aim and 74 units are supported; 39 units
are created by completely different organizations and personal entrepreneurs with a
production capability of seven, 975 tons per annum. The total calculable current
demand for biofertilizers in Asian countries is eighteen, 500 tons per annum,
whereas calculable production is concerning 10 tons per annum within the country.
One of the most economical and pollution-free ways of all energy is to use the flex-
ibility of certain microorganisms such as bacteria, algae, and fungi to modify the
chemical element of the area, dissolve phosphorus, destroy organic materials or
sulfur within the soil. Once planted within the soil, they increase crop growth and
yield, improve soil fertility, and reduce pollution. Therefore, biofertilizers are
inhabited by biological or active materials of bacteria, algae, and fungi or microbe
inoculants that are prepared to enrich the soil with chemical elements, phosphorus,
and organic matter (Figs. 10.1, 10.2, and 10.3).

10.3 Common Nitrogen Fixers

10.3.1 Azotobacter

Azotobacter is a free-living bacteria belonging to the subclass of the Proteobacteria,
which grows well on a nitrogen-free medium which can be utilizing atmospheric
nitrogen. It is an aerobic group of bacteria that has no symbiotic nitrogen fixation
activity. These bacteria enhance the development of growth-promoting hormones
and further help to increase plant growth and yield (Kumar et al. 2019). A total of
seven species are found of genus Azorobacter, i.e., A. chroococcum, A. vinelandii,
A. beijerinckii, A. paspali, A. nigricans, A. salinestri, and A. armeniacus. These
groups of microbes are heterotrophic in nature, aerobic and commonly found in
soils that have the ability to cure nitrogen non-symbiotic (Doroshenko et al. 2007).
Azotobacter is very sensitive to salivary and acidic pH. The optimum pH for growth
and nitrogen fixation is 7.0-7.5 but fail to grow below the pH of 6. Studies reported
that 10-12% of increments in crop production of agricultural crop by the applica-
tion of Azotobacter into the soil also increases wheat crop and improves grain yield.
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Fig. 10.3 Applications of biofertilizers in agroecosystems

The Dutch microbiologist and botanist Martinus Beijerinck in 1901 introduced
the genus Azotobacter. At the same time, he discovered and described the important
organism of the genus A. chroococcum. The proliferation of these soil-borne bacte-
ria is related to several factors, mainly soil pH and fertility. Azofobacter activity in
soils has beneficial effects on plant metabolism, but the concentration of these bac-
teria is linked to many factors such as soil Physico-chemical properties (e.g. organic
matter, pH, temperature, soil moisture) and soil microorganisms. Ridvan (2009)
also described that, with regard to physico-chemical properties of soil, number of
studies have mainly emphasized on major plant nutrients like P, K, Ca, etc. and also
the content of organic matter and their encouraging influence on the soil populations
of Azotobacter spp.

10.3.2 Rhizobium

Rhizobium is generally non-sporulating rods, motile and Gram-negative. Those who
are not non-symbiotic in nature are capable of recovering 50-100 kg of nitrogen per
hectare. Effective Rhizobium nodulation formation in leguminous crops basically
depends on the advancement of an appropriate strain for a specific legume in a par-
ticular zone. Approximately 80% of biologically determined nitrogen usually occurs
due to symbiosis, including the family Rhizobiaceae, Sinorhizobium, and
Azorhizobium, Rhizobium, Bradyrhizobium, Proteobacteria with Rhizobiales and
various leguminous plants. PGP Rhizobium belongs to the family Rhizobiaceae,
Phyllobacteriaceae, and Bradyrhizobiaceae.

Rhizobium may be a dependent bacterium that forms root nodules in legume
plants. Nodules of leguminous crop plants function as miniature N production fac-
tories within the agricultural ecosystem. Rhizobacteria (PGPR), which promotes
plant growth, is potential agent for biological control of plant pathogens. Population
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of Rhizobium is directly affected in soil due to the type of farm crops grown. It is
also studied that without leguminous crops, Rhizobium populations decrease day by
day in agroecosystem (Mahdi et al. 2010). It is also noticed that effective pod for-
mation requires a specific species of Rhizobium in their root nodule. Cooper (2004)
also studied, in leguminous crops the pod formation is directly influenced by vari-
ous strains of rhizobia, but growth is increased only when nodules are produced by
effective strains of rhizobia.

10.3.3 Azolla

As a green manure crop, Azolla can be applied to the main field and also as a dual
crop. Generally, farmers are growing Azolla as a green manure crop. In the flooded
fields, Azolla can be allowed to grow 2-3 weeks before transplanting. After that
excess water is drained and Azolla is incorporated by ploughing. When a thick mat
is form, it is incorporated. Generally as a dual crop, farmers grow Azolla
1000-5000 kg per hectare in the soil 1 week after transplanting. The remaining
Azolla is regrown and mowed as another crop. Improved growth of azollae,
25-50 kg/ha of superphosphate is applied and 5-10 cm of standing water is main-
tained continuously in rice fields (Fig. 10.2 and Tables 10.1 and 10.2).

10.4 Need of Biofertilizers for Sustainable Management
of Agroecosystem

Non-ethical use of chemical fertilizer doses creating pollutions to our agroecosys-
tem. Side by side they have also reduced soil fertility and increased the soil toxicity.
The current research is promoting more development and application of commer-
cial biofertilizers for the food security, human health, and environmental sustain-
ability (Malyan et al. 2020; Sharaff et al. 2020; Thakur et al. 2020). These plant
growth-promoting rhizobacteria shows more targeted activity, and their small quan-
tity can be utilized in small amounts; they multiply on their own, but are controlled
by the plant as well as indigenous microbial populations present in the soil. These
microbial populations can be decomposed more rapidly than commercial chemical
pesticides (Rastegari et al. 2020a, b; Tiwari et al. 2020). Reducing feedstock/fossil
fuel (energy crisis) rises fertilizer prices. In addition to the above, the long-term use
of biofertilizers is inexpensive, environmentally friendly, more effective, competi-
tive, and accessible to marginal and small farmers without chemical fertilizers.
Biofertilizers that play an important role in organic agriculture, by mobilizing
fastened different nutrient (macro- and micronutrients) or converting the insoluble
P into a plant-accessible form, play an important role in sustaining long-lasting
fertility and biodiversity by fixing atmospheric di-nitrogen (N = N). Taking into
account the price as well as the environmental impacts of chemical fertilizers, addi-
tional dependence on chemical fertilizers is not a viable long-term approach because
of the costs of building fertilizer plants and maintaining production in both domestic
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Table 10.1 Classification of different types of microorganisms commonly used as biofertilizers

Type of Type of
biofertilizers microorganism Role of biofertilizer References

N,-fixing bacteria

1. | Free-living Azotobacter, Azotobacter sp. have a full | Vessey (2003),
Closteridium, range of enzymes needed Shanware et al.
Nostoc to perform the nitrogen (2014), Thammana

fixation: Ferredoxin, et al. (2000)
hydrogenase, and an

important enzyme

nitrogenase

2. | Symbiotic Rhizobium, Bacteria infiltrate the root Yoneyama et al.

Anabaena azollae | of the legume and form (1987), Ahmed et al.
root nodules that reduce (2007), Zimmer
the molecular nitrogen to et al. (2016)
ammonia used by plants to
produce proteins, vitamins
as well as other nitrogen
compounds
Anabaena azollae
increases the nitrogen
levels in the rice paddies
3. | Associative Azospirillum In non-leguminous plants, | Reynders and
symbiotic fix a considerable amount Vlassak (1979)
of nitrogen in the range of
20-40 kg N/ha

Phosphorous-solubilizing biofertilizer

1. | Bacteria Bacillus subtilis, Plant growth hormone Radhakrishnan and
pseudomonas synthesis (IAA, GA, Lee (2016), Khan
striata cytokinins, and et al. (2009), Linu

spermidines) stimulates the | et al. (2019), Sadiq
development of plant etal. (2013)

2. | Fungi Penicillium sp., Growing the available P in | Vessey and
Aspergillus soil and increase dry matter | Heisinger (2001)
awamori yield, yield of grain

Phosphorous-mobilizing biofertilizers

1. | Arbuscular Glomus sp., Fungus enters the cortical Ryan and Graham

Mycorrhiza Scutellospora sp. | cells of the roots of the (2002), Chalk et al.
vascular plant (20006)

2. | Ectomycorrhiza | Laccaria sp., Chang and Yang
Oisolithus sp., (2009)

Boletus sp.,
Amanita sp.
3. | Ericoid Pezizella ericae Helps in the uptake of Bolan (1991)
Mycorrhiza phosphorus by plants

(continued)
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Table 10.1 (continued)

Type of
biofertilizers

Type of
microorganism

Role of biofertilizer

References

Biofertilizers for micronutrients

—

1 | Silicate and zinc
solubilizers

Bacillus sp.

Bacteria sp. deteriorates
silicates and silicates of
aluminum. Several organic
acids are produced during
the metabolism of
microbes that have a dual
role in silicate weathering

Mahdi et al. (2010),
Saravanan et al.
(2011)

Plant growth-promoting Rhizobacteria

1. | Pseudomonas

Pseudomonas
Sfluorescence

Colonize roots and
promote plant growth

Jorquera et al.
(2012), Vessey
(2003)

Table 10.2 Biofertilizers commonly used in different field crops

Type of crop

Biofertilizers

Nutrient element

Pulses (chickpea, green
gram, pigeon pea, etc.)

gram, black

Rhizobium/PSB

Nitrogen, phosphorous

Cereals (wheat, oat, rice, etc.)

Azotobacter/ Azospirillum,
PSB

Nitrogen, phosphorous

Oil seed (mustard, sesame, sunflower, | Azotobacter/PSB Nitrogen, phosphorous
castor, etc.)
Millets (pearl millets, finger millets, Azotobacter/PSB Nitrogen, phosphorous

kodo millets, etc.)

and foreign exchange capital. This can be the viable approach for farmers to improve
the productivity per unit area by application of organic manures (biofertilizers) and
may even be used in integrated pest management systems.

10.5 Applications of the Biofertilizers

Biofertilizers can be replaced by chemical fertilizers, as excess use of chemical
fertilizers is not beneficial to plants as well as agroecosystem.

» Biofertilizers generally helpful to concerned crops to get not only high yield but
also improving soil health with nutrients and beneficial microflora, which will be
helpful in the maintenance of the sustainability of the agroecosystem.

e Substitution by 25% of chemical nitrogen and phosphorus.

e Promote the growth of plants.

* Biologically activate the soil. Restoring the fertility of soil naturally.

e Protect against drought and some diseases borne by the soil.

These biofertilizers can be applied as seed treatment, seedling dipping, and soil
application. These biofertilizers can be utilized as combined application, but biofer-
tilizers cannot be mixed with insecticides, fungicides, and herbicidal application.
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Nowadays, scientists are developing genetically engineered microorganisms by
the application of many biotechnological researches including a number of uses that
are important for present scenario. It includes intergeneric microorganisms.
Symbiotic nitrogen-fixers are Bradyrhizobium japonicum. These microbial inocu-
lants can also be further classified based on their use, methods, and time of applica-
tion. The physical form of the biofertilizers can be applied either in slurry form or
as dry inoculants can be produced using different kinds of soil materials like coal,
peat, soil, etc. as inorganic form, organic and inert materials.

By the excess use of chemical fertilizers and modern agricultural practices, soil
fertility and beneficial microflora is degrading day by day. So, we have to promote
more and more organic farming and apply the uses of more green chemistry either
by using biofertilizers, integrated nutrient management, and integrated pest and
weed management programs. For the food security and sustainable management of
crop cultivation technology, the role of government, private, and NGOs is very
important.

Seed Treatment: 200 g biofertilizer with nitrogen and 200 g of phosphatic is
suspended and thoroughly mixed in 300—400 mL water. Ten kilograms of seeds are
treated with this paste and dried in shade. These treated seeds must be sown as early
as possible.

Seedling root dip: A bed is filled in the field with water for rice cultivation. In
this water, recommended biofertilizers are mixed and the seedlings roots are dipped
for 8-10 h.

Soil treatment: 4 kg of each of the recommended biofertilizers are mixed and
kept overnight in 200 kg of compost. At the time of sowing or planting, this mixture
is incorporated in soil.

10.6 Potential Traits of Some Biofertilizers

Rhizobium nitrogen-fixers: They are symbiotic in nature and belong to the family
Rhizobiaceae, and may be able to fix 50-100 kg of nitrogen/ha in conjunction with
only legumes. It is helpful for pulses such as chickpea, red grams, pea, lentils, black
grams, oil-seed legumes like soybeans, groundnut, and forage legumes such as ber-
seem and lucerne. The productive nodulation of Rhizobium leguminous crops
largely depends on the supply of a companionable strain for a specific legume.

It is able to colonize the roots of various leguminous substances into tumors,
which serve as factories for the manufacture of ammonia, such as root nodules. The
Rhizobium can be used in symbiosis of legumes and some non-legumes such as
Parasponia to fix atmospheric nitrogen. The population of Rhizobium in the soil is
dependent on legumes in field. The population decreases in the absence of legumes.
The population of active strains of the Rhizobium near the rhizosphere needs artifi-
cial inoculation of seeds often to speed up N-fixation. For each legume, an effective
nodule must be produced by a certain Rhizobium species.
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10.6.1 Azospirillum

Azospirillum is a heterotrophic and associative existence, belonging to Spirilaceae
family. They develop growth controlling substances in addition to their nitrogen-
fixing capacity of approx. 20-40 kg/ha. Although many species of the genus, such
as A. mazonense, A.halopraeferens, A. brasilense, there has been a global distribu-
tion and inoculation advantage primarily through A. lipoferum and A. brasilense. A
positive effect of Azospirillum on plant growth is likely to involve several effects,
such as phytohormone synthesis, N, fixation, nitrate reductase activity as well as
mineral uptake (Kour et al. 2020c). As a result of their growing and fixing nitrogen
on the salts of organic acids, such as malic aspartic acid, Azospirillum forms an
associative symbiosis with several plants, particularly those with the C4 dicarboxyl
pathways of photosynthesis. It is therefore recommended primarily for maize, sug-
arcane, sorghum, pearl millet, etc. In addition to remaining on the root surface, the
Azotobacter colonizing the roots also penetrates into radicular tissues and lives with
plants in harmony. However, they do not result in the formation of nodules or pro-
duce any growth on the root tissue.

10.6.2 Azotobacter

These are free-living, aerobic, heterotrophic, and belong to family Azotobacteriaceae.
Their existence is frequent in neutral or basic soils while A. chroococcum is a spe-
cific type of Azotobacter which occurs in productive soils. Above all, some other
alternative reportable species are A. beijerinckii, A. vinelandii, A. macrocytogenes,
and A. insignis. Their number often exceeds than 10*~10° g=! of soil since lack of
organic matter along with existence of other antagonistic microorganisms in soil.
The bacterium gives rise to anti-fungal antibiotics that prevent the growth of many
pathogenic fungi in the root zone thereby avoiding seedling mortality. But the total
number of Azotobacter is usually less in the rhizosphere of the crops including
uncultivated soils. The presence of this bacterium has been reported from the rhizo-
sphere of various crops such as rice, sugarcane, maize, vegetables, bajra, and planta-
tion crops.

