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Abstract

Autophagy is an evolutionary conserved self-degradation process that occurs
ubiquitously in eukaryotes. It plays an important role in maintenance of cellular
homeostasis by balancing the energy resources or through removal of misfolded
proteins and damaged organelles. During autophagy, the recycling of the long-
lived proteins or organelles is executed through their engulfment into double-
membrane autophagosome followed by their lysosomal degradation via forma-
tion of autophagolysosome. Interestingly, autophagy is under tight regulation by
a group of genes called autophagy-related genes (ATG) in association with
various signalling pathways. Literature review suggests that autophagy is
implicated in numerous developmental and other physiological processes such
as cell differentiation, cell survival, cell death, nutrient starvation response and its
dysregulation, often, leads to many pathological conditions including cancer.
Generally, under normal physiological conditions, basal autophagy occurs in all
cells but it is induced only in response to specific intra- or extra-cellular stimuli. In
cancer, depending on the context, autophagy can be paradoxical in nature
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(i.e. tumour-suppressive or tumour-promoting) and has also been documented to
have the remarkable role in development of chemoresistance, thus, justifying the
effectiveness of cancer therapeutic intervention through stimulation or inhibition
of autophagy. Henceforth, in this chapter, we have summarised the autophagy in
a nutshell, with focus on its mechanism, monitoring methods, regulation and
context-dependent role in cancer and explored how the manipulation of
autophagy could be beneficial towards improved cancer cure, as evident from
the numerous in vitro and in vivo studies as well as clinical trials.
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12.1 Introduction

Autophagy is a dynamic process responsible for degradation and turnover of cellular
proteins and organelle. It is accomplished through sequestration of target cellular
constituents or organelle into double-membrane vesicles called autophagosome,
which in turn fuses with lysosome to form autophagolysosome, wherein they are
degraded by lysosomal proteases for recycling. It is an evolutionary conserved
ubiquitous process occurring in eukaryotes (Klionsky and Emr 2000; Levine and
Klionsky 2004). In recent times, autophagy has gained immense attention in clinical
research owing to their versatile role in diverse physiological and pathophysiological
conditions, amongst which cancer is of particular importance. Autophagy occurs at
basal level in most of the cells. However, it can also be induced in response to
specific stimuli, wherein autophagy is context-dependent (Mizushima 2007; White
2012; Amaravadi et al. 2016). However, the differences between basal autophagy
and stimuli-induced autophagy and their relevance are not yet well-understood.

The Greek term ‘autophagy’ meaning ‘self-eating’ was coined by Christian de
Duve in 1963 based on the electron microscopic studies displaying single or double-
membrane vesicles containing parts of sequestered cytoplasm with variable degree
of disintegrated organelles, especially mitochondria and other intracellular
structures. Remarkable progress in understanding autophagy has been reported in
the last few decades by decoding its molecular mechanism and significance in
various physiological processes (Klionsky 2007; Levy et al. 2017). The break-
through discovery of the detailed mechanism of regulation and execution of
autophagy at molecular level in yeast Saccharomyces cerevisiae by Yoshinori
Ohsumi has been awarded the 2016 Nobel prize in Physiology and Medicine.
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12.2 Types of Autophagy

Autophagy can be categorised into three different types: macro-autophagy, micro-
autophagy and chaperon-mediated autophagy. Macroautophagy involves engulf-
ment of cytoplasmic proteins and organelle into double-membrane bound vesicles
called autophagosome, which is trafficked to lysosome to form autolysosome for
degradation by lysosomal proteases. In contrast, microautophagy is characterised by
the internalization of the substrate through invagination of lysosomal or endosomal
membrane followed by their lysosomal degradation (Li et al. 2012). However,
in chaperon-mediated autophagy (CMA), the cargo protein contains KFERQ-like
pentapeptide motif, which is recognised by cytosolic chaperone protein called heat
shock cognate 70 (HSP-70) for their translocation to the lysosomal lumen through
interaction with lysosomal-associated membrane protein 2A (LAMP 2A) receptor
(Kaushik et al. 2011). Although both micro and macro-autophagy are capable of
targeting large structures through selective and non-selective mechanism, CMA is
constitutively selective in nature and thereby, restricted to turnover of specific
protein with well-defined KFERQ motif. It is important to note that non-selective
autophagy involves the direct engulfment of the cytoplasm and its components into
the autophagosome (in macroautophagy) or through invagination of the lysosomal
membrane (in microautophagy). While, in contrast, selective autophagy is mediated
by specific targeting of the cargo, either cellular proteins or organelles, hallmarked
with degradation signal (most commonly, ubiquitin in mammals) through interaction
with autophagy cargo receptor, which serves as molecular bridge, for their degrada-
tion by autophagy (Kaur and Debnath 2015; Levy et al. 2017).

