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Abstract

Autophagy is an evolutionarily conserved process that delivers intracellular
constituents to the lysosomes for degradation and recycling. Autophagy plays a
central role in diverse physiological processes and has been implicated in the
pathogenesis of various diseases including cancer. The role of autophagy in
cancer is complex and largely context-dependent. Accumulating evidence
indicates that autophagy facilitates tumorigenesis by enabling acquisition of
cancer hallmarks. Autophagy manipulation has emerged as a promising strategy
in cancer treatment. In this chapter, we provide an overview of the autophagic
process, highlight the autophagy conundrum in cancer, examine the complex and
conflicting reports on autophagy in tumour suppression and tumour promotion, as
well as the role of autophagy in the acquisition of cancer hallmarks. Finally, from
the clinical perspective, we summarise the evidence for autophagy-related genes
and proteins as reliable markers of disease severity and prognosis and analyse the
efficacy of autophagy manipulation in improving cancer treatment outcomes and
circumventing chemoresistance.
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11.1 Introduction

Autophagy is an evolutionarily conserved process by which aberrant, unwanted
proteins and damaged organelles are sequestered into double-membraned vesicles
called autophagosomes and subsequently delivered to the lysosomes for degradation
to maintain cellular homeostasis (Bishop and Bradshaw 2018). The term
‘autophagy’, coined by Christian de Duve in 1963, is derived from the Greek
words, ‘auto’ meaning “self” and ‘phagein’ meaning “to eat” (Klionsky 2008).

Autophagy is categorised into three distinct types based on the mechanism of
cargo delivery to the lysosomes for degradation, microautophagy, chaperone-
mediated autophagy (CMA) and macroautophagy. Microautophagy seen in yeast
involves the sequestration of small cargoes by protrusion or invagination of
endolysosomal membranes. CMA mediates the degradation of soluble proteins in
the lysosomes with the help of molecular chaperones and lysosome-associated
membrane protein 2A (LAMP2A). Macroautophagy (henceforth referred to as
autophagy), the best-characterised and evolutionarily conserved type of autophagy,
requires the formation of double-membrane structures termed autophagosomes for
the delivery of cargoes to the lysosomes. Macroautophagy may be further classified
into selective autophagy, characterised by high cargo specificity, and non-selective
(bulk) autophagy which lacks cargo specificity (Allen and Baehrecke 2020; Parzych
and Klionsky 2014).

Autophagy is intricately involved in health and disease. It plays a vital role in
cellular turnover, development, differentiation, tissue remodelling and cell death.
Autophagy is believed to function as a double-edged sword in disease processes and
may have a causative or protective role. Autophagy has been implicated in ageing,
infections, neurodegenerative disorders and cancer (Shintani and Klionsky 2004).
Yoshinori Ohsumi was awarded the Nobel Prize for Physiology or Medicine in 2016
for his seminal work on autophagy that led to a new paradigm in understanding
physiological processes such as the adaptation to starvation as well as diseases such
as cancer (https://www.nobelprize.org/prizes/medicine/2016/press-release/).

11.2 Physiological Functions of Autophagy

Autophagy is essential at every stage during the development of various organisms
and mediates a plethora of diverse cellular processes. Autophagy plays a critical role
in the maintenance of cellular homeostasis. Under basal conditions, autophagy is
involved in housekeeping functions such as removal of damaged organelles,
misfolded proteins and protein aggregates. On the other hand, during starvation,
autophagy promotes bioenergetic homeostasis by breaking down cellular
macromolecules to generate ATP for cellular functions (Klionsky 2020; Mowers
et al. 2017). Besides nutrient deprivation, autophagy is also induced to mitigate
stress due to hypoxia and reactive oxygen species (ROS). During embryogenesis,
autophagy catalyses the removal of paternal mitochondria. Autophagy is required for
mediating immune and inflammatory response, defence against microbial infections,
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cell-fate determination, tissue remodelling, preservation of organelle function,
recycling of intracellular proteins, prevention of toxic build-up of waste products
and gene silencing. Autophagy also protects cells from undergoing programmed cell
death by apoptosis (Allen and Baehrecke 2020; Singh et al. 2018).

11.3 The Autophagic Process and Components

Autophagy occurs at a basal level in all cells and can be induced by various types of
stress including nutrient deprivation, hypoxia, ROS, damaged cell organelles and as
a part of the DNA damage response (DDR) (Singh et al. 2018). Autophagy is divided
into five stages: initiation, nucleation of the initial sequestering compartment termed
the phagophore, expansion and elongation of the phagophore to form the double-
membrane structure called the autophagosome, fusion of the outer membrane of the
autophagosome with the lysosome to form the autolysosome and cargo degradation
and recycling (Hansen et al. 2018). Each stage of autophagy has potential therapeutic
targets for intervention (Fig. 11.1) (Mulcahy Levy and Thorburn 2020).

