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Role of Xenobiotic in Autophagy Inflection
in Cell Death and Carcinogenesis 1
Durgesh Nandini Das and Prashanta Kumar Panda

Abstract

Macro-autophagy (herein referred to as autophagy) is considered a major degra-
dation pathway for damaged organelles, aggregate-prone proteins, and
pathogens. There is substantial evidence stating that dysfunctional autophagy is
the cause of the manifestation of multifarious degenerative diseases and cancer.
Xenobiotics (here, the known group I carcinogens), substances considered for-
eign to the human body, are associated with inciting multiple stresses such as the
endoplasmic reticulum (ER) stress, mitochondrial stress, and dysfunctional lyso-
some. Furthermore, autophagy exhibits a dichotomous role in cancer, although a
detailed description of the modulation of autophagy by the known important
carcinogens is provided only by a limited number of reports. The pro-tumorigenic
role of carcinogen-induced autophagy/mitophagy has been explored which
maintains homeostasis in cancer. On the contrary, the association of carcinogens
with the induction of autophagic cell death has been reported. In addition, certain
xenobiotics for protecting cells through dampening of necrosis, inflammation,
and maintenance of genome integrity have been proposed. So far, only a few
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studies exploring the xenobiotic-associated autophagy modulation, both in vitro
and in vivo, have been reported. The synergistic effect of environmental
carcinogens in relation to autophagy has been explored, although quite little
was discovered. Besides describing autophagy modulation by xenobiotics in the
normal cells, there are reports illuminating how autophagy modulation could be
utilized as an effective therapeutic approach for the impediment of carcinogenesis
and to rescue cells from cytotoxicity. In addition, the application of
chemopreventive compounds for autophagy modulation mitigating cellular tox-
icity and carcinogenesis have been described to achieve a safer and healthier
human life.

Keywords

Carcinogenesis · Xenobiotic compounds (XCs) · Autophagy · Mitophagy ·
Group-1 carcinogen · Cytotoxicity

1.1 Introduction

Macro-autophagy (hereafter referred to as autophagy) is a process of lysosomal
degradation in which intracellular cargo such as damaged organelles and aggregate-
prone proteins are sequestered in the double-membrane vesicles known as
autophagosomes, which subsequently fuse with the lysosome to form the
autolysosome. The autolysosome is the organelle that ultimately degrades and
recycles the autophagic cargo recycled (Levine and Klionsky 2004; Bhutia et al.
2013; Panda et al. 2015). Autophagy maintains homeostasis in a cell and saves the
cell from various stressors such as amino acid starvation, genotoxic stress, hypoxia,
and chemotherapeutics (Kimmelman and White 2017). Principally, there are three
different types of autophagy—(a) microautophagy, (b) macroautophagy, and
(c) chaperone-mediated autophagy (CMA) (Yim and Mizushima 2020). The
dysregulation of autophagy is associated with the development of several diseases,
including cancer. The role of autophagy in cancer is quite complicated while it plays
a tumor-suppressive role during tumor initiation; it induces tumor promotion in the
stages of tumor progression (Mathew and White 2011; Kimmelman and White
2017). The process of autophagy comprises five steps: (a) Nucleation of phagophore,
(b) Expansion of phagophore, (c) Closure of phagophore to form autophagosome,
(d) Fusion of the autophagosome with the lysosome, and (e) Degradation of the
autophagic cargo (Galluzzi et al. 2015) (Fig. 1.1).

The International Agency for Research on Cancer (IARC) (Soto and
Sonnenschein 2010) lists 107 agents, most of which are chemicals, as known
human carcinogens (Group 1), 59 agents as probable human carcinogens (Group
2A), and 267 agents as possible human carcinogens (Group 2B). Most of the agents
in Groups 2A and 2B are reported to be carcinogenic in animals, although there is no

2 D. N. Das and P. K. Panda
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definitive evidence regarding these being carcinogenic in humans as well. The
present article focuses on certain Group 1 xenobiotic compounds (XCs), such as
polycyclic aromatic hydrocarbons (PAHs), including Benzo[a]pyrene (B[a]P),
2,3,7,8-Tetrachlorodibenzodioxin (TCDD), dibenzofuran, and certain other inor-
ganic compounds such as cadmium, arsenic, chromium, and nickel (Birkett et al.
2019).

Emerging evidence indicates that alteration in the autophagic pathway could be
correlated to the onset of cytotoxicity resulting from chronic exposure to the afore-
stated XCs. These XCs contain several aryl hydrocarbon receptor (AhR) agonists,
which upon activation lead to the induction of cytochrome P450 enzymes capable of
converting procarcinogens into the carcinogens, which is a crucial event triggered in
an individual for vulnerable to metastatic growth (Androutsopoulos et al. 2009;
Hankinson 2016; Das et al. 2017a, b, c).

More importantly, the present article explores the consequences of autophagy
modulation by XCs regarding cytotoxicity and carcinogenesis. In addition,
autophagy, as well as autophagy-mediated cell death induced by known Group
1 carcinogens, are highlighted. Interestingly, the role of chemopreventive compounds
in modulating autophagy and how these compounds could be utilized to rescue cells
from toxicity and carcinogenesis as a complementary approach is discussed.

1.2 Aryl Hydrocarbon Receptor and Cytochrome P450
Regulates the Development of Carcinogenesis

The Aryl hydrocarbon receptor (AhR) is an intensively reported ligand-activated
transcription factor that is adequately expressed in multiple organs and tissues. AhR
contributes to the detoxification process for numerous xenobiotic substances and
initiates phase I and phase II detoxification pathways. The XCs toxins that serve as
the activators of AhR disrupt several cellular functions to extend the perception
regarding the toxic and carcinogenic effects. The toxic compounds activate AhR,
which may exhibit acute or chronic toxicity depending on the kind of toxin, its dose,
and the health and age of the individual (Jaishankar et al. 2014; Arenas-Huertero
et al. 2019). AhR plays an important role in xenobiotic-induced carcinogenesis.
Several in vivo studies have demonstrated a substantial connection between the
induction of aryl hydrocarbon hydroxylase activity and the carcinogenesis induced
by XCs. Exposure to XCs is a major concern because once the XCs have entered the
body, they can conveniently cross the cell membrane due to lipophilic in nature. In
the cytoplasm, the XCs binds to the AhR, and the resulting system forms a complex
with the chaperone proteins, namely, heat shock protein 90 (HSP90), co-chaperone
protein X-associated protein 2 (XAP2), and p23 (Reyes et al. 1992; Tsai et al. 2015;
Kudo et al. 2018). Binding of XCs to AhR indicates that the activation of the
complex and its translocation to the nucleus has begun.

After forming a heterodimeric complex with the AhR nuclear translocator
(ARNT), the complex again binds with the 5’-TNGCGTG-30 consensus sequence
of the xenobiotic-responsive element (XRE) present in the promoter region of

4 D. N. Das and P. K. Panda



several genes, such as cytochrome P450 (CYP450), GST, UDP-GT, and quinine
oxidoreductase (Gelboin 1980; Das et al. 2017a). Consequently, it induces
the expression of various genes that are involved in XCs metabolism, including
the CYP isoforms 1A1 and 1B1. Moreover, binding of XCs to AhR indicates the
activation of a transcription factor that augments the expression of various genes,
including those encoding the CYP450 enzymes, which metabolize XCs into muta-
genic intermediates, ultimately leading to carcinogenesis (Fig. 1.2) (Das et al.
2017a, b, c). Interestingly, AhR is generally known to mediate cancer initiation via
DNA damage, attributed to its role in the induction of CYP450 enzymes. The key
findings regarding multiple cancer sites have elucidated that exposure to several of
these persistent AhR ligands leads to an upsurge in cancer progression through the
enhancement of tissue invasion and metastasis.

In AhR-stimulated human lung carcinoma A549 cells it has been demonstrated
there is increased expression of E2F1 target genes such as RFC38 and PCNA, which
are associated with cell cycle regulation (Watabe et al. 2010). Moreover, Ahr
displays a central role for facilitating tumorigenesis, characterized by forming
DNA adduct, reducing cell–cell adhesion, and increasing cellular proliferation in
cigarette smoke-induced lung carcinogenesis (Tsay et al. 2013). It has been
demonstrated that exposure to environmental carcinogen TCDD, activates AhR
dependent pathway specifically by increasing expression of matrix
metalloproteinases (MMPs), which are involved with increased invasive potential
for generating melanoma tumorigenesis. (Villano et al. 2006). TCDD has also been
demonstrated to augment MMP10 expression in keratinocytes (De Abrew et al.
2014). The carcinogenicity prospective of XCs is associated with their ability to bind
to the DNA, thereby enhancing DNA cross-linking, leading to a series of disrupting
effects, which may ultimately result in tumor initiation. These XCs increase cellular
toxicity by regulating the generation of reactive oxygen species (ROS), which
mediate apoptosis. Similarly, AhR-dependent tumor promoters may serve as signifi-
cant tumorigenic agents as they possess the capability to enhance the repair of any
DNA damage and the development of the initiated cells ultimately driving tumor
progression (Dietrich and Kaina 2010).

Cellular toxicity results due to XCs, disturb the homeostasis in the cell by
modulating autophagy, which results in unusual proliferation and leading to carci-
nogenesis. A previous study demonstrated that particulate matter stimulated AhR
regulates autophagy in keratinocytes (Jang et al. 2019). Conversely, AhR activation
by TCDD led to repressed autophagy in HaCaT cells and normal human epidermal
keratinocytes (NHEKs) (Kim et al. 2020). The cellular mechanisms contributing to
the manifestation of toxicities are examined by comparing a series of events that
begin with exposure, involve a multitude of interactions between the invading
toxicant and the host, and culminate in a toxic effect.

1 Role of Xenobiotic in Autophagy Inflection in Cell Death and Carcinogenesis 5
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1.3 Cellular Mechanisms Underlying Xenobiotic
Compound-Induced Toxicity and Carcinogenesis

Xenobiotic metabolic enzymes are divided into phases I and II that are required for
metabolizing of xenobiotics compounds including environmental carcinogens,
drugs, and pesticides. Phase I xenobiotic-metabolizing enzymes like Cytochrome
P450 (CYPs) are linked with the biotransformation of environmental pollutants and
associated with the development of cancer. On the contrary phase II xenobiotic-
metabolizing enzymes are linked to biotransformation of xenobiotics to more
excretable form while the inability to detoxify ends with the formation of
carcinogens which lead to cancer (Nebert and Dalton 2006; Jancova et al. 2010).

Autophagy is stimulated in response to distinct cellular stresses caused by XCs,
such as the ER stress, oxidative stress, lysosomal damage, and DNA damage
(Lafleur et al. 2013; El-Demerdash et al. 2018; Ashoor et al. 2013; Kvitko et al.
2012) (Fig. 1.3). Interestingly, autophagy operates as a cytoprotective mechanism,
degrading the damaged cellular proteins and organelles, which could be toxic to the
cell, thereby restoring cellular equilibrium in the cell (Ogata et al. 2006; Moreau
et al. 2010). It is noteworthy that autophagy is a catabolic pathway activated in
response to various cellular stressors, such as damaged organelles, ER stress, ROS,
DNA damage, and the accumulation of misfolded or unfolded proteins. The high
levels of ROS in the early stage of XCs related carcinogenesis or cell transformation
are oncogenic and cause DNA damage, inhibition of DNA repair, and alterations in
normal signal transduction, ultimately leading to malignant transformation.

1.3.1 Endoplasmic Reticulum (ER) Stress Regulates Xenobiotic
Compounds Associated Toxicity and Carcinogenesis

ER is considered as an important organelle for containing enzymes needed for
xenobiotic biotransformation. The endoplasmic reticulum plays an important role
in protein folding and when the load of the unfolded protein dominates it exerts ER
stress. Moreover, ER maintains homeostasis in the cell by protein folding (Xu et al.
2005). Modulation of the ER stress signaling pathways is an important concern for
protecting against the cellular damage induced by xenotoxicants.

In this context, XCs, such as cadmium, induce the expression of Grp78 through
the phosphorylation of eIF2 alpha, which increased the translational activity of
ATF4 resulting in ER stress response, which displays a protective role against
cadmium-induced cytotoxicity (Liu et al. 2006). In addition, ER stress and change
in calcium homeostasis are associated with cadmium triggered apoptosis (Biagioli
et al. 2008). Furthermore, cadmium induces ER stress and autophagy in proximal
convoluted tubule cells (Chargui et al. 2011). Moreover, cadmium-tempted cytotox-
icity by accelerating ER stress and autophagy in retinal pigment epithelial cells
(Zhang et al. 2019a).

According to a previous report, cigarette smoke induces protracted ER stress and
autophagic cell death in human umbilical vein endothelial cells (Csordas et al. 2011).

8 D. N. Das and P. K. Panda
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Similarly, the elevation of autophagy by arsenic is associated with ER stress,
initiation of UPR, and the deposition of protein aggregates in human lymphoblastoid
cells (Bolt et al. 2012). In addition, TCDD is reported to induce ER stress in PC12
cells via the PERK-eIF2α signaling pathway (Duan et al. 2014a). However, it has
been elucidated that lead compound-induced toxicity stimulates the mTORC1 path-
way of autophagy in cardio fibroblasts to ensure survival under ER stress conditions
(Sui et al. 2015). Furthermore, B[a]P was reported to induce cell cycle arrest and
apoptosis in human choriocarcinoma cancer cells via the ROS-induced ER stress
pathway (Kim et al. 2017). Recent findings revealed that the mutual communication
between autophagy and ER stress in response to cigarette smoke extract (CSE)
exposure stimulates apoptosis in human bronchial epithelial cells (He et al. 2019).

1.3.2 Mitochondrial Dysfunction and Xenobiotic Compounds
Triggered Toxicity and Carcinogenesis

In recent decades, there has been an increase in the reports describing the toxic
effects of pollutants on the mitochondria. Mitochondria are the major locations for
energy production and the execution of oxidative reactions within the cells
(Hamanaka and Chandel 2010). Xenotoxicants induce mitochondrial impairment
via multiple mechanisms; therefore, several methods are required to evaluate
mitotoxicity. Previous studies have reported that mitochondrial dysfunctions lead
to increased levels of ROS, mainly to activate autophagy. Moreover, the majority of
the ROS are produced in mitochondria. Another factor influencing the generation of
mtROS is calcium signaling, in which calcium ions are transferred from the ER to
the mitochondria “quasi-synaptically,” that is, through closely placed mitochondria-
associated ER membranes (Marchi et al. 2017). Calcium encourages ATP synthesis
by exhilarating ATP synthase and the enzymes involved in the tricarboxylic acid
cycle (Rizzuto et al. 2000), which suggest increased mitochondrial metabolic rate,
oxygen consumption, and mitochondrial ROS generation. Calcium accrual in
mitochondria results in augmented mitochondrial ROS (Hansson et al. 2008).

B[a]P induces abnormal mitochondria and cellular demise in Hep3B cells (Jiang
et al. 2011). Furthermore, PM2.5 stimulates oxidative stress, which triggers the
autophagy pathway in A549 human lung epithelial cells (Deng et al. 2013).
Cadmium-based quantum dots increase the intracellular ROS levels, affect mito-
chondrial function, and induce autophagy, leading to apoptosis in mouse renal
adenocarcinoma cells (Luo et al. 2013). Studies evaluating the toxicity of zinc
oxide nanoparticles (NPs) revealed that these NPs induced cell death in normal
skin cells through autophagic vacuole accumulation and damage to mitochondria via
ROS production (Yu et al. 2013).

Cigarette smoke exposure induces the stimulation of autophagy and
dysregulation of mitochondrial repair machinery resulting in cell death in granulosa
cells (Gannon et al. 2013). In accordance with this, another report suggests persistent
exposure to cigarette smoke alters mitochondrial structure and function in
airway epithelial cells leading to COPD pathogenesis (Hoffmann et al. 2013).
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Mitochondrial targeting of CYP1B1 and its role in PAH-induced mitochondrial
dysfunction has also been elucidated previously (Bansal et al. 2014). Cadmium
also activates ROS induced PINK1/Parkin dependent mitophagy in mice kidneys
(Wei et al. 2014). Silica nanoparticles exposure causes ROS-triggered autophagy in
MRC-5 cells, which could be a mechanism for cell survival (Petrache Voicu et al.
2015). Similarly, exposure to amorphous silica nanoparticles induces vascular
endothelial cell injury following both apoptosis and autophagy via ROS-facilitated
MAPK/Bcl-2 and PI3K/Akt/mTOR signaling axis (Guo et al. 2016). Interestingly,
TCDD-induced toxicity mediated by mitoAhR localized to the intermembrane space
(IMS) influences mitochondrial dysfunction (Hwang et al. 2016). Exposure to
particulate matter (PM) induces autophagy in macrophages through the oxidative
stress intermediated PI3K/Akt/mTOR signaling pathway (Su et al. 2017). Our group
has recently deciphered that the exclusion of dysfunctional mitochondria through
mitophagy represses B[a]P-triggered apoptosis in HaCaT cells (Das et al. 2017c).
Furthermore, the use of electronic cigarettes induces mitochondrial stress in neural
stem cells (Zahedi et al. 2019).

1.3.3 Lysosomal Disruption and Xenobiotic Compounds Prompted
Toxicity and Carcinogenesis

Lysosomes play a central role in cellular catabolism, trafficking, and processing of
foreign particles. Lysosomes facilitate detoxification and cell survival through the
storage and degradation of genotoxic materials. Lysosome pathology may imply
cytotoxicity, conceivably leading to cell death, and should, therefore, be considered
adverse for cellular injury and dysfunction. Mechanistic investigations may involve
the evaluation of cell or tissue-specific clearance pathways and mitochondrial
toxicity. Similarly, an impaired lysosomal function may have an impact on
autophagy and ultimately lead to an increase in oxidative stress, mitochondrial
dysfunction, inflammation, and cell death (Boya et al. 2005; Martini-Stoica et al.
2016).

Moreover, defects in lysosomal capacity result from a modification in the lumen
pH and/or altering in lysosomal membrane permeabilization which interrupts the
autophagosome and lysosomal fusion. Prevalent variations in membrane perme-
ability may cause acidified cytosol and cellular necrosis (Martini-Stoica et al. 2016).
Agricultural insecticide lindane disrupts the maturation of an autophagosome into
an autolysosome following aberrant activation of the ERK pathway found in several
types of cancer (Corelle et al. 2006). Ji et al. observed that graphene oxide quantum
dots blocked the autophagic flux by decreasing the activity of cathepsin B and
obstructing the lysosome proteolytic potential in GC-2 and TM4 cells (Ji et al.
2016). Similarly, in hepatocytes silica nanoparticles induced dysfunctional
autophagy through lysosomal impairment leading to inhibition of autophagosome
and lysosome fusion (Wang et al. 2017a). Likewise, lead disrupts autophagic
flux by impeding the formation and activity of lysosomes in the neural cells
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(Gu et al. 2019). Furthermore, arsenic nanoparticles induce apoptosis and
impairment of mitochondria and lysosomes in isolated rat hepatocytes
(Jahangirnejad et al. 2020).

1.3.4 Induction of DNA Damage in Response to Xenobiotic
Compounds

Autophagy and DNA damage response (DDR) are two important biological pro-
cesses that are crucial for cellular and organismal homeostasis. DNA damage
activates autophagy, while autophagy is essential for several functional
consequences of DDR signaling, including senescence, cell death, the repair of
DNA lesions, and cytokine release. DNA damage is the initial crucial step during
the process of carcinogenesis. Chemical carcinogens are capable of causing the
formation of carcinogen DNA adducts or encouraging other modifications to the
DNA, such as oxidative damage and amendments to the DNA ultrastructure (e.g.,
DNA strand breakage, strand cross-linking, chromosomal rearrangements, and
deletions). Prolonged exposure to low levels of arsenic or cadmium leads to cell
transformation in the target tissues. Although the mechanism of this cell transforma-
tion is not completely understood yet, it is supposed that defective autophagy leading
to the accumulation of genomic mutations and epigenetic alterations is a contributor
(Mathew et al. 2007). Cigarette smoke induces oxidative stress and DNA damage,
and it is more severe as a carcinogen in mice exposed to the chemical from birth
(Micale et al. 2013). In A549 cells particulate matter 2.5 (PM2.5) enhanced
autophagy, elevated oxidative stress, and activated the tumor necrosis factor-alpha
(TNF-α) causing cytotoxicity (Deng et al. 2014). Similarly, particulate matter
10 (PM10) exposure resulted in an elevation in the ROS levels, inflammatory
cytokines, DNA damage, and autophagy in human lung cells (de Oliveira Alves
et al. 2017). PM2.5 induced oxidative stress via ROS generation, which led to DNA
damage, lipid peroxidation, and protein carbonylation; consequently tempted ER
stress, depolarized mitochondria, and autophagy, ultimately causing apoptosis in
both in vitro and in vivo (Piao et al. 2018). Similarly, cadmium exerts toxic
molecular effects and consequently increases DNA strand breaks, elevates the ER
stress, increases ROS production, and disturbs the calcium homeostasis. Different
signaling pathways such as calcium-ERK and PERK-elF2α have been implicated in
cadmium-activated autophagy (Messner et al. 2016). Arsenic induces the production
of ROS/RNS, which may generate a mechanism for the disruptions of DNA repair
(Tam et al. 2020).
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1.4 Autophagy Plays a Dual Role in Cellular Stress Response:
Cell Survival or Cell Death

Increasing evidence has been indicating that several xenobiotic compounds modu-
late autophagy. Since autophagy plays a dual role, there is an incessant debate on
whether autophagy acts as a cell death mechanism or conversely as a cytoprotecting
one in the presence of XCs.

1.4.1 Triggering Autophagy/Mitophagy Rescues from Xenobiotic
Compounds Triggered Cytotoxicity

There is extensive evidence that autophagy protects against XCs-induced cytotoxic-
ity. Defective mitophagy leads to cigarette smoke-induced lung cellular senescence
in chronic airway diseases (Ahmad et al. 2015). For instance, TCDD exposure
induced protective autophagy mechanism to ameliorate ROS-induced cytotoxic
effects in human SH-SY5Y neuronal cells (Zhao et al. 2016). A study by our
research group revealed that B[a]P-induced mitophagy in HaCaT cells as a
cytoprotective mechanism to resist cell death (Das et al. 2017c). Moreover,
cadmium-initiated autophagy in rat renal mesangial cells has been reported to assist
in rescuing against apoptosis- and necrosis-mediated cell death (Fig. 1.4) (Fujishiro
et al. 2018).

Bisphenol A (BPA) is a chemical used commonly in the production of polycar-
bonate plastics and epoxy resins. BPA enters the human body via different routes
such as food and drinking water. The current literature reports that autophagy
inhibition because of the disruption of autophagosome–lysosome fusion is the
main cause underlying the deposition of toxic lipids in the liver. Furthermore,
facilitating autophagy by using mTOR inhibitor Torin2 is reported to increase the
degradation of toxic lipids, suggesting that autophagy could be used for therapeutic
benefit to reduce toxic lipid deposition in the liver (Song et al. 2019).

Recently, it was established that heme-induced toxicity was enhanced upon the
inhibition of autophagy in H9c2 cardiomyoblast cells, further corroborating that the
differential role of autophagy inhibition depends on the cellular context, dose, and
time (Gyongyosi et al. 2019).

Furthermore, it was observed that cadmium triggered cytotoxicity in mouse liver
cells which is liknked with the disruption of autophagic flux due to inhibition of
autophagosome-lysosome fusion (Zou et al. 2020) (Fig. 1.4).

1.4.2 Autophagic Cell Death Induced by Xenobiotic Compounds

Morphologically, autophagic cell death is characterized by huge autophagic
vacuolization of the cytoplasm in deficiency of chromatin condensation (Kroemer
et al. 2009). In fact, there is a paucity of established reports where autophagy
inhibition completely inhibited cell death induced by xenobiotics. Delayed cell
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death was demonstrated in 3-methyladenine (3-MA) treated or ATG5 knockdown
human umbilical vein endothelial cells (HUVECs) which were exposed with ciga-
rette smoke extract. On the contrary, cell death was unaltered after treating with
apoptosis inhibitor BCL-XL suggesting manifestation of autophagic cell death
induced by CSE is independent of apoptosis (Csordas et al. 2011). Furthermore,
TCDD activates cell death through the induction of autophagy in bovine kidney cells
(MDBK cells) (Fiorito et al. 2011). Similarly, nuclear receptor 77 (Nur77) was found
to promote cigarette smoke-induced autophagic cell death by increasing the dissoci-
ation of B-cell lymphoma 2 (Bcl2) from Beclin-1 in lung cells (Qin et al. 2019)
(Fig. 1.4).

1.4.3 Mitigating Autophagy/Mitophagy Protects Xenobiotic
Compounds Induced Cytotoxicity

In addition to evaluating the effects of autophagy by inducing autophagy, it is
equally important to analyze in what way autophagy inhibition regulates the
XCs-induced cytotoxicity. Previous studies have reported substantially reduced
levels of apoptosis in the lungs of LC3B�/� mice compared to wild type mice, and
enhanced resistance to emphysema upon cigarette smoke exposure (Chen et al.
2010). The treatment with autophagy inhibitors, like 3-methyladenine (3-MA) or

Fig. 1.4 Toxicity and autophagy modulation by xenobiotic compounds. (i) Benzo[a]pyrene and
TCDD protect cells by inducing autophagy, whereas bisphenol A, cadmium, cigarette smoke, and
heme induced toxicity could be alleviated by stimulating autophagy. (ii) Cigarette smoke extract
(CSE) and TCDD-triggered autophagic cell death. (iii) Mitigating autophagy protect cells from
cigarette smoke and particulate matter triggered cytotoxicity
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spautin-1, reduced the airway injury in particulate matter (PM)-treated mice
(Xu et al. 2017). In addition, mice with knocked-down autophagy-related gene
Beclin1 or LC3B exhibited reduced airway inflammation and mucus hypersecretion
in response to PM exposure (Chen et al. 2019a). Cigarette smoke-induced
Nix/BNIP3L-dependent mitophagy triggers airway epithelial cell and mitochondria
injury and causes COPD pathogenesis (Zhang et al. 2019b). This result further
corroborates that the use of autophagy inhibitors could serve as a therapeutic strategy
for inhibiting PM-induced airway inflammation (Fig. 1.4).

1.5 Molecular and Cellular Signaling Responsible for Causing
Carcinogenesis upon Exposure to Xenobiotic Compounds

Cancer initiation, promotion, and progression are exceptionally complex processes.
XCs induced carcinogenesis may occur via multiple mechanisms (Barrett 1993;
Patterson et al. 2018). Evidence suggests that chemical toxicants may operate
through genotoxic, cytotoxic, as well as epigenetics pathways, which further
complicates the pursuit of alleviating chemical toxicant-associated diseases and
cancers. It is also suggested that XCs may induce carcinogenic effects through the
disruption of important signal transduction pathways.

1.5.1 PI3K/Akt/mTOR Signaling Pathway

Phosphatidylinositol 3-kinase (PI3K), protein kinase B(Akt), and mammalian target
of rapamycin (mTOR), the components of PI3K/Akt/mTOR signaling pathway, play
important functions in a cell, such as pathologic changes, cellular physiology, and
cell survival. Therefore, disruptions of this pathway result in different types of
cancer (Levine 2007; Bartholomeusz and Gonzalez-Angulo 2012; Kandoth et al.
2013; Tai et al. 2017). Chemical toxicants, such as all the members of Group I
carcinogens, are capable of inducing malignant cell transformation via PI3K/Akt/
mTOR pathway. PI3K/Akt and mTOR signaling pathways are crucial to several
aspects of cellular growth and survival in normal physiological conditions as well as
during carcinogenesis.

PI3K/Akt/mTOR pathway plays a critical role in multiple cellular functions and is
a major regulator of autophagy (McAuliffe et al. 2010). Various growth factor
receptors and oncogenes activate PI3K. In fact, elevation in PI3K signaling is
regarded as a distinct marker of cancer (Fruman et al. 2017). Members of protein
kinase B (Akt)-serine/threonine kinase family mainly exist in three isoforms (Akt1,
Akt2, and Akt3) and are common downstream effectors of the PI3K signaling
pathway (Fresno Vara et al. 2004). Akt is the master regulator of tumor cell invasion,
migration, and metastasis. Current evidence suggests that mTOR is associated with a
myriad of functions including lipid generation, nucleotide precursors biosynthesis,
metabolic alteration, and metastasis (Yecies and Manning 2011; Ben-Sahra et al.
2013; Valvezan et al. 2017).
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Tobacco smoke (TS) is reported to induce lung tumorigenesis through the
upregulation of the Akt/mTOR pathway (Memmott and Dennis 2010). Slug induced
by B[a]P is involved in the regulation of the invasive properties of fibroblast-like
synoviocytes (FLS) in rheumatoid arthritis following PI3K/Akt/mTOR pathway
(Lee et al. 2013). Similarly, silica nanoparticles are reported to suppress
phosphorylated PI3K, Akt, and mTOR in endothelial cells in a dose-dependent
manner (Duan et al. 2014b). Roy et al. reported that zinc oxide nanoparticles induced
apoptosis through enhancement of autophagy via PI3K/Akt/mTOR inhibition. The
levels of phosphorylated PI3K, Akt, and mTOR were significantly decreased in
macrophages upon exposure to zinc oxide nanoparticles (Roy et al. 2014).

Furthermore, PM2.5 stimulates autophagy in human bronchial epithelial cells
through suppression of the PI3K/Akt/mTOR pathway (Liu et al. 2015a). In addition,
PM2.5 exposure induces autophagy in lung macrophages through the oxidative
stress-mediated PI3K/Akt/mTOR pathway (Su et al. 2017). Moreover, inactivating
mTOR augments autophagy-mediated epithelial injury in airway inflammation
caused by particulate matter (Wu et al. 2020a).

Wang et al. reported that arsenic disulfide attenuates the Akt/mTOR signaling
pathway, thereby prompting both autophagy and apoptosis in osteosarcoma (Wang
et al. 2017b). B[a]P, a known carcinogen, induces pyroptotic and autophagic cell
death in HL-7702 human normal liver cells through the inhibition of the PI3K/Akt
signaling pathway (Li et al. 2019a).

1.5.2 MAPK/ERK Signaling Pathway

Mitogen-activated protein kinases (MAPKs) involve extracellular signaling-
regulated kinase. Sustained activation of the MAPK/ERK pathway by carcinogens
causes a selective alteration in autophagy at the maturation step, resulting in the giant
defective autolysosomes accumulation (Corelle et al. 2006). Studies suggest that the
activation of extracellular signal-regulated kinases (ERK) could be a contributor to
the autophagic effects and promote cell survival (Ogier-Denis et al. 2000; Cagnol
and Chambard 2010). B[a]P exposure to HepG2 cells is reported to induce
p53-dependent cell death, under the regulation of p38 MAPK and ERK pathway
(Lin et al. 2008). Similarly, arsenic is reported to stimulate cell proliferation through
enhanced ROS generation, ERK signaling, and Cyclin A expression in HaCaT and
Int407 cells (Chowdhury et al. 2010). Furthermore, iron oxide nanoparticles are
reported to induce autophagy in RAW 264.7 macrophage in a dose-dependent
manner together with phosphorylated ERK (Park et al. 2014). Copper oxide
nanoparticle-induced cytotoxicity in human keratinocytes and mouse embryonic
fibroblasts mediated via p53 and ERK activation (Luo et al. 2014). In addition,
ERK activation plays an important role in enhancing the radiosensitivity of silver
nanoparticles; while the inhibition of ERK reduces autophagy, the ERK levels
triggered by silver nanoparticles could reduce apoptosis in glioma cells (Wu et al.
2015). Rinna et al. explored the effects of silver nanoparticles on MAPK activation
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and confirmed the role of ROS in DNA damage during silver nanoparticles-elevated
toxicity in human embryonic epithelial cells (Rinna et al. 2015). In lung cancer cells
cadmium induces cell migration and invasion through the activation of the ERK
pathway (Zhai et al. 2019).

1.5.3 Hypoxia-Inducible Factor (HIF)

Hypoxia-inducible factor-1 is a heterodimer encompassing α and β subunits. It is a
transcription factor that mediates the adaptive mechanism to hypoxia. Hypoxia-
inducible factor-1 is regulated mainly by oxygen-dependent changes and could be
responsible for regulating autophagy and other hypoxia-related responses (Bruick
and McKnight 2001). Studies have reported that nicotine encourages the accumula-
tion of hypoxia-inducible factor-1α protein and vascular endothelial growth factor
(VEGF) expression in human lung cancer cells via nicotinic acetylcholine receptors
(Zhang et al. 2007). In addition, in human non-small cell lung cancer cells mito-
chondrial reactive oxygen species facilitate nicotine in elevating the expression of
hypoxia-inducible factor-1α (Guo et al. 2012). TCDD is reported to induce hypoxia-
inducible factor-1α pathway, oxidative stress, and metabolic stress, contributing to
trophoblastic toxicity (Liao et al. 2014). Zinc oxide nanoparticles are reported to
enhance ROS generation, apoptosis, autophagy, and hypoxia-inducible factor-1α
signaling pathway in HEK-293 cells and mouse kidney tissues (Lin et al. 2016).
Hypoxia-inducible factor-1α inhibits the mitochondria-mediated apoptosis induced
by silver nanoparticles in human lung cancer cells through the regulation of
autophagic flux via ATG5, LC3-II, and p62 regulation (Jeong et al. 2016).

1.5.4 NF-kB Signaling Pathway

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is an induc-
ible transcription factor regulated by signal activation cascades. NF-κB modulates
the expression of several genes involved in diverse cellular processes such as cell
proliferation and apoptosis and the stress responses to a variety of noxious stimuli,
thereby promoting carcinogenesis and cancer progression. It has been reported that
PAHs exposure activates the NF-κB transcription factor in the hepatoma cell line
(Volkov and Kobliakov 2011). In addition, B[a]P stimulates oxidative stress and
endothelial progenitor cell dysfunction by activating the NF-κB pathway (Ji et al.
2013). Moreover, it has been investigated activation of the NF-κB pathway takes
place during chronic exposure of B[a]P in hepatocellular carcinoma (Ba et al. 2015).
Furthermore, cadmium induces nephrotoxicity through an elevation in the levels of
ROS involved in NF-κB -mediated apoptosis (Ansari et al. 2017), while PM2.5
induces apoptosis by upregulating NF-κB signaling in Chinese hamster ovary cells
(Peng et al. 2017). Similarly, arsenic induces apoptosis in p53-proficient (p53+/+)
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and p53-deficient (p53�/�) cells via differential alteration of the NF-κB pathway
(Yin and Yu 2018). Intriguingly, cigarette smoke encourages HMGB1 translocation
and release, contributing to migration and NF-κB stimulation through the induction
of autophagy in lung macrophages (Le et al. 2020).

1.5.5 p53 Signaling Pathway

The “cellular gatekeeper” p53 acts through transcription-dependent as well as
transcription-independent mechanisms which transmits a type of stress-inducing
signals for various antiproliferative cellular responses (Zilfou and Lowe 2009). A
previous study reported that B[a]P-induced toxicity related to DNA damage and p53
modulation in HepG2 cells (Park et al. 2006). p53 regulates autophagy in an
ambiguous manner such as p53 stimulated autophagy leads to cell death or shows
protective response depending upon the different cellular contexts (Crighton et al.
2007; Amaravadi et al. 2007). Moreover, B[a]P-induced DNA damage instigates
p53-independent necroptotic cell death via a Bax/Bcl-2-dependent mitochondrial
pathway in human non-small cell lung carcinoma cell line (Jiang et al. 2013).
Besides, B[a]P 7,8-diol-9,10-epoxide promotes p53-independent necrosis following
the mitochondria-linked pathway involving Bak and Bax activation (Zhang et al.
2015). In addition, TCDD was reported to induce cell death through autophagy in
bovine cells with decreased Mdm2 and increased p53 levels (Fiorito et al. 2011). A
study by our research group deciphered that TCDD instigates p53-regulated apopto-
sis through the activation of cytochrome P450/aryl hydrocarbon receptors in the
HaCaT cell line (Das et al. 2017b).

1.6 Xenobiotic Compounds (Group I Carcinogens) Induce
Carcinogenesis In Vitro and In Vivo

Carcinogenic compounds may cause cancer either by directly inducing DNA dam-
age or through indirect cellular or physiological effects. Disruptive XCs may
contribute to multiple stages of tumor development by influencing the tumor micro-
environment. The tumor microenvironment involves intricate interactions among the
blood vessels that supply nutrient pool to tumor cells (Casey et al. 2015).

Fibroblast growth factor 9 (FGF9) that plays a substantial role in B[a]P-induced
lung adenocarcinoma CL5 cell invasion as well as the progression of human
lung adenocarcinoma (Ueng et al. 2010). It has been demonstrated that B[a]P
upsurges breast cancer cell migration and invasion through upregulation of
the ROS-stimulated ERK pathway and promotes the activation of matrix
metalloproteinase-9 (Guo et al. 2015). B[a]P was demonstrated to promote A549
cell migration, invasion, and EMT through the up-regulation of linc00673 expres-
sion in an AhR-dependent manner (Wu et al. 2020b). Moreover, the study of the
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effects of B[a]P on cancer metastasis and progression reported the NF-κB pathway
as a potential target. Increased aggressiveness of B[a]P-triggered squamous
carcinomas were observed in PACE4 overexpressed transgenic mice (Bassi et al.
2015). Furthermore, it was also found B[a]P activates the ERK pathway, as well as
its downstream partner phosphorylated checkpoint kinase-1 (Chk1), is involved with
cellular proliferation in human lung cancer cells (Wang et al. 2015). B[a]P promotes
migration, invasion, and metastasis in lung adenocarcinoma cells through the
upregulation of the TG-interacting factor (Yang et al. 2018). Moreover, the p38
MAPK pathway is reported to be intricately involved in B[a]P-induced migration
and invasion in hepatoma cells (Wang et al. 2019a). Similarly, AhR mediates cell
proliferation enhanced by B[a]P in human lung cancer 3D spheroids (Jimma et al.
2019).

The carcinogen nitrosamine 4-(methylnitrosamino)-1-butanone (NNK) found in
the cigarette smoke that induces migration and invasion via the activation of a c-Src/
PKCι/FAK loop, which may promote the development of human lung cancer (Shen
et al. 2012). Electronic-cigarette smoke is reported to induce lung adenocarcinoma
and urothelial hyperplasia in FVB/N mice (Tang et al. 2019). Equally increasing
evidence suggests that CSE is also found to modulate the expression of Claudin-1,
E-Cadherin, and miR-21, which might be associated with increased migration of
cancer cells (Dino et al. 2019).

Cadmium is classified as a Group 1 carcinogen and has been demonstrated to be
directly associated with tumors of the lung, breast, and prostate (Person et al. 2013;
Divekar et al. 2019; Zimta et al. 2019). Similarly, arsenic and cadmium exhibit
estrogen-like activity that contributes to the risk of developing mammary
tumorigenesis (Divekar et al. 2019). The interaction between Atg4B and Bcl-2
plays an important role in cadmium-induced cross-talk between apoptosis and
autophagy through the disassociation of Bcl-2 from Beclin1 in A549 cells
(Li et al. 2019b).

Substantial report suggests that TCDD exposure causes disruption of
mitochondria changing the mitochondrial membrane potential (ΔΨm) and engrosses
with mitochondria to nucleus stress signaling (Biswas et al. 2008). TCDD also
promotes lung tumors through attenuation of apoptosis via Akt and ERK1/2 signal-
ing pathways activation in female A/J mice (Chen et al. 2014). Moreover, Vk*Myc
mouse exposure to TCDD provokes splenomegaly, blood cell abnormalities, and
plasma cell carcinoma resembling multiple myeloma (Wang et al. 2019b).

Assessment of the carcinogenic effect of TCDD in vivo using mouse embryonic
stem cells revealed the formation of teratoma (Yang et al. 2019). Activated
macrophages were reported to be crucial during acute PM2.5-persuaded angiogene-
sis in lung cancer in a mouse model (Li et al. 2020).
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1.7 Autophagy Modulation Induced by Xenobiotic
Compounds Regulates Carcinogenesis

Accumulating evidence indicates that autophagy modulation could serve as an
effective therapeutic strategy for combating cancer. Studies concerning XCs and
autophagy modulation in relation to carcinogenesis are gaining increasing interest
from a therapeutic perspective. Evidence suggests that cigarette smoke-induced
autophagy in head and neck squamous cell carcinoma (HNSCC) cells and oral
keratinocytes (OKF6/TERT2) cells result in the upregulation of ΔNp63α protein
expression and a consequent increase in the NOS2 expression. Conversely,
downregulation of ΔNp63α, IRF6, or NOS2 mitigates the autophagic process,
which further suggests a relationship between smoke-induced autophagy and
ΔNp63α/IRF6/NOS2 signaling and corroborates that modulation of ΔNp63α/
IRF6/NOS2 signaling and consequently autophagy could serve as an effective
therapeutic strategy against cigarette smoke-induced carcinogenesis (Ratovitski
2011). It is also known that cigarette smoke exposure induces cancer-associated
fibroblast phenotype through the induction of autophagy, mitophagy, and DNA
damage. Moreover, stromal fibroblasts secrete lactate and ketone bodies as a stress
response strategy by fueling the oxidative mitochondrial metabolism (OXPHOS) in
neighboring epithelial cells (Salem et al. 2013). On the contrary, nicotine, which is
one of the active components in cigarette smoke, exhibits protective effects in
ulcerative colitis (UC) patients through autophagy induction (Pelissier-Rota et al.
2015). CSE and B[a]P diol epoxide (BPDE) were observed to be involved in the
transformation of human bronchial epithelial cells (HBECs) through the
upregulation of vasorin expression. Vasorin-induced lung carcinogenesis was
enhanced upon inhibition of autophagy-mediated apoptosis in the cigarette smoke
treated cells (Chen et al. 2019b).

The study on the mechanism underlying metal-induced carcinogenesis is receiv-
ing increasing interest as metals are considered pollutants for several organisms.
Only a few reports have investigated the role of autophagy in metal-induced
carcinogenesis. Cadmium, which is considered one of the most hazardous materials,
affects different organs and organisms. Increasing evidence suggests that cadmium-
induced carcinogenesis is associated with the inhibition of autophagy, indicated by
the accumulation of autophagosomes and the adaptor protein p62 (Wang et al. 2018;
Ashrafizadeh et al. 2019). Inhibition of autophagic flux in cadmium-exposed oral
squamous cell carcinoma (OSCC) CAL27 cells results in reduced migration and
invasion, suggesting that autophagy plays a crucial role in cadmium-exposed carci-
nogenesis (Fan et al. 2019). In addition, Psoralidin (Pso), a nontoxic natural com-
pound, inhibits autophagic flux and induces apoptosis in prostate cancer,
demonstrating that autophagy inhibition could serve as an effective therapy in
cadmium-induced carcinogenesis (Pal et al. 2017).

Besides autophagy modulation in response to exposure to several known
carcinogens, some reports demonstrate selective autophagy, such as mitophagy,
playing a master role in carcinogenesis (Chang et al. 2017). It is well established
that the presence of damaged mitochondria is associated with the initiation of both
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central and peripheral COPD-associated non-small cell lung cancer (NSCLC).
Excessive dysfunctional mitochondria, which lead to oxidative stress, are observed
in COPD patients, and evidence suggests that increased oxidative stress leads to
carcinogenesis (Ryter et al. 2018; Ng Kee Kwong et al. 2017). Moreover, COPD and
NSCLC are connected through a common mechanistic linkage (Houghton 2013; Ng
Kee Kwong et al. 2017). Accumulating evidence display that aberrant lung function
upsurges the occurrence of lung cancer pathogenesis (Mannino et al. 2003; Purdue
et al. 2007). More importantly, it has been demonstrated that excessive mitophagy is
the cause of COPD pathogenesis (Mizumura et al. 2014). Surprisingly, it is impor-
tant to know the role of autophagy/mitophagy which plays a crucial role in pulmo-
nary diseases (Aggarwal et al. 2016). Furthermore, more mechanistic demonstration
of autophagy/mitophagy is required when connecting COPD associated carcinogen-
esis. There are also reports describing autophagy effect in response to environmental
carcinogens such as nickel, which is a Group 1 carcinogen. According to one study,
nickel-induced carcinogenesis occurs in human bronchial epithelial cells via a novel
SQSTM1 regulatory network (Huang et al. 2016). Another report demonstrated
nickel-induced carcinogenesis in human bronchial epithelial cells via increased
hexokinase 2 (HK2) expression (Kang et al. 2017). Furthermore, particulate matter
(PM) with an aerodynamic diameter of less than 2.5 μm (PM2.5) induces oxidative
stress-mediated autophagy in A549 cells. In addition, PM2.5 is considered a novel
player for epithelial-to-mesenchymal transition, which contributes to several malig-
nant characteristics observed in cancer (Xu et al. 2019).

The combination of two persistent organic pollutants TCDD and endosulfan
disturbs mitochondrial homeostasis and ultimately leads to cell death through the
induction of mitochondrial apoptosis associated with an early onset of autophagy
(Rainey et al. 2017). Although a few reports regard autophagy as a biomarker for
metal-induced toxicity (Di Gioacchino et al. 2008), several studies have established
that metal exposure induces autophagic cell death in several cancers. Arsenic, an
important carcinogen, is reported to induce autophagy or autophagic cell death,
depending on the cellular context. It has been demonstrated that increased SnoN
facilitates Beclin-1-independent protective autophagy against arsenic trioxide
(As2O3)-induced cell death in ovarian carcinoma cells (Smith et al. 2010). Arsenic
sulfide (As2S2)-induced cell death is promoted upon treatment with autophagy
inhibitor 3-MA, suggesting the protective role of autophagy in human osteosarcoma
cells (Wang et al. 2017b). According to a report, reduced autophagic flux due to
disrupted autophagosome-lysosome fusion was observed in human keratinocytes in
response to acute arsenic exposure, which resulted in skin carcinogenesis (Wu et al.
2019). This report delineated that the p62/Nrf2 feedback loop regulates arsenic-
induced carcinogenesis. Recent reports suggest that arsenic trioxide is also involved
in autophagic degradation in several cancers such as glioma, non-small cell lung
cancer (NSCLC), and myeloid leukemia (Kanzawa et al. 2005; Mao et al. 2018; Liu
et al. 2020).
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1.8 Autophagy Induced by the Synergistic Effect of Cigarette
Smoke and PM2.5 Regulates Carcinogenesis

Several reports confirm the association of cigarette smoke exposure and carcinogen-
esis. However, only a few reports describe the relationship between combinatorial
exposure-induced autophagy and carcinogenesis. For instance, combinatorial expo-
sure to cigarette smoke and PM2.5 was reported to increase the levels of autophagy
proteins (ATG5, Beclin1, and LC3-II), demonstrating the association of autophagy
induction with lung cancer progression. Furthermore, autophagy involved with cell
invasion, migration, and EMT was observed in response to combinatorial treatment
with cigarette smoke and PM2.5, as evidenced by the siRNA study of the autophagy
gene Atg5. Together, these findings suggest that autophagy inhibition could be
applied in a therapeutic intervention (Fig. 1.5) (Lin et al. 2018). The mechanisms
underlying Group 1 carcinogen-induced autophagy modulation and carcinogenesis
remain unexplored to date, and further mechanistic investigations on the role of
autophagy and selective autophagy are required for precise therapeutic intervention.

Fig. 1.5 Carcinogenesis and autophagy modulation by xenobiotic compounds. Xenobiotic
compounds for example cigarette smoke regulate carcinogenesis via context-dependent regulation
of autophagy. Cigarette smoke exposure leads to Head and Neck carcinoma via autophagy
induction, while nicotine, one of the active components of cigarette smoke, rescues the cells from
ulcerative colitis through autophagy induction. Vasorin upregulation in response to cigarette smoke
exposure associated with the inhibition of autophagy which stimulates lung carcinogenesis
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1.9 Impact of Chemopreventive Compounds on Xenobiotic
Compounds-Induced Toxicity and Carcinogenesis

The chemopreventive compounds exhibited beneficial effects for the prevention of
the inhibition of XCs induced cytotoxicity and carcinogenesis. Most of the existing
studies on chemopreventive compounds capable of suppressing xenobiotic-induced
toxicity have been investigated. For example, capsaicin was reported to modulate the
pulmonary antioxidant defense system in B[a]P-induced lung cancer in Swiss albino
mice. Moreover, capsaicin also mitigated lysosomal damage in B[a]P-induced lung
cancer proliferation (Anandakumar et al. 2008). Another compound baicalein was
reported to mitigate the levels of lysosomal enzymes and xenobiotic-metabolizing
enzymes in B[a]P-induced lung carcinogenesis in Swiss albino mice (Naveenkumar
et al. 2014). Fascinatingly, combination therapy of curcumin and resveratrol was
reported to modulate drug-metabolizing enzymes as well as antioxidant indices
during lung carcinogenesis in mice (Liu et al. 2015b). Eicosapentaenoic acid inhibits
TCDD-induced upstream events of MAPK phosphorylation, the increase in the [Ca2
+]i levels, and the cell surface changes in the microvilli of HepG2 cells (Palanisamy
et al. 2015). Likewise, S-Allylcysteine acts as an inhibitor of B[a]P-induced precan-
cerous carcinogenesis in human lung cells by inhibiting the activation of NF-κB
(Wang et al. 2019c).

Remarkably, B[a]P-trigger apoptosis was rescued by Bacopa monnieri treatment,
which provided cytoprotection through Beclin-1-dependent autophagy (Das et al.
2016). Similarly, antidiabetic drug metformin could suppress nickel-induced
autophagy and apoptosis by alleviating hexokinase-2 expression and activating
lipocalin-2 expression in lung cancer (Kang et al. 2017). Nowadays the precipitous
interest has been focused on citrus peel polymethoxy flavones as it prevents B[a]
P/dextran sodium sulfate-induced colorectal carcinogenesis by modulating xenobi-
otic metabolism and ameliorating autophagic defect in ICR mice (Wu et al. 2018).
Sulforaphane, a natural dietary compound generally found in the cruciferous
vegetables such as broccoli, prevents cadmium-induced carcinogenesis by restoring
autophagy, diminishing Nrf2, and reducing apoptosis resistance (Wang et al. 2018).
Recently another group investigated natural flavonoid iso-orientin, attenuates benzo
[a]pyrene-induced liver injury in vitro, and in vivo through the inhibition of
autophagy and pyroptosis (Xueyi et al. 2019).