12.3 Mechanism of Autophagy

Autophagy is a complex, multi-step process under the intricate control of a set of
30 evolutionary conserved, autophagy-regulated genes (ATG), which were identified
in yeast and mostly, have well-recognised mammalian orthologue. It divided into three
distinct stages: autophagosome biogenesis, fusion with lysosome and lysosomal
degradation of intravesicular constituents (Fig. 12.1). The autophagosome formation
is initiated at the phagophore assembly point through the activation of ULK (UNC
51-like kinase) complex comprising of ULK1, ULK2 and ATG13, FIP200 (FAK
family kinase interacting protein of 200 kDa) and ATG 101. This is followed by the
nucleation stage when the ULK complex targets class III PI3 kinase complex—
consisting of Beclin 1 (Atg6 in yeast), VPS34 (vacuolar protein sorting 34; also
known as PIK3C3), ATG14, UVRAG (UV radiation resistance-associated gene
protein; also known as p63) and AMBRA1 (activating molecule in BECN1-regulated
autophagy protein 1)—promotes production of autophagosome-specific phosphatidyl-
inositol-3-phosphate. Finally, the ATG5–ATG12–ATG16 complex along with
ATG4B–ATG7 complex facilitates the expansion of the autophagosome membrane
through lipidation of the microtubule-associated protein light chain 1 (LC3I), which is
the mammalian homologue of yeast Atg8, and GABARAP (γ-aminobutyric type A
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(GABAA)-receptor associated protein) with phosphatidylethanolamine (PE) to form
LC3II and GABARAP-II, which in turn co-localise followed by their recruitment to
the membrane. Interestingly, LC3BII, the well-known autophagosome marker found
on the autophagosomal membrane, has been reported to facilitate the hemifusion of
membranes and cargo selection for degradation, possibly through regulation of vari-
able protein–protein interaction (Mizushima 2007; Levy et al. 2017; Meijer and
Codogno 2004; Mizushima et al. 2011; Onorati et al. 2018). However, the significance
of LCB-related molecules in autophagy needs further investigation (Fig. 12.1).

12.4 Methods of Monitoring Autophagy

In present-day autophagy research, the detection and quantification of
autophagosome along with biochemical validation of the autophagic markers
comprises the principal methods of monitoring autophagy. The electron microscopy
is the most conventional and oldest method that enables the visualisation of the
autophagosome at the ultrastructural level. It is of immense interest to note that in

Fig. 12.1 The mechanism of autophagy. Autophagy is a multistep cellular process comprising of
autophagosome initiation, elongation of the autophagosomal membrane, sequestration of the cargo
and fusion of the autophagosome with the lysosome for degradation of the constituents. It can be
inhibited at particular steps by specific inhibitors (such as 3MA—early phase autophagy inhibitor
that inhibits autophagosome formation and chloroquine, hydroxychloroquine, bafilomycin A—late
phase autophagy inhibitors that prevents the fusion of autophagosome with lysosome)
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1950s, the autophagy was first discovered by electron microscopic study of the
lysosome (Klionsky 2007). However, advancement of autophagy research called for
the formulation of easier and more accessible assays of autophagy detection. The
advent of LC3B as the signature of autophagosome has simplified the revelation of
autophagy by the light microscopic detection of LC3B or GFP–LC3B puncta.
Finally, the conversion of LC3I to LC3 II by immunoblotting with LC3 antibody
is the widely employed biochemical assay to confirm autophagy. Furthermore,
immunoblot depicting the turnover of p62 is also used to expose autophagy
(Mizushima 2004; Mizushima et al. 2010; Yoshii and Mizushima 2017).