The process of autophagy is mediated by the highly conserved autophagy-related
genes (ARGs), (Allen and Baehrecke 2020; Singh et al. 2018). Autophagy is
initiated in response to various cellular signals by the Unc-51-like autophagy
activating kinase (ULK1) complex comprising ULK1, ULK2, Atg13, Atg101 and
the scaffolding protein RB1 inducible coiled-coil 1 (RBCC1) also known as FAK
family kinase-interacting protein of 200 kDa (FIP200). This is followed by mem-
brane nucleation and formation of the phagophore that requires synthesis of
phosphatidylinositol-3-phosphate by activation of a class III phosphoinositide
3-kinase (PI3K) complex, composed of a PI3K, ATG14L, vacuolar protein
sorting-associated proteins 15 and 34 (VPS15 and VPS34) and Beclin-1. The
ATG9 trafficking system (ATG2A/ATG2B, WDR45/WIP14 and ATG9A) is
responsible for elongation of the phagophore. The phagophore expands by acquisi-
tion of lipids promoted by two ubiquitin-like conjugation systems, the ATG5–
ATG12–ATG16 complex and microtubule-associated protein light chain 3 (LC3)
to form the autophagosome. Formation of the ATG5–ATG12–ATG16 complex is
followed by conversion of the cytosolic LC3-I to the lipidated LC3-II that conjugates
to phosphatidylethanolamine and incorporated into the phagophore membrane. The
adaptor protein p62/sequestosome 1 (SQSTM1) binds to LC3-II during
autophagosome formation and facilitates the degradation of ubiquitinated proteins
(Bishop and Bradshaw 2018; Marinkovic et al. 2018). The autophagosome then
fuses with a lysosome, to form an autolysosome in a process requiring small
G-protein Rab7, soluble N-ethylmaleimide-sensitive factor attachment proteins
(SNAREs), syntaxin17 (Stx17) and the membrane tethering complex HOPS (Dikic
and Elazar 2018; Zhi et al. 2018). The autophagic process is completed within the
autolysosomes by enzymatic degradation of the cargo and recycling of nutrients
(Fig. 11.1).

Autophagy is regulated by the mammalian target of rapamycin (mTOR) and
AMP-activated protein kinase (AMPK) signalling pathways. mTORC1 which is
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activated by nutrients and growth factors at the lysosomes induces phosphorylation
of the ULK complex with repression of autophagy. On the other hand, nutrient
deprivation inactivates mTORC1 leading to activation of the ULK complex and
autophagy induction (Fig. 11.1). Recent evidence indicates that autophagy is also
regulated by epigenetic mechanisms including histone modifications, DNA methyl-
ation and by noncoding RNAs (ncRNAs) (Baek and Kim 2017; Hu 2019). Epige-
netic changes influence ARGs as well as the signalling molecules and pathways that
regulate autophagy. While the co-activator-associated arginine methyltransferase

Fig. 11.1 Schematic representation of the mechanism and regulation of autophagy. The mTOR
kinase is the key signalling molecule involved in the regulation of autophagy. In an unstressed state,
activated mTORC1 phosphorylates and inactivates autophagy-related proteins and inhibits the
ULK/FIP200/ATG13 complex with consequent inhibition of autophagy. Induction of autophagy
by starvation, oxidative stress and hypoxia, inhibits mTORC1 that in turn releases and activates the
ULK/FIP200/ATG13 complex. This leads to activation of the class III phosphoinositide 3-kinase
(PI3K) complex comprised of Vps34, p150, Beclin-1, Atg14L and Autophagy and Beclin1
Regulator 1 (AMBRA1), which then drives the nucleation of the isolation membrane. Expansion
and elongation of the isolation membrane involve conversion of cytoplasmic LC3-I to the lipidated
LC3-II, followed by conjugation of phosphatidylethanolamine (PE) to LC3-II mediated by ATG4B
and ATG7. Localisation of ATG5-ATG12/ATG16L complex helps in elongation by recruitment of
LC3-II to the membrane. The ends of the isolation membrane fuse to form the autophagosome,
which fuses with the lysosomes to form autolysosomes. The cargo is degraded in the autolysosomes
by lysosomal enzymes and biomolecules recycled back to the cytoplasm
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1 (CARM1) enhances transcriptional activation of ARGs, EZH2, a
methyltransferase is reported to silence autophagy-activating promoters by methyla-
tion. Shin et al. (2016a) found CARM1-mediated arginine methylation (H3R17me2)
as a critical epigenetic mark in autophagic induction.

11.4 Role of Autophagy in Cancer

The role of autophagy in cancer is complex and bidirectional. Autophagy has been
documented to suppress or promote tumour development based on the context and
the stage of tumorigenesis. Autophagy has been documented to be low in premalig-
nant lesions and enhanced in advanced cancers (Galluzzi et al. 2015; Mulcahy Levy
and Thorburn 2020).

11.4.1 Tumour Suppressive Effects of Autophagy

Autophagy prevents carcinogenesis by virtue of its ability to remove aggregated,
misfolded and oncogenic proteins. Additionally, autophagy also exerts tumour-
suppressive effects by stimulating the immune response. Decreased autophagy was
shown to be associated with infiltration of regulatory T cells, leading to diminished
immunosurveillance that facilitates tumour development (Parzych and Klionsky
2014). The tumour preventive role of autophagy has also been attributed to be
mediated via scavenging endogenous sources of ROS and maintaining genomic
stability (Galluzzi et al. 2015). Although genetic alterations in several ARGs have
been extensively documented, a large-scale human genomic analysis of somatic
mutations in ATG genes across 11 cancer types revealed that the core autophagy
machinery, which plays a critical role in maintaining genomic stability does not
undergo genetic alterations (Lebovitz et al. 2015).

Monoallelelic deletion of Beclin-1, a haploinsufficient tumour suppressor gene,
has been reported in breast, ovarian and prostate cancers (Delaney et al. 2020; Qu
et al. 2003). The loss of Beclin-1 was associated with reduced autophagy and
increased proliferation (Lee and Wu 2012; Zhang et al. 2018). However, biallelic
Beclin-1 mutations that could cause embryonic lethality do not occur in cancer. This
implies that monoallelic Beclin-1 is adequate to facilitate the requirement of func-
tional autophagy necessary for neoplastic transformation (Yue et al. 2003). The
Vps34-binding domain of Beclin-1 was shown to be essential for its tumour sup-
pressor activity (Furuya et al. 2005). The tumour suppressor functions of Beclin-1
are also mediated through UVRAG and Bax-interacting factor-1 (Bif-1), which
increase binding of Beclin-1 to Vps34 (Takahashi et al. 2007). Monoallelic deletion
or mutations of UVRAG as well as downregulation of Bif-1 have been documented
in diverse malignancies (Kung et al. 2011).