1.10 Conclusion

The present article discusses the role of the important Group 1 carcinogens in
modulating autophagy. Although it is well established that autophagy plays an
important role in cancer cell maintenance, increasing evidence has been suggesting
that autophagy inhibition or dysfunctional autophagy is also associated with the
induction of carcinogenesis. Several studies have reported the association of
carcinogens with cancer development, the literature concerning the regulation of
carcinogenesis by XCs-induced autophagy is scanty. Moreover, little research has
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been conducted to decipher the roles of selective autophagy, such as mitophagy,
ER-phagy, pexophagy, lysophagy, and ciliophagy, for the regulation of carcinogen-
esis induced by Group 1 carcinogens; this area of research requires exploration for
precise dissection of autophagy in search of better therapeutics. The study of
XCs-induced toxicity and carcinogenesis is required for planning and implementing
better therapeutic strategies in the future. The study of the combinatorial effect of
important carcinogens in relation to autophagy represents another research area to be
explored in the future to discover possible therapeutic benefits. Moreover, it is
imperative to understand the mechanism underlying the carcinogenesis regulated
by XCs stimulated autophagy. It is vital to search for potent autophagy inhibitors,
only a few of which are reported in the literature so far. The currently available data
regarding metal-induced carcinogenesis has also been discussed, with special
emphasis on autophagy. The current research on XCs induced autophagy and
metabolism alteration in relation to carcinogenesis is at a stage of infancy which
should be addressed. In summary, delineating the complicated interrelationship
between xenobiotics and autophagy modulation will attract autophagy scientists
for investigating autophagy intonation could be effective therapeutics in the case
of cytotoxicity and carcinogenesis.
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Abstract

Autophagy and apoptosis are the two evolutionarily conserved processes
regulating the turnover of defective organelles and other contents inside cells
and damaged whole cells inside organisms, respectively. Although apoptosis and
autophagy function differently, their signaling pathways are interconnected and
mediated by a toggle switch that is triggered based on the requirements of a cell
and its surroundings. Suppression of apoptosis and autophagy due to uncontrolled
stress is thought to be a hallmark of carcinogenesis. In general, autophagy and
apoptosis mediate each other through a roller coaster of up- and downregulation
of factors; that is, autophagy attenuates apoptosis induction, and caspase-
dependent apoptosis turns off the autophagic machinery in cancer cells, with
several exceptions. Moreover, in certain scenarios, autophagy or autophagy-
associated proteins induce excessive degradation of cytoplasmic components,
causing “autophagic cell death.” Autophagy can also rescue cancer cells from
apoptosis by modulating stress levels, determining cancer cell fate. However, the
molecular signals driving the cell toward either autophagy or apoptosis remain
largely unknown. Therefore, in this review, we focus on understanding the
complex crossover signaling between autophagy and apoptosis pathways and
their modulation in the transformation from benign proliferation to malignant
carcinogenesis.
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2.1 Introduction

Cell proliferation and cell death are the two wheels on which life processes roll. The
proper organization and construction of a living body depend on the coordination
between these two processes. Every living organism has an inherent ability to detect
and remove individual damaged cells through a process of regulated cell death
(RCD). RCD involves very sophisticated molecular machinery by which cells
commit themselves to die after receiving a proper signal of death. The RCD process
has multidimensional roles ranging from removal of damaged cells to the proper
organization and formation of organs and tissues at specific developmental stages.
Different forms of RCD, such as apoptosis, pyroptosis, ferroptosis, and so on, are
cellular responses to stress that exceed the limit of tolerance. In the past few years,
another guardian of the cellular microenvironment called autophagy was found to be
extremely important for the maintenance of cellular homeostasis. Autophagy is a
self-digestion process in which unwanted cellular organelles and other cellular
components are entrapped within a double-layered vesicular structure known an
autophagosome and degraded by the subsequent autophagosome fusion with a
lysosome. Hence, the process of autophagy contributes toward the maintenance of
cellular homeostasis in a varying range of stress conditions, like nutrient deprivation,
an abundance of damaged and misfolded proteins, pathogens, infections, and hyp-
oxia (Klionsky 2005; Mahapatra et al. 2019). The function of autophagy as a
cytoprotective process is not limited to scavenging damaged sterile targets as it is
also a very effective and regulated way of removing intracellular pathogens through
xenophagy, which is the sequestration of pathogen-derived proteins and many other
types of invaders (Saha et al. 2018).

The ability of a cell to prevent apoptosis is one of the important hallmarks of
cancer (Hanahan andWeinberg 2011). Cancer cells disable the apoptosis mechanism
either by mutation of tumor suppressors or by overexpressing anti-apoptotic signals
to achieve a malignant state. Conventionally, many cancer therapeutics have been
developed to kill cancer cells by promoting apoptosis. These therapeutics mainly
target damaged DNA to restore mutated tumor suppressors, such as p53. The
strategy of these manipulations is to reduce the uncontrolled proliferation of cancer
cells and to eliminate them in a regulated and targeted manner through apoptosis.
However, when cancer cells are exposed to any type of stress (such as anticancer
therapeutics or nutrient deprivation in the tumor microenvironment), the cellular
stress response of autophagy can be activated. Here, the tumor-promoting role of
autophagy leads to eradicated cell stress that thus inhibits apoptosis, aiding in tumor
growth and progression. Such cancer-cell protective autophagy is one of the main
causes of therapeutic resistance shown by different cancers against the majority of
anticancer drugs. However, the critical function of the role of autophagy in tumor
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condition is not simple, as it maintains a critical role in both tumor promotion and
suppression during various stages of cancer progression. Therefore, in this review,
we shed light on the interaction between the two fundamental processes, that is,
autophagy and apoptosis, and discuss every possible angle in their connections to
cancer progression and roles in effective cancer treatment.

2.2 Apoptosis in Cancer

Apoptosis (apo-separation, ptosis-falling off) is a highly coordinated process of
controlled cell depletion described by morphological features such as a blebbing
cell membrane, nuclear fragmentation, condensation of chromatin, and so on,
leading to the generation of apoptotic bodies that are successively eliminated by
the process of phagocytosis (Kerr et al. 1972). The key intracellular architect of
apoptosis is a series of cysteine-dependent aspartate-driven proteases (caspases)
(Galluzzi et al. 2008; Garrido and Kroemer 2004), but evidence of caspase-
independent cell death has also been presented. Caspases are initially secreted in
inactive procaspase form and, as the full name implies, the C-terminus is cleaved at
an aspartate residue.

2.2.1 Mechanism of Apoptosis

Depending on the activation of caspases, the apoptotic pathways are primarily
induced by either extrinsic mechanism or intrinsic/mitochondrial mechanism. The
extrinsic apoptotic signaling is activated through a death receptor (DR), a special
type of cell surface receptor in tumor necrosis factor (TNF) superfamily proteins
(Bhardwaj and Aggarwal 2003). Signals for the extrinsic apoptotic pathways are
transmitted by death ligands that interact with and are activated by DRs. Structurally,
TNF family receptors possess a conserved death domain (DD) that undergoes
trimerization upon binding with ligands like TRAIL (tumor necrosis factor-related
apoptosis-inducing ligand) and that recruits additional DD-containing proteins like
FADD (Fas-associated protein with death domain) and TRADD (TNF-R type
1-associated death domain protein) to form the death-inducing signaling complex
(DISC), followed by the interaction and induction of caspase 8 and 10. Then the
stimulated caspase 8 and 10 cleave caspases 3, 6, and 7, leading to the subsequent
cleavage of target peptides (Fig. 2.1) (Mukhopadhyay et al. 2014; Wang and
El-Deiry 2003).

The intrinsic apoptotic signaling pathway is triggered by different stresses, but the
first and irreversible step in the sequence of events activating this apoptosis is the
loss of the mitochondrial membrane potential (MMP) due to outer membrane
permeabilization. In this process, the guardians of mitochondrial integrity belong
to the Bcl-2 family of proteins containing a Bcl-2 homology (BH) domain, with the
BH1–BH4 domains playing important roles. Several proteins belonging to this
family have all four BH domains, including Bcl-w, Bcl-xL, Mcl-1, Bcl-B, and A1,
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which inhibit apoptosis and thus led to their identification as antiapoptotic proteins.
The proapoptotic members consist of two groups: BH3-only proteins and BH123
proteins. The BH123 proteins include BCL-2-associated X protein (Bax), BCL-2
antagonist/killer (Bak), and BCL-2 ovarian killer (Bok). The BH3-only protein
group includes the p53-upregulated modulator of apoptosis (PUMA), Noxa,
BCL2-associated agonist of cell death (Bad), BH3-interacting domain death agonist
(Bid), BCL-2-interacting mediator of cell death (Bim), and Harakiri (HRK). The
BH3-only proteins perceive apoptosis signalings, such as that induced by DNA
damage and ER stress, and are then translocated to the outer mitochondrial mem-
brane, where they activate Bak and Bax or causes inhibition of anti-apoptotic
proteins. Activated Bak and Bax oligomerize at the surface of mitochondria and
facilitate the formation of pores in the outer membrane of mitochondria, leading to
loss of membrane permeability and the release of several apoptosis-inducing
proteins, such as SMAC/DIABLO and cytochrome c, from mitochondria to the
cytosol. The released cytochrome-c activates with apoptotic protease-activating

Fig. 2.1 Overview of apoptotic pathways. It is mainly regulated through extrinsic and intrinsic
way to induce cell death. The extrinsic mode activates the ligands like FasL and TRAIL to bind with
receptors and ligand-receptor interaction induces DISC complex consisting of FADD, TRADD, and
an initiator caspase-like caspase 8 to form active caspase. The active caspase 8 then activates
executioner caspases like caspase 3, 6, and 7 to regulate the apoptotic process. In contrast, the
intrinsic mode in response to DNA damage, increased ROS, activate several BH3 only proteins like
PUMA, NOXA, Bim, Bid, and Bad to act on mitochondria to release cytochrome c. The cyto-
chrome c then interacts with Apaf-1 and pro-caspase 9 to form a complex called apoptosome to
activate the caspase 9. The active caspase then interacts with executioner caspases to regulate the
intrinsic apoptosis
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factor 1 (APAF1) to form the apoptosome complex and induces the activation of
caspase-9, which subsequently activates caspases 3, 6, and 7 (Fig. 2.1) (Galluzzi
et al. 2012; Kaya-Aksoy et al. 2019; Singh et al. 2019).

2.2.2 Role of Apoptosis in Cancer

Cancer is a complex and variable process with excessive variations in the genetic
material that leads to cancer development, with several steps occurring progres-
sively, starting with the initiation of tumorigenesis and eventually leading to metas-
tasis. During cancer development, cells encounter byproducts of the physiological
elimination of damaged cells. Therefore, cancer cells must acquire some protective
machinery to prevent induced programmed cell death, that is, apoptosis. Cancer cells
can regulate apoptotic pathways transcriptionally, translationally, and post-
translationally to avoid stress, such as that generated by hypoxia and genomic
instability. Moreover, cancer cells may suppress apoptosis by increasing anti-
apoptotic genes expression or decreasing proapoptotic genes expression in a
context-dependent manner, which results in higher anti-apoptotic protein expression.
Generally, apoptotic pathways are restricted in cancer cells to prevent this cellular
response. Several reports have indicated that attenuated interactions of the
proapoptotic BIM which is a BH3-only protein with the antiapoptotic protein
BCL-2 can support the survival and growth of cancer cells (Hübner et al. 2008).
Furthermore, the induction of BIM induces oncogenic inactivation and apoptosis in
acute lymphoblastic leukemia (Li et al. 2016b). Notably, it was demonstrated that the
inhibition of a BH3-only protein or a caspase protein caused a genetic mouse model
to develop resistance against certain proapoptotic signals with a commensurate
increase in tumor initiation (Parsons et al. 2013). The BH3-only molecules BIM
and PUMA are downregulated in breast cancer cells, and overexpression of these
molecules induces HER2 inactivation, which induces apoptosis (Bean et al. 2013).
Overexpressed BH3-only molecule BIM function as a cytoprotective molecule in
cancer cells, and its association through phosphorylation with BCL-xL/MCL-1
block its proapoptotic functions (Gogada et al. 2013). Moreover, caspase-2-
deficiency impedes apoptosis and generates genomic instability, resulting in

tumorigenesis (Shalini et al. 2016). However, MCL-1 is a vital prosurvival factor
in triple-negative breast cancer (TNBC), and its inhibition might be an effective
strategy for treating TNBC (Li et al. 2018). Furthermore, the suppression of the
tumor suppressor gene p53 mediates cell proliferation, and stabilized p53 phosphor-
ylation activates BAK and BCL-xL, inducing apoptosis (Nieminen et al. 2013).
However, suppression of the proapoptotic protein BCL-2 antagonist killer 1 (BAK1)
leads to the proliferation of breast cancer cells of various lineages (Zhou et al. 2010),
whereas the inhibition of BCL-xL and BCL-2 activates BAX/BAK and induces
apoptosis in human myeloid leukemia cells (Rahmani et al. 2013). Thus, it is
strongly said that the inhibition of apoptosis has to play a critical role in the case
of cancer cell survival and tumor development. Targeting apoptosis induction is a
novel strategy for cancer therapy.
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2.3 Autophagy in Cancer

Autophagy (in Greek, “auto,” defined as oneself, and “phagy,” defined as to eat)
states to a self-cannibalistic mechanism to degrades cytoplasmic components and
unwanted organelles through lysosomes to maintain the homeostasis (Levine and
Klionsky 2017; Mancias and Kimmelman 2016; Tan et al. 2017). Recent reports
have suggested that autophagy significantly modulates various physiological pro-
cesses, such as growth, development, cell division, and immunity, with any dys-
function in autophagy leading to severe pathophysiological implications, such as
neurodegenerative disorders, autoimmune disorders, and cancer.

2.3.1 Mechanism of Autophagy

Autophagy is a complex multistep process regulated through the coordinated action
of 42 ATG (AuTophaGy) genes that are sequentially involved in different steps,
such as (a) phagophore nucleation and formation, (b) elongation of phagophores,
(c) cytoplasmic cargo selection, (d) lysosomal docking and fusion, and (e) cargo
degradation (Fig. 2.2) (Mancias and Kimmelman 2016; Wang and El-Deiry 2003;
White 2015). Autophagy is initiated upon a shift in the extracellular milieu of a cell,
mainly due to different stress signals, such as loss of growth factor signaling, nutrient
deprivation, energy depletion, and hypoxia. These stress signals induce the release of
reactive oxygen species (ROS) that inhibit the TOR1 (target of rapamycin complex
1)-dependent signaling pathway, which acts as a molecular sensor for autophagy
initiation. First, the ATG protein complex is formed as a scaffold of regulatory
proteins ATG1, ATG13, ATG17, ATG29, and ATG31, which recruits other ATG
proteins to activate downstream targets via phosphorylation and a PAS (phagophore
assembly site/pre-autophagosomal structure) (Bhol et al. 2019; Bhutia et al. 2010;
Davies et al. 2015; Levine and Klionsky 2004). Then, the cytoplasmic contents,
protein aggregates, defective organelles are sequestered through a double-membrane
structure known as a phagophore. For phagophore formation, the Ulk1 kinase, in
combination with ATG13 and ATG17, is activated at the same time as transmem-
brane protein ATG9, which extracts phospholipids. Subsequently, the class III PI-3
kinases, particularly Vps34 (vesicular protein sorting) interacts with Beclin1 leading
to increase phagophore catalytic activity, in which phosphatidylinositol (PI) is
utilized to produce phosphatidylinositol triphosphate (PI3P) for phagophore elonga-
tion. The formation of autophagosomes and elongation of vesicles depends on three
ubiquitin-like conjugation systems: ATG12 is activated through the utilization of
ATP and ubiquitin-activating enzyme E1-like ATG7, which non-covalently binds to
ubiquitin-activating enzyme E2-like ATG10. Then, the E2-like action triggers the
covalent binding of ATG12 and ATG5, forming the conjugated ATG5-ATG12
complex. This complex then pairs with ATG16L to form the ATG5–ATG12–
ATG16L complex, which is essential for the extension of the phagophore and
acquisition of the appropriate membrane curvature, and once double-membrane
autophagosomes are formed, the complex starts to disintegrate. Thus, the formation
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of the ATG5-ATG12 conjugated complex does not depend on the activation of
autophagy and is a poor marker of autophagy. A second ubiquitin-like system is
required for the formation of microtubule-associated protein light chain 3 (LC3),
known as the mammalian homolog of ATG8. During autophagy induction, cysteine
protease ATG4 cleaves LC3 to form LC3-I. This complex is in turn stimulated in an
ATP-dependent way through ATG7, E1-like enzyme. Following this activation
stimulated LC3-I is transferred to ATG3 (E2-like) and ATG5-ATG12-ATG16L
(E3-ligase complex) before it is conjugated with phosphatidylethanolamine (PE) to
generate LC3-II. This lapidated LC3 acts as a receptor for cargo selection in
coordination with different adaptor proteins (p62/SQSTM1, NBR1, TAXBP1,
etc.) or organelle-specific receptor proteins (PHB2, AMBRA1, Nix, BNIP3L, etc.)
contributing to selective molecule uptake and degradation (Bhol et al. 2019; Grumati
and Dikic 2018). During docking of autophagosomes to preexisting lysosomes,
autolysosomes are formed. In this step, the acidic constituents of the lysosomes
digest the selected cargos of the autophagosomes. These organelles migrate along
the side of microtubules in a bidirectional manner, with autophagosomes having an
affinity for the lysosome-enriched microtubule organizing center (LEMOC). Vesic-
ular docking and fusion are regulated through several proteins, including LAMP-
2 (lysosomal membrane protein-2) and GTPases, such as class C Vps proteins,
SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor),
ESCRT (endosomal sorting complex required for transport), and Rabs (Rab7).
Any mutation in these proteins halts the progression of autophagosome maturation
and fusion. In addition to these proteins, UVRAG, a Beclin1-interacting protein, also
plays key roles by maintaining the fusion machinery on autophagosomes and
clamping the class C Vps proteins. Thus, Rab7 is activated, which in turn enhances
the fusion of lysosomes and late endosomes (Levine and Kroemer 2008; Mathew
et al. 2007; Mizushima 2007; Xie and Klionsky 2007).

2.3.2 Dual Role of Autophagy in Cancer

The actual role of autophagy in cancer is still debatable because of its dual action,
functioning as both a survival- and death-promoting mechanism. Survival-
promoting autophagy increases the chances of cancer cell survival under adverse
conditions by positively regulating the hallmarks of cancer. In contrast, death-
promoting autophagy kills cancer cells by limiting mechanisms such as ROS
production and the degradation of survival proteins. Therefore, the correct therapeu-
tic approach for cancer treatment, by either promoting or inhibiting autophagy, is
still a matter of discussion. Studies have also shown that autophagy is associated
with tumor-suppressive function and that inhibition or defective autophagy is
associated with tumor induction and malignant transformation. For instance, loss
of Beclin1 in mice resulted in the development of hepatocellular carcinoma (Liang
et al. 1999). Moreover, heterozygous deletion of Beclin1 was also associated with
the development of breast and other human malignancies, suggesting that Beclin1
acts as a tumor suppressor (Qu et al. 2003; Yue et al. 2003). Similarly, the
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downregulation of ATG5 has been reported to be associated with early-stage
cutaneous melanoma pathogenesis (Liu et al. 2013). Although the senescence
mechanism by which autophagy acts as a tumor suppressor is controversial, a few
studies have suggested that autophagy and senescence can occur simultaneously.
Autophagy suppresses melanoma tumorigenesis by inducing senescence (Liu et al.
2014). A recent study in papillary thyroid carcinoma by Liu et al. suggested that
BIRC7 induces the epithelial-mesenchymal transition and metastasis by limiting
autophagy (Liu et al. 2020). Similarly, ATG7 induces triple-negative breast cancer
progression by inhibiting the invasion, migration, and epithelial–mesenchymal
transition (Li et al. 2019). In contrast, autophagy has been found to contribute to
tumorigenesis by giving the advantage to tumor cells over normal cells under various
stress environments and supporting cancer cell aggressiveness. For example, in a
Chinese Han population, the expression of ATG12 consequently contributes to the
risk of head and neck squamous cell carcinoma (Song et al. 2018). Increased
expression of ATG5 induced by HIF1α has been reported to increase tumor size in
prostate cancer (Yu et al. 2019). In colon cancer, RACK1-induced protective
autophagy triggers cell proliferation and attenuates apoptotic cell death (Xiao et al.
2018). Similarly, in renal cell carcinoma, autophagy is critical for cell survival and
the epithelial-mesenchymal transition (Singla and Bhattacharyya 2017). Guo et al.
reported an oncogenic role of CCAT1 in hepatocellular carcinoma mediated through
ATG7-dependent autophagy induction (Guo et al. 2019). Studies have also reported
the association of autophagy with enhanced drug resistance. For example, Wnt3a is
reported to promote radioresistance via autophagy in head and neck squamous cell
carcinoma (Jing et al. 2019). Similarly, cisplatin resistance and osteosarcoma pro-
gression were induced by SNHG16 upregulation of ATG4B expression (Liu et al.
2019).

2.4 The Role of Autophagy and Apoptosis Crosstalk in Cancer
Growth and Progression

Cells undergo apoptosis under extreme stress, whereas autophagy is well known for
its involvement in cellular homeostasis. Hence, the induction of autophagy in cells
undergoing stress before the point of no return can protect them from death.
However, after cells are destined for death, autophagy can induce a peculiar form
of cell death called autophagic cell death (Apel et al. 2009; Wong 2011; Yang et al.
2015). In this context, some reports have shown critical crosstalk between
components of two highly complex processes, that is, autophagy and apoptosis
(Fig. 2.3).

2.4.1 The Intersection of Autophagy and Apoptosis Molecules

One of the most important and well-known points of interaction between the
autophagic and apoptotic pathway coincides with the action of antiapoptotic Bcl-2

2 Autophagy: An Agonist and Antagonist with an Interlink of Apoptosis in... 43



Fi
g
.2

.3
A
ut
op

ha
gy

an
d
ap
op

to
si
s
cr
os
st
al
k
du

ri
ng

ce
llu

la
r
st
re
ss
.T

he
cr
os
st
al
k
m
od

ul
at
es

th
ro
ug

h
th
e
in
te
ra
ct
io
n
of

B
cl
2/
B
cl
-x
L
–
B
ec
lin

1
an
d
B
cl
2/
B
cl
-x
L
–

pr
oa
po

pt
ot
ic

B
H
3
on

ly
pr
ot
ei
ns
.
C
el
lu
la
r
st
re
ss

lik
e
nu

tr
ie
nt

st
ar
va
tio

n
ac
tiv

at
es

th
e
U
lk
1
co
m
pl
ex

by
in
hi
bi
tin

g
m
T
O
R

re
su
lts

in
its

in
te
ra
ct
io
n
w
ith

th
e

au
to
ph

ag
ic
in
iti
at
io
n
co
m
pl
ex

fo
r
th
e
on

se
to

f
au
to
ph

ag
y.

T
hi
s
is
m
ad
e
po

ss
ib
le
by

di
ss
oc
ia
tin

g
B
cl
2/
B
cl
-x
L
–
B
ec
lin

1
co
m
pl
ex

th
ro
ug

h
th
e
ph

os
ph

or
yl
at
io
n
of

B
ec
lin

1
an
d
B
cl
2/
B
cl
-x
L
.T

he
fr
ee

B
ec
lin

1
w
ith

ot
he
ra
ut
op

ha
gi
c
pr
ot
ei
ns

ac
tiv

at
es

th
e
el
on

ga
tio

n
co
m
pl
ex

w
hi
ch

di
re
ct
s
th
e
ce
ll
to
em

pl
oy

ei
th
er
au
to
ph

ag
y
or

ap
op

to
si
s
by

in
hi
bi
tin

g
an
ti-
ap
op

to
tic

pr
ot
ei
ns

th
ro
ug

h
A
T
G
5,
A
T
G
12

,a
nd

by
re
gu

la
tin

g
pr
o-
ap
op

to
tic

pr
ot
ei
ns

th
ro
ug

h
A
T
G
5–
F
A
D
D
in
te
ra
ct
io
n
an
d
ca
sp
as
e

8
ac
tiv

at
io
ns

th
ro
ug

h
ub

iq
ui
tin

at
ed

p6
2.

In
co
nt
ra
st
,
th
e
ce
ll
co
m
m
itt
ed

to
au
to
ph

ag
y
re
st
ri
ct
s
ap
op

to
si
s
th
ro
ug

h
th
e
ly
so
so
m
al

de
gr
ad
at
io
n
of

ca
sp
as
es
.

M
or
eo
ve
r,
st
re
ss

lik
e
D
N
A

da
m
ag
e
in
du

ce
s
p5

3
re
gu

la
te
s
ap
op

to
si
s
th
ro
ug

h
in
hi
bi
tio

n
of

an
ti-
ap
op

to
tic

pr
ot
ei
ns

th
ro
ug

h
B
H
3
on

ly
pr
ot
ei
ns

an
d
th
ro
ug
h

ph
os
ph

or
yl
at
in
g
of

B
cl
2.

It
al
so

he
lp
s
in

th
e
ac
tiv

at
io
n
of

ca
sp
as
es

an
d
pr
oa
po

pt
ot
ic
pr
ot
ei
ns

lik
e
B
ax
.T

he
p5

3
al
so

re
gu

la
te
s
au
to
ph

ag
y
ei
th
er

by
ac
tiv

at
in
g
it

th
ro
ug

h
D
R
A
M

m
ed
ia
te
d
m
ito

ph
ag
y
or

by
in
hi
bi
tin

g
th
ro
ug

h
su
pp

re
ss
io
n
of

A
M
P
K
an
d
by

de
gr
ad
in
g
au
to
ph

ag
ic
pr
ot
ei
ns

lik
e
B
ec
lin

1,
V
ps
34

,A
T
G
3
th
ro
ug

h
ac
tiv

at
ed

ca
sp
as
es
.S

om
e
in
hi
bi
to
r
of

ap
op

to
tic

pr
ot
ei
ns

lik
e
F
L
IP

re
gu

la
te
s
ap
op

to
si
s
by

in
hi
bi
tin

g
ca
sp
as
es

an
d
au
to
ph

ag
y
by

di
sr
up

tin
g
th
e
A
T
G
3-

A
T
G
8
of

th
e
el
on

ga
tio

n
co
m
pl
ex

44 V. C. Haragannavar et al.



protein and the conserved autophagic protein Beclin1. Antiapoptotic proteins includ-
ing Bcl-2 family members (Bcl-2, Bcl-XL, and Mcl-1) with all four BH3 domains
interact with the proapoptotic members through BH4 domains (Pattingre et al. 2005).
The BH3 binding pocket of Bcl-2 binds with the BH3 domain of Beclin1 to inhibit
Beclin1-dependent autophagy. ER-localized Bcl-2 inhibits starvation-induced
Beclin1-dependent autophagy by binding with Beclin1 facilitated by NAF-1 (nutri-
ent-deprivation autophagy factor-1) (Chang et al. 2010). The binding affinity of
Beclin1 for Bcl-2 is lower than the proapoptotic proteins due to the presence of a
polar threonine instead of a hydrophobic amino acid at position 119 (Feng et al.
2007; Oberstein et al. 2007). Therefore, the interaction between Beclin1 and Bcl-2
does not disturb the antiapoptotic property of Bcl-2. During stress-induced
autophagy, BH3-only proteins bind to the BH3-binding pocket of Bcl-2 to disrupt
their interaction. STKs (Ser/Thr kinases) including JNK (JUN N-terminal kinase),
Akt, and DAPK, also make regulatory contributions to the processes of autophagy
and apoptosis through their crosstalk with other Bcl-2 family members. c-Jun
N-terminal protein kinase 1 (JNK1) controls both autophagy and apoptosis through
the phosphorylation of Bcl-2. Under conditions of mild stress, Bcl-2 phosphoryla-
tion by JNK-1 causes the dissociation of BCl-2 and Beclin1 but not that of the Bcl-2
and Bax to initiate autophagy; however, under prolonged stress, the Bcl-2-Bax
interaction is disrupted, which initiates apoptosis (Wei et al. 2008).

Many studies have shown that active caspases cleave key autophagy-related
proteins and allow apoptosis to overtake autophagy. ATG5, a protein required for
phagophore elongation, is cleaved by calpain, an active caspase, to form a 24 kDa
protein that interacts with Bcl-XL to induce apoptosis through the release of
cytochrome c (Yousefi et al. 2006). Furthermore, ATG12, a copartner in the
ATG5-ATG12 conjugation system, is thought to act as a proapoptotic protein by
supporting the other apoptotic proteins in activating the caspases under various
stresses. Moreover, ATG12 can inhibit the anti-apoptotic proteins Bcl-2 and Mcl1
by acting specifically on the BH3-like domain of ATG12. Similarly, in acute
lymphoblastic lymphoma (ALL), the cleavage of ATG3 by caspase 8 promotes
apoptosis by inhibiting autophagy (Oral et al. 2012). In contrast, caspase 9, which
is involved in the intrinsic pathway of apoptosis, is found to lipidated LC3 by
interacting with ATG7 to promote autophagy. Hence, apoptosis induction results
in the site-specific breakdown of autophagic proteins such as Beclin1, ATG5, and
ATG7 to undermine the cytoprotective effects of autophagy (Marquez and Xu
2012). Interestingly, the autophagy adaptor protein p62 displays a critical role in
caspase activation to induce apoptosis (Islam et al. 2018; Jung and Oh 2019). The
tumor suppressor p53 also regulates crosstalk at various points. It activates
autophagy through the AMPK–TSC2–mTOR axis by translocating to the nucleus
upon stress, whereas in the cytoplasm, p53 interacts with FIP200 and inhibits
autophagy (Vousden and Lane 2007). Cytoplasmic p53 interacts with several
Bcl-2 pro-apoptotic family proteins, such as Bax, NOXA, PUMA, and others, to
induce apoptosis by regulating mitochondrial outer membrane permeability
(MOMP) (Vaseva et al. 2012). Moreover, p53-induced DRAM-mediated autophagy
is also associated with apoptosis (Crighton et al. 2006). Furthermore, the anti-
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apoptotic protein FLICE-like inhibitor protein (FLIP) inhibits apoptosis by
inactivating death receptors and is known to regulate autophagy by interacting
with autophagic proteins such as ATG3 and LC3. FLIP can also influence both
apoptosis and autophagy independently by acting on the plasma membrane to inhibit
apoptosis and at the site of autophagosome formation to modulate autophagy, like
the action of Bcl-2 (Eisenberg-Lerner et al. 2009). Interestingly, serum starvation
was shown to activate antiapoptotic protein cIAP to promote mitochondrial
autophagy. It revealed that cIAP1 translocated onto mitochondria to interact with
Ulk1, TOM20, and LC3 to stimulate mitophagy through the ubiquitination pathway
(Mukhopadhyay et al. 2016).

An autophagosome, by itself, modulates apoptosis either through direct seques-
tration and removal of proapoptotic proteins or through the engulfment and
subsequent elimination of damaged cellular molecules, such as those from the
mitochondria-dependent apoptotic cell death. In another mechanism, the membrane
of autophagosome functions as a platform for processing of apoptotic proteins and
thus contributes to the process of apoptosis; for example, in the presence of
bortezomib and pan-sphingosine kinase inhibitor, SKI-I, there is autophagy-
dependent activation of the extrinsic apoptotic pathway through caspase-8. Caspase
8 in association with FADD is recruited to the membrane of autophagosomes in a
p62-dependent manner by interacting with ATG5 (Mukhopadhyay et al. 2014;
Young et al. 2012).

2.4.2 The Role of Autophagy and Apoptosis Crosstalk in Cancer

Although the interconnection between apoptosis and autophagy has unique
complexities, many studies that explain how apoptosis and autophagy are interlinked
and induce cell death or sustain tumor growth and proliferation with common
regulators (Table 2.1). For example, p53 was found to modulate autophagy and
apoptosis in context-dependent way in different types of cancer. It showed that
autophagy degrades p53 to maintain the hepatic cancer stem cells (Liu et al. 2017).
Recently, the induction of autophagy by activating the AMPK-ULK1 axis and
inhibiting mTOR was found to induce apoptosis through caspase activation, which
reduced tumor proliferation in triple-negative breast cancer (Cao et al. 2018).
Another study also showed that the activation of autophagy via PI3K/AKT/mTOR
signaling reduced the viability of prostate cancer cells by inducing cytotoxicity in
conjunction with apoptosis-mediated cell death (Tian et al. 2017). Besides, the
autophagy adaptor protein p62 plays central signaling for tumor initiation as well
as suppression of tumor progression in the stromal cells (Moscat et al. 2016; Zhang
et al. 2013). During cisplatin-mediated ER stress, the induction of cell death occurs
through caspase-mediated apoptosis, but Beclin1 mediates autophagy to eliminate
excessive stress in human lung cancer cells (Shi et al. 2016). Bax-negative colon
cancer cells can undergo TRAIL-induced cell death under compromised autophagy
conditions (Li et al. 2016a; Mariño et al. 2014). Moreover, it has been reported that
the inhibition of autophagy causes an elevation in NOXA expression, which is a
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Bcl2 family protein with a BH3-only domain. Generally, NOXA is degraded in the
autophagic pathway by sequestration onto autophagosomes through the action of the
adaptor protein p62. However, the blockage of autophagy leads to the accumulation

Table 2.1 Autophagy and apoptosis crosstalk proteins in cancer

Protein Role in autophagy Role in apoptosis Relevance in cancer

Bcl-2 Anti-autophagic through
Beclin1

Antiapoptotic Overexpression in
cancer and acts as an
oncogene

Bad,
Bak,
BNIP3,
Nix

Pro-autophagic inhibits
Beclin1/Bcl-2 interaction

Proapoptotic Deletion in cancer and
involves in tumor
suppression

Bax/
PUMA

Pro-autophagic Proapoptotic Deletion in cancer and
involves in tumor
suppression

NOXA Pro-autophagic inhibits
Mcl-1/Beclin1 interaction

Proapoptotic Degradation through
autophagy limits tumor
suppression

cIAP Mitophagy through
ubiquitination

Antiapoptotic Overexpression in
cancer and promotes
proliferation

Caspase
9

Lipidation of LC3 by
interacting with ATG7

Proapoptotic Deletion in cancer and
involves in tumor
suppression

p53 Context-dependent,
cytoplasmic p53 inhibits
and nuclear p53 promotes
autophagy

Proapoptotic Deletion in cancer and
degradation in cancer
stem cells through
autophagy

Ulk1 Nucleation Proapoptotic Context-dependent

Beclin1 Phagophore nucleation Cleaved C-fragment
induces mitochondrial
apoptosis

Context-dependent

ATG5 Phagophore elongation Antiapoptotic through
FADD, cleaved N-terminal
involves in mitochondrial
apoptosis

Context-dependent

ATG12 Phagophore elongation Inhibit Bcl-2 and Mcl-1
interaction

Context-dependent

ATG14 Phagophore elongation Proapoptotic Context-dependent

UVRAG Activates Vps34–Beclin1
interaction

Prevent translocation of
Bax to mitochondria

Tumor suppressor in
cancer

p62 Autophagic adaptor
protein

Caspase activation Overexpression in
cancer

mTOR Inhibit autophagy,
dephosphorylation
involves in initiation

mTOR regulates apoptosis mTOR inhibitors in
cancer therapy

FOXO3 Autophagy transcription
factor

Binds with pro-apoptotic
PUMA

Tumor suppressor in
cancer
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of NOXA, which subsequently activates apoptosis and acts as a bridge between
autophagy and apoptosis in cancer cells (Wang et al. 2018). In addition, proapoptotic
protein PUMA and Bax promote autophagy to contribute to apoptosis (Yee et al.
2009). Interestingly, our study showed that in response to anticancer therapy,
mitophagy was induced through PUMA leading apoptosis in glioma cells (Panda
et al. 2018; Yee et al. 2009). Moreover, the autophagy protein Ulk1 and ATG14 have
found to have an important role in the induction of apoptosis. The upregulation of
Ulk1 translocated to mitochondria to inhibit the activity of manganese superoxide
dismutase resulting in the production of ROS causing to cell death the cancer cells
(Mukhopadhyay et al. 2015, 2017). Furthermore ATG14 along with Ulk1 induced
lipophagy, selective autophagy resulting in free fatty acid accumulation leading to
ER stress-mediated apoptosis (Mukhopadhyay et al. 2017. On other hand, UVRAG
also can act as an antiapoptotic protein by preventing the translocation of Bax to
mitochondria, where it initiates mitochondrial apoptosis in response to therapy
(Eisenberg-Lerner et al. 2009; Maiuri et al. 2009). Interestingly, UVRAG with
truncating mutation displayed higher inflammatory response through NLRP3-
inflammasome hyperactivation and exhibited significant spontaneous tumorigenesis
through β-catenin stabilization and centrosome amplification (Quach et al. 2019)
establishing complex crosstalk between autophagy and apoptosis during tumor
growth and progression.

During chemotherapeutic stress, cancer cells trigger autophagy to eradicate stress
and support tumor growth and progression. Such protective autophagy is the major
cause of therapy resistance that develops against a majority of anticancer drugs used
for different cancers. For example, cisplatin-induced autophagy protects cancer cells
against drug-induced apoptosis (Harhaji-Trajkovic et al. 2009). Therefore,
autophagy inhibitors in combination with apoptosis-inducing drugs might increase
the efficacy of anticancer therapy. Chloroquine, a potent autophagy inhibitor, is
reported to enhance existing chemotherapeutics without inducing toxicity in cells
(Amaravadi et al. 2007). Hence, the use of chloroquine and its analog
hydroxychloroquine for inhibiting autophagy following anticancer therapy is widely
accepted and is currently under clinical trial (Cudjoe et al. 2019). Docetaxel-induced
autophagy (Zhang et al. 2019) and paclitaxel-induced autophagy (Kim et al. 2013)
play tumor protective roles in cancer cells, leading to treatment failure. Pretreatment
with 3-MA along with paclitaxel significantly enhances cytochrome C release and
the subsequent induction of the mitochondrial apoptotic pathway (Xi et al. 2011).
Furthermore, the expression of FOXO3, an autophagic transcription factor, is
increased after autophagy is blocked. Then, FOXO3 at increased levels can directly
bind to the promoter of the proapoptotic protein PUMA and hence trigger the
apoptotic pathway in osteosarcoma and other cancer cells (Fitzwalter and Thorburn
2018; Fitzwalter et al. 2018; Jiang et al. 2017). Collectively, these studies implicate
the antiapoptotic function of protective autophagy against therapy-induced apoptosis
in cancer cell lines that leads to therapy resistance. However, contradictory evidence
is presented for cases of cancer cells induced toward death upon radiation treatment,
which attenuates apoptosis by knocking out proapoptotic proteins (such as Bax and
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Bak), and the treatment-associated cell death is not attributed to apoptosis but type-II
programmed cell death, that is, autophagy (Kim et al. 2006).

2.5 Modulation of Apoptosis and Autophagy in Potential
Cancer Therapeutics

The present era of targeted cancer therapy is rationally based on specific signaling
pathways that have high expression in specific tumor types. The paradigm suggests
that target-specific therapeutic agents sensitize cancer cells toward chemotherapy
through a closed circuit of signals shuffled between apoptosis and autophagy
components (Table 2.2).

2.5.1 Distinguishing Autophagic Cell Death from Apoptosis
for Cancer Therapeutics

Since cancer cells can block apoptosis and increase their resistance to chemothera-
peutic agents, targeting autophagy as an alternative cell death pathway is an attrac-
tive strategy for anticancer therapy (Jain et al. 2013). Arsenic trioxide and EB1089
(a vitamin D analog) have been reported to induce dynamic changes in lysosomal
activity that provoke Beclin1-mediated autophagic cell death (Lo-Coco et al. 2013;
Qian et al. 2007). Several chemotherapeutic agents, such as dexamethasone with
fenretinide or etoposide, along with key dietary phytochemicals, such as resveratrol
and fisetin, have also been reported to induce autophagic cell death in a type of
non-apoptotic programmed cell death mediated by Bcl2-dependent autophagy genes
(Fazi et al. 2008; Jain et al. 2013; Laane et al. 2009). Sodium selenite, a mitophagy
inducer, has also emerged as a therapeutic agent against malignant glioma cells that
subsequently promotes cell death through superoxide-mediated mitochondrial dam-
age (Kim et al. 2007). Imatinib and cannabinoid have also exhibited autophagic cell
death in glioma cells through the inhibition of autophagy, leading to the stimulation
of ER stress (Salazar et al. 2009). Spautin-1, a potent autophagy inhibitor, triggers
the inhibition of autophagy in chronic myeloid leukemia cells to induce autophagic
cell death through the inhibition of class III PI3K and targeting the deubiquitination
of USP10- and USP13-mediated degradation of Beclin1 (Liu et al. 2011; Shao et al.
2014; Wilde et al. 2018). Moreover, β-lapachone and elisidepsin also induce marked
levels of autophagic cell death in lung cancer. Tamoxifen, bortezomib, trastuzumab,
and sulforaphane have been used against breast cancer and provoke cell death by
inhibiting autophagy. Bortezomib, 5-FU, and sulforaphane have also been used in
colorectal cancer treatment. Temozolomide, 4-HPR, imatinib, rapamycin, and
PI-103 are effective in the treatment of colorectal cancer. The inhibition of
autophagy at the early stage attenuates the cytotoxicity induced by chemotherapeutic
drugs, and this effect is augmented when autophagy is inhibited at later stages.
Chronic myeloid leukemia responds to treatment with SAHA and OSI-027 in an
autophagy-dependent cell death manner through the epigenetic modulation of
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Table 2.2 Anticancer drugs in the modulation of autophagy and apoptosis for potential cancer
therapy

Cell death mode Compounds
Expression in
cancer Regulatory signaling pathways

Autophagy as an
alternative cell
death mechanism

β-Lapachone and
Elisidepsin

Lung cancer Induction of autophagic cell
death through inhibition of the
Akt/mTOR signaling pathway

Arsenic trioxide
and EB1089

Glioma cells and
leukemia cells

Dynamic alterations in
lysosomal activity for
subsequent activation of beclin1
mediated autophagic cell death

Dexamethasone,
Fenretinide, and
Etoposide

Lymphoma and
leukemia cells

Along with resveratrol and
fisetin regulates Bcl2 mediated
apoptosis independent
autophagic cell death

Imatinib Glioma cells Autophagy inhibition leads to
ER stress-associated autophagic
cell death

Cannabinoid U87MG Inhibition of autophagy flux,
activation of ER stress,
autophagic cell death
modulation induction via TRB3
dependent inhibition of
Akt/mTOR

Spautin-1 Chronic
myelogenous
leukemia (CML)

Inhibition of class III PI3K and
targeting deubiquitination of
USP10 and USP13 degrade
Beclin1 to induce autophagic
cell death

Sodium selenite Glioma cells Superoxide-mediated
mitochondrial damage leading
to subsequent mitophagic cell
death

Bortezomib,
5-FU, and
Sulforaphane

Colorectal cancer Autophagy inhibition in
combination with CQ to
mediated change in lysosomal
activity for the onset of
autophagic cell death

AZD2014 Breast cancer and
ALL

Induction of autophagic cell
death through modulation of
PI3K/AKT/mTORC2 signaling

Quercetin Gastric cancer Induction of autophagic cell
death through inhibition of
PI3K/AKT signaling

Tamoxifen,
Bortezomib, and
Sulforaphane

Breast cancer Autophagy inhibition in
combination with CQ to
mediated change in lysosomal
activity for the onset of
autophagic cell death

(continued)
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Table 2.2 (continued)

Cell death mode Compounds
Expression in
cancer Regulatory signaling pathways

Voacamine Osteosarcoma Chemo sensitization of
doxorubicin multidrug
resistance cells through
inhibition of P-glycoprotein
activity and autophagy
induction in

Inhibition of
autophagy
promotes
apoptotic cell
death

Gallic acid Oral cancer Autophagic flux inhibition,
ROS generation provokes
caspase-dependent apoptosis
induction

Verteporfin Acute
promyelocytic
leukemia, prostate,
and colon cancer

Inhibition of autophagy leads to
ROS dependent induction of
apoptosis dependent cancer cell
death

Elaiophylin Ovarian cancer Inhibit autophagic flux that
associates ER stress to promote
apoptosis

Deguelin PNAC1, breast,
gastric, and
prostate cancer

Inhibits autophagosome
maturation, in conjunction with
doxorubicin induce caspase-
dependent apoptosis, autophagy
inhibition through via
modulation of PI3K/Akt
signaling pathway lead to
subsequent activation of
caspase-dependent apoptosis

Withaferin A Breast cancer Inhibition of autophagic flux,
disturbance in lysosomal
proteolytic activity,
accumulation of
autophagosome, ROS induction
leads to apoptotic cell death

Ginsenoside Esophageal cancer Caspase dependent apoptosis
induction after inhibition of
autophagy

Liensinine Breast cancer Inhibition of autolysosome
formation via inhibition of
RAB7A recruitment. Chemo
sensitizes of cancer cells to
anticancer drugs for apoptosis
induction by activating
mitochondrial fission

(continued)
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histone proteins (Choi 2012). ADI-PEG20 and saracatinib have been reported to be
effective against prostate cancer. AZD2014, another small-molecule autophagy
inhibitor, has shown promise in the clinical treatment of breast cancer and acute
lymphoblastic leukemia through the modulation of PI3K/AKT/mTORC2 signaling
(Tabe et al. 2013). A dietary phytochemical, quercetin also displays potent antican-
cer efficacy in gastric cancer. Voacamine, a bisindole alkaloid, has been shown to
induce autophagic cell death in an apoptosis-independent manner (Panda et al.
2015). In preclinical trials with patients diagnosed with melanoma, pancreatic
adenocarcinoma or bladder cancer, CQ and HCQ, as single agents, have been
shown to have potent anti-cancer properties, as exhibited through the inhibition of
autophagy. Furthermore, treatments based on CQ or HCQ combined with metabolic
stressors have been found to potentiate autophagy-mediated cell death (Amaravadi
et al. 2011; Jain et al. 2013; Panda et al. 2015; Wilde et al. 2018).

Table 2.2 (continued)

Cell death mode Compounds
Expression in
cancer Regulatory signaling pathways

Apoptosis-
autophagy
coexist to
mediate cell
death

Arsenic trioxide Acute
promyelocytic
leukemia

In conjunction with all-trans
retinoic acid modulate apoptotic
and autophagic cell death
mechanism

Plumbagin SMMC-7721 Excessive ROS accumulation
leads to caspase-dependent
apoptosis and enhanced
autophagosome to
autolysosome formation trigger
autophagic cell death

SB202190 and
SB203580

– MAPK inhibition leads to
modulate apoptotic and
autophagic cell death
mechanism

Curcumin CML, Colon
cancer and
glioblastoma

Induction of autophagy via
inhibition of AKT/mTOR/
p70S6K, Bcl2 downregulation,
LC3 lipidation and ROS
induction leading to the intrinsic
onset of apoptosis

Conconavalin A Lung cancer and
melanoma cells

Downregulate PI3K/Akt/mTOR
signaling for autophagy
induction and ROS
accumulation for caspase-
dependent apoptosis

Abrus agglutinin Oral, prostate and
Colon cancer

PUMA dependent mitophagy
contributes toward apoptotic
cell death via ceramide
generation, NRF2
downregulation leads to
apoptosis cell death
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2.5.2 Autophagic Facilitation of Apoptosis in Cancer Therapeutics

Autophagy-mediated facilitation of apoptosis in several cancer cells displays a
remarkable therapeutic avenue against cancer. Both induction and inhibition of
autophagy drive cellular mechanisms toward apoptosis induction. Recent studies
have shown that the gallic acid in Terminalia bellirica extracts inhibits autophagy
and can be used to fuel the induction of apoptosis in a ROS-dependent manner in oral
squamous cell carcinoma (Patra et al. 2020). Verteporfin, a benzoporphyrin deriva-
tive, in conjunction with gemcitabine, inhibits autophagy and promotes apoptosis in
acute promyelocytic leukemia and exhibits clinical potency against glioma, prostate,
and colon cancer (Donohue et al. 2011, 2013). Furthermore, elaiophylin has also
been reported to inhibit the autophagic flux that is associated with the endoplasmic
reticulum stress to promote apoptosis in ovarian cancer (Zhao et al. 2015). Deguelin,
another autophagy inhibitor, triggers apoptosis and enhances the chemosensitization
of several types of cancer cells to doxorubicin (Xu et al. 2017). Also, withaferin A
and ginsenoside have been reported to induce apoptosis after autophagy inhibition in
breast and esophageal cancer cells (Muniraj et al. 2019; Zheng et al. 2016). Simi-
larly, liensinine, an isoquinoline alkaloid, has also been reported to inhibit
autophagosome-lysosome fusion to provoke the induction of mitochondrial fission
and apoptosis in triple-negative breast cancer (Zhou et al. 2015).

2.5.3 Apoptosis-Autophagy Links in Cancer Therapeutics

Apoptosis and autophagy may induce cell death during chemotherapy in a parallel or
sequential manner. The cooperation of apoptotic and autophagic machinery is
required for the induction of cell death in the mature tumor environment (Jain
et al. 2013). Arsenic trioxide in combination with all-trans retinoic acid has evolved
as a potent drug against acute promyelocytic leukemia by modulating both apoptotic
and autophagic pathways (Lo-Coco et al. 2013; Qian et al. 2007). Furthermore,
plumbagin (a naphthoquinone derivative) has also been reported to induce apoptosis
and autophagy with two long synthetic MAPK inhibitors, SB202190 and SB203580
(Li et al. 2014). Several dietary phytochemicals, including resveratrol, curcumin,
quercetin, lutein, lycopene, catechin, and β-carotene, have demonstrated
proapoptotic and autophagic potential owing to their antioxidant properties in
several cancer cells (Choi 2012). Recently, different plant lectins, such as Abrus
agglutinin, a lectin from Abrus precatorius, was implicated in the onset of autophagy
and is being considered as a means to induce apoptotic cell death in prostate cancer
and oral squamous cell carcinoma (Panda et al. 2020; Panigrahi et al. 2020). Another
lectin, concanavalin A, has also been reported to downregulate PI3K/Akt/mTOR
signaling, thus contributing to autophagic cell death (Roy et al. 2014). Finally,
concanavalin A has also induced caspase-dependent apoptosis in human melanoma
cells (Liu et al. 2009).
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2.6 Conclusion and Future Perspective

Being a double-edged sword, autophagy regulates other modes of cell death in
cancer cells. Several of its key regulators act as tumor suppressors or promoters,
depending on the threshold level of the cellular or tumor microenvironmental stress
in the cancer cell milieu. Moreover, the inhibition of autophagy disrupts cancer cell
metabolism, interferes with differentiation, and destabilizes anticancer
immunosurveillance. At later stages of tumorigenesis, restoration of autophagy
leads to the development of chemo- and/or radioresistance in cancer cells. As
explained earlier, the majority of research has focused on understanding the coordi-
nated regulation of autophagy and apoptosis, which sensitizes cancer cells toward
death. However, several issues remain unresolved, such as the mechanism by which
apoptotic activation of effector caspases turns off the autophagic machinery and the
identities of key autophagy proteins that drive cells from being in a pro-autophagic
state to acquiring a proapoptotic phenotype during this period, causing various
pathophysiological consequences. Several clinical trials using autophagy inhibitors,
such as chloroquine and hydroxychloroquine, have also been used for targeted
cancer therapy. Besides, several new anticancer drugs have been formulated to
modulate both autophagy and apoptosis. However, altering only autophagy in cancer
cells might not be an ideal approach; although it is beneficial at low levels, overac-
tive autophagy becomes detrimental, leading to tumor development. Hence, antican-
cer or antidegenerative drugs modulating autophagy and targeting apoptosis may
work more effectively in the clinic when combined. Altogether, it will be interesting
to reveal the mechanism and thereby understand autophagy and apoptosis in cancer,
which will help to leverage their functional interrelation for developing new targets
for the possible effective therapeutic intervention of cancer therapy.
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Abstract

Chemotherapy and radiotherapy regimens are designed primarily to induce DNA
damage to kill cancer cells. DNA damage response (DDR) proteins recognize and
repair a variety of DNA damages. In response to DNA damage, a well-
orchestrated autophagy program, comprising of than 30 autophagy-related
genes (ATG), are triggered to degrade and recycle damaged proteins and cellular
components for aiding DNA repair process. Recently, several interesting reports
have showed the pivotal role of DDR proteins in regulating dozens of autophagy
proteins and vice versa. Cross-talk between these two functionally different
cellular processes may immensely contribute towards the understanding of resis-
tance or sensitization of cancer cells in response to chemotherapy and radiother-
apy. Nevertheless, the precise molecular link between DDR and autophagy still
remains obscure and elusive. In the current review, we provide comprehensive
insights into the underlying mechanisms involved in the molecular crosstalk
between DDR and autophagy, which differentially regulate cancer cell fate in
response to DNA damaging chemotherapeutics and radiotherapeutics or chemo-
therapy and radiotherapy.

Keywords

Autophagy · DNA repair · DNA damage response (DDR) · Chemotherapy ·
Radiotherapy · Cisplatin · Radiosensitization · DNA damage response · Cancer

Ganesh Pai Bellare, Pooja Gupta, Saikat Chakraborty and Mrityunjay Tyagi contributed equally to
this work.