Nonetheless, Levine et al. have highlighted the misconception of the direct
correlation of the number of autophagosome with the autophagic activity
(Mizushima et al. 2010). Owing to the dynamic nature, at any point of time, the
number of autophagosome is the function of the balance between their formation rate
and fusion rate with the lysosome. Henceforth, the autophagosome accumulation
represents either induction of autophagy or suppression of the downstream pathway
necessitating the measurement of the autophagic flux, in absence and presence of
pharmacological inhibitors and activators, as an essential parameter for uncovering
the status of autophagy. The commonly used pharmacological inhibitors include
PI3-kinase inhibitors (such as wortmannin, 3-MA and LY294002), microtubule-
disrupting agents (e.g. nocodazole), etc. while rapamycin and its analogue, CCI-779,
BH3 mimetics (ABT737) and many others are used as autophagy activators. Further,
manipulation of the autophagy by knockdown or knockout and over-expression of
the ATG genes are also adopted to analyse autophagic flux. The methods used to
measure autophagy comprises of LC3 turnover assay, degradation of LC3 and other
selective targets, specifically p62 as well as radiolabelled long-lived protein and
mRFP-GFP-LC3 assay. The mRFP–GFP–LC3 assay is an interesting test, which
exploits the principle of lysosomal stability of RFP versus the quenching of GFP in
acidic lysosomal compartment and thus, ascertains the localisation of LC3
depending on their fluorescence properties (Mizushima et al. 2010; Mizushima
2004; Yoshii and Mizushima 2017). Owing to the limitation of each of these assays,
combination of the independent experimental methods is usually recommended as
the most appropriate technique to estimate autophagy.

12.5 Regulation of Autophagy

Numerous signalling pathways have been involved in up and down-regulation of
autophagy. However, the lack of information to understand the detailed molecular
mechanism of the autophagy regulation in both cancer and normal cells calls for
further investigation (Fig. 12.2).
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12.5.1 The PI3K–AKT–mTOR Signalling Pathway

According to recent reports, phosphatidylinositol 3-kinase (PI3K)–AKT–mTOR
pathway is important for negative regulation of autophagy. AKT, a serine-threonine
kinase, activates mTOR, a TOR kinase, which leads to suppression of autophagy.
Studies in yeast have demonstrated that TOR kinase, which lies upstream of the
autophagy-related genes, serves as the guard in autophagy initiation (Schmelzle and
Hall 2000). Moreover, in mammalian cells, mTOR integrates with growth factor
signalling cascade, thereby, regulating autophagy. It is interesting to note that class I
and III PI3K have opposing role in regulation of autophagy: Class I PI3K, which is
activated through growth factor receptor, inhibits autophagy while activation of class
III PI3K facilitates autophagy by promoting sequestration of cytoplasmic cargo
(Petiot et al. 2000). The tumour suppressor genes, like oncogenic RAS and phos-
phatase and tensin homologue (PTEN), also regulate autophagy through PI3K–
AKT–mTOR pathway. Oncogenic RAS activates class I PI3K while PTEN
deactivates class I PI3K, thereby, suppressing and initiating autophagy, respectively,
through modulation of AKT (Arico et al. 2001). In addition, mutation of PTEN,
located on chromosome 10q23, in various cancers activates AKT and thus, inhibits
autophagy. PI3K–AKT–mTOR signalling pathway is dependent on nutrient avail-
ability like nitrogen or amino acids, which leads to transcriptional and translational
regulation by p70s6 kinase and 4E binding protein 1 (Wang and Klionsky 2003).

Fig. 12.2 Regulation of autophagy. The different molecular signalling cascade involved in
modulation of autophagy. The green arrows indicate activation and the red indicates inhibition of
autophagy
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12.5.2 Beclin 1 (BECN1) and Other Pathways

Beclin 1 is a coiled coil protein which is a BCL-2 interacting gene product. It is the
first reported molecule to directly link tumourigenesis with autophagy. Previous
reports have indicated significant role of class III PI3K in regulation of
autophagosome formation and also, promotion of transport of the lysosomal
enzymes from trans-golgi network (TGN) to the lysosome. Hence, BECN1 binds
to class III PI3K to form BECN1–PI3K complex, which localises in TGN and
presumably, facilitates sorting of putative autophagosomal components followed
by autophagy induction (Liang et al. 1999).