In addition to Beclin-1, several components of the core autophagy machinery
were also found to display tumour suppressor functions. Loss-of-function mutations
in ATG2B, ATG5, ATG9B and ATG12 leading to truncated ATG proteins were
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identified in gastric and colorectal cancers with microsatellite instability (Kang et al.
2009). Mice with deficiency of Atg5 and Atg7 showed mitochondrial damage,
oxidative stress and propensity to develop liver tumours (Takamura et al. 2011).
Loss of ATG4C, involved in processing LC3/ATG8 during autophagosome forma-
tion, was reported in chemically induced murine fibrosarcomas (Kimmelman 2011).
Somatic mutations of ATG5 coupled with overexpression of ATG16L2 observed in
various tumours prevented the interaction of ATG5 with ATG16L1, with conse-
quent proteasomal degradation of ATG12 and ATG16L1, resulting in inhibition of
autophagy (Wible et al. 2019).

p62/SQSTM1, an autophagy receptor and selective substrate for autophagy,
accumulates when autophagy is inhibited with fall in levels when autophagy is
induced. It thus serves as a reliable marker of autophagic flux (Mathew et al.
2009). Aberrant accumulation of p62/SQSTM1 has been reported in gastrointestinal
cancer (Su et al. 2005), prostate cancer (Kitamura et al. 2006), hepatocellular
carcinoma (Umemura et al. 2016), breast cancer (Li et al. 2017) and lung adenocar-
cinoma (Inoue et al. 2012), suggesting that autophagy inhibits tumorigenesis by
decreasing p62 accumulation (Li et al. 2020).

There is growing evidence to indicate that autophagy is stimulated by well-
established tumour suppressors such as TP53 and phosphatase and tensin homolog
(PTEN). In HT-29 colon cancer cells, PTEN was found to promote autophagy,
whereas loss-of-function mutations in PTEN suppressed autophagy (Errafiy et al.
2013). Taken together, these findings underscore the anti-tumour effects of
autophagy (Fig.11.2).

11.4.2 Tumour-Promoting Effects of Autophagy

Although autophagy is reported to suppress the development and progression of
tumours, substantial evidence indicates that autophagy facilitates tumorigenesis.
Autophagy is a strategy that enables acquisition of cancer hallmarks and survives
tumour microenvironmental stress. Several studies have demonstrated the key role
of autophagy in providing essential metabolites to meet the growing demands of
proliferating tumour cells (Kocaturk et al. 2019; Mulcahy Levy and Thorburn 2020;
Singh et al. 2018; Yang and Klionsky 2020). Autophagy fuels enhanced metabolic
and energy needs of cancer cells by mediating the degradation of macromolecules to
their constituent monomer units. In addition, autophagy promotes tumour survival
by enhancing tolerance to oxidative and genotoxic stress as well as stress induced by
increased metabolic rate and hypoxia (Fig.11.2).

RAS are small GTPases involved in important signal pathways for proliferation,
survival and metabolism. Cancers driven by the K-Ras oncogene rely heavily on
autophagy even in the absence of external stressors, a phenomenon known as
‘autophagy addiction’ that helps in evasion of metabolic stress and cell death
(Kim et al. 2011b). Several studies have reported a correlation between
RAS-mediated autophagy and the development of various human malignancies,
including cancers of the lung, colon and pancreas, suggesting that autophagy plays
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an important role in survival and growth of various tumours that depend on RAS
activation (Goel et al. 2015; Guo et al. 2011; Kim et al. 2011a). High rates of KRAS
mutations are seen in pancreatic ductal adenocarcinomas (PDACs) that are believed
to depend on autophagy to fuel tumour metabolism (Guo et al. 2011; Mulcahy Levy
and Thorburn 2020; Yang et al. 2011). The tumour-promoting potential of
autophagy is believed to be mediated by suppression of TP53 induction and by
maintenance of mitochondrial function (Guo et al. 2013b; Mancias and Kimmelman
2011).

Cancer stem cells (CSCs) that display self-renewal and malignant transformation
showed higher levels of autophagy (Nazio et al. 2019). The influence of autophagy
on CSCs is rather complex and based on several factors such as origin and differen-
tiation status. Inhibition of autophagy in CSCs induced death of CD34+ progenitor
cells in chronic myeloid leukaemia, whereas in acute myeloid leukaemia, it caused
expansion of progenitor cells in haematopoietic stem cells (Auberger and Puissant

Fig. 11.2 The dual role of autophagy in tumorigenesis
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2017). Conflicting findings have been reported on the effect of silencing ARGs on
CSCs. While silencing of Beclin-1 or ATG genes such as ATG7, ATG12 or LC3
inhibited proliferation of CSCs, ATG7 deficiency in KRAS-driven tumours had no
effect (Cufi et al. 2011; Eng et al. 2016; Gong et al. 2013).

11.5 Autophagy and Cancer Hallmarks

Tumorigenesis involves the acquisition of ten essential alterations that enable the
growth and functional abilities of cancer cells to survive, proliferate, invade and
disseminate, collectively denoted as hallmarks of cancer. These include self-
sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of
programmed cell death, limitless replicative potential, sustained angiogenesis, tissue
invasion and metastasis, reprogramming of energy metabolism, evading immune
destruction, genome instability and inflammation (Sasahira and Kirita 2018). Several
studies have unravelled the role of autophagy in the acquisition of cancer hallmarks,
some of which (sustained cell proliferation, invasion, metastasis, apoptosis evasion
and drug resistance) are discussed below.

