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Abstract

Autophagy in cancer acts as a double-edged sword whose functional
discrepancies precisely depend on cancerization, progression, and type. During
stress, they promote cancer cell survival, induce carcinogenesis due to their
accumulated genetic mutations or abnormal cell signaling, initiating fast replica-
tion capacity, promoting more aggressiveness, and resistant to programmed cell
death. Consequently, the study has drawn focus on autophagy in cancer. How-
ever, convincing preclinical and clinical evidence on the cytoprotective in addi-
tion to the lethal roles of autophagy for cancer stem cells (CSCs) are missing.
There are quite a lot of clinical trials ongoing to manipulate autophagy and in this
manner decide the result of disease therapy. The clinical relevance of this work
encompasses autophagy modifiers, such as rapamycin and chloroquine that
control autophagy in anticancer therapy, since autophagy plays roles in both
tumor suppression and promotion. Further detailed examination of autophagy
in cancer is required to understand how an increased function of autophagy in the
tumor microenvironment, stemness, migration and invasion, dormancy, and drug
resistance could be tweaked for enhanced therapeutic benefit by eradicating
minimal residual disease and preventing metastasis. Here, we recapitulate how
autophagy modulates the therapeutic potential to exterminate CSCs.
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10.1 Introduction

Pluripotent cancer stem cells (CSCs) are subset of cancer cells that accentuate their
ability to self-renew and (Aponte and Caicedo 2017) differentiate into all somatic
cell lineages by indefinite cell division giving rise to the heterogeneous tumor
populations and maintain their undifferentiated state (Liu et al. 2013). When a
very small population of CSCs was introduced into an immunocompromised mice,
it initiated the formation of the original tumor (Ghiaur et al. 2012). They are
phenotypically slow cycling and their self-renewing capacity is accountable for
tumor growth, resistance to therapy, and recurrence after treatment.

Autophagy is a double-edged sword in the progression of neoplasia and has
further produced immense hurdles for researchers to explore its impression on
carcinogenesis and tumor development. It has labeled tumor-suppressive and
tumor-promoting functions (White and DiPaola 2009). Cytoprotective role of
autophagy prevents malignant transformation through the ability to empower the
premalignant cells by efficiently meeting up with the increased energy requirements
by recycling cellular components that are important in maintaining the physiological
tissue homeostasis. This attribute propagates their accommodation within the stress
(metabolic, genotoxic, and inflammatory) occurring after the malignant transforma-
tion induced in response to anticancer (chemo/targeted/radiotherapy) treatment.
Stresses including nutrient and energy stress, ER stress, danger-associated molecular
patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), hypoxia,
redox stress, and mitochondrial damage induce autophagy, alongside EMT and
stemness. The cytoprotective role of autophagy can turn into a cell-suicidal weapon
causing cell death in cancer cells. Defective autophagy has been linked with
increased oncogenesis. For instance, low expression of Beclin-1 (Atg6) in some
types of cancers of the prostate, breast, and ovary because of monoallelic mutations
(Qu et al. 2003). However, the presence of heterozygosity in mice for the beclin-1
gene makes it cancer prone (Qu et al. 2003; Yue et al. 2003) due to absence of
functional of Beclin-1.