Other molecules implicated in regulation of autophagy in cancer cells include
BCL2 and its family members (BNIP3 and HSPIN1), death-associated protein
kinase (DAPK), death-associated related protein kinase 1 (DRP1) and mitogen-
activated kinases. BNIP3 (BCL2–adenovirus E1B 19-kDa-interacting protein 3)
and HSPIN1 (a human homologue of the Drosophila melanogaster spin gene
product) are the member of the BCL2 homology 3 (BH3)-only subfamily of the
BCL2 family proteins (Vande Velde et al. 2000). They have been reported to induce
caspase-independent autophagic cell death in various cancer cell lines. In addition,
literature survey has documented that bone marrow-derived cells from BAX and
BAK-deficient mice or murine embryonic fibroblast (MEF) are apoptosis resistant
but susceptible to autophagy induction upon withdrawal of growth factor or expo-
sure to the chemotherapeutic agent, etoposide (Lum et al. 2005). These, collectively,
strengthens the relevance of BNIP3 and HSPIN1 in regulation of autophagy. The
DAPK, DRP1 and mitogen-activated protein kinases belong to the family of serine–
threonine kinases that regulate a plethora of cellular responses including autophagy.
For example, DAPK and DRP1, which are regulated by Ca2+–calmodulin, induce
autophagy in MCF7 and HeLa cell (Inbal et al. 2002). While the stimulation of
extracellular signal-regulated kinases ERK1 and ERK2, by the RAS–RAF1–mito-
gen-activated protein kinase (MEK) signalling cascade, induces autophagy in HT-29
colon cancer cell (Ogier-Denis et al. 2000) and buffers the metabolic stress
(Degenhardt et al. 2006). For instance, during nutrient starvation, autophagy serves
as the alternative energy reservoir whereas it also expedites the adaptation of cancer
cells to cellular damage by removing the damaged proteins and organelles
(Mizushima 2007).

12.6 Autophagy: The Double-Edged Sword

Autophagy has versatile role in diverse cellular processes and diseases. Basal
autophagy occurs constitutively and performs its homeostatic function in conjuga-
tion with proteasome degradation pathway to facilitate protein and organelle quality
control (Mathew et al. 2007; Mizushima 2007; Ravikumar et al. 2002). It has also
been reported to help in elimination of pathogens and apoptotic bodies (Colombo
2007; Qu et al. 2007).
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Mounting evidences suggest that autophagy has a pivotal role in cancer, although,
its role in sustaining cell survival or inducing cell death is paradoxical (Baehrecke
2005). Autophagy is a well-conserved survival mechanism in several tumour types,
which is rendered by protecting the cancer cells from undergoing programmed cell
death. It is the most widely used mechanism of the cancer cells to survive. Therefore,
inhibition of the autophagy is often exploited as the most feasible approach to
sensitise the tumour cells to apoptosis and forms the basis of numerous cancer
clinical trials. Nonetheless, in some situations, autophagy can also induce cell
death, which is called programmed cell death type II (PCD II) or lethal autophagy.
However, the autophagic cell death and apoptosis can be distinguished based on
morphological and biochemical features. For instance, in contrast to apoptosis,
autophagic cell death is caspase-independent and characterised by degradation of
Golgi apparatus, polyribosome and endoplasmic reticulum prior to nuclear destruc-
tion (Bursch et al. 2000). Interestingly, during anti-cancer treatment, protective
autophagy is initially triggered at the early stage by sequestering the damaged
organelle and protein. But once the cellular damage crosses a certain threshold,
lethal autophagy or death-inducing is activated to remove the damaged cells from the
tissue (Kondo et al. 2005). Although apoptosis and autophagy are interconnected but
little is known about the crosstalk between them. Recently, prothymosin-α, inhibitor
of apoptosome formation in neuron, has been identified as plausible candidate for
modulating the switch between apoptosis and autophagy (Kondo et al. 2005).
Intriguingly, autophagy is dependent on multiple factors such as the nature and
duration of stimulus, cell type, etc. For example, arsenic oxide (As2O3)-induced
autophagy in glioma cells while in leukaemia cells, it triggered apoptotic cell death.
Similarly, in contrast to the DNA alkylating agent, cisplatins, temozolomide (TMZ)
induced autophagy, instead of apoptosis, in several cancer cell lines (Pelicano et al.
2003; Kanzawa et al. 2004). Moreover, it is interesting to document that
while tamoxifen induced apoptosis in some cells, it also induced autophagy in
other and both apoptosis and autophagy in the rest of breast cancer cells (Bursch
et al. 1996). Henceforth, the modern cancer researchers have focused on investiga-
tion of the intricate regulation of autophagy and deciphering the interlink between
the apoptosis and autophagy.