10.6.3 Azolla and Blue Green Algae (Cyanobacteria)

They belong to eight different families and phototrophic in nature. They are plenti-
ful in paddy field and sometimes also referred as “paddy species.” They are very
helpful in the development of plant growth regulators like Gibberellic acid, auxin,
and may fix 20-30 kg N/ha in submerged rice fields. Contribution of N element can-
not be ignored for lowland rice production in large amounts. BNF along with soil N
are main sources of N for lowland cultivation of rice. It has been estimated that from
mixture of soil N and BNF mineralization rice plant is able to meet the 50-60% N
requirement. Fixation of N element should be met by BNF and not by other source
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from fertilizer industry to achieve food security through sustainable agriculture.
BGA is interdependent in nature, but the frequently symbiotic combination can be
recorded between a free-floating aquatic fern, Anabaena azollae (BGA) and the
Azolla. Above all, BGA has the potential to fix N with fungi, flora, and liverworts.
Azolla contains both types of nitrogen, i.e., 4-5% N dry and 0.2-0.4% wet. The fern
forms a green mat-like formation over the water surface, its leaves, stem, and roots
intensely bilobed. Azolla may be used as green manure. Under Indian conditions,
the most common species is Pinnata, and it can be used by vegetative means on a
marketable scale. Recently, few species of Azolla has been introduced in India like
A. caroliniana and Microphylla, for large biomass production.

10.6.4 Phosphate-Solubilizing Bacteria

Effectiveness of P-fertilizer is very poor particularly in acidic and alkaline-natured
soils and, inopportunely, such types of soils are common in India. It is estimated that
more than 34% acidic soils are with considerable amount of saline and alkaline
soils. In such soils, it in essential to use the inoculation of PSB and other useful
microbial inoculants to restore and continue with effective microbial inhabitants in
order to harvest good justifiable crops. From reviewed literature, it is clear that some
bacterial species have remarkable ability to solubilize insoluble phosphate com-
plexes, such as dicalcium phosphate, rock phosphate, tricalcium phosphate, and
hydroxyapatite. This type of potential can be found in certain genera of bacteria
such as Pseudomonas, Bacillus, Rhizobium, Agrobacterium, Achromobacter,
Erwinia, Flavobacterium, Halococcus, Enterobacter, and Micrococcus (Verma
et al. 2016; Yadav et al. 2019, 2015). These include both types of strains, namely
anaerobic and aerobic, with a resemblance to aerobic strains in the submerged soils.
Large volumes of phosphate-soluble bacteria are often available in the rhizosphere
than in non-rhizosphere soils. Bacillus, pseudomonas, and fungi are very common
examples of soil microflora. Significant populations of phosphate-soluble bacteria
are present in soil and in plant rhizosphere.

10.6.5 Mycorrhiza

The term “Mycorrhiza” denotes to “fungus roots.” The fungal spp. gets benefits
from the process of photosynthesis, carried out by the host plant and in turn, the host
is provided with some essential nutrients, particularly zinc, copper, calcium, and
phosphates. This is a symbiotic type of union of certain fungal groups but in the root
system of the host plants. These nutrients are otherwise unreachable for the plant,
but they are made available with the help of the fine absorbing hyphae of the fungus
species. Such fungi are accompanied with many crops, except those of the
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Amaranthaceae Caryophyllaceae, Chenopodiaceae, Polygonaceae, Commelinaceae,
Brassicaceae, and Cyperaceae families (Yadav et al. 2020a, b, c).

10.6.6 Zinc Solubilizers

Azospirillum, BGA, PSB (phosphate-solubilizing bacteria), Rhizobium, Azotobacter,
Pseudomonas striata, and Mycorrhiza are frequently used biofertilizers.
Furthermore, several microorganisms (present in the soil) that are able to process
various kinds of micronutrients such as copper, iron, and zinc including others.
Various microorganisms like Thiobacillus, Thiooxidans, and Saccharomyces sp. can
make this Zn solubilize. Research studies conducted at various places revealed that
Bacillus sp. and zinc solubilizator bacteria have the potential to be used as zinc
biofertilizer, or as native zinc compounds [(zinc oxide (ZnO), zinc sulfide (ZnS),
and zinc carbonate (ZnCOs)]. Under temperate conditions, Rhizobium inoculation
inclines the number of grains and seed weight and thus better yield can be expected.
Using Azospirillum + BGA in rice fields in low lying area has been proved useful
for the development of LAI and yields contributing characters including yield
(Mondal et al. 2020; Rai et al. 2020; Singh et al. 2020a).

10.7 Safeguards to Use Biofertilizers

e Biofertilizer packages must not be directly exposed to sunlight or heat, store the
packages in a cool and dry place.

e Appropriate biofertilizer combinations are essential.

* Since Rhizobium is crop-specific, only the specified crop should be used.

* The biofertilizers should not be mixed with other chemicals.

e When buying one should ensure that each product contains the necessary infor-
mation, such as the name of the product intended for as manufacturer’s name and
address, the date of manufacture, the expiry date, the batch number, and
instructions.

e The package must only be used for the specified crop and for the required appli-
cation method before expiry.

e All nitrogen and phosphatic biofertilizers are live products and need storage care
to be used for the most effective results.

e Use of biofertilizers alongside chemical fertilizers and organic manures is
important.

e Biofertilizers are not fertilizer substitutes but can complement the nutrient
requirements of plants.
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10.8 Certain Problems Using Biofertilizers

Always store these biofertilizers in cold areas, where there is no strong direct sun-
light. These conditions are hard to meet. The accurate and precise combination con-
cerning these biofertilizers is very important, and it is not expected at farmer level.
It is true that biofertilizers are very useful for crops but under field conditions their
maintenance is difficult. The storage requires low temperature conditions as they
are live products. Nevertheless, it is not a substitute to use chemical natured fertil-
izers in place of biofertilizers. Government officials as well as growers require more
awareness and research centers are also expected to encourage INM (Integrated
Nutrient Management) approach which should include biofertilizers. Government
officials as well as growers require more awareness. The research centers are also
expected to encourage INM (Integrated Nutrient Management) approach, for which
they should include biofertilizers.

10.9 Conclusion and Future Prospects

Generally, biofertilizers can be helpful in increasing the supply of plant nutrients
and soil fertility can also be maintained in agricultural field. Furthermore, with the
application of these biofertilizers chemical toxicity in agroecosystems can be pre-
vented. Chemicals utilized during crop production and its residual effect can also be
minimized. Additionally, we may compare that they are economical, renewable, and
works on ecofriendly process, and hence we can say that there is no alternative of
these biofertilizers. However, in current scenario of agriculture we cannot replace
them with chemical fertilizer. Application of biofertilizers is very important as an
Integrated Nutrient approach as well as sustainable nutrient and management of
agricultural field. These practices are most important in current day agriculture with
few latest researches and modern agriculture may also involve in present scenario.
This will be helpful in the prevention of environmental hazards related to the chemi-
cal fertilizers. The demands of biofertilizers are increasing day by day with an addi-
tional vital role in present scenario of our agricultural ecosystem.

We have reviewed the influences of biofertilizers towards crop production along
with their impact on justifiable management of agroecosystem. It is concluded from
available literature that biofertilizers supplement the requirement of nutrient as well
as encourage seed germination and plant protection against various soil borne
pathogens. In biofertilizers, microbes are frequently used, and these nutrients not
only help in INM but also play a significant role in managing soil health. Today due
to population growth and urbanization, increasing demand of food supply, all these
circumstances compel the farmer to use lethal and harmful chemical fertilizer
include pesticides for high and quick production. Therefore, it harms our natural
ecosystem along with soil and human health. In this concern, the integrated approach
is utmost important and need of the hour. But certain problem of biofertilizers like
storage under cool conditions and visible results after long time need to be empha-
sized. More awareness should be there particularly at farmer and consumer level.
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Strong and useful initiative is expected from government and associated agencies to
promote more and more steps like organic farming.
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Abstract

Endophytes reside within internal tissues of living plants without causing any
harm to the host. The influence of these microbial communities on plant growth,
yield, stress, and disease resistance, has been identified as potential research pri-
orities in agriculture. In this chapter, we aim to explore the diverse host—endo-
phyte interactions for plant growth promotion and health. Initially, the
colonization of endophytes in specific plant tissues is discussed along with their
mechanism of entry, habitat selection, response to stimuli, and evasion of the
plant immunity. Endophytic microbes promote plant growth through different
types of direct and indirect mechanisms. Plant growth-promoting endophytes
(PGPE) play a vital role in phytohormone production, nutrient acquisition, nitro-
gen fixation, and solubilization of minerals. Further, indirect mechanisms (like
suppression of plant pathogens by producing volatile organic compounds, antag-
onizing agents, and quorum quenchers) are also discussed in detail. Siderophores
production and the secretion of different hydrolytic enzymes like chitinases, glu-
canases, and proteases also help in the induction of systemic resistance and pro-
tection of the host plants. Bioactive metabolites derived from endophytes serve
as excellent therapeutic agents and have potential applications in agriculture,
cosmetics, pharmaceutical, and food industries. Hereby, this chapter highlights
the scientific rationale behind using endophytic microbiomes as potential biofer-
tilizers, biopesticides, and biocontrol agents.
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11.1 Introduction

Increasing crop yield has attracted wide attention in order to meet global demand
considering the increase in the world’s population. However, conventional farming
practices have certain limitations under increasing challenges like shortage of fertile
lands, climate change, pests, and other associated abiotic and biotic stress. Thus,
various plant growth-promoting microbes are being explored as biofertilizers in
agriculture which seems to be a promising innovation to provide viable and environ-
mentally friendly solutions with the potential to ensure food security (Glick 2014).
However, this can only be achieved through in-depth knowledge about the underly-
ing plant—microbe interactions. Microbes that reside within the plants without caus-
ing any negative impacts are called endophytes. Stimulation of plant defense
responses is some inherent properties of endophytes (de Matos et al. 2001).

Plants are significant atmospheric CO, fixers on Earth. The solar energy enables
plants to utilize CO, and reduce it to glucose and further various carbonaceous com-
pounds. Hence, plant-associated heterotrophic microbes derive carbon, nitrogen,
and energy from the host plants (Vandenkoornhuyse et al. 2007). On the other hand,
plants require the microflora for their growth and stress tolerance. Thus, mutualistic
relationships and interdependence exist between microbes and their host plants
(Thrall et al. 2007; Sharaff et al. 2020; Suman et al. 2016). Potential uses of plant-
associated bacteria as plant growth stimulating agents and management of soil as
well as plant health have been portrayed in numerous literatures. Plant growth-
promoting bacteria (PGPB) are associated with many, if not all, plant species and
are commonly present in many environments (Bashan and Holguin 1998). PGPB
are generally plant growth-promoting rhizobacteria (PGPR) that colonize the root
surfaces and the rhizosphere (the closely adhering soil interface). Some of these
PGPR can also enter the root interior and establish endophytic populations. Prime
sites for bacterial colonization are lateral root emergence sites, outer cell layers, root
cortex, phloem, and xylem, which may occur both intracellularly and inside the
apoplast (Fig. 11.1).

Microbes can evade the endodermis barrier, moving from the root cortex to the
vascular system, and eventually colonize as endophytes in roots, shoot, leaves,
tubers, flowers, and other organs. Internal tissues of root, internodes, and leaves of
grapevine are colonized by the PGPB Burkholderia sp. strain PsIN. Similarly, the
surface and interior of roots, stems, and needles of lodgepole pine (Pinus contorta
Dougl. var. latifolia Engelm.) harbor the diazotrophic bacterial strain Paenibacillus
polymyxa P2b-2R (Liu et al. 2017). A facultative intracellular symbiont of
Methylobacterium extorquens strain DSM 13060 was isolated from the Scots pine
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Fig. 11.1 A schematic representation of the bacterial distribution and colonization patterns in the
endosphere of a plant root. The emerging sites of lateral roots are among the hotspots of bacterial
colonization. Arrows represent the translocation of bacteria inside the xylem and phloem.
Endophytic bacteria may engage in different lifestyles as depicted by different colored ovals.
Adapted with permission from Liu et al. (2017)

(Pinus sylvestris L.) shoot tips where the bacteria aggregated within the living cells
surrounding the nucleus (Koskimiki et al. 2015). Microbes adapt to particular inter-
nal tissue environment by varying its extent of colonization within host plant organs
and tissues (Gray and Smith 2005; Rana et al. 2019b). Consequently, close
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associations between endophytes and host plants are formed without causing any
adverse effects to the plant. These endophytes do not cause harm to the plant and
establish a mutualistic association with the host plant (Rana et al. 2019c). This
chapter covers diverse aspects of plant growth-promoting endophytic bacteria and
fungus. Endophyte-associated distribution patterns; nutrient uptake, phytohormone
production, and stress tolerance are elaborated with minute details. Further, their
role in augmenting the phytoremediation potential of host plants is also discussed.

11.2 Endophytes

The term “endophyte” is a microbe that asymptomatically colonizes internal living
tissues of plants (host) during a particular period of their life span (Stone et al.
2000). Endophytes do not harm the host plant and can be isolated from surface-
sterilized plant tissue or the inner tissues of the host plant (Hallman et al. 1997). A
few of these microbes are believed to actively infiltrate plant tissues through invad-
ing wounds or openings or using hydrolytic enzymes like pectinase and cellulase.
Some endophytes emerge from the rhizosphere or phylloplane microflora, by infil-
trating and colonizing root tissue as a passage to the xylem. However, on infection
with endophytes, plants become healthy and exhibit enhanced tolerance to abiotic
and biotic stress compared to their endophyte-free counterparts (Bonnet et al. 2000).
Endophytic microbes can be bacteria, actinomycetes, or fungi (Rana et al. 2019a;
2020a, ¢).

It seems bacteria are most suitable for living inside plants by natural selection.
The source of bacterial endophytes is microbial diversity of soil or rhizosphere and
their clones. Endophytes are known for >120 years (Hardoim et al. 2009). In 1926,
endophytic growth was recognized as a particular stage in the life of bacteria,
described as an advanced stage of infection, and as having a close relationship with
mutualistic symbiosis (Perotti 1926). Since then, various endophytes are isolated
from surface-disinfected plant organs (Henning and Villforth 1940). Potato-
associated bacterial communities indicated, in a large study conducted, that species
richness and diversity were lower for endophytes than the rhizosphere of potato
(Berg et al. 2005). However, the microbiome in the root endosphere is significantly
less diverse compared to the microbiomes in the rhizosphere and bulk soil. Hence,
roots can work as the most effective habitat filters, restricting community member-
ship resulting in more narrowly defined lineages as the niche from soil to roots.
Root endophytic bacterial communities are typically dominated by Proteobacteria
(~ 50% in relative abundance), Actinobacteria (~ 10%), Firmicutes (~ 10%), and
Bacteroidetes (~ 10%) apart from other bacterial phyla that include Chloroflexi,
Cyanobacteria, Armatimonadetes, Verrucomicrobia, Planctomycetes, and
Nitrospirae.
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11.3 Ubiquity of Endophytes

The presence of endophytes is thought to be ubiquitous in plants as they can be
detected in almost all parts including root, shoot, leaves, internodes, and reproduc-
tive tissues as well. The differences between the endosphere microbiomes of the
root and shoot determine the source of dominant endophytes in them. Root-
associated endophytes are primarily derived from soil, which then colonizes inter-
nal tissues of stems and leaves through the apoplast in xylem vessels. Therefore, it
is common to have microbes of the plant leaf/shoot endosphere significantly over-
lapping with those in roots at both the taxonomic and functional levels. Recent
molecular identification provides a strong evidence of diverse genera and species in
endophytes. Kobayashi and Palumbo (2000) reported both Gram-positive and
Gram-negative bacterial endophytes from different internal tissues of diverse plant
species. Significant variations in populations of both indigenous and infiltrated
endophytes were reported which might be attributed to the tissue type, source, plant
age, time of sampling, and the environment. Interactions of the internal microflora
of plants are needed to be investigated that might lead to beneficial effects due to
their combined activities.