Cancer progression shows a degree of dependency on the existence of CSCs. The
role of autophagy in cancer is multifaceted and has been studied extensively. High
levels of autophagy contribute to pluripotency of CSCs in other cancer types,
including colorectal cancer (Kantara et al. 2014), pancreatic cancer (Rausch et al.
2012; Viale et al. 2014), glioblastoma (Galavotti et al. 2013), chronic myeloid
leukemia (Bellodi et al. 2009), and bladder cancer (Ojha et al. 2016). Despite recent
advancement in research, the underlying molecular mechanism inducing autophagy
in CSCs remains to be determined. It is difficult to explain how autophagy promotes
stemness, have been preserved across different cancer. Mitophagy is a selective
autophagy that unambiguously plays an important role in the quality control and
homeostasis of mitochondria. Mitochondrial functional pathways play a crucial role
in a vital interaction between cancer cells and stromal cells for cancer cell initiation,
progression, and treatment response. They emanate a profound role in sustaining
CSCs in adverse conditions and initiating their metabolic reprogramming to support
the increased bioenergetic demand of the tumor. Transcription factors like SMAD
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(Nazio et al. 2019), NF-Kb (Zhang et al. 2016), MITF (Moller et al. 2019), STAT3
(Marcucci et al. 2017; Zhang et al. 2016), FOXO (Naka et al. 2010), ATF4
(Pallmann et al. 2019), NANOG (Liu et al. 2017), regulate autophagy and
mitophagy in the induction of EMT and maintenance of CSCs. Like autophagy,
mitophagy acts in cancer as bimodal processes. Unfortunately, there are unanswered
roles of canonical autophagy in cancer (Gewirtz 2014). Therefore, does mitophagy
has a role in cancer? CSCs play an unbiased role in promoting therapy resistance
leading to tumor recurrence (Shibue and Weinberg 2017), and autophagy deliber-
ately endorses disseminated tumor cells (DTCs) which further lead to the metastatic
expansion of tumors (Sosa et al. 2014). To understand how autophagy and
mitophagy can inhibit to repress both the above phenotypes are challenging task
for translational cancer. Recent studies have linked CSCs with chemoresistance and
cancer relapse, autophagy, mitophagy, and CSCs showcase novel perspectives on
potential therapeutic targets for enhancing anticancer drug sensitivity. The study of
autophagy in cancer has been therapeutically manipulated by many investigators and
various clinical trials that are already ongoing to regulate the result of disease
therapy.

10.2 Autophagy/Mitophagy Drives Cancer Stem Cells Fate

CSCs are a heterogeneous population; they escalate tumor growth and progression
by accelerating the proliferative potential and constitute a source for recurrence of
cancer. Functional properties of cancer cells are influenced by epigenetic, genetic,
and microenvironmental factors. To proliferate in its microenvironment, CSCs have
a functional correlation with autophagy and mitophagy. Autophagy, a catabolic
pathway enables CSCs to show autophagy dependence and may act as an onco-
suppressive depending on tumor stage and type. They exploit the pro-survival
attribute of autophagy at the later stage of oncogenesis to meet up with high-energy
demands by a supply of metabolites. ATG-encoded gene products play a significant
role in CSCs of numerous cancers. Beclin 1/Atg6 modulates CSC plasticity and
tumorigenesis in vivo. However, in different cancers, Beclin 1 acts as a tumor
suppressor, like human prostate, breast, and ovarian tumors (Liang et al. 1999; Qu
et al. 2003; Shen et al. 2008). Improved survival in patients is observed having high
Beclin 1 levels affected by large B-cell lymphoma, high-grade gliomas, or hepato-
cellular carcinoma (Ding et al. 2008; Huang et al. 2011; Pirtoli et al. 2009). The
stemness was augmented by the transformation of CD133� to CD133+ cells due to
the inhibition of mTOR affecting the liver tumor cells by interrupting the differenti-
ation and stimulating the tumor development in vivo (Yang et al. 2011). Suppression
of autophagy by knockdown of autophagic proteins Atg5 and Atg7, curtails
stemness markers, such as Sox2, Nanog, and Oct4, resulting colorectal CSCs to
undergo suppressed cell proliferation and improved cell senescence (Sharif et al.
2017). In colorectal cancers, mutations in Atg5, Atg12 have been described (Kang
et al. 2009) while deletion of Atg5 or Atg7 is supporting the advancement of liver
hepatomas (Takamura et al. 2011). Autophagy induction by overexpressing Atg4A
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protein promotes mammosphere formation and hence increases CSC numbers and
in vivo tumorigenesis (Wolf et al. 2013). The conditional knockout of Atg3 affected
the continued existence of CML cells and leukemogenesis (Altman et al. 2011).
Inhibition of Atg4B resulted in its increased phosphorylation followed by arresting
the tumor growth in animal models in a subset of glioblastoma cancer (Huang et al.
2017). The depletion of ATG4B impaired the survivability of CML stem/progenitor
cells (Rothe et al. 2014). Knockout of Atg4C in mice increased the propensity to
develop fibrosarcomas induced by methylcholanthrene, hence play a tumor-
suppressor role. Contrastingly, its tumorigenic role in breast cancer was delineated
(Antonelli et al. 2017). Tumor suppressive role of Atg4D expression was observed in
colorectal carcinogenesis (Gil et al. 2018). Moreover, its tumor-promoting role was
highlighted when cancer cells were sensitized to chemotherapeutic drugs on ATG4D
silencing (Betin and Lane 2009) (Fig. 10.1).