12.7 Role of Autophagy in Chemoresistance

A large number of recent studies suggests autophagy plays pivotal role in develop-
ment of chemoresistance (Datta et al. 2017; Hu et al. 2012); in addition, various
articles provide increasing evidences that inhibition of autophagy, in combination
with various anticancer drugs can augment cytotoxicity on cancer cells leading
to attenuation of chemoresistance development and metastasis process (Datta et al.
2019; Follo et al. 2018; Levy et al. 2014) (Fig. 12.3).

Epirubicin, one of the leading drugs used for breast cancer treatment, has shown
evidences of autophagy induction in MCF7 breast cancer cell lines, which leads to
cytoprotection of the cells from the chemotherapeutic stress induced by this drug.
Similarly, autophagy inhibition has also shown elevated cytotoxic effect of various
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chemotherapeutic drugs like 5-fluorouracil, irinotecan in colorectal cancer,
oesophageal cancer, etc. (Chen et al. 2011; Sasaki et al. 2010). Likewise, in
human hepatocarcinoma cell lines, autophagy level gets elevated with oxaliplatin
treatment, and suppression of autophagy enhances oxaliplatin-induced cell death
(Guo et al. 2013). Some of the leading drugs for treatment of lung cancers, like
topetocan and paclitaxel, also shows elevated autophagy levels in lung cancer
cells, which may ultimately aid in development of chemoresistance against these
drugs and inhibition of autophagy has shown promising role in prevention of
chemoresistance development against these drugs in lung cancer cells (Datta et al.
2019; Goldberg et al. 2012).

There are varieties of molecular mechanisms via which autophagy induction may
lead to chemoresistance development in various cancers; epidermal growth factor is
a key regulatory factor for cell survival. Through its binding to cell surface receptors,
EGF can induce the activation of three signalling pathways that aids in cancer
development and progression, Ras/MAPK, PI3K/Akt and JAK/STATs (Henson
and Gibson 2006). In malignant peripheral nerve sheath tumour (MPNST)
PD168393, an EGFR-TKI, may induce autophagy as a cytostatic but not a cytotoxic
response in malignant peripheral nerve sheath tumour (MPNST) cells that was
accompanied by suppression of Akt and mTOR activation. The aberrant expression
of PI3K/AKt pathway may also aid in chemoresistance development and PI3K/Akt
inhibitors may also lead to increased cytotoxicity of chemotherapeutic drugs against
cancer cells by autophagy blockage. In many pre-clinical models autophagy inhibi-
tion has shown increased cytotoxic effect, by elevated p53 activity. Vascular

Fig. 12.3 The modulation of chemoresistance and chemosensitivity by autophagy. Schematic
diagram depicting the activation of different cellular signalling pathways in cancer cells
through autophagy induction or inhibition, leading to chemoresistance or chemosensitivity,
respectively
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endothelial growth factor-C (VEGF-C) is a secreted growth factor involved in many
oncogenic processes, which shows autophagy promoting activities in many cancer
cells and VEGF-C inhibitors have been reported to increase cytotoxic effect of anti-
cancer drugs by downregulation of cellular autophagy. Activation of MAPK14/p38
also triggers survival-promoting autophagy to protect tumour cells against the
cytotoxic effects of chemotherapeutic drugs. In addition, various micro-RNAs may
also play key role in chemoresistance development by either inhibition or
up-regulation of cellular autophagy, for example inhibition of miR30a (a potent
autophagic inhibitor) may lead to chemoresistance development and elevated
expression of miR30a may aggravate cytotoxicity of cancer cells by inhibition of
autophagy; similarly, miR-199a-5p (an autophagic inducer) may lead to
chemoresistance development to cisplatin and vice versa. Moreover, recent reports
suggest that some paclitaxel resistant cell lines also show reduced expression of
miR16 and 17, which usually exhibits inhibitory effects on beclin-1 expression and
elevated expression of these miRNAs may increase sensitivity of these resistant cell
lines towards paclitaxel by down-regulation of autophagy (Chatterjee et al. 2015).