There is a deep underlying genetic basis for the differential colonization of vari-
ous plant tissues by endophytes. Degradation of the cell wall facilitates entry of the
bacteria within the interior for translocation to the apoplast. The genome of endo-
phytic bacteria harbors numerous genes encoding cell wall-degrading enzymes
(Straub et al. 2013). Genes encoding plant polymer degrading enzymes like cellu-
lases, endoglucanase, xylanases, cellobiohydrolases, and cellulose-binding proteins
have been reported in high copy numbers in the metagenome of rice root endophytic
bacterial communities (Sessitsch et al. 2012). Bacteria in the phyllosphere may be
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Fig. 11.2 A schematic representation of bacterial colonization patterns in a leaf. The picture
shown on the left demonstrates that the presence of bacteria has been detected in the leaf petiole,
midrib, and veins. The picture shown on the right is a magnified leaf cross section, which demon-
strates that endophytic bacteria may not only colonize the apoplast but are also present intracellu-
larly. Endophytic bacteria are believed to be able to ascend from roots to the leaf via the vascular
tissues of the xylem and phloem. Adapted with permission from Liu et al. (2017)
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Table 11.1 Complete genomes from bacterial endophytes and their plant-growth promoting traits

Endophytic microbes

Genome size Mb
(Replicons)

Host plant

PGP traits

Azoarcus sp. BH72

4.37 (1 chr, 0 pl)

Rice

Nitrogen fixation

Azospirillum lipoferum
4B

6.85 (1 chr, 6 pl)

Rice, maize, wheat

Nitrogen fixation,
phytohormone secretion

Azospirillum sp. BS10

7.6 (1 chr, 6 pl)

Rice

Nitrogen fixation,
phytohormone secretion

Burkholderia 8.2 (2 chr, 1 pl) Potato, tomato, IAA synthesis, ACC
phytofirmans PsIN maize, barley, deaminase

onion, canola,

grapevine
Burkholderia spp. 6.6 (3 chr, 1 pl) Rice ACC deaminase, nif gene
KJ006 cluster, antifungal action

(indirect PGP)

Enterobacter cloacae | 4.7 (1 chr, O pl) Pepper Unknown role in PGP
ENHKUO1
Enterobacter sp. 638 4.67 (1 chr, 1 pl) | Poplar Siderophore, IAA, acetoin

and 2,3-butanediol
synthesis, antifungal action
(indirect PGP)

Gluconacetobacter
diazotrophicus Pal5

3.9 (1 chr, 2 pl)

Sugarcane, rice,
coffee, tea

Nitrogen fixation, auxin
synthesis

Klebsiella pneumoniae
342

5.9 (1 chr, 2 pl)

Maize, wheat

Nitrogen fixation

Pseudomonas putida 5.77 (1 chr, 0 pl) | Poplar AA synthesis, ACC
W619 deaminase
Pseudomonas stuzeri 4.5 (1 chr, 0 pl) Rice Nitrogen fixation
A1501
Serratia 5.5 (1 chr, 1 pl) Soybean TAA synthesis, ACC
proteamaculans 568 deaminase, acetoin, and
2,3-butanediol synthesis
Stenotrophomonas 4.57 (1 chr, O pl) | Poplar TAA synthesis, ACC

maltophilia R551-3

deaminase

Source: Adapted with permission from Santoyo et al. (2016)

derived from soil or may have entered through natural openings (e.g., stomata and
hydathodes), wounds, and cracks generated by wind, insects, and pathogen attacks
(Vorholt 2012). Figure 11.2 shows that specific sites of bacterial colonization in a
leaf are mostly upper epidermis cells, palisade mesophyll cells, xylem vessels as
well as spaces between spongy mesophyll layer cells (Olivares et al. 1997). Bacterial
endophytes are detected in plant reproductive organs, such as flowers, fruits, and
seeds, although in small numbers. Table 11.1 represents various bacterial endo-
phytes from crop plants.
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11.4 Role of Endophytes in Plant Growth Promotion

Benefits conferred by endophytes are well recognized but it may not always be clear
which population of microorganisms (endophytes or rhizospheric bacteria) pro-
motes plant growth. Differential gene expression might facilitate entry, coloniza-
tion, and also plant growth promotion. Nitrogen fixation (Iniguez et al. 2004) or the
production of phytohormones, by enhancing the availability of minerals (Sessitsch
et al. 2004; Sturz et al. 2000), may help to promote plant growth. Further endo-
phytes may lay a critical role in biocontrol of phytopathogens as they colonize the
same ecological niche. Various mechanism of biocontrol includes production of
antifungal or antibacterial agents, siderophore production, nutrient competition, and
induction of systematic-acquired host resistance or immunity (Thakur et al. 2020).
Endophytic microorganisms have the capacity to control pathogens, insects, and
nematodes (Rana et al. 2020b). In some cases, they also have the capacity to accel-
erate seedling emergence and promote plant establishment under adverse condi-
tions. Endophytes can confer metal resistance to plants and reduce metal toxicity
due to their own metal resistance capability (Ma et al. 2016).

11.5 Mechanisms of Plant Growth Promotion

A deficiency in macro and micronutrients in the soil is detrimental to crop yield and
the affected plants become more prone to soil-borne pathogens such as Fusarium,
Pythium, and Phytophthora. Hence chemical fertilizers, herbicides, fungicides, and
pesticides are largely used in order to overcome the problems. However, these
harmful and toxic chemicals pose a potential threat to human health and the envi-
ronment as well (Aktar et al. 2009; (Kour et al. 2020b). Endophytes enable the
plants to overcome habitat-imposed abiotic and biotic stresses which otherwise
result in major losses in plant yield. Endophytic bacteria are capable of promoting
plant growth and development through a wide variety of not only direct mechanisms
which include nutrient (e.g., phosphorous, nitrogen, and iron) acquisition and pro-
duction of various phytohormones (Santoyo et al. 2016; Yadav et al. 2020) but also
indirect mechanisms for plant growth promotion such as antagonistic effects toward
phytopathogens (Compant et al. 2010; Rastegari et al. 2020a, b). It also includes the
production of defense-related enzymes like chitinase and p-1,3-glucanase, secreting
antimicrobial compounds, lowering endogenous stress-related ethylene (ET), induc-
tion of systemic resistance (ISR), quenching the quorum sensing (QS) of phyto-
pathogens, and competition for niche and/or resources (Compant et al. 2010; Glick
2014; Santoyo et al. 2016; Singh et al. 2020a). In the following section, various
direct and indirect mechanisms of plant growth promotion by endophytic bacteria
are elaborated (Ma et al. 2016).
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11.5.1 Direct Mechanisms

Endophytes directly promote plant growth using various mechanisms that include
phytohormone production, nutrient acquisition, nitrogen fixation, and solubilization
of minerals.

11.5.1.1 Phytohormone Production

Five types of phytohormones, e.g., ethylene, indole-3-acetic acid (IAA), cytokinins,
gibberellins, and abscisic acid may play an important role in several stages such as
cell elongation, cell division, tissue differentiation, and apical dominance. Both host
plants and their endophytes can synthesize these hormones. Hormonal balance of
the plant can be altered by plant-associated bacteria as well.

Ethylene is an important example to show that the balance is most important for
the effect of hormones. An ubiquitous plant hormone, it plays a vital role in plant
growth and survival, to abiotic and biotic stresses including root initiation and nodu-
lation, cell elongation, leaf senescence, abscission, and fruit ripening as well as
auxin transport (Ma et al. 2016). While normally considered as an inhibitor of plant
growth and known as a senescence hormone, at reduced levels it can stimulate plant
growth in Arabidopsis thaliana (Pierik et al. 2006). Stress-mediated ethylene pro-
duction inhibits root elongation, lateral root growth, and root hair formation. It is
interesting to note that the endophytes can reduce the ethylene level. The compound
1-aminocyclopropane-1-carboxylate (ACC) is a precursor of ethylene in plants.
ACC-deaminase-producing bacteria can degrade ACC into a-ketobutyrate and
ammonia, which can be metabolized by the microbes as nitrogen source. Thus,
bacteria-mediated reduction of endogenous ACC levels results in root growth (Glick
2005). ACC deaminase-producing bacteria have an additional potential to protect
plants against biotic and abiotic stress owing to the fact that ethylene is also a stress
hormone (Ma et al. 2016; Saleem et al. 2007).

Indole acetic acid (IAA), one of the most physiologically active auxins, is pro-
duced by various plant organs like young leaves and germinating seeds by utilizing
the amino acid tryptophan. IAA plays a significant role in plant growth by bringing
about apical dominance, promoting root development and proliferation, tropisms
(phototropism in the case of shoots and gravitropism in the case of roots), and
inducing cell division and differentiation (Tiwari et al. 2020). IAA is a common
product of L-tryptophan metabolism by several endophytes leading to plant mor-
phogenic effects. Evidence suggests that endophytes produce IAA while colonizing
the internal plant tissues and thereby promoting plant growth. The Pseudomonas
stutzeri P3 strain was found to produce IAA in Echinacea plants and help in the
proliferation of these plants even after micropropagation, likewise, a number of
bacteria such as Agrobacterium tumefaciens, A. rhizogenes, Pseudomonas savas-
tanoi, Pseudomonas spp., Rhizobium spp., Bradyrhizobium spp., Azospirillum spp.,
and Acinetobacter spp. associated with the plants are known to produce IAA
(Huddedar et al. 2002; Rao 1986; Baldi et al. 1991; Leinhos 1994).
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11.5.1.2 Nutrient Acquisition

Nitrogen

Improved nutrient acquisition helps to promote plant growth directly. Plant-
associated microorganisms can supply macronutrients and micronutrients, most sig-
nificant example being bacterial nitrogen fixation. Nitrogen-fixing bacteria can use
root exudates (carbohydrates) and in return provide nitrogen to the plant that can be
used for amino acid synthesis. Azospirillum, Burkholderia, and Stenotrophomonas
are free-living nitrogen-fixing bacteria (Dobbelare et al. 2003). Brazilian sugarcane
requires minimum amounts of fertilizer and shows no N, deficiencies due to N, fix-
ing endophytes within them. However, level of N, fixed by endophytes and amount
available to the host plant is still needed to be investigated (Giller and Merckx
2003). Different reports suggest that 30-80 kg N/ha/year are available (Boddey
et al. 1995). Under optimal conditions, some plant genotypes seem to obtain part of
their N requirements from nitrogen fixation. Kallar grass grows in nitrogen-deficient
soils in Pakistan and a diversity of Azoarcus spp. was recovered (Reinhold-Hurek
et al. 1993). Inside wheat, Klebsiella sp. strain Kp342 fixes N, that also increases
maize yield in the field (Iniguez et al. 2004; Riggs et al. 2001).

Similarly, nitrogen-fixing endophytes seem to relieve N, deficiencies of sweet
potato (Ipomoea batatas) in N,-poor soils (Reiter et al. 2003). Grasses growing in
nutrient-poor sand dunes contain members of genera Pseudomonas,
Stenotrophomonas as well as Burkholderia. Burkholderia endophytes could con-
tribute nitrogen to the grasses because nitrogenase was detected in roots and cell
walls of stems and rhizomes (Dalton et al. 2004). Similarly, the endophytic genera
Burkholderia, Rahnella, Sphingomonas, and Acinetobacter isolated from the stem
of Populus trichocarpa and Salix sitchensis enhanced the growth of plants by pro-
viding abundant nitrogen owing to their nitrogen-fixing ability (Doty et al. 2009).
Some endophytic bacteria possess both nitrogen fixation (e.g., nifH) and denitrifica-
tion genes. The nitrogen-fixing isolates P. polymyxa P2b-2R isolated from lodge-
pole pine tissue could effectively colonize both rhizosphere and endosphere of
maize plants resulting in plant growth promotion (Puri et al. 2016).

Phosphorous

Phosphorous (P) is an essential micronutrient that helps in the proper functioning of
metabolic activities, glucose transport, development of roots, and many other physi-
ological processes (Ahemad 2015). Since more than 75% of applied phosphorus
forms complexes and are unavailable for plant uptake, endophytes may either solu-
bilize precipitated phosphates by acidification, chelation (i.e., PO,*"), ion exchange,
and release of organic acid or secrete extracellular acid phosphatase to mineralize
organic phosphorus resulting in phosphorous availability to plants (van der Hiejden
et al. 2008; Kour et al. 2020a; Singh et al. 2020b).

Endophytic bacteria possess the capacity to solubilize phosphates. It was sug-
gested that the endophytic bacteria from soybeans may also participate in phosphate
assimilation (Kuklinsky-Sobral et al. 2004). Recently, de Werra et al. (2009)
reported that Pseudomonas fluorescens CHAO could reduce the pH of its
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surrounding environment that helps in solubilization of mineral phosphate. This
acidification was strongly dependent gluconic acid-producing ability of the endo-
phyte that can be strongly correlated with antagonistic activity against plant patho-
gens. Further, Idriss et al. (2002) demonstrated that plants inoculated with a
phytase-secreting Bacillus amyloliquefaciens FZB45 under P-limitation may result
in significant growth enhancement in maize seedlings compared to non-inoculated
controls. However, there are no reports of naturally occurring endophytic bacteria
with phytase-secreting ability (Ma et al. 2016).

Iron

Iron (Fe) is vital as iron-containing proteins involved in enzymatic reactions are
essential for various physiological activities like transpiration (Bothwell 1995). Iron
exists in soil in highly insoluble ferric (Fe**) forms such as oxides, hydroxides,
phosphates, and carbonates not available for plant uptake. Microbially secreted che-
lating agents (e.g., siderophores) help to solubilize Fe under conditions of iron defi-
ciency. Siderophores, low-molecular weight organic compounds (500-1500 Da)
having an affinity for Fe** ions, also bind other bivalent metal ions or Fe?* that can
be assimilated by the plant (Rajkumar et al. 2009). The siderophore is discussed in
more detail in the indirect mechanisms section.

11.5.2 Indirect Mechanisms of Plant Growth Promotion

Indirect mechanisms mainly include the suppression of the growth or survival of
plant pathogens (phytopathogens) and, thus, bring about the promotion of plant
growth by microbial antagonism. Endophytes may produce substances like volatile
organic compounds, antagonizing agents, and quorum quenchers that may effec-
tively resist phytopathogen-associated disease. Further, siderophore production and
secretion of diverse hydrolytic enzymes (such as chitinases, proteases, and gluca-
nases) and induction of systemic resistance also protect the host plants (Sheoran
et al. 2015; Mondal et al. 2020).

11.5.2.1 Competition for Colonization Sites

The root surface and internal tissues of plants are significant carbon sinks (Rovira
et al. 1965) and nutrient-rich niches that attract diverse groups of microbes includ-
ing phytopathogens. PGPB protects plants by competing with the phytopathogens
over these nutrients and niches (Duffy 2001). Brock et al. (2013) reported that a
potent endophyte, Enterobacter radicincitans DSM 16656, induced priming in
Arabidopsis via SA- and JA/ET-dependent pathways. Likewise, endofungal bacte-
rium R. radiobacter F4 exhibited nonspecific plant root colonization and enhanced
plant resistance against the bacterial leaf pathogens Xanthomonas translucens pv.
translucens and Pseudomonas syringae pv. tomato DC3000 (Liu et al. 2017).
However, it is yet to be investigated whether endophytes contribute to priming
and ISR.
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11.5.2.2 Volatile Organic Compounds and Antagonizing Agents
Endophytic bacteria produce volatile organic compounds (VOCs) that can render
resistance to the host plants against the phytopathogens (Chung et al. 2016). On
inoculation with endophytic Enterobacter aerogenes that produce VOC
2,3-butanediol (2,3-BD), maize plants exhibited increased resistance against
Setosphaeria turcica associated northern corn leaf blight disease (D’Alessandro
et al. 2014). The endophytic Pseudomonas poae strain RE*1-1-14 isolated from
sugar beet roots suppressed the fungal pathogen Rhizoctonia solani (Zachow et al.
2015). Further, P. poae produced a novel lipopeptide poacamide that suppressed
R. solani-associated pathogenesis in sugar beetroots. Similarly, endophytic B. amy-
loliquefaciens was reported to produce a series of isoforms of iturins that can confer
protection to its host against pathogens (Han et al. 2015). VOCs produced by P. fluo-
rescens and Serratia plymuthica inhibited tumorigenic strains of A. tumefaciens and
A. vitis induced crown gall disease in tomatoes. Solid-phase microextraction—gas
chromatography—mass spectrometry analysis revealed dimethyl disulfide (DMDS)
and 1-Undecene as the major VOCs produced by S. plymuthica IC1270 and P. fluo-
rescens strains, respectively (Dandurishvili et al. 2011).