11.5.1 Cell Proliferation and Autophagy

There are conflicting reports on the role of autophagy in tumour cell proliferation
(Singh et al. 2018). High levels of autophagy have been documented to be essential
for the growth of cancers with KRAS or BRAF mutations such as PDACs (Yang
et al. 2011). In a BRAF-driven lung cancer model, Atg7 deletion resulted in tumour
regression providing proof-of-concept for the involvement of autophagy in the
proliferation of these tumours (Guo et al. 2013a). Other studies found a correlation
between low levels of autophagy and high rate of proliferation in cancer that could
be attributed to dysregulated PI3K/Akt/mTOR pathway and deletion of the tumour
suppressor PTEN. Further, rapamycin, an mTOR inhibitor and autophagy inducer
was shown to cause cell cycle arrest and inhibits proliferation of mantle cell
lymphoma and MDA-MB-231 breast cancer cells (Chatterjee et al. 2015; Yazbeck
et al. 2008). Collectively, these findings indicate that autophagy-mediated regulation
of cell proliferation is context-dependent.

11.5.2 Interplay Between Autophagy and Apoptosis

Although apoptosis and autophagy are distinct forms of cell death that maintain
cellular homeostasis, they are intricately interconnected by protein networks
(Nikoletopoulou et al. 2013; Vijayarathna et al. 2015). Autophagy is a cytoprotective
survival mechanism that tumour cells employ to evade apoptosis (Mulcahy Levy and
Thorburn 2020). Understanding the mechanisms by which autophagy circumvents
apoptosis in tumours will enable the development of successful therapeutic
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strategies. Inefficient mitochondrial outer membrane permeabilisation (MOMP) that
enables tumours to recover from apoptosis and regain the ability to proliferate has
been suggested as the mechanism underlying autophagy-mediated apoptosis avoid-
ance (Ichim et al. 2015).

The BCL2 family proteins that regulate apoptosis are also involved in autophagy
initiation (Fitzwalter and Thorburn 2015). The proapoptotic BH3-only proteins such
as PUMA, NOXA, NIX, BID and BNIP3 disrupt the Beclin 1/BCL2 complex
releasing Beclin 1 that complexes with VPS34 to stimulate autophagy. The anti-
apoptotic BCL2 proteins on the other hand inhibit Beclin-1 by binding to its BH3
domain (Pattingre et al. 2005). Death-associated protein kinase (DAPK) has been
shown to induce autophagy by phosphorylating Beclin 1. Upon phosphorylation,
Beclin 1 dissociates from BCL-2 and binds to VPS34. In addition, DAPK also
activates VPS34 via a second kinase, protein kinase D (PKD) (Eisenberg-Lerner and
Kimchi 2012; Zalckvar et al. 2009).

c-jun N-terminal kinase (JNK), involved in a vast array of cellular processes, has
been demonstrated to disrupt the Beclin 1-BCL-2 complex by phosphorylating
BCL-2. This leads to release of Beclin 1 and formation of an active Beclin 1–
VPS34 complex resulting in induction of autophagy. Wei et al. (2008) proposed a
model on the dual role of JNK1-mediated BCL2 phosphorylation in regulating
autophagy and apoptosis. They speculated that JNK1 initially phosphorylates
BCl-2 to stimulate autophagy. However, once autophagy is unable to sustain cell
survival, Bcl-2 phosphorylation inactivates its anti-apoptotic function and apoptosis
is initiated.

The tumour suppressor protein TP53 also plays a dual role in autophagy based on
its activation status and intracellular localisation. Cytosolic p53 inhibits autophagy
by interacting with FIP200 and interfering with the ULK1 complex activity
(Morselli et al. 2011; Tasdemir et al. 2008). However, under conditions of cellular
stress, p53 localises to the nucleus and binds to the promoter region of multiple
pro-autophagic genes, including AMPK, DRAM1, sestrin 1, sestrin 2 and PTEN, as
well as pro-apoptotic genes of the BCL-2 family and p53 upregulated modulator of
apoptosis (PUMA) (Budanov and Karin 2008; Gao et al. 2011; Kenzelmann Broz
et al. 2013; Riley et al. 2008). Under certain conditions, p53 also induces both
mitophagy and apoptosis by triggering MOMP (Youle and Narendra 2011).

The transcription factor FOXO3/FOXO3A (forkhead box O3), which confers
apoptosis sensitisation by transactivating PUMA, reciprocally regulates autophagy
(Warr et al. 2013). Elevated PUMA prevents the interaction between BCL2 and
BAX/BAK with release of BAX/BAK MOMP and cell death by apoptosis.
Fitzwalter and Thorburn (2018) postulated that FOXO3 functions as a cell surveil-
lance mechanism to rectify perturbations in autophagy and induces apoptosis if
autophagy regulation fails.

BH-3 only proteins that function at the crossroads of apoptosis and autophagy
have emerged as attractive therapeutic targets in cancer. Several BH3 mimetics
which are inhibitors of the anti-apoptotic BCL2 proteins have been developed.
Venetoclax, a BH3-mimetic small-molecule inhibitor of BCL-2, is used in the
treatment of chronic lymphocytic leukaemia (CLL) and small lymphocytic
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lymphoma. In acute myeloid leukaemia (AML), overexpression of vacuole mem-
brane protein (VMP1) increased autophagic flux, protected against oxidative stress,
reduced the response to venetoclax-induced MOMP and apoptotic cell death
(Folkerts et al. 2019).