However, in spite of its clear prosurvival role, autophagy has also shown to have a
prodeath role under certain circumstances, following treatment with a specific set of
chemotherapeutic agents, either by enhancing the induction of apoptosis or
mediating ‘autophagic cell death’ by K-RAS, ERK pathways.

12.8 Autophagy Inhibitors

The autophagy inhibitors, whose effectiveness in in vivo and safety in clinical trials
have been approved by the FDA, are the antimalarial drugs chloroquine (CQ) and its
derivative hydroxychloroquine (HCQ); these are lysomotrophic drugs which raise
the lysosomal pH, thereby preventing fusion of lysosomes with autophagosomes and
thus, preventing autophagosomal degradation (Fox 1993; Mauthe et al. 2018). Both
CQ and HCQ have been investigated in preclinical studies or clinical trials. In
addition to antimalarial drugs, inhibition of autophagy by either pharmacological
approaches or via genetic silencing of autophagy regulatory genes such as Beclin
1, ATG6, ATG5, ATG7 or ATG12 (Table 12.1) also results in sensitisation of cancer
cells to a variety of chemotherapeutic drugs. Different autophagy inhibitors block
autophagy at different well-defined stages. For example, another antimalarial drug
bafilomycin A1 can inhibit autophagosome fusion with lysosomes and
autophagosome degradation in the final stage of autophagy. Class III PI3K inhibitors
(3-methyladenine (3-MA), LY294002 and Wortmannin) or knockdown of
autophagy regulatory genes are involved in the initiation/expansion stage of
autophagy (Liu et al. 2013; Zhao et al. 2012) (Table 12.1).

Although some previous articles have linked autophagy with cell death (Acharya
et al. 2011; Lin and Baehrecke 2015; Paul et al. 2020), increasing number of recent
research articles have also displayed the promising role of autophagy in cancer cell
survival, wherein autophagy inhibition enhanced the chemo-sensitivity of cancer
cells towards a wide range of chemotherapeutic drugs (Bhattacharya et al. 2016;
Cournoyer et al. 2019; Dyczynski et al. 2018; Ganguli et al. 2014; Pagotto et al.
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2017). In addition, many reports also suggest that autophagy inhibition may prevent
chemo-resistance development in many cancer cell lines (Belounis et al. 2016; Datta
et al. 2019). Hence, literature review has established the differential role of
autophagy under different conditions. Therefore, finding the exact role of autophagy
in a given cancer type, under a given condition is the key factor in determining the
clinical approach for apt cancer chemotherapy.

12.9 Clinical Trials

Owing to the opposing, context-dependent role of autophagy in cancer, several
studies have proposed that manipulation of autophagy, by stimulation or inhibition,
could enhance the efficacy of multiple cancer therapies. However, till date,

Table 12.1 Strategies used for inhibition of autophagy

Drug Target Effect

I. Pharmacological agents
Chloroquine Lysosomal pH Inhibit autophagosome fusion with lysosomes

and autophagosome degradation

Hydroxychloroquine Lysosomal pH Inhibit autophagosome fusion with lysosomes
and autophagosome degradation