G. P. Bellare · P. Gupta · S. Chakraborty · M. Tyagi · B. S. Patro (*)
Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, India

Homi Bhabha National Institute, Mumbai, India
e-mail: bisank@barc.gov.in

# Springer Nature Singapore Pte Ltd. 2020
S. K. Bhutia (ed.), Autophagy in Tumor and Tumor Microenvironment,
https://doi.org/10.1007/978-981-15-6930-2_3

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6930-2_3&domain=pdf
mailto:bisank@barc.gov.in
https://doi.org/10.1007/978-981-15-6930-2_3#DOI


Abbreviations

AMPK Adenosine monophosphate Kinase
ATG Autophagy related gene
ATM Ataxia telangiectasia mutated
ATR Ataxia telangiectasia and rad3-related Protein
BAK Bcl-2 homologous antagonist killer
BAX Bcl-2-associated X protein
CMA Chaperone mediated autophagy
DDR DNA damage response
HR Homologous recombination
HSP Heat shock protein
LAMP2A Lysosome associated membrane protein 2A
LC3/MAP1LC3 Microtubule-associated protein 1 light chain 3
LKB1 Liver kinase B1, also known as serine/threonine kinase

11 (STK11)
MMR Mismatch repair
mTOR Mechanistic target of rapamycin kinase
NER Nucleotide excision repair
NHEJ Nonhomologous end joining
PARP1 Poly(ADP–ribose) polymerase 1
PCD Programmed cell death
PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase
ROS Reactive oxygen species

3.1 Introduction

Cancer is one of the leading causes of death in many developing countries, including
India. In recent years, advancements in the chemotherapeutic regimes, especially the
development of novel drugs or a combination of drugs, and radiotherapy provide
better therapeutic outcomes and enhance disease-free survival (Jemal et al. 2011).
However, the development of inherent and adaptive resistance to therapeutics is the
key feature of therapeutic failure in oncology (Luqmani 2005). Resistance to chemo
and radio-therapeutics have been attributed to multiple factors like evading growth
suppressors, avoiding immune destruction, enabling replicative immortality, tumor
promoting inflammation, activating invasion and metastasis, inducing angiogenesis,
genome instability, mutation, resisting cell death and deregulating cellular energetics
(Hanahan andWeinberg 2011). In the recent past, several evidences have shown that
cellular autophagy is yet another mode of resistance, linking to therapeutic failure
(Abedin et al. 2007).

Cellular autophagy is an evolutionarily conserved process of packaging damaged
or aged organelles or misfolded proteins into autophagosome and their fusion with
lysosome for degradation. Subsequently, degraded materials can be recycled for
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renewal (Mizushima and Komatsu 2011). Autophagy is categorized into (1) macro-
autophagy, (2) micro-autophagy, and (3) chaperone-mediated autophagy (CMA).
While macro-autophagy is an autophagosome mediated process, micro-autophagy is
direct engulfment of cytosolic materials by lysosomes. CMA is involved in the
lysosomal delivery of unfolded proteins through multimerization of lysosomal
membrane-associated protein (LAMP2A) and heat shock protein 70 (HSP70) com-
plex. Autophagy can behave dichotomously by inducing the pro-survival or death
process in a context-dependent manner (Buszczak and Kramer 2019). Controlled
induction of autophagy plays a vital role in cell survival, while the hyperactivation of
autophagy is linked to autophagic cell death (Nyfeler and Eng 2016). Many
chemotherapeutics and radiotherapy treatment kill cancer cells by primarily inducing
DNA damage and additional genomic instability. Cancer resistance to DNA damag-
ing therapeutics might also stem from processing additional sources of genomic
instability, including micronuclei (Bartsch et al. 2017), chromatin fragments (Ivanov
et al. 2013), and endogenous retrotransposons (Guo et al. 2014). Although the
mechanism of DNA repair in cancer resistance is well established, autophagy
inhibition was also shown to abolish resistance in cancer cells in response to
chemotherapeutics and radiation therapy. Therefore, a better understanding of the
crosstalk between DNA damage/repair and autophagy in the context of
chemotherapeutics and radiotherapy is required. This article is focused on reviewing
several such findings to shed light on how key players of the DNA repair process are
involved in autophagy regulation and vice versa in response to DNA damaging
therapeutics.

3.1.1 Role of Autophagy in Response to Cisplatin Treatment

Cisplatin is mainly used for lung-cancer treatment. Cisplatin primarily causes DNA
damages through intra-strand crosslinking. Nucleotide excision repair (NER), mis-
match repair (MMR), homologous recombination (HR) and non-homologous
end-joining (NHEJ) are involved in repairing cisplatin-induced DNA damage
(Rocha et al. 2018). Interestingly, the formation of autophagosomes in response to
cisplatin treatment was observed in the 1980s (Nilsson 1988). Later, autophagy was
detected as early as 2–4 h after cisplatin exposure and co-treatment with an
autophagy inhibitor (3-methyladenine) led to an increase in caspase activation and
cell death in renal proximal tubular cells (Yang et al. 2008). In the mouse renal
proximal tubular cells, cisplatin was found to induce cytoprotective autophagy in
p53 (tumor suppressor protein) dependent manner as the use of p53-inhibitor
(pifithrin-α) partially suppressed the autophagosome formation (Periyasamy-
Thandavan et al. 2008). Induction of p53 in response to cisplatin has also been
shown to activate microRNA dependent survival of mouse proximal tubular cells. In
this study, pifithrin-α or specific antisense oligonucleotides for miR-32 increased cell
death by reducing miR-34a induction (Bhatt et al. 2010). The DNA damage-
dependent activation of p53 can have a dual effect on autophagy. It may upregulate
autophagy through its transcriptional activity or downregulate through its
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cytoplasmic functions (Budanov and Karin 2008; Green and Kroemer 2009).
Upregulation of Beclin1 after cisplatin treatment is reported to be responsible for
cisplatin-induced autophagy in human bladder cancer cells (Lin et al. 2017).
Low-dose cisplatin also induced autophagy and the inhibition of autophagy using
3-methyladenine resulted in apoptosis (Yang et al. 2012). This study suggests that
even a low amount of DNA damage may also induce pro-survival autophagy.
ISG20L1 another regulator protein of the p53 protein family has also been identified
as a regulator of autophagy after DNA damage induction by cisplatin and etoposide
(Eby et al. 2010). The knockdown of ISG20L1 suppresses autophagy in response to
cisplatin. In glioma and fibrosarcoma cells, inhibition of autophagic response after
cisplatin treatment was found to increase the ROS production. Autophagy induction
is also reported to precede adenosine monophosphate-activated protein kinase
(AMPK) activation, which switches signaling AMP/ATP ratio to ATP-generating
catabolic pathways and concomitant down-regulation of mammalian target of
rapamycin (mTOR)-mediated phosphorylation of p70 S6 kinase (Harhaji-Trajkovic
et al. 2009) (Fig. 3.1). Activated AMPK (phosphorylated at Thr-172) is known to
activate TSC2 (Tuberous sclerosis complex 2) and subsequent inhibition of mTOR
function (Fig. 3.1). The use of both early-stage autophagy inhibitors (wortmannin)
and late-stage blockers (bafilomycin and chloroquine, CQ) augmented cell death by
cisplatin, indicating a role for autophagy in suppressing cisplatin-triggered apoptotic
death (Harhaji-Trajkovic et al. 2009). Recently, AMPK activation in nutrient-
deficient cells has been linked to Poly(ADP-ribosyl)ation (PARylation) dependent
spatial and temporal regulation leading to nuclear export followed by autophagy
induction (Rodríguez-Vargas et al. 2016). Since cisplatin treatment leads to
PARylation of various proteins (Prasad et al. 2017; Schaaf et al. 2016), it may be
plausible that PARylated AMPK plays a role in the induction of autophagy
(Fig. 3.1).

3.1.2 Role of Autophagy in Response to Topoisomerase Inhibitor
Treatment

Inhibitors of topoisomerase I (topotecan, irinotecan) and topoisomerase II (VP-16 or
etoposide) are extensively used for the treatment of the different types of cancers.
These drugs cause stalled replication fork mediated DNA double-strand breaks. In
contrast to the survival role of autophagy, the embryonic fibroblasts from BAX/BAK
double knockout mice, resistant to apoptosis were found to display an autophagy-
dependent non-apoptotic cell death in response to DNA-damaging agent like
etoposide (Shimizu et al. 2004). Alexander et al. reported the activation of
ATM/ATR in response to etoposide (Alexander et al. 2010). In this study, it has
been shown a cytoplasmic function of ATM in activating a tumor suppressor, TSC2
via the LKB1/AMPK metabolic pathway to repress mTORC1 and activate
autophagy (Fig. 3.1). Further, the dysregulation of mTORC1 in ATM-deficient
cells was inhibited by rapamycin (Alexander et al. 2010).
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Another mode of autophagy was observed in ATG5 or ATG7 knockout cells.
Although LC3 puncta formation, which requires lipid modification, was not
observed, the autophagosome associated membranes were seen in ATG5/ATG7
deficient cells under few conditions (Nishida et al. 2009). Interestingly, etoposide
induced the formation of autophagic vacuoles in ATG5 knockout mouse embryonic
fibroblasts cells while the same was abrogated in ATG5-p53 double knock out cells
in response to etoposide. This suggested a role of p53 in alternate autophagy. Later
DRAM1, a downstream protein of p53 was found to be both necessary and sufficient
to induce alternative autophagy (Nagata et al. 2018) (Fig. 3.1). DRAM1 was also
found to co-localizes at the LC3-positive puncta indicating its role in conventional
autophagy too. In hepatoma cell (HepG2), inhibition of AMPK also triggered
apoptosis through suppression of autophagy. In contrast, augmentation of autophagy

Fig. 3.1 Crosstalk between DNA damage and autophagy. Autophagy in response to DNA
damaging agents (chemotherapeutics and radiation) mostly protects cancer cells from death. Key
role of various DDR proteins, in the activation of autophagy, is shown in the above illustration
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was observed after p53 inactivation leading to cell survival (Xie et al. 2011).
Recently, a Ser/Thr protein phosphatase Mg2+/Mn2+ dependent 1D (PPM1D),
which is transactivated by p53, was identified as a factor that dephosphorylates
serine-637 of ULK1 (unc-51 like autophagy activating kinase) (Torii et al. 2016).
ULK1 is a subunit of the ATG1-complex that functions at the most upstream
position in ATG signaling and the dephosphorylation of this complex is well-
known to be essential for the induction of autophagy during starvation. This study
links the possibility of ULK1 dephosphorylation in response to p53 activation as a
trigger for the initiation of autophagosome formation in response to genotoxic stress
(Fig. 3.1). Topoisomerase I inhibitor, topotecan, the treatment also leads to
autophagy induction in terms of LC3 puncta formation, LC3 I/II conversions, and
p62 degradation in colon carcinoma cells (Li et al. 2012). Topotecan induces DNA
damage-dependent cytoprotective autophagy in p53 positive colon cancer cells
while autophagic death was observed in p53 knock out cells. This suggests a role
of p53 in switching the fate of autophagy from death to cell survival. DNA damage-
dependent activation of p53 upregulates expression of Sestrin 2, enhances phosphor-
ylation of AMPKα, and inhibits mTORC1, leading to activation of autophagy
(Li et al. 2012).

3.1.3 Role of Autophagy in Response to Doxorubicin

Doxorubicin is a DNA intercalating drug and used for the treatment of breast cancer,
bladder cancer, Kaposi’s sarcoma, lymphoma, and acute lymphocytic leukemia.
Doxorubicin is known to activate genotoxin stress-induced autophagy (GTA),
which involves ATM-p53-mTOR signaling axis. The role of p53, a protein known
to get induced during DNA damage in autophagy was determined through high-
throughput sequencing via analyzing global p53 transcriptional networks in primary
mouse embryo fibroblasts (Kenzelmann Broz et al. 2013). This study demonstrated
that p53 is activated in an ATM/ATR-dependent manner and can bind the promoters
of various autophagy genes leading to their transcriptional upregulation (Fig. 3.1).
This p53-mediated transcriptional upregulation was found to be important for GTA
as p53�/� cells were unable to induce autophagy after doxorubicin-induced DNA
damage. Chromatin immunoprecipitation and RNA sequencing led to the identifica-
tion of p53-bound and regulated genes, involved in multiple steps of autophagy,
including upstream (TSC2, FOXO3a, mTOR, LKB1, and AMPK), core machinery-
encoding genes (ULK1, ATG4a, ATG7, ULK2, and UVRAG) and lysosomal
protein-encoding genes (Ctsd, Laptm4a, and Vmp4).

66 G. P. Bellare et al.



3.2 Linkage of Starvation-Induced Autophagy with DNA
Damage

Rodríguez-Vargas et al. demonstrated DNA damage is an early event of starvation-
induced autophagy. Here accumulation of both γH2AX and comet tails were found
to be due to ROS generated in response to starvation. Further, ROS-induced DNA
damage activates PARP-1, leading to ATP depletion and thus activation of AMPK-
autophagy network (Rodríguez-Vargas et al. 2012). PARP-1 knockout cells blunted
AMPK activation, leading to a delay in autophagy (pro-survival role) in starved
cells. Recently, Poly-ADP-ribosylation (PARylation) of proteins was found to
regulate autophagy in both spatial and temporal manner by modulating AMPK
subcellular localization and activation (Rodríguez-Vargas et al. 2016). Here, the
nutrient deprivation induces PARP-1 catalyzed PARylation, leading to the dissocia-
tion of the PARP-1/AMPK complex followed by the export of free PARylated
nuclear AMPK to the cytoplasm to activate autophagy. DRAM (damage-regulated
autophagy modulator) is a lysosomal protein essential for p53-mediated apoptosis
and also reported to mediate a specific DNA damage responsive branch of the
autophagy pathway (Crighton et al. 2006) p53 can activate autophagy via activation
of the protein death-associated protein kinase (DAPK). The activated form of DAPK
triggers autophagy in a Beclin-1-dependent manner. DAPK phosphorylates Beclin
1 on Thr 119 located at a crucial position within its BH3 domain, and thus promotes
the dissociation of Beclin 1 from BCL-XL and the induction of autophagy (Zalckvar
et al. 2009). Another DNA damage response protein p73 belongs to the p53 family
of transcription factors, is known to regulate DRAM and autophagy during starva-
tion. However, further studies revealed that p73-mediated autophagy is DRAM-
independent (Crighton et al. 2007). Interestingly, p73 also modulates many mTOR
regulated autophagy-associated genes. Besides, endogenous p73 binds to the regu-
latory regions of several autophagy genes such as ATG5, ATG7, and UVRAG and is
an important regulator of autophagy (Rosenbluth and Pietenpol 2009).

3.3 Role of Autophagy in Response to Radiation Treatment

Ionizing radiation can damage DNA directly and indirectly by ROS generation,
resulting into single-strand breaks (SSBs), base oxidation, apurinic, or apyrimidinic
(AP) sites, and particularly, double-strand breaks (DSBs). Radiotherapy is one of the
major treatment modality for cancer therapy but often fails to control tumor growth
due to the development of resistance and dose-limiting side effects. It is reported that
apoptotic death comprises less than 20% of radiation-induced cell death. So, it is
imperative to explore other pathways of cell death to gain the therapeutic index by
radiation. Radiation-induced activation of autophagy is well known in both cancer
and normal cells (Zois and Koukourakis 2009). In response to radiation treatment,
autophagy plays a dual role in promoting resistance or sensitization, depending upon
severity and duration of stress, also the type and stage of tumor.
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3.3.1 Radioresistance Due to Autophagy

Ionizing radiation-induced DNA damage sites are recognized by PARP1 leading to
PARylation of various DDR proteins and recruitment to DNA sites. However, PARP
mediated PARylation of proteins occurs at the expense of its substrate NAD+ leading
to ATP depletion (Aguilar-Quesada et al. 2007). At DSB sites, ATM is activated and
PARylated by PARP1 which further leads to activation of the energy sensor
AMP-activated protein kinase (AMPK), leading to autophagy progression by
inhibiting the mTORC1 complex (Fig. 3.1). Thus, the activation of autophagy
provides sustained energy required for DNA repair processes that lead to
radioresistance and delayed apoptotic cell death. This may be the reason for the
accumulation of DNA damage and genomic instability in autophagy-deficient cells.
For instance, radioresistant breast tumor cells show a strong post-irradiation induc-
tion of autophagy, which thus serves as a protective and pro-survival mechanism
(Chaachouay et al. 2011). In addition to this, ATM binds to FOXO3a (transcription
factor), which regulates the expression of autophagy-related genes like LC3 and
BNIP3 and upregulates autophagy (Nazio et al. 2017). Normal tissues, which are late
responding, are benefited more from prolonged fraction delivery time (FDTs) than
acute-responding tissues because of ATM-AMPKmediated autophagy process (Yao
et al. 2015). In response to IR, ATM is also known to activate autophagy through
three pathways: the MAPK14 pathway, mTOR pathway, and Beclin1/PI3KIII
complexes and modulate radiosensitivity (Liang et al. 2019).

Similarly, autophagy also induces cell survival in esophageal squamous cell
carcinoma and bladder cancer, which was abrogated by autophagy inhibitor
(CQ) in response to radiation treatment (Chen et al. 2015; Wang et al. 2018). A
recent study demonstrated the protective mechanism of radiation-induced autophagy
in hematopoietic cells by activation of STAT3 signaling, which upregulated the
expression of BRCA1 via ATG–KAP1–STAT3–BRCA1 pathways and increases
DNA repair ability (Xu et al. 2017b). In thyroid cancer, radiotherapy induces
autophagy by increasing expression of autophagy-associated proteins Beclin-1 and
LC3, which is blocked by either 3-methyladenine or Beclin-1 siRNA, leading to
upregulation p53 and then apoptosis (Gao et al. 2019). This shows that p53 acts as a
switch between protective autophagy and apoptosis in thyroid cancer in response to
radiotherapy.

Further, it is known that due to poor vascularization, a certain population of tumor
cells (known as hypoxic cells) is deprived of oxygen, nutrient supply, and waste
removal caused to stimulate autophagy and inhibit apoptosis (He et al. 2012). A
previous study has demonstrated that the induction of BNIP3, a downstream target
of HIF-1α, in hypoxic cells disrupts the Beclin1-BCL2 complex and releases
Beclin1. This in turn induces autophagy as an adaptive survival mechanism during
prolonged hypoxia in different cell lines like MEF, MCF, PC3, and LS174 (Bellot
et al. 2009). In a similar context, radioresistance was observed in osteosarcoma
cancer cells overexpressing HIF-1α which induces protective autophagy (Feng et al.
2016). Hypoxia leads to an increase in ROS production due to its effect on ETC of
mitochondria. This ROS production by hypoxia causes DNA damage which can also
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stimulate autophagy by mitochondrial production and providing energy for cell
survival (Zhang et al. 2008). Nevertheless, hypoxia-induced autophagy leads to a
marked accumulation of autophagosomes along with RNA induction of autophagy-
related genes such as Beclin-1, ATG5, and ATG12, leading to radioresistance
(He et al. 2012). Thus, tumor cells create a more protective intracellular environment
by glycolytic reprogramming, and the presence of mitochondrial defects,
accompanied by the adaptation to hypoxic conditions, provide radioresistant
properties, as well as survival and growth benefits. Apart from this, radiation also
causes an increased formation of the acidic vesicle, which will induce autophagy to
protect the damage, although the detailed mechanism of autophagy induced
radioresistance is yet to be characterized for different tumor type and stage.

There are cases, where the induced autophagy exhibits neither cytoprotective nor
cytotoxic functions, which we have termed as dormant autophagy. A study has
shown that ATG7 and LC3 silencing lead to the sensitization of tumor cells but that
is independent of autophagy (Schaaf et al. 2015). They showed that both chloroquine
and knockdown of the essential autophagy genes, ATG7 and LC3b, effectively
inhibit autophagy; however, only knockdown of LC3b or ATG7 but not CQ reduced
survival. This indicates a radioprotective role of these autophagy-associated genes.
However, the radioresistant effect is independent of autophagic degradation through
lysosomes, and thus unrelated to canonical autophagy.

Ultraviolet (UVB) radiation is efficiently absorbed by DNA within the epidermis
and damages DNA directly to form photoproducts. UV-induced DNA
photoproducts induce the stabilization of p53. The anti-apoptotic Beclin1-binding
protein BCL-2 is downregulated following UVB exposure, which may free Beclin1
to bind UVRAG (UV-irradiation-resistance-associated gene) and induce autophagy.
UVRAG plays a dual role in autophagy (autophagosome formation and maturation)
and DNA repair (chromosome stability); later process is autophagy-independent. In
autophagy, UVRAG is responsible for the activation of PI(3) class III (PI(3)KC3)
kinase through Beclin 1 interaction (Su et al. 2013). During NHEJ, UVRAG
interacts and helps the assembly of the upstream protein kinase of the NHEJ
pathway, DNA-PK. Moreover, UVRAG is found to be associated with centrosomes
by its interaction with CEP63 (Zhao et al. 2012). Affecting the UVRAG-centrosome
interaction destabilizes centrosomes, resulting in extensive aneuploidy. UVRAG is a
key factor in suppressing proliferation after UVB, independent of its function in
autophagy activation. For instance, a mutation of exon 8 of UVRAG reduced
autophagy and promoted in colorectal and gastric cancer types (Tam et al. 2017).
In response to UV or DNA alkylating agent (methyl methanesulphonate) induced
DNA damage, ATR is also known to activate autophagy through ATR/Chk1/RhoB
mediated lysosomal recruitment of tuberous sclerosis complex (TSC complex) and
subsequent mTORC1 inhibition (Liu et al. 2018).
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3.3.2 Radio-Sensitization Due to Autophagy

Recent evidence showed that autophagy regulating ATG proteins has a tumor-
suppressive role because down-regulation of certain ATG proteins can promote
tumorigenesis. Previous studies have confirmed that radiation-induced autophagy
leads to increased radiosensitivity in BAX/BAK double knockout cells in compari-
son to parent cells (Kim et al. 2006). Increased radiosensitivity is due to ER stress,
which is activated by unfolded protein response (UPR). Moreover, they found that
PERK is essential for radiation-induced autophagy leading to increased cell death in
apoptotic deficient breast cancer cells (Kim et al. 2006). Radiation-induced
autophagic cell death is also mediated through the p53/DRAM signaling pathway
in breast cancer cells (Cui et al. 2016) (Fig. 3.1). Various in vivo and in vitro studies
have demonstrated that irradiation and rapamycin-induced autophagy lead to pro-
mote premature senescence and restrict cell proliferation in radiation-resistant glio-
blastoma and parotid carcinoma cells (Tam et al. 2017). In addition to this, it has
been demonstrated the role of autophagy in sensitizing glioblastoma cells (SU2) by
using dual PI3K/mTOR inhibitor NVP-BEZ235 (Wang et al. 2013). In similar lines,
increased radiosensitivity was also observed in cisplatin-resistant NSCLC tumor
cells using NVP-BEZ235 (Kim et al. 2014). Although the detailed mechanism of
induced cell death is not clear yet, one recent report showed autophagy induced by
ionizing radiation promotes cell death in human colorectal cancer cells in hypoxia
and nutrient-depleted condition and silencing of ATG7 or Beclin1 increases the
survival under oxygen and glutamine starvation (Classen et al. 2019).

3.3.3 Unfolded Protein Response (UPR) Activates Autophagy

Radiation also causes damage to protein, leading to the activation of UPR mediated
ER stress. The ER membrane-associated proteins, PKR-like eIF2α kinase (PERK)
and activating transcription factor-6 (ATF6) act as autophagy inducers. The PERK
contributes to hypoxia tolerance by phosphorylating elF2α and stops general protein
synthesis to lessen the protein load in the ER (Liang et al. 2015). However, UPR
upregulates certain transcriptions factors like NF-E2-related factor 2 (NRF2),
nuclear factor κB (NF-κB), and activating transcription factor 4 (ATF4) (Tam
et al. 2017). NRF2 and NF-kB contribute in cytoprotective and antiapoptotic
pathways and provides radioresistance, while ATF4 allows the restoration of normal
ER function through the induction of CEBP homologous protein (CHOP), DNA
damage-inducible protein 34 (GADD34) and lysosome-associated membrane pro-
tein 3 (LAMP3). CHOP is the pro-apoptotic component of the UPR and mediates
cell death when the cell adaptation fails to withstand the ER stress (Moretti et al.
2007).
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3.4 Role of Autophagy Proteins in DNA Damage Repair

Autophagy plays an important role in DNA damage repair upon genotoxic stresses
and insults (Eapen et al. 2017). Although the functional significance of autophagy in
DNA damage repair and response is well known, the molecular mechanisms
involved are obscure. Several reports have shown that the deficiency of autophagy
results in the impairment of DNA damage response and also causes replication
related complexities (Liu et al. 2015; Vanzo et al. 2020; Gillespie and Ryan 2015).
Cells deficient in key autophagic proteins, for example, BECN1, ATG5, ATG7 have
been shown to have impaired DNA damage response (Xu et al. 2017a). The absence
of these gene products and the consequential autophagic defect has also been
implicated in tumorigenesis, tumor progression, and survival (Karantza-Wadsworth
et al. 2007). Recently, Liu et al. have shown that loss of autophagy causes a synthetic
lethal deficiency in DNA repair. It was observed that the mouse embryonic
fibroblasts deficient in ATG7 showed diminished levels of phosphorylated CHK1
upon irradiation, indicating lower levels of DNA repair by HR, leading to greater
dependency on error-prone NHEJ pathway (Liu et al. 2015). SQSTM1/p62, an
autophagic adapter protein, plays a pivotal role in the DNA repair process (Hewitt
et al. 2016; Hewitt and Korolchuk 2017). P62 protein shuttles continuously between
the nucleus and the cytoplasm (Fig. 3.2). Upon exposure to ionizing radiation, it was
observed that p62 accumulates in the cell, localizes to the nucleus, and binds
RNF168, a ubiquitin ligase, preventing the histone ubiquitination that signals the
DNA damage, hampering overall DDR (Hewitt et al. 2016). In a similar context,
upon X-ray irradiation, it was observed that the p62 protein transiently associated
with the DNA damage-induced foci (DDF), accumulated in the nucleus and aids in
the degradation of RAD51 and Filamin A (FLNA) (Hewitt et al. 2016; Wang et al.
2016) (Fig. 3.2). This work also showed that the HR efficiency increased with p62
depletion, thus showing an inverse correlation between p62 accumulation in the
nucleus and DNA damage repair. This evidence suggests that autophagic clearance
of p62 is essential for the optimal and error-free repair of DNA (Fig. 3.2).

Several autophagy-independent roles of core autophagic proteins have also been
reported. Beclin1, a core component of the class III phosphatidylinositol 3-kinase
(PI3K-III) that aids in the formation of the autophagosomal membrane, has been
found to localize in the nucleus consequent to DNA damage and promote DNA
repair directly. It was found to interact with DNA topoisomerase IIβ and get
recruited at the sites of double-strand breaks due to this interaction (Xu et al.
2017a) (Fig. 3.2). In the absence of BECN1, the ability of the cells treated with
ionizing radiation to repair the DNA was found to be hindered (Xu et al. 2017b).

ATG5, an important protein component of the ubiquitin-like conjugation system
that leads to the formation of lipidated LC3 form—LC3-II, has been shown to be
induced upon DNA damage, promoting mitotic catastrophe, independent of its role
in autophagy (Maskey et al. 2013) (Fig. 3.2). In response to the treatment with DNA
damaging agents like cisplatin and etoposide, it was observed that ATG5
translocated to the nucleus and induced a G2/M phase arrest (Maskey et al. 2013)
(Fig. 3.2). Displacement of the chromosomal passenger protein (CPC) consequent to
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the physical interaction of ATG5 with Survivin was found to be responsible for the
arrest and the ensuing mitotic catastrophe (Fig. 3.2). This activity was found to be
independent of its role in autophagy and assigns two distinct functions for ATG5
based on its localization in the cell nucleus or the cytoplasm. ATG7 is another
important E1 (ubiquitin-activating enzyme) like protein involved in the induction of
autophagy. In one of the seminal papers, Lee et al. showed that p53 and ATG7
proteins interact with each other and aid in the arrest of cells by regulating the
transcription of cell cycle inhibitor p21CDKN1A under starvation, in mouse embry-
onic fibroblasts (Lee et al. 2012) (Fig. 3.2). Withdrawal from cycling is an important
response to starvation. It was also observed that the mouse embryonic fibroblasts
deficient in ATG7 showed diminished levels of phosphorylated CHK1 upon irradia-
tion, indicating lower levels of DNA repair by HR, leading to greater dependency on

Fig. 3.2 Role of autophagy proteins in DNA repair. In response to oxidative stress, chemothera-
peutic, and radiation therapy-induced DNA damage, autophagy proteins are activated and play a
critical role in the DNA repair process. Above illustration was made in biorender.com
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error-prone NHEJ pathway (Liu et al. 2015). These works highlight the importance
of autophagy and its constituent proteins in the process in the DNA damage repair
and response either in the composite form of autophagy or independently as proteins
(Fig. 3.2).

3.5 Conclusion and Future Perspectives

DDR and autophagy are two distinct cellular functions but they are complementing
each other for protecting cells by relieving DNA damage related stress or inducing
cell death under higher stress conditions. Several reports advocate that all three types
of autophagy (macroautophagy, microautophagy, and CMA) are being unanticipat-
edly linked to DDR pathways or genes. Intriguingly, autophagy-associated proteins
also seem to play an unorthodox role in DDR and DNA repair. The role of autophagy
in response to chemotherapy and radiotherapy is intriguingly dichotomous; leading
to cell survival or death.

However, extensive work is still required to unravel the induction of autophagy at
a precise molecular level in response to different DNA damages. Considering the
fact that DDR and autophagy play a crucial role in cancer resistance or sensitization
in response to various DNA damaging therapy, this review article raises several
concerns that ought to be addressed in the future. Whether autophagy induction is
differentially regulated in cancer and normal cells in response to DNA damage?
What decides the induction of pro-survival or pro-death functions of autophagy?
Does different DNA damages (base damage, SSBs, DSBs, etc.) induce a common or
different signaling pathways to induce autophagy? What could be the precise role of
autophagy induction in DNA repair or vice versa? Whether “autophagy-dependent”
and/or “autophagy-independent” role of autophagy associated proteins play a crucial
role in DNA repair in response to chemotherapy or radiotherapy of cancer? The
focused research in this area may further foster the development of novel cancer
therapeutics.
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miRNAs and Its Regulatory Role
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Abstract

Autophagy is an intracellular catabolic process that helps in maintaining cellular
homeostasis. Generally, it is involved in the recycling of unwanted proteins and
damaged organelles but upon cellular stress, it helps in the survival of the cells. It
is a tightly regulated process and any discrepancy in its regulation leads to the
generation of many pathological abnormalities. During the early phase of cancer,
it functions as a tumor suppressor whereas, at later stages, it facilitates tumor
growth and helps in generating resistance to cancerous cells. Due to this func-
tional switch of the pathway, many studies have been undertaken to find the
mechanism behind its regulation in different cancer types and microRNAs
(miRNAs) have been recently explored to be one of the regulatory factors.
miRNAs are short non-coding RNAs that regulate the gene expression of most
protein-coding genes post-transcriptionally. They control many important
biological pathways including autophagic response in cancer. Their expression
also gets dysregulated during different stages of cancer and thus gives a
promising window of their utility as an attractive target during tumor therapy.
Therefore, considering the potential of autophagy regulating miRNAs as future
drug targets, this review is focused on recent advances in linking miRNAs to the
regulation of autophagy pathway and their role in cancer and their implications in
cancer treatment.

A. Behura · A. Mishra · A. Kumar · L. Naik · R. Dhiman (*)
Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of
Technology, Rourkela, Odisha, India
e-mail: dhimanr@nitrkl.ac.in

D. Manna
Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of
Technology, Rourkela, Odisha, India

Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India

# Springer Nature Singapore Pte Ltd. 2020
S. K. Bhutia (ed.), Autophagy in Tumor and Tumor Microenvironment,
https://doi.org/10.1007/978-981-15-6930-2_4

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6930-2_4&domain=pdf
mailto:dhimanr@nitrkl.ac.in
https://doi.org/10.1007/978-981-15-6930-2_4#DOI


Keywords

miRNA · Autophagy · Cancer · Epigenetics · Tumor microenvironment

Abbreviations

ATG Autophagy-related
CLL Chronic lymphocyte leukemia
CoL10A1 Collagen α-1(X) chain
ELAVL1 Embryonic lethal abnormal vision-like protein-1
EOC Epithelial ovarian cancer
FIP 2000 Focal adhesion kinase
hnRNP A1 Heterogenous unclear ribonucleoprotein A1
LAMP1 Lysosomal-associated membrane protein 1
LAMP2 Lysosomal-associated membrane protein 2
miRNA microRNA
mTOR Mammalian target for rapamycin
NSCLC Non-small cell lung cancer
PE Phosphatidyl ethanolamine
PIK3C3 Phosphatidyl inositol 3 kinase catalytic subunit type 3
PKM1 Pyruvate kinase muscle isoform 1
PKM2 Pyruvate kinase muscle isoform 2
PTB1 Polypyrimidine tsat binding protein 1
RISC RNA-induced silencing complex
RLC RISC-loading complex
ROS Reactive oxygen species
TBCC Tumor-binding cofactor C
TIGAR TP53 inducible glycolysis and apoptosis regulator
TRPM3 Transient receptor potential melastatin 3
ULK Unc 51 like kinase
UTR Untranslated region
UVRAG UV radiation resistance-associated gene protein
VHL Van hippel lindeu

4.1 Introduction

MicroRNAs (miRNAs) are small noncoding RNA molecules of 18–25 nucleotides
that have a crucial role in gene regulation at the post-transcriptional level by
controlling the stability and translation of mRNAs. They are produced as primary
miRNAs (pri-miRNAs) and are subsequently processed to generate mature miRNAs
through precursor miRNAs (pre-miRNAs). The mature miRNAs mainly interact
with the 30 untranslated region (UTR) of the target gene to regulate their expression
(Ha and Kim 2014). But their interaction is not limited to 30 UTR only, as many
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reports have suggested that they can bind to either 50 UTR or different locations like
promotor or gene coding regions as well (Broughton et al. 2016; O’Brien et al.
2018). miRNAs regulate many key biological processes like cell differentiation,
growth, autophagy, migration, apoptosis, and so on, and are tightly regulated
because their abnormal expression has been shown to be responsible in the develop-
ment of many diseases (Fu et al. 2013; Paul et al. 2018; Tüfekci et al. 2014). They are
secreted out of the cells to aid in signaling between cells and act as biomarkers for
various diseases including cancer (Hayes et al. 2014; Huang 2017; Wang et al.
2016b). Upregulation or downregulation of specific miRNAs is reported in all cancer
cell types like colon cancer, leukemia, breast cancer, lung cancer, and so on. (O’Brien
et al. 2018). Dysregulation of miRNA biogenesis or expression is reported in various
stages of cancer progression and regulates resistance to anti-cancer drugs (O’Brien
et al. 2018).

Autophagy is a highly conserved cellular process involved in the recycling and
digestion of damaged organelles, misfolded proteins, and intracellular pathogens by
lysosomal degradation to maintain cell survival (He and Klionsky 2009; Mizushima
et al. 2008). It is a continuous process undergoing in the cell at the basal level under
normal conditions to maintain cellular homeostasis, but under stress conditions like
starvation, infection, hypoxia, and so on, it gets upregulated (Mizushima et al. 2008).
During stress conditions, autophagy plays a protective role by degrading damaged
and unwanted cellular contents and recycling proteins to generate energy and free
amino acids but hyperactivation of autophagy leads to death of the cell under stress,
known as autophagic cell death (Mizushima et al. 2008). Being a key process, it is
tightly regulated but abnormalities in the pathway arise and it leads to the develop-
ment of many health issues including cancer (Frankel and Lund 2012; Jing et al.
2015). Many reports have been published showing the role of miRNA in autophagy
regulation and cancer development (Gozuacik et al. 2017). In this review, we will
briefly summarize the emerging connection between different miRNAs and
autophagy pathways and how this regulation decides the fate of cancer cells.

4.2 miRNA Biogenesis

miRNAs play an important role in various physiological processes including cellular
proliferation, differentiation, maturation, host–pathogen interaction, and many more
(Demirci et al. 2016; Saçar et al. 2014). miRNAs are pervasive in the genome and
originate from both coding genes as well as noncoding regions as primary transcripts
by the cellular machinery (Grund and Diederichs 2010; Kim et al. 2009).
The biogenesis of miRNA initiates in the nucleus followed by its transport into the
cytoplasm where miRNA processing takes place to generate mature miRNA. The
majority of miRNA genes are transcribed by RNA polymerase II or III to form long
primary transcripts called pri-miRNA that contain hairpin (stem-loop) structure with
some bulges formed due to base–pair mismatch (Krishnan and Damaraju 2018). The
pri-miRNA possesses a 50 7-methylguanosine cap and a poly-A tail at the 30 end and
are in turn cleaved by a cellular RNAase Class II endonuclease III enzymes called
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Drosha (Gregory and Shiekhattar 2005). Drosha along with its cofactor DGC28/
Pasha forms a microprocessor complex that specifically recognizes and cleaves the
stem of pri-miRNA to liberate nearly 70–120 nucleotides shorter hairpin structure
called pre-miRNA (Seitz and Zamore 2006; Shomron and Levy 2009). Following
the formation of pre-miRNAs, they are transported to cytoplasm using exportin-5
(XPO5) in the presence of guanosine 50 triphosphate bound Ras-related nuclear
protein (RanGTP). XPO5 is a member from the karyopherin family and is mostly
engaged in nuclear transport of structured RNAs including tRNAs, human Y1 RNA,
and adenovirus VA1 RNA that possess 30 overhang structure. Attachment of XPO5
to its cargo needs a minimum of 16 bp and a short 30 overhang. Therefore,
pre-miRNAs are properly processed by Drosha in order to be recognized and
exported from the nucleus (Okada et al. 2009). Apart from its role in
nucleocytoplasmic transport, Exportin-5 also stabilizes the pre-miRNA as well as
prevents its degradation (Yi et al. 2003; Zeng and Cullen 2004). Once inside the
cytoplasm, further processing of pre-miRNA takes place with the help of a double-
stranded RNAase III enzyme Dicer. Dicer along with trans activation response RNA
binding protein (TRBP) binds to 50 phosphate and 30 overhang at the base of stem
loop of pre-miRNA and cuts both strands of the duplex at about two helical turns
away from the base of stem loop. This cleavage by Dicer releases a double-stranded
miRNA of ~21–24 nucleotides length called mature miRNA (Bartel 2004). One
strand called the passenger strand in the newly generated double-stranded RNA
undergoes degradation whereas the other strand known as guide RNA or mature
RNA is loaded onto an Argonaute containing RNA induced silencing complex
(RISC) by the help of RISC loading complex (RLC) that directs gene silencing.
Selection of guide strand mostly depends on the thermodynamic stability and strand
with less stability is selected by RISC (Khvorova et al. 2003). RISC is composed of
mature miRNA, Dicer, TRBP, Argonaute protein 2 (AGO2), and protein kinase R
activator (PACT) that possesses a regulatory role in both nucleus as well as cyto-
plasm. In the cytoplasm, the RISC complex targets the 30UTR region of mRNA
thereby results in translational repression (MacRae et al. 2008; Park and Shin 2014).
Further, some of the miRNAs having nuclear localization signal are imported back to
the nucleus. Mature miRNA along with Ago2 returns to the nucleus using a member
of the karyopherin beta family protein called Importin-8 (Hwang et al. 2007; Wei
et al. 2014). miRNA inside nucleus exhibits regulatory functions by targeting gene
promoter region with the help of Argonaute proteins as well as through recruitment
of epigenetic modifier proteins such as chromobox protein homolog 3 (CBX3),
transcriptional intermediary factor 1beta (TIF1β), suppressor of variegation 3–9
homolog 1 (SUV39H1), euchromatic histone lysine methyltransferase 2 (EHMT2)
that results in transcriptional gene silencing or gene activation (Kim et al. 2008;
Liang et al. 2013; Salmanidis et al. 2014; Winter et al. 2009, Fig. 4.1).
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4.3 Autophagy

It is a lysosome mediated catabolic process that mainly occurs in response to nutrient
starvation and stress conditions to ensure cell survival (Schneider and Cuervo 2014).
This process is highly complex and fundamental in eukaryotes involving 20 dedi-
cated autophagy-related (ATG) genes that coordinate the entire pathway starting
from the formation of isolation membrane to degradation of cellular cargos
(Mizushima 2019; Suzuki et al. 2017). The process is initiated by uncoordinated-
51 like kinase (ULK, mammalian homolog of ATG1) complex and Vps34/PIK3C3
phosphatidylinositol 3-kinase (PtdIns3K) complex leading to the formation of
cup-shaped isolation membrane. The isolation membrane then elongates, sequesters
cytoplasmic targets, cellular cargos, damaged organelles, protein aggregates, long-
lived proteins, and finally encloses to form a double membrane-bound organelle
called an autophagosome. Phagophore elongation, expansion, and completion of
autophagosome involve two ubiquitin-like conjugation complexes namely ATG12-
ATG5-ATG16 and ATG8 conjugation systems. In the ATG12-ATG5-ATG16 con-
jugation system, ATG12 is catalyzed by E1-like enzyme, ATG7, and E2-like
enzyme ATG10 to conjugate with ATG5. ATG12-ATG5 conjugate then interacts
with ATG16L1 and forms a conglomerate that associates with autophagosome. In
the ATG8 conjugation system, the pro-form of ATG8 is first cleaved into processed
form by ATG4 leading to its activation by ATG7 and ATG12 (act as E3 like enzyme
with ATG5). Active ATG8 is then transferred to E2-like enzyme ATG3 before
conjugation with phosphatidylethanolamine (PE) and named as ATG8-PE which
is present on the autophagosome membrane (Mizushima 2019). Mammalian
homologs of ATG8 are known as microtubule-associated protein 1 light chain
3 (LC3) and gamma-aminobutyric acid receptor-associated protein (GABARAP).
Its unlipidated (ATG8-I) or lipidated forms (ATG8-PE, ATG8-II) are generally
referred to as LC3-I and LC3-II respectively. Upon recruitment, LC3-II stays on
the autophagosome membrane until the culmination of the autophagic process.
Completion of autophagosome biogenesis leads to its fusion with the lysosomes
resulting in degradation of the engulfed material (Reggiori and Ungermann 2017).
Cytoplasmic cargos are recognized and targeted to nascent autophagosome mem-
brane by an interaction between molecular tags (such as polyubiquitin) and LC3
through adaptor proteins such as sequestosome 1 (p62/SQSTM1) and neighbor of
BRCA1 gene 1 (NBR1) formation (Songane et al. 2012). Under normal physiologi-
cal conditions, autophagy plays different crucial roles such as restoration of the
amino acid pool and cellular ATP levels during nutrient deprivation condition, tumor
growth inhibition, anti-aging, pre-implantation development, clearance of intracel-
lular microbes and modulation of the innate and adaptive immune response, and so
on. (Cecconi and Levine 2008; Deretic and Levine 2009; Mizushima and Komatsu
2011). Moreover, defects in the autophagic machinery have also been reported to be
associated with numerous disease conditions including neurodegeneration, cancer,
cardiovascular disorders, and infectious or inflammatory conditions (Choi et al.
2004). Because of the earlier multi-dimensional role, autophagy has been exploited
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in the past few years as a front-runner of host-directed therapy to get rid of different
pathophysiological conditions including cancer.

4.4 Interplay Between miRNA and Autophagy (Fig. 4.2)

4.4.1 Autophagy Induction

Autophagy induction commences with activation of the ULK complex, consisting of
the focal adhesion kinase family interacting protein of 200 kDa (FIP200), ULK1/
ULK2, ATG101, and ATG13. ULK1 protein kinase is crucial to initiate autophagy
whereas mTOR complex presents upstream acts as a suppressor of autophagy. Upon
nutrient abundance, mTOR associates and dephosphorylates ATG13 and ULK1
leading to inhibition of ULK1 kinase activity and autophagy. But under starvation,
mTOR dissociates from ULK1 that leads to its phosphorylation and subsequent
activation of autophagy. A number of miRNAs directly or indirectly target the
mTOR protein complex or many other proteins in the pathway. In hepatocellular
carcinoma cells, miR-7 precisely targets mTOR and P70S6K (Fang et al. 2012).
miR-199a and miR-101 are reported to target mTOR in different cancer cell types
(Chen et al. 2012a; Fornari et al. 2010; Wang et al. 2013; Wu et al. 2013). ULK2 is a
direct target of miR-885-3p to inhibit autophagy. It is reported that in squamous cell
carcinoma, miR-885-3p gets upregulated upon cisplatin treatment. Aberrant expres-
sion of this miRNA leads to cell death and its suppression reverses the cisplatin-
mediated reduction in cell viability (Huang et al. 2011). In prostate cancer cells,
miR-26b also targets ULK2 to inhibit autophagy (Clotaire et al. 2016).

In melanoma cells, the miR-290-295 cluster targets ULK1 and ATG7, leading to
suppression of glucose starvation mediated autophagic death. In C2C12 myoblast
cells, miR-106b and miR-20a have shown to target and suppress ULK1 expression
that upregulates the transcription factor c-Myc to inhibit leucine deprivation
mediated autophagy (Wu et al. 2012). Transfecting cells with miR-106b and
miR-20a inhibitors were found to restore the leucine deprivation mediated
autophagy (Wu et al. 2012). Another study has found that miR-595 and miR-4487
target ULK1 to curb autophagy in neuroblastoma cells. In MCF7 cells, ULK1 is the
direct target of miR-25 to inhibit autophagy (Wang et al. 2014). In multi drug-
resistant MCF7 cells, isoliquiritigenin induces cell death, and autophagy by
suppressing the expression of miR-25 and activating ULK1 (Wang et al. 2014).

4.4.2 Vesicle Nucleation

Vesicle nucleation involves recruiting proteins and lipids to form the
autophagosome membrane. It starts with the activation of class III
phosphatidylinositol 3-kinase-Beclin1 (class III PI3K-BECN1) complex. Human
vacuolar protein sorting 34 (hVPS34), bax-interacting factor 1 (BIF-1), UV radiation
resistance-associated gene (UVRAG), ATG14L, and RUN domain and cysteine-rich
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domain-containing, Beclin1-interacting protein (Rubicon) are considered as the
main binding partners of the complex. Zhu et al. report for the first time, the role
of miRNAs in regulating autophagy at this step (Zhu et al. 2009). They had shown
that miR-30a directly targets BECN1 to inhibit autophagy. In this study, chronic
myeloid leukemia cells were treated with imatinib or taxol and drug sensitivity
amongst the cells was observed by miR-30a through BECN1 regulation (Zhu et al.
2009). In MCF-7 cells, the upregulation of miR-30a led to a reduction in Rapamycin
mediated autophagy (Zhu et al. 2009; Zou et al. 2012). It is also reported to attenuate
cisplatin-induced autophagy in Hela cells and sensitized them to chemotherapy (Zou
et al. 2012). Recently it has been shown that chemoresistant osteosarcoma cells show
decreased levels of miR-30a indicating their potential to inhibit autophagy (Xu et al.
2016). The role of miR-30a as an autophagy inducer or inhibitor is debatable and our
group checked the effect of miR-30a-3p and -5p on autophagy and found that
miR-30a-5p promotes autophagy whereas miR-30a-3p inhibits autophagy in
human monocytic leukemic cell-line (THP-1 cells) upon infection with Mycobacte-
rium tuberculosis (Behura et al. 2019).

In colon cancer cells, miR-409-3p is shown to block oxaliplatin mediated
autophagy by targeting BECN1 and increases the sensitization of the cancerous
cells to chemotherapy (Tan et al. 2016). miR-376a and miR-376b are also reported to
target 3’UTR of BECN1 and ATG4C to inhibit autophagy activated by Rapamycin
in lung and breast cancer cells (Korkmaz et al. 2012, 2013). This led to the proposal
of “gas and brake model” stating that the autophagy activating stress signals can
subsequently upregulate expression of various miRNAs that inhibit autophagy and
these inhibitory miRNAs limit the hyperactivation of autophagy and ensure survival
during prolonged stress conditions (Korkmaz et al. 2013; Tekirdag et al. 2016).
Huang et al. have shown that miR-519a gets downregulated upon cisplatin treatment
and overexpression of miR-519a blocks Cisplatin mediated autophagy by targeting
BECN1 at its 3’UTR in squamous cell carcinoma cells (Huang et al. 2011). In breast
cancer cells, irradiation mediated autophagy is reported to be blocked by miR-199-
5p by targeting BECN1 and DRAM1 (Yi et al. 2013). In pancreatic cancer cells,
miR-216a is shown to block irradiation mediated autophagy by targeting BECN1
(Zhang et al. 2015b). miR-384-5p is also reported to inhibit BECN1 expression to
reduce autophagy in macrophages during atherosclerosis (Wang et al. 2016a).
Huang et al. found that miR-374a and miR-630 can regulate levels of UVRAG, a
BECN1 binding factor to inhibit autophagy (Huang et al. 2012). Another binding
factor of class III PI3K-Beclin1 complex is identified as the direct target of miR-195
(Shi et al. 2013). miR-101 is reported to inhibit basal level autophagy and
rapamycin-induced autophagy by directly targeting ras-related in brain 5A
(RAB5A) protein (Frankel et al. 2011). RAB5A is a small GTPase molecule that
induces the formation of autophagosome upon interaction with hVPS34 and BECN1
(Ravikumar et al. 2008). In human dermal fibroblasts, miR-23a inhibits activating
molecule in BECN1-regulated autophagy protein 1 (AMBRA1) expression, a regu-
lator of BECN1 and VPS34 complex to inhibit autophagy upon UV-B irradiation
whereas transfection with miR-23a inhibitors restored the autophagy levels (Zhang
et al. 2016).
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4.4.3 Regulation of Elongation

Vesicle expansion involves two unique ubiquitin-like conjugation systems. In the
initial reaction, ATG12 conjugates with ATG5 aided by ATG10 and ATG7 followed
by the formation of a large multimeric conglomerate upon the interaction of
ATG16L with ATG12-ATG5 complex. In the second reaction, LC3 lipidation
begins with the conjugation of PE. This involves ATG4 mediated cleavage of
LC3 at its C-terminal end to get cytosolic LC3-I. LC3-I further gets conjugated to
PE to form LC3-II aided by ATG7 and E2 like enzyme ATG3 and E3 like enzyme
ATG5-ATG12 and ATG16L complex.

In breast and liver cancer cells, miR-101, miR-376a, and miR-376b are shown to
suppress autophagy by targeting the homologs ATG4D and ATG4C (Frankel et al.
2011; Korkmaz et al. 2012). ATG4 family of proteases are not only involved in the
cleavage of LC3 but are also involved in the autophagosome closure, the fusion of
lysosome with autophagosome, and LC3 recycling, thus they act as a crucial
regulatory component of autophagy (Fujita et al. 2008; Kaminskyy and Zhivotovsky
2012). RAB5A is also involved in ATG5-ATG12 conjugation which has been
shown to be inhibited by miR-101 (Frankel et al. 2011; Ravikumar et al. 2008).
ATG5-ATG12 conjugation is also regulated by miR-630, miR-30a, miR-374a, and
miR-181a (Huang et al. 2012; Yu et al. 2012).