11.5.3 Angiogenesis and Autophagy

Angiogenesis, the formation of new blood vessels from existing vasculature,
facilitates tumour invasion and metastasis. With increasing growth of a malignant
tumour, the centre of the tumour is deprived of oxygen and nutrients due to
decreased perfusion. Autophagy has been suggested to enable tumour cells to thrive
under avascular and hypoxic conditions. In the tumour microenvironment (TME),
autophagy flux induces migration of ECs and angiogenesis (Vion et al. 2017).
Resistance to anti-angiogenic therapy has been attributed to high levels of autophagy
in tumours. Anti-angiogenesis treatment in concert with administration of an
autophagy inhibitor was found to exhibit greater efficacy besides stimulating apo-
ptosis of tumours (Ramakrishnan et al. 2007). However, enhanced autophagy in
neuroblastomas was demonstrated to block angiogenesis via degradation of
pro-angiogenic gastrin-releasing peptide (GRP) (Kim et al. 2013).

Matrix glycoproteins that regulate the interplay between autophagy and angio-
genesis in the tumour microenvironment are considered to be critical determinants of
the fate of cancer cells. Decorin and Perlecan, matrix proteoglycans have been
envisaged to influence the crosstalk between angiogenesis and autophagy signalling
in endothelial cells. In a recent study, decorin, a small leucine-rich proteoglycan, was
demonstrated to evoke the autophagic clearance of vascular endothelial growth
factor A (VEGFA) by functioning as a partial agonist of vascular endothelial growth
factor 2 (VEGFR2) in a process that requires the energy-sensing protein, AMPK and
the autophagic regulator, paternally expressed gene 3 (PEG3). Further, pharmaco-
logical depletion of ATG5 led to intracellular accumulation of VEGFA, indicating
that VEGFA is a substrate for autophagy. These findings underscore the therapeutic
potential of decorin as a next-generation anticancer agent (Neill et al. 2020).

11.5.4 Tissue Invasion, Metastasis and Autophagy

Autophagy has a complex role in tumour invasion. In a primary tumour, autophagy
prevents tissue necrosis and inflammation, thereby preventing invasion (Kenific
et al. 2010). Autophagy also inhibits epithelial–mesenchymal transition (EMT) by
degradation of p62/SQSTM1 as well as its cargo TWIST1 that is known to stimulate
EMT (Qiang et al. 2014). However, once the tumour becomes invasive and
progresses, autophagy affords protection against apoptosis and facilitates tumour
dormancy. Autophagy has been implicated in various features of invasion such as
cell motility, epithelial–mesenchymal transition (EMT), quiescence, stem cell phe-
notype and drug resistance (Mowers et al. 2017). Autophagy was found to be
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essential for secretion of factors critical for tumour invasion such as interleukin-6,
matrix metalloproteinase-2 (MMP-2) and WNT-5A (Lock et al. 2014). Interestingly,
hypoxia and transforming growth factor beta (TGFβ) are known to induce EMT also
induce autophagy (Kiyono et al. 2009; Li et al. 2013). MicroRNA-mediated sup-
pression of Smad2 was found to interrupt autophagy, resulting in inhibition of cell
survival and invasive potential (Zhai et al. 2015). Conversely, ULK2, which
promotes autophagy enhanced EMT and invasiveness (Kim et al. 2016). Autophagy
was reported to induce EMT via SPHK1-TRAF2-Beclin-1-CDH1 signal cascades in
hepatocellular carcinoma cells (Liu et al. 2017a).

Emerging evidence indicates the involvement of autophagy in metastasis (Dower
et al. 2018). Several steps in the metastatic cascade are believed to be autophagy-
dependent, including establishment of a pre-metastatic niche, tumour cell dormancy,
resistance to anoikis and escape from immune surveillance (Kenific et al. 2010;
Mowers et al. 2017). Autophagy also plays an important role in preventing tumour
cells that detach from the ECM from dying by the process of anoikis, thereby
promoting metastasis (Lock and Debnath 2008). Autophagy is induced by the
same factors that promote metastasis such as hypoxia. Interestingly, several features
of autophagy, such as mesenchymal characteristics, escape from immune surveil-
lance and stem cell-like phenotype, are shared by metastasis. Increased staining for
the autophagy marker, microtubule-associated light chain B (LC3B), is a common
feature in solid tumours that is associated with metastasis (Lazova et al. 2012).
Increased autophagy and EMT promote the cancer stem cell (CSC) phenotype that
drives metastasis (May et al. 2011). In breast ductal carcinoma in situ (DCIS), high
levels of autophagy were observed in subpopulations of cells that displayed tumour-
invasive potential and stem cell phenotype (Espina et al. 2010).

The tumour microenvironment (TME), which interacts with the malignant
tumour, profoundly influences tumour progression as well as therapeutic response.
Autophagy is documented to promote migration and invasion of tumour cells,
maintain tumour cell stemness and drug-resistance phenotypes and influence the
crosstalk between the tumour and the TME (Mowers et al. 2018). In the TME,
autophagy facilitates polarisation of macrophages into tumour-associated
macrophages (TAMs) (Chen et al. 2014; Wen et al. 2018), and differentiation of
fibroblasts into cancer-associated fibroblasts (CAFs) (Ngabire and Kim 2017;
Peiris-Pages et al. 2015; Wang et al. 2017) and myeloid-derived suppressor cells
(MDSCs) (Dong et al. 2017; Ostrand-Rosenberg et al. 2020).