11.5.2.3 Quorum Quenching

Quorum sensing is an important phenomenon exhibited by numerous pathogenic
microbes in order to survive in a specific ecological niche, communicate between
cells, undergo multiplication, control biofilm formation, and induce competence
and also adaptation (Miller and Bassler 2001). Certain endophytic bacteria employ
QS quenching as an antivirulence strategy to control phytopathogen. Endophytic
bacterial strains, Bacillus sp. strain B3, Bacillus megaterium strain B4, Brevibacillus
borstelensis strain B8, and Bacillus sp. strain B11 from Cannabis sativa L. effi-
ciently disrupt cell-to-cell communication in Chromobacterium violaceum via
quenching its QS signals (Kusari et al. 2014). It is important to note that a diffusible
signal factor (DSF) is essential in several Xanthomonas species and Xylella fastidi-
osa-associated phytopathogenesis (Newman et al. 2008). Bacillus and Pseudomonas
were reported to complement carAB, a gene responsible for fast DSF degradation in
the Pseudomonas spp. strain G. This mechanism can be exploited as a powerful
strategy in the biocontrol of DSF producing pathogens and, thus, can be deployed in
agriculture (Liu et al. 2017).

11.5.2.4 Siderophores Production

Iron is a vital metal for growth in all living organisms. There is a great competition
for bioavailable iron in soil habitats as well as on plant surfaces. Under iron-limiting
conditions, endophytes produce low-molecular-weight compounds called sidero-
phores to competitively acquire ferric ion (Whipps 2001). Although various bacte-
rial siderophores differ in their abilities to sequester iron, in general, they deprive
pathogenic fungi of this essential element since the fungal siderophores have lower
affinity (Loper and Henkels 1999; O’Sullivan and O’Gara 1992). Some plant
growth-promoting endophytes go one step further and draw iron from heterologous
siderophores produced by cohabiting microorganisms (Wang et al. 2003; Whipps
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2001). Primarily, siderophores help to acquire iron either from iron adsorbed to
solid surfaces or from insoluble hydroxides. Siderophores can also extract iron from
soluble and insoluble iron compounds, such as ferric-citrate, Fe-transferrin, ferric
phosphate, ferritin, or iron bound to sugars, plant flavone pigments, and glycosides
or even from artificial chelators like EDTA and nitritriacetate by Fe(IIl)/ligand-
exchange reactions. Hence, although siderophores don’t play a direct role in iron
solubilization, they can act as carrier for exchange between extracellular iron stores
and membrane-located siderophore-transport systems (Winkelmann 2002).
Siderophores play a significant role in microbial metabolism because of the follow-
ing facts:

1. Siderophores mainly consist of hydroxamate, catecholate, or a-
hydroxycarboxylate ligands that form hexadentate Fe(III) complexes, satisfying
the six coordination sites on ferric ions which make them most significant iron-
binding ligands.

2. Siderophore biosynthesis is a highly regulated process which is triggered by iron
limitation resulting in building up of high local concentrations of siderophores in
the vicinity of microbial cells.

3. Siderophores exhibit structural and conformational specificities to fit into mem-
brane receptors and/or transporters besides their ability to solubilize iron and to
function as external iron carriers (Stintzi et al. 2000; Huschka et al. 1986; Ecker
et al. 1988).

Endophytic isolates of Phialocephala fortinii from P. sylvestris root, Carex cur-
vula, Abies alba, Picea abies, and P. sylvestris showed that siderophore production
is a function of pH values and iron(IIl) concentrations; 4.0-4.5 was the range of pH
at which maximum siderophore production was found with the optimal ferric iron
concentration of 20-40 pg iron (III) L™' (0.36-0.72 pM, respectively). The most
predominant siderophores produced by P. fortinii is ferricrocin (a hydroxamate sid-
erophore) followed by ferrirubin and ferrichrome C (Bartholdy et al. 2001). An
endophytic Streptomyces sp. GMKU 3100 isolated from the roots of a Thai jasmine
rice plant (Oryza sativa L. cv. KDML105) exhibited remarkably high level of sid-
erophore production. Inactivation of desD-like gene that codes a key enzyme
responsible for the final step in siderophore biosynthesis resulted in impairment of
siderophore production. Rice and mungbean plants inoculated with the wild-type
strain-enhanced plant growth and significantly increased root and shoot biomass
and lengths unlike siderophore-deficient mutant treatments (Figs. 11.3 and 11.4).
Endophytic actinomycetes, therefore, can be applied as a potentially safe and envi-
ronmentally friendly biofertilizer in agriculture (Rungin et al. 2012).

11.5.2.5 Lytic Enzyme Production

Various extracellular enzymes from microbes perform their function outside the cell
which is significant to host—-endophyte interdependence. Bacteria and fungi produce
various extracellular enzymes that include hydrolases, lyases, oxidoreductases, and
transferases (Traving et al. 2015; Kour et al. 2019b). The substrates are mostly
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Fig. 11.3 Plant growth parameters of rice plants (Oryza sativa L. cv. KDML105) inoculated with
Streptomyces sp. GMKU 3100 and the siderophore-deficient mutant after 14 days. (a) 14-day rice
plants; (b) root and shoot lengths with 10 pM Fe-citrate; (¢) root and shoot lengths without 10 pM
Fe-citrate; (d) root dry/fresh weights and shoot dry/fresh weights with 10 pM Fe-citrate; (e) root
dry/fresh weights and shoot dry/fresh weights without 10 pM Fe-citrate; C uninoculated plant
(control), WT Streptomyces sp. GMKU 3100, MT siderophore-deficient mutant. Data are the mean
of ten replicates. Means designated with different letters are significantly different (p = 0.05). Error
bars show standard deviation (n = 10). Adapted with permission from Rungin et al. (2012)

macromolecules such as carbohydrates, proteins, lignin, sugar-based polymers, and
organic phosphate which are broken down into simpler forms that can be easily
transported, absorbed, and assimilated. Enzymes secreted by endophytes help to
initiate the association with the host and symbiosis process. Extracellular hydroly-
ases counteract plant pathogenic infection (Leo et al. 2016). In fact, certain catego-
ries of enzymes namely, cellulases, xylanases, phytases, hemicellulases,
asparaginase, proteases, gelatinase, pectinases, tyrosinase, chitinase, amylases, etc.,
are some of the key enzymes produced by endophytic bacteria and fungi.
Endophytic bacterial strains have been isolated from various plants such as pea
(P. sativum), tomato (Lycopersicum esculentum), corn (Zea mays), wheat (Triticum
aesitivum), oat (Avena sativa), canola (Brassica napus), barley (Hordeum vulgare),
radish (Raphanus sativus) soybean (Glycine max), potato (Solanum tuberosum), let-
tuce (Lactuca serriola), and cucumber (Cucumis sativa) were identified and charac-
terized that belong to the genus Arthrobacter, Actinobacter, Aeromonas,
Agrobacterium, Alcaligenes, Bacillus, Azospirillium, Enterobacter, Flavobacterium
Pseudomonas, Acinetobacter, Azotobacter, Beijerinckia, Burkholderia, Enterobacter,
Erwinia, Flavobacterium, Rhizobium, and Serratia (Khan et al. 2017; Gray and
Smith 2005). Vijayalakshmi et al. (2016) isolated endophytic bacteria from medici-
nally important plants, producing a-amylase, protease, and cellulase. Similarly, Leo
et al. (2016) reported endophytic bacteria, Alcaligenes faecalis, Burkholderia
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Fig. 11.4 Plant growth parameters of mungbean plants (Vigna radiata (L.) Wilczek cv. CN72)
inoculated with Streptomyces sp. GMKU 3100 and the siderophore-deficient mutant after 28 days.
(a) 28-day mungbean plants; (b) root and shoot lengths with 10 pM Fe-citrate; (c) root and shoot
lengths without 10 pM Fe-citrate; (d) root dry/fresh weights and shoot dry/fresh weights with
10 pM Fe-citrate; (e) root dry/fresh weights and shoot dry/fresh weights without 10 uM Fe-citrate;
C uninoculated plant (control), WT Streptomyces sp. GMKU 3100, MT siderophore-deficient
mutant. Data are the mean of ten replicates. Means designated with different letters are signifi-
cantly different (p = 0.05). Error bars show standard deviation (n = 10). Adapted with permission
from Rungin et al. (2012)

cepacia, and Enterobacter hormaechei from perennial grasses that showed the
hyper-enzymatic activity of a-amylase, protease, and cellulose (Table 11.2).

A variety of microorganisms also exhibited hyperparasitic activity, attacking
pathogens by excreting cell wall hydrolases. Chitinase produced by S. plymuthica
C48 inhibited spore germination and germ-tube elongation in Botrytis cinerea
(Frankowski et al. 2001). The ability to produce extracellular chitinases is consid-
ered crucial for Serratia marcescens to antagonize Sclerotium rolfsii (Ordentlich
et al. 1988). Using similar mechanisms, Paenibacillus sp. and Streptomyces sp. sup-
press Fusarium oxysporum while Pseudomonas sp. suppresses Fusarium solani, the
commonly known plant pathogen (Lim et al. 1991). Many endophytic fungi like
Alternaria alternate, Hymenoscyphus ericae, and Aspergillus terreus also produce
extracellular enzyme xylanase producers including those found in Table 11.3.
Similarly, the endophyte Periconia sp. produced -glucosidase, while Acremonium
species produced cellulases and hemicellulases.

11.5.2.6 Induced Systemic Resistance

Induced systemic resistance (ISR) is the immunity response mechanism inherent in
crop plants that can be triggered by beneficial microbial endophytes during biotic
and abiotic stress conditions which may include temperature, salinity, drought,
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Table 11.2 Endophytic bacterial strains producing extracellular enzymes

Endophytic Microbes

Enzyme

Detection method

Actinomyces pyogenes, Bacillus circulans,
Bacillus coagulans, Bacillus licheniformis,
Bacillus megaterium, Corynebacterium
renale, Pseudomonas stutzeri,
Staphylococcus sp., Bacillus sp.

Amylase, esterase
Lipase, protease

Agar medium

Pseudomonas oryzihabitans

Asparaginase

Spectrophotometer

Bacillus sp., Bacillus clausii, Bacillus
pumilus, Bacillus licheniformis

Amylase, protease,
cellulose, lipase

Agar medium

Pseudomonas sp. Exo-p-agarase Spectrophotometer,
NMR

Bacillus sp. L-asparaginase Spectrophotometer

Bacillus amyloliquefaciens Phytase Spectrophotometer

Paenibacillus polymyxa

Fibrinolytic enzymes

Agar medium, SDS
Page

Rhizobium, Massilia, Kosakonia,
Pseudorhodoferax, Caulobacter, Pantoea,
Sphingomonas, Burkholderia,
Methylobacterium, Bacillus,
Curtobacterium, Microbacterium,
Mucilaginibacter, Chitinophaga

ACC deaminase,
endoglucanase, protease

Agar medium

Acinetobacter sp., Bacillus sp.

ACC deaminase,
cellulase, protease,
amylase, pectinase

Agar medium

Bacillus licheniformis, Bacillus
pseudomycoides, Paenibacillus
senitriformus

L-asparaginase

M9 medium

Pseudomonas hibiscicola, Macrococcus
caseolyticus, Enterobacter ludwigii,
Bacillus anthracis, Bacillus tequilensis,
Pseudomonas entomophila,
Chryseobacterium indologenes, Bacillus
aerophilus

Cellulase, xylanase,
amalyase, pectinase

Agar diffusion method

Bacillus thuringiensis Anthracene Spectrophotometer

Bacillus amyloliquefaciens Exopolysaccharides Colorimetric method

Bacillus subtilis YbdN protein SDS-PAGE,

MALD-TOF-MS

Serratia marcescens, Bacillus subtilis, L-asparaginase Spectrophotometer

Bacillus methylotrophicus, Bacillus

siamensis

Paenibacillus polymyxa, Bacillus sp. Cellulase, xylanase, Agar diffusion method
pectinase

Paenibacillus amylolyticus Pectin lyase Spectrophotometer

Alcaligenes faecalis, Burkholderia
cepacia, Enterobacter hormaechei

Cellulosic,
hemicellulosic, lignin

National renewable
energy laboratory
methods

Sources: Adapted with permission from Khan et al. (2017)
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Table 11.3 Enzyme production from different endophytic fungal species

Microbes

Enzyme produced

Detection method

Penicillium funiuclas, Trichoderma viride

Amylase,
cellulose,
protease, lipase

Agar plate base test

Colletrotrichum, Fusarium, Phoma, Penicillium

L-Asparaginase

Pink zones on agar,

nesslerization
Aspergillus sp. Amylase Agar medium
Pochonia chlamydosporia Protease Spectrophotometer
Colletotrichum gloeosporioides Protease,
chitinase,
amylase
Fusarium sp., Chaetomium sp., Colletotrichum sp., | Amylase, Agar medium

Aspergillus flavus, Cylindrocephalum sp.,
Coniothyrium sp., Phoma sp., Aspergillus niger,
Colletotrichum sp., Mycelia sterilia sp., Aspergillus
fumigates, Alternaria sp., Colletotrichum
gleosporoides, Colletotrichum sp., Myrotheium sp.,
Fusaruim chlamydosporum, Xylaria sp.,
Fusicoccum sp., Mycelia sterilia sp., Aspergillus
sp., Pestalotiopsis sp., Colletotrichum sp.,
Talaromyces emersonii, Pyllosticta sp.,
Pestalotiopsis sp., Discosia sp., Aspergillus sp.,
Mycelia streilia sp., Isaria sp., Xylaria sp., Phoma
sp., Pestalotiopsis disseminate, Fusarium
oxysporum, Paecilomyces variotii, Fusarium
chlamydosporum, Acremonium implicatum,
Nigrospora sphaerica, Fusarium solani, Penicillium
sp., Mycelia sterilia sp., Phoma sp., Basidiomycetes
sp., Colletotrichum falcatum, Phomopsis longicolla
Fusarium oxysporum, Colletotrichum
gleosporoides, Colletotrichum truncatum,
Drechsclera sp., Cladosporium sp., Myrothecium

sp.

cellulase, laccase,
lipase, pectinase,
protease

Cladosporium sp., Rhizoctonia sp., Aspergillus sp.,
Chaetomium sp., Biosporus sp., Fuzarium sp.,
Curvularia sp., Cladosporium sp., Colletotrichum

sp.