Another study has shown that miR-204 can also inhibit autophagy in
cardiomyocytes and renal clear cell carcinoma by regulating the conversion of
LC3B by targeting its 3’UTR. miR-204 acts as a tumor suppressor gene and is
generally downregulated in renal clear cell carcinoma (Mikhaylova et al. 2012; Xiao
et al. 2011). In cervical cancer cells, miR-211 was found to downregulate LC3-I to
LC3-II conversion (Liu et al. 2020). ATG5 is also reported to be a direct target of
miR-224-3p, miR-374a, miR-181a, and miR-30a (Guo et al. 2015; Huang et al.
2012; Yu et al. 2012). Furthermore, ATG12 is shown to be suppressed by miR-30d,
miR-630, and miR-200b (Huang et al. 2012; Yang et al. 2013). Huang et al. have
also shown that miR-885-3p could affect the levels of ATG16L1 (Huang et al.
2011). miR 519a is suggested to inhibit the expression of both ATG16 and ATG10
(Huang et al. 2012). Many studies in the literature have shown ATG7 as the most
targeted gene to inhibit autophagy by miRNAs. In hepatocellular carcinoma cells,
miR-375 is shown to inhibit LC3-I to LC3-II conversion and regulate the expression
of ATG7 inhibiting hypoxia-mediated autophagy thus protecting the cells against
hypoxic stress and exerting tumor-suppressive activity (Chang et al. 2012). In a
separate study, miR-199a-5p is reported to modulate autophagy by regulating ATG7
in hepatocellular carcinoma cells during hypoxia thus reducing their viability
(Xu et al. 2012). Regulatory property of miR-20a on autophagy has been explained
through ATG7 suppression leading to a further reduction in the levels of ATG16L1
(Sun et al. 2015a). In glioblastoma cells, the negative effect of miR-17 and miR-137
on starvation-induced autophagy was observed to be due to a decrease in ATG7
expression (Comincini et al. 2013; Zeng et al. 2015). The role of miR-96 in
regulating autophagy during hypoxia stress in prostate cancer cells was found
because of aberrant ATG7 levels (Ma et al. 2014).
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4.4.4 Regulation of Retrieval

The process of retrieval is governed by ATG9 complex, a multi-spanning transmem-
brane protein. During retrieval, various membrane proteins and lipids are recruited to
the growing autophagosome membrane (Frankel and Lund 2012). ATG9 is involved
in the successful trafficking of endosomes containing lipids and proteins from the
trans-Golgi network to autophagosome. ATG2A and ATG2B are involved in the
closure of autophagosome vesicle (Velikkakath et al. 2012). miR-130a is reported to
directly target ATG2B, inhibiting autophagy, and cell viability in human chronic
lymphocytic leukemia (CLL) cells. miR-130a interferes with the retrieval of proteins
and lipids to the growing phagophore membrane and inhibits the formation of
ATG9-ATG2-ATG18 complex, leading to inefficient closure (Kovaleva et al.
2012). A tumor suppressor gene, miR-34a acts as an autophagic flux inhibitor by
regulating ATG9A levels in mammalian cells (Kovaleva et al. 2012).

4.4.5 Regulation of Fusion

The fusion of the outer membrane of autophagosome and lysosome, leading to the
formation of autophagolysosome is the final step of autophagy. This process is
governed by a variety of RAB proteins. RAB7 along with LAMP1 and LAMP2
are the main players of the fusion process. In the prostate cancer cell line, RAB27A
and LAMP3 are reported to be the targets of miR-205 (Pennati et al. 2014). miR-207
and miR-487-5p are shown to directly target LAMP2 (Bao et al. 2016; Tao et al.
2015). Bioinformatics analysis has shortlisted a series of miRNAs having potential
involvement in the fusion step. This involves miR-142, miR-204, miR-98, miR-124,
and miR-130 (Jegga et al. 2011). The predicted targets of these miRNAs are
v-SNARE protein, LAMP1, and LAMP2. miR-351, miR-125, miR-630, and
miR-374 are reported to regulate the levels of UVRAG (Fader et al. 2009).
UVRAG is involved in the regulation of membrane curvature and endosomal
trafficking leading to the maturation of autophagosomes through its interaction
with BECN1 (Fader et al. 2009).

4.4.6 Regulation of miRNA Biogenesis Pathway by Autophagy

The levels of miRNAs in cancer cells are generally low due to the downregulation of
major miRNA processing enzymes like Drosha and Dicer. These enzymes along
with AGO2 are reported to be directly targeted for autophagosomal degradation.
Inhibition of Dicer through the siRNA approach decreases LC3I and LC3II levels
regardless of the presence or absence of Bafilomycin A1 (Kovaleva et al. 2012).
Gibbings et al. have found that Dicer and AGO2 associate with the autophagy
receptor NDP52 leading to their degradation (Gibbings et al. 2012). The
autophagy-deficient cells show an increase in inactive Dicer-AGO2 complex and
decreased ability of AGO2 to bind to miRNAs leading to a decrease in miRNA
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levels (Gibbings et al. 2012; Wampfler et al. 2015). They hypothesized that reduc-
tion in autophagy leads to an accumulation of inactive Dicer-AGO2 complexes and
these inactive complexes can suppress the activity of active Dicer–AGO2
complexes. So, the degradation of the inactive Dicer-AGO2 complex is necessary
for the proper functioning of Dicer–AGO2 complexes (Gibbings et al. 2012).

4.5 Role of Autophagy Regulating miRNAs and Cancer

Many autophagy regulating miRNAs are shown to regulate tumor growth, metabo-
lism, migration, hypoxia, and response to drugs and radiotherapy. Some of the
miRNAs modulating autophagy are being used as cancer biomarkers or anti-cancer
agents due to their efficacy in regulating gene expression. Many groups have
suggested the central role of miRNA in deciphering the outcome of cancer.

4.5.1 Cancer Cell Survival and Their Growth

Autophagy plays a major role in the growth of tumor cells and thus an important
function of miRNAs is to regulate autophagy in cancer cells and control their growth
and proliferation. In H1299, non-small lung cancer cells, overexpression of miR-143
by using mimics reduced their proliferation significantly by directly targeting
ATG2b leading to autophagy inhibition (Wei et al. 2015). In medullary thyroid
cancer cell lines, upregulation of miR-9-3p arrested cells at the G2 phase of cell cycle
leading to inhibition of autophagy by decreasing the expression of major autophagy-
related proteins like mTOR, ATG5, LAMP-1, and PIK3C3 which subsequently
causes cell death (Gundara et al. 2015). Zhai et al. have shown that miR-502 inhibits
autophagy by targeting RAB1B and p53 and overexpression of miR-502 reduced
cell cycle progression and cell growth in vitro in colon cancer cells (Zhai et al. 2013).
In another study, miR-204 is reported to suppress the growth of renal clear cell
carcinoma cells in vitro and in mice by regulating LC3 expression. miR-204 is also
known to target a tumor suppressor gene, von Hippel-Lindeu (VHL, Hall et al. 2014;
Mikhaylova et al. 2012). VHL in turn suppresses the expression of transient receptor
potential melastatin 3 (TRPM3) involved in renal clear cell carcinoma progression
(Hall et al. 2014).

Feng et al. induced nutrient starvation in breast cancer cells and found that
miR-372 expression is suppressed by Yin Yang 1 (YY1) leading to an increase in
autophagy. Upregulating miR-372 leads to inhibition of autophagy and subsequent
growth in cancer cells (Feng et al. 2014). Overexpression of miR-100 has been
shown to reduce the cell viability of hepatocellular carcinoma cells. miR-100
directly targets the 3’UTR of mTOR to regulate its expression and activate ATG7,
leading to autophagy induction that kills the cancer cells (Ge et al. 2014).
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4.5.2 Cancer Cell Metabolism

The autophagy regulating miRNAs are also reported to regulate the metabolism and
metabolic stress responses toward the tumor cells.

In colorectal adenoma, miR-124 was found to be downregulated (Taniguchi et al.
2015). Further studies on target validation showed that miR-124 targets
polypyrimidine tsat binding protein 1 (PTB1). It regulates the splicing of pyruvate
kinase muscle to isoform 1 (PKM1) or isoform 2 (PKM2, Taniguchi et al. 2015).
PKM1 stimulates oxidative phosphorylation and is only found in normal tissues and
cells, whereas PKM2 is exclusively present on constantly proliferating cells like
cancer cells. In cancer cells, PKM2 boosts glycolysis even in the presence of
abundant oxygen, thus helping the cancer cell metabolism and growth. So,
overexpressing miR-124 suppresses PTB1 leading to a switch between the PKM
isoforms. miR-124 preferentially favors PKM1 over PKM2 thus increasing ROS
accumulation and oxidative phosphorylation in tumor cells (Taniguchi et al. 2015).

In lung cancer cells, A549 and H460, expression of miR-144 is suppressed.
Upregulating its expression by using mimics blocked the proliferation of cancer
cells and induced autophagy and apoptosis (Chen et al. 2015). Chen et al. showed
that miR-144 targets TIGAR, a glycolysis and apoptosis regulator which is respon-
sible for a reduction in oxidative burden and regulates cell energy for metabolism
(Chen et al. 2015).

In melanoma cells, another set of miRNAs, that is, miR-290-295 cluster of
miRNAs target the 3’UTR of ATG7 and ULK1 (Chen et al. 2012b). These sets of
miRNAs confer resistance to metabolic stress-induced cell death in B16F1 mela-
noma cells by inhibiting autophagy. Glucose starvation-induced cell death in these
cells by upregulating autophagy but overexpressing miR-290-295 cluster of
miRNAs reversed this effect and helped in the survival of tumor cells (Chen et al.
2012b).

In malignant mesothelioma tissues, expression of miR-126 is found to be
downregulated and it is shown to suppress cancer cell growth (Tomasetti et al.
2016). miR-126 suppressed IRS1 and decreased glucose uptake by the cells causing
energy deprivation amongst the cancer cells. AMPK gets activated upon energy
deprivation and further activates ULK1. miR-126 is also reported to alter the
expression of other key proteins involved in the metabolism like acetyl co-A citrate
and pyruvate dehydrogenase kinase (Tomasetti et al. 2016).

4.5.3 Hypoxia Responses

Due to irregular blood supply and abnormal vascularization, tumor cells develop a
hypoxic environment. The hypoxic tumor cells rely on autophagy for their survival.
Thus, a number of miRNAs regulate autophagy to control hypoxia-induced
responses in cancer cells.

Upon hypoxia in prostate cancer cell lines DU145 and PC3, miR-124, and
miR-144 were found to be downregulated (Gu et al. 2016). Overexpression of
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these miRNAs in prostate cancer cells led to a reduction in hypoxia-mediated
autophagy and increased radiation-induced cell death (Gu et al. 2016). Another
study has shown that miR-96 under moderate levels enhances hypoxia-mediated
autophagy by suppressing mTOR (Ma et al. 2014). Whereas, overexpression of the
same miRNA inhibited hypoxia-induced autophagy by targeting ATG7 (Ma et al.
2014).

miR-375 is known to be downregulated following hypoxia in hepatocellular
carcinoma cell lines compared to normal liver tissues. It was found to target the
3’UTR of ATG7 to suppress hypoxia-mediated autophagy leading to cell death
(Chang et al. 2012). In glioblastoma cells, hypoxia leads to the downregulation of
miR-224-3p but on the contrary, overexpression of miR-224-3p reduced hypoxia-
mediated autophagy leading to cell death. miR-224-3p is shown to directly target
ATG5 and FIP200 to inhibit autophagy, and inhibition of miR-224-3p increased
hypoxia-mediated autophagy (Guo et al. 2015). Hypoxia also leads to the
upregulation of IL-6 production in glioblastoma cells. Previous study has shown
that overexpression of IL-6 leads to the activation of autophagy (Xue et al. 2016).
Increased IL-6 secretion leads to an increase in the level of miR-155-3p through
STAT3 dependent signaling pathway. miR-155-3p is reported to directly target the
CREB3 regulatory factor (CREBRF) leading to an increase in the expression of
ATG5 and autophagy that enhanced the survival of the cells. Blocking IL-6 reduced
autophagy, increased cancer cell death, and decreased the tumor burden. On the
contrary, complementary strand miR-155-5p is reported to block autophagy by
downregulating mTOR and causing cell cycle arrest. Therefore, miR-155-3p and
miR-155-5p acts as a switch to determine the final autophagy-related outcome under
hypoxic environment (Wan et al. 2014).

4.5.4 Angiogenesis

Autophagic activity is extremely important for angiogenesis and some miRNAs are
shown to regulate autophagy-induced angiogenesis in tumor vascularization. In
endothelial progenitor cells, miR-195 is reported to inhibit autophagy by targeting
GABARAP like 1 (GABARAPL1) protein, and knocking down miR-195 led to
stimulation of autophagy and promoted angiogenesis and cell growth under hypoxia
(Mo et al. 2016). Inhibition of autophagy by the addition of 3-MA blocked all the
above responses indicating the role of autophagy in tumor growth and angiogenesis
(Mo et al. 2016). In prostate cancer cells, miR-212 was found to be downregulated
and it is shown that miR-212 is able to inhibit autophagy by directly targeting the
autophagy activator SIRT1 (Ramalinga et al. 2015). Overexpressing miR-212 led to
the suppression of angiogenesis and the death of cancer cells (Ramalinga et al.
2015). Another study has shown that inhibition of miR-130a led to autophagy
induction and initiated cell death in endothelial progenitor cells (Xu et al. 2014).
The level of miR-1273g-3p is also elucidated to be increased upon glucose level
fluctuations that induced autophagy and inhibited angiogenesis in cancer cells (Guo
et al. 2016).
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4.5.5 Autophagy Regulating miRNAs as Biomarkers in Cancer

Some of the miRNAs involved in the regulation of autophagy have been reported as
potential biomarkers of cancer. A recent study by Fan et al. 2020 unraveled the link
between miR-1246 expression and sensitivity of irradiation of non-small cell lung
cancer (NSCLC) cells. They had shown that the expression of miR-1246 promoted
the resistance of NSCLC cells toward irradiation through inhibition of mTOR and
activation of autophagy. Furthermore, the study also established the prospective role
of miR-1246 to act as a biomarker for predicting the efficacy of radiotherapy in
NSCLC patients and a probable target for radiotherapy sensitization.

Another recent study (Guo et al. 2019) demonstrates the effect of miR-384 on
tumor progression and autophagy in NSCLC cells. Based on a previous study (Fan
et al. 2017), the authors of this paper found that the expression of miR-384 was
significantly downregulated in NSCLC cells and reasoned that miR-384 can be a
potential therapeutic target. They also found elevated expression of Collagen α-1
(X) chain (COL10A1) and co-related inverse relationship between miR-384 and
COL10A1. Overexpression of miR-384 or inhibition in COL10A1 expression led to
inhibition in NSCLC cell proliferation and tumor growth through autophagy induc-
tion. Overall, this study concluded that miR-384 can promote apoptosis and
autophagy in NSCLC cells by downregulating COL10A1 and this potential can be
used as a biomarker for the prediction of NSCLC (Guo et al. 2019).

A recent study demonstrated the effect of miR-1251-5p on autophagy and its
consequence on tumor progression in ovarian cancer cells (Shao et al. 2019).
Autophagy, being a complex process, is capable of either promoting or inhibiting
tumorigenesis depending on the tissue and context (Chen and Debnath 2010;
Kroemer et al. 2010; Yun and Lee 2018). In the above-mentioned study,
miR-1251-5p mimics increased cell cycle progression and cell proliferation whereas
overexpression of tumor-binding cofactor C (TBCC) increased the expression of p62
and α/β-tubulin along with inhibition of the expression of CDK4 and LC3BII which
resulted in suppression of cell growth and autophagy. In ovarian cancer cells, effects
on TBCC were rescued by miR-1251-5p and promoted tumor growth. Since
miR-1251-5p can directly target TBCC and enhances autophagy leading to the
promotion of carcinogenesis in ovarian cancer, it can be used as a biomarker to
know the severity of the disease.

In breast cancer tissues, expression of miR-205 and miR-342 levels were found to
be low (Savad et al. 2012) whereas the high expression of miR-155 and miR-493 is
correlated as a better recovery of patients from cancer (Gasparini et al. 2014) and
suppression of miR-30e and miR-27a is associated with worsening of the disease
(Gasparini et al. 2014). In ovarian cancer, a decrease in miR-152 level is correlated
with cisplatin resistance (He et al. 2015) and miR-29b expression is associated with
recovery (Dai et al. 2014). A decrease in the expression of miR-212 in sera and
tumor tissue of patients is used as a diagnosis for prostate cancer (Ramalinga et al.
2015).
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4.5.6 Role of Autophagy Regulating miRNA in Tumor Therapy

Upon identification of miRNAs in 1993, its diagnostic application in different
diseases has been demonstrated. miRNA plays a central role in controlling tumor
suppression in cancer. It was found by Calin et al. that downregulation or deletion of
miR-16-1 and miR-15a in 13q14 leads to the progression of CLL (Calin et al. 2002).
Expression of miR-16-1 and miR-15a in CLL decreases the expression of B-cell
lymphoma 2 (BCL2) that has been shown to be induced by heat shock and cell stress
and prevent apoptosis of tumor cells, thereby giving credence to the fact that
miRNAs can be used in cancer therapy (Tsujimoto 1989; Cimmino et al. 2005).
Takamizawa et al. have found that in A549 lung adenocarcinoma cells,
overexpression of miRNA let-7 inhibits the growth of cancer cells in vivo
(Takamizawa et al. 2004). In epithelial ovarian cancer (EOC) cells, miR-199a
regulates IKKβ expression, and inhibits the proliferation of these cells (Chen et al.
2008). Downregulation of miR-221 by isoflavone, bio response formulated 3,3-
0-diindolylmethane (BR-DIM) and difluorinated curcumin (CDF), inhibits prolifera-
tion of pancreatic cancer cells (Sarkar et al. 2013). In colorectal cancer (CRC),
upregulation of miR-324-5p suppresses the proliferation of colorectal tumor cells
and its invasion by targeting embryonic lethal abnormal vision-like protein
1 (ELAVL1, Gu et al. 2019). miR-331-3p is reported to reduce the expression of
erythroblastic oncogene B-2 (ERBB-2) in prostate cancer (PCa, Epis et al. 2009).
ERBB-2 associated with androgen receptor signaling that promotes cell proliferation
proteins known to prevent apoptosis of tumor cells which was induced by heat shock
and chemotherapeutics (Vernimmen et al. 2003). miR-199b-5b also suppresses
tumor progression in breast cancer by inhibiting angiogenesis because miR-199b-
5p treated mice showed a reduction in tumor size and the number of blood vessels in
tumors and nearby tissues (Lin et al. 2019). miR-524 also affects tumor growth and
angiogenesis by inhibiting the expression of angiopoietin-2 (He et al. 2014). Role of
different miRNAs like miR-320, and miR-29b have been elucidated to suppress
angiogenesis by inhibiting expression of neuropilin1 and Akt3 respectively
(Wu et al. 2014; Li et al. 2017). In breast cancer cells, overexpression of miR-340
is elucidated to downregulate the level of ROCK1 and inhibits invasion, migration,
and proliferation of tumor cells (Maskey et al. 2017). In hepatocellular carcinoma
overexpression on miR-145 downregulates the ROCK1 expression and inhibits cell
proliferation (Ding et al. 2016).

4.5.6.1 miRNA Regulates Autophagy and Inhibits Tumor Progression
Autophagy plays a dual role in cancer progression and suppression. Several studies
say that autophagy promotes tumor survival by supplying nutrients to the stressed
cancer cells (White and DiPaola 2009). In colorectal cancer stem cells, aberrant
expression of miR-140-5p inhibits growth and interferes with autophagy through son
of a mother against decapentaplegic (Smad 2) and ATG12 inhibition (Zhai et al.
2015). miR-502 has been reported to inhibit autophagy by suppressing Rab1 in
colon cancer cells. It is also known to inhibit cancer cell growth and arrest cell cycle
that impedes tumor progression (Zhai et al. 2013). In small cell lung cancer cells,
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overexpression of miR-143 decreases autophagy by targeting ATG2B leading to
inhibition of cancer cell proliferation (Wei et al. 2015). Overexpression of miR-193b
is reported to increase autophagy in oesophageal cancer cells and non-apoptotic cell
death (Nyhan et al. 2016). On the contrary, miR-9-3p is known to inhibit autophagy
and also decreases the expression of BCL-2 leading to apoptosis in medullary
thyroid cancer cells (Gundara et al. 2015). Downregulation of autophagy was also
manifested by miR-17-5p through a reduction in Beclin1 expression in paclitaxel
resistance cancer cells (Chatterjee et al. 2014). Heterogenous unclear
ribonucleoproteinA1 (hnRNP A1) that prevents apoptosis of cancerous cells by
increasing connective tissue growth factor (CTGF) and CyclinD1 has been
elucidated to be degraded through the autophagic pathway by miR-18a over-expres-
sion in colon cancer cells (Fujiya et al. 2014).

4.5.6.2 miRNA Inhibits Chemoresistance Tumor Cell Growth by
Modulating Autophagy

In osteosarcoma cells, chemotherapy-induced autophagy imparts chemoresistance
whereas miR-101 block the activation of autophagy in chemoresistance osteosar-
coma cells and enhance their sensitivity to chemotherapy (Chang et al. 2014). In
gastric cancer cells, autophagy is shown to help the tumor cells in survival against
different drugs by converting them to chemoresistance cells. Overexpression of
miR-23b-3p in multidrug resistance tumor cells, is reported to inhibit autophagy
by targeting ATG12 and high-mobility group protein B2 (HMGB2) that increases
sensitivity to different drugs (An et al. 2015). In hepatocarcinoma cells, autophagy
prevents the apoptosis of cancerous cells induced by drug-like cisplatin and helps in
promoting cell growth, whereas miR-101 overexpression has been reported to inhibit
autophagy and induce apoptosis in cancerous cells (Xu et al. 2013). Similarly, in
5-fluorouracil treated colorectal cancer cells, miR-22 inhibits autophagy and
promotes apoptosis for efficiently killing the tumor cells (Zhang et al. 2015a).
HMGB1 has been shown to be targeted by miR-22 to inhibit autophagy that prevents
cell proliferation, migration, and invasion of osteocarcinoma cells (Guo et al. 2014).

4.5.6.3 miRNA Inhibits Radioresistance Tumor Cells Growth by
Modulating Autophagy

Autophagy helps the cancerous cells to survive from radiation treatment and makes
them resistant to radiation. In breast cancer cells, autophagy induced radiation
resistance is inhibited by miR-200 and makes the cells sensitized to radiation
treatment (Sun et al. 2015b). Hypoxia also induced autophagy to produce
radioresistance prostate cancer cells but overexpression of miR-124 and miR-144
decreases hypoxia-mediated autophagy and converts radioresistance tumor cells to
radiosensitive cells (Gu et al. 2016).
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4.6 Conclusion

miRNAs play a key role in regulating different biological processes. It has been
predicted that around 60% of all the protein-coding genes are regulated by miRNA.
As discussed in the review earlier, miRNAs directly or indirectly modulate
autophagy in different cancer types under different physiological conditions and in
response to different types of stress signals. Either a single miRNA can regulate the
expression of different autophagy-related proteins/pathways or many different
miRNAs can also control a single important autophagy-related protein and
pathways. The same stress signal or stimuli can modulate the expression of different
miRNAs in different cancer cell types. These miRNAs are generally termed as
oncomirs and tumor suppressors. Most of these miRNAs are reported to regulate
various autophagy-related genes. Autophagy plays an important role during cancer
progression and spread. Dysregulation or aberrant expression of autophagy
regulating miRNAs is involved in the development of different cancers. Due to the
ability of autophagy regulating miRNAs to control cancer progression, they are
being used in cancer treatment as they sensitize cells to chemotherapy and radiation
therapy. They can also be used as cancer biomarkers to accurately predict the
diagnosis of disease and to check the patient’s response to the treatment. Thus,
miRNA manipulations by using antagomirs, mimics, gene therapy, gene delivery, or
other strategies can be used for cancer treatment. Comprehensive knowledge of
miRNAs and related networks might contribute to the efforts involving autophagy
modulation as an innovative treatment approach.
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Abstract

Autophagy is a process that is involved in the bulk recycling of cellular materials
to replenish cellular demands during crisis. However, in cancer cells, the process
of autophagy is dual-faced. Generally, during the initial stages of tumorigenesis,
autophagy inhibits proliferation, but when the cancer cells face extreme nutrient
deprivation and other metabolic stress then autophagy protects them to metasta-
size. Advances in clinical findings have identified many targets involved in the
autophagic pathway of cancer. This led to the development of trials using
protective autophagy inhibitor and lethal autophagy inducer in order to trigger
cell death dependent on autophagy. Interestingly, the existence of solely
autophagy-dependent death of the cancer cells is yet to be established in patients.
Nevertheless, the present concept of autophagy-dependent cell death is highly
debatable from the point of therapy. Specificity and efficacy issues of autophagy-
dependent cell death remain largely uncertain. This brings us to focus on the
controversies and lacunas in the understanding of cell death and autophagy. The
tumor microenvironment (TME) is regarded as a bed of metabolic cascade that
ensures proper refueling of the nutrient-deprived core facing extremes of pH,
starvation, hypoxia, immunogenic intrusion, and therapeutic insults. The novelty
of this chapter lies in its comprehensive outlook to highlight how autophagy
modulation alters TME and its significance in rewiring the metabolism.
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5.1 Introduction

Tumors achieve their metabolic rewiring due to the fueling from their immediate
microenvironment that makes them dynamic pseudoorgans (Lyssiotis and
Kimmelman 2017). Tumor microenvironment (TME) represents an ecosystem of
cells of heterogeneous lineage which is mainly comprised of cancer cells, stromal
cells, interstitial fluids, immune cells, cytokines, chemokines, tumor-associated
macrophages (TAM), cancer-associated fibroblasts (CAFs), and endothelial cells.
TME provides the tumor a niche that makes them metabolically independent and
breaks free off the homeostatic control of the normal cells thereby making them
behave like a self-regulating organ(oid) like structure (Fig. 5.1). In order to

Fig. 5.1 Exploring the arm that fuels the tumor microenvironment: ecosystem of TME comprises
of heterogeneous cellular components from extracellular matrix (ECM) comprising cancer-
associated fibroblasts, stromal cells, to various immune cells (T, NK, B cells, macrophages), and
fats. TME creates a shield-like structure that is impervious to nutrient uptake, drug bioavailability,
or access to growth factors, resulting in massive autophagy increase in the core where there is high
stress due to starvation and hypoxia, accumulation of metabolic wastes, thereby resulting in the
production of therapy-resistant cancer cells. This figure was created using Servier Medical Art
templates, which are licensed under a Creative Commons Attribution 3.0 Unported License; https://
smart.servier.com
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understand the metabolic rewiring in a tumor, it becomes imperative to understand
the phenomena of autophagy by virtue of which it can beat all stress response.

The term autophagy comes from the Greek meaning for “self-eating” which
encompasses a highly evolutionarily conserved catabolic process digesting the
cell’s own machinery to bypass a stress condition. Generally, the mechanism of
autophagy remains conserved from yeast to higher mammals and involves the
development of a crescent-shaped double-membrane structure called phagophore
or isolation membrane, sequestering damaged part of the stressed cell en masse and
gives rise to a ring-shaped “autophagosome”. This autophagosome fuses with a
lysosome to give rise to “autolysosome” where the acidic milieu degrades the
cellular cargo into recyclable metabolites which are absorbed into the cytosolic
pool for further cellular nourishment. Till now 41 Atg (Autophagy-related) genes
have been identified to regulate the process of autophagy, and most of the genes have
been identified using yeast as a model organism. This phenomenon remains holisti-
cally conserved across different eukaryotes.

5.2 Fundamentals of Autophagy and its Duality in TME

Briefly speaking, autophagy can be categorized broadly into three types –

macroautophagy, microautophagy, and chaperone-mediated autophagy. In this
chapter, we will be dealing with macroautophagy which will be mentioned hence-
forth simply as autophagy. Before we open the topic about the relevance of
autophagy in the tumor microenvironment, let us understand how the mechanism
of autophagy function and why there is so much debate regarding this. Stress due to
various stimuli like a response to therapy, increasing population of cancer cells,
hypoxic tumor core region, alteration of pH, temperature, nutrient starvation, and
pressure from infiltrating immune cells signal envisages inactivation of mTOR
(mammalian Target Of Rapamycin) triggering the de novo synthesis of a double-
layered isolation membrane that leads to nucleation of the initiation step of
autophagy. Stress evokes a natural autophagic response in a cell through the class
III phosphatidylinositol-3-kinase, hVps34 (human vesicular protein sorting 34)
complex. Binding of Beclin1 with hVps34 is involved in rapid catalysis of PI3P
(phosphatidylinositol-3-phosphate) production. PI3P, Beclin1, and ATG14 mostly
remains tethered together as a specialized pre-autophagic structure called
omagesome (named as such due to the Ω shaped structure) giving rise to the
initial development of autophagosome. The presence of PI3P phosphatases like
PTEN, JUMPY plays an important regulatory signal in the development of budding
autophagic vesicle structure (Mukhopadhyay et al. 2016).

In the mammalian system, the initiation of autophagy is quite complex and
involves the ULK1/2 complex which comprises FIP200, ATG 13, and ATG101
proteins. After initiation, the second major phase of autophagy is elongation, which
is taken care of by the two ubiquitination-like systems LC3 and ATG5-ATG12
processing which gives rise to a mature double-membrane autophagosome structure.
Finally, the autophagosome docks and fuses with the lysosome thereby forming
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autolysosome which help to inundate the cytoplasm with nutrients. Laura et al.
showed that survivability of the disseminated solitary dormant breast cancer and
metastatic tumor recurrence rely on triggering autophagy-mediated through ATG7
(Vera-Ramirez et al. 2018). The topic of autophagy is a highly complicated process
with different and diverse nature at every turn of the tumorigenesis process. Any sort
of stress implicated in a living cell provides an impetus to evoke an autophagy
response. However, the dynamics of autophagy is not operated by a simple “on/off”
switch in context to a cell that is undergoing tumorigenesis to develop into a cancer
cell (Fig. 5.2).

Initially, autophagy behaves in a cytoprotective manner to reduce the stress and
tumorigenic consequences in a cell. But once the benign tumor metastasizes to full-
blown malignancy this cytoprotective mechanism shifts into a lethal phenotype by
supporting and/or fueling the growing tumor cells to ensure their rapid proliferation
and hijacks the metabolic fueling from the body.

Fig. 5.2 Schematic representation of the dynamics of autophagy. Healthy cells exhibiting normal
homeostasis undergoes cytoprotective autophagy during stress, however, when this continues for a
protracted period beyond a point of no return then it becomes lethal and causes autophagy-
dependent cell death. A cell undergoing tumorigenesis face extreme metabolic inhibition by
cytoprotective autophagy, however, once the malignancy sets in then it serves as a promoter of
tumor proliferation. A characteristic duality of autophagy which is different from the normal
cellular autophagy is defined as oncophagy and the status of its progression according to the stages
of the tumor is shown

106 S. Mukhopadhyay



Work in this field deserves special attention because of the janus role of
autophagy in cancer. In a healthy cell, the cytoprotective role of autophagy prevents
the buildup of excess stress-mediated damage and tumorigenesis. Protracted stress-
mediated autophagy in these cells commits the cell to cross the “autophagic point of
no return” an elusive concept that commits the cell to crossover an irreversible
autophagy barricade that pushes the cytoprotective phenomena to a lethal makeshift
(as elaborated in Fig. 5.2, Loos et al. 2011) and undergoes autophagy-dependent cell
death (type II programmed cell death). Therefore, for a cancer cell, it becomes
crucial to understand the autophagic point of no return to target them without making
them therapeutically latent to pose risks of cancer recurrence. Autophagic modula-
tion of TME helps the cancer cells strive for austere conditions like hypoxia, extreme
acidosis, and accumulation of biological wastes in the interstitial spaces along with
shielding the infiltrating chemotherapy.

Emerging research has focused on the vital role of TME that is capable of
modulating autophagy and vice-versa. The immediate TME faces a rush of a diverse
cellular niche. How the tumor environment can modulate the autophagy quotient
during therapy to act against or in favor of the clinician is a hot field of research in the
present time and will be discussed in detail in the later sections. There exists a lot of
lacunae between medical research and patient therapy. This work tries to highlight
these points with a focus on the major paradoxes and paradigms of the molecular
mechanism at work behind the autophagic dynamics that modulate the TME inside a
cancer cell.

5.3 Autophagic Regulation of Different Metabolites in TME

5.3.1 Autophagic Contributions of Glycolytic Intermediates

Tumor cells become attuned to dysregulated glucose metabolism leading to disease
recurrence and cancer cell survival benefit under acidic pH stress by glycolysis to
mediate autophagic stress through the PI3K/AKT/mTOR pathway that prolongs
cancer cell survival by resisting apoptosis (Lue et al. 2017; Wojtkowiak et al.
2012). Low glucose in TME triggers energy sensor AMP-activated protein kinase
(AMPK) mediated autophagy induction which becomes responsible for the degra-
dation of damaged or long-lived components to replenish nutrients to compensate
the stress (Williams et al. 2009). On the other hand, high glucose TME accelerated
the SREBP1-autophagy axis to play a crucial role in pancreatic ductal adenocarci-
noma (PDAC) progression (Zhou et al. 2019). Karsli-Uzunbas et al. showed that
conditionally deleted ATG7 is expendable for short-term survival, but help to avoid
the lethal hypoglycemic condition, cachexia during starvation highlighting a new
role of autophagy in glucose homeostasis, and lung tumor maintenance (Karsli-
Uzunbas et al. 2014). Chemotherapeutic insults in autophagy inhibited condition
under glucose restricted condition led to the upregulation of period circadian clock
2 (PER2), a tumor suppressor protein in the colorectal cancer cell (Schroll et al.
2017). Interestingly, GPx1 degradation caused by glucose deprivation triggered
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ROS/AMPK signaling mediated autophagy in PDAC. Also, GPx1 may modulate
glycolysis inhibition in pancreatic cancer under the glucose-starved situation while
GPx1 overexpression and autophagy inhibition resulted in caspase-dependent apo-
ptosis (Meng et al. 2018).

Upregulation of another glycolytic enzyme hexokinase (HKII) was found to be
involved in escalating autophagy in the hypoxic TME of tongue squamous cell
carcinoma (Chen et al. 2018). In a stressful TME, miRNA-7 inhibits autophagy by
upregulation of LKB1-AMPK-mTOR signaling, thereby diminishing the supply of
intracellular glucose pool available to fuel glycolysis (Gu et al. 2017). Glucose
shortage mediated metabolic catastrophe resulted in autophagy-dependent BCR/Abl
protein degradation in chronic myeloid leukemia cells, which are resistant to tyrosine
kinase inhibitor-based therapy (Bono et al. 2016). βIII-Tubulin was known to
decrease the reliance of cells on glycolytic metabolism, priming them to cope with
low glucose stress in TME and protect from the endoplasmic reticulum (ER) by
co-immunoprecipitating with GRP78 in non-small cell lung cancer (NSCLC)
(Parker et al. 2016). GRP78 expression in limited glucose condition, led to
dysregulation of pyruvate kinase M2 (PKM2) that triggered mitochondrial pyruvate
dehydrogenase A (PDHA) and B (PDHB), causing a metabolic transition from
glycolysis to the TCA cycle (Li et al. 2015). Glucose limitation in TME led to
GRP78 mediated autophagic activation that led to degradation of IKKβ, which
instigated inactivation of the NF–κB pathway and consequently altered the expres-
sion of PKM2, GLUT1, and HIF-1α.

Another glycolytic metabolite lactate helps the viability of glucose deprived
melanoma TME in hypoxic conditions by repressing autophagy (Matsuo et al.
2019). In this regard tumor suppressor gene ANKDD1A reduces the half-life of
HIF1α through an increase of FIH1; downregulation of glucose uptake and lactate
production impedes autophagy along with triggering apoptosis in hypoxic glioblas-
toma multiforme (GBM) TME (Feng et al. 2019). Hypoxic TME of PDAC is
involved in autophagy-mediated degradation of stromal lumican involved in
regulating cancer progression (Sarcar et al. 2019).

Acidification of hypoxic and glucose deprived tumor cores by exogenous lactate
supplementation is reported to prevent cell death by inhibiting autophagy in B16
melanoma cells (Matsuo and Sadzuka 2018). On the other hand, depletion of MCT4
on NK cells executes a compensatory metabolic rewiring by inducing autophagy to
minimize the acidic extracellular breast tumor microenvironment that is involved
with the export of lactate (Long et al. 2018). Following the phenomenon of reverse
Warburg effect, cancer cells utilize lactate as an active metabolite and shuttle to TME
to inflict metabolic reprogramming. In this regard, 2-methoxyestradiol, can inverse
L-lactate-induced metabolic reprogramming in osteosarcoma 143B tumor cells
(Gorska-Ponikowska et al. 2017). Phosphoproteomics screening established that
mitochondrial Akt-PDK1 signaling alters tumor metabolism toward glycolysis by
inhibiting autophagy, apoptosis, and support proliferation of hypoxic tumors (Chae
et al. 2016).
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5.3.2 Autophagy Contributions of Amino Acids

In this section, we briefly report about the major contributions of amino acids that are
under the autophagic regulatory control network in TME. Among the amino acids,
the glutamine plays a crucial role to fuel the tricarboxylic acid (TCA) cycle and
maintain the pool size of antioxidants and ammonia.

Glutaminolysis-derived ammonia diffuses into the interstitial space of TME and
is involved in regulating anti autophagy protein TIGAR (Mariño and Kroemer 2010)
in MCF7 cells. Coculturing tamoxifen-resistant cancer cell with stromal fibroblasts
drives catabolism of tumor stroma along with the anabolic activity of tumor cell
(Albanese et al. 2011). Witkiewicz et al. showed that screening of lethal breast TME
supported “Autophagic Tumor Stroma Model of Cancer Metabolism” and identified
that loss of stromal caveolin-1 status in breast cancers leads to autophagy-mediated
recycling of nutrients like lactate, ketones, and glutamine to feed anabolic events in
cancer that led to metastasis and poor clinical prognosis (Witkiewicz et al. 2011).
Interestingly, from the perspective of autophagy, it was reported that SNAT7 is a
critical primary lysosomal glutamine exporter essential for the growth and prolifera-
tion of cancer (Verdon et al. 2017). Besides this, the relevance of arginine in TME
was elucidated by work from Beth Levine’s lab where it was shown that autophagic
impairment leads to the secretion of arginase and subsequent degradation of arginine
was recognized as a metabolic vulnerability in cancer (Poillet-Perez et al. 2018).

On the other hand, preconditioning of primary human renal proximal tubular
epithelial cells without tryptophan led to enhanced survivability in hypoxic
conditions by triggering autophagy (Eleftheriadis et al. 2017). Exemplary findings
established that the autophagic modulation in pancreatic stellate cells controls
alanine secretion which feeds the PDAC in an austere tumor microenvironment to
promote growth (Sousa et al. 2016).

5.3.3 Autophagy Contributions of Lipids

Vital research is being carried out to understand how the TME is being inundated
with lipid molecules which in turn like a vicious cycle promote more fat-derived
energy to fuel the tumor cell. Wen et al. co-cultured adipocytes with colon cancer
cells to establish the mechanism by virtue of which adipocyte-derived free fatty acids
are released to the cancer cells, thereby inducing autophagy as a result of AMPK
activation (Wen et al. 2017). SIRT3 mediated autophagy was reported to adipocyte
differentiation, and lipophagy mediated through increased activity of pyruvate dehy-
drogenase under high salt conditions which may result in an influx of lipid droplets
in TME (Wei et al. 2019; Zhang et al. 2020).
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5.4 Autophagic Regulation of Immune System in TME

An ecosystem in a TME comprises a plethora of immunomodulatory signals secreted
by the cancer cells, CAFs, stromal cells, fibroblasts, macrophages, and T cells that
modify each other to define the metabolic plasticity of the tumor. Tumor-associated
macrophages (TAMs) create an environment conducive to facilitate the progression
of the tumor. Tumor cell-released autophagosomes (TRAPs) stimulate IL-10-pro-
ducing B cells and inhibit neutrophil production to repress antitumor immunogenic
signals. Moreover, within TME, TRAPs are also responsible for converting TAMs
into immunosuppressive M2 like macrophage secreting PD-L1, IL10. Inhibition of
autophagy by Beclin1 silencing led to a decrease of TRAPs and enhanced T cell
activation (Wen et al. 2018). The rush of antitumor response combined with translo-
cation of calreticulin (CRT), extracellular release of ATP, danger-associated molec-
ular patterns (DAMPs), high mobility group box 1 (HMGB1), and stimulation of
type I interferon (IFN) led to a form of cell death which is regarded as immunogenic
cell death (ICD). Targeting ICD by a combination of autophagy and chemotherapy is
a potential approach to improve the prognosis of cancer patients with a long-term
immune memory response to protect against the possible chance of tumor recurrence
(Wang et al. 2018). For instance, Sigma1 utilizes autophagy to eradicate the func-
tional PD-L1 from the cell surface to regulate the tumor immune microenvironment
(Maher et al. 2018).

There is debate over the topic of mechanism that autophagy utilizes to trigger
anticancer immunity while there are reports that show autophagy disarm anticancer
immunity mediated by cytotoxic T cells and natural killer (NK) cells (Li et al. 2017).
Autophagy-dependent regulation of TGF-β in myeloid cells leads to M2 macrophage
accumulation in TME and is involved in controlling metastasis along with epithelial-
mesenchymal transition (EMT) of tumor cells (Jinushi et al. 2017). The motility of
aggressive metastatic cancer cell in a TME cannot be attributed due to a single factor,
rather a hypoxic tumor core due to limited vascularization creating a hypoxic region
which gives rise to mesenchymal-like carcinoma cells that exhibit high EMT and
acquire stem cell-like propensity (Pietilä et al. 2016). Hypoxia-induced autophagy
eliminates pro-apoptotic NK-derived serine protease GZMB/granzyme B, thereby
blocking NK-mediated target cell apoptosis in breast tumor (Viry et al. 2014).
Interestingly, chemotherapy dependent p53 activation helps in granzyme B and
NK cells mediated breast tumor killing through induction of autophagy (Chollat-
Namy et al. 2019).

Recent work confirmed that hypoxic TME activates autophagy as well as
suppresses the immune surveillance of melanoma by NK cells through modulation
of Cx43-mediated intercellular communications (Tittarelli et al. 2015). Although
autophagy can be expendable for chemotherapy-induced cell death, but it is critical
for its immunogenicity (Michaud et al. 2011). Tumor cells with functional
autophagy responded to chemotherapy by attracting dendritic cells and T
lymphocytes into TME. Inhibition of autophagy suppressed the discharge of ATP
from dying cancel cell. Besides it will be interesting to figure out how autophagy can
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be used as a tool in a framework where cancer immunoediting integrates the immune
system’s dual host-protective and tumor-promoting roles (Schreiber et al. 2011).

On the other hand inhibition of autophagy, as clinically identified by loss of LC3,
HMGB1 staining followed by characteristic immune infiltration, and metastasis-free
survival was identified to be a driver of tumor progression due to their adverse role in
anticancer immunosurveillance (Ladoire et al. 2016). On a similar note, Atg5-mutant
KRas (G12D)-driven lung cancer was reduced by depletion of CD25+ Treg cells
thereby demonstrating that autophagy accelerates tumor progression; however, it
represses early oncogenesis, highlighting a role between autophagy and regulatory T
cell controlled anticancer immunity (Rao et al. 2014).

Gene profiling studies in early tumors of FIP200 conditional knockout mice saw
T cells infiltration and CXCL10 secretion in TME (Wei et al. 2011). Interestingly,
proinflammatory cytokine IL-1β secretion via an unconventional export pathway
depending on Atg5 and involving Golgi reassembly stacking protein (GRASP)
paralogues, GRASP55 (GORASP2) and Rab8a (Dupont et al. 2011). Moreover,
elimination of LC3B and Beclin 1 was showed to accompany an increase in ROS,
along with heightened stimulation of caspase-1 and secretion of interleukin 1β
(IL-1β) and IL-18 (Nakahira et al. 2011). Autophagy blockade led to M2 to M1
repolarization of TAM to increased sensitivity of laryngeal cancer cells to cisplatin
in mice (Guo et al. 2019).

Autophagic involvement in TME often presents a puzzle in that the infiltrating
lymphocytes with a TME are dysfunctional in situ, however, they exhibit stem cell-
like properties with massive metastatic potential. It was reported that increased
abundance of extracellular potassium restricts T cell effector activity by restraining
nutrient uptake, thus evoking autophagy and decline of histone acetylation at
effector and exhaustion loci. This in turn produces CD8+ T cells with enhanced
in vivo persistence, multipotency, and tumor clearance (Vodnala et al. 2019).

Besides this, the nonconventional role of autophagy was recently highlighted by
Cunha et al., where they showed antitumor effects of LC3-associated phagocytosis
(LAP) machinery impairment require tumor-infiltrating T cells, dependent upon
STING and type I interferon response. Furthermore, they also showed that autophagy
induction by myeloid cells in TME suppress T lymphocytes by effecting LAP
(Cunha et al. 2018).

5.5 Concluding Remarks

The most important aspect of the knowledge of autophagic relevance holds a clue to
modify the TME to determine the route to sensitization of a tumor (Mukhopadhyay
et al. 2016). The conventional therapeutic regime in clinical trials focusing on
autophagy, makes use of CQ/HCQ-based autophagy inhibition followed by different
drugs like cisplatin, paclitaxel, FOLFOX, or radiation. Considering the duality of
autophagy (Panda et al. 2015) and the intersecting cross-talking pathway shared with
apoptosis (Mukhopadhyay et al. 2014) it becomes important to understand the
autophagic point of no return.

5 Exploring the Metabolic Implications of Autophagy Modulation in Tumor. . . 111



But the biggest challenge in this regard of utilizing autophagy inhibition/induc-
tion-based medicine is that we still do not have any standard drug for clinical use that
is extremely potent and specific towards tumor cells. Most of the drugs result in a
holistic modulation of the tumor and all the neighboring cells so it becomes difficult
for the effector killer cells or the therapy to intrude the thick TME and reach the core
of the highly aggressive cancer cell that have already achieved high autophagic
potential as an anti-therapeutic defense response. Subsequent to this effect it
becomes a very big problem to estimate the accurate dose of therapy. It remains a
clinical dilemma, to hit the right target without inducing side effects (Yang and
Klionsky 2020). Moreover, there is also variation in stage-specific autophagy level
that adds complexity to its dual character. So, it becomes imperative to search for any
cancer stage-specific genetic event that can be assured to be a good modulatory
marker of TME. An in-depth investigation revealing the molecular mechanism of the
potential clinical drug on the interplay of TME’s autophagy and its metabolic
signatures should be carried out to deliver a coherent approach for tackling this
Achilles’ heel of cancer.
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Mitophagy and Reverse Warburg Effect:
Metabolic Compartmentalization of Tumor
Microenvironment

6

Prajna Paramita Naik

Abstract

‘The Warburg effect’ is one of the aberrant glucose metabolism pathways in
cancer cells that generate malignant phenotypes and promotes cancer progres-
sion. However, in the year 2009, a novel model called ‘two-compartment meta-
bolic coupling’ model or ‘the reverse Warburg effect’ was proposed where the
tumor stromal plays a crucial role in the process of tumor progression. Based on
this new model, the present review summarizes the autophagic stroma model of
cancer and multiple compartment model of tumor metabolism. Cancer-associated
fibroblast cells in tumor microenvironment undergo aerobic glycolysis (the
reverse Warburg effect) just like the cancer cells. Such a phenomenon is possible
only due to the forced activation of glycolysis by decreasing the mitochondrial
mass and/or generating dysfunctional mitochondria. The tumor stroma is often
found with autophagic and mitophagic activities as evidenced by the higher
expression of autophagic and mitophagic signature molecules. Moreover,
caveolin-1 and hypoxia-inducible factor-1α play a fundamental role in governing
the mitophagy-mediated occurrence of ‘reverse Warburg effect’. To the surprise,
cancer stem cell also follows the same strategy to exploit the tumor stroma in
order to derive high energy fuels for its survival and proliferation. Such parasitic
energy-coupling between the cancer cell and cancer-associated fibroblasts makes
the fibroblasts a metabolic slave. The metabolic coupling is the result of the
paracrine regulation where oxidative stress generated in adjacent fibroblasts by
the reactive oxygen species (ROS) produced by cancer cells along with the up-
regulation of the oncometabolite transport process through various transporters.
This review also discusses the paradigm shift from ‘the Warburg effect’ to ‘the
reverse Warburg effect’. It also describes the pivotal role of mitophagy in
triggering the ‘the reverse Warburg effect’.
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6.1 Introduction

Recently, tumor microenvironment (TME) has gained greater attention due to its
roles as an essential contributing factor in the progression of cancer as well as its
association with poor clinical outcomes. Moreover, tumors are very often regarded
as organs owing to their distinct vasculature wherein cancer cells are protected by a
protumor microenvironment (Egeblad et al. 2010). It is now obvious that tumor is
not a pure homogeneous population in vivo. Rather, the cells in tumor are set in
‘cancer cell nests’, which together constitute tumor microenvironment. TME
comprises (1) extracellular matrix (ECM), (2) cancer cells, (3) cancer stem
cells (CSCs), (4) infiltrating immune cells [B lymphocytes and T lymphocytes,
eosinophil, neurophill, basophil, natural killer (NK) cells, mast cells, antigen
presenting cells (APC) (dendritic cells and macrophages) and tumor-associated
macrophages (TAMs)], (5) Stromal cells [fibroblast cells, myofibroblasts and
cancer-associated fibroblasts (CAFs)], and (6) angiogenic endothelial cells [Tumour
associated endothelial (TAE) cells] along with their precursors (pericytes) (Friedl
and Alexander 2011; Hanahan and Coussens 2012). The TME is a discrete and
dynamic domain that guarantees well-defined functional attributes leading to the
formation of a suitable habitat that protects cancer cells from various genetic and
epigenetic insults and gives a favourable environment for growth and development.
Many documents report the occurrence of a desmoplastic ‘reactive stroma’
encompassing CAFs and myofibroblast-like cells that provides a protumor microen-
vironment (Zhang et al. 2013). In this regard, it is believed that stromal fibroblasts
manipulate the onco-metabolic processes and vice versa (Avagliano et al. 2018;
Zhang et al. 2013). Interestingly, reports claim that fibroblasts cells when co-cultured
with cancer cells lose their mitochondria. On the contrary, the cancer cells showed an
increased mitochondrial mass. Such behavioural aspects of fibroblasts and cancer
cells depict the host–parasite relationship where cancer cells act as ‘parasites’ and
stromal fibroblast cells as ‘host’ (Ko et al. 2011; Martinez-Outschoorn et al. 2011b;
Zhang et al. 2013). Similar to the previous reports on infectious ‘intracellular’
parasites which employs oxidative stress and autophagy to yield host-derived
recycled nutrients, the cancer cells also behave as ‘extracellular’ parasites. Cancer
cells exert oxidative stress which acts as a ‘weapon’ to induce autophagic elimina-
tion of mitochondria, by mitophagy to obtain nutrients from neighbouring stromal
cells and are compelled to perform aerobic glycolysis to generate energy-rich
metabolites (e.g. lactate and ketones) to ‘feed’ nearby cancer cells (Ko et al. 2011;
Whitaker-Menezes et al. 2011a). This paradigm is referred to as ‘The Autophagic
Tumor Stroma Model of Cancer Metabolism’ (Lisanti et al. 2010; Pavlides et al.
2010; Whitaker-Menezes et al. 2011a). Such a strategy employed by cancer cells
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simply via inducing oxidative stress wherever they go allow them to seed anywhere
and offers decreased dependency on blood vessels for food supply during metastasis.
This model advocates the quintessential role of autophagy and mitophagy in the
alterations of stromal catabolism to promote anabolic growth of cancer cells in order
to promote survival advantage during cancer progression (Pavlides et al. 2012).
Hence, antioxidants and autophagy inhibitors that have potential in uncoupling such
parasitic metabolic relationships inside the tumor microenvironment would provide
novel insights into cancer therapeutics.

6.2 Cancer Metabolism: Pasteur Effect, Inverted Pasteur Effect,
Warburg Effect and Reverse Warburg Effect

In the 18th century, Antoine Lavoisier reported that to release energy, living
organisms slowly burn the metabolic fuels by consuming oxygen. Later on, Louis
Pasteur postulated the ‘Pasteur effect’, which proposes that ‘fermentation is an
alternate form of life and that fermentation is suppressed by respiration’. Six decades
later, Warburg proposed that augmented glucose fermentation and diminished res-
piration is the chief ground of carcinogenesis. It was considered as a counter to
the ‘Pasteur effect’ and popularly known as ‘aerobic glycolysis’. However, another
scientist cotemporary to Warburg named Crabtree demonstrated that aerobic glycol-
ysis is used as an energy source during pathological overgrowths. Moreover, glucose
uptake and glycolytic activity were shown to have a negative effect on oxygen
consumption collectively known as ‘inverted Pasteur effect’ or ‘Crabtree effect’
(Vadlakonda et al. 2013). Intriguingly, it is the metabolic responses of tumor cells
which permit them to thrive and establish in a particular microenvironment.
Such metabolic adaptation noted in cancer cells controls the therapeutic responses.
Here, tumor progression and metastasis are dependent on the metabolic adaptation of
both cancer and non-cancerous cells present in the vicinity of tissue or organ.
Moreover, the metabolism involves both the intracellular network that distributes
and offers organic compounds, and the extracellular organic and signalling
molecules that facilitate intercellular signalling, which in turn regulates the meta-
bolic functioning of a cell. It is well known that the metabolic interactions among
the tumor cells and the stromal cells provide survival advantages where the stromal
cells facilitates metabolic substrates supplementation in the form of glutamine,
lactate, and fatty acids.