The interplay between autophagy and exosomes is increasingly recognised to
influence the TME. Exosomes, cargo-laden vesicles secreted by various cell types,
establish intercellular communication to transfer their contents such as RNA and
proteins to other cells, which may impact autophagy. Both exosomes and autophagy
exert influence on the TME and metastasis and reciprocally regulate each other (Lin
et al. 2019; Ruivo et al. 2017). The interaction of autophagy and exosomes is also
mediated by autophagy-related proteins. ATG5 silencing significantly attenuated the
release of exosomes as well as exosome-mediated lipidation of LC3B, a central
protein of the autophagy pathway (Xu et al. 2018a).
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11.5.5 Drug Resistance and Autophagy

There is growing evidence to indicate the involvement of autophagy in resistance to
chemotherapeutic agents. The anticancer drug 5-fluorouracil (5-FU) used in the
treatment of solid tumours such as breast, pancreatic and colorectal cancers, inhibits
thymidylate synthetase, an enzyme essential for DNA synthesis. Induction
of cytoprotective autophagy that results in chemoresistance is a major limitation of
this drug. Autophagy induction by 5-FU has been attributed to overexpression of
beclin-1, followed by conversion of LC3I to LC3II, JNK-mediated protective
autophagy and BCL2-mediated autophagic flux. The DNA-damaging chemothera-
peutic drug, cisplatin, is also documented to induce autophagy and chemoresistance.
Several mechanisms have been suggested for enhanced autophagy induced by
cisplatin. These include modulation of ERK pathway and upregulation of beclin
1 with consequent conversion of LC3 proteins, increase of ATG7 expression and
downregulation of miR-199a-5p (Xu et al. 2012). However, combined administra-
tion of cisplatin and an autophagy inhibitor induced tumour cell death. In
mitoxantone-resistant breast cancer cells, miR-181a targets Atg5 and impedes
autophagy by targeting breast cancer–resistance protein (Jiao et al. 2013). Likewise,
miR-874 inhibits autophagy and sensitises gastric cancer cells to chemotherapy via
the target gene ATG16L1 (Huang et al. 2018). Shuhua et al. (2015) observed a
positive correlation between the expressions of the ARGs Raptor, Rictor and Beclin1
and the multidrug resistance (MDR) gene in colorectal cancer (CRC) patients.
Targeting autophagy by modulating Atgs such as Beclin1 (Eum and Lee 2011),
Atg5 (Ge et al. 2014), Atg7 (Singh et al. 2012) and Atg12 (An et al. 2015) sensitised
MDR cells to therapeutic agents. Taken together, these findings imply that
chemoresistance can be circumvented by targeting autophagy.

11.6 ARGs as Prognostic Markers

There is substantial evidence to indicate that ARGs are reliable markers of disease
severity and prognosis (Bortnik and Gorski 2017; Yang and Klionsky 2020). The
expression levels of ATG genes vary based on the site of the tumour and stage of the
disease. In colon cancer, ATG16L2, CAPN2 and TP63 were upregulated, whereas
SIRT1, RPS6KB1, PEX3, UVRAG and NAF1 were downregulated and associated
with disease recurrence (Mo et al. 2019). On the other hand, in gastric cancer, ULK1,
Beclin-1, ATG3 and ATG10 were identified as favourable prognostic markers (Cao
et al. 2016). An eight-gene autophagy-related signature (BLOC1S1, IL24, NRG4,
PDK4, PEX3, PRKG1, SIRT2 and WDR45L) was identified as an independent and
accurate predictor for the prognosis of serous ovarian cancer (An et al. 2018).
Recently, Mao et al. (2020) showed that ATGs are crucial factors in the progression
of HCC and could serve as potential prognostic markers for diagnosis and treatment.
An autophagy score signature was validated to classify CRC patients into low and
high risk of early relapse to predict post-operative survival (Zhou et al. 2019). Gene
expression microarray data obtained from TCGA was used to develop ARG
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expression signature as a predictive tool for overall survival (OS) and disease-free
survival (DFS) in prostate cancer patients. Five OS-related and 22 DFS-related ARG
signatures were identified that could function as promising prognostic biomarkers of
prostate cancer (Hu et al. 2020). Despite these studies, correlation between the ARG
signature and the cancer type still remains obscure. The moonlighting functions of
ATG proteins are believed to be responsible for the lack of correlation. Many ATG
proteins are multifunctional and exert their influence beyond autophagy on diverse
signalling pathways and cellular processes.

11.7 Autophagy Manipulation in Cancer Therapeutics

Autophagy manipulation has emerged as a promising strategy in cancer treatment.
However, the paradoxical role of autophagy in cancer merits attention while design-
ing therapeutic strategies. While enhancing autophagy is an option in premalignant
lesions, and in some malignant tumours, inhibiting autophagy appears to be effective
in many tumours, especially in advanced cancers. Several clinical trials are under-
way to target autophagy in cancer with more emphasis on the discovery and
development of drugs that inhibit autophagy (Towers and Thorburn 2016).

11.7.1 Autophagy Induction

Several chemotherapeutic drugs are known to induce autophagy. The mToR inhibi-
tor rapamycin has been successfully used to inhibit angiogenesis by preventing the
synthesis of VEGF and downstream signalling events. Temsirolimus and
everolimus, water-soluble analogues of rapamycin administered alone or in combi-
nation with chemotherapeutic drugs inhibited proliferation and induced autophagic
cell death in mantle cell lymphoma and acute lymphoblastic leukaemia (Crazzolara
et al. 2009; Yazbeck et al. 2008). Significant improvement in progression-free
survival (PFS) was evident with everolimus treatment in patients with advanced
neuroendocrine tumours in the Phase III RAD001 in Advanced Neuroendocrine
Tumours (RADIANT)-3 and RADIANT-4 studies, respectively (Gajate et al. 2017).
Everolimus in combination with exemestane, an aromatase inhibitor was found to be
an important treatment option for patients with hormone receptor-positive (HR+)
and human epidermal growth factor receptor 2- (HER2-) metastatic breast cancer
(Riccardi et al. 2018). Combination chemotherapy with the autophagy inducers
temozolomide and dasatinib was effective in killing glioblastoma cells resistant to
apoptosis (Milano et al. 2009).