Amylase,
protease,
cellulose, lipase

Agar medium,
spectrophotometer

Cladosporium cladosporioides, Curvularia
brachyspira, C. verruciformis, Drechslera
awaiiensis, Colletotrichum carssipes,
Colletotrichum falcatum, Colletotrichum
gloeosporioides, Lasiodiplodia theobromae,
Nigrospora sphaerica, Phyllosticta sp. Xylariales

Amylase,
cellulase, laccase,
lipase, protease

Agar medium

Cladosporium cladosporioides, C.
sphaerospermum, Acremonium terricola,
Monodictys castaneae, Penicillium glandicola,
Phoma tropica, Tetraploa aristata

Pectinases,
cellulases,

xylanases,

proteases

Agar medium

(continued)
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Table 11.3 (continued)

Microbes Enzyme produced | Detection method
Amanita muscaria, A. muscaria, A. spissa, Boletus Protease Agar medium
luridus, Cenococcum geophilum, Cortinarius
glaucopus, C. purpurascens, Hydnum rufescens,
Hymenoscyphus ericae, Laccaria cf., Lactarius
acerrimus, L. auriolla, L.chrysorrheus, L.
controversus, L. deliciosus, L. deterrimus, L.
evosmus, L. pubescens, L. quieticolor, L. quietus, L.
rufus, L. semisanguifluus, L. subdulcis, L.
subumbonatus, L. zonarius, Piceirhiza bicolorata,
Piloderma fallax, Piloderma byssinum, Russula
chloroides, R. sanguinea, Suillus luteus, S. luteus,
Tricholoma cf. equestre, S. variegatus, T. fulvum, T.
scalpturatum
Eurotiales, Chaelomiaceae, Incertae sadis, Celluloses, Spectrophotometer
Aureobasiduaceae, Nectriaceae, Sporomiaceae phosphatases,
glucosidases
Colletotrichum sp., Macrophomina phaseolina, Cellulase, Agar medium
Nigrospora sphaerica, Fusarium solani protease, amylase
Cochliobolus lunatus, C. australiensis, Gibberella Cellulase, Agar medium
baccata, Myrmecridium schulzeri, Penicillium protease,

commune, Phoma putaminum, Acremonium
curvulum, Aspergillus Niger, A. ochraceus, P.
glabrum, C. lunatus, G. fujikuroi, Myrothecium
verrucaria, Nodulisporium, Trichoderma
piluliferum, A. chartarum, A. ochraceus, P. glabrum,
Pithomyces atro-olivaceus

xylanase, lipase

Penicillium chrysogenum, Alternaria alternate, Amylase, Agar medium
Sterile hyphae pectinase,

cellulase,

gelatinase,

xylanase,

tyrosinase
Aspergillus terreus L-asparaginase Agar medium,

spectrophotometer

Phialocephala fortinii s.1., Meliniomyces variabilis, | Protease
Umbelopsis isabellina, Hebeloma incarnatulum,
Laccaria bicolor
Hormonema sp., Pringsheimia smilacis, Ulocladium | Laccase Agar medium,
sp., Neofusicoccum luteum, Neofusicoccum australe spectrophotometer
Acremonium sp., Alternaria sp., Aspergillus sp., Amylase, Agar medium
Fusarium sp., Pestalotiopsis sp. cellulase, lipase,

protease

(continued)
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Table 11.3 (continued)

Microbes Enzyme produced | Detection method
Chaetomium sp., Preussia sp., Penicillium citrinum, | Glucosidase, Fluorescence
Thielavia arenaria, Phoma medicaginis, phosphatases, spectrophotometer

Aureobasidium sp., Preussia sp., Dothideomycetes cellulases
sp., Aureobasidium pullulans, Phoma sp.,
Penicillium citrinum, Aureobasidium pullulans,
Aureobasidium pullulans, Thielavia arenaria,
Sordariomycetes sp., Fusarium proliferatum,
Preussia sp.

Source: Adapted with permission from Khan et al. (2017)

heavy metal, and phytopathogenic infections. A diverse group of metabolites pro-
duced by the endophytes can impart the host plant to overcome the stress (Khan
etal. 2017). Immunized through ISR plays a vital role in the protection from patho-
genic invasions, exhibition of varied resistance methods, efficient utilization of
energy, and exploitation of genetic ability to induce resistance in the plants which
are vulnerable for diseases (Latha et al. 2019). Plants are also protected from the
parasitic nematodes due to ISR. Bacterial endophytes like B. amyloliquefaciens,
Bacillus pumilus, Bacillus subtilis, P. fluorescens, P. syringae, and S. marcescens
can induce ISR (Latha et al. 2019). The following section gives an elaborate account
of the endophyte-associated ISR in plants.

Detoxification and Degradation of Virulence Factors

Detoxification of pathogen virulence factors is another mechanism of biological
control. For example, certain biocontrol agents are able to detoxify albicidin toxin
produced by Xanthomonas albilineans (Basnayake and Birch 1995; Zhang and
Birch 1997). Endophytic bacterial strains of B. cepacia and Ralstonia solanacearum
were reported to suppress the activity of fusaric acid, a toxin secreted by Fusarium
species, a major wilt-causing pathogen (Toyoda and Utsumi 1991). The autoin-
ducer-mediated quorum-sensing of endophytes can impair the virulence of patho-
gens to inflict diseases, which is of paramount importance (Latha et al. 2019).

Insect and Pest Tolerance

Endophytes also play a critical role in insect and pest-induced biotic stress in plants.
Entomopathogenic microorganisms inhibit/antagonize other pathogenic microbes
that not only help to protect plants but also reduce use of chemical pesticides. Since
being established due to their capacity to protect their hosts against insects—pests,
pathogens and even herbivores endophytic microorganisms have received consider-
able attention in the last 20 years. Webber (1981) first reported that endophytic
fungus Phomopsis oblonga protected elm trees from the beetle Physocnemum
brevilineum. P. oblonga controlled the beetle P. brevilineum which is the vector for
Ceratocystis ulmi, responsible for the elm Dutch disease. Another endophytic fungi
belonging to the Xylariacea family synthesized secondary metabolites in hosts of
the genus Fagus that affected the beetle larvae. Owing to toxin production,
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endophytic fungus repels insects, induces weight loss, inhibits growth and develop-
ment, and even increases pest mortality. Another mode of action might be rendering
the plant unpalatable to several types of pests like aphids, grasshoppers, beetles, etc.
due to metabolites secreted by the endophytes. Endophytic isolates of Neotyphodium
sp. produced N-formilonine and a paxiline in the host Echinopogum ovatus that
exhibited insecticidal activity against L. bonariensis and other insects (Azevedo
et al. 2000).

White spruce Picea glauca, death rate in the Homoptera Adelges abietis increased
when galls were infected with the endophytic fungus Cladosporium sphaerosperum
while weight gain and survival of the insect—pest, Spodoptera frugiperda, were
severely compromised when their hosts were colonized by endophytic fungi like
Balansia cyperi. It is important to note that larvae from the bluegrass webworm
Parapediasia teterrella preferred endophyte-free plants of L. perenne and F. arun-
dinacea, to a point that the larvae would starve to death if only plants infected with
Acremonium were available. Field studies revealed that endophyte-free species
were severely attacked by insects, whereas those infected with Acremonium stayed
almost free of insect larvae (Azevedo et al. 2000).

Cold and Drought Stress Tolerance

Endophytic microbes render the plant its ability to tolerate abiotic stress during
severe temperatures and water scarcity. Tomato plants inoculated with psychrotoler-
ant endophytic bacteria Pseudomonas vancouverensis OB155 and P. frederiksber-
gensis 0OS261 were able to overcome cold stress (10-12 °C). Lesser membrane
damage with increased antioxidant activity was observed in endophyte-colonized
plants compared to endophyte-free control plants. Further, cold acclimation genes
(LeCBF1 and LeCBF3) were induced in bacteria-inoculated plants (Subramanian
et al. 2015). Similarly, the bacterial endophyte Burkholderia phytofirmans strain
PsJN resulted in enhancement of Arabidopsis growth and strengthened its cell wall,
and thereby increased cold stress resistance (Su et al. 2015). Increased plant toler-
ance to drought was also seen due to endophytic bacteria. B. phytofirmans PsJN
modulated transcriptional regulation, cellular homeostasis, and ROS detoxification
in a drought stress-affected potato (Sheibani-Tezerji et al. 2015). These facts
strongly rationalize that endophytes can be potential protective agents in crops
under extreme climatic environments as they can influence plant physiological
responses to stresses (Liu et al. 2017).

Metal Stress Tolerance

Endophytes can mitigate metal toxicity in plants through their own metal resistance
system and encourage plant growth under metal stress. Endophytes improve plant
growth in metal-polluted soils either directly or indirectly by metal detoxification,
accumulation, or translocation in plants. They can even alter metal accumulation
capacity in plants by excreting metal immobilizing extracellular polymeric sub-
stances as well as metal mobilizing organic acids and biosurfactants. The metal
stress can be circumvented by various mechanisms, which include efflux of metal
ions exterior to the cell, transformation of metal ions to less toxic forms,
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sequestration of metals on the cell surface or in intracellular polymers, and precipi-
tation, adsorption/desorption, or biomethylation (Rajkumar et al. 2013). Inoculation
of seeds or seedlings of hyperaccumulator plants with metal resistant endophytes
results in accelerated phytoremediation in naturally and/or artificially metal-
contaminated soil and improved plant growth.

The endophytic bacterial strain Bacillus sp. MN3-4 exhibited metal-resistance
owing to active export via a P-type ATPase efflux pump that can transport metal ions
across biological membranes against the concentration gradient using energy
released by ATP hydrolysis (Shin et al. 2012). Further, endophytic bacteria can
modulate the activity of plant antioxidant enzymes (such as POS, CAT, SOD, gluta-
thione peroxidase, and ascorbate peroxidase) as well as lipid peroxidation (malo-
ndialdehyde formation) that collectively enable the host plant to overcome heavy
metal-induced oxidative stress. Methylation is another significant way to gain metal
resistance or detoxification. Endophytic bacteria with mercury-resistant (Mer) oper-
ons express MerB gene-encoding organomercurial lyase, which cleaves organomer-
curials into mercuric ion (Hg?*) (Brown et al. 2003). MerA gene encodes mercuric
reductase that converts highly toxic ionic Hg?* into less toxic volatile Hg® (Cursino
et al. 2000), thus alleviating metal toxicity and improving the efficiency of phyto-
volatilization. Lead-resistant endophytic bacteria Bacillus sp. MN3-4 isolated from
the roots of the metal hyperaccumulator plant Alnus firma enhanced reduced metal
phytotoxicity by extracellular sequestration and intracellular accumulation (Shin
etal. 2012).

Similarly, cadmium-resistant endophytic bacterium Serratia sp. LREO7 reduced
metal stress by absorbing over 65% of Cd and 35% of Zn in bacterial cells from a
single metal solution. Endophytes can also alter phytoavailability of heavy metals
through the release of metal chelating agents (e.g., siderophores, biosurfactants, and
organic acid), acidification of soils, redox activity, and phosphate solubilization.
Extracellular polymeric substances (EPS) secreted by endophytes are composed of
polysaccharides, proteins, nucleic acids, and lipids that are significantly responsible
in metal complexation thereby reducing their bioaccessibility and bioavailability
(Ma et al. 2016).

Nickel (Ni)-resistant endophytic bacterium Pseudomonas sp. A3R3 increased
plant biomass (nonhost Brassica juncea) and Ni accumulation in plants (host A. ser-
pyllifolium) grown in artificially Ni-contaminated soil (Ma et al. 2011). These
effects can be attributed to the ability of endophytes to produce plant growth-
promoting substances (ACC deaminase, siderophores, IAA, and P solubilization)
and plant polymer-hydrolyzing enzymes like cellulase and pectinase (Table 11.4).

11.6 Bioactive Compounds from Endophytes

Gouda et al. (2016) have summarized the discovery of a number of bioactive metab-
olites from endophytes that serve as an excellent source of drugs for the treatment
against various diseases and with potential applications in agriculture, medicine,
food, and the cosmetic industries (Table 11.5). Ezra et al. (2004) reported that
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Table 11.4 Endophytic bacterial enhanced phytoremediation of metal contaminated soil

Metal | Plant growth-
Endophytic bacteria Host plant stress | promoting traits | Mechanisms
Bacillus thuringiensis | Alnus firma As, Production of Bioremoval of Pb, Zn,
GDB-1 Cu, 1AA, As, Cd, Cu, and Ni in
Cd, siderophores, metal-amended and
Ni, ACCD, and mine tailing extract
Pb, solubilization of | medium; increased
and P biomass, chlorophyll
Zn content, nodule
number and metal
(As, Cu, Pb, Ni, and
Zn) accumulation in
A. firma
Pseudomonas Miscanthus As, nd Increased plant
koreensis AGB-1 sinensis Cd, biomass, chlorophyll,
Cu, protein content,
Pb, superoxide dismutase
and and catalase activities,
Zn and metal uptake;
however, decreased
malondialdehyde
content in plants
Staphylococcus, Alyssum Ni, Production of Had an ability to
Curtobacterium, bertolonii Co, siderophores colonize plant tissues
Bacillus, Cr,
Pseudomonas, Cu,
Microbacterium, and
Arthrobater, Zn
Leifsonia,
Paenibacillus
Serratia Solanum nigrum | Cd Production of Increased Cd
nematodiphila L. TAA, mobilization in soils;
LREOQ7, Enterobacter siderophores, stimulated plant
aerogenes LRE17, ACCD, and growth and influenced
Enterobacter sp. solubilization of | Cd accumulation in
LSEO4 Acinetobacter P plant tissues;
sp. LSE06 colonized the
rhizosphere soil and
some colonized plant
interior tissues
Pseudomonas sp. Solanum nigrum | Cd, nd Improved soil Fe, P,
Lk9 Zn, and heavy metal
and availability, shoot dry
Cu biomass, and uptake
of Cd, Zn, and Cu
P. monteilii PsF84, P. | Pelargonium Cr Production of Increased plant dry

plecoglossicida
PsF610

graveolens

TIAA and
siderophores,
solubilization of
P

biomass, essential oil
yield, and chlorophyll
helped Cr(VI)
sequester in roots

(continued)



266 S.Ghosh et al.
Table 11.4 (continued)
Metal | Plant growth-
Endophytic bacteria Host plant stress | promoting traits | Mechanisms
Rahnella sp. IN6 Polygonum Cd, Production of Showed high Cd, Pb,
pubescens Pb, TAA, Zn tolerance and
and siderophores, mobilization;
Zn ACCD, and promoted plant
solubilization of | growth and Cd, Pb,
P Zn uptake by rapes;
high level of
colonization in tissue
interior of rapes
Actinobacterium Salix caprea Cd Production of Enhanced plant
and siderophores growth and metal
Zn and ACCD accumulation in
leaves
Burkholderia cepacia | Lupinus luteus L. | Cu, nd Bioremoval of Ni,
L.S.24, Cd, thus reduced metal
Herbaspirillum Co, toxicity;B. cepacia
seropedicae Ni, L.S.2.4 increased Ni
LMG2284 Pb, concentration in roots,
and while H. seropedicae
Zn LMG2284 decreased
Ni concentration in
roots and shoots of
Lolium perenne
Pseudomonas Sedum alfredii Zn Production of Mobilized Zn in soil,
fluorescens VISL1, and TAA, thus increased soil Zn
Bacillus pumilus Cd siderophores, bioavailability;
VISL2, P. fluorescens fixation of improved growth and
1I8L4, P. fluorescens nitrogen, Zn accumulation by S.
VI8R2, solubilization of | alfredii
Acinetobacter ZnCO;, and
calcoaceticus 112R3 Zn5(PO,),
Serratia marcescens | Solanum nigrum | Zn, Production of Decreased Cd
LKROI1, Arthrobacter | L. Cd, TAA, phytotoxicity;
sp. LKS02, Pb, siderophores, improved plant
Flavobacterium sp. and ACCD, and growth and total Cd
LKSO03, Cu solubilization of | accumulation in host
Chryseobacterium P plants
sp. LKS04
Serratia sp. LREQ7 S. nigrum L. Cd, Production of Bioaccumulation or
Cr, TAA, removal of metals
Pb, siderophores, (Cd, Zn) in both
Cu, and single-ion and
and solubilization of | multi-ions systems
Zn P
Bacillus sp. SLS18 Sorghum bicolor | Cd Production of Improved plant
L. and TIAA, biomass production
Mn siderophores, and its total metal
and ACCD uptake

(continued)



11 Endophytic Microbiomes and Their Plant Growth-Promoting Attributes for Plant...

267

Table 11.4 (continued)