Monensin Change endocytic
and lysosomal pH

Inhibit the initiation/expansion stage of
autophagy

Bafilomycin A1 Class III PI3K
inhibitor

Inhibit the initiation/expansion stage of
autophagy

3-Methyladenine Class III PI3K
inhibitor

Inhibit the initiation/expansion stage of
autophagy

Wortmannin Class III PI3K
inhibitor

Inhibit the initiation/expansion stage of
autophagy

LY294002 Class III PI3K
inhibitor

Inhibit the initiation/expansion stage of
autophagy

Pyrvinium Class III PI3K
inhibitor

Inhibit the initiation/expansion stage of
autophagy

II. Genetic silencing of autophagy regulatory genes
A. miRNA

miR-140 ATG12 inhibition Autophagy inhibition

miR-502 RAB1B Autophagy inhibition

miR106a/b ATG16L and ATG12 Autophagy inhibition

miR-183 UVRAG Autophagy inhibition

miR-22 BTG1 Autophagy inhibition

miR-4093p Beclin-1 Autophagy inhibition

B. si-RNA

ATG12-siRNA ATG12 Autophagy inhibition

ATG5-siRNA ATG5 Autophagy inhibition

Beclin1-siRNA Beclin1 Autophagy inhibition

ATG7-SiRNA ATG7 Autophagy inhibition

ATG6-siRNA ATG6 Autophagy inhibition
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chloroquine (CQ) and hydroxychloroquine (HCQ) are the only clinically approved
and available drugs to inhibit autophagy in clinical models. As tabulated in
Table 12.2, mounting preclinical evidences have documented that the inhibition of
autophagy with CQ or HCQ alone or in combination with other drugs or radiation
caused significant improvement in clinical outcome in cancer patients (Barnard et al.
2014; Briceno et al. 2003; Chude and Amaravadi 2017; Eldredge et al. 2013; Levy
et al. 2017; Mahalingam et al. 2014; Rangwala et al. 2014; Rojas-Puentes et al. 2013;
Vogl et al. 2014).

12.10 Conclusions

The significance of autophagy in tumourigenesis and cancer treatment makes it an
important target for therapeutic intervention. However, till date, autophagy and its
role in cancer are poorly understood. Therefore, the attempt to manipulate autophagy
should be designed depending on its specific role in that particular scenario of
malignancy. The two different and competing approaches of autophagy modulation

Table 12.2 Autophagy inhibitors and their clinical application in different types of cancers

Autophagy inhibitor Tumour
Additional
treatment

Clinical
trial
phase

Hydroxychloroquine
(HCQ)

1. Solid tumours and melanoma Temsirolimus I

2. Malignant solid tumours and
colorectal cancer

Vorinostat I

3. Non-Hodgkin’s lymphoma Doxorubicin I

4. Glioblastoma Temozolomide
and radiation

I/II

5. Refractory myeloma Bortezomib I

6. Pancreatic adenocarcinoma Gemcitabine or
capecitabine

I/II

7. Non-small cell lung cancer Erlotinib I

8. Adult solid neoplasm Sunitinib malate I

9. Advanced cancers MK-2206
(protein kinase B
(Akt inhibitor))

I

10. Small cell lung cancer Gemcitabine/
carboplatin

I/II

11. Renal cell carcinoma IL-2 I/II

12. Estrogen receptor-positive breast
cancer and prostate cancer

None I and II

Chloroquine 1. Glioblastoma Temozolomide
and radiation

2. Brain metastases: Non-small cell
lung cancer, small cell lung cancer
and ovarian cancer

Radiation II and
Pilot
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are generally adopted towards improvement in cancer therapy. Firstly, cancer cells
undergoing lethal autophagy could be exposed to mTOR inhibitors such as
rapamycin and its derivatives: CCI-779, RAD001 and AP23573 in order to aggra-
vate autophagic cell death culminating in suppression of a broad range of tumours
(Chan 2004). Secondly, in contrast to the above strategy, inhibition of protective
autophagy, with autophagy inhibitors such as chloroquine, hydroxychloroquine,
bafilomycin A, etc. enhances the therapeutic potential of cancer therapeutics through
sensitisation of the cancer cells to apoptotic cell death, as supported by mounting
number of clinical trials (Barnard et al. 2014; Chude and Amaravadi 2017; Kanzawa
et al. 2003; Levy et al. 2017; Mahalingam et al. 2014; Rangwala et al. 2014).
However, both of these attempts in modulation of autophagy yield best outcome
when combined with conventional cancer therapies.

Presently, numerous research groups throughout the globe have focused on
delineating the detailed mechanism and signalling network of autophagy and under-
standing its intricate role in various types and stages of cancer. Henceforth, these
extensive studies could enlighten new strategies of enhancing the efficacy of the
currently available therapeutic options towards successful cancer cure.
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