6.2.1 Warburg Effect

Initially, the German chemist and physician Otto Warburg and colleagues in the
1920s performed experiments on the lactate production and oxygen consumption in
tissues derived from liver carcinoma of rat (Warburg 1925). To their surprise, they
found strikingly different glucose metabolism between normal and cancer cells.
Moreover, cancer cells were found to be more reliant on glycolysis despite oxygen
availability. This led to the discovery of ‘Warburg effect’ which referes to the
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phenomenon of preferred aerobic glycolysis and enhanced lactate production despite
the availability of sufficient oxygen in the vicinity. This hypothesis of Warburg
proposes that usually cancer cells produce energy by non-oxidative glu-
cose break down, i.e., ‘Glycolysis’; whereas normal cells produce ATP through
oxidative phosphorylation ( OXPHOS ) (Warburg 1956). Warburg effect is
documented in many cancers including cancer of lungs, colorectal cancer, glioblas-
toma and breast. DeBerardinis et al. have experimentally proven the occurrence of
Warburg effect by studying the cancer cells incubated with 10 mM C-13-labelled
glucose under oxygenated conditions (DeBerardinis et al. 2007). Elevated levels of
glycolytic metabolites were observed during the metabolomic analysis when 4 mM
glucose was perfused to cancer cells prior to experiments suggesting the occurrence
Warburg phenomenon (Fantin et al. 2006). Only 2 ATP per molecule of glucose is
produced through glycolysis under the anaerobic condition, which is much lower
than OXPHOS (i.e. 30 or 32 ATP per glucose molecule). This indicates that in
comparison with aerobic glycolysis near about 15 times more glucose is needed to be
anaerobically catabolized to generate the same amount of energy. As a result,
tumor cells require more glucose, and to make that happen, there is a ten times
faster uptake of glucose in tumor cells than the normal cells. It has been suggested
that a lower yield but a higher rate of ATP production provides selective advantage
to cells competing for limited and shared energy resources. Moreover, cancer cells
compete with stromal cells and other cells in the tumor microenvironment due to
limited availability of glucose (Chang et al. 2015; Pfeiffer et al. 2001; Slavov et al.
2014). Moreover, cancer cells prefer anaerobic glycolysis for production of ATP
because of limited O2 exposure and hypoxic conditions (Bartrons and Caro 2007). It
has been found that high glucose levels in the culture media considerably reduces
mitochondrial respiration and vice versa (Gohil et al. 2010; Marroquin et al. 2007).
Under high (25 mM) and low (1 mM) glucose conditions, the cancer cells were
cultured to investigate oxygen consumption rates (OCRs; mitochondrial respiration)
and extracellular acidification rates (ECAR; glycolysis). It was noticed that upon
culture under high glucose conditions, cancer cells showed either high OCR-low
ECAR or low OCR-high ECAR, or high/moderate OCR-high/moderate ECAR.
However, under low glucose conditions, the cancer cells showed high–moderate
OCR with very little ECAR as other substrates are used for cellular ATP production
(Potter et al. 2016). Moreover, Warburg effect is not consistent as seen in a study
with rat hepatoma carried out by Weinhouse. According to this study, the slow-
growing cells were more oxidative, whereas the more proliferative cells were
more glycolytic. There occurs a dynamic interplay between oxidative and glycolytic
states called as metabolic flexibility or metabolic plasticity (Jose et al. 2011; Obre
and Rossignol 2015). Such metabolic flexibility is dependent on the environmental
conditions and cancer-associated mutations (Astuti et al. 2001; Baysal et al. 2000;
Dang et al. 2009; Yan et al. 2009). This kind of dynamic interplay of cancer cells is
accompanied with mitochondrial dysfunction. Moreover, studies showed that an
increased glycolytic rate is the consequence of decreased mitochondrial mass in
cancer cells (Gogvadze et al. 2010).

Warburg effect has been explained in many cancer types and their role in cancer is
proposed to be associated with transcriptional and post-translational related
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metabolic changes. One of the transcription factors, hypoxia-inducible factor
1 (HIF-1) up-regulates expression of glycolytic enzymes, glucose transporters,
and pyruvate dehydrogenase kinases (PDKs). Up-regulation of PDKs
phosphorlyates and deactivates mitochondrial pyruvate dehydrogenase (PDH) com-
plex and tricarboxylic acid (TCA) cycle (Semenza 2010). Many transcription
regulators like alpha estrogen-related receptor (ERR) and MYC are associated
with Warburg effect in the same manner (Yeung et al. 2008). Increased expression
of MYC in tumors is proposed to be linked with an enhanced glycolytic rate and
pathophysiology of metabolic modifications. MYC overexpression leads to high
uptake of fluorodeoxyglucose (FDG) in human breast cancer (Palaskas et al. 2011).
Again, MYC enhances the Warburg effect by elevating glucose flux and preventing
the entry of pyruvate into the TCA cycle. Moreover, MYC overexpression is
reported to enhance the activity of the glycolytic enzyme, transmembrane transport
of glucose, glutamine transporters and glutaminase-1 activity (Dang et al. 2008; Gao
et al. 2009; Nilsson et al. 2012; Osthus et al. 2000; Shim et al. 1997). The orphan
nuclear receptor, ERR regulates oxidative metabolism, and mitochondrial biogenesis
along with augmented glucose metabolism (Villena and Kralli 2008). Simi-
larly, tumor suppressor protein p53 can lower the glycolysis rate by enhancing the
enzymatic activity of fructose-2,6-bisphosphatase and thereby, increase the oxida-
tive phosphorylation process. Warburg effect is also associated with a diminished
level of expression of p53 in cancer cells linked with increased glycolysis (Bensaad
et al. 2006; Maddocks and Vousden 2011). p53 is also shown to promotesOXPHOS
by elevating cytochrome c oxidase and loss of expression of p53 in cancer cells
therefore can induce the Warburg effect (Matoba et al. 2006). Moreover, the
Warburg effect is also investigated for its association with post-translational regula-
tion in cancer metabolism. Oncogenic phosphorylation events on metabolic enzymes
promote aerobic glycolysis. It has been found that hexokinase (HK) and
phosphofructokinase-2 (PFK-2) phosphorylation by AKT; downstream of PI3K
activation facilitates glucose transporter (GLUT) expression and its localisation to
the plasma membrane (Robey and Hay 2009). Studies on various cancer models
have depicted the relationship of glycolysis and post-transcriptional modification of
the M2 isoform of pyruvate kinase (PKM2). Post-translational modifications of
PKM2 like the K305 acetylation decreases its enzymatic activity and modifies the
glycolytic pathway. Moreover, it leads to increased degradation of such enzymes by
activating chaperone-mediated autophagy. The expression of Y105F mutant
of PKM2 in tumor cells was shown to have reduced lactate production and increased
oxygen consumption which was consequently found to induce tumor xenograft
development (Hitosugi et al. 2009). Again, the induction of PI3K/AKT pathway
led to an increase in the phosphorylation of PFK-2, and HK and enhanced glucose
influx; subsequently up-regulating the glycolytic pathway (Høyer-Hansen and
Jäättelä 2007; Zheng et al. 2011). As mentioned earlier, high demand for glucose
is an important feature of cancer and in tumors, there is enhanced relative uptake of
FDG, or fluorodeoxyglucose F 18 (18F-FDG). However, it has been found that
18F-FDG uptake is considerably high in hypoxic cancer cells than normoxic ones.
Moreover, 18F-FDG uptake in the normoxic cancer cells is typically low and is
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similar to cells of stromal or necrotic regions leading to the question whether the
Warburg effect actually applies to normoxic cancer cells or not. It has also been
reported that there is an augmented increase in 18F-FDG uptake in hypoxic cancer
cells than the normoxic ones in both in vivo and in vitro culture studies. Hence,
cancer cells are supposed to have increased demand for glucose in the absence of
oxygen which is logically explained by the Pasteur effect (Zhang et al. 2015).

6.2.2 The Reverse Warburg Effect

Previously, it was believed that the Warburg effect is a phenomenon performed only
by cancer cells. However, human skin keloid fibroblasts were also shown to produce
energy in the form of ATP mostly via glycolysis. Similarly, hypoxic
microenvironments in tumors and keloids led to the activation of the same phenom-
enon (Vincent et al. 2008). Firstly, Pavlides et al. (2009) described that hydrogen
peroxide (H2O2) released by cancer cells could induce oxidative stress in CAFs
resulting in the loss of mitochondrial function leading to a metabolic switch from
OXPHOS to glycolysis. Subsequent to the glycolytic switch, the lactate production
by CAF accelerates (Zong et al. 2016). Lactates are transported to extracellular space
via monocarboxylate transporter 4 (MCT4) and taken up by the cancer cells by
MCT1 for its use in oxidative metabolism (Martinez-Outschoorn et al. 2011a, 2013).
Furthermore, many co-culture systems involving fibroblast cells and cancer cells
were experimented in this regard and it was observed that epithelial cancer cells are
potentially capable of inducing the Warburg effect in stromal fibroblasts (Martinez-
Outschoorn et al. 2011a). This phenomenon is popularly regarded as ‘reverse
Warburg effect’ (RWE) (Fig. 6.1) (Jiang et al. 2019; Pavlides et al. 2009). Basically,
the hypoxic and nutritionally challenged tumor microenvironment exploits CAFs as
‘metabolic slaves’ (Roy and Bera 2016). Interestingly, it is to be noted down that in
the current situation stromal fibroblasts cells and not the cancer cells are undertaking
the Warburg effect. The reverse Warburg effect was proposed to explain metabolic
flexibility as mentioned earlier. To understand it better, it can be explained in two
steps. In the first step, the cancer cells educate CAFs to boost aerobic glycolysis
which leads to the enhanced production of energy-rich fuels (e.g. pyruvate, ketone
bodies, fatty acids and lactate). Furthermore, in the second step, these energy-rich
fuels produced by CAFs are utilized in mitochondrial OXPHOS by the cancer cells.
Particularly, the lactates are converted to pyruvate by lactate dehydrogenase-
B (LDH-B) enzymes (Martinez-Outschoorn et al. 2010b). It is also found that in
normoxic microenvironment, the oxidative tumor performs OXPHOS to leave
behind glucose for its utilization by glycolytic cancer cells in the hypoxic microen-
vironment (Bonuccelli et al. 2010; Feron 2009; Porporato et al. 2011; Sandulache
et al. 2011; Sonveaux et al. 2008; Wilde et al. 2017). In other words enhanced
lactate production is utilized in mitochondrial OXPHOS in cancer cells for energy
production. This is also accompanied by diminished expression of caveolin-
1 (Cav-1) in stromal cells. According to report, the Cav-1 is an important structural
protein that plays an essential role in endocytosis, vesicular transport, and other
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signalling pathways. It is also reported to aggravate oxidative stress mediated mito-
chondrial dysfunctions in CAFs (Sotgia et al. 2009; Witkiewicz et al. 2009,
2010). Furthermore, it is noticed that there is an elevated expression of
mono-carboxylate transporters (MCTs) which performs the role of ‘energy transfer
device’ (e.g., lactate) between CAFs and cancer cells through ‘lactate shuttle’ (Choi
et al. 2013; Cirri and Chiarugi 2012; Rae et al. 2009; Whitaker-Menezes et al. 2011b;
Witkiewicz et al. 2012). The reverse Warburg effect is basically the co-existence of
metabolic alterations in both stromal cells and cancer cells depending on the demand
of energy. On one hand, H2O2 secreted by cancer cells forms an oxidative microen-
vironment and up-regulate MCT1 to mediate enhance uptake of lactate. On the other
hand, the stromal cells react to oxidative stress generated by H2O2 by mediating
HIF-1-induced autophagic flux. This may lead to at least two levels of consequences.
Firstly, it can mediate the degradation of Cav-1 by the autophagic process leading to
tumor progression. Secondly, it can induce the transactivation of glycolytic enzymes
by HIF-1 and up-regulation of MCT4 that mediates the efflux of lactate. Moreover,
high expression of MCT4 in stromal cells is associated with a poor overall survival
rate than low stromal Cav-1 status (Galluzzi et al. 2012). Again, loss of Cav-1 in
stromal cells up-regulates the expression of glycolytic enzyme pyruvate kinase M2
(PKM2) and glycolysis. Cav-1 null stromal cells are also demonstrated to have
acclerated lactate dehydrogenase-A (LDH-A) activity. Moreover, according to

Fig. 6.1 Schematic representation of reverse Warburg effect. Diagram shows the mitochondrial
dysfunction in fibroblast cells mediated by the ROS released by cancer cells leading to the up-
regulation of aerobic glycolysis. The release of lactate and other high energy fuels by
fibroblasts are then utilised by cancer cells for metabolic processes like OXPHOS
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documents an increased glycolysis pathway in stromal cells fuels the OXPHOS
pathway in adjacent cancer cells (Capparelli et al. 2012). CAF cells when
co-cultured with RAS-and NF-κB–dependent head and neck squamous cell carci-
noma (HNSCC) cell line could trigger metabolic reprogramming via oxidative
stress that brings about lactate shuttling with the help of MCT1/MCT4 to promote
metabolic coupling between the tumor and tumor stroma (Curry et al. 2014). Along
with the stromal and tumoral metabolic coupling, the lactate shuttle maintains an
acid–base balance by inhibiting the generation of a fatal acidic microenvironment
(Lee and Yoon 2015; Martinez-Outschoorn et al. 2011b). The tumor-derived lactate
and autophagic fibroblasts derived lactate together perform additional roles. Lactates
when taken up by endothelial cells via MCT1 stimulate autocrine signalling by NF-
kB/IL-8 pathway to promote angiogenesis (Vegran et al. 2011). Lactate release via
MCT4 from the breast and colon cancer cells are reported to induce IL-8-dependent
angiogenesis (Azuma et al. 2007; Polet and Feron 2013). Again, lactate can also
induce vascular endothelial growth factor-A (VEGFA) expression via HIF-1α acti-
vation (De Saedeleer et al. 2012; Lee et al. 2015; Sanità et al. 2014). The ‘biofuel’
lactate-induced generation of IL-8 and VEGFA together encourage pro-survival and
pro-angiogenic activities in tumor growth (Polet and Feron 2013). Moreover, to fulfil
the energetic demands, cancer cells use several nutrients including glucose, lactate,
and glutamine. The schematic diagram of the molecular regulation of the reverse
Warburg effect is represented in Fig. 6.2.

6.2.3 Two Compartment Model of Tumor Metabolism

A compartment-specific role of autophagy in tumor metabolism was proposed to
explain the metabolic paradigm (Fig. 6.3). As discussed earlier, this model describes
that occurance of autophagy, mitochondrial dysfunction, and mitophagy in tumor
stroma results in the recycling of nutrients and provides chemical high-energy
‘fuels,’ and building blocks. This triggers the anabolic growth of tumors by inducing
oxidative mitochondrial metabolism and autophagy mediated resistance in cancer
cells. This stromal-epithelial metabolic coupling is popularly termed as the ‘two-
compartment tumor metabolism’ (Martinez-Outschoorn et al. 2012; Salem et al.
2012). This hypothesis is stringently verified by experimenting on two genetic
variants involving the fibroblasts with constitutive autophagic activity in addition
to mitochondrial dysfunction and autophagy-resistant cancer cells
with enhanced mitochondrial activity. Golgi phosphoprotein 3 (GOLPH3)
overexpressing autophagy resistant cells are shown to display mitochondrial biogen-
esis. However, the damage-regulated autophagy modulator (DRAM) and liver
kinase B1 (LKB1) overexpressing cells stimulated AMP-kinase activation and
autophagy in CAFs (Salem et al. 2012). This autophagic fibroblasts exhibited
mitochondrial dysfunction, increased glycolysis and generation of mitochondrial
fuels. Both types of cells, that is, autophagic fibroblasts and autophagy resistant
cancer cells promoted tumor growth where CAFs displayed glycolysis and cancer
cell showed increased OXPHOS. In breast cancer, the activation of GPER/cAMP/
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PKA/CREB and PI3K/AKT/mTORC1 signalling pathways in CAFs stimulate the
aerobic glycolysis switch to secrete pyruvate and lactate for fuelling the OXPHOS
in cancer cells (Yu et al. 2017). Moreover, ‘Warburg-like’ cancer metabolism and
DNA damage response in tumor microenvironment share a strong association by
activating the downstream signalling of DNA damage/repair target gene DRAM
(Salem et al. 2013; Sotgia et al. 2013; Yang et al. 2016b). Cancer cells usually take
advantage such resulting metabolites from the altered metabolism operating in
CAFs. Moreover, higher expression of GLUT1 is seen in the fibroblasts cells
when co-cultured with prostate cancer cells (Kihira et al. 2011; Sanita et al. 2014;
Sun et al. 2014). Moreover, CAFs also exports lactate through MCT4 (Andersen
et al. 2015; Sanità et al. 2014). Intriguingly, the prostate cancer cells on the other

Fig. 6.2 Molecular mechanism of reverse Warburg effect. Oxidative stress generated in CAFs by
ROS produced from cancer cells causes activation of autophagy/mitophagy and loss of Cav-1.
Again, the stimulation of glycolysis occurs to release lactate which is then transported from CAFs to
cancer cells to carry out OXPHOS
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hand showed decreased GLUT1 expression and increased lactate influx via MCT1
(Fiaschi et al. 2012). Similar findings are also reported in breast cancer cells
(Johnson et al. 2017; Le Floch et al. 2011; Witkiewicz et al. 2012). Furthermore,
in another co-culture system with pancreatic cancer cells, MCT1 inhibition in CAFs
is shown to decrease the expression pyruvate kinase 2 (PK2) along with the glucose
import and lactate secretion (Giannoni et al. 2015). Consistent with the reverse
Warburg effect, metastatic breast cancer cells could potentially amplify OXPHOS
whereas the adjacent stromal cells were reported to lack detectable mitochondria
and perform glycolysis. This was proved by double labelling experiments with the
molecular marker for glycolysis (MCT4) and OXPHOS (TOMM20 or COX). This
experimet discovered the presence of at least two distinct metabolic compartments
that lie side-by-side both in primary tumors and their metastases (Sotgia et al. 2012).
Again, there is little information about lipid metabolism in tumor microenvironment.
Breast cancer cells in response to CAFs-conditioned media led to the overexpression
of fatty acid transporter 1 (FATP1) and accumulation of lipid in cancer cells. Here,
FATP1 negotiates the symbiosis of lipid metabolism between breast cancer cells and
CAFs (Lopes-Coelho et al. 2018). CAFs are also shown to transport
lysophospholipids (lsyo-PLs) directly to the pancreatic cancer cells via lipid
droplets. Moreover, fibroblasts release lipids to the neighbouring cancers cells
through microvesicles in melanoma and prostate cancer (Lopes-Coelho et al.
2018; Santi et al. 2015). Similar to lipid transport, glutamine release by CAFs and
uptake by cancer cells show another aspect of metabolic coupling in tumor stroma.
In ovarian cancer, glutamine metabolism in CAFs is reported to promote tumor
growth with an increase in glutamine transporter SLC6A14 in cancer cells when
co-cultured with CAFs. Thus, co-targeting the glutaminase in cancer and glutamine
synthetase in CAFs will provide new insight into cancer therapeutics (Ko et al. 2011;
Yang et al. 2016a).

6.2.4 Three Compartment Model of Tumor Metabolism

Reports also propose the presence of a three compartments model of tumor metabo-
lism in cancer (Fig. 6.3). According to this model, the first metabolic compartment
comprising cancer cells in periphery depends on OXPHOS. Whereas the second
metabolic compartment consisting of cells occupying the deeper layer of tumors is
often found to have more glycolytic (aerobic or anaerobic) activity. The third
metabolic compartment comprising of fibroblast cells in tumor stroma undergoes
aerobic glycolysis. Interestingly, this model is experimentally shown through ele-
vated MCT4 expression in tumor stroma and deeper tumor to facilitate the release of
biofuels. However, MCT1 expression level was found to be higher in the leading
tumor edge. The OXPHOS execution in the leading tumor edge was confirmed by
functional LDH-B and mitochondrial metabolism marker translocase of outer mito-
chondrial membrane 20 (TOMM20) (Curry et al. 2014). High oxidative stress
(MCT4+) is an important feature in cancer tissues as well as tumor stromal cells
with higher tumor stage. High oxidative stress is also a marker for cancer-associated
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fibroblasts and a key hallmark of cancer tissues which render them the ability to
exploit the adjacent proliferating and mitochondrial-rich cancer cells. Two of the
metabolic compartment that are the ‘non-proliferating’ populations of cells (Ki-67�/
MCT4+) supply high-energy mitochondrial ‘fuels’ to the ‘proliferative’ cancer cells
to catabolize and derive energy thereby play an essential role in determining the
clinical outcome of the disease. In normal mucosa of head and neck cancers also,
there are evidence of the presence of three-compartment metabolism. The normal
basal stem cells are the proliferative (Ki-67+), mitochondrial-rich (TOMM20+/
COX+) and can have the ability to uptake mitochondrial fuel like L-lactate and
ketone bodies (MCT1+). It can be inferred that OXPHOS is a common characteristic
of both normal stem cells and proliferating cancer cells (Fig. 6.4) (Curry et al. 2013).
In head and neck cancer, similarly, a population of highly proliferative epithelial
cancer cells with high mitochondrial content and ability for mitochondrial
fuels import (Ki-67+/TOMM20+/COX+/MCT1+) were identified. Such proliferating
cells are found to be surrounded by the non-proliferating epithelial tumor as well as
stromal cells (Ki-67�) that are deficient in mitochondria (TOMM20�/COX�/
MCT1�) and are displaying oxidative stress and glycolysis (MCT4+). For simpler
understanding it can be stated that ‘Three compartment tumor metabolism’

comprises (1) non-proliferative and mitochondrial-poor cancer cells (Ki-67�/
TOMM20�/COX�/MCT1�); (2) proliferative and mitochondrial-rich cancer cells
(Ki-67+/TOMM20+/COX+/MCT1+) and (3) non-proliferative and mitochondrial-
poor stromal cells (Ki-67�/TOMM20�/COX�/MCT1�). The non-proliferative can-
cer along with the stromal cells offeres metabolites for OXPHOSto be operated in
proliferating cancer cells (Bagordakis et al. 2016). Rapidly proliferating and poorly
differentiated stem-cell-like HNSCC cancer cells have higher level of OXPHOS
activity. Recently, Curry et al. documented a potential relationship of cancer
stemness with lactate/ketone uptake and mitochondrial metabolism in head and
neck cancer. Moreover, the three-compartment metabolism in HNSCC tumors
involves the (1) hyper-proliferative (Ki-67+), mitochondrial-rich (TOMM20+/
COX+) and mitochondrial fuels import abled (MCT1+) poorly differentiated cancer
cells (CSCs) that undergo OXPHOS. Contrary to the proliferating cancer cells, the
stromal cells and well-differentiated cancer cells are mitochondrial-poor, glycolytic
and non-proliferative. The non-proliferating compartments of tumor are MCT4+,
that is, with characteristics like oxidative stress and mitochondrial dysfunction that
can generate and export of L-lactate and ketone body (Curry et al. 2013)
(Fig. 6.4). However, another category of cells, that are, cancer stem cells (CSCs)
are too an important regulator of TME and tumorigenesis. Intriguingly, CSCs are
documented to rely more on OXPHOS for their energy production. However, the
CSCs also seem to be metabolically plastic i.e., they can exhibit both glycolytic/and
oxidative phenotype (combined phenotype) depending on the demand. The quies-
cent and non-proliferative CSCs are OXPHOS phenotype with high mitochondrial
mass whereas the proliferative CSCs show combined phenotype (Chae and Kim,
2018). Therefore, it is obvious that there is a multicompartmental metabolism in the
tumor depending on the micro-environmental condition and demand for prolifera-
tion (Fig. 6.4).
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6.3 Mitophagy: The Regulator of Reverse Warburg Effect

Autophagy is basically an evolutionarily conserved catabolic process where a cell is
programmed to self digest its cytoplasmic content to release metabolites and gener-
ate ATP during nutrient starvation, hypoxia, chemo/radio-therapeutic stress, and
oncogene activation. Moreover, autophagy also provides a survival advantage
where cancer cells are protected in response to metabolic deprivation and hypoxia
during tumor progression. Unlike this bulk or non-selective autophagy, the selective
autophagy or cargo-specific autophagy encourages removal of superfluous or dam-
aged organelles and long-lived protein aggregates under nutrient-rich conditions.
Lemasters et al. coined the term “mitophagy” to explain the autophagolysosomal
degradation of mitochondria. Mitophagy maintains mitochondrial quality control and
homeostasis in cells during normal cyto-physiological condition. Autophagic
removal of dysfunctional mitochondria and metabolic turnover by mitophagy can
promote cellular protection and chemoresistance in many cancers. Many reports are
available to describe about the pro-tumor role of Parkin-dependent mitophagy as
they regulate metabolism in tumor microenvironment (Naik et al. 2019). Occurrence
of glycolysis and OXPHOS is directly related with the structural and functional
dynamics of mitochondria. Healthy mitochondria can easily carry out OXPHOS
while the dysfunctional ones cannot do so. Therefore, they must be eliminated from
the cells via mitophagy. The elimination of dysfunctional mitochondria leads to the
decrease in mitochondrial content forcing the cells to opt for alternative bioenerget-
ics pathway like glycolysis. In order to exploit the fibroblast cells to release energy
rich fuels, cancer cells must instigate mitophagy in CAFs According to Lisanti et al.
stromal cells, such as fibroblasts lose their mitochondria by mitophagy to carry out
the reverse Warburg Effect (Martinez-Outschoorn et al. 2010a). There is also trans-
lational evidence to support mitophagic tumor stroma of cancer metabolism. It was
found that in the co-culture system of cancer cells and fibroblasts, the later showed
remarkable alteration in mitochondrial content. Moreover, cancer cells are shown to
display very low mitochondrial mass under homotypic culture conditions. However,
when cultured with fibroblasts, there occurs a significant increase in the mitochon-
drial mass in cancer cells and a decrease in the mitochondrial mass in fibroblasts
(Martinez-Outschoorn et al. 2010a, d). Mitophagy has to play a critical
responsibilty in the generation of a glycolytic phenotype in cancer (Fig. 6.5). It is
also important to mention that homotypic cancer cells when administered with
lactate showed a considerable augmentation in mitochondrial content, indicating that
administration of lactate phenocopies the presence of reactive fibroblasts with
activated mitophagy. A unilateral transfer of energy takes place from glycolytic
stromal fibroblast cells to oxidative cancer cells developing a parasitic relation-
ship among them. Upon oxidative stress via the release of ROS by the cancer
cells, Cav-1 is degraded (Sung et al. 2018). Interestingly, a study by Castello-Cros
et al. showed that Cav-1 loss in stromal fibroblasts in mammary cells leads to over-
expression of plasminogen activator inhibitor type 1 and 2 (PAI-1/2). PAI-1/2
overexpressing fibroblast cells upon co-culture with breast cancer cells could pro-
mote tumor growth and metastasis by inducing OXPHOS in nearby cancer cells.
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Moreover, it led to the up-regulation of activated fibroblasts markers such as
calponin, vimentin, and fibronectin (Muda 2011). Subsequently, autophagy/
mitophagy gets initiated in activated fibroblasts as evidenced from the
overexpression of Beclin-1 and LAMP-1/2. Nextly, the ROS released by autophagic
fibroblasts are reported to promote genomic instability in the cancer cells in the
vicinity, thereby leading to the stimulation of further oncogenic mutations to support
cancer cell proliferation. It can be summarized that the autophagic stroma model of
cancer proposes the provocation of oxidative stress mediated mitochondrial dys-
function leading to the activation of autophagy/mitophagy process that finally helps
in tumor invasion and metastasis. According to reports, as mitophagy occurs in
the stromal fibroblast cells, they are compelled to perform aerobic glycolysis,
resulting in the formation of excess lactate and/or ketones. One intriguing study
involving the stable over-expression of autophagy and mitophagy gene BCL2/
adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), Cathepsin B
(CTSB) and Autophagy-related protein 16-1 (ATG16L1) in telomerse-immortalised
human fibroblasts (hTERT-BJ1) showedmitochondrial dysfunction, and constitutive
autophagic/mitophagic features ensuing aerobic glycolysis to produce L-lactate and
ketone bodies. Moreover, it was found that hypoxia-triggered break down of Cav-1

Fig. 6.5 Mitophagy regulating the reverse Warburg effect. Release of ROS to nearby CAFs causes
mitochondrial dysfunction and activation HIF-1α, NF-kB, DRAM, LC3, BNIP3, BNIP3L,
ATG16L1 and so on which further leads to the activation of autophagy as well as mitophagy.
Mitophagy activation leads to the reduction of mitochondrial mass and OXPHOS . This also
causes the stimulation of glycolysis in CAFs by the up-regulation of PKM1/2 and LDH-B
expression. The lactate produced by aerobic glycolysis is then transported from CAF by MCT4
to cancer cells via the MCT1 to be used for OXPHOS
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leads to the up-regulation of autophagy/mitophagy signature proteins such as
microtubule-associated light chain 3 (LC3), ATG16L, BNIP3 and BCL2/adenovirus
E1B 19 kDa protein-interacting protein 3-like (BNIP3L) (Martinez-Outschoorn et al.
2010c). Furthermore, knockdown of Cav-1 through si-RNA approach in stromal
fibroblasts could enhance the level of lysosomal signature proteins and mitophagy
markers. In another study, mammary fat pads of Cav-1 (�/�) null mice showed over-
expression of autophagy/mitophagy markers like LC3 and BNIP3L (Qian et al.
2019; Thompson et al. 2012). Additionally, Cav-1 knockdown in fibroblasts was
shown to promote ROS production, oxidative stress generation, and mitochondrial
dysfunction which further led to the acceleration of autophagy/mitophagy. More-
over, in breast cancer patients, proteins like BNIP3L, PKM2 and LDH-B are
expressed in high amount in Cav-1 deficient tumor stromal compartment (Lisanti
et al. 2010). Furthermore, the expression of aerobic glycolysis marker PKM2, and
LDH-B and mitophagy marker BNIP3L in CAFs are reported as effective
biomarkers for the identification of high-risk cancer patients (Chiavarina et al.
2011; Martinez-Outschoorn et al. 2010d; Salem et al. 2012; Sung et al. 2020).
Again, PKM1 has the ability to increase the glycolytic potential of stromal cells
accompanied with the enhanced lactate output, whereas PKM2 can poten-
tially induce the NF-kB-mediated autophagy induction and enhances the ketone
body output. Such induction of oxidative stress-induced autophagy/mitophagy in the
tumor stromal compartment offers a strategic mean to the cancer cells so that they
can directly ‘feed off’ the nutrients, chemical building blocks, and energy-rich
metabolites released by stromal fibroblasts (Chiavarina et al. 2011; Guido et al.
2012). This parasitic relationship and metabolic dependency also emphasizes a
worthwhile solution to the ‘autophagy paradox’ in cancer aetiology and chemother-
apy. Another document supporting this hypothesis reported the presence of a
cytokine-mediated cross-talk between CAFs and cancer cells and a remark-
able exchange of metabolites is noted among them. In this context, hypoxia-induced
HIF-1α, cytokines, active ROS, and ammonia released by cancer cells in addition
to the limited nutrient status in the tumor microenvironment are found to activate
mitophagy and glycolysis in CAFs that culminates in the metabolic coupling
through release of metabolites. As a result, anabolism is stimulated in cancer cells
with downregulation of autophagy with consequent tumor growth (Sanita et al.
2014). The autophagy/mitophagy induction in hTERT (human telomerase reverse
transcriptase)-immortalised fibroblasts as seen from the up-regulation of Beclin1,
LAMP1, Cathepsin B, and BNIP3 is supposed to be mediated by DRAM genes. The
DRAM overexpression in fibroblasts is also shown to downregulate the expression
of Cav-1 and mitochondrial OXPHOS complexes indicating the onset of mitochon-
drial dysfunction and autophagy/mitophagy (Guido et al. 2012). Moreover, AMP–
kinase activation also indicates the metabolic dysfunction in CAFs (Roy and Bera
2016). Moreover, under the up-regulated BNIP3 condition and DRAM
overexpression, there was a decline in OXPHOS complexes I, III and IV
suggesting the instigation of mitophagy onset (Liu et al. 2014; Salem et al. 2012).
Again, any dysfunction in mitochondria triggers autophagy/mitophagy in CAFs that
subsequently promotes reverse Warburg effect by agravating HIF-1α, and NF-kB. It
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is also accompanied with the activation of antioxidant defence by encouraging
the up-regulation of antioxidant enzymes (peroxiredoxin-1) and antiapoptotic
proteins (TIGAR) (Martinez-Outschoorn et al. 2010c).

6.4 Conclusion and Future Perspective

Altered metabolism always provides the means to cancer cells to meet the need for
unrestricted proliferation. Metabolic reprogramming of TME is highly necessary for
tumor initiation and progression. Additionally, tumors are often seen consisting of a
metabolically heterogeneous population where different cell types with different
metabotypes coexist and collaborate to assure cancer progression. In TME, the CAFs
represent a crucial cell type governing the metabolic crosstalk between cell types.
Cancer cells have also developed the potential to use a variety of fuel sources. Tumor
cells are shown to have increased aerobic as well as mitochondrial metabolism for
ATP production, redox balance in various tumor cell types. Such metabolic alter-
ation can be targeted for therapeutic intervention. The metabolic slavery of CAFs in
TME can be a prospective target in this aspect. Strategies to inactivate CAFs
myofibroblastic phenotype and disruption of metabolic crosstalk between tumor cells
and CAFs might decrease the aggressiveness of tumor. In this regard, human patients
are now experimented for various early-phase clinical trials (Kishton and Rathmell
2015; Ross and Critchlow 2014; Vander Heiden 2011). However, there are two most
important concerns to be taken care of while adopting this approach. The first one is
the metabolic plasticity adopted by cancer cells for allowing them to undergo rapid
metabolic rewiring as a compensatory response. Secondly, the chance of develop-
ing potential toxicity in rapidly proliferating normal cells by targeting fundamental
metabolic pathways. However, targeting metabolic pathways with anti-metabolites
has been employed for a long time and serves as a successful treatment modality in
multiple cancer types. Undoubtedly, insights into new metabolic models would lead
to the development of novel biomarkers and parallel therapies which in turn would
facilitate the discovery of personalised cancer medicine. As the oxidative stress and
autophagy/mitophagy play a central role in this process, novel powerful
antioxidants, autophagy/mitophagy inhibitors need to be developed to mitigate
cancer.
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Abstract

Mitochondria are well known as the “energy factory” of the cell and are essen-
tial for better cell survival and programmed cell death and its quality control plays
an imperative role in fine-tuning cellular and organismal homeostasis. For the
betterment of mitochondrial homeostasis, a coordinated regulation is necessary
between the genesis of functional and/or fresh mitochondria through mitochon-
drial biogenesis and the elimination of dysfunctional and/or damaged
mitochondria through mitophagy. When mitochondria are formed in excess
amounts, it has detrimental effects for several cell types, causing various patho-
physiological conditions such as cancer. Moroever, mitophagy has evolved as a
protective mechanism in various types of cancer cells upon mild to moderate
stress controlling the size and quality of the functional mitochondrial pool.
However, excessive activation without proper compensatory mitochondrial bio-
genesis may also give rise to malfunction of mitochondria and lead to mitophagic
cell death. Similarly, triggering the biogenesis of new mitochondria has been
advantageous, although the hyperactivity of which may lead to higher oxygen
consumption and oxidative stress. Therefore, in this review we have discussed
multiple conserving strategies, cancer cells developed to control mitochondrial
biogenesis, mitophagy, and mitophagic cell death, promoting longevity and
resistance toward extreme stress, and how their regulatory imbalance accelerates
both survival and cell death during cancer progression.

P. P. Praharaj · B. P. Behera · S. R. Mishra · S. Patra · K. K. Mahapatra · D. P. Panigrahi · C. S. Bhol ·
S. K. Bhutia (*)
Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
e-mail: sujitb@nitrkl.ac.in

# Springer Nature Singapore Pte Ltd. 2020
S. K. Bhutia (ed.), Autophagy in Tumor and Tumor Microenvironment,
https://doi.org/10.1007/978-981-15-6930-2_7

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6930-2_7&domain=pdf
mailto:sujitb@nitrkl.ac.in
https://doi.org/10.1007/978-981-15-6930-2_7#DOI


Keywords

Mitochondria · Mitochondria biogenesis · Mitophagy · Mitophagic cell death ·
Cancer

Abbreviations

AMBRA1 Activating molecule in BECN1-regulated autophagy protein 1
AMPK 5’-AMP-activated protein kinase
BECN1 Beclin 1
Bnip3 BCL2/adenovirus E1B 19-kDa protein-interacting protein 3
Bnip3L BCL2/adenovirus E1B 19-kDa protein-interacting protein 3-like
COX IV Cytochrome c oxidase subunit IV
Drp1 Dynamin-related protein 1
ER Endoplasmic reticulum
FIP200 FAK family kinase-interacting protein of 200 kDa
ILS Insulin-like signaling
LC3 Microtubule-associated protein 1 light chain 3
LIR LC3-interacting region
MDV Mitochondria-derived vesicles
Mfn1/2 Mitofusin-1/2
mPTP Mitochondrial permeability transition pore
mtDNA Mitochondrial DNA
mTOR Mechanistic target of rapamycin
nDNA Nuclear DNA
NRF1 Nuclear respiratory factor 1
NRF2 Nuclear factor erythroid 2-related factor 2
Opa1 Optic atrophy protein 1
Parkin E3 ubiquitin–protein ligase parkin
PGC-1α/1β Peroxisome proliferator–activated receptor-γ coactivator 1α/1β
PINK1 Phosphatase and tensin homolog–induced putative kinase 1
PKA Protein kinase A
PRC PGC-1-related coactivator
ROS Reactive oxygen species
SAM Sorting and assembly machinery
SQSTM1 Sequestosome 1
TAX1BP1 Tax1-binding protein 1
TBK1 Serine/threonine-protein kinase TBK1
TFAM Transcription factor A, mitochondrial
TIM Translocase of the inner membrane
TOM Translocase of the outer membrane
ULK1/2 Serine/threonine-protein kinase ULK1/2
UPS Ubiquitin–proteasome system
VDAC Voltage-dependent anion channel
VPS Vacuolar protein sorting
VPS15 Phosphoinositide 3-kinase regulatory subunit 4
WIPI2 WD repeat domain phosphoinositide-interacting protein 2
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7.1 Introduction

Mitochondria, well known as “energy factory,” are double-layered membranous
organelles with vital roles in modulating most of the essential cellular developments
such as energy production, metabolite synthesis, lipid metabolism, calcium signal-
ing, and cellular homeostasis needed for cell survival and apoptotic cell death
(Bravo-Sagua et al. 2013; Pinton et al. 2008; Porporato et al. 2018; Yu and
Pekkurnaz 2018). Similar to the prokaryotic organism, mitochondria have several
copies of their own circular DNA. However, nuclear genes encode most of the
mitochondrial proteins (Ploumi et al. 2017). The cellular mitochondrial contents,
structure, and function are maintained through the two oppositely driving, evolu-
tionary conserved cellular pathways viz. mitochondrial biogenesis and mitophagy,
which coordinated regulation, is the prerequisite for sustainable energy metabolism,
during various metabolic and cellular stress (Palikaras et al. 2015a; Ploumi et al.
2017; Vega et al. 2015). Any sort of instability or discrepancy between these two
processes triggers the beginning and advanced unfolding of numerous pathophysio-
logical disorders such as cancer, neurodegenerative diseases, and aging (Vafai and
Mootha 2012). Therefore, mitochondrial quality control plays an imperative role in
fine-tuning cellular and organismal homeostasis.

Mitochondrial biogenesis, is an intricate cellular pathway, which includes repli-
cation, transcription, and translation of mitochondrial DNA (mtDNA), with
subsequent distribution of newly synthesized phospholipids, mitochondrial-, and
nuclear-encoded proteins, which were then recruited, imported, and assembled in the
mitochondrial sub-compartments (Ventura-Clapier et al. 2008; Zhu et al. 2013). This
whole process is firmly regulated by different growth factor- or hormone-initiated
intracellular signaling cascades, which leads to the stimulation of several nuclear
transcription factors (Weitzel and Iwen 2011), for example, peroxisome proliferator-
activated receptor gamma, coactivator-1α, -1β (PGC-1α, PGC-1β), transcription
factor A, mitochondrial (TFAM), and the nuclear respiratory factors (NRF1, and
NRF2) (Dominy and Puigserver 2013; Yun and Finkel 2014). Apart from these key
factors, numerous other factors including hormones, kinase pathways (AMPK,
MAPK, and PKA) (Herzig and Shaw 2018) and secondary messengers [e.g.,
cyclicAMP, calcium, and endothelial nitric oxide synthase (eNOS)], are also
involved in the regulation of this process at different cellular levels (Nisoli and
Carruba 2006; Ould Amer and Hebert-Chatelain 2018). These transcription factors
selectively act to counter different environmental and/or intracellular stimuli such as
hypoxia, nutrient deficiency, and unavailability of growth factors, hormones, and
toxins. However, when mitochondria are formed in excess amounts, it will be
detrimental for several cell types, causing various pathophysiological conditions
such as cancer (Artal-Sanz and Tavernarakis 2009; Malpass 2013; Palikaras et al.
2015b; Wredenberg et al. 2002). Besides their indispensable roles in cellular metab-
olism and reprogramming, mitochondria also responsible for the formation of
harmful reactive oxygen species (ROS) because of cellular respiration. Therefore,
cancer cells have adopted several efficient mechanisms (e.g., autophagy the most
efficient one) to remove the dysfunctional or damaged mitochondria following the
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prevention of cellular damage and eventual death and to preserve mitochondrial
homeostasis (Lahiri et al. 2019).

Mitophagy, a selective form of autophagy, which involves targeted engulfment of
dysfunctional or damaged mitochondria by double-layered membranous vesicles
known as mitophagosome, with subsequent fusion with lysosome for degradation
(Praharaj et al. 2019; Youle and Narendra 2011). Autophagic removal of damaged or
dysfunctional mitochondria is accomplished either through general autophagy
(non-selective) or through mitophagy (mitochondria targeting autophagy) (Chu
2019). In response to high-energy demands, cells trigger mitophagy, which eventu-
ally controls the size and quality of the functional mitochondrial pool. Moreover, it
also stimulates resistance to several cellular or environmental stress, such as nutrient
deprivation, oxidative, and genotoxic stress (Palikaras et al. 2015b). For the better-
ment of mitochondrial homeostasis, a coordinated regulation is required between the
removal of dysfunctional and/or damaged mitochondria and genesis of functional
and/or fresh mitochondria, which leads to the accurate functioning of mitochondria
(Palikaras et al. 2015a; Ploumi et al. 2017). Eukaryotic cells control the level of
mitophagy through upregulating many ATG genes at several points fine-tuning the
proper timing of initiation and enormousness in the cell (Ding and Yin 2012). This
coordinated regulation during cellular stress is important for optimum mitophagy
efficacy and energy usage while preventing excessive mitophagy causing
mitophagic cell death (Dorn and Kitsis 2015; Park et al. 2019). Here, we have
discussed the updated research findings on the regulatory mechanisms involved in
the two major evolutionary conserved mitochondrial pathways. Furthermore, we
intended to establish the crosstalk among different key molecular pathways
regulating smooth coordination amongst these processes, for defining where they
meet to regulate both survival and death of the cancer cell in response to the
functional abnormality of mitochondria.

7.2 Mitochondrial Biogenesis: A Sequential Event Toward
a New Synthesis

Mitochondria are double-membrane bound organelles with the self-replicating
genome, i.e. mtDNA, which is responsible for encoding 13 important components
of the ETC along with rRNAs and tRNAs useful for translating the mtDNA-encoded
proteins (Balaban 1990; Scarpulla et al. 2012). Apart from that, the rest of the
mitochondrial proteins (>1000) (Lotz et al. 2014; Pagliarini et al. 2008) are trans-
lated from the nuclear DNA(nDNA). Hence, both mtDNA and nDNA are responsi-
ble for the successful execution of mitochondria biogenesis. Mitochondrial
biogenesis is a firmly controlled process, where both nuclear and mitochondrial
genes undergo synchronous transcription and translation and are necessary for the
genesis of new mitochondria. Following transcription and translation, the mitochon-
drial proteins are then directed to different mitochondrial sub-compartments
depending upon their sequence (Schulz and Rehling 2014). This whole process
is well governed by the mechanistic target of rapamycin (mTOR), the
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AMP-activated protein kinase (AMPK), insulin-like signaling (ILS), and calcium-
and/or nitric oxide-associated signaling pathways (Cunningham et al. 2007;
Lagouge et al. 2006; Nisoli et al. 2003; Wu et al. 2002; Zong et al. 2002).

7.2.1 Mitobiogenic Machinery: A Multifactorial Rewiring Network

When cells experience any sort of alterations in the abundance of fuel-substrates
balance or energy status, a complex network of both mtDNA and nDNA activated to
conduct vigorous and dynamic mitochondrial biogenesis. Amongst different key
transcriptional coregulators such as peroxisome proliferator-activated receptor
gamma, coactivator-1α, -1β (PGC-1α and PGC-1β), and PGC-1-related coactivator
(PRC), PGC1α is considered as the chief regulating factor in mitochondrial biogen-
esis (Andersen et al. 2005; Andersson and Scarpulla 2001; Kressler et al. 2002; Lin
et al. 2002; Puigserver and Spiegelman 2003; Puigserver et al. 1998). PGC1α is
mainly localized in the cytoplasm, but, upon phosphorylation and/or deacetylation, it
starts accumulating inside the nucleus to increase the mitochondrial biogenesis
(Anderson et al. 2008; Chang et al. 2010). According to few reports, PGC1α is
also found in the mitochondrial compartment, along with its interacting partner
transcription factor A, mitochondrial (TFAM) at the mtDNA D-loop (Aquilano
et al. 2010; Safdar et al. 2011). Both of these forms (viz. nuclear and mitochondrial
pools) of PGC1α promote mitochondrial biogenesis with the response to exercise
(Safdar et al. 2010). During physiological and/or pathological stress, as an adaptive
response cell triggered PGC1α levels (Jones et al. 2012; Lopez-Lluch et al. 2008),
which stimulates the transcription through direct interaction with the other transcrip-
tion factors through its conserved LXXLL recognition domains. Then other factors
are recruited mediating chromatin remodeling through histone acetylation, and
helpful for the interaction with the TRAP/DRIP complex with subsequent recruit-
ment of RNA polymerase II (Ge et al. 2002). These coactivators directly interact
with a different transcription factor, allowing the synchronized control of the several
signaling cascades involved in making new mitochondria (Vega et al. 2015). The
critical involvement of the PGC-1 coactivators was again verified through both gain-
and loss-of-function approach in the heart and other mitochondria-abundant organs,
which are prone to higher mitochondrial biogenesis (Lehman et al. 2000). The
activity of PGC1α is also controlled by its post-translational modification events
(such as acetylation and phosphorylation), which modulate the mitochondrial func-
tion and biogenesis (Fig. 7.1).

Apart from PGC1α, another set of nuclear transcription factors viz. estrogen-
related receptor (ERR), and the nuclear respiratory factors (NRF1 and NRF2) also
modulate mitochondrial respiration, energy metabolism, and biogenesis via
regulating the activity of genes responsible for mitochondrial proteins (Finck and
Kelly 2006). NRF1 exists as a homodimer and positively regulate several mitochon-
drial target gene, for example, cytochrome c, COXIV subunits, TOMM34, TFB2M,
TFB1M, TFAM, and metallothionein-1 and 2 (Biswas and Chan 2010; Gleyzer et al.
2005; Satoh et al. 2013; Scarpulla 2008a; Virbasius et al. 1993; Yang et al. 2014).
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For the first time, it was recognized through its capacity to binds to the promoter of
cytochrome c (Scarpulla 2006). It undergoes phosphorylation at serine residues of its
N-terminal domain, which increases its binding efficiency toward DNA (Gugneja
and Scarpulla 1997) and trans-activation function (Herzig et al. 2000) under normal
condition whereas, serum starvation facilitates dephosphorylation event (Gugneja
and Scarpulla 1997). Moreover, ROS also triggered the phosphorylation of NRF1
via AKT1 in rat hepatoma cells, augmenting its nuclear translocation with a simul-
taneous increase in the expression of TFAM (Piantadosi and Suliman 2006).
Unlikely to NRF1, NRF2 remains in the cytoplasm and interacts with its target
genes of various mitochondria-associated biosynthetic pathways for the coordinated
regulation of mitochondrial biogenesis (Jaramillo and Zhang 2013; Malhotra et al.
2010; Piantadosi et al. 2008; Taguchi et al. 2011). Additionally, skinhead-1 (SKN-1)
(Caenorhabditis elegans homolog of NRF2) has also been found to be associated
with MOM through its interaction with the phosphoglycerate mutase homolog-5
(PGAM-5), which gets translocated from mitochondria to the nucleus during cellular
stress, modulating the activity of multiple target gene, different from those controlled
by its cytoplasmic pool. It was mostly identified as a binding partner of cis-acting
elements in the promoter region of cytochrome oxidase subunit IV (COX IV),
(Scarpulla 2008b) with subsequent association with all subunits of cytochrome
oxidase encoded by nDNA (Ongwijitwat and Wong-Riley 2005). Additionally, in
association with NRF1, it also regulates mtDNA replication and transcription via
controlling the expression of a key regulator of embryonic development and mito-
chondrial biogenesis viz. TFAM, TFB1M, and TFB2M (Bruni et al. 2010; Larsson
et al. 1998; Scarpulla 2008b; Scarpulla et al. 2012). Apart from the nuclear-specific
regulation, mitochondria-associated regulatory mechanisms, such as mtDNA repli-
cation, transcription, translation, and mitochondrial protein import, have a requisite
role in mitochondrial biogenesis. The MOM, translocase of the outer membrane
(TOM), MIM, translocase of the inner membrane (TIM), and sorting and assembly
machinery (SAM) complexes, are the major contributor for mitochondrial biogene-
sis and protein import in normal as well as cancer cells.

7.3 Mitophagy: A Cellular Need for Mitochondrial Turnover
and Clearance of Defective Mitochondria

When cancer cells experience any sort of stress such as hypoxia, nutrient unavail-
ability, one of the important cellular function, that is, mitochondrial function is
disturbed most because of damage accumulation. As a first step toward stress relief,
cells initiate proteolysis of various misfolded and/or oxidized polypeptides formed in
different sub-compartments of mitochondria through induction of intramitochondrial
ATP-dependent proteases whereas OMM proteins are cleaved through the cytosolic
ubiquitin-proteasome system (UPS) as a damage repaired mechanism (Tatsuta and
Langer 2008). At the same time, mitochondrial unfolded protein response (UPRmt)
starts the retrograde signaling pathway to the nucleus, to improve mitochondrial
proteotoxic stress through upregulation of specific mitochondrial chaperones
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(Qureshi et al. 2017; Zhang et al. 2018). In another mechanism, mitochondrial-
derived vesicles (MDVs), a mitochondrial membrane enclosing damaged
components of mitochondria, which are then chopped through a fission-independent
mechanism followed by its cytosolic release for lysosomal based degradation
(Sugiura et al. 2014). Moreover, mitochondrial dynamics, a continuous cycle of
fission and fusion events contributing to the reduction of damaged mitochondria.
When cells failed to activate any of these mitochondrial quality control mechanisms,
it activates mitophagy for the removal of injured mitochondria (Tatsuta and Langer
2008).