Metal | Plant growth-
Endophytic bacteria Host plant stress | promoting traits | Mechanisms
Pseudomonas sp. Alyssum Ni Production of Increased the biomass
A3R3 serpyllifolium T1AA, of B. juncea and Ni
siderophores, content inA.
ACCD, and serpyllifolium;
solubilization of | showed high level of
P; excreted colonization in tissue
cellulase and interior of both plant
pectinase species
B. pumilus E2S2, Sedum Cd, Production of Bacterial inoculation
Bacillus sp. E1S2, plumbizincicola Pb, TIAA, increased water-
Bacillus sp. E4S1, and siderophores, extractable Cd and Zn
Achromobacter sp. 7Zn ACCD, and contents in soil;
E4L5, and solubilization of | improved plant
Stenotrophomonas P growth and metal
sp. EIL uptake
Methylobacterium Lycopersicon Ni nd Biosorption
oryzae CBMB20, esculentum and considerable amount
Burkholderia sp. Cd of Ni and Cd, thus
CBMB40 reduced the metal
toxicity; promoted
plant growth and
reduced accumulation
of Ni and Cd in roots
and shoots of tomato
plants
P. fluorescens G10, Brassica napus Pb, Production of Increased water-
Microbacterium G16 Cd, TIAA, soluble Pb in solution
Zn, siderophores, and Pb-added soil;
Cu, ACCD increased biomass
and production and total
Ni Pb uptake
Bacillus sp. MN3-4 Alnus firma and Pb, Production of Exhibited bioremoval
B. napus Cd, TAA and of Pb; increased root
Zn, siderophores elongation of B.
Ni, napus seedlings;
and reduced metal
Cu phytotoxicity and
increase Pb
accumulation in A.
firma
Endophytes belonged | Elsholtzia Cu Production of Increased plant dry
to Firmicutes, splendens, TIAA, weights and Cu
Actinobacteria, Commelina siderophores, content in
Proteobacteria communis ACCD, and aboveground tissue of
arginine rapes
decarboxylase

(continued)
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Table 11.4 (continued)
Metal | Plant growth-
Endophytic bacteria Host plant stress | promoting traits | Mechanisms
Microbacterium sp. Noccaea Ni Production of Enhanced growth and
NCr-8, Arthrobacter | caerulescens, TAA, Ni translocation in
sp. NCr-1, Bacillus Thlaspi siderophores, plants
sp. NCr-5, Bacillus perfoliatum and ACCD
sp. NCr-9, and
Kocuria sp. NCr-3
Serratia Solanum nigrum | Cd nd Promoted biomass
nematodiphila L. production; increased
LREO7 higher photosynthetic
pigments content of
leaves
Rahnella sp. IN27 Amaranthus Cd Production of Enhanced plant
hypochondriacus TIAA, growth and Cd uptake
and A. siderophores, by both plant species
mangostanus ACCD, and
solubilization of
P
Acinetobacter sp. Commelina Pb, Production of Increased plant dry
Q2BJ2, Bacillus sp. communis Cu, TAA, weights; increased Pb
Q2BGl1 Cd, siderophores, contents in
and and ACCD aboveground tissue of
Ni rapes
Ralstonia sp. B. napus Cu, Production of Increased the biomass
J1-22-2, Pantoea Pb, TAA, of rapes and increased
agglomerans Jp3-3, Cd, siderophores, Cu content in
Pseudomonas and ACCD, and above-ground tissues
thivervalensis Ni solubilization of
Y1-3-9 P
Burkholderia sp. Sedum alfredii Cd nd SaMR10 had little
SaZR4, Burkholderia | Hance and effect on
sp. SaMR10, Zn phytoextraction, while
Sphingomonas sp. SaMRI12 and SaNR1
SaMR12 and promoted plant
Variovorax sp. growth and
SaNR1 phytoextraction of Zn
and Cd; SaZR4 only
promoted Zn
extraction
Endophytes belonged | Pteris vittata and | As Production of Possessed ability of
to Firmicutes, P. multifida 1AA both AsV reduction

Proteobacteria, and
Actinobacteria

and AslII oxidation.

IAA, indole-3-acetic acid; ACCD, 1-aminocyclopropane-1-carboxylate deaminase; P, phosphorus;

nd, not determined

Sources: Adapted with permission from Ma et al. (2016)
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Table 11.5 Source of bioactive compounds from endophytes and their use against pathogenic

microorganisms

Source of endophytes

Bioactive compounds
from endophytes

Cure against
pathogen

Mode of pathogen
transmission

Boesenbergia rotunda, Munumbicins Escherichia coli Ground meats, raw
Streptomyces coelicolo or under
pasteurized milk
Chloridium sp. Javanicin Pseudomonas sp. Contaminated
water or surgical
instruments
Allamanda cathartica Munumbicins
Phomopsilactone
Cladosporium sp. Cardiac glycosides, Klebsiella Contaminated
phenolic compounds pneumoniae water and aerosols
Cladosporium sp. Cardiac glycosides, Proteus sp. Canned food
phenolic compounds products
Cryptosporiopsis Saadamycin Campylobacter Raw or uncooked
quercina Jjejuni poultry and milk
Cytonaema sp. Cytonic acids A and B | Human Shellfish, berries,

cytomegalovirus.
Hepatitis virus

or contaminated
water

Diaporthe helianthi Fabatin, tyrosol Enterococcus hirae | Nosocomial
infection through
hospitalized
patients

Fusarium proliferatum | Beauvericin Clostridium Improperly

botulinum processed, canned
food

Fusarium proliferatum | Kakadumycin, Listeria Raw or under

beauvericin monocytogenes pasteurized milk,
smoked fish

Fusarium sp., Xularosides, Candida albicans Contaminated

Cryptosporiopsis munumbicins, sweet fruits and

quercina Saadamycin, milk products

cryptocandin

Ganoderma boninense Rapamycin, Bacillus subtilis Rice, pastas, raw

cyclododecane, milk, and meat
petalostemumol products

Hypericum perforatum,
Diaporthe helianthi

Hypericin, emodin,
tyrosol

Salmonella sp.

Meat, eggs, and
untreated tree nuts

Nigrospora sp. Saadamycin Fusarium Maize, cereals,
oxysporum groundnuts, and
tree nuts
Phomopsis sp., Munumbicins, Aspergillus niger Maize, cereals,
Cinnamomum Saadamycin groundnuts, and
mollissimum tree nuts
Saccharothrix mutabilis, | Capreomycin Mycoplasm (TB) Uncooked meat,
Streptomyces sp. Munumbicins eggs, or poultry

(continued)
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Table 11.5 (continued)

Bioactive compounds Cure against Mode of pathogen
Source of endophytes from endophytes pathogen transmission
Streptomyces Clethramycin Cryptococcus Lettuce harvested
hygroscopicus Neoformans from tropical
regions
Streptomyces Coronamycin, Saccharomyces Bakery and
lygroscopicus rapamycin cerevisiae fermented products
Streptomyces sp. Kakadumycin A, Shigella sp. Contaminated
hypericin food, water, and
fecal waste
Streptomyces sp., Terephthalic acid Staphylococcus Meat, eggs, and
Achyranthes bidentata, | Phomodione aureus dairy products
Phoma sp., Saurauia
scaberrinae
Streptomyces sp., Munumbicins Vibrio cholerae Raw or
Kennedia nigricans undercooked
shellfish,
particularly oysters
Streptomyces Valinomycin Corona virus Food or water
tsusimaensis contaminated with
infected fecal
matter
Thottea grandiflora, Streptomyces Bacillus cereus Uncooked meat
Xylaria sp. dihydroxynaphthol, Herpes virus and raw milk
glucopyranoside Contaminated
body fluid or saliva
Xylaria sp. Phenolic compounds Streptococcus Contaminated
pyogenes water, raw milk,
salads, and eggs
Xylaria sp., Ginkgo Sordaricin 7 amino-4- Yersinia Swine meat and
biloba, Fusarium methylcoumarin, enterocolitica meat products,
proliferatum Beauvericin milk, and dairy
products

Sources: Adapted with permission from Gouda et al. (2016)

coronamycin, a complex of novel peptide antibiotics with activity against pythia-
ceous fungi and the human fungal pathogen Cryptococcus neoformans, was pro-
duced by a verticillate Streptomyces sp. isolated as an endophyte from an epiphytic
vine Monstera sp. It was also active against the malarial parasite, Plasmodium
falciparum.

Undoubtedly, one of the most revolutionary findings of endophyte studies was
the isolation of taxol-producing endophyte Taxomyces andreanae (Stierle et al.
1993). The diterpenoid taxol was approved by the FDA as one of the most potent
anticancer drugs, but the supply of this drug was limited for the destructive collec-
tion of yew tree, the main source of taxol. Later taxol (paclitaxol) was also reported
to be produced by the endophyte Metarhizium anisopliae found in the bark of a
Taxus tree and is one of the most promising anticancer agents (Gouda et al. 2016).
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As a selectively cytotoxic quinone dimmer, torreyanic acid is another important
anticancer agent. Lee et al. (1996) reported the isolation of an endophyte strain
P. microspore from T. taxifolia (Florida torreya) and the extraction of torreyanic
acid from cultures of this endophyte. Camptothecin and its derivatives show strong
antineoplastic activity. The fungus, which belongs to the family Phycomycetes, iso-
lated from the inner bark of the plant Nothapodytes foetida, produced the anticancer
drug lead compound camptothecin (Puri et al. 2005).

Endophytes are a potential source of novel secondary metabolites with antiar-
thritic, antimicrobial, anticancer, antidiabetic, anti-insect, and immunosuppressant
activities (Devi et al. 2020; Kour et al. 2019a; Yadav et al. 2019). Bioactive com-
pounds, such as camptothecin, diosgenin, hypericin, paclitaxel, podophyllotoxin,
and vinblastine, are commercially produced by different endophytes colonizing
respective plants which are agriculturally and pharmaceutically significant (Gouda
et al. 2016; Godstime et al. 2014; Joseph and Priya 2011).

11.7 Conclusions and Future Perspectives

Promising plant growth-promoting activity and an ability to induce stress tolerance
to host plants have drawn wide attention for developing not only culture dependent
but also independent characterization of endophytic diversity. However, reports on
successful application of endophytes in plants under field conditions are extremely
scarce. Future studies should aim to explore the interrelationship between plant
immunity and function of the microbial population of endosphere. Similarly, breed-
ing of endophyte-colonized crops, genetic engineering of endophytes, maintenance,
and adaptation to benefit plants at various growth stages of plants should be investi-
gated. Further, endophytes impart resistance to hosts against pests, insects, nema-
todes, and plant pathogenic fungi and bacteria.

Similarly, host plants obtain tolerance to abiotic stress induced by drought, salin-
ity, and toxic metals. Diverse bioactive compounds have been synthesized by micro-
bial endophytes that may include antimicrobials (vanillin, essential oils), antifungals,
antivirals (alkaloids), antioxidants (eugenol), anti-inflammatories (cineole), etc.
Therefore, commercial processes can be developed to exploit the rich source of
endophytic biodiversity to produce natural products for use in pharmaceutics, food,
and cosmetics. Activity-based rapid screening technologies should be developed
that may help in the selective isolation of beneficial endophytes. Establishing a tar-
get endophytic library for plant breeding may help to protect endangered medicinal
plants from overexploitation. Endophytes can be envisioned to be the future of bio-
fertilizers and biocontrol agents that can be promising alternatives to environmen-
tally hazardous chemical fertilizers and pesticides resulting in a paradigm shift in
agricultural best practices.
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Abstract

Agriculturists and farmers have been under pressure to fulfill the demands of the
increasing population. Although the use of inorganic fertilizers benefited farmers
by providing good and fast yields, but become progressively worse on the quality
of soil by decreasing biomass and microbial activity. Therefore, now pressure to
increase yield along with making sustainable progress has led to the usage of
mycorrhizal fungi as biofertilizers. These fungi have been found to provide
numerous and diverse benefits to soil, plants, and ecosystem by improving soil
quality, concentrating nutrients in plants, providing resistance against drought
and diseases, and helping in nutrient cycling. The AMF is known to be a very
difficult fungus because its culture is difficult in vitro conditions and therefore
proper procedures are needed to be followed and precautions are needed to be
taken to get the desired pure yield of the fungus. The fungus if studied and
researched properly can open many doors to new developments in the field of
science and agriculture.
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12.1 Introduction

The arbuscular mycorrhizal (AM) symbiosis is known over more than 400 million
years ago. It is association between higher plants and soil fungi belonging to phy-
lum Glomeromycota. Since both partners coevolved at the same time, with more
than 80% of all terrestrial plants belonging to diverse ecological niche associated
with AMF. The main economic importance of these fungal symbionts is estimated
for adding phosphorus in phosphorus in P-deficient soil to sustain the productivity
of soil and also the same time reduced the impact of chemical fertilizers. A global
land area of 9.2 billion hectares encompassing six biomes with terrestrial plants,
relative proportion of plants likely to form AM symbioses in each biome. Native
AM fungi drastically reduced the burden of inorganic phosphoric fertilizers. About
$549 billion of P input would be needed to substitute for native AM fungi (Morton
1988). This cost does not include the account of the mortality of many trees and
other plant species. Therefore, many times continuous use of inorganic fertilizer
would be ineffective in regard to plant growth and development (Yadav et al. 2019a;
Yadav et al. 2020c). Moreover, apart from P-uptake, these fungi are also play impor-
tant role in many key processes of nutrient cycling, soil conservation, and
plant health.

The benefits imparted to the plant by mycorrhizal association range from adsorb-
ing toxic elements from the soil such as heavy metals, tolerance for biotic and abi-
otic stress soil, bioremediation, soil restoration, establishment of green cover,
disease resistance, etc. These microorganisms have a role in sustaining the ecosys-
tem by enriching the soil and providing nutrition to the plant and in turn getting
carbon from the plant. This, in turn, reduces the dependence if not eliminates exter-
nal chemical inputs and makes the utilization of the soil nutrient highly efficient.
Thus, AM fungi are considered as promising biofertilizers for sustainable crop pro-
ductivity and mitigation of problems by marginal farmers of developing countries
(Kour et al. 2020b; Rastegari et al. 2020). These fungi have emerged out as potential
tools for agriculture, forestry, and bioremediation and wasteland reclamation.
However, to exploit them for various purposes, the functional characterization of
these fungi is mandatory.

12.2 Role and Limitations of Inorganic Chemicals
in Environmental Sustainability

To meet the demand of feeding ever-increasing population and to save the expense
of over costly manure practices, farmers switched to the use of fertilizers which
were easily available and less expensive (Hera 1996). These inorganic fertilizers
have Nitrogen, Phosphorus, and Potassium as their main components and their
usage can lead to modest yet immediate increases in the yield of crops if used in an
appropriate amount (Larson and Frisvold 1996; Yadav et al. 2019b). Although farm-
yard manure (FYM) provides all the essential nutrients like N, P, K, Ca, Mg, S and
helps in improvement of physical, chemical, and biological properties of soil, the
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dependency of agriculture on inorganic chemical fertilizers and pesticides increased
(Tadesse et al. 2013).

The usage of chemical fertilizers made agricultural systems efficient and able to
produce quality products (Savci 2012a, b). Inorganic chemical fertilizers benefit
agriculture in many ways which include agricultural fields when deficient in various
inorganic nutrients, are provided with the chemical fertilizers to fulfill the nutri-
tional demand of the soil which further provides the nutrients to the plants. The
most commonly used fertilizers are N and P fertilizers, which are applied to fields
by different methods like fertilizer placement to ensure nutrient availability to the
plants. Studies have suggested that fertilizers when combined with organic manures
help in increasing the yield in agricultural fields. The subsurface placement of fertil-
izers has yielded many benefits to farmers, which include root growth stimulation,
less loss of nutrients to the environment, availability of high levels of nutrients to the
plants as they are placed close to the plant roots, increase in yield of crops (Nkebiwe
et al. 2016). Due to increasing global population, the worldwide food production
needs to be increased by 2050 but at the same time, the dependency on conventional
fertilizer practices needs to be reduced as it has been found that continuous and
long-term use of these chemicals leads to degradation of land, deterioration in soil
health, and has become a threat to human and animal health. There are many limita-
tions to using these inorganic chemicals in the agricultural fields (Igiehon and
Babalola 2017).