11.7.2 Autophagy Inhibition

There is substantial evidence to indicate that autophagy enhances tumour develop-
ment and progression as well as chemoresistance in a wide variety of neoplasms.
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Ample evidence from cell-based in vitro studies, genetically engineered mouse
models (GEMMs) and patient-derived xenograft (PDX) mouse models demonstrate
that autophagy inhibition by anti-cancer drugs enhances tumour cell death (Levy and
Thorburn 2011; Mulcahy Levy and Thorburn 2020). Autophagy inhibition has been
demonstrated to sensitise tumour cells to chemotherapeutic agents and potentiate
apoptosis (Amaravadi et al. 2016).

Autophagy inhibition as a treatment modality for cancer may be tumour-specific
or systemic. Tumour-specific autophagy inhibition causes perturbations in tumour
cell metabolism, impairment in redox and energy homeostasis, mitochondrial dys-
function and reduced nucleotide pools eventually leading to tumour cell death.
Systemic inhibition of autophagy, on the other hand, causes changes in the tumour
microenvironment (Kimmelman and White 2017).

Several strategies have been used to inhibit autophagy in malignant tumours
including small molecule inhibitors, genetic ablation of ARGs such as beclin-1,
ATG5 or ATG7, and repurposed drugs such as chloroquine (Mulcahy Levy and
Thorburn 2020). Current clinical efforts have explored the different stages of
autophagy as potential therapeutic targets to maximise benefit in cancer treatment
(Mulcahy Levy and Thorburn 2020). The serine/threonine kinases ULK1 and ULK2
are prime targets to block autophagy in the early stages. The selective ATP competi-
tive inhibitor of ULK1 kinase, SBI-0206965 (SBI) was found to induce apoptosis in
lung cancer during nutrient deprivation (Egan et al. 2015). Preclinical results using
inhibitors of VPS34 (VPS34-IN1 and SB02024), ATG4B (NSC185058, UAMC-
2526 and S130) are encouraging (Dyczynski et al. 2018; Fu et al. 2019).

Autophagy inhibition both alone and in combination with anticancer drugs is
emerging as a promising option in cancer therapy. The autophagy inhibitor
3-methyladenine (3-MA) when used in concert with tratsuzumab increased chemo-
therapeutic efficacy in HER2-positive breast cancer cells (Jain et al. 2013). Treatment
with 3-MA or deletion of beclin-1 induced chemosensitisation of hepatocellular
carcinoma cells (Song et al. 2009). Knockdown of ARGs was found to overcome
resistance to tamoxifen in ER-positive breast cancer cells (Cook et al. 2011). In
cisplatin-resistant ovarian cancer cells, Atg5 deletion induced apoptosis (Wang and
Wu 2014).

11.7.2.1 Chloroquine and Hydroxycloroquine
The antimalarial drug chloroquine (7-chloro-4-(4-diethylamino-1-
methylbutylamino)-quinoline, CQ) has attracted significant attention as a promising
anticancer agent, a classic example of drug repurposing. Both CQ and
hydroxychloroquine (HCQ) have been approved by the Food and Drug Administra-
tion (FDA) for clinical trials in cancer. CQ is a small molecule that is unprotonated at
physiological pH. Being lipophilic, it traverses the cell membrane and accumulates
in acidic compartments such as the lysosomes (Weyerhauser et al. 2018). CQ
inhibits autophagy by preventing the fusion of autophagosome with the lysososome
(Yang et al. 2013). CQ treatment reverted resistance to chemotherapeutic and anti-
angiogenesis drugs (Selvakumaran et al. 2013).
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Addition of a hydroxyl group to CQ lowered toxicity of CQ while retaining the
efficacy. A large number of clinical trials have revealed the adjuvant effects of
CQ/HCQ for diverse neoplasms. Following the identification of CQ as an autophagy
inhibitor by Murakami et al. (1998), CQ was demonstrated to significantly improve
clinical outcomes in patients with glioblastoma (Briceno et al. 2003). Subsequently,
CQ/HCQ was reported to exhibit anti-neoplastic properties on a wide range of
tumours (Xu et al. 2018b). CQ treatment is recognised to sensitise colorectal cancer
cells to anti-angiogenesis treatment, DNA damaging chemotherapeutic drugs and
photosan-II-mediated photodynamic therapy (PS-PDT) (Xiong et al. 2017). The
ability of CQ to sensitise malignant tumours to radiation and chemotherapy was
impaired by pharmacological inhibition or siRNA ablation of Beclin-1. CQ acts on a
wide spectrum of molecular targets such as p53, NF–κB and ATM kinase, reflecting
its functional pleiotropy. CQ has been hypothesised to play a dual role by activating
DNA damage response (DDR) and suppressing DNA repair, thereby shifting the
balance towards cell death (Weyerhauser et al. 2018). Recent research has provided
evidence that CQ exerts anticancer effects independent of its ability to inhibit
autophagy (Eng et al. 2016).