7.3.1 Mitophagy: In Detail

Mitophagy, an evolutionary conserved catabolic process that selectively targets
damaged or superfluous mitochondria for lysosomal-based degradation in eukary-
otic cells (Abdrakhmanov et al. 2020; Youle and Narendra 2011). As mitochondria
are relatively large organelles, their degradation process requires significantly higher
lysosomal and autophagic capacity. Mitophagy is mostly regulated by two evolu-
tionary conserved serine/threonine kinase phosphatase and tensin homolog–induced
kinase 1 (PINK1) and Parkin having E3 ubiquitin ligase activity. The whole process
starts with the accumulation of PINK1 on the mitochondrial outer membrane
(MOM) upon misfolded protein accumulation and the collapse of mitochondrial
membrane potential (Jin et al. 2010; Villa et al. 2018). Then there is subsequent
recruitment of the E3 ubiquitin ligase Parkin to the MOM from the cytosol (Vives-
Bauza et al. 2010). PINK1 then triggers and phosphorylates Parkin on Ser65 in its
ubiquitin-like domain and phosphorylates its bound ubiquitin, thereby activating its
ligase function (Kane et al. 2014; Koyano et al. 2014), in this manner marking the
damaged and/or dysfunctional mitochondria for the association with different
autophagy adaptors/receptors. Any mutation to the genes encoding these proteins
triggers a hereditary neurodegenerative disorder known as autosomal-recessive
juvenile Parkinsonism (AR-JP) (Kawajiri et al. 2011). Apart from the mutational
status of these genes, posttranslational modification such as S-nitrosylation of
PINK1 (SNO-PINK1) impairs mitophagy causing cell death of dopaminergic
neurons upon nitrosative stress (Oh et al. 2017). Similarly, other E3 ubiquitin ligases
confined to the MOM such as ARIH1, SIAH, MUL1, Gp78, MARCH 5, and
SMURF1 also participate in driving mitophagy (Chen et al. 2017; Fu et al. 2013;
Li et al. 2015; Orvedahl et al. 2011; Rojansky et al. 2016; Szargel et al. 2016; Villa
et al. 2017). Unraveling the detailed mechanism linked with these ubiquitin ligases
dependent mitophagic regulation would be a new target for the disease
treatment (Fig. 7.2).

Along with this, several new specific mitophagy receptors bearing the LIR/GIM
motif also regulate the mitophagy, stimulated not only during depolarization of
mitochondria but also in response to hypoxia and chemotherapeutic drugs (Johansen
and Lamark 2020; Shaid et al. 2013; Zaffagnini and Martens 2016). For example,
during the hypoxic condition, BNIP3 and BNIP3L (also known as Nix) were
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accumulated on the MOM, and after stabilization and dimerization, BNIP3 interacts
with LC3B, and Nix interacts with GABARAP-L1 to mediate mitophagy (Hanna
et al. 2012; Shi et al. 2014). In another mechanism, FUNDC1 also triggered hypoxia-
mediated mitophagy with the combined kinase activity of CK2 and SRC kinases,
disabling the phosphorylation of FUNDC1 at Tyr18 and Ser13, which has happened
in normal condition promoting the interaction of FUNDC1 with LC3 (Kuang et al.

Fig. 7.2 Mitophagy, a cellular clearance act for damaged mitochondria. Cells maintained a healthy
mitochondrial pool through eliminating damaged mitochondria through autophagic machinery, a
process well known as mitophagy. In functional mitochondria, PTEN-induced putative kinase
1 (PINK1) is imported through translocase of the outer membrane (TOM) complex and translocate
to translocase of the inner membrane (TIM) complex, where it undergoes quick degradation through
presenilins-associated rhomboid-like protein (PARL) and Parkin remains in the cytosol in auto-
inhibition mode. During mitochondrial damage, PINK1 gets stabilized on the TOM complex, where
it accesses its substrates such as ubiquitin chains and/or parkin and phosphorylates them. Parkin
then accumulates ubiquitin chains on numerous MOM proteins, which can recruit ubiquitin-binding
mitophagy receptors recruiting the LC3-positive phagophore, which enclosed the damaged
mitochondria inside mitophagosome and allow it for lysosomal based degradation. The whole
process involves the production of phosphatidylinositol-3-phosphate (PtdIns3P) on donor
membranes, serine/threonine-protein kinase ULK1 complex which controls phagophore initiation
and expansion and ATG8 conjugation pathway involving ATG7 (E1), ATG3 (E2), and the ATG5/
ATG12–ATG16L1 (E3) complex
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2016; Lv et al. 2017). Moreover, this interaction is also supported by the action of
PGAM5 the serine/threonine protein phosphatase mediating the de-phosphorylation
at Ser13 and ULK1 complex dependent phosphorylation at Ser17 (van der Bliek
2016; Wei et al. 2015). Recently, NIPSNAP1/2 another mitophagy receptors were
get accumulated on MOM to interact with several well-reported adaptors proteins
(p62, NDP52, TAX1BP1, and NBR1) and ATG8 proteins (LC3s and GABARAPs)
during mitochondrial depolarization to accomplish the clearance of damaged
mitochondria (Princely Abudu et al. 2019). A recent report suggesting the existence
of a crossover between several signaling pathways during mitophagy. For instance,
Bcl2-L-13 (mammalian Atg32 homolog) plays a key role in mitochondrial homeo-
stasis, where its Bcl-2 homology (BH) 1–4 domains trigger mitochondrial fission
separating the damaged part of mitochondria and the LIR motif promotes Parkin-
independent mitophagy to eliminate the damaged mitochondrion (Murakawa et al.
2015). Furthermore, the association between Bcl2-L-13, ULK1 complex, and LC3B
is essential in activating mitophagy (Murakawa et al. 2019). Another mitophagy
receptor FKBP8 (also known as FKBP38) preferentially interacts with LC3A
(Bhujabal et al. 2017) and can selectively escape from impaired mitochondria to
the endoplasmic reticulum through a microtubule-dependent pathway linking to
attenuation of apoptosis during mitophagy (Saita et al. 2013). Similarly, Prohibitin
2 (PHB2) a mitochondrial inner membrane (MIM) protein, interacts with LC3
triggering clearance of damaged mitochondria in response to mitochondrial stress.
The MOM gets rupture in a proteasome-dependent manner facilitating better associ-
ation of LIR motif of PHB2 and LC3 (Wei et al. 2017). In another mechanism,
mitochondrial inner membrane lipid cardiolipin was also found to promote
mitophagy through direct interaction with LC3, after its get translocated to MOM
(Chu et al. 2013). Mitochondria fission is the prerequisite events that lead to
mitophagy, interruption of which produces long elongated mitochondria whereas
mitochondria fusion has just the opposite effect inhibition of which leads to the
accumulation of small, fragmented mitochondria (Dorn et al. 2015).

7.4 Mitochondrial Biogenesis and Mitophagy; Where Do They
Encounter?

In order to maintain the mitochondrial pool, cancer cells coordinately regulate the
two evolutionary conserved opposing processes, that is, mitochondrial biogenesis
and mitophagy, and maintain a dynamic equilibrium among these two through
modulation of key transcriptional and post-translational factors. In recent times,
several signaling pathways have been studied showing the existence of crosstalk
between mitochondrial biogenesis and mitophagy (Gottlieb and Carreira 2010;
Settembre et al. 2011). In the following sections, we have discussed the regulatory
network involved in these dynamic processes for the regulation of tumorigenesis
(Fig. 7.3).
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7.4.1 PGC1a–TFEB Axis in Regulating the Crosstalk

In addition to its major involvement in mitochondrial biogenesis, PGC1α also acts as
a positive regulator for mitophagy through direct induction of transcription factor EB
(TFEB), which triggers lysosomal biogenesis (Settembre et al. 2011). Functional
involvement of several key autophagy/mitophagy regulators such as ATG5, ATG9,
and Parkin is also known to involve in the activation of TFEB and its translocation
and transactivation of its associated target genes, explaining the interdependence
between the phagophores initiation (Itakura et al. 2012; Kishi-Itakura et al. 2014)
and the probable needs for mitophagy at the transcriptional level (Nezich et al.
2015). However, nutrient starvation leads to activation followed by translocation of
TFEB to the nucleus, whose transcriptional activity is independent of key ATGs
(such as ATG9, ATG5), and Parkin (Nezich et al. 2015). In turn, TFEB triggers
PGC1α level, to establish a positive feedback loop to maintain the equilibrium
between mitochondrial biogenesis and mitophagy. Likewise, the general control of
amino acid synthesis 5-like 1 (GCN5L1) negatively regulates both mitophagy and
mitochondrial biogenesis via modulating the expression of PGC1α and TFEB (Scott
et al. 2014).

7.4.2 AMPK Regulated Signaling

During nutrient deprivation or CCCP treatment, AMP-activated protein
kinase (AMPK), the metabolic sensor of the cells, is activated and stimulates the
autophagy/mitophagy via attenuating mTOR pathway and activating ULK1 (Kim
et al. 2011; Kwon et al. 2011). At the same time, AMPK also starts mitochondrial
biogenesis via an increase in the intracellular NAD+ level and stimulates sirtuin1
(SIRT1) activity through phosphorylation, causing deacetylation (Canto et al. 2009;
Rodgers et al. 2005) and subsequent activation and nuclear accumulation of PGC1α,
possibly to compensate for higher mitochondrial turnover (Anderson et al. 2008;
Reznick et al. 2007; Schulz et al. 2008). Moreover, when cells experience any
fluctuation in the intracellular AMP/ATP ratio AMPK phosphorylates PGC1α at
serine 538 and threonine 177 to initiate its regulatory function (Jager et al. 2007). On
the other hand, SIRT1 can also trigger AMPK via its deacetylation and activate the
STK11/LKB1 the kinase for AMPK, which promotes the PGC1α phosphorylation
(Price et al. 2012). On the contrary, PGC1α activity is attenuated by its acetylation
through the K (lysine) acetyltransferase 2 (KAT2/GCN5) attenuates (Kelly et al.
2009) and the steroid nuclear receptor coactivator 3 (NCOA3/SRC3) (Coste et al.
2008) in presence of excess calories. During acute exercise and/or high-energy
requirement, PGC1α undergoes AMPK-mediated phosphorylation to regulate the
genesis of new mitochondria (Jager et al. 2007). Moreover, these acetylations at
different lysine residues make it a target for NAD+-dependent deacetylase SIRT1,
possibly linking mitochondrial function, energy, and redox status of the cell (Canto
et al. 2009; Coste et al. 2008; Gerhart-Hines et al. 2007). Similar to mitochondrial
biogenesis, SIRT1 also fuels autophagy, whereas the SIRT1 deficiency leads to the
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higher accumulation of damaged mitochondria (Lee et al. 2008). It also triggered
remodeling of the nucleosome and inhibit methylation at cytosine residues, which
leads to the upregulation of TFAM, PGC1α, and uncoupling proteins 2 and 3 (UCP2
and UCP3) key players of mitochondrial function and biogenesis (Marin et al. 2017).
Besides, activated AMPK also upregulates PGC1α expression during acute exercise
in skeletal muscle (Little et al. 2010). Moreover, chronic MPP+ intoxication
decreased mitochondrial PGC1α levels causing the impairment of mitochondrial
biogenesis.

7.4.3 PINK-Parkin Signaling Pathway

PINK-Parkin signaling not only plays a vital role in mitophagy but also regulates
mitochondrial biogenesis. PINK1 deficiency leads to impairment of mitochondrial
biogenesis through multiple factors such as decreased mtDNA copy number, mito-
chondrial bioenergetics, mitochondrial ATP synthesis, cytochrome c oxidase activ-
ity, and fission/fusion proteins in both in vitro and in vivo conditions (Billia et al.
2011; Gegg et al. 2009). Similarly, apart from its central role in CCCP-triggered
mitophagy, Parkin also stimulates mitochondrial biogenesis through its substrate,
that is, Parkin-interacting substrate (PARIS) which undergoes ubiquitination and
UPS-mediated elimination, an event negatively regulating PGC1α and its target
NRF1 (Shin et al. 2011). Moreover, PARIS binds to insulin response sequence
(IRS) present on the promoter region of the PGC1α suppressing PGC1α activity and
higher accumulation of PARIS after the abolition of its usual role, that is, Parkin-
mediated mitophagy it caused the degeneration of dopaminergic neurons and this
effect could be rescued when PGC1α is overexpressed (Shin et al. 2011). Altogether,
this study establishes the role of Parkin in PGC1α-mediated mitochondrial biogene-
sis through its substrate, PARIS. Additionally, Parkin directly associates with TFAM
triggering the transcription of genes encoded by mtDNA with the subsequent
promotion of mitochondrial biogenesis and mutations on PARK2 to eliminate this
interaction with TFAM and mtDNA (Kuroda et al. 2006; Rothfuss et al. 2009).

7.4.4 cAMP-Responsive Element-Binding Protein (CREB) Associated
Signaling

Cellular cyclicAMP is another key factor modulating both the processes through a
different mechanism under different cellular stress. Upon different environmental
stimuli exercise and/or upon exposure toward cold intracellular cAMP level
increases which subsequently activate PKA, a kinase that acts upstream to both
autophagy, and PGC1α and phosphorylate CREB. CREB then activates a series of
downstream molecules (i.e., NRF1, NRF2, TFAM, and PGC1α) to modulate mito-
chondrial biogenesis (Baar et al. 2002; Chowanadisai et al. 2010; De Rasmo et al.
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2010; Terada et al. 2002; Wu et al. 1999). In addition, CREB also transcriptionally
triggers the expression of mtDNA-encoded genes (De Rasmo et al. 2009). On the
other hand, the cAMP pathway negatively regulates mitophagy through its effector
molecule, that is, PKA, which directly acts via phosphorylation of LC3 (Cherra et al.
2010; Dagda et al. 2011) and indirectly through phosphorylation of DNM1L/DRP1
inhibiting fission-promoting activity (Dickey and Strack 2011) and promotes bio-
genesis (De Rasmo et al. 2010).

7.4.5 MAPK Family Members

MAPK family members, for example, MAPK12 phosphorylate the PGC1α and
promotes the strong binding between NRF1 promotor and cytochrome c promoter
or with that of NRF2 promoter to the cytochrome oxidase subunit promoter (Barger
et al. 2001; Wright et al. 2007b) or by disturbing the association between PGC1α and
MYBBP1A [MYB binding protein (P160) 1a] (Fan et al. 2004). Particularly, the
same pathway has also been involved in the regulating of mitochondrial degradation
throughMAPK14, and MAPK1, instead of p38 MAPK, triggering together hypoxia-
and starvation-triggered mitophagy (Hirota et al. 2015). Moreover, calcium signal-
ing also regulates mitochondrial biogenesis through PGC1α, MAPK, and calcium/
calmodulin-dependent protein kinase II (CaMKII) (Wright et al. 2007a; Wu et al.
2002).

7.5 Mitophagic Cell Death: A Substantial Cause of Less
Mitochondrial Biogenesis, Hyper Mitophagy

The “lifecycle” of mitochondria involves the synchronized genesis of both mtDNA-,
and nDNA-encoded proteins, organized and sorting with all other essential
components through mitogenesis and at the end, any malfunction leads to the
removal of the whole and/or partial mitochondria from the cell through a well-
orchestrated catabolic process known as mitophagy. It is very difficult to maintain
the quantity and quality of total mitochondria without proper coordination between
these two oppositely driving pathways (Palikaras et al. 2015a; Ploumi et al. 2017).
More importantly, any disturbance in these anabolic-catabolic balances could detain
stress release and contribute to cell death (Schapira 2012; Zhu et al. 2012).
Autophagic cell death (ACD) symbolizes a type of cell death driven by autophagic
machinery and mostly attenuated upon precise inhibition of the autophagic pathway
(Galluzzi et al. 2015). Under minimal stress, mitophagy acts as a pro-survival
mechanism providing longevity (Kubli and Gustafsson 2012; Praharaj et al. 2019).
Whereas, once cells pass the threshold level of cellular stress the same autophagy
turns out to be a “pro-death mechanism” leading to ACD (Denton and Kumar 2019;
Knuppertz et al. 2017). Many research findings also suggest the existence of the
pro-death role of autophagy as a backup cell death mechanism especially in cancer
cells (i.e., highly resistant to apoptosis) upon exposure to several chemotherapeutic
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drugs and other pharmacological molecules (Fulda and Kogel 2015; Kogel et al.
2010).

The quick clearance of damaged or dysfunctional mitochondria attenuating the
oxidized proteins, lipids, and DNA level inside the mitochondria, regulating the
possibility of apoptosis (Hickson-Bick et al. 2008). On the other hand, excessive
mitophagic degradation without proper compensatory biogenesis of new
mitochondria may also give rise to the malfunction of mitochondria and leads to
mitophagic cell death (Chu et al. 2007; Yan et al. 2012; Zhu et al. 2007). This
essential mitochondrial protective signal strongly influences responses to therapy
and the phenotypic evolution of cancer. AT-101 ([�]-gossypol), a natural compound
from cottonseeds, stimulates the activation of heme oxygenase 1 (HMOX1) and the
mitophagy receptors BNIP3L, and BNIP3 which induces an early mitochondrial
depolarization with a subsequent reduction in mitochondrial mass/proteins (Meyer
et al. 2018). Excessive mitophagy induction noticeably preceded the mitophagic
type of cell death independent of the apoptosis in glioma cells (Meyer et al. 2018).
Parkin-mediated mitophagy leads to cell death in insulin-deprived HCN cells. In the
absence of insulin, Parkin triggers the mitochondrial accumulation of Ca2+, initiating
depolarization of mitochondria at the initial stages of mitophagy. This allowed the
recruitment of Parkin and PINK1, which work in a mutually co-operative way to
remove damaged mitochondria to initiate mitophagy (Park et al. 2019). Several
stress signals can stimulate the intrinsic pathway of apoptosis, which involves the
translocation of several inner mitochondrial proteins toward the cytosol or to the
nucleus promoting cell death. Mitochondrial outer membrane permeabilization
(MOMP) involves both Bax and Bak proteins, which undergoes oligomerization
and assemble to form the Bax/Bak pore (Cosentino and Garcia-Saez 2017). Cells can
prevent MOMP and initiation of apoptosis via blocking the assembly of Bax/Bak
pores in a Parkin-dependent manner. Moreover, Parkin-dependent ubiquitination of
the voltage-dependent anion channel (VDAC) on the MOM favors binding with
Bax, which can prevent the association of Bax with mitochondria (Bernardini et al.
2019).

7.6 Modified Mitomass Affecting Cancer Development

According to several recent findings oncogenes and/or tumor suppressors can also
predispose cellular mitochondrial mass by directly or indirectly regulating both
mitochondrial biogenesis and mitophagy in different cancer types. However,
whether this altered mitochondrial mass linked with tumor subtype, tumor grade,
response toward therapy, and/or recurrence-free survival is yet to be established.
Mitophagy receptors such as BNIP3L and BNIP3 and are mostly deregulated in
human cancer with higher expression at pre-malignant stages and seem to be
downregulated as cancer progressed to higher grade malignant cancer types
(Okami et al. 2004; Tan et al. 2007). The most accepted mechanism explaining the
downregulation with relation to tumor progression is epigenetic silencing of the
promoter in several different cancer types such as pancreatic, hematologic,
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colorectal, lung, and liver cancers (Abe et al. 2005; Bacon et al. 2007; Calvisi et al.
2007; Castro et al. 2010; Murai et al. 2005). Moreover, loss of BNIP3 also promotes
tumor growth and metastasis in the in-vivo mouse model system of breast cancer
(Manka et al. 2005) confirming the tumor suppressor activity of mitophagy. Attenu-
ation of mitophagy leads to an elevation in mtROS level, alter mitochondrial
metabolism such as fatty acid oxidation and Krebs cycle might be responsible for
promoting cell death in tumor cells. Noticeably, the more we know about how
alteration in mitochondrial metabolism is deregulated in cancer, the more we
expected to identify novel signaling pathways that are abnormally activated by the
accumulation of specific metabolites. Mitochondrial biogenesis either promotes or
suppresses cancer in a context-dependent manner, such as tissue type, tumor stage,
or stress types in the tumor microenvironment (Bost and Kaminski 2019; Tan et al.
2016). Although the generation of new mitochondria causing higher metabolite and
energy generation ideally promoting tumor progression. It also acts as a tumor-
suppressive via stimulating oxidative metabolism, restraining cellular ROS level,
and permitting stability to the HIF-1α. The c-Myc well known for its oncogenic
activity also promotes mitochondrial biogenesis through stimulation of PGC-1β
activity (Zhang et al. 2007) causing induction of different mitochondrial proteins,
including TFAM, NRF1, and Polg (Kim et al. 2008; Li et al. 2005). In contrast,
hypoxia inducible factor-1α (HIF-1α) attenuates biogenesis through triggering
Mxi-1 (a repressor of c-Myc) that promotes the degradation of c-Myc, explaining
by what means mitochondrial mass is concentrated during hypoxia (Zhang et al.
2007). In another mechanism, the stability of HIF-1α protein is also maintained by
the loss of function of SIRT3, a downstream target of PGC1α (Finley et al. 2011),
signifying the role of biogenesis promoting factors in preventing ROS-triggered
HIF-1 stabilization. Higher PGC1α activity has been associated with the cause of
melanomas subtype because of its stimulation by the melanocyte-specific transcrip-
tion factor, MITF (Haq et al. 2013; Shoag et al. 2013; Vazquez et al. 2013).
Melanomas expressing high PGC1α unveiled higher expression of mitochondrial
proteins and dependency on oxidative phosphorylation whereas, melanomas
expressing low PGC1α depend more on glycolysis (Haq et al. 2013; Vazquez
et al. 2013). PGC1α is also needed for the growth and progression of melanomas
via protection against ROS-induced apoptosis (Vazquez et al. 2013). Interestingly,
oncogene-causing melanomas such as B-Raf suppress oxidative metabolism through
attenuating MITF-triggered upregulation of PGC1α. However, when treated with
vemurafenib (B-Raf inhibitors), melanomas critically reliant on oxidative metabo-
lism for survival signifying the importance of combination therapy of the role of
mitochondrial metabolism inhibitors and B-Raf inhibitors for effective treatment of
melanoma (Haq et al. 2013). PGC1α is also promoting angiogenesis via
co-activation of ERR-α driving HIF-independent expression of VEGF (Arany
et al. 2008). The cellular activity of PGC1α also affects the cancer prognosis
depending upon cancer subtypes such as high expression can predict a good outcome
in patients suffering from prostate cancer (Torrano et al. 2016), however, it is poor
when it comes to patients with breast cancer (Klimcakova et al. 2012). Furthermore,
PGC1α could be an ideal biomarker in determining cancer’s aggressiveness and
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response to treatment as it is a characteristic of cancer stem cells in pancreatic cancer
(Sancho et al. 2015). According to another study, telomere dysfunction leads to
p53-mediated suppression of PGC1α causing an elevated level of mitochondrial
dysfunction and ROS production probably explaining less genesis of new
mitochondria in ALTC tumors (Sahin et al. 2011). Telomerase inactivation causing
slow growth in tumors but eventually, tumors getting more aggressive through
activating the alternative lengthening of telomeres (ALT) pathway in atm null
Tcell lymphomas (Hu et al. 2012). Interestingly, PGC-1β revealed constant copy-
number alteration, and its elevated expression along with its target protein such as
catalase, SOD2, TFAM, and NRF2 was also identified in ALTC tumors (Hu et al.
2012) signifying the selective benefit to emerging tumors through higher mitochon-
drial biogenesis. Several key transcription factors associated with mitochondrial
biogenesis are found to be downregulated in various cancer subtypes (Bellance
et al. 2009; Lee et al. 2011; Liu et al. 2019). PPAR agonists such as resveratrol,
bezafibrate, enhances the cellular level of TFAM, and PGC1α, in several cancer cell
types (e.g., osteosarcoma, breast cancer, and cervical carcinoma) inhibiting their
proliferation and invasiveness (Wang and Moraes 2011). Similarly, in the case of
human intestinal cancer cells, the gain of function of PGC1α drives mitochondrial
biogenesis as well as trigger apoptosis mediated cell death (D’Errico et al. 2011).
With these findings we can speculate the higher tendency of cancer cells to decrease
the mitochondrial respiration in a predilection for aerobic energy production (gly-
colysis). Whereas the effect was just reversed in type I endometrial carcinoma,
where the elevated genesis of new mitochondria has been associated with tumor
growth (Cormio et al. 2012; Guerra et al. 2011). Hence, the impending role of
operating mitochondrial homeostasis would be an ideal target for future cancer treat-
ment options.

7.7 Conclusion and Future Prospective

Cancer cells develop multiple conserving strategies to control mitochondrial biogen-
esis, mitophagy, and mitophagic cell death, promoting longevity and resistance
toward extreme stress, whereas any interruption in their balance accelerates several
pathophysiological disorders. When cancer cells start removing slightly effective
mitochondria in a rapid way than regenerating new efficient mitochondria, it is more
harmful than helpful. In this perspective, attenuating the mitophagic activity while
augmenting its biogenesis might be operational. It seems that mitophagy is evolving
as a protective mechanism upon mild to moderate stress (Panigrahi et al. 2019).
However, excessive activation also leads to mitophagic-cell death. Similarly, trig-
gering the biogenesis of new mitochondria has been advantageous, although its
hyperactivity may lead to higher oxygen consumption and oxidative stress. How-
ever, in the absence of mitophagy superfluous and/or damaged mitochondria are
accumulated (Gusdon et al. 2012; Jennings et al. 2006; Suzuki et al. 2011), which are
not efficient enough to buffer cytoplasmic calcium, and may go through the mito-
chondrial permeability transition releasing cytochrome c and other pro-apoptotic
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molecules to the cytosol for activation of downstream caspase for apoptosis. While
substantial advancement has been made toward revealing the details of mitochon-
drial homeostasis, several key questions remain unanswered. What are the key
transcription factors involved in the mitochondrial retrograde signaling pathways,
triggering transcriptional reprogramming induced by mitochondrial damage in sup-
port of mitochondrial biogenesis? What are the fundamental mechanisms responsi-
ble for creating the imbalance in recycling responses and defining the methods to
manipulate these cellular events for the development of new options for cancer
treatment? How the key components of these separate pathways fit together in a
whole network of mitochondrial homeostasis? The biggest encounter would be not
only explaining the cellular commands necessary for synchronized regulations
mitochondrial function, but also the feedback mechanism regulating both biogenesis
and mitophagy in cancer prospective.
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Mechanical Stress-Induced Autophagy: A
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Abstract

Metastasis is the leading cause of cancer-related mortality. The tumor microenvi-
ronment per se is a key player regulating the invasion and metastasis of cancer
cells. Cancer cells residing in the tumor microenvironment as well as in transit
during metastasis are exposed to various chemical and mechanical cues which
contribute to their invasiveness. A plethora of studies since the last decade has
shed light on the role of physical forces in tumor initiation and progression,
iteratively underscoring the importance of cellular mechanobiology in the context
of cancer. One of the emerging mechanobiological phenomena observed in
cancer cells is autophagy. This chapter accounts for the various mechanical
stimuli experienced by cancer cells in vivo and highlights the importance of
mechanically-induced autophagy in the tumor milieu.
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8.1 Introduction

Solid tumors begin with the abnormal proliferation of cells in a confined area within
the body. In due course of growth, cancerous cells from the periphery of the tumor
start dislodging into the bloodstream and lymphatic ducts. What follows is the
process called metastatic dissemination. Some of the dislodged cells survive through
the bloodstream and migrate to the “foreign soil” of distant tissues to form a
secondary tumor (Chaffer 2011). During this process, mechanical cues, alongside
chemical signals, may activate myriad signaling pathways in metastatic cancer cells
(Janmey and Miller 2011). While chemical signals include growth factors and
soluble ligands, biophysical cues may arise in the form of matrix stiffness, confine-
ment, topography, shear stress, compression, and mechanical stretching (Chaudhuri
et al. 2018; Stylianopoulos et al. 2018). The subsequent section accounts for the
genesis of mechanical cues in the tumor microenvironment.

8.2 Genesis of Mechanical Cues in the Tumor
Microenvironment

As cancer progresses, solid tumors keep growing in confined spaces within normal
tissue of a host and become increasingly rigid. An increase in the number of cells
within a tumor causes stiffening of the tissue. This occurs due to the addition of
cancer cells, stromal cells, and extracellular matrix constituents, resulting in higher
elastic modulus than normal tissue, as high as one order of magnitude (Jain et al.
2014; Samani et al. 2007). Tumor growth generates compressive and stretching
forces within the tumor and also between the tumor and the host tissue. Mathemati-
cal models have predicted that compressive stress at the tumor interior may exceed
40 kPa (Stylianopoulos et al. 2013; Voutouri et al. 2014; Roose et al. 2003).
Confined growth of solid tumor leads to distortion of associated tumor vessels,
which in turn induce both solid and fluid stresses, that foster tumor progression.
While invading the dense matrix of the tumor stroma, cancer cells squeeze and
deform through narrow pores. Naturally, when the cell passes through confinements
of subnuclear dimensions, the nucleus is exposed to high deformation which may
affect cellular behavior through a process called mechanotransduction. Biophysical
properties thus influence the efficacy of cancer cell invasion and subsequent
metastases (Talmadge and Fidler 2010). Inside the vasculature of the body, cancer
cells experience shear stress generated by the interstitial flow at the tumor site and
hemodynamic flow during metastasis. Fluid shear forces could affect both survival
and invasiveness of circulating tumor cells (CTCs) (Mitchell and King 2013; Ma
et al. 2017). Constricted lymphatic vessels may lead to enhanced interstitial fluid
velocities (Chary and Jain 1989). Hemodynamic shear stresses, ranging from
0.5–30.0 dyn/cm2, may arise due to the movement of blood along the surface of
the cancer cell and is dependent on both fluid viscosity and flow rates (Mitchell and
King 2013; Wirtz et al. 2011). Contact of tumor cells with endothelial cells, as tumor
cells enter and leave the vasculature through the processes of intravasation and
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extravasation respectively, may also lead to the generation of shear stresses
(Northcott et al. 2018). A landscape of various mechanical forces in the tumor
microenvironment is depicted in Fig. 8.1.

8.3 Impact of Mechanical Cues on Cancer Cells

The influence of physical forces on tumor growth has been studied through numer-
ous in vitro models (Huang et al. 2018). This is intuitive given the fact that the tumor
microenvironment is exposed to several factors like chemical signals, multiple cell–
cell interactions, and mechanical stimuli. To study the exclusive effects of mechani-
cal cues on tumor progression, scientists have resorted to a reductionist approach. A
host of accumulating evidence has highlighted the role of biophysical cues in cancer
development (Das et al. 2019a). This section discusses the various approaches
employed to apply various mechanical stimuli to cancer cells in vitro and the effects
observed thereof. One of the first challenges in this regard was to measure stress
levels of developing solid tumors. Helmlinger et al. were the first to reveal such
measurements using tumor spheroids of colon and breast cancer cells embedded in
increasing concentrations of agarose (Helmlinger et al. 1997). Since then, several
improvisations have been made to mimic the compressive environment of growing
tumors in vitro, most of them being cancer spheroid models or their modifications
(shown in Fig. 8.2a–c). Compression to cancer cells grown in monolayers have been
applied using piston-based systems or simply by applying appropriate weights to
bead encapsulated cancer cells (Tse et al. 2012; Kim et al. 2017). Compression alters
gene expression in cancer cells in turn affecting invasion and metastasis (Tse et al.
2012; Koike et al. 2002; Kalli et al. 2018). However, excessive solid stress may play
an inhibitory role by reducing the rate of proliferation while inducing apoptosis
(Helmlinger et al. 1997; Cheng et al. 2009; Kaufman et al. 2005; Delarue et al.
2014). The compression of blood and lymphatic vessels may reduce perfusion and
create a hypoxic microenvironment that promotes tumor progression (Jain et al.
2014; Jain 2014). In order to metastasize, tumor cells must survive through the
circulation while migrating to a distant location. The time a cancer cell spends in
circulation and the magnitude of shear stress it experiences on its way determines its
survival (Fan et al. 2016). The shear-dominant microenvironment of metastasizing
cancer cells has been mimicked in vitro by generating fluid flows though setups like
parallel-plate flow chambers, peristaltic pumps, microfluidic platforms, and hypo-
dermic needles (Ma et al. 2017; Lien et al. 2013; Das et al. 2011, 2018; Barnes et al.
2012) (see Fig. 8.2d–f). Shear stress of the physiological range (0.5–3 Pa) has been
shown to inhibit proliferation but stimulate migration and adhesion of tumor cells
(Mitchell and King 2013; Ma et al. 2017; Avvisato et al. 2007; Xiong et al. 2017).
However, a high magnitude of stresses caused tumor cell death (Regmi et al. 2017).
Tumor cells must show resistance to the various mechanical stresses if they have to
travel and colonize at a secondary metastatic site. It is one of the major reasons why
cancer cells must undergo various cellular adaptations (Northcott et al. 2018). The
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subsequent section discusses myriad cellular adaptive responses that may be elicited
in cancer cells experiencing microenvironmental stresses.

Fig. 8.2 (a–f) Schematic of the various experimental setups implemented for performing
mechanobiological studies of cancer cells. (a) Cancer spheroids embedded in increasing
concentrations of culture-media equilibrated agarose and allowed to grow in the compressive
environment, (b) weight applied to exert compression on a monolayer of cancer cells grown in a
well of a cell culture plate, (c) weight applied to exert compression on agarose scaffolded alginate
bead-encapsulated cancer cells, (d) parallel-plate flow chamber connected via silicone tubings to a
peristaltic pump for applying fluid shear stress to cancer cells, (e) peristaltic pump connected to a
microfluidic channel for applying fluid shear stress to cancer cells adhered on the microchannel
floor, (f) programmable syringe pump to flow cancer cell suspension through a hypodermic needle
for several passes in order to apply shear stress to the cells
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8.4 Cellular Stress Response Mechanisms

A cell’s response to any kind of stress is a reaction to perturbations of ambient
conditions. Such unfavorable conditions may or may not damage cellular
macromolecules. Cells may either perform homeostasis to attain the former state
or adopt a changed state, depending upon the severity and duration of incumbent
stress. For instance, mild or moderate stresses may result in enhanced defense and
repair processes. It is thus essential to study stress-adaptive mechanisms in order to
comprehend the processes that cancer cells may undergo during their metamorphosis
into the malignant state, leading to the identification of critical therapeutic targets
(Das et al. 2019a; Milisav et al. 2012). Adaptive stress responses may occur through
several mechanisms like damage repair, synthesis of protective molecules, and
control of apoptosis induction. Cellular repair is brought about by alterations in
gene expression patterns, miRNA-transcription, growth arrest, and so on. Protective
molecules may be antioxidant enzymes like catalase, peroxidase, superoxide
dismutase, etc. In many forms of cancers, tumor initiation, progression, and resis-
tance to current anticancer therapies may be attributed to the overexpression of the
anti-apoptotic proteins. Another important strategy that a cell may adopt to react to
stress is the clearance of damaged organelles. For soluble proteins, this may occur
through the ubiquitin-proteasome pathway (Shang and Taylor 2011), whereas for
other cellular material, the autophagic pathway for degradation may be activated.
Autophagy is an evolutionarily conserved catabolic process whereby cytosolic
components are enclosed in sealed bilayered vesicles and then digested through
the action of lysosomes. Autophagy helps in increasing nutrient availability to the
cells through the clearance of toxic cellular materials and unfolded proteins
influencing numerous physiological processes including homeostasis during cellular
stresses (Das et al. 2019a). However, in the mechanobiological aspect of cancer, the
role of autophagy had been less explored until the seminal work by King et al.
showed that autophagy is induced as an immediate response to compressive stress
(King et al. 2011). Autophagy may either contribute to cellular adaptation and
survival or cellular death (Maiuri et al. 2007). At lower pressures, autophagy may
also instigate mechanical signaling (King 2012). Reportedly, tumor cells upregulate
autophagy in response to increased metabolic demands and cellular stresses (Yang
et al. 2011). Although autophagy is known to be involved in several processes like
modulation of cancer stem cell viability and differentiation, epithelial-to-mesenchy-
mal transition, tumor cell dormancy, motility and invasion, resistance to anoikis,
escape from immune surveillance, and so on, the direct implications of mechanically
induced autophagy in the cancer scenario was least investigated until recent times
(Mowers et al. 2017).
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8.5 Implications of Mechanical Stress-Induced Autophagy
in Cancer Metastasis

The differential roles of flow-induced shear forces in modulating cancer progression
have started coming in the limelight (Swartz and Lund 2012). Lien et al.
demonstrated that laminar shear stress in the range of 0.5–12 dyn/cm2, applied for
more than 12 h, was able to induce autophagic and apoptotic death in cancer cells,
but not in their normal counterparts (Lien et al. 2013). They found that laminar shear
stress-induced autophagy acted not only as a parallel death-promoting mechanism
but also as an independent death-inducing mechanism upstream of apoptosis. In
contrast, Das et al. interestingly found that short pulses of laminar shear stress could
elicit pro-survival autophagy in HeLa cells as an immediate response. Autophagy in
this instance served as a protective mechanism that could delay apoptotic cell death
(Das et al. 2018). In an independent study, Wang et al. found that inhibition of
autophagy induced by fluid shear stress of 1.4 dyn/cm2, suppressed cellular migra-
tion, and invasion in hepatocellular carcinoma cells (Wang et al. 2018; Yan et al.
2019). Transit through the vasculature followed by arrest and extravasation at a
distant location are some of the key steps of metastasis. Since these phenomena are
short timescale processes, the immediate pro-survival autophagic response due to
fluid shear may prove to be a crucial escape route of metastasizing cancer cells
(Follain et al. 2018). Very recently, Das et al. (2019b) recreated a mechanically-
compressed tumor microenvironment, in vitro, by applying appropriate compression
to agarose-scaffolded HeLa cell-encapsulated alginate beads. They demonstrated
that compression upregulates autophagy, which promotes turnover of paxillin, a
crucial protein involved in cell migration, and secretion of active-matrix
metalloproteinase 2 (MMP 2), leading to enhanced migration of HeLa cells (Das
et al. 2019b). These evidences hint at the fact that compressive and shear forces in
the tumor milieu may foster cancer progression at least partially, by upregulating
autophagy. At the molecular level, King et al. demonstrated that mechanical induc-
tion of autophagy is independent of classical TOR/Akt pathway and AMPK signal-
ing, which is the conventional route of autophagy induction in cells (King et al.
2011). However, the molecular pathways governing mechanically-induced
autophagy remained completely obscure until 2013 when Lien et al. showed that
shear forces could elicit autophagy in cancer cells through the BMPRIB/Smad 1/5/
p38 MAPK axis (Lien et al. 2013). Later, Das et al. (2018), demonstrated that shear
stress causes membrane perturbation which triggers lipid rafts, that is, cholesterol-
rich nanodomains of cell membranes, to mediate the phosphorylation of p38
MAPKs which in turn leads to LC3 II/I conversion and autophagy induction in
HeLa cells (Das et al. 2018). Fluid shear stress also induced the expression of Rho
GTPases and cytoskeleton remodeling via the integrin/FAK pathway, leading to the
upregulation of autophagy in HepG2 cells (Yan et al. 2019). The various
manifestations of mechanical stress-induced autophagy in cancer cells are depicted
in Fig. 8.3.
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8.6 Conclusion and Perspective

Manipulation of mechanical forces in the tumor microenvironment to tame cancer is
evolving as a new field termed “physical oncology”. This may be done by alterations
of the physical characteristics of the stroma or by inhibition of cellular responses to
the stiffening of the stroma (Northcott et al. 2018). The underlying goal remains the
alleviation of the solid and fluid stresses within the tumor microenvironment. To this
effect, extracellular matrix-degrading enzymes like Hyaluronidases have been
implemented to release immobilized fluid for improving tissue compliance
(Whatcott et al. 2011). TGF-β blockers and MMP inhibitors are some of the drugs
that target ECM synthesis (Chaudhuri et al. 2018). Also, Losartan, an angiotensin
inhibitor, has been used for vessel dilation to reduce IFP (Chauhan et al. 2013).
Based on the knowledge of signaling networks operating downstream of focal
adhesions, drugs targeted toward reducing actomyosin contractility have shown
successful repression of tumor progression. Reports on potent therapeutic targets
associated with mechanically-induced autophagy have started cropping
up. Depletion of cholesterol by Methyl-beta cyclodextrin (MBCD) could lead to
impairment of lipid raft mediated-p38 MAPK phosphorylation under fluid shear
stress, thereby impeding the induction of pro-survival autophagy (Das et al. 2018).
Cliengitide, an integrin inhibitor, could inhibit the activation of downstream FAK,
thereby attenuating fluid shear stress-induced autophagy in HepG2 cells (Yan et al.
2019). It is imperative to further investigate the arsenal of mechanosensory elements
of cancer cells that participate in mechanical stress-induced autophagy. For example,
reports have suggested that intracellular Ca2+, a well-known regulator of autophagy,
aids in the migration and proliferation of cancer cells (Filippi-chiela et al. 2016; Cui
et al. 2017). Whether or not stretch-activated calcium channels participate in the
mooted signal transduction pathway remains to be explored (Das et al. 2019a).

In summary, this chapter throws light on the origin of mechanical forces in the
context of cancer and how these forces may govern cancer progression through the
intervention of autophagy. Presently known implications of mechanical stress-
induced autophagy in cancer include imparting immediate resistance to shear-
induced apoptosis during metastasis and facilitating the migratory and invasive
characteristics of cancer cells in the tumor microenvironment. It may thus be
foreseen that the discovery of pathways related to mechanically-induced autophagy
in cancer cells, may usher in an array of effective therapeutic molecules, in the near
future.
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The Interplay of Autophagy
and the Immune System in the Tumor
Microenvironment

9
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Abstract

The tumor microenvironment (TME) is a very complicated ecosystem that
consists of cancerous cells coexisting with various noncancerous and immune
cells. TME shows exclusive cellular crosstalk between cancer and other cell types
that have prominent consequences on tumor initiation, progression, and develop-
ment. Of note, the immune system is an important determinant in the TME for
tumor development, thus highlighting the importance of immunotherapy for
better cancer treatment. Recently, the multifaceted role of autophagy in cancer
immunity in the TME is extremely debated and exploited for the development
of cutting-edge autophagy-based cancer immunotherapeutics. Interestingly,
autophagy limits the immune responses by regulating the action of immune
cells and the generation of cytokines. On the contrary, some immune cells and
cytokines also manipulate the function of autophagy. A growing number of study
spotlights the context-dependent role of autophagy in cancer immunity: it can
activate the anti-tumor immunity by sustaining the integrity of the immune cells;
however, it can also help the tumor cells to bypass the immune checkpoints by
constraining the immune cell functions during hypoxia. In this chapter, we
delineate the basic process of autophagy, the role autophagy in maintaining the
crosstalk between cancer cells and stromal cells, and in particular, focusing more
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on the interaction of autophagy with cancer immunity. Finally, we highlight the
role of autophagy as an ideal candidate for cancer immunotherapy.

Keywords

Cancer · Tumor microenvironment · Immune system · Autophagy · Tumor
stroma · Immunotherapy

9.1 Introduction

The tumor mass is not a solitary structure, rather a diverse population of cancer cells,
extracellular matrix proteins, secreted factors, resident, and infiltrating host cells,
together known as the tumor microenvironment (TME). More specifically, the TME
consists of tumor parenchymal cells, mesenchymal cells, fibroblasts, lymph vessels,
blood, tumor-infiltrating immune cells, chemokines, and cytokines (Balkwill et al.
2012). TME has a vital role in tumor initiation, development, and regulation. The
immune system is a critical player of the TME. In recent years, the significance of the
interaction between the immune cells and cancer cells was constantly acknowledged
and included in the rising hallmarks of cancer (Hanahan and Weinberg 2011). The
cancer cells adopt several mechanisms that prompt them to evade immune surveil-
lance and destruction. In the past decades, a large number of immunotherapy
blueprints have been established based on the immune evasion mechanisms and
their clinical significance has been validated. In contrast to the traditional approaches
to cancer therapy, the immunotherapy acts through encountering the immune cells
inside or outside the TME and attacks the cancer cells (Yost et al. 2019), thus making
the immunotherapy strategy with higher specificity and with lower off-target effects.
Recently, accumulating pieces of evidence support the function of autophagy in
modulating the TME, including the immune system of the tumor cells (Deretic
2012), thus making it an ideal target for effective cancer therapy. Autophagy is
essentially a eukaryotic homeostatic process that regulates cancer initiation and
progression in many ways. It has a dual role in cancer as the fate of tumor cells
regulated by autophagy is extremely ambience dependent which ranges among
tumor types, stages, microenvironment, and genetic contents (White 2012). In the
beginning, autophagy acts as a pro-death mechanism by removing the impaired
organelles, proteins, lipids, and ROS, thus attenuating cancer by behaving as a
cellular quality control process (Fulda and Kogel 2015). However, with the advance-
ment of cancer and in therapy resistance, autophagy performs as a pro-survival
mechanism to fulfill the substantial metabolic demands necessary for tumor survival
(Das et al. 2018a, b, 2019a, b). So, more insight into the unraveling of the interplay
of autophagy and the immune system will provide the major directions for future
anticancer treatment strategies.
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9.2 The Basic Process of Autophagy

Autophagy is an evolutionary conserved catabolic process that is often triggered by
diverse cellular stress conditions. During this process, the damaged cellular
components are degraded by the lysosomes and in turn, enrich the cellular nutrient
pool (Das et al. 2018a). To date, autophagy is mainly classified into three types, like
chaperone-mediated autophagy, microautophagy, and macroautophagy, depending
on the mechanisms required for the selection and the delivery of cargos into the
lysosomes (Yorimitsu and Klionsky 2005). In chaperone-mediated autophagy, the
chaperone proteins are actively involved in the selection of the targeted substrates
and their translocation into the lysosomes (Kaushik and Cuervo 2012). In
microautophagy, the lysosomal membrane undergoes invagination to sequester the
cytosolic components into intralysosomal vesicles (Mijaljica et al. 2011).
Macroautophagy (herein referred to as autophagy) is the most commonly studied
autophagy that sequesters the cytoplasmic damaged substances into the
autophagosomes followed by their fusion into the lysosome to form endolysosome
for hydrolytic degradation (Wong et al. 2011). The basic mechanism of autophagy is
regulated by a group of ATG genes and it is preserved from yeast to mammals. The
autophagy process is executed by the sequential development of the phagophore,
autophagosome, and autolysosome regulated by the mammalian target of rapamycin
(mTOR) (Bhol et al. 2019). Initially, upon stress various damaged cellular contents
are entrapped by the initiation membrane or phagophore inside the cytosol; after-
ward, it gives rise to a complete double-membrane complex called the
autophagosome. Further, the autophagosome merges with the lysosome to give
rise to the autolysosome which helps in the hydrolytic deterioration of the damaged
cellular entities, leading to enriching the nutrient pool (Mizushima et al. 2002) as
shown in Fig. 9.1. However, the detailed molecular mechanisms of autophagy and
its modulation in cancer cells were extensively depicted elsewhere in our recent
review (Das et al. 2019a) and we refer the readers to this work for further details.

9.3 Autophagy in Maintaining the Crosstalk Between Cancer
Cells and Tumor Stroma

Tumors occur from normal cells due to DNA mutations which lead to uninhibited
cell growth. Initially, it has been thought that tumors are the collection of isolated
diverse cell masses. But recent scientific results suggest that tumors are vastly
heterogeneous and need to be considered as organs. It contains various types of
special tumor cells and other tumor-related cell types such as immune cells, endo-
thelial cells, and fibroblasts. These kinds of cellular components are called the
tumor–stromal microenvironment (Maes et al. 2013; Denton et al. 2018). Tumor
stroma comprises of various stress factors, like the absence of growth factors,
intratumoral hypoxia, and tumor acidosis. Such kind of stress stimulates autophagy
in tumor stroma to maintain energy homeostasis in cells by transporting intracellular
damaged substances to lysosomes for degradation and recycling. Here, we are going
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to delineate the pivotal role of autophagy involved in the interactions between cancer
cells and tumor stromal microenvironment.

9.3.1 Autophagy and Tumor-Associated Macrophages

Tumor-associated macrophages (TAMs) are classified as highly expressed innate
immune cells in tumor stromal microenvironment (Lin et al. 2019). They are most
important for cancer-related inflammation. Molecules secreted from tumor cells are
accountable for the activation of macrophages. In the tumor stroma, TAMs perform a
key role in the development of the tumor by generating cytokines, like IFN-γ, IL-6,
IL-8, and IL-10 (Comito et al. 2014). Cytokines are important for the progression of
chronic inflammation and the anti-tumor response, but they also initiate the advance-
ment of cancer through inflammation. Chemokines, such as CCL2, engage
monocytes from blood vessels in the tumor stromal microenvironment and later
differentiate into TAMs (Chen and Bonaldo 2013). It has been illustrated that CCL2
plays a key role in apoptosis suppression in monocytes by stimulating antiapoptotic
proteins (Roca et al. 2009). Besides that, CCL2 also hyper activates autophagy in
monocytes to suppress apoptosis (Roca et al. 2009). This indicates that autophagy is
very essential for the engagement of monocytes. CSF-1 is one of the important
cytokines that differentiate macrophages from monocytes. As CSF-1 stimulates

Fig. 9.1 The basic process of autophagy: Initially upon stress, the autophagy process begins with
the inhibition of mTOR. Then the isolation membrane or phagophore is formed which further
undergoes elongation and expansion by engulfing the damaged cargos and gives rise to a complete
double-membrane structure called the autophagosome. Further, the autophagosome fuses with the
lysosome to form the autolysosome. Finally, lysosomal degradation of damaged cargos takes place
inside the autolysosome and the nutrients are recycled
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monocytes, autophagy is triggered by the phosphorylation of ULK1 (Jacquel et al.
2012a, b). Another cytokine CSF-2 contributes an important role in the differentia-
tion of monocytes to macrophages through the MAPK/JNK pathway through
inhibiting Atg5 cleavage and the synergy between BECN1 and BCL-2, both are
essential for autophagy activation (Zhang et al. 2012). Such autophagy induction
helps a critical conversion from monocyte apoptosis to differentiation. Overall, these
findings suggest that autophagy operates a very critical function in every step of
TAMs production and which leads the cancer progression through supporting tumor
cells during the transition to malignancy (Noy and Pollard 2014) (Fig. 9.2).