The nitrates contained in fertilizers, which are not absorbed by the plants leach
into the soil through rainwater and thus reach groundwater. Groundwater, therefore,
when used for consumption by animals and humans, causes deteriorating health
effects. Long-term use of chemicals affects soil quality drastically. These chemicals
deteriorate soil quality as some of the inorganic fertilizers contain sodium and
potassium which impact soil negatively by changing the pH. In addition, the fertil-
izers containing heavy metals lead to accumulation of these heavy metals into the
plants and fruits which affect when fed to animals and humans. Chemical fertilizers
when applied in large amounts cause air pollution by emissions of various oxides
nitrogen like NO, N,O, NO,. These oxides not only cause air pollution but also act
as greenhouse gases, thus affecting the environment. The application of chemicals
containing urea leads to evaporation of ammonia which after getting oxidized turns
into nitric acid and pours down with rain as acid rain (Savci 2012a, b). Thus, inten-
sive use of chemicals undoubtedly provides good yield but at the same time, it
deteriorates the environment and human health, whereas, the use of organic manures
can improve characteristics of soil as well as crop production. Therefore, to enhance
the recovery of nutrients and promote good plant growth and yield, the focus is now
on usage of both organic and inorganic fertilizers in an appropriate combination
(Mahmood et al. 2017).
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12.3 Types and Functions of AM Fungal Biodiversity
in Rhizospheric Soil

Rhizosphere is the zone of soil surrounding root where the microbial population is
stimulated by root activities. Out of many soil organisms present in soil microbiota,
fungi are a very important component of the soil and play a very beneficial role in
soil by decomposing organic matter and promoting element release by mineraliza-
tion (Chandrashekar et al. 2014), however, fungal diversity in the rhizosphere also
essential for biogeochemical cycles, plant growth, and disease development and
control (Yadav et al. 2020a, b). The rhizosphere fungal communities are determined
by many factors which include the type of plant, root exudate, and organic carbon
content (Wang et al. 2017; Kour et al. 2020a). The studies have suggested that on an
overall, millions of species of fungi make a rich diversity but, the diversity found in
soil is much lesser (Hawksworth and Liicking 2017). Many studies suggested a deal
with diverse roles of AMF fungi in different ecosystems; however, very little is
known about how agricultural practices create selection pressure to change micro-
bial diversity and its function (Shennan 2007; Toljander et al. 2008). It is also very
little knowledge about the induction of microbial diversity and its role and function
in a diverse sustainable ecosystem (Martini et al. 2004; Saxena et al. 2016; Verma
et al. 2019).

The fungal diversity can be found out by many methods including checking for
the fruiting bodies or the culture obtained from soil samples. But these methods are
not fully reliable because organisms existing in the mycelial form are not easily
detectable and therefore cannot give the true measure of diversity. To get an accurate
and reliable measurement and calculation, various molecular techniques like poly-
merase chain reaction (PCR) detection, coupled with single-strand conformation
polymorphisms (SSCP) or denaturing gradient gel electrophoresis (DGGE) have
been developed (Bridge and Spooner 2001). The diversity of fungal species using
molecular techniques when estimated was found to be 3000 fungal species from a
400 Ha site, thus giving a much reliable and accurate data (Fierer et al. 2007).
Studies done by Wang et al. (2017) reported the abundance of various fungal phyla
across the soil samples which was Ascomycota (average 68.7%), Zygomycota
(average 13.3%), and Basidiomycota (average 4.1%) (Wang et al. 2017).

12.4 Types of Mycorrhiza and its Role in Functional Diversity

Life is considered to have emerged on land during the pre-Cambrian period and is
supposed to have been it colonized by microorganisms, which are phototrophic in
nature and were probably prokaryotic. Although the recent evidences have sug-
gested that land plants might have emerged during Ordovician period but it was
earlier believed that the establishment of land plants was in the late Silurian period.
It is believed that the vascular plants have arisen from the green aquatic algae which
during the course of evolution became semiaquatic and on further evolution, fully
terrestrial to become first land plants. After the emergence of semiaquatic algae, it
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began to invade land around 490 million years ago (mya) and faced very harsh envi-
ronmental conditions.

It was suggested by Pirozynski and Malloch (1975) that the mutualistic relation-
ship between fungi and the plants is of great significance and important not only in
land colonization by plants and for improvement of nutritional status but also to
help plants to sustain themselves in harsh environmental conditions. The whole
plant diversity that is found in the present in various ecosystems and environments,
in tropical rainforests or temperate habitats is all due to these associations between
plants and fungi. The oldest fossil evidence of mycorrhiza was recorded in the early
Devonian period, around 400 million years ago (Mya) in the form of fossil arbus-
cules. It was observed by Simon et al. (1993) that the origin of arbuscular mycor-
rhizal fungi between 462 and 363 Mya, and that too around the Ordovician, Silurian,
and Devonian period. These dates easily place them at the time of land plant
emergence.

The evidences revealed by fossil and molecular studies have suggested that AM
fungi have been forming symbiotic colonies in the terrestrial habitats since ancient
times. Redecker et al. (2000) discovered some spores and hypha which belonged to
the glomalean fungi. The rocks from which those spores and hypha had been found
are about 460 million years old and are of the Ordovician period which is believed
to have liverwort-like plants in dominance. This suggested that the fungi have been
in symbiosis with vascular land plants. There are hundreds of different types of
mycorrhizal associations which involve different plants and fungal species. It has
been found that around 80% of plant species and about 92% families of plants
(Wang and Qiu 2006) form symbiotic association with Arbuscular mycorrhizal fun-
gus belonging to the phylum Glomeromycota.

On the basis of fungal hyphae location when the hyphae enter the root tissues of
the plant, the mycorrhiza has been classified into two types: ectotrophic mycorrhiza
and endotrophic mycorrhiza, where the word ecfo means outside the root and the
word endo means inside the root. Ectomycorrhiza is known to be the most advanced
symbiotic association found between higher plants and fungi, including about 3%
of seed plants and including the majority of forest trees.

12.4.1 Endomycorrhizas

Endomycorrhizas are the type of associations in which the fungal structure pene-
trates the host root. The root comprising three major and two minor groups are listed
in Table 12.1. The only plant families which are found to be non-mycorrhizal are
Brassicaceae (e.g., cabbage, Arabidopsis), Caryophyllaceae (e.g., carnation), and
Chenopodiaceae (e.g., spinach). The only plant species unable to grow at all, in the
absence of mycorrhiza, are orchids and mycoheterotrophic. The mycorrhizal sym-
biosis enhances availability of soluble phosphorus from through network of myce-
lium and ultimately overall nutritional status of plants (Smith and Gianinazzi-Pearson
1988). Their importance and significance have been studied mainly in low phospho-
rus and marginal areas but these fungi also play a significant role in soil containing
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high phosphorus conditions. In high phosphorus conditions of soil, the availability
of soluble P is very low.

Therefore, very little amount of available P available for growth and develop-
ment of plants. Moreover, the major amount of P-fertilizer applied in soil not readily
available for plant growth and development on the other hand fixed in the soil as a
nonavailable form. However, AM fungi have the ability to solubilize phosphorus
and are one of the solutions to this problem. In specific circumstances when the
amount on inorganically phosphorous is very high, much phosphate has been fix-
ated and not easily available for plants. Fertilization with inorganic in nature is of no
use in those circumstances. Also, rock phosphate amendments are not wise in this
case. This because there is enough of this phosphate in the soil already, but it won’t
move. AM fungi can free this fixed phosphate and bring it into the roots of the
plants. AM fungi decrease the need for fertilizers by contributing to the satisfaction
of a crop plant P demand at non-inhibitive levels of P supply (Koide 1991). Thus,
the potential for AM utilization in P nutrition is present but requires testing and
evaluation of the supply and demand relationships of the symbiosis.

Although it is a common belief/misbelief that AM fungi do not perform in high
phosphorus conditions, the interaction between AM fungi and P fertilization within
the context of sustainable agriculture is complex and needs more understanding. On
the one hand, high levels of soil P, although transient (Bolan 1991), maybe deleteri-
ous to some AM fungi (Abbott et al. 1984). On the other hand, some species of AM
fungi are able to colonize roots under high P regimes or in fertile soils (Young et al.
1985), fertilization may eventually result in the selection of AM fungal tolerant of
high P content, while others may be eliminated. These fungal isolates are of impor-
tance in conditions especially temperate where high P and high organic matter are
prevailing. Currently, many AM species/isolate conservation bank has been rou-
tinely and extensively collected of AM fungal isolates including from different
agroclimatic zone. These further apply in phosphorus-deficient soil. Many AM
fungi collected from high P conditions and thus can provide a good source for
selecting AM fungal isolates tolerant of high P content.

The association of mycorrhiza with plants is ancient and its occurrence can be
observed in almost all terrestrial ecosystems (Johnson et al. 2006). During the for-
mation of such associations, the host root gets modified due to the infection caused
by mycorrhizal fungi and thus there is an establishment of the intimate relationship
between the host root and fungus (Gerdemann 1968). These fungi can live around
root epidermal cells, on the root surface or inside the plant root cortex. There are
four major types of Mycorrhizal fungi: arbuscular mycorrhizal fungi (AMF), ecto-
mycorrhiza (EM), and ericoid mycorrhiza. Mycorrhizal fungi have the potential to
improve the growth of plants, provide resistance to pests, influence soil stability,
and carbon storage and nutrient cycling (Johnson et al. 2006).
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12.4.2 Arbuscular Mycorrhizal Fungi

AMF is an inhabitant of belowground systems and is distributed globally in abun-
dance (Munkvold et al. 2004). It belongs to phylum Glomeromycota forms a sym-
biosis with approximately 80% of plant species. AMF is known to be an important
biotic component associated with plants as it is considered that their absence can
lead to a reduction in the working efficiency of the ecosystem (Berruti et al. 2016).

12.4.3 Ectomycorrhiza

Ectomycorrhizal fungi are biotrophs that are known to play an important role in the
process of organic nitrogen mobilization. In terrestrial ecosystems, these play a sig-
nificant role in the cycling of nutrients like N and C. The rapid turnover of this
fungus helps in good functioning of the ecosystem as the turnover provides good
ectomycorrhizal biomass which adds up to soil organic matter (SOM) (Fernandez
et al. 2016). These fungi using oxidative mechanisms can convert organic matter
into SOM. The ECM fungi have genes that encode for enzymes responsible for the
degradation of lignocellulose and the production of hydrogen peroxide (Shah
et al. 2016).

12.4.4 Ericoid Mycorrhiza

The ericoid mycorrhizal fungi have the potential to retrieve N and P from the litter
of plants found in forests and are considered good decomposers (Lindahl and Tunlid
2015). The habitats of this fungus mainly include soils which are acidic in nature
and which are having high amounts of recalcitrant phenolic compounds. These
fungi show their main contribution in mobilizing the nutrients from complex organic
matter to host plants (Martino et al. 2018). The increasing awareness among people
has led scientists and farmers to find out new ways to fertilize agricultural fields and
thus Mycorrhizal Fungi can emerge as new biofertilizers. Usage and inoculation of
Mycorrhizal fungi with plants can help in achieving the overall fitness of plants as
it helps plants by providing many benefits. The mycorrhizal fungi are diverse in
their functions and services that they provide to the plants, soils, and ecosystem.
These functions include.

12.5 Effect of Organic and Inorganic Fertilizer and its Role
in AM Diversity

Although application of fertilizers and manure to the agricultural soil influences the
nutrition, pH, amount of humic acid and organic substances, soil aggregation,
microbial diversity, and many other important aspects of the soil, the response of
AMF community to the fertilization depends upon the amount or the doze of
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fertilizers provided to the soils. Mycorrhizal fungi being symbiotic remain in asso-
ciation with plants and play a vital role in mineral mobilization. But the presence of
various sources of nutrients in soil also affects the communities and the diversity of
mycorrhizal fungi (Qin et al. 2015). The experiments performed by Hassan et al.
(2013) were focused on observing the effect of organic and inorganic fertilizer
applications on the mycorrhizal communities. Sunflower plants were grown for
12 years and the field was fertilized with organic or inorganic N fertilizers. They
observed a significant difference in the mycorrhizal diversity after these treatments.
The soil having organic inputs of farmyard manure, sewage sludge, etc. was
observed to have species such as Rhizophagus intraradices whereas soils treated
with inorganic mineral fertilizers were found to have Claroideoglomus in more
amount. Not only this, other studies done, Chen et al., revealed that a long-term
application of inorganic N fertilizers, resulted in decrease in the Glomeromycota
abundance due to which the species richness and diversity of AMF was influenced
significantly. However, on the other hand, application of P fertilizers did not result
in significant changes in the structure of mycorrhizal community but a significant
reduction was seen in rate of colonization of mycorrhiza, arbuscule colonization,
and density of hyphal length (Chen et al. 2016).

12.6 AMF in Sustainable Crop Production

The AMF is known to improve the composition and yield of the plants by supplying
nutrients to the plants and providing photosynthate products by increasing the pho-
tosynthetic activity of the plants. Experiments and studies were performed by inoc-
ulating mycorrhiza with tomato plants and it was found out that the nutritional
quality of tomatoes was increased. The effects of these fungi over plants are consid-
ered ameliorative as the nutrients tend to get more concentrated in the fruits formed
on plants which are in symbiosis with these fungi. Not only this, the fungi are being
considered as part of the “Second Green Revolution™ as these can play their role in
supplementing nutritive food and thus alleviating malnutrition (Hart et al. 2015).
Drought and salinity are two of the major constraints in the field of agriculture
which lead to huge losses to farmers each year (Kour et al. 2019; Rana et al. 2019).
The mycorrhiza has the ability to maintain the hydration status of a plant and thus
can avoid drought stress. Role and application of AM fungi in stress condition are
mentioned in Fig. 12.1. Mycorrhiza helps in improving the osmotic system of the
plant which in turn helps in maintaining the hydration level and turgor pressure of
leaves even when the water potentials of leaf are low (Rapparini and Pefiuelas
2014). Due to salinity plants, experience changes at osmotic level and thus growth
of plants is hampered.

Furthermore, the reactive oxygen species produced due to stress response pose
detrimental effects on the plants like oxidation of chlorophyll and other important
plant cell components. But plants inoculated with AMF showed enhancement in
chlorophyll levels and it was found that the negative effect of salinity stress was
mitigated. Besides this, experiments showed that AMF helps in enhancement of the
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Fig. 12.1 Schematic diagram of role of AM fungi under abiotic (drought) stress condition modi-
fied from Rapparini and Pefuelas (2014)

defense responses which a plant shows under stress and thus protects the plants
under stress conditions (Hashem et al. 2015). Plants respond to biotic and abiotic
stresses in a way that they tend to protect themselves under such conditions by using
certain sophisticated mechanisms. One of those mechanisms is the ability of plants
to form associations with mycorrhiza in the roots. Mycorrhizal fungi have been
known to provide resistance among various plant diseases.

There have been many evidences which suggest the same. Colonization of
mycorrhiza Funneliformis mosseae in onion plants significantly helped in allevia-
tion of pink rot disease caused by Pyrenochaetaterrestris. Further experiments on
tomato plants showed that inoculation of tomato plants with mycorrhizal fungi
helped in reducing the early blight disease incidence (Song et al. 2015). The loss of
nutrients from the soil due to leaching has been a major concern in the field of agri-
culture as the soil gets deprived of nutrients and this, in turn, affects plant growth
and development. Mobile nutrients like nitrates and sulfates are highly susceptible
to get lost by the leaching process. The AMF has been found to significantly reduce
the loss of inorganic nutrients like N and P. These fungi have developed the mecha-
nism to enhance the nutrient interception zone around them and thus save nutrients
from getting leached by rainwater or any other agricultural activity (Cavagnaro
et al. 2015). Soil aggregates are very important component of soil structure as soil
aggregation affects the water-holding capacity and infiltration rate. The mycorrhizal
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fungi produce hyphae in which the soil particles get entangled and form aggregates
(Leifheit et al. 2014).