EMT (epithelial to mesenchymal transition) signaling is an important character-
istic of CSCs (Shibue and Weinberg 2017). Autophagy signaling is strongly
correlated to EMT in enhancing the metastatic potential of CSCs to migrate by
maintaining their mesenchymal signature in the later stages of metastasis. Interest-
ingly, during early metastasis autophagy decreases the invasion and migration of
tumor cells in situ. In glioblastoma cells, blocked cell migration and invasion were

Fig. 10.1 The basal level autophagy and mitophagy are important for cell metabolism. When there
is stress due to anticancer therapy, autophagy, and mitophagy get impaired, while they are activated
due to internal and external factors leading to either suppression or progression of cancer
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caused by nutrient deprivations and mTOR inhibition (Catalano et al. 2015). Using
specific siRNAs directed against the autophagy-related factors DRAM1 and p62
proteins, autophagy-controlled bioenergetic metabolism, migration/invasion of glio-
blastoma CSCs was thwarted while the mesenchymal phenotype was restored on
autophagy upregulation (Galavotti et al. 2013). Furthermore, in glioblastoma cells,
enhanced migration and invasion with EMT regulators continued with knockdown
of Beclin 1, Atg5, and Atg7 (Catalano et al. 2015). EMT promotes stemness and can
give rise to CSCs through the core stemness factors POU5F1, Sox2, and Nanog,
including Slug and Twist that maintains the pluripotency of CSCs and tumor-
propagating properties (Mani et al. 2008). Hypoxia and TGF-β through MITF
(Caramel et al. 2013), Sox2, and Nanog (Sharif et al. 2017) promote EMT via
activating autophagy. Autophagy may promote tumor cell dormancy, lipid metabo-
lism, mitochondrial function, and CSCs existence in muscle stem cells and HSCs
(Ho et al. 2017; Warr et al. 2013). It ensures a reversible dormant pool of CSCs
potentially making a contribution to tumor repopulation and preventing irreversible
senescence (Ho et al. 2017). Autophagy plays a decisive role in the survival of
disseminated tumor cells (DTCs) at secondary location to establish drug resistance,
minimum residual disease, and metastatic dormancy (Sosa et al. 2014). Interestingly,
these DTCs are CSCs that are relatively quiescent and motile state expressing
upregulated CSC markers in the bone marrow of breast cancer patients (Balic
et al. 2006). Furthermore, a selective form of autophagy known as mitophagy
promotes stemness. It abrogates senescence by disrupting the ROS-induced DNA
damage and has a principal role in maintaining the stem cell population renewal and
homeostasis. It has been reported to maintain hepatic CSCs by regulating p53
localization. Therefore, inhibition of mitophagy phosphorylates p53 by PINK1
leading to its translocation to the nucleus where Oct4 and Sox2 induction of
Nanog get alienated. Mitophagy evokes CSCs dependence more on glycolysis for
energy needs and hence contributes to its quiescent state. Recent evidence suggests
that mitochondrial dysfunction also encourages oncogenesis (Boya et al. 2018).
Mitochondrial ROS due to BNIP3 loss subsequently resulted from defects in
mitophagy followed by mammary neoplastic progression to metastasis (Chourasia
et al. 2015) (Table 10.1).