9.3.2 Autophagy and Cancer-Associated Fibroblasts

Cancer-associated fibroblasts (CAFs) are the special kind of cells present in tumor
stromal microenvironment, which induces tumorigenicity by instigating the
remodeling of the extracellular matrix or by producing cytokines (Xing et al.
2010). The function of autophagy in CAF biology is very complicated. In the
early stages of tumor development, normal fibroblasts cells nearby to the tumor go
through a critical adaptation due to the vice versa interaction with tumor cells and
evolve into a more myofibroblastic phenotype. Such evolved fibroblasts are usually
recognized as CAFs. It has been observed that increased autophagy acts an important
role in CAFs to support energy metabolism and the growth of neighboring epithelial
cancer cells (Fig. 9.2). Such kind of paracrine crosstalk is led by the secretion of
hydrogen peroxide from the cancer cells, which leads to the generation of oxidative
stress and induces senescence in neighboring CAFs (Martinez-Outschoorn et al.
2011). Senescent CAFs lost mitochondrial function due to the increased autophagy,
and mitophagy (induced by oxidative stress) and shifted toward aerobic glycolysis,
called “Warburg Effect,” a hallmark of the cancer phenotype (Hanahan and
Weinberg 2011). This generates metabolic byproducts such as glutamine, lactate,
free fatty acids, and ketone bodies that nourish oxidative phosphorylation in the
tumor cells and contribute to anabolic growth (Jaboin et al. 2009; Tittarelli et al.
2015). Besides that, autophagic elimination of a tumor suppressor protein, the
caveolin-1 negatively regulates Ras signaling in tumor stroma (Martinez-
Outschoorn et al. 2010) which is connected with early development from DCIS to
invasive cancer (Witkiewicz et al. 2009), metastatic disease in prostate cancer, and
lymph node metastasis in breast cancer (Di Vizio et al. 2009). Additionally,
autophagy may also stimulate the release of MMPs and pro-migratory cytokines
from CAFs (Lock et al. 2014), which leads to further metastasis of the tumor cells. It
has been illustrated that the growth and the metastasis of tumor cells are promoted
when they are co-injected with senescent fibroblasts and overexpressed with pro-
autophagic molecules that are genetically modified in the nude mice (Jaboin et al.
2009). But on the other side, autophagy is upregulated in tumor cells and suppresses
growth when they are transplanted alone. Such results demonstrate that CAFs
generated metabolic byproducts through autophagy play a critical role in tumor–
stromal cell growth by fulfilling the high energy demands of the tumor cells.
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9.3.3 Autophagy and Tumor-Associated Endothelial Cells

Emerging studies are indicating that autophagy is involved in the vital functions of
the tumor-associated vasculature. In the high-stress tumor–stromal conditions, endo-
thelial cells undergo nutrient deprivation and hypoxia due to low blood supply in
solid tumors. Such conditions lead to vessel malfunction. For example, tumor
vessels become more permeable and less stable as compared to normal vessels
(Siemann 2011). Endothelial cells use autophagy as a survival mechanism to escape
such stresses (Filippi et al. 2018). Study suggests that under the oxidative stress in
the tumor stroma, autophagy is stimulated by SIRT-1, which helps endothelial cells
to survive (Ou et al. 2014). SIRT-1, a NAD-dependent deacetylase, activates
autophagy through PI3K/Beclin-1 and mTOR pathways. Under the metabolic
stressors like hypoxia, such upregulation of autophagy in tumor-associated endothe-
lial cells facilitates nutrients to them. Besides that, in the presence of high autophagic
activity in tumor associate endothelial cells, Atg5 accelerates starvation–hypoxia
evoked angiogenesis by alleviating α-subunit of hypoxia-inducible factor (HIF)
complex and interfering with the VEGF signaling (Filippi et al. 2018; Du et al.
2012). Such interaction of Atg5 can also induce the secretion of a high mobility
group box 1 (HMBG1) through an autophagy-modulated mechanism. HMBG1 is a
leading chromatin-associated protein that is translocated into the cytoplasm and
released to the outside of the cells due to increased metabolic stress in the endothelial
cells (Sachdev et al. 2012). In the cytosol, HMBG1 binds to Beclin 1 and acts as a
pro-autophagic factor (Kang et al. 2010). Besides that, it takes part in tissue
remodeling and angiogenesis signaling (Sachdev et al. 2012). Thus it plays an
important role in angiogenesis and also for the protection of tumor cells in the
hypoxic microenvironment (Fig. 9.2). In another study, it has been found that Beclin
1+/� knockout mice have shown elevated angiogenic activity in their endothelial
cells only under hypoxic conditions (Lee et al. 2011). Such a result suggests that
autophagy may also play an antiangiogenic role although the influence of Beclin
1 on HMGB1 secretion has not been evaluated in that study. These contradictory
results could also indicate a distinct function of autophagy in tumor-associated
endothelial cells.

9.3.4 Autophagy and the Immune System in the Tumor
Microenvironment

The immune system of the human body, including innate immunity and adaptive
immunity, operates a vital role in the immunosupervision of tumors. Autophagy
works at the downstream of the pattern recognition receptors. In other words, these
activated innate immune receptors upregulate autophagy. In the innate immune
response, the crosstalk between the autophagy and the immune system begins with
the innate immune receptors like toll-like receptors (TLRs) and nucleotide oligomer-
ization domain (NOD)-like receptors (NLRs), thereby facilitating several effector
responses, including NKT cell activation, cytokine production, and phagocytosis.
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However, in innate immune response, autophagy provides a substantial amount of
the antigens which in a later stage are loaded onto the MHC class II molecules for
presentation to the dendritic cell-mediated cross-priming to CD8+ T cells (Jiang
et al. 2019). In the coming sections, we will discuss both of the mechanisms of the
immune system in the tumor immune microenvironment and their crosstalk with
autophagy (Fig. 9.3) that will decide the fate of tumorigenesis.

9.3.4.1 Innate Immunity and Autophagy in Cancer
Innate immunity-mediated autophagy is largely dependent on the innate immune
receptors, such as TLRs and NLRs. TLRs and NLRs are highly upregulated upon
sensing the pathogenic or tumor antigens that ultimately activate the innate immune
response (Zhong et al. 2016).

TLRs
TLRs are the most thoroughly characterized pattern recognition molecules of the
innate immune surveillance. The immune system recognizes the tumor antigens by
TLRs and infiltrates the tumor stroma resulting in tumor destruction through direct
lysis or the involvement of cytokine (Shi et al. 2016). However, increasing pieces of
evidence show quite opposing outcomes in cancer development. In the recent years,
several developments regarding the use of potential TLRs toward therapeutic
possibilities have been elucidated, of which the detailed mechanisms of these must
be explored for better understanding. The study suggests that toll-like receptors are
the group of innate immune receptors expressed in a wide range of cancer cells that
activate several immune responses by regulating autophagy. TLRs are believed to be
the autophagy inductors that activate autophagy. TLR7 with the help of a down-
stream signaling adapter MYD88 or TRIF recruits TRAF6 and Beclin-1 that further
stimulate and develop the autophagosomes (Shi and Kehrl 2010). TLR2 induces
phagocytosis and autophagy by enhancing the host innate immune system through
the induction of c-JNK and ERK signaling cascade (Anand et al. 2011; Fang et al.
2014). TLR4 generally expressed in the innate immune cells, particularly in the den-
dritic cells and the macrophages, is one of the important targets for immune-
modulating drugs. TLR4 stimulates autophagy by triggering TRIF (toll-IL-1 recep-
tor (TIR) domain-containing adapter inducing IFN)/RIP1 (receptor-interacting pro-
tein), and p38-MAPK signaling pathway (Xu et al. 2007). Lipopolysaccharides and
alpha-GalCer are reported to activate TLR4 signaling induced macrophage activa-
tion through mitogen-activated protein kinases and cytokines such as iNOS, IL-, and
TNF-a (Xu et al. 2007; Hung et al. 2007). Zhan et al. suggested that TLR-3 and
TLR-4 facilitate lung cancer invasion and migration by promoting TRAF6 (TNF
receptor-associated factor 6, E3 ubiquitin-protein ligase)-regulated induction of
autophagy and cytokine production (Zhan et al. 2014). In the breast cancer patients,
it has been observed that higher TLR4 expression is associated with the upregulated
LC3 II expression in CAFs which is correlated with the more aggressive relapse and
poor prognosis of the tumors (Zhao et al. 2017). Lin et al. exhibited that TLR2
signaling plays a crucial role in the genotoxic carcinogen diethylnitrosamine (DEN)
induced liver tissue damage. TLR2 activated intracellular senescence and autophagy
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eliminate the aggregation of ROS and DNA damage, thereby inhibiting the hepato-
cellular carcinoma development and progression (Lin et al. 2012, 2013). TLR3 in
many instances acts as the possible therapeutic target for cancer immunotherapy. In
human pharyngeal and oral squamous cell carcinoma cell lines, TLR3 induces
apoptosis with the help of TLR3 ligand poly (I:C) (Estornes et al. 2012; Shatz
et al. 2012). TLR3 ligand poly (I:C) not only destroys the tumors by apoptosis but
rather they also destroys the TME by suppressing the angiogenesis in human
hepatocellular carcinoma cells (Guo et al. 2012). Taking into account the dual effects
of autophagy, the therapeutic options with TLRs agonists on autophagy cell death
need an integrated consideration in clinical implications.

NLRs
NLRs are a group of cytoplasmic molecules that constitute a fundamental element of
the innate immune response, generally recognize the bacterial cell wall components,
and induce autophagy. Nod1 and Nod2 are the first and important NLRs recognized
as the microbial associated molecular pattern (MAMP) detectors. ATG16L1, an
important component of autophagosome formation, participates in the Nod1 and
Nod2 directed autophagy by interacting with the plasma membrane (Travassos et al.
2010). Both of the Nod1 and Nod2 gene polymorphism is associated with an array of
innate and adaptive immune response and autophagy in several cancer types
(Kutikhin 2011). NOD1 is an intracellular receptor that induces autophagy and
activates the NF–κB signaling in response to the Gram-negative bacterial peptido-
glycan leading to the destruction of inflammation-based Helicobacter pylori which
is believed as an imperative risk factor of gastric carcinogenesis (Suarez et al. 2015).

Others
Many stress-inducing factors activate interferon regulatory factor 8 (IRF8) which in
turn activates the autophagy-related genes in dendritic cells. Autophagy-inducing
stresses, such as IFNγ and TLR stimulation, macrophage colony-stimulating factor,
and bacterial infection, activate IRF8 resulting in the activation of many genes
involved in the formation of autophagosome and autophagy (Gupta et al. 2015).
Furthermore, IFNγ contributes to the innate immune response and autophagy by the
p38 MAPK signaling pathway (Matsuzawa et al. 2014). Inflammation-induced IFNγ
attenuates gastric carcinogenesis by activating epithelial autophagy and T-cell apo-
ptosis (Tu et al. 2011). Recent studies have shown that cytokines such as interleukins
are also an important part of innate immunity that regulates autophagy. Furthermore,
autophagy has a dominating role in the initiation and regulation of the inflammatory
response by innate immune cells, mostly facilitated by IL-1 and its consequential
effect on IL-23 secretion (Peral de Castro et al. 2012). Altogether, these studies have
suggested the newer mechanisms that innate immune receptor-associated autophagy
exhibits distinct regulation on carcinogenesis.

9.3.4.2 Adaptive Immunity and Autophagy in Cancer
In adaptive immunity, autophagy plays a pivotal role in anti-tumor effects through
antigen presentation, cytokine release, thymus selection, lymphocyte development,
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and homeostasis. Major histocompatibility complex (MHCI and MHCII) molecules
are essential in carrying the intracellular and extracellular peptide epitopes which are
consequently recognized by the CD4+ and CD8+ T cells respectively for adaptive
immune destruction (Zhong et al. 2016).

Autophagy and Antigen Presentation in Cancer
Cross presentation is one of the critical aspects of the adaptive immune response.
Any foreign antigens when entered into the cells are taken up and fixed, which are
finally presented to the specific T-cells by antigen-presenting cells (APCs) for
immunogenic destruction (Baker et al. 2013). Currently, it has been identified that
autophagy has a pivotal role in antigen sequestration in cross-presenting the antigens
to the MHC I molecules (Li et al. 2008). Interestingly, TNF-α induces mitophagy
(a form of autophagy in the mitochondria) that enabled the delivery of the mitochon-
drial antigens by the MHC-I molecules at the cell surface (Bell et al. 2013). There
have been instances of the interrelationship between MHC-I-regulated autophagy
and cancer immune response. Autophagy-induced lysosomal proteolysis and
proteasomal degradation regulate the MHC-I molecules mediated cross-presentation
of tumor antigens (Li et al. 2009). Apart from endogenous MHC-I peptides, the
endogenous system also helps in the processing of MHC-II presentation. During the
MHC-II presentation of the exogenous antigens, the lysosomal proteases degrade
them and process them for the fusion with the MHC-II loading compartment for the
immune surveillance (Gannage and Munz 2010). More specifically, autophagy also
helps in the transport of the nuclear and cytosolic antigens for presentation to the
CD4+ T cells by the MHC-II molecules (Crotzer and Blum 2009).

Role of Autophagy in the Regulation of T Cells Development and Function
in Cancer
T cells depend on the basal autophagy to maintain their homeostasis and activation.
Defects in autophagy by deletion of autophagic molecules such as Atg7, Atg3, Atg5,
PI3K, and BECN1 can lead to improper T cell activation and differentiation (Pan
et al. 2016). The survival of the naive T cells depends upon increased autophagy
along with the stromal cells’ interaction with the TCR and IL-7 signaling (Sena et al.
2013). After TCR stimulation, it has been noticed that autophagy is enhanced in the
T cells along with increased calcium levels that further activate the AMPK via ULK1
complex phosphorylation (Kim et al. 2011; Botbol et al. 2015). There has been
mounting evidence on the connection between the autophagy and the regulatory T
cell manipulating antitumor immunity. Autophagy acts as a key regulatory mecha-
nism for CD4+ T cell homeostasis. It is observed that autophagy is augmented in
the murine CD+ T cells upon activation via JNK and Vps34 and importantly
causes the growth factor-withdrawal cell death (Li et al. 2006). It has been also
noticed that c-Met expressed on the tumors could act as a potential epitope against
the helper T lymphocytes which is partly regulated by autophagy (Kumai et al.
2015). Many studies have delineated the effect of impaired autophagy on the
development of T cells. Defective autophagy more frequently affects the CD8+ T
cells than the CD4+ T cells. Inhibition of mTOR in the effector CD8+ T cells induces
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memory CD8+ T cell production in lymphoid rather than the mucosal tissue.
Therefore, it can be predicted that CD8+ T cells are more reliant on autophagy
(Kovacs et al. 2012; Sowell et al. 2014).

Role of Autophagy in the Regulation of B Cells Development and Function
in Cancer
Autophagy acts a significant role in the development and the survival of the B cells.
Autophagy is very much essential for the pro and pre-B cell transition and activation
of the B cell in response to the stimulation of BCR. Autophagy is also very much
necessary to sustain a normal number of peripheral B cells and their survival (Arnold
et al. 2016). The development and the maturation of B cells require the
pro-autophagy genes (Pan et al. 2016). Further, the knockdown of Atg5 prevents
the transition between pro- and pre-B-cell stages in the bone marrow (Chanut et al.
2014). B cell activation is induced by the tumor-derived autophagosomes (termed
“DRibbles”) resulting in the production and secretion of cytokine. Moreover,
DRibbles upregulates the CD40L expression on the macrophages with simulta-
neously enhances the expression of CD40 on the B cells. Macrophages play a
significant role in the presentation of the antigens on the B cells for specific T cell
activation (Zhou et al. 2015). Taken together, the current set of data indicates that
autophagy serves a pivotal role in the advancement of the certain subgroups of B
cells and memory B cells (Chen et al. 2014).

9.4 Autophagy as a Candidate for Cancer Immunotherapy

Among the diversified options available for cancer treatment, immunotherapy-based
treatment options are gaining much attention nowadays. The basic mechanism
involved in the cytotoxic effect of immunotherapy is based on the regulation of
the response of the immune cells thereby preventing the binding with the immune
suppressor or cancer cells (Chen andMellman 2017; Galon and Bruni 2019). Several
approaches have been implemented to enhance the immune system for better clinical
outcomes. Nevertheless, partly due to tolerogenic effects, most of the strategies have
been unsuccessful (Green et al. 2009). Recently, autophagy emerged as a potential
mechanism connected to cancer immunotherapy. Targeting autophagy-mediated
cross-presentation and immune responses may be considered as a potential thera-
peutic strategy for cancer treatment. In the subsequent sections, we will discuss the
dual role of autophagy not only as a pro-death but also as a pro-survival inductor
in the cancer immunotherapy.

9.4.1 Autophagy as a Pro-death Mechanism in Cancer
Immunotherapy

In the TME, autophagy may act as a pro-death signal that retards the tumor progres-
sion and enhances the antitumor immunity in response to therapy. Several
nanoparticle-based therapeutic options that trigger autophagy in cancer have been
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developed. These nanoparticles act as adjuvants that ultimately deliver the tumor
antigens for the autophagosome formation and tumor destruction. In alpha-alumina
(α-Al(2)O(3)) nanoparticle-based tumor regression, the former acts as the carrier of
the tumor antigens that delivers the antigens to the autophagosomes in the tumor
dendritic cells that further present the antigen to T cells by autophagy (Li et al. 2011).
Similarly, monobenzone triggers melanosome autophagy by inhibiting the
processing and the shedding of melanocyte differentiation antigens, leading to
tyrosinase ubiquitination. The whole process activates the dendritic cells and cyto-
toxic T-cells which efficiently eliminate the melanoma in vivo (van den Boorn et al.
2011). Likewise, targeting folate receptors alpha (FRα) which is highly expressed on
the human ovarian cancer cells suppressed cancer cell proliferation. MORAB-003
(farletuzumab) is a humanized mAB interferes with the folate metabolism by
targeting the FRα, as a consequence of which, MORAB-003 induces autophagy
and hinders cancer cell proliferation (Wen et al. 2015). Conventional
chemotherapeutics administrations are more efficient when they elicit the immuno-
genic cell death (ICD) followed by a series of molecular events, like pre-apoptotic
cell surface display of calreticulin, the release of high mobility group box
1 (HMGB1), and ATP secretion during the blebbing phase of apoptosis from the
dying cells during the post-apoptotic stage (Pol et al. 2015). Autophagy is more
effective in immunotherapy rather than conventional chemotherapy. Autophagy
caused immunogenic cell death via T cell activation and mannose-6-phosphate
receptor upregulation on the surface of the tumor cells (Ramakrishnan et al. 2012).
Autophagy may act as the energy provider to the immune cells like DCs and T
lymphocytes by the immunogenic release of ATP from the dying cells in the tumor
bed whereas autophagy deficit hinders the ability of cancer cells to elicit an immune
response (Michaud et al. 2011). BCG, a potential vaccine against TB, has shown its
efficiency as an antitumor immunotherapy agent and it has been seen that a combi-
natorial approach of BCG and ionizing radiation effectively resulted in autophagic
cell death in the colon cancer cells by the generation of ROS (Yuk et al. 2010).
Moreover, cytokines also function as mediators of autophagy activation and cancer
cell death. For instance, IFN-γ hinders gastric cancer progression by promoting
epithelial cell autophagy (Tu et al. 2011). However, the role of IFN1 in anticancer
treatment of chronic myeloid leukemia is not fully understood. Zhu et al. demon-
strate that the active involvement of autophagy in IFN1-mediated cell death is
through the upregulation of JAK1-STAT1 and the ReLA signaling pathway (Zhu
et al. 2013).

9.4.2 Autophagy as a Pro-survival Mechanism in Cancer
Immunotherapy

Besides the cancer regression, autophagy also plays an important role in tumor
promotion, ignoring the immunotherapeutic administration. Autophagy impairs the
anticancer immune response and avails tumor cells to evade immune surveillance,
thereby promoting tumor growth and progression. In the inner tumoral region,
hypoxic condition rises due to an inadequate supply of oxygen. Hypoxia in the
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tumor microenvironment has been proved as a mechanism of cancer cell survival by
attenuating the therapeutic intervention by interfering with various signaling
cascades. It has been reported that hypoxia-induced autophagy plays a major role
in diminishing the effect of immunotherapy in cancer cells (Qiu et al. 2015). For
example, hypoxia-stimulated autophagy can suppress T-cell-mediated cytotoxicity
in lung cancer cells (Jaboin et al. 2009; Pan et al. 2016). Hypoxia-induced autophagy
impairs CTLs-mediated tumor cell lysis that is associated with the hypoxia-
dependent phosphorylation of STAT3 (pSTAT3), which in turn activates tumor
cell survival, proliferation, and immune escape (Teng et al. 2014; Noman et al.
2012). Hypoxia-induced autophagy also interrupts the NK-mediated killing of the
cancer cells by degrading the NK-derived Granzyme B (Baginska et al. 2013).
During hypoxia, HIF-2α is localized to the nucleus and triggers the expression of
autophagy sensor ITPR1 (inositol 1,4,5-trisphosphate receptor, type 1), ultimately
deactivates the NK-mediated cell lysis and decreases immunotherapeutic effect
(Hasmim et al. 2015; Messai et al. 2014). In the hypoxic melanoma cells, autophagy
degrades the channel protein connexin 43, resulting in the destabilization of immune
synapse that interferes with the NK-cell mediated lysis of the cell (Tittarelli et al.
2015). In some preclinical models, it has also been proved that inhibition of
autophagy in combination with the other therapeutic approaches augments the
cytotoxicity of cancer cells and inhibits the cancer progression. Recent studies
have found that attenuating autophagy with chloroquine increases the efficacy of
high-dose interleukin-2 (HDIL-2) in inhibiting cancer therapy by immunotherapeu-
tic approach (Liang et al. 2012). Similarly, chloroquine enhances the HDIL-2-
mediated antitumor immunity, triggering the NK cells, T-cells, and DCs in renal
cell carcinoma. Administration of chloroquine blocks the autophagy and limits ATP
production by inhibiting the Oxidative phosphorylation (Lotze et al. 2012). More-
over, chloroquine blocks the radiation-induced autophagy in breast cancer cells and
promotes cell death via DCs mediated immunogenic cell death (Ratikan et al. 2013).
Intrinsically, autophagy provides resistance to the immunological anticancer therapy
by diminishing the immune effector mechanisms. Therefore, protective autophagy is
activated against sepsis-induced T lymphocyte apoptosis and immunosuppression.
Overall, the downregulation of autophagy in T lymphocytes may lead to an
increased rate of apoptosis and decreased cell survival (Lin et al. 2014). Interleukin
24, an exclusive member of the IL-10 family, shows universal cancer-specific
toxicity. A combination of autophagy inhibitors and IL-24 may be an encouraging
strategy for tumor immunotherapy. In oral squamous cell carcinoma, 3-MA, a PI3K
inhibitor enhances the IL-24 induced apoptosis by acting upon Vps34 and PI3Kγ
(Li et al. 2015).

9.5 Conclusions

Despite significant advances in the detection techniques and the development of
promising therapeutic approaches, like surgery, radiotherapy, and chemotherapy,
cancer is still one of the major causes of death worldwide due to the adverse effects
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of these approaches and their inefficacy against all the tumors. However, prompt
evolution of immunology, molecular biology, cell biology, and other relevant fields
is believed to expedite the advancement of immunotherapy which successfully
reduces tumor growth with minimal off-target effects on the host cells. In the
complex tumor microenvironment, the fate of the tumor cells depends on the
interactions among tumor cells with the immune cells. In line with this, autophagy
has a significant role in the regulation of cancer development in the TME that makes
it an ideal target for cancer therapy. Of note, autophagy has a multifaceted role in the
TME. It can contribute to the survival as well as the destruction of the cancer cells
depending upon the stages of cancer. Collectively, the study suggests that autophagy
can stimulate antitumor immune responses through promoting differentiation, matu-
ration, and also maintaining internal homeostasis in the immune cells. However,
hypoxia-induced autophagy suppresses immune cell functions and facilitates tumor
cell evasion from the immune surveillance. Thus, a better understanding of the
in-depth molecular mechanisms associated with the crosstalk between the context-
dependent roles of autophagy and the immune system in the TME will further
magnify the therapeutic strategies against cancer.
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Relevance of Autophagy in Cancer Stem
Cell and Therapeutic 10
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Abstract

Autophagy in cancer acts as a double-edged sword whose functional
discrepancies precisely depend on cancerization, progression, and type. During
stress, they promote cancer cell survival, induce carcinogenesis due to their
accumulated genetic mutations or abnormal cell signaling, initiating fast replica-
tion capacity, promoting more aggressiveness, and resistant to programmed cell
death. Consequently, the study has drawn focus on autophagy in cancer. How-
ever, convincing preclinical and clinical evidence on the cytoprotective in addi-
tion to the lethal roles of autophagy for cancer stem cells (CSCs) are missing.
There are quite a lot of clinical trials ongoing to manipulate autophagy and in this
manner decide the result of disease therapy. The clinical relevance of this work
encompasses autophagy modifiers, such as rapamycin and chloroquine that
control autophagy in anticancer therapy, since autophagy plays roles in both
tumor suppression and promotion. Further detailed examination of autophagy
in cancer is required to understand how an increased function of autophagy in the
tumor microenvironment, stemness, migration and invasion, dormancy, and drug
resistance could be tweaked for enhanced therapeutic benefit by eradicating
minimal residual disease and preventing metastasis. Here, we recapitulate how
autophagy modulates the therapeutic potential to exterminate CSCs.
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10.1 Introduction

Pluripotent cancer stem cells (CSCs) are subset of cancer cells that accentuate their
ability to self-renew and (Aponte and Caicedo 2017) differentiate into all somatic
cell lineages by indefinite cell division giving rise to the heterogeneous tumor
populations and maintain their undifferentiated state (Liu et al. 2013). When a
very small population of CSCs was introduced into an immunocompromised mice,
it initiated the formation of the original tumor (Ghiaur et al. 2012). They are
phenotypically slow cycling and their self-renewing capacity is accountable for
tumor growth, resistance to therapy, and recurrence after treatment.

Autophagy is a double-edged sword in the progression of neoplasia and has
further produced immense hurdles for researchers to explore its impression on
carcinogenesis and tumor development. It has labeled tumor-suppressive and
tumor-promoting functions (White and DiPaola 2009). Cytoprotective role of
autophagy prevents malignant transformation through the ability to empower the
premalignant cells by efficiently meeting up with the increased energy requirements
by recycling cellular components that are important in maintaining the physiological
tissue homeostasis. This attribute propagates their accommodation within the stress
(metabolic, genotoxic, and inflammatory) occurring after the malignant transforma-
tion induced in response to anticancer (chemo/targeted/radiotherapy) treatment.
Stresses including nutrient and energy stress, ER stress, danger-associated molecular
patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), hypoxia,
redox stress, and mitochondrial damage induce autophagy, alongside EMT and
stemness. The cytoprotective role of autophagy can turn into a cell-suicidal weapon
causing cell death in cancer cells. Defective autophagy has been linked with
increased oncogenesis. For instance, low expression of Beclin-1 (Atg6) in some
types of cancers of the prostate, breast, and ovary because of monoallelic mutations
(Qu et al. 2003). However, the presence of heterozygosity in mice for the beclin-1
gene makes it cancer prone (Qu et al. 2003; Yue et al. 2003) due to absence of
functional of Beclin-1.

Cancer progression shows a degree of dependency on the existence of CSCs. The
role of autophagy in cancer is multifaceted and has been studied extensively. High
levels of autophagy contribute to pluripotency of CSCs in other cancer types,
including colorectal cancer (Kantara et al. 2014), pancreatic cancer (Rausch et al.
2012; Viale et al. 2014), glioblastoma (Galavotti et al. 2013), chronic myeloid
leukemia (Bellodi et al. 2009), and bladder cancer (Ojha et al. 2016). Despite recent
advancement in research, the underlying molecular mechanism inducing autophagy
in CSCs remains to be determined. It is difficult to explain how autophagy promotes
stemness, have been preserved across different cancer. Mitophagy is a selective
autophagy that unambiguously plays an important role in the quality control and
homeostasis of mitochondria. Mitochondrial functional pathways play a crucial role
in a vital interaction between cancer cells and stromal cells for cancer cell initiation,
progression, and treatment response. They emanate a profound role in sustaining
CSCs in adverse conditions and initiating their metabolic reprogramming to support
the increased bioenergetic demand of the tumor. Transcription factors like SMAD
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(Nazio et al. 2019), NF-Kb (Zhang et al. 2016), MITF (Moller et al. 2019), STAT3
(Marcucci et al. 2017; Zhang et al. 2016), FOXO (Naka et al. 2010), ATF4
(Pallmann et al. 2019), NANOG (Liu et al. 2017), regulate autophagy and
mitophagy in the induction of EMT and maintenance of CSCs. Like autophagy,
mitophagy acts in cancer as bimodal processes. Unfortunately, there are unanswered
roles of canonical autophagy in cancer (Gewirtz 2014). Therefore, does mitophagy
has a role in cancer? CSCs play an unbiased role in promoting therapy resistance
leading to tumor recurrence (Shibue and Weinberg 2017), and autophagy deliber-
ately endorses disseminated tumor cells (DTCs) which further lead to the metastatic
expansion of tumors (Sosa et al. 2014). To understand how autophagy and
mitophagy can inhibit to repress both the above phenotypes are challenging task
for translational cancer. Recent studies have linked CSCs with chemoresistance and
cancer relapse, autophagy, mitophagy, and CSCs showcase novel perspectives on
potential therapeutic targets for enhancing anticancer drug sensitivity. The study of
autophagy in cancer has been therapeutically manipulated by many investigators and
various clinical trials that are already ongoing to regulate the result of disease
therapy.

10.2 Autophagy/Mitophagy Drives Cancer Stem Cells Fate

CSCs are a heterogeneous population; they escalate tumor growth and progression
by accelerating the proliferative potential and constitute a source for recurrence of
cancer. Functional properties of cancer cells are influenced by epigenetic, genetic,
and microenvironmental factors. To proliferate in its microenvironment, CSCs have
a functional correlation with autophagy and mitophagy. Autophagy, a catabolic
pathway enables CSCs to show autophagy dependence and may act as an onco-
suppressive depending on tumor stage and type. They exploit the pro-survival
attribute of autophagy at the later stage of oncogenesis to meet up with high-energy
demands by a supply of metabolites. ATG-encoded gene products play a significant
role in CSCs of numerous cancers. Beclin 1/Atg6 modulates CSC plasticity and
tumorigenesis in vivo. However, in different cancers, Beclin 1 acts as a tumor
suppressor, like human prostate, breast, and ovarian tumors (Liang et al. 1999; Qu
et al. 2003; Shen et al. 2008). Improved survival in patients is observed having high
Beclin 1 levels affected by large B-cell lymphoma, high-grade gliomas, or hepato-
cellular carcinoma (Ding et al. 2008; Huang et al. 2011; Pirtoli et al. 2009). The
stemness was augmented by the transformation of CD133� to CD133+ cells due to
the inhibition of mTOR affecting the liver tumor cells by interrupting the differenti-
ation and stimulating the tumor development in vivo (Yang et al. 2011). Suppression
of autophagy by knockdown of autophagic proteins Atg5 and Atg7, curtails
stemness markers, such as Sox2, Nanog, and Oct4, resulting colorectal CSCs to
undergo suppressed cell proliferation and improved cell senescence (Sharif et al.
2017). In colorectal cancers, mutations in Atg5, Atg12 have been described (Kang
et al. 2009) while deletion of Atg5 or Atg7 is supporting the advancement of liver
hepatomas (Takamura et al. 2011). Autophagy induction by overexpressing Atg4A
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protein promotes mammosphere formation and hence increases CSC numbers and
in vivo tumorigenesis (Wolf et al. 2013). The conditional knockout of Atg3 affected
the continued existence of CML cells and leukemogenesis (Altman et al. 2011).
Inhibition of Atg4B resulted in its increased phosphorylation followed by arresting
the tumor growth in animal models in a subset of glioblastoma cancer (Huang et al.
2017). The depletion of ATG4B impaired the survivability of CML stem/progenitor
cells (Rothe et al. 2014). Knockout of Atg4C in mice increased the propensity to
develop fibrosarcomas induced by methylcholanthrene, hence play a tumor-
suppressor role. Contrastingly, its tumorigenic role in breast cancer was delineated
(Antonelli et al. 2017). Tumor suppressive role of Atg4D expression was observed in
colorectal carcinogenesis (Gil et al. 2018). Moreover, its tumor-promoting role was
highlighted when cancer cells were sensitized to chemotherapeutic drugs on ATG4D
silencing (Betin and Lane 2009) (Fig. 10.1).

EMT (epithelial to mesenchymal transition) signaling is an important character-
istic of CSCs (Shibue and Weinberg 2017). Autophagy signaling is strongly
correlated to EMT in enhancing the metastatic potential of CSCs to migrate by
maintaining their mesenchymal signature in the later stages of metastasis. Interest-
ingly, during early metastasis autophagy decreases the invasion and migration of
tumor cells in situ. In glioblastoma cells, blocked cell migration and invasion were

Fig. 10.1 The basal level autophagy and mitophagy are important for cell metabolism. When there
is stress due to anticancer therapy, autophagy, and mitophagy get impaired, while they are activated
due to internal and external factors leading to either suppression or progression of cancer
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caused by nutrient deprivations and mTOR inhibition (Catalano et al. 2015). Using
specific siRNAs directed against the autophagy-related factors DRAM1 and p62
proteins, autophagy-controlled bioenergetic metabolism, migration/invasion of glio-
blastoma CSCs was thwarted while the mesenchymal phenotype was restored on
autophagy upregulation (Galavotti et al. 2013). Furthermore, in glioblastoma cells,
enhanced migration and invasion with EMT regulators continued with knockdown
of Beclin 1, Atg5, and Atg7 (Catalano et al. 2015). EMT promotes stemness and can
give rise to CSCs through the core stemness factors POU5F1, Sox2, and Nanog,
including Slug and Twist that maintains the pluripotency of CSCs and tumor-
propagating properties (Mani et al. 2008). Hypoxia and TGF-β through MITF
(Caramel et al. 2013), Sox2, and Nanog (Sharif et al. 2017) promote EMT via
activating autophagy. Autophagy may promote tumor cell dormancy, lipid metabo-
lism, mitochondrial function, and CSCs existence in muscle stem cells and HSCs
(Ho et al. 2017; Warr et al. 2013). It ensures a reversible dormant pool of CSCs
potentially making a contribution to tumor repopulation and preventing irreversible
senescence (Ho et al. 2017). Autophagy plays a decisive role in the survival of
disseminated tumor cells (DTCs) at secondary location to establish drug resistance,
minimum residual disease, and metastatic dormancy (Sosa et al. 2014). Interestingly,
these DTCs are CSCs that are relatively quiescent and motile state expressing
upregulated CSC markers in the bone marrow of breast cancer patients (Balic
et al. 2006). Furthermore, a selective form of autophagy known as mitophagy
promotes stemness. It abrogates senescence by disrupting the ROS-induced DNA
damage and has a principal role in maintaining the stem cell population renewal and
homeostasis. It has been reported to maintain hepatic CSCs by regulating p53
localization. Therefore, inhibition of mitophagy phosphorylates p53 by PINK1
leading to its translocation to the nucleus where Oct4 and Sox2 induction of
Nanog get alienated. Mitophagy evokes CSCs dependence more on glycolysis for
energy needs and hence contributes to its quiescent state. Recent evidence suggests
that mitochondrial dysfunction also encourages oncogenesis (Boya et al. 2018).
Mitochondrial ROS due to BNIP3 loss subsequently resulted from defects in
mitophagy followed by mammary neoplastic progression to metastasis (Chourasia
et al. 2015) (Table 10.1).

10.3 Targeting Autophagy/Mitophagy: New Therapeutic
Strategies

CSC generation, differentiation, plasticity, migration/invasion, and immune resis-
tance are very much dependent on the variation of autophagy/mitophagy. During
anticancer therapy, CSCs remain at the dormant stage to cope with intracellular and
environmental stress, involving oxidative stress triggered by overproduction of
reactive oxygen species (ROS). These dormant cells arise from EMT tumor cells
and become non-cycling autophagic CSC which are later maneuvered on the release
of paracrine factors (like MET, TGF-β receptor, IL-6 receptor, PDGFR, EGFR,
FGFR, Hedgehog/Smoothened, WNT/Frizzled, Gas6/AXL, and Notch ligands) to
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Table 10.1 Role of autophagy in different types of cancer and genes targeted for anticancer
therapy

Types of cancer
Animal model/
cells/CSCs

Autophagy
as
protective
or lethal or
both

Targeted genes
involved in the
induction of
autophagy References

Neuroblastoma,
multiple
myeloma cells

SH-SY5Y cells Protective NAMPT Billington et al.
(2008), Cea et al.
(2012), Ghosh
and Matsui
(2009), Schneider
et al. (2011),
Sharif et al.
(2017)

Colorectal
cancer

HCT116, HT29,
CaCO2, and
DLD1CSCs;
DCLK1-positive
colon CSCs

Protective Endolysosomal
RAB5/7
regulating
mitophagic
pathway; LC3,
Beclin1, Atg6

Kantara et al.
(2014), Takeda
et al. (2019)

Malignant
pluripotent
embryonal
carcinoma

NT2/D1 CSCs Protective NAMPT Sharif et al.
(2017)

Breast cancer MCF-7 CSCs;
SUM149 CSCs

Both
protective
and lethal
in MCF-7
and
protective
in SUM149

Protective:
Beclin1, c-Jun
NH2 terminal
kinase
(JNK/SAPK) in
MCF-7, and
Atg4A in
SUM149
Lethal: Beclin1,
Akt/mammalian
target of
rapamycin
(mTOR) pathway
in MCF-7

Protective:
MCF-7
(Chaterjee and
van Golen 2011;
Sanchez et al.
2011) and
SUM149 (Wolf
et al. 2013)
Lethal: MCF-7
(Liang et al.
1999; Lu et al.
2014)

Prostate and
breast cancer

PC-3 and DU145
cells; MDA-MB-
231 cells

Lethal AMP-associated
protein kinase
(AMPK)/Unc-51
like autophagy
activating kinase
1 (ULK1)
pathway and
inhibition of
mTOR/Raptor
complex
1 expression

Aryal et al.
(2014)

(continued)
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cycling CSC with low autophagy. Thus, autophagy and mitophagy enable CSCs to
colonize, migrate and metastasize, defy apoptosis and antitumor drugs and hence
become therapy-resistant by its self-renewal property and replace the pool of
differentiated tumor cells (Marcucci et al. 2017) (Table 10.2).

Autophagy/mitophagy has an inevitable role in cancer cell survival, metastasis,
and therapy resistance. The potentially new targeted therapeutic strategy is to use
double or triple combinatorial doses of drugs or antibodies and/or radiation to
modulate autophagic machinery to efficiently eradicate CSCs. Chemotherapy is a
widespread treatment strategy for cancer therapy that engulfs dividing cells and
disrupts cancer–cell division. However, several studies have revealed that the overall
success rate of chemotherapy is often restricted via the upregulation of
cytoprotective activation of autophagy in CSCs which protects cancer cells subjected
to anticancer therapy. Cancer chemotherapeutic drugs 5-Fluorouracil (5FU) and
cisplatin used in various solid cancers, like, gallbladder and colorectal cancers
show autophagy-regulated chemoresistance (Ferreira et al. 2016; Liang et al. 2014;

Table 10.1 (continued)

Types of cancer
Animal model/
cells/CSCs

Autophagy
as
protective
or lethal or
both

Targeted genes
involved in the
induction of
autophagy References

Pancreatic
cancer

CD133+

pancreatic CSCs,
BxPc-3 (CSClow)
and MIA-PaCa2
(CSChigh),
inducible mouse
model of mutated
Kras

Protective HIF-1a; Beclin1,
Atg4B, LC3, p62;
AMPK, LC3

Rausch et al.
(2012), Viale
et al. (2014), Zhu
et al. (2013)

Urinary bladder
cancer

T24 and UM-UC-
3 CSCs; T24
CSCs

Protective Beclin1, Atg7,
and p62;
IFN-γ-mediated
JAK2 and STAT3
pathway

Ojha et al. (2014),
Ojha et al. (2016)

Brain tumor CSCs:
MDNSC11,
MDNSC13,
MDNSC23,
MDNSC16;
GBM stem cells–
GSCs

Lethal and
protective

p16INK4/Rb
pathway, Atg5;
DRAM1,
SQSTM1, p62

Galavotti et al.
(2013), Jiang
et al. (2007)

Chronic
myeloid
leukemia

p210BCR/ABL-
expressing CML
cells, CML
lymphoid BC cell
line BV173,
K562 cells

Protective LC3, Atg5, Atg7 Bellodi et al.
(2009)
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Park et al. 2013). Additionally, the CXCL12/CXCR4 axis is prompted in colorectal
cancer and is linked with potential progression of cancer, such as invasion, metasta-
sis, and chemoresistance. Subsequently, grants 5-fluorouracil (5-FU) resistance by
increasing autophagy both in vitro and in vivo (Yu et al. 2017).

Suppression of autophagy preferentially stimulated in multiple molecular
pathways that govern CSCs growth and differentiation, includes Notch (Li et al.
2018), Sonic Hedgehog (Fan et al. 2019), Wnt/β-catenin (Pai et al. 2017), NF-kβ
(Trocoli and Djavaheri-Mergny 2011), transforming growth factor-β (Kiyono et al.
2009), and fibroblast growth factor (Chen et al. 2018) signaling cascades lead to
sensitization of cancer cells to anticancer therapy. The appreciating effect of the
Wnt/β-catenin pathway is inhibited by FH535 and its derivative (FH535-N) alone
and in combination with sorafenib through nullification of the autophagic flux in
hepatocellular carcinoma (Turcios et al. 2019). Hyperactivation of PI3K/Akt/mTOR
pathway in GBM and its inhibition exerts antineoplastic activity by targeting CSCs,
supporting differentiation, and inhibiting cell migration and invasion prospective of
GSCs (Li et al. 2016). Balance is the key between Beclin1 and Bcl2/Bcl-xL that
supports the concept of the presence of a complex relationship between autophagy
and apoptosis, which seems important in the context of cancer and cancer therapy
(Kim et al. 2014). JNK-mediated protective autophagy increased Bcl2 expression
followed by an increased autophagic flux and conferred chemoresistance in colon
cancer (Sui et al. 2014).

Evolving clinical and experimental evidence indicates that CSCs have clinical
significance as they are bestowed with intrinsic resistance to radio- and chemother-
apy owing to the indulgence of autophagy (Chen et al. 2012; Vitale et al. 2015).
Targeting components of the autophagic machinery can be recruited as the hopeful
target to selectively eliminate CSCs facilitating cancer cell growth/progression/
metastasis and enhancing the effectiveness of radio- and chemotherapy (Nazio
et al. 2019; Ojha et al. 2015; Perez-Hernandez et al. 2019). Henceforth, these
findings completely indicate that autophagy suppression and its activation, both,
can be deemed to be promising approaches for sensitizing CSCs to anticancer
therapy, evaluated by the reduction of the number of CSCs. So, the development
of new anticancer drugs focuses on CSCs which is key to the problem required to be
resolved in drug clinical trials (Fig. 10.2).

10.4 Conclusion

Development of autophagy inhibitors, specific mitophagy inhibitors have been
proven beneficial, given the fears about global autophagy suppression for tissue
homeostasis and that mitophagy has a crucial functional role earlier credited to
general autophagy. Focusing on selective inhibitors will pave an unexplored path
of how autophagy is responsible for determining stemness, dormancy-whether
DTCs are autophagy-dependent CSCs, and which autophagy functions will be
significant in promoting drug resistance and cancer recurrence. Further research is
requisite before CSCs can be treated by regulating autophagy and mitophagy.
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Desirable therapeutic impacts of anticancer reagents have not been achieved by only
targeting autophagy using autophagy modulators; to the contrary, it has enacted as a
pro-survival response by supplying nutrients to cancer cells. Consequently, clinical
trials that aim autophagy by a combination of autophagy alterations and anticancer
components are appropriate to consider autophagy as a possible effectual therapeutic
approach in anticancer therapy. The conjunction of these techniques hopefully
deciphers the vital mechanisms necessary for maintaining cancer stemness and
will play an important role in designing more efficient and effective personalized
therapeutic strategies.
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Abstract

Autophagy is an evolutionarily conserved process that delivers intracellular
constituents to the lysosomes for degradation and recycling. Autophagy plays a
central role in diverse physiological processes and has been implicated in the
pathogenesis of various diseases including cancer. The role of autophagy in
cancer is complex and largely context-dependent. Accumulating evidence
indicates that autophagy facilitates tumorigenesis by enabling acquisition of
cancer hallmarks. Autophagy manipulation has emerged as a promising strategy
in cancer treatment. In this chapter, we provide an overview of the autophagic
process, highlight the autophagy conundrum in cancer, examine the complex and
conflicting reports on autophagy in tumour suppression and tumour promotion, as
well as the role of autophagy in the acquisition of cancer hallmarks. Finally, from
the clinical perspective, we summarise the evidence for autophagy-related genes
and proteins as reliable markers of disease severity and prognosis and analyse the
efficacy of autophagy manipulation in improving cancer treatment outcomes and
circumventing chemoresistance.
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11.1 Introduction

Autophagy is an evolutionarily conserved process by which aberrant, unwanted
proteins and damaged organelles are sequestered into double-membraned vesicles
called autophagosomes and subsequently delivered to the lysosomes for degradation
to maintain cellular homeostasis (Bishop and Bradshaw 2018). The term
‘autophagy’, coined by Christian de Duve in 1963, is derived from the Greek
words, ‘auto’ meaning “self” and ‘phagein’ meaning “to eat” (Klionsky 2008).

Autophagy is categorised into three distinct types based on the mechanism of
cargo delivery to the lysosomes for degradation, microautophagy, chaperone-
mediated autophagy (CMA) and macroautophagy. Microautophagy seen in yeast
involves the sequestration of small cargoes by protrusion or invagination of
endolysosomal membranes. CMA mediates the degradation of soluble proteins in
the lysosomes with the help of molecular chaperones and lysosome-associated
membrane protein 2A (LAMP2A). Macroautophagy (henceforth referred to as
autophagy), the best-characterised and evolutionarily conserved type of autophagy,
requires the formation of double-membrane structures termed autophagosomes for
the delivery of cargoes to the lysosomes. Macroautophagy may be further classified
into selective autophagy, characterised by high cargo specificity, and non-selective
(bulk) autophagy which lacks cargo specificity (Allen and Baehrecke 2020; Parzych
and Klionsky 2014).

Autophagy is intricately involved in health and disease. It plays a vital role in
cellular turnover, development, differentiation, tissue remodelling and cell death.
Autophagy is believed to function as a double-edged sword in disease processes and
may have a causative or protective role. Autophagy has been implicated in ageing,
infections, neurodegenerative disorders and cancer (Shintani and Klionsky 2004).
Yoshinori Ohsumi was awarded the Nobel Prize for Physiology or Medicine in 2016
for his seminal work on autophagy that led to a new paradigm in understanding
physiological processes such as the adaptation to starvation as well as diseases such
as cancer (https://www.nobelprize.org/prizes/medicine/2016/press-release/).

11.2 Physiological Functions of Autophagy

Autophagy is essential at every stage during the development of various organisms
and mediates a plethora of diverse cellular processes. Autophagy plays a critical role
in the maintenance of cellular homeostasis. Under basal conditions, autophagy is
involved in housekeeping functions such as removal of damaged organelles,
misfolded proteins and protein aggregates. On the other hand, during starvation,
autophagy promotes bioenergetic homeostasis by breaking down cellular
macromolecules to generate ATP for cellular functions (Klionsky 2020; Mowers
et al. 2017). Besides nutrient deprivation, autophagy is also induced to mitigate
stress due to hypoxia and reactive oxygen species (ROS). During embryogenesis,
autophagy catalyses the removal of paternal mitochondria. Autophagy is required for
mediating immune and inflammatory response, defence against microbial infections,
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cell-fate determination, tissue remodelling, preservation of organelle function,
recycling of intracellular proteins, prevention of toxic build-up of waste products
and gene silencing. Autophagy also protects cells from undergoing programmed cell
death by apoptosis (Allen and Baehrecke 2020; Singh et al. 2018).

11.3 The Autophagic Process and Components

Autophagy occurs at a basal level in all cells and can be induced by various types of
stress including nutrient deprivation, hypoxia, ROS, damaged cell organelles and as
a part of the DNA damage response (DDR) (Singh et al. 2018). Autophagy is divided
into five stages: initiation, nucleation of the initial sequestering compartment termed
the phagophore, expansion and elongation of the phagophore to form the double-
membrane structure called the autophagosome, fusion of the outer membrane of the
autophagosome with the lysosome to form the autolysosome and cargo degradation
and recycling (Hansen et al. 2018). Each stage of autophagy has potential therapeutic
targets for intervention (Fig. 11.1) (Mulcahy Levy and Thorburn 2020).

The process of autophagy is mediated by the highly conserved autophagy-related
genes (ARGs), (Allen and Baehrecke 2020; Singh et al. 2018). Autophagy is
initiated in response to various cellular signals by the Unc-51-like autophagy
activating kinase (ULK1) complex comprising ULK1, ULK2, Atg13, Atg101 and
the scaffolding protein RB1 inducible coiled-coil 1 (RBCC1) also known as FAK
family kinase-interacting protein of 200 kDa (FIP200). This is followed by mem-
brane nucleation and formation of the phagophore that requires synthesis of
phosphatidylinositol-3-phosphate by activation of a class III phosphoinositide
3-kinase (PI3K) complex, composed of a PI3K, ATG14L, vacuolar protein
sorting-associated proteins 15 and 34 (VPS15 and VPS34) and Beclin-1. The
ATG9 trafficking system (ATG2A/ATG2B, WDR45/WIP14 and ATG9A) is
responsible for elongation of the phagophore. The phagophore expands by acquisi-
tion of lipids promoted by two ubiquitin-like conjugation systems, the ATG5–
ATG12–ATG16 complex and microtubule-associated protein light chain 3 (LC3)
to form the autophagosome. Formation of the ATG5–ATG12–ATG16 complex is
followed by conversion of the cytosolic LC3-I to the lipidated LC3-II that conjugates
to phosphatidylethanolamine and incorporated into the phagophore membrane. The
adaptor protein p62/sequestosome 1 (SQSTM1) binds to LC3-II during
autophagosome formation and facilitates the degradation of ubiquitinated proteins
(Bishop and Bradshaw 2018; Marinkovic et al. 2018). The autophagosome then
fuses with a lysosome, to form an autolysosome in a process requiring small
G-protein Rab7, soluble N-ethylmaleimide-sensitive factor attachment proteins
(SNAREs), syntaxin17 (Stx17) and the membrane tethering complex HOPS (Dikic
and Elazar 2018; Zhi et al. 2018). The autophagic process is completed within the
autolysosomes by enzymatic degradation of the cargo and recycling of nutrients
(Fig. 11.1).

Autophagy is regulated by the mammalian target of rapamycin (mTOR) and
AMP-activated protein kinase (AMPK) signalling pathways. mTORC1 which is
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activated by nutrients and growth factors at the lysosomes induces phosphorylation
of the ULK complex with repression of autophagy. On the other hand, nutrient
deprivation inactivates mTORC1 leading to activation of the ULK complex and
autophagy induction (Fig. 11.1). Recent evidence indicates that autophagy is also
regulated by epigenetic mechanisms including histone modifications, DNA methyl-
ation and by noncoding RNAs (ncRNAs) (Baek and Kim 2017; Hu 2019). Epige-
netic changes influence ARGs as well as the signalling molecules and pathways that
regulate autophagy. While the co-activator-associated arginine methyltransferase

Fig. 11.1 Schematic representation of the mechanism and regulation of autophagy. The mTOR
kinase is the key signalling molecule involved in the regulation of autophagy. In an unstressed state,
activated mTORC1 phosphorylates and inactivates autophagy-related proteins and inhibits the
ULK/FIP200/ATG13 complex with consequent inhibition of autophagy. Induction of autophagy
by starvation, oxidative stress and hypoxia, inhibits mTORC1 that in turn releases and activates the
ULK/FIP200/ATG13 complex. This leads to activation of the class III phosphoinositide 3-kinase
(PI3K) complex comprised of Vps34, p150, Beclin-1, Atg14L and Autophagy and Beclin1
Regulator 1 (AMBRA1), which then drives the nucleation of the isolation membrane. Expansion
and elongation of the isolation membrane involve conversion of cytoplasmic LC3-I to the lipidated
LC3-II, followed by conjugation of phosphatidylethanolamine (PE) to LC3-II mediated by ATG4B
and ATG7. Localisation of ATG5-ATG12/ATG16L complex helps in elongation by recruitment of
LC3-II to the membrane. The ends of the isolation membrane fuse to form the autophagosome,
which fuses with the lysosomes to form autolysosomes. The cargo is degraded in the autolysosomes
by lysosomal enzymes and biomolecules recycled back to the cytoplasm

226 S. Nagini et al.



1 (CARM1) enhances transcriptional activation of ARGs, EZH2, a
methyltransferase is reported to silence autophagy-activating promoters by methyla-
tion. Shin et al. (2016a) found CARM1-mediated arginine methylation (H3R17me2)
as a critical epigenetic mark in autophagic induction.

11.4 Role of Autophagy in Cancer

The role of autophagy in cancer is complex and bidirectional. Autophagy has been
documented to suppress or promote tumour development based on the context and
the stage of tumorigenesis. Autophagy has been documented to be low in premalig-
nant lesions and enhanced in advanced cancers (Galluzzi et al. 2015; Mulcahy Levy
and Thorburn 2020).