12.7 Diversity of AMF for Sustainable Agriculture: Methods
and Constrain

Arbuscular mycorrhizal fungi are important symbionts of plants that improve
plants’ nutrient uptake and in turn helps in plant growth promotion. Genetic analy-
sis of arbuscular mycorrhizal fungi for community study has been a complicated
task because of its difficulties in isolation and cultivation from contaminate-free
system and heterogeneity of rDNA sequence within single arbuscular mycorrhizal
spore. This diversity allows us to find reliable methods for genotyping of arbuscular
mycorrhiza fungi. Cluster analysis has been performed by many authors on FAME
profiles using unweighted pair group method with arithmetic mean and result were
compared to a neighbor joining of rTDNA sequence within same species (Kumar and
Adholeya 2018). Many authors suggested combination of the morphological, bio-
chemical, and molecular (sequencing of highly variable D1-D2 region of LSU and
ITS rRNA gene) method could be employed for phylogenetic analysis and species-
level resolution of Glomeromycota (Ryberg et al. 2009; Stockinger et al. 2010;
Walker et al. 2007). D1-D2 of LSU and ITS region of rRNA gene to evaluate the
quality of arbuscular mycorrhiza produced on a large scale and to track the selected
arbuscular mycorrhiza after inoculation into the field. Many studies on the basis of
molecular and morphological data sets revealed that the species Scutellospora and
Gigasporawere present in low or negligible amounts in field soil samples.

This supports the hypothesis proposed earlier by Jansa et al. (2003), who also
found that there is a lower number of Gigasporacaea sp. inland which is managed
chemically. Moreover, the morphological analysis shows that such significant dif-
ferences in number of Glomeraceae spores between trap cultures are due to conven-
tional tillage and zero tillage fields. More recent investigations done by Miras-Avalos
et al. (2011) were based on denaturing gradient gel electrophoresis (DGGE)
sequencing and found that there is an increase in the presence of Glomus fungi in
the soil which is receiving the conventional tillage practice. Morphological data
revealed that there is presence of Gigasporaceae spores in large amounts in trap
culture set up field soil of raised bed plantation under zero tillage practices (Kumar
and Adholeya 2016; Kumar and Adholeya 2018).

Another morphological study has reported that the fields which have received
chemical fertilizers for a long time have Rhizophagus and Funneliformis spin domi-
nance and F. mosseae with frequent occurrence (Oehl et al. 2003). Similar studies
on the basis of molecular analysis by Mathimaranhe et al. (2005) found that the
fields in which the conventional farming practices are followed have R. intraradices
as the dominant species of AMF and also suggested that, frequent inputs of chemi-
cal fertilizers can decrease the availability of the AMF propagules in the tropical
soils. The presence of fatty acids also indicates presence of fungal species as
observed by Madan et al. (2002a, b) that the soils which have originated from
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intensive farming have Gigasporacae spores in them. These data show that the
diversity of arbuscular mycorrhizal fungi is not always found to be low in cultivated
lands (Hijri et al. 2006). The AMF monoaxenic cultures can be encapsulated in
alginate beads for use as inoculums to diversify the culturing process (Saito and
Marumoto 2002).

12.8 Methods of Isolation and Propagation
of Mycorrhizal Species

Spores are collected from rhizosphere soil and kept in a watch glass or a small petri
dish. These spores are then sorted into morphotypes (SMT) or groups in which the
spores within one group or morphotypes appear similar in morphology, based on the
external features of the spore like size, shape, color, the contents which are visible
and shape of the subtending hypha. The external morphology and color of the spores
from the trap culture can be identified by using prepared slide of the collected spores
and visualizing that slide with the help of a dissecting microscope with reflected
light. For color description color chart of Glomalean fungi (INVAM website) is
used. The abundance of AM spores in each group is estimated on the following
semiquantitative scale 1, upto 5 spores; 2.6-20 spores; 3.21-50 spores; 4.50-200
spores; 5, more than 200 spores. Spore sample are kept at 4 °C until the analysis of
AMF spores for abundance and species richness and molecular analysis.
Rhizospheric soil from each trap culture is examined for AM fungal spores. Once
the data are obtained, the following are calculated for AM diversity analysis (1)
Spore density (Total number of spores in 100 g of soil sample). (2) AM fungal spe-
cies richness (the total number of AM fungal species in each site), (3) relative abun-
dance (the ratio between the number of sores of particular fungal species to the total
number of AM spores), (4) Shannon—Weiner index (H’) is calculated for each sites
using Eq. (1), where Pi = ni/N, ni is the number of individuals of species i, and N is
the total number of individuals in all species).

H = =) (Pi) In (Pi) (1). Spore density: The air-dried, weighed (100 g) soil
samples are mixed in a substantial amount of water, and suspension is decant
through a series of sieves. For the quantification of spores, the measured volume of
sieving is transferred onto gridded petri-plate and observed under a stereomicro-
scope. The number of spores in petri-plate is counted and expressed as spores/mL
of soil suspension. Finally, spore density per gram of soil is calculated by dividing
the total number of spores present in total suspension by the quantity of soil sieved.
Species richness and relative spore abundance are calculated according to modified
methods described by Oehl et al. (2003). Species richness is also required to calcu-
late from the trap culture; the number of spores belonging to different AM species
is also calculated. Species richness can be defined as the number of AM species
occurred per soil sample. Total number of AMF species identified per site (total
amount of soil explored, 100 g). Relative spore abundance: The relative abundance
of the spores present is identified for each and every species of AMF and site (the
total amount of soil 100 g).
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12.9 Monosporal Culture of AMF: Source of Pure
Mycorrhizal Species

Trap culture contains mixture of diverse mycorrhizal species which create condition
sporulation of cryptic AMF species. However, monosporal culture contains single
species culture of AMF originated from trap culture with host plants. For this, one
to ten AMF spores of the from single morphotypes isolated from trap pots are placed
on germinating roots of maize, which is then grown for 6 months in a pot filled with
sterile substrate. Successive pot culture of trap cultures isolate can cause an unex-
pected outbreak of the contaminant. The micropipette tips are filled with the sub-
strate (Terragreen and sand; 1:1) and 3-5 host seeds are placed over the substrate
(Allium porrum). A healthy spore is placed over the host seed to ensure the coloni-
zation of germinated spore on the host (Sorghum bicolor). The cultures are kept in
a tray containing water for 1-2 days so that seeds and seedling in micropipette tips
get enough moisture and incubated in the controlled condition. When the seedling
emerges out from tray, the tips are taken out of the tray containing water. The tray is
left out to dry for 1-2 days and the cycle is repeated three times so as to get vigorous
root production. The roots are chopped off from the tips and the whole seedling is
transferred to big sized pots. More seeds are placed in the pot and regular and proper
watering is done to allow the plant to complete its life cycle (3—4 months). After
completion of the cycle, the aboveground portions of plants are chopped off to initi-
ate a new cycle using different host plants. This cycle is repeated three times. Life
cycle of AMF collected from field soil and further characterized for morphological,
molecular, and biochemical analysis is showing in Fig. 12.2.

Collection and morphotyping of AM Ecological measurement of
spores grown in Trap culture diversity in each trap
culture

Multiplication of AM I Morphology studies on AMF spores I

Soil fungi in green house Trap
sampling culture Fatty acid methyl extraction
from (FAME) analysis on AM
different spores grown in Trap culture
agro climatic I Single spore nucleic acids extraction I smd s
zone l

1 rRNAgenes ["p, Jidean distance

AM fungi =
1851 58S analysis among AM
RNA [ RNA 285 -RNA morphotypes
[isolates using fatty
|I acids datasets.
¥
PCR and nested PCR amplification and purification and Cloning on SSU-
ITS and LSU region of rRNA genes
J, Sequence identification,
Nested PCR clone library screening and Phylogenetic analysis
sequencing using SSU-ITS and LSU
region of ribosomal
DNA.

Fig. 12.2 The schematic representation of methods of isolation, multiplication, and identification
of AMF species collected from field soil
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12.10 Root Organ Culture of AMF: Benefit
in Biofertilizers Production

As it is quite difficult to define species concept of AMF using any one method,
building up a comprehensive total profile of an isolate using a combination of data
sets achieved by molecular, biochemical, and microscopy studies can classify the
uniqueness of an isolate. Use of a combined approach is not new in the field of
mycorrhiza and other fungi as several species were characterized using more than
one feature. Mycelia of ectomycorrhizal fungi (Tuber sp.) from pure culture were
characterized by combining morphological and molecular tools by Lotti et al.
(2002). Some similarly characterized fungi are Emmonsia pasteuriana (Drouhet
et al. 1998) and Pseudotomentella ochracea (Koljalg and Larsson 1998). Recent
reports by (Morton and Msiska 2010) and (Kriiger et al. 2012) led to the revision of
classification features of family Gigasporaceae (Glomeromycota) and Acaulospora
brasileinsis respectively based on combined morphological and molecular
characters.

Declerck et al. (2000) described an AMF species raised in a root organ culture
using for the first time the data based on FAME profile, ultrastructure studies of
spores, and n-rDNA. They concluded that long-term maintenance of AM fungi
under strict controlled conditions, without contamination is a suitable platform for
comparative analysis using morphological, biochemical, and molecular tools of that
isolate. As a larger number of AMF isolates are brought into root organ cultures, the
availability of consistent material will increase and developing the complete com-
prehensive profile, which will be the isolate’s signature and unique profile, will be
feasible. This has been demonstrated by our study comparing ten isolates from ROC
and emphasizing that dependence on any one character would have given an incom-
plete picture whereas the overlap of the data obtained resolves the similarities or
differences between each isolate.

12.11 Mass Propagation of Mycorrhizal Spores: Application
as Biofertilizers

The role of mycorrhiza in plant growth and nutrition has been found significant and
therefore it is now being used as a biofertilizer. The microbial inoculants of mycor-
rhizal fungi are known as biofertilizers and are helpful for production of sustainable
food as these help in utilization of important nutrients like nitrogen and phosphorus
without the use of any chemicals and without damaging the environment (Igichon
and Babalola 2017). The inoculum of mycorrhiza can be obtained from any soil as
the mycorrhizal fungi are ubiquitous and are found in almost all kinds of soil. For
the purpose of mass propagation of mycorrhizal fungi, mainly three methods are
used in vitro, substrate-free, and substrate-based production systems.
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12.11.1 Substrate-Based Production System

In this the symbionts of AMF associated with respective plant species are cultivated
in soil-based substrate, After the AMF species are obtained and identified, these
species are further propagated in plastic or clay pots. This kind of production system
has an advantage that single AMF species can be propagated in mass amounts.

12.11.2 Substrate-Free Production System

In this type of system, the plant roots and the AMF are provided with a nutrient
media required for the growth of roots and propagation of the AMF. This is the most
widely used method as it provides fungi an environment and medium which mimics
the field conditions. In this, the availability of oxygen and nutrients is ensured by
switching the pump on from time to time. Another such way is aeroponics in which
the nutrition-rich fog is sprayed on the roots which also allows the exchange of
gases. The advantage of this system is that the production of mycorrhiza is done
without using any substrate.

12.11.3 In Vitro Production System

This system uses t-DNA modified root of Daucus carota and large-scale propaga-
tion of fungi is achieved in bioreactors containing perlite or any other solid medium
as substrate. This system poses a great advantage to researchers that the interference
of other unwanted microorganisms is very less due to which pure cultures can be
obtained (Akhtar and Abdullah 2014; Selvakumar et al. 2018).

The use of AMF strains for re-enriching soil with nutrients and to act as an alter-
native to conventional fertilizing practices. Due to the potential of AMF to provide
nutritional benefits to the soil and plants both infield and in vitro, it can be of signifi-
cant use to the farmers to be used as a biofertilizer. But unfortunately, large-scale
production of AMF is a bit challenging task because it can only be grown with the
host plant, therefore, to achieve the goal of sustainable crop production, the AMF
containing soil can be used as inoculum for mass propagation. Studies have shown
that the inoculation of AMF in the field is also as effective as the inoculation done
in a greenhouse (Berruti et al. 2016).

12.12 Quality Production of AMF Fungi: Limitation
and Prospects

The main limitation that is faced during the in vitro culture of AMF is due to the fact
that AMF is an obligate biotroph. Another noticeable limitation is that the AMF
spores lose their infectivity if they are subcultured successively in vitro. Moreover,
proper inoculation and its maintenance require very skilled people and time and are
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very expensive. The prospects of AMF culture can bring many benefits and discov-
eries to the light. The potential benefits of inoculating the Arbuscular Mycorrhizal
Fungi not only include sustainable food production but also conservation of envi-
ronment. The AMF monoaxenic cultures can be encapsulated in alginate beads for
use as inoculum to diversify the culturing process (Diop 2003; Saito and
Marumoto 2002).

12.13 Growth and Propagation of Arbuscular
Mycorrhizal Fungi

Propagation of pure mycorrhizal cultures on a large scale is very important for use
in the agriculture but it is limited due to the obligate biotrophic nature of the
AMEF. Due to this nature, the AMF is dependent on a host plant for their survival and
thus it is difficult to grow and propagate AMF in vitro conditions. Although many
strategies and methods like aeroponics etc. are used for large-scale production of the
spores but all these methods have their own advantages and disadvantages out of
which the major disadvantage is lack of contamination-free culture. Therefore,
depending on the requirements, different methods are used.

12.13.1 Trap Culture

Trap culture is done in cases when either the roots of plants contain mycorrhiza but
the sporulation is negligible or in soils where the spores have undergone so many
structural changes that the identification of species has become almost impossible.
In trap culture, the rhizosphere soil is dug up and a root ball is collected. The shoots
are removed from it at the crown and roots are chopped into small fragments and
mixed thoroughly with the help of an axe. This chopped blend is then mixed with
autoclaved soil in ration 1:1 in zip-loc bags and massaged thoroughly to break the
lumps of soil and roots and mix properly so that more homogenous product can be
obtained. After this, a 15-cm plastic pot is taken and the material is transferred to the
plastic pot. For reasons like minimizing bare surface and forcing plant to grow
slowly and at similar height, the pot soil is overseeded and the plants which will
grow out of seeds will be used as hosts. These are then cultured for 4 months in
greenhouse and fertilization is kept minimal or is done only in cases where P and N
deficiencies are observed. Pots are then left in a shaded room to dry slowly at stable
temperature and spores are extracted from them before these pots get too dry. If
sporulation is low then the pots are retained and reseeded. The trap cultures can be
stored in ziploc bags for a period of at least 30 days. Although some species require
a dormant period before becoming infective but the time period may change accord-
ing to the change in habitat (Selvakumar et al. 2018; https://invam.wvu.edu/).
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12.14 Conclusion and Future Prospects

The role of AMF in the field of agriculture is very important as its proper inocula-
tion and propagation can bring many benefits to the farmers and help in maintaining
the nutrient quality of the crops and protecting crops from diseases without damag-
ing the field soil and the soil microflora. Although many methods have been designed
for the production of AMF fungi but the large-scale production of fungus is still a
challenge and requires a lot of work in the same field so that the fungus is easily
available to farmers at low costs. The prospects of AMF culture can bring many
benefits and discoveries to the light. The potential benefits of inoculating the arbus-
cular mycorrhizal fungi not only include sustainable food production but also con-
servation of environment. In future, quality production of in vitro grown AMF
inoculum for biofertilizers production would add sustainable growth in agriculture.
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