11.7.2.2 Lysosome-Targeted Inhibitors
Although CQ/HCQ showed positive results in GBM and pancreatic tumours, clinical
efficacy was not encouraging in other tumours. Several lysosomal targeted inhibitors
that are potent and selective are being developed as potential alternatives to
CQ/HCQ (Mulcahy Levy and Thorburn 2020). Lys05, a bisaminoquinoline and
DQ661, a dimeric quinacrine that concurrently inhibits lysosomes by deacidification
and impairs lysosomal recruitment of mTOR were successful as single agents in
mouse models of melanoma and CRC. DQ661 displayed greater efficacy relative to
HCQ and Lys05 especially in acidic tumours, because it is able to maintain its
activity in acidic media. Additionally, DQ661 was also found to be promising in
combination with gemcitabine in PDAC (McAfee et al. 2012; Pellegrini et al. 2014;
Rebecca et al. 2017).

11.7.2.3 Epigenetic Modulation of Autophagy
Given the importance of epigenetic players in regulating autophagy, epigenetic
modifiers that influence autophagy through histone acetylation, methylation of
CpG islands and by ncRNAs have been used to manipulate autophagy. Several
natural products have been documented to target autophagy via epigenetic modifi-
cation (Vidoni et al. 2019). Curcumin was demonstrated to inhibit autophagy by
restoring the expression of miR-143 and induce apoptosis of prostate cancer cells
exposed to radiation (Liu et al. 2017b). Ellagic acid, a naturally occurring polyphe-
nol abundantly found in fruits and vegetables that exerts antiproliferative effects has
been reported to inhibit CARM1-mediated H3R17 methylation, thereby suppressing
autophagy (Shin et al. 2016b). Studies from this laboratory demonstrated that
gedunin and nimbolide, limonoids from the neem tree (Azadirachta indica) exert
their antiproliferative effects by inhibiting cytoprotective autophagy and inducing
apoptosis in oral cancer cell lines and in the hamster buccal pouch model of oral
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oncogenesis (Sophia et al. 2018; Tanagala et al. 2018). While gedunin mediated its
effects via downregulation of the oncomiR, miR-21, nimbolide augmented apoptosis
by overcoming the shielding effects of autophagy through modulation of the PI3K/
Akt/GSK-3β signalling axis as well as the ncRNAs miR-126 and HOTAIR .
Autophagy modulators are thus a valuable addition to the armamentarium of
compounds that offer promise in cancer therapeutics.

11.7.2.4 Pitfalls of Autophagy Inhibition
There are several concerns in using autophagy manipulation as a therapeutic strategy
in cancer. Many of the autophagy inhibitors including CQ/HCQ are not autophagy
specific and affect other essential signalling pathways. For instance, in dormant
murine breast cancer stem cells autophagy inhibition induced aberrant expression of
6-phosphofructo2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) leading to prolif-
eration and recurrent metastatic disease (Yang et al. 2013). The cytotoxicity due to
global autophagy inhibition induced by some compounds is another concern
although it may be circumvented by therapy breaks or by using agents that cause
incomplete autophagy inhibition such as CQ. The uptake of HCQ is pH-dependent
which limits its effectiveness in solid tumours that show differences in pH between
central and peripheral regions (Pellegrini et al. 2014).

Autophagy inhibition has been reported to cause side effects such as inflamma-
tion and tissue damage. This can be overcome by intermittent dosing of autophagy
inhibitors. An inducible dominant-negative ATG4BC74A mutant mouse model that
mimics a pharmacological inhibitor by reversibly manipulating autophagy without a
complete blockade has been developed (Yang et al. 2018). The interplay between
autophagy and apoptosis lends credence to the development of intermittent
autophagy inhibitors. However, the appropriate dose of autophagy inhibitors
remains to be standardised.

Treatment outcomes may also depend on the concept of autophagy addiction.
RAS-driven tumours such as PDACs may respond better to autophagy inhibition
compared to autophagy-independent tumours providing a rationale for initiating
clinical trials targeting autophagy addiction. Autophagy inhibition decreased tumour
growth in xenograft models of PDAC and improved surgical outcomes in PDAC
patients who were pre-operatively treated with gemcitabine, nab-paclitaxel and HCQ
(Boone et al. 2015; La Belle Flynn et al. 2019). Autophagy inhibition in combination
with direct targeting of MEK or ERK was found to be beneficial and clinical trials
have been developed for NRAS melanoma and PDAC respectively (Kinsey et al.
2019). In addition to RAS, mutations in other genes have also been used to identify
autophagy-dependence as well as to predict response to autophagy inhibition such as
the epidermal growth factor receptor (EGFR) that regulates pathways influencing
autophagy. GBM tumours expressing EGFR variant III (EGFRvIII), as well as head
and neck squamous cell carcinoma (HNSCC) are autophagy-dependent and respond
to autophagy inhibition (Jutten et al. 2018). Clinical trials have been carried out on
autophagy inhibition in NSCLC and GBM patients with overexpressed or mutant
EGFR (Massachusetts General Hospital 2019, https://ClinicalTrials.gov/show/
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NCT00977470; Maastricht Radiation Oncology 2020, https://ClinicalTrials.gov/
show/NCT02378532).

11.8 Conclusion

The role of autophagy in cancer is highly complex and paradoxical. While
autophagy has suppressive effects on some tumours, in most cases, autophagy is a
survival pathway that enables tumour proliferation and progression. In particular, the
interplay between autophagy and apoptosis is intriguing and has implications for
cancer therapy. Autophagy is a therapeutically targetable process, although there are
many factors that need to be considered to maximise benefit. It is increasingly
important to weigh options such as targeting the early or late stages of the pathway,
stage of the disease that will respond best to intervention, whether to use an
autophagy inducer or inhibitor and whether to administer the autophagy modulator
as a single agent or in combination. Patient selection is critical in delineating positive
findings as well as to identify non-responders. Rationally based interventions are
therefore essential to effectively maximise therapeutic benefit and minimise adverse
outcomes.
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