10.3 Targeting Autophagy/Mitophagy: New Therapeutic
Strategies

CSC generation, differentiation, plasticity, migration/invasion, and immune resis-
tance are very much dependent on the variation of autophagy/mitophagy. During
anticancer therapy, CSCs remain at the dormant stage to cope with intracellular and
environmental stress, involving oxidative stress triggered by overproduction of
reactive oxygen species (ROS). These dormant cells arise from EMT tumor cells
and become non-cycling autophagic CSC which are later maneuvered on the release
of paracrine factors (like MET, TGF-β receptor, IL-6 receptor, PDGFR, EGFR,
FGFR, Hedgehog/Smoothened, WNT/Frizzled, Gas6/AXL, and Notch ligands) to
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Table 10.1 Role of autophagy in different types of cancer and genes targeted for anticancer
therapy

Types of cancer
Animal model/
cells/CSCs

Autophagy
as
protective
or lethal or
both

Targeted genes
involved in the
induction of
autophagy References

Neuroblastoma,
multiple
myeloma cells

SH-SY5Y cells Protective NAMPT Billington et al.
(2008), Cea et al.
(2012), Ghosh
and Matsui
(2009), Schneider
et al. (2011),
Sharif et al.
(2017)

Colorectal
cancer

HCT116, HT29,
CaCO2, and
DLD1CSCs;
DCLK1-positive
colon CSCs

Protective Endolysosomal
RAB5/7
regulating
mitophagic
pathway; LC3,
Beclin1, Atg6

Kantara et al.
(2014), Takeda
et al. (2019)

Malignant
pluripotent
embryonal
carcinoma

NT2/D1 CSCs Protective NAMPT Sharif et al.
(2017)

Breast cancer MCF-7 CSCs;
SUM149 CSCs

Both
protective
and lethal
in MCF-7
and
protective
in SUM149

Protective:
Beclin1, c-Jun
NH2 terminal
kinase
(JNK/SAPK) in
MCF-7, and
Atg4A in
SUM149
Lethal: Beclin1,
Akt/mammalian
target of
rapamycin
(mTOR) pathway
in MCF-7

Protective:
MCF-7
(Chaterjee and
van Golen 2011;
Sanchez et al.
2011) and
SUM149 (Wolf
et al. 2013)
Lethal: MCF-7
(Liang et al.
1999; Lu et al.
2014)

Prostate and
breast cancer

PC-3 and DU145
cells; MDA-MB-
231 cells

Lethal AMP-associated
protein kinase
(AMPK)/Unc-51
like autophagy
activating kinase
1 (ULK1)
pathway and
inhibition of
mTOR/Raptor
complex
1 expression

Aryal et al.
(2014)

(continued)
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cycling CSC with low autophagy. Thus, autophagy and mitophagy enable CSCs to
colonize, migrate and metastasize, defy apoptosis and antitumor drugs and hence
become therapy-resistant by its self-renewal property and replace the pool of
differentiated tumor cells (Marcucci et al. 2017) (Table 10.2).

Autophagy/mitophagy has an inevitable role in cancer cell survival, metastasis,
and therapy resistance. The potentially new targeted therapeutic strategy is to use
double or triple combinatorial doses of drugs or antibodies and/or radiation to
modulate autophagic machinery to efficiently eradicate CSCs. Chemotherapy is a
widespread treatment strategy for cancer therapy that engulfs dividing cells and
disrupts cancer–cell division. However, several studies have revealed that the overall
success rate of chemotherapy is often restricted via the upregulation of
cytoprotective activation of autophagy in CSCs which protects cancer cells subjected
to anticancer therapy. Cancer chemotherapeutic drugs 5-Fluorouracil (5FU) and
cisplatin used in various solid cancers, like, gallbladder and colorectal cancers
show autophagy-regulated chemoresistance (Ferreira et al. 2016; Liang et al. 2014;

Table 10.1 (continued)

Types of cancer
Animal model/
cells/CSCs

Autophagy
as
protective
or lethal or
both

Targeted genes
involved in the
induction of
autophagy References

Pancreatic
cancer

CD133+

pancreatic CSCs,
BxPc-3 (CSClow)
and MIA-PaCa2
(CSChigh),
inducible mouse
model of mutated
Kras

Protective HIF-1a; Beclin1,
Atg4B, LC3, p62;
AMPK, LC3

Rausch et al.
(2012), Viale
et al. (2014), Zhu
et al. (2013)

Urinary bladder
cancer

T24 and UM-UC-
3 CSCs; T24
CSCs

Protective Beclin1, Atg7,
and p62;
IFN-γ-mediated
JAK2 and STAT3
pathway

Ojha et al. (2014),
Ojha et al. (2016)

Brain tumor CSCs:
MDNSC11,
MDNSC13,
MDNSC23,
MDNSC16;
GBM stem cells–
GSCs

Lethal and
protective

p16INK4/Rb
pathway, Atg5;
DRAM1,
SQSTM1, p62

Galavotti et al.
(2013), Jiang
et al. (2007)

Chronic
myeloid
leukemia

p210BCR/ABL-
expressing CML
cells, CML
lymphoid BC cell
line BV173,
K562 cells

Protective LC3, Atg5, Atg7 Bellodi et al.
(2009)
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Park et al. 2013). Additionally, the CXCL12/CXCR4 axis is prompted in colorectal
cancer and is linked with potential progression of cancer, such as invasion, metasta-
sis, and chemoresistance. Subsequently, grants 5-fluorouracil (5-FU) resistance by
increasing autophagy both in vitro and in vivo (Yu et al. 2017).

Suppression of autophagy preferentially stimulated in multiple molecular
pathways that govern CSCs growth and differentiation, includes Notch (Li et al.
2018), Sonic Hedgehog (Fan et al. 2019), Wnt/β-catenin (Pai et al. 2017), NF-kβ
(Trocoli and Djavaheri-Mergny 2011), transforming growth factor-β (Kiyono et al.
2009), and fibroblast growth factor (Chen et al. 2018) signaling cascades lead to
sensitization of cancer cells to anticancer therapy. The appreciating effect of the
Wnt/β-catenin pathway is inhibited by FH535 and its derivative (FH535-N) alone
and in combination with sorafenib through nullification of the autophagic flux in
hepatocellular carcinoma (Turcios et al. 2019). Hyperactivation of PI3K/Akt/mTOR
pathway in GBM and its inhibition exerts antineoplastic activity by targeting CSCs,
supporting differentiation, and inhibiting cell migration and invasion prospective of
GSCs (Li et al. 2016). Balance is the key between Beclin1 and Bcl2/Bcl-xL that
supports the concept of the presence of a complex relationship between autophagy
and apoptosis, which seems important in the context of cancer and cancer therapy
(Kim et al. 2014). JNK-mediated protective autophagy increased Bcl2 expression
followed by an increased autophagic flux and conferred chemoresistance in colon
cancer (Sui et al. 2014).

Evolving clinical and experimental evidence indicates that CSCs have clinical
significance as they are bestowed with intrinsic resistance to radio- and chemother-
apy owing to the indulgence of autophagy (Chen et al. 2012; Vitale et al. 2015).
Targeting components of the autophagic machinery can be recruited as the hopeful
target to selectively eliminate CSCs facilitating cancer cell growth/progression/
metastasis and enhancing the effectiveness of radio- and chemotherapy (Nazio
et al. 2019; Ojha et al. 2015; Perez-Hernandez et al. 2019). Henceforth, these
findings completely indicate that autophagy suppression and its activation, both,
can be deemed to be promising approaches for sensitizing CSCs to anticancer
therapy, evaluated by the reduction of the number of CSCs. So, the development
of new anticancer drugs focuses on CSCs which is key to the problem required to be
resolved in drug clinical trials (Fig. 10.2).

10.4 Conclusion

Development of autophagy inhibitors, specific mitophagy inhibitors have been
proven beneficial, given the fears about global autophagy suppression for tissue
homeostasis and that mitophagy has a crucial functional role earlier credited to
general autophagy. Focusing on selective inhibitors will pave an unexplored path
of how autophagy is responsible for determining stemness, dormancy-whether
DTCs are autophagy-dependent CSCs, and which autophagy functions will be
significant in promoting drug resistance and cancer recurrence. Further research is
requisite before CSCs can be treated by regulating autophagy and mitophagy.
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Desirable therapeutic impacts of anticancer reagents have not been achieved by only
targeting autophagy using autophagy modulators; to the contrary, it has enacted as a
pro-survival response by supplying nutrients to cancer cells. Consequently, clinical
trials that aim autophagy by a combination of autophagy alterations and anticancer
components are appropriate to consider autophagy as a possible effectual therapeutic
approach in anticancer therapy. The conjunction of these techniques hopefully
deciphers the vital mechanisms necessary for maintaining cancer stemness and
will play an important role in designing more efficient and effective personalized
therapeutic strategies.
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