11.4.1 Tumour Suppressive Effects of Autophagy

Autophagy prevents carcinogenesis by virtue of its ability to remove aggregated,
misfolded and oncogenic proteins. Additionally, autophagy also exerts tumour-
suppressive effects by stimulating the immune response. Decreased autophagy was
shown to be associated with infiltration of regulatory T cells, leading to diminished
immunosurveillance that facilitates tumour development (Parzych and Klionsky
2014). The tumour preventive role of autophagy has also been attributed to be
mediated via scavenging endogenous sources of ROS and maintaining genomic
stability (Galluzzi et al. 2015). Although genetic alterations in several ARGs have
been extensively documented, a large-scale human genomic analysis of somatic
mutations in ATG genes across 11 cancer types revealed that the core autophagy
machinery, which plays a critical role in maintaining genomic stability does not
undergo genetic alterations (Lebovitz et al. 2015).

Monoallelelic deletion of Beclin-1, a haploinsufficient tumour suppressor gene,
has been reported in breast, ovarian and prostate cancers (Delaney et al. 2020; Qu
et al. 2003). The loss of Beclin-1 was associated with reduced autophagy and
increased proliferation (Lee and Wu 2012; Zhang et al. 2018). However, biallelic
Beclin-1 mutations that could cause embryonic lethality do not occur in cancer. This
implies that monoallelic Beclin-1 is adequate to facilitate the requirement of func-
tional autophagy necessary for neoplastic transformation (Yue et al. 2003). The
Vps34-binding domain of Beclin-1 was shown to be essential for its tumour sup-
pressor activity (Furuya et al. 2005). The tumour suppressor functions of Beclin-1
are also mediated through UVRAG and Bax-interacting factor-1 (Bif-1), which
increase binding of Beclin-1 to Vps34 (Takahashi et al. 2007). Monoallelic deletion
or mutations of UVRAG as well as downregulation of Bif-1 have been documented
in diverse malignancies (Kung et al. 2011).

In addition to Beclin-1, several components of the core autophagy machinery
were also found to display tumour suppressor functions. Loss-of-function mutations
in ATG2B, ATG5, ATG9B and ATG12 leading to truncated ATG proteins were
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identified in gastric and colorectal cancers with microsatellite instability (Kang et al.
2009). Mice with deficiency of Atg5 and Atg7 showed mitochondrial damage,
oxidative stress and propensity to develop liver tumours (Takamura et al. 2011).
Loss of ATG4C, involved in processing LC3/ATG8 during autophagosome forma-
tion, was reported in chemically induced murine fibrosarcomas (Kimmelman 2011).
Somatic mutations of ATG5 coupled with overexpression of ATG16L2 observed in
various tumours prevented the interaction of ATG5 with ATG16L1, with conse-
quent proteasomal degradation of ATG12 and ATG16L1, resulting in inhibition of
autophagy (Wible et al. 2019).

p62/SQSTM1, an autophagy receptor and selective substrate for autophagy,
accumulates when autophagy is inhibited with fall in levels when autophagy is
induced. It thus serves as a reliable marker of autophagic flux (Mathew et al.
2009). Aberrant accumulation of p62/SQSTM1 has been reported in gastrointestinal
cancer (Su et al. 2005), prostate cancer (Kitamura et al. 2006), hepatocellular
carcinoma (Umemura et al. 2016), breast cancer (Li et al. 2017) and lung adenocar-
cinoma (Inoue et al. 2012), suggesting that autophagy inhibits tumorigenesis by
decreasing p62 accumulation (Li et al. 2020).

There is growing evidence to indicate that autophagy is stimulated by well-
established tumour suppressors such as TP53 and phosphatase and tensin homolog
(PTEN). In HT-29 colon cancer cells, PTEN was found to promote autophagy,
whereas loss-of-function mutations in PTEN suppressed autophagy (Errafiy et al.
2013). Taken together, these findings underscore the anti-tumour effects of
autophagy (Fig.11.2).

11.4.2 Tumour-Promoting Effects of Autophagy

Although autophagy is reported to suppress the development and progression of
tumours, substantial evidence indicates that autophagy facilitates tumorigenesis.
Autophagy is a strategy that enables acquisition of cancer hallmarks and survives
tumour microenvironmental stress. Several studies have demonstrated the key role
of autophagy in providing essential metabolites to meet the growing demands of
proliferating tumour cells (Kocaturk et al. 2019; Mulcahy Levy and Thorburn 2020;
Singh et al. 2018; Yang and Klionsky 2020). Autophagy fuels enhanced metabolic
and energy needs of cancer cells by mediating the degradation of macromolecules to
their constituent monomer units. In addition, autophagy promotes tumour survival
by enhancing tolerance to oxidative and genotoxic stress as well as stress induced by
increased metabolic rate and hypoxia (Fig.11.2).

RAS are small GTPases involved in important signal pathways for proliferation,
survival and metabolism. Cancers driven by the K-Ras oncogene rely heavily on
autophagy even in the absence of external stressors, a phenomenon known as
‘autophagy addiction’ that helps in evasion of metabolic stress and cell death
(Kim et al. 2011b). Several studies have reported a correlation between
RAS-mediated autophagy and the development of various human malignancies,
including cancers of the lung, colon and pancreas, suggesting that autophagy plays
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an important role in survival and growth of various tumours that depend on RAS
activation (Goel et al. 2015; Guo et al. 2011; Kim et al. 2011a). High rates of KRAS
mutations are seen in pancreatic ductal adenocarcinomas (PDACs) that are believed
to depend on autophagy to fuel tumour metabolism (Guo et al. 2011; Mulcahy Levy
and Thorburn 2020; Yang et al. 2011). The tumour-promoting potential of
autophagy is believed to be mediated by suppression of TP53 induction and by
maintenance of mitochondrial function (Guo et al. 2013b; Mancias and Kimmelman
2011).

Cancer stem cells (CSCs) that display self-renewal and malignant transformation
showed higher levels of autophagy (Nazio et al. 2019). The influence of autophagy
on CSCs is rather complex and based on several factors such as origin and differen-
tiation status. Inhibition of autophagy in CSCs induced death of CD34+ progenitor
cells in chronic myeloid leukaemia, whereas in acute myeloid leukaemia, it caused
expansion of progenitor cells in haematopoietic stem cells (Auberger and Puissant

Fig. 11.2 The dual role of autophagy in tumorigenesis
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2017). Conflicting findings have been reported on the effect of silencing ARGs on
CSCs. While silencing of Beclin-1 or ATG genes such as ATG7, ATG12 or LC3
inhibited proliferation of CSCs, ATG7 deficiency in KRAS-driven tumours had no
effect (Cufi et al. 2011; Eng et al. 2016; Gong et al. 2013).

11.5 Autophagy and Cancer Hallmarks

Tumorigenesis involves the acquisition of ten essential alterations that enable the
growth and functional abilities of cancer cells to survive, proliferate, invade and
disseminate, collectively denoted as hallmarks of cancer. These include self-
sufficiency in growth signals, insensitivity to growth-inhibitory signals, evasion of
programmed cell death, limitless replicative potential, sustained angiogenesis, tissue
invasion and metastasis, reprogramming of energy metabolism, evading immune
destruction, genome instability and inflammation (Sasahira and Kirita 2018). Several
studies have unravelled the role of autophagy in the acquisition of cancer hallmarks,
some of which (sustained cell proliferation, invasion, metastasis, apoptosis evasion
and drug resistance) are discussed below.

11.5.1 Cell Proliferation and Autophagy

There are conflicting reports on the role of autophagy in tumour cell proliferation
(Singh et al. 2018). High levels of autophagy have been documented to be essential
for the growth of cancers with KRAS or BRAF mutations such as PDACs (Yang
et al. 2011). In a BRAF-driven lung cancer model, Atg7 deletion resulted in tumour
regression providing proof-of-concept for the involvement of autophagy in the
proliferation of these tumours (Guo et al. 2013a). Other studies found a correlation
between low levels of autophagy and high rate of proliferation in cancer that could
be attributed to dysregulated PI3K/Akt/mTOR pathway and deletion of the tumour
suppressor PTEN. Further, rapamycin, an mTOR inhibitor and autophagy inducer
was shown to cause cell cycle arrest and inhibits proliferation of mantle cell
lymphoma and MDA-MB-231 breast cancer cells (Chatterjee et al. 2015; Yazbeck
et al. 2008). Collectively, these findings indicate that autophagy-mediated regulation
of cell proliferation is context-dependent.

11.5.2 Interplay Between Autophagy and Apoptosis

Although apoptosis and autophagy are distinct forms of cell death that maintain
cellular homeostasis, they are intricately interconnected by protein networks
(Nikoletopoulou et al. 2013; Vijayarathna et al. 2015). Autophagy is a cytoprotective
survival mechanism that tumour cells employ to evade apoptosis (Mulcahy Levy and
Thorburn 2020). Understanding the mechanisms by which autophagy circumvents
apoptosis in tumours will enable the development of successful therapeutic
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strategies. Inefficient mitochondrial outer membrane permeabilisation (MOMP) that
enables tumours to recover from apoptosis and regain the ability to proliferate has
been suggested as the mechanism underlying autophagy-mediated apoptosis avoid-
ance (Ichim et al. 2015).

The BCL2 family proteins that regulate apoptosis are also involved in autophagy
initiation (Fitzwalter and Thorburn 2015). The proapoptotic BH3-only proteins such
as PUMA, NOXA, NIX, BID and BNIP3 disrupt the Beclin 1/BCL2 complex
releasing Beclin 1 that complexes with VPS34 to stimulate autophagy. The anti-
apoptotic BCL2 proteins on the other hand inhibit Beclin-1 by binding to its BH3
domain (Pattingre et al. 2005). Death-associated protein kinase (DAPK) has been
shown to induce autophagy by phosphorylating Beclin 1. Upon phosphorylation,
Beclin 1 dissociates from BCL-2 and binds to VPS34. In addition, DAPK also
activates VPS34 via a second kinase, protein kinase D (PKD) (Eisenberg-Lerner and
Kimchi 2012; Zalckvar et al. 2009).

c-jun N-terminal kinase (JNK), involved in a vast array of cellular processes, has
been demonstrated to disrupt the Beclin 1-BCL-2 complex by phosphorylating
BCL-2. This leads to release of Beclin 1 and formation of an active Beclin 1–
VPS34 complex resulting in induction of autophagy. Wei et al. (2008) proposed a
model on the dual role of JNK1-mediated BCL2 phosphorylation in regulating
autophagy and apoptosis. They speculated that JNK1 initially phosphorylates
BCl-2 to stimulate autophagy. However, once autophagy is unable to sustain cell
survival, Bcl-2 phosphorylation inactivates its anti-apoptotic function and apoptosis
is initiated.

The tumour suppressor protein TP53 also plays a dual role in autophagy based on
its activation status and intracellular localisation. Cytosolic p53 inhibits autophagy
by interacting with FIP200 and interfering with the ULK1 complex activity
(Morselli et al. 2011; Tasdemir et al. 2008). However, under conditions of cellular
stress, p53 localises to the nucleus and binds to the promoter region of multiple
pro-autophagic genes, including AMPK, DRAM1, sestrin 1, sestrin 2 and PTEN, as
well as pro-apoptotic genes of the BCL-2 family and p53 upregulated modulator of
apoptosis (PUMA) (Budanov and Karin 2008; Gao et al. 2011; Kenzelmann Broz
et al. 2013; Riley et al. 2008). Under certain conditions, p53 also induces both
mitophagy and apoptosis by triggering MOMP (Youle and Narendra 2011).

The transcription factor FOXO3/FOXO3A (forkhead box O3), which confers
apoptosis sensitisation by transactivating PUMA, reciprocally regulates autophagy
(Warr et al. 2013). Elevated PUMA prevents the interaction between BCL2 and
BAX/BAK with release of BAX/BAK MOMP and cell death by apoptosis.
Fitzwalter and Thorburn (2018) postulated that FOXO3 functions as a cell surveil-
lance mechanism to rectify perturbations in autophagy and induces apoptosis if
autophagy regulation fails.

BH-3 only proteins that function at the crossroads of apoptosis and autophagy
have emerged as attractive therapeutic targets in cancer. Several BH3 mimetics
which are inhibitors of the anti-apoptotic BCL2 proteins have been developed.
Venetoclax, a BH3-mimetic small-molecule inhibitor of BCL-2, is used in the
treatment of chronic lymphocytic leukaemia (CLL) and small lymphocytic
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lymphoma. In acute myeloid leukaemia (AML), overexpression of vacuole mem-
brane protein (VMP1) increased autophagic flux, protected against oxidative stress,
reduced the response to venetoclax-induced MOMP and apoptotic cell death
(Folkerts et al. 2019).

11.5.3 Angiogenesis and Autophagy

Angiogenesis, the formation of new blood vessels from existing vasculature,
facilitates tumour invasion and metastasis. With increasing growth of a malignant
tumour, the centre of the tumour is deprived of oxygen and nutrients due to
decreased perfusion. Autophagy has been suggested to enable tumour cells to thrive
under avascular and hypoxic conditions. In the tumour microenvironment (TME),
autophagy flux induces migration of ECs and angiogenesis (Vion et al. 2017).
Resistance to anti-angiogenic therapy has been attributed to high levels of autophagy
in tumours. Anti-angiogenesis treatment in concert with administration of an
autophagy inhibitor was found to exhibit greater efficacy besides stimulating apo-
ptosis of tumours (Ramakrishnan et al. 2007). However, enhanced autophagy in
neuroblastomas was demonstrated to block angiogenesis via degradation of
pro-angiogenic gastrin-releasing peptide (GRP) (Kim et al. 2013).

Matrix glycoproteins that regulate the interplay between autophagy and angio-
genesis in the tumour microenvironment are considered to be critical determinants of
the fate of cancer cells. Decorin and Perlecan, matrix proteoglycans have been
envisaged to influence the crosstalk between angiogenesis and autophagy signalling
in endothelial cells. In a recent study, decorin, a small leucine-rich proteoglycan, was
demonstrated to evoke the autophagic clearance of vascular endothelial growth
factor A (VEGFA) by functioning as a partial agonist of vascular endothelial growth
factor 2 (VEGFR2) in a process that requires the energy-sensing protein, AMPK and
the autophagic regulator, paternally expressed gene 3 (PEG3). Further, pharmaco-
logical depletion of ATG5 led to intracellular accumulation of VEGFA, indicating
that VEGFA is a substrate for autophagy. These findings underscore the therapeutic
potential of decorin as a next-generation anticancer agent (Neill et al. 2020).

11.5.4 Tissue Invasion, Metastasis and Autophagy

Autophagy has a complex role in tumour invasion. In a primary tumour, autophagy
prevents tissue necrosis and inflammation, thereby preventing invasion (Kenific
et al. 2010). Autophagy also inhibits epithelial–mesenchymal transition (EMT) by
degradation of p62/SQSTM1 as well as its cargo TWIST1 that is known to stimulate
EMT (Qiang et al. 2014). However, once the tumour becomes invasive and
progresses, autophagy affords protection against apoptosis and facilitates tumour
dormancy. Autophagy has been implicated in various features of invasion such as
cell motility, epithelial–mesenchymal transition (EMT), quiescence, stem cell phe-
notype and drug resistance (Mowers et al. 2017). Autophagy was found to be
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essential for secretion of factors critical for tumour invasion such as interleukin-6,
matrix metalloproteinase-2 (MMP-2) and WNT-5A (Lock et al. 2014). Interestingly,
hypoxia and transforming growth factor beta (TGFβ) are known to induce EMT also
induce autophagy (Kiyono et al. 2009; Li et al. 2013). MicroRNA-mediated sup-
pression of Smad2 was found to interrupt autophagy, resulting in inhibition of cell
survival and invasive potential (Zhai et al. 2015). Conversely, ULK2, which
promotes autophagy enhanced EMT and invasiveness (Kim et al. 2016). Autophagy
was reported to induce EMT via SPHK1-TRAF2-Beclin-1-CDH1 signal cascades in
hepatocellular carcinoma cells (Liu et al. 2017a).

Emerging evidence indicates the involvement of autophagy in metastasis (Dower
et al. 2018). Several steps in the metastatic cascade are believed to be autophagy-
dependent, including establishment of a pre-metastatic niche, tumour cell dormancy,
resistance to anoikis and escape from immune surveillance (Kenific et al. 2010;
Mowers et al. 2017). Autophagy also plays an important role in preventing tumour
cells that detach from the ECM from dying by the process of anoikis, thereby
promoting metastasis (Lock and Debnath 2008). Autophagy is induced by the
same factors that promote metastasis such as hypoxia. Interestingly, several features
of autophagy, such as mesenchymal characteristics, escape from immune surveil-
lance and stem cell-like phenotype, are shared by metastasis. Increased staining for
the autophagy marker, microtubule-associated light chain B (LC3B), is a common
feature in solid tumours that is associated with metastasis (Lazova et al. 2012).
Increased autophagy and EMT promote the cancer stem cell (CSC) phenotype that
drives metastasis (May et al. 2011). In breast ductal carcinoma in situ (DCIS), high
levels of autophagy were observed in subpopulations of cells that displayed tumour-
invasive potential and stem cell phenotype (Espina et al. 2010).

The tumour microenvironment (TME), which interacts with the malignant
tumour, profoundly influences tumour progression as well as therapeutic response.
Autophagy is documented to promote migration and invasion of tumour cells,
maintain tumour cell stemness and drug-resistance phenotypes and influence the
crosstalk between the tumour and the TME (Mowers et al. 2018). In the TME,
autophagy facilitates polarisation of macrophages into tumour-associated
macrophages (TAMs) (Chen et al. 2014; Wen et al. 2018), and differentiation of
fibroblasts into cancer-associated fibroblasts (CAFs) (Ngabire and Kim 2017;
Peiris-Pages et al. 2015; Wang et al. 2017) and myeloid-derived suppressor cells
(MDSCs) (Dong et al. 2017; Ostrand-Rosenberg et al. 2020).

The interplay between autophagy and exosomes is increasingly recognised to
influence the TME. Exosomes, cargo-laden vesicles secreted by various cell types,
establish intercellular communication to transfer their contents such as RNA and
proteins to other cells, which may impact autophagy. Both exosomes and autophagy
exert influence on the TME and metastasis and reciprocally regulate each other (Lin
et al. 2019; Ruivo et al. 2017). The interaction of autophagy and exosomes is also
mediated by autophagy-related proteins. ATG5 silencing significantly attenuated the
release of exosomes as well as exosome-mediated lipidation of LC3B, a central
protein of the autophagy pathway (Xu et al. 2018a).
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11.5.5 Drug Resistance and Autophagy

There is growing evidence to indicate the involvement of autophagy in resistance to
chemotherapeutic agents. The anticancer drug 5-fluorouracil (5-FU) used in the
treatment of solid tumours such as breast, pancreatic and colorectal cancers, inhibits
thymidylate synthetase, an enzyme essential for DNA synthesis. Induction
of cytoprotective autophagy that results in chemoresistance is a major limitation of
this drug. Autophagy induction by 5-FU has been attributed to overexpression of
beclin-1, followed by conversion of LC3I to LC3II, JNK-mediated protective
autophagy and BCL2-mediated autophagic flux. The DNA-damaging chemothera-
peutic drug, cisplatin, is also documented to induce autophagy and chemoresistance.
Several mechanisms have been suggested for enhanced autophagy induced by
cisplatin. These include modulation of ERK pathway and upregulation of beclin
1 with consequent conversion of LC3 proteins, increase of ATG7 expression and
downregulation of miR-199a-5p (Xu et al. 2012). However, combined administra-
tion of cisplatin and an autophagy inhibitor induced tumour cell death. In
mitoxantone-resistant breast cancer cells, miR-181a targets Atg5 and impedes
autophagy by targeting breast cancer–resistance protein (Jiao et al. 2013). Likewise,
miR-874 inhibits autophagy and sensitises gastric cancer cells to chemotherapy via
the target gene ATG16L1 (Huang et al. 2018). Shuhua et al. (2015) observed a
positive correlation between the expressions of the ARGs Raptor, Rictor and Beclin1
and the multidrug resistance (MDR) gene in colorectal cancer (CRC) patients.
Targeting autophagy by modulating Atgs such as Beclin1 (Eum and Lee 2011),
Atg5 (Ge et al. 2014), Atg7 (Singh et al. 2012) and Atg12 (An et al. 2015) sensitised
MDR cells to therapeutic agents. Taken together, these findings imply that
chemoresistance can be circumvented by targeting autophagy.

11.6 ARGs as Prognostic Markers

There is substantial evidence to indicate that ARGs are reliable markers of disease
severity and prognosis (Bortnik and Gorski 2017; Yang and Klionsky 2020). The
expression levels of ATG genes vary based on the site of the tumour and stage of the
disease. In colon cancer, ATG16L2, CAPN2 and TP63 were upregulated, whereas
SIRT1, RPS6KB1, PEX3, UVRAG and NAF1 were downregulated and associated
with disease recurrence (Mo et al. 2019). On the other hand, in gastric cancer, ULK1,
Beclin-1, ATG3 and ATG10 were identified as favourable prognostic markers (Cao
et al. 2016). An eight-gene autophagy-related signature (BLOC1S1, IL24, NRG4,
PDK4, PEX3, PRKG1, SIRT2 and WDR45L) was identified as an independent and
accurate predictor for the prognosis of serous ovarian cancer (An et al. 2018).
Recently, Mao et al. (2020) showed that ATGs are crucial factors in the progression
of HCC and could serve as potential prognostic markers for diagnosis and treatment.
An autophagy score signature was validated to classify CRC patients into low and
high risk of early relapse to predict post-operative survival (Zhou et al. 2019). Gene
expression microarray data obtained from TCGA was used to develop ARG

234 S. Nagini et al.



expression signature as a predictive tool for overall survival (OS) and disease-free
survival (DFS) in prostate cancer patients. Five OS-related and 22 DFS-related ARG
signatures were identified that could function as promising prognostic biomarkers of
prostate cancer (Hu et al. 2020). Despite these studies, correlation between the ARG
signature and the cancer type still remains obscure. The moonlighting functions of
ATG proteins are believed to be responsible for the lack of correlation. Many ATG
proteins are multifunctional and exert their influence beyond autophagy on diverse
signalling pathways and cellular processes.

11.7 Autophagy Manipulation in Cancer Therapeutics

Autophagy manipulation has emerged as a promising strategy in cancer treatment.
However, the paradoxical role of autophagy in cancer merits attention while design-
ing therapeutic strategies. While enhancing autophagy is an option in premalignant
lesions, and in some malignant tumours, inhibiting autophagy appears to be effective
in many tumours, especially in advanced cancers. Several clinical trials are under-
way to target autophagy in cancer with more emphasis on the discovery and
development of drugs that inhibit autophagy (Towers and Thorburn 2016).

11.7.1 Autophagy Induction

Several chemotherapeutic drugs are known to induce autophagy. The mToR inhibi-
tor rapamycin has been successfully used to inhibit angiogenesis by preventing the
synthesis of VEGF and downstream signalling events. Temsirolimus and
everolimus, water-soluble analogues of rapamycin administered alone or in combi-
nation with chemotherapeutic drugs inhibited proliferation and induced autophagic
cell death in mantle cell lymphoma and acute lymphoblastic leukaemia (Crazzolara
et al. 2009; Yazbeck et al. 2008). Significant improvement in progression-free
survival (PFS) was evident with everolimus treatment in patients with advanced
neuroendocrine tumours in the Phase III RAD001 in Advanced Neuroendocrine
Tumours (RADIANT)-3 and RADIANT-4 studies, respectively (Gajate et al. 2017).
Everolimus in combination with exemestane, an aromatase inhibitor was found to be
an important treatment option for patients with hormone receptor-positive (HR+)
and human epidermal growth factor receptor 2- (HER2-) metastatic breast cancer
(Riccardi et al. 2018). Combination chemotherapy with the autophagy inducers
temozolomide and dasatinib was effective in killing glioblastoma cells resistant to
apoptosis (Milano et al. 2009).

11.7.2 Autophagy Inhibition

There is substantial evidence to indicate that autophagy enhances tumour develop-
ment and progression as well as chemoresistance in a wide variety of neoplasms.
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Ample evidence from cell-based in vitro studies, genetically engineered mouse
models (GEMMs) and patient-derived xenograft (PDX) mouse models demonstrate
that autophagy inhibition by anti-cancer drugs enhances tumour cell death (Levy and
Thorburn 2011; Mulcahy Levy and Thorburn 2020). Autophagy inhibition has been
demonstrated to sensitise tumour cells to chemotherapeutic agents and potentiate
apoptosis (Amaravadi et al. 2016).

Autophagy inhibition as a treatment modality for cancer may be tumour-specific
or systemic. Tumour-specific autophagy inhibition causes perturbations in tumour
cell metabolism, impairment in redox and energy homeostasis, mitochondrial dys-
function and reduced nucleotide pools eventually leading to tumour cell death.
Systemic inhibition of autophagy, on the other hand, causes changes in the tumour
microenvironment (Kimmelman and White 2017).

Several strategies have been used to inhibit autophagy in malignant tumours
including small molecule inhibitors, genetic ablation of ARGs such as beclin-1,
ATG5 or ATG7, and repurposed drugs such as chloroquine (Mulcahy Levy and
Thorburn 2020). Current clinical efforts have explored the different stages of
autophagy as potential therapeutic targets to maximise benefit in cancer treatment
(Mulcahy Levy and Thorburn 2020). The serine/threonine kinases ULK1 and ULK2
are prime targets to block autophagy in the early stages. The selective ATP competi-
tive inhibitor of ULK1 kinase, SBI-0206965 (SBI) was found to induce apoptosis in
lung cancer during nutrient deprivation (Egan et al. 2015). Preclinical results using
inhibitors of VPS34 (VPS34-IN1 and SB02024), ATG4B (NSC185058, UAMC-
2526 and S130) are encouraging (Dyczynski et al. 2018; Fu et al. 2019).

Autophagy inhibition both alone and in combination with anticancer drugs is
emerging as a promising option in cancer therapy. The autophagy inhibitor
3-methyladenine (3-MA) when used in concert with tratsuzumab increased chemo-
therapeutic efficacy in HER2-positive breast cancer cells (Jain et al. 2013). Treatment
with 3-MA or deletion of beclin-1 induced chemosensitisation of hepatocellular
carcinoma cells (Song et al. 2009). Knockdown of ARGs was found to overcome
resistance to tamoxifen in ER-positive breast cancer cells (Cook et al. 2011). In
cisplatin-resistant ovarian cancer cells, Atg5 deletion induced apoptosis (Wang and
Wu 2014).

11.7.2.1 Chloroquine and Hydroxycloroquine
The antimalarial drug chloroquine (7-chloro-4-(4-diethylamino-1-
methylbutylamino)-quinoline, CQ) has attracted significant attention as a promising
anticancer agent, a classic example of drug repurposing. Both CQ and
hydroxychloroquine (HCQ) have been approved by the Food and Drug Administra-
tion (FDA) for clinical trials in cancer. CQ is a small molecule that is unprotonated at
physiological pH. Being lipophilic, it traverses the cell membrane and accumulates
in acidic compartments such as the lysosomes (Weyerhauser et al. 2018). CQ
inhibits autophagy by preventing the fusion of autophagosome with the lysososome
(Yang et al. 2013). CQ treatment reverted resistance to chemotherapeutic and anti-
angiogenesis drugs (Selvakumaran et al. 2013).
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Addition of a hydroxyl group to CQ lowered toxicity of CQ while retaining the
efficacy. A large number of clinical trials have revealed the adjuvant effects of
CQ/HCQ for diverse neoplasms. Following the identification of CQ as an autophagy
inhibitor by Murakami et al. (1998), CQ was demonstrated to significantly improve
clinical outcomes in patients with glioblastoma (Briceno et al. 2003). Subsequently,
CQ/HCQ was reported to exhibit anti-neoplastic properties on a wide range of
tumours (Xu et al. 2018b). CQ treatment is recognised to sensitise colorectal cancer
cells to anti-angiogenesis treatment, DNA damaging chemotherapeutic drugs and
photosan-II-mediated photodynamic therapy (PS-PDT) (Xiong et al. 2017). The
ability of CQ to sensitise malignant tumours to radiation and chemotherapy was
impaired by pharmacological inhibition or siRNA ablation of Beclin-1. CQ acts on a
wide spectrum of molecular targets such as p53, NF–κB and ATM kinase, reflecting
its functional pleiotropy. CQ has been hypothesised to play a dual role by activating
DNA damage response (DDR) and suppressing DNA repair, thereby shifting the
balance towards cell death (Weyerhauser et al. 2018). Recent research has provided
evidence that CQ exerts anticancer effects independent of its ability to inhibit
autophagy (Eng et al. 2016).

11.7.2.2 Lysosome-Targeted Inhibitors
Although CQ/HCQ showed positive results in GBM and pancreatic tumours, clinical
efficacy was not encouraging in other tumours. Several lysosomal targeted inhibitors
that are potent and selective are being developed as potential alternatives to
CQ/HCQ (Mulcahy Levy and Thorburn 2020). Lys05, a bisaminoquinoline and
DQ661, a dimeric quinacrine that concurrently inhibits lysosomes by deacidification
and impairs lysosomal recruitment of mTOR were successful as single agents in
mouse models of melanoma and CRC. DQ661 displayed greater efficacy relative to
HCQ and Lys05 especially in acidic tumours, because it is able to maintain its
activity in acidic media. Additionally, DQ661 was also found to be promising in
combination with gemcitabine in PDAC (McAfee et al. 2012; Pellegrini et al. 2014;
Rebecca et al. 2017).

11.7.2.3 Epigenetic Modulation of Autophagy
Given the importance of epigenetic players in regulating autophagy, epigenetic
modifiers that influence autophagy through histone acetylation, methylation of
CpG islands and by ncRNAs have been used to manipulate autophagy. Several
natural products have been documented to target autophagy via epigenetic modifi-
cation (Vidoni et al. 2019). Curcumin was demonstrated to inhibit autophagy by
restoring the expression of miR-143 and induce apoptosis of prostate cancer cells
exposed to radiation (Liu et al. 2017b). Ellagic acid, a naturally occurring polyphe-
nol abundantly found in fruits and vegetables that exerts antiproliferative effects has
been reported to inhibit CARM1-mediated H3R17 methylation, thereby suppressing
autophagy (Shin et al. 2016b). Studies from this laboratory demonstrated that
gedunin and nimbolide, limonoids from the neem tree (Azadirachta indica) exert
their antiproliferative effects by inhibiting cytoprotective autophagy and inducing
apoptosis in oral cancer cell lines and in the hamster buccal pouch model of oral
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oncogenesis (Sophia et al. 2018; Tanagala et al. 2018). While gedunin mediated its
effects via downregulation of the oncomiR, miR-21, nimbolide augmented apoptosis
by overcoming the shielding effects of autophagy through modulation of the PI3K/
Akt/GSK-3β signalling axis as well as the ncRNAs miR-126 and HOTAIR .
Autophagy modulators are thus a valuable addition to the armamentarium of
compounds that offer promise in cancer therapeutics.

11.7.2.4 Pitfalls of Autophagy Inhibition
There are several concerns in using autophagy manipulation as a therapeutic strategy
in cancer. Many of the autophagy inhibitors including CQ/HCQ are not autophagy
specific and affect other essential signalling pathways. For instance, in dormant
murine breast cancer stem cells autophagy inhibition induced aberrant expression of
6-phosphofructo2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) leading to prolif-
eration and recurrent metastatic disease (Yang et al. 2013). The cytotoxicity due to
global autophagy inhibition induced by some compounds is another concern
although it may be circumvented by therapy breaks or by using agents that cause
incomplete autophagy inhibition such as CQ. The uptake of HCQ is pH-dependent
which limits its effectiveness in solid tumours that show differences in pH between
central and peripheral regions (Pellegrini et al. 2014).

Autophagy inhibition has been reported to cause side effects such as inflamma-
tion and tissue damage. This can be overcome by intermittent dosing of autophagy
inhibitors. An inducible dominant-negative ATG4BC74A mutant mouse model that
mimics a pharmacological inhibitor by reversibly manipulating autophagy without a
complete blockade has been developed (Yang et al. 2018). The interplay between
autophagy and apoptosis lends credence to the development of intermittent
autophagy inhibitors. However, the appropriate dose of autophagy inhibitors
remains to be standardised.

Treatment outcomes may also depend on the concept of autophagy addiction.
RAS-driven tumours such as PDACs may respond better to autophagy inhibition
compared to autophagy-independent tumours providing a rationale for initiating
clinical trials targeting autophagy addiction. Autophagy inhibition decreased tumour
growth in xenograft models of PDAC and improved surgical outcomes in PDAC
patients who were pre-operatively treated with gemcitabine, nab-paclitaxel and HCQ
(Boone et al. 2015; La Belle Flynn et al. 2019). Autophagy inhibition in combination
with direct targeting of MEK or ERK was found to be beneficial and clinical trials
have been developed for NRAS melanoma and PDAC respectively (Kinsey et al.
2019). In addition to RAS, mutations in other genes have also been used to identify
autophagy-dependence as well as to predict response to autophagy inhibition such as
the epidermal growth factor receptor (EGFR) that regulates pathways influencing
autophagy. GBM tumours expressing EGFR variant III (EGFRvIII), as well as head
and neck squamous cell carcinoma (HNSCC) are autophagy-dependent and respond
to autophagy inhibition (Jutten et al. 2018). Clinical trials have been carried out on
autophagy inhibition in NSCLC and GBM patients with overexpressed or mutant
EGFR (Massachusetts General Hospital 2019, https://ClinicalTrials.gov/show/
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NCT00977470; Maastricht Radiation Oncology 2020, https://ClinicalTrials.gov/
show/NCT02378532).

11.8 Conclusion

The role of autophagy in cancer is highly complex and paradoxical. While
autophagy has suppressive effects on some tumours, in most cases, autophagy is a
survival pathway that enables tumour proliferation and progression. In particular, the
interplay between autophagy and apoptosis is intriguing and has implications for
cancer therapy. Autophagy is a therapeutically targetable process, although there are
many factors that need to be considered to maximise benefit. It is increasingly
important to weigh options such as targeting the early or late stages of the pathway,
stage of the disease that will respond best to intervention, whether to use an
autophagy inducer or inhibitor and whether to administer the autophagy modulator
as a single agent or in combination. Patient selection is critical in delineating positive
findings as well as to identify non-responders. Rationally based interventions are
therefore essential to effectively maximise therapeutic benefit and minimise adverse
outcomes.
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Abstract

Autophagy is an evolutionary conserved self-degradation process that occurs
ubiquitously in eukaryotes. It plays an important role in maintenance of cellular
homeostasis by balancing the energy resources or through removal of misfolded
proteins and damaged organelles. During autophagy, the recycling of the long-
lived proteins or organelles is executed through their engulfment into double-
membrane autophagosome followed by their lysosomal degradation via forma-
tion of autophagolysosome. Interestingly, autophagy is under tight regulation by
a group of genes called autophagy-related genes (ATG) in association with
various signalling pathways. Literature review suggests that autophagy is
implicated in numerous developmental and other physiological processes such
as cell differentiation, cell survival, cell death, nutrient starvation response and its
dysregulation, often, leads to many pathological conditions including cancer.
Generally, under normal physiological conditions, basal autophagy occurs in all
cells but it is induced only in response to specific intra- or extra-cellular stimuli. In
cancer, depending on the context, autophagy can be paradoxical in nature
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(i.e. tumour-suppressive or tumour-promoting) and has also been documented to
have the remarkable role in development of chemoresistance, thus, justifying the
effectiveness of cancer therapeutic intervention through stimulation or inhibition
of autophagy. Henceforth, in this chapter, we have summarised the autophagy in
a nutshell, with focus on its mechanism, monitoring methods, regulation and
context-dependent role in cancer and explored how the manipulation of
autophagy could be beneficial towards improved cancer cure, as evident from
the numerous in vitro and in vivo studies as well as clinical trials.

Keywords

Autophagy · Cancer therapy · Chemoresistance · Autophagy regulated genes ·
Clinical trials

12.1 Introduction

Autophagy is a dynamic process responsible for degradation and turnover of cellular
proteins and organelle. It is accomplished through sequestration of target cellular
constituents or organelle into double-membrane vesicles called autophagosome,
which in turn fuses with lysosome to form autophagolysosome, wherein they are
degraded by lysosomal proteases for recycling. It is an evolutionary conserved
ubiquitous process occurring in eukaryotes (Klionsky and Emr 2000; Levine and
Klionsky 2004). In recent times, autophagy has gained immense attention in clinical
research owing to their versatile role in diverse physiological and pathophysiological
conditions, amongst which cancer is of particular importance. Autophagy occurs at
basal level in most of the cells. However, it can also be induced in response to
specific stimuli, wherein autophagy is context-dependent (Mizushima 2007; White
2012; Amaravadi et al. 2016). However, the differences between basal autophagy
and stimuli-induced autophagy and their relevance are not yet well-understood.

The Greek term ‘autophagy’ meaning ‘self-eating’ was coined by Christian de
Duve in 1963 based on the electron microscopic studies displaying single or double-
membrane vesicles containing parts of sequestered cytoplasm with variable degree
of disintegrated organelles, especially mitochondria and other intracellular
structures. Remarkable progress in understanding autophagy has been reported in
the last few decades by decoding its molecular mechanism and significance in
various physiological processes (Klionsky 2007; Levy et al. 2017). The break-
through discovery of the detailed mechanism of regulation and execution of
autophagy at molecular level in yeast Saccharomyces cerevisiae by Yoshinori
Ohsumi has been awarded the 2016 Nobel prize in Physiology and Medicine.
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12.2 Types of Autophagy

Autophagy can be categorised into three different types: macro-autophagy, micro-
autophagy and chaperon-mediated autophagy. Macroautophagy involves engulf-
ment of cytoplasmic proteins and organelle into double-membrane bound vesicles
called autophagosome, which is trafficked to lysosome to form autolysosome for
degradation by lysosomal proteases. In contrast, microautophagy is characterised by
the internalization of the substrate through invagination of lysosomal or endosomal
membrane followed by their lysosomal degradation (Li et al. 2012). However,
in chaperon-mediated autophagy (CMA), the cargo protein contains KFERQ-like
pentapeptide motif, which is recognised by cytosolic chaperone protein called heat
shock cognate 70 (HSP-70) for their translocation to the lysosomal lumen through
interaction with lysosomal-associated membrane protein 2A (LAMP 2A) receptor
(Kaushik et al. 2011). Although both micro and macro-autophagy are capable of
targeting large structures through selective and non-selective mechanism, CMA is
constitutively selective in nature and thereby, restricted to turnover of specific
protein with well-defined KFERQ motif. It is important to note that non-selective
autophagy involves the direct engulfment of the cytoplasm and its components into
the autophagosome (in macroautophagy) or through invagination of the lysosomal
membrane (in microautophagy). While, in contrast, selective autophagy is mediated
by specific targeting of the cargo, either cellular proteins or organelles, hallmarked
with degradation signal (most commonly, ubiquitin in mammals) through interaction
with autophagy cargo receptor, which serves as molecular bridge, for their degrada-
tion by autophagy (Kaur and Debnath 2015; Levy et al. 2017).

12.3 Mechanism of Autophagy

Autophagy is a complex, multi-step process under the intricate control of a set of
30 evolutionary conserved, autophagy-regulated genes (ATG), which were identified
in yeast and mostly, have well-recognised mammalian orthologue. It divided into three
distinct stages: autophagosome biogenesis, fusion with lysosome and lysosomal
degradation of intravesicular constituents (Fig. 12.1). The autophagosome formation
is initiated at the phagophore assembly point through the activation of ULK (UNC
51-like kinase) complex comprising of ULK1, ULK2 and ATG13, FIP200 (FAK
family kinase interacting protein of 200 kDa) and ATG 101. This is followed by the
nucleation stage when the ULK complex targets class III PI3 kinase complex—
consisting of Beclin 1 (Atg6 in yeast), VPS34 (vacuolar protein sorting 34; also
known as PIK3C3), ATG14, UVRAG (UV radiation resistance-associated gene
protein; also known as p63) and AMBRA1 (activating molecule in BECN1-regulated
autophagy protein 1)—promotes production of autophagosome-specific phosphatidyl-
inositol-3-phosphate. Finally, the ATG5–ATG12–ATG16 complex along with
ATG4B–ATG7 complex facilitates the expansion of the autophagosome membrane
through lipidation of the microtubule-associated protein light chain 1 (LC3I), which is
the mammalian homologue of yeast Atg8, and GABARAP (γ-aminobutyric type A
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(GABAA)-receptor associated protein) with phosphatidylethanolamine (PE) to form
LC3II and GABARAP-II, which in turn co-localise followed by their recruitment to
the membrane. Interestingly, LC3BII, the well-known autophagosome marker found
on the autophagosomal membrane, has been reported to facilitate the hemifusion of
membranes and cargo selection for degradation, possibly through regulation of vari-
able protein–protein interaction (Mizushima 2007; Levy et al. 2017; Meijer and
Codogno 2004; Mizushima et al. 2011; Onorati et al. 2018). However, the significance
of LCB-related molecules in autophagy needs further investigation (Fig. 12.1).

12.4 Methods of Monitoring Autophagy

In present-day autophagy research, the detection and quantification of
autophagosome along with biochemical validation of the autophagic markers
comprises the principal methods of monitoring autophagy. The electron microscopy
is the most conventional and oldest method that enables the visualisation of the
autophagosome at the ultrastructural level. It is of immense interest to note that in

Fig. 12.1 The mechanism of autophagy. Autophagy is a multistep cellular process comprising of
autophagosome initiation, elongation of the autophagosomal membrane, sequestration of the cargo
and fusion of the autophagosome with the lysosome for degradation of the constituents. It can be
inhibited at particular steps by specific inhibitors (such as 3MA—early phase autophagy inhibitor
that inhibits autophagosome formation and chloroquine, hydroxychloroquine, bafilomycin A—late
phase autophagy inhibitors that prevents the fusion of autophagosome with lysosome)
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1950s, the autophagy was first discovered by electron microscopic study of the
lysosome (Klionsky 2007). However, advancement of autophagy research called for
the formulation of easier and more accessible assays of autophagy detection. The
advent of LC3B as the signature of autophagosome has simplified the revelation of
autophagy by the light microscopic detection of LC3B or GFP–LC3B puncta.
Finally, the conversion of LC3I to LC3 II by immunoblotting with LC3 antibody
is the widely employed biochemical assay to confirm autophagy. Furthermore,
immunoblot depicting the turnover of p62 is also used to expose autophagy
(Mizushima 2004; Mizushima et al. 2010; Yoshii and Mizushima 2017).

Nonetheless, Levine et al. have highlighted the misconception of the direct
correlation of the number of autophagosome with the autophagic activity
(Mizushima et al. 2010). Owing to the dynamic nature, at any point of time, the
number of autophagosome is the function of the balance between their formation rate
and fusion rate with the lysosome. Henceforth, the autophagosome accumulation
represents either induction of autophagy or suppression of the downstream pathway
necessitating the measurement of the autophagic flux, in absence and presence of
pharmacological inhibitors and activators, as an essential parameter for uncovering
the status of autophagy. The commonly used pharmacological inhibitors include
PI3-kinase inhibitors (such as wortmannin, 3-MA and LY294002), microtubule-
disrupting agents (e.g. nocodazole), etc. while rapamycin and its analogue, CCI-779,
BH3 mimetics (ABT737) and many others are used as autophagy activators. Further,
manipulation of the autophagy by knockdown or knockout and over-expression of
the ATG genes are also adopted to analyse autophagic flux. The methods used to
measure autophagy comprises of LC3 turnover assay, degradation of LC3 and other
selective targets, specifically p62 as well as radiolabelled long-lived protein and
mRFP-GFP-LC3 assay. The mRFP–GFP–LC3 assay is an interesting test, which
exploits the principle of lysosomal stability of RFP versus the quenching of GFP in
acidic lysosomal compartment and thus, ascertains the localisation of LC3
depending on their fluorescence properties (Mizushima et al. 2010; Mizushima
2004; Yoshii and Mizushima 2017). Owing to the limitation of each of these assays,
combination of the independent experimental methods is usually recommended as
the most appropriate technique to estimate autophagy.

12.5 Regulation of Autophagy

Numerous signalling pathways have been involved in up and down-regulation of
autophagy. However, the lack of information to understand the detailed molecular
mechanism of the autophagy regulation in both cancer and normal cells calls for
further investigation (Fig. 12.2).
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12.5.1 The PI3K–AKT–mTOR Signalling Pathway

According to recent reports, phosphatidylinositol 3-kinase (PI3K)–AKT–mTOR
pathway is important for negative regulation of autophagy. AKT, a serine-threonine
kinase, activates mTOR, a TOR kinase, which leads to suppression of autophagy.
Studies in yeast have demonstrated that TOR kinase, which lies upstream of the
autophagy-related genes, serves as the guard in autophagy initiation (Schmelzle and
Hall 2000). Moreover, in mammalian cells, mTOR integrates with growth factor
signalling cascade, thereby, regulating autophagy. It is interesting to note that class I
and III PI3K have opposing role in regulation of autophagy: Class I PI3K, which is
activated through growth factor receptor, inhibits autophagy while activation of class
III PI3K facilitates autophagy by promoting sequestration of cytoplasmic cargo
(Petiot et al. 2000). The tumour suppressor genes, like oncogenic RAS and phos-
phatase and tensin homologue (PTEN), also regulate autophagy through PI3K–
AKT–mTOR pathway. Oncogenic RAS activates class I PI3K while PTEN
deactivates class I PI3K, thereby, suppressing and initiating autophagy, respectively,
through modulation of AKT (Arico et al. 2001). In addition, mutation of PTEN,
located on chromosome 10q23, in various cancers activates AKT and thus, inhibits
autophagy. PI3K–AKT–mTOR signalling pathway is dependent on nutrient avail-
ability like nitrogen or amino acids, which leads to transcriptional and translational
regulation by p70s6 kinase and 4E binding protein 1 (Wang and Klionsky 2003).

Fig. 12.2 Regulation of autophagy. The different molecular signalling cascade involved in
modulation of autophagy. The green arrows indicate activation and the red indicates inhibition of
autophagy
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12.5.2 Beclin 1 (BECN1) and Other Pathways

Beclin 1 is a coiled coil protein which is a BCL-2 interacting gene product. It is the
first reported molecule to directly link tumourigenesis with autophagy. Previous
reports have indicated significant role of class III PI3K in regulation of
autophagosome formation and also, promotion of transport of the lysosomal
enzymes from trans-golgi network (TGN) to the lysosome. Hence, BECN1 binds
to class III PI3K to form BECN1–PI3K complex, which localises in TGN and
presumably, facilitates sorting of putative autophagosomal components followed
by autophagy induction (Liang et al. 1999).

Other molecules implicated in regulation of autophagy in cancer cells include
BCL2 and its family members (BNIP3 and HSPIN1), death-associated protein
kinase (DAPK), death-associated related protein kinase 1 (DRP1) and mitogen-
activated kinases. BNIP3 (BCL2–adenovirus E1B 19-kDa-interacting protein 3)
and HSPIN1 (a human homologue of the Drosophila melanogaster spin gene
product) are the member of the BCL2 homology 3 (BH3)-only subfamily of the
BCL2 family proteins (Vande Velde et al. 2000). They have been reported to induce
caspase-independent autophagic cell death in various cancer cell lines. In addition,
literature survey has documented that bone marrow-derived cells from BAX and
BAK-deficient mice or murine embryonic fibroblast (MEF) are apoptosis resistant
but susceptible to autophagy induction upon withdrawal of growth factor or expo-
sure to the chemotherapeutic agent, etoposide (Lum et al. 2005). These, collectively,
strengthens the relevance of BNIP3 and HSPIN1 in regulation of autophagy. The
DAPK, DRP1 and mitogen-activated protein kinases belong to the family of serine–
threonine kinases that regulate a plethora of cellular responses including autophagy.
For example, DAPK and DRP1, which are regulated by Ca2+–calmodulin, induce
autophagy in MCF7 and HeLa cell (Inbal et al. 2002). While the stimulation of
extracellular signal-regulated kinases ERK1 and ERK2, by the RAS–RAF1–mito-
gen-activated protein kinase (MEK) signalling cascade, induces autophagy in HT-29
colon cancer cell (Ogier-Denis et al. 2000) and buffers the metabolic stress
(Degenhardt et al. 2006). For instance, during nutrient starvation, autophagy serves
as the alternative energy reservoir whereas it also expedites the adaptation of cancer
cells to cellular damage by removing the damaged proteins and organelles
(Mizushima 2007).

12.6 Autophagy: The Double-Edged Sword

Autophagy has versatile role in diverse cellular processes and diseases. Basal
autophagy occurs constitutively and performs its homeostatic function in conjuga-
tion with proteasome degradation pathway to facilitate protein and organelle quality
control (Mathew et al. 2007; Mizushima 2007; Ravikumar et al. 2002). It has also
been reported to help in elimination of pathogens and apoptotic bodies (Colombo
2007; Qu et al. 2007).
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Mounting evidences suggest that autophagy has a pivotal role in cancer, although,
its role in sustaining cell survival or inducing cell death is paradoxical (Baehrecke
2005). Autophagy is a well-conserved survival mechanism in several tumour types,
which is rendered by protecting the cancer cells from undergoing programmed cell
death. It is the most widely used mechanism of the cancer cells to survive. Therefore,
inhibition of the autophagy is often exploited as the most feasible approach to
sensitise the tumour cells to apoptosis and forms the basis of numerous cancer
clinical trials. Nonetheless, in some situations, autophagy can also induce cell
death, which is called programmed cell death type II (PCD II) or lethal autophagy.
However, the autophagic cell death and apoptosis can be distinguished based on
morphological and biochemical features. For instance, in contrast to apoptosis,
autophagic cell death is caspase-independent and characterised by degradation of
Golgi apparatus, polyribosome and endoplasmic reticulum prior to nuclear destruc-
tion (Bursch et al. 2000). Interestingly, during anti-cancer treatment, protective
autophagy is initially triggered at the early stage by sequestering the damaged
organelle and protein. But once the cellular damage crosses a certain threshold,
lethal autophagy or death-inducing is activated to remove the damaged cells from the
tissue (Kondo et al. 2005). Although apoptosis and autophagy are interconnected but
little is known about the crosstalk between them. Recently, prothymosin-α, inhibitor
of apoptosome formation in neuron, has been identified as plausible candidate for
modulating the switch between apoptosis and autophagy (Kondo et al. 2005).
Intriguingly, autophagy is dependent on multiple factors such as the nature and
duration of stimulus, cell type, etc. For example, arsenic oxide (As2O3)-induced
autophagy in glioma cells while in leukaemia cells, it triggered apoptotic cell death.
Similarly, in contrast to the DNA alkylating agent, cisplatins, temozolomide (TMZ)
induced autophagy, instead of apoptosis, in several cancer cell lines (Pelicano et al.
2003; Kanzawa et al. 2004). Moreover, it is interesting to document that
while tamoxifen induced apoptosis in some cells, it also induced autophagy in
other and both apoptosis and autophagy in the rest of breast cancer cells (Bursch
et al. 1996). Henceforth, the modern cancer researchers have focused on investiga-
tion of the intricate regulation of autophagy and deciphering the interlink between
the apoptosis and autophagy.

12.7 Role of Autophagy in Chemoresistance

A large number of recent studies suggests autophagy plays pivotal role in develop-
ment of chemoresistance (Datta et al. 2017; Hu et al. 2012); in addition, various
articles provide increasing evidences that inhibition of autophagy, in combination
with various anticancer drugs can augment cytotoxicity on cancer cells leading
to attenuation of chemoresistance development and metastasis process (Datta et al.
2019; Follo et al. 2018; Levy et al. 2014) (Fig. 12.3).

Epirubicin, one of the leading drugs used for breast cancer treatment, has shown
evidences of autophagy induction in MCF7 breast cancer cell lines, which leads to
cytoprotection of the cells from the chemotherapeutic stress induced by this drug.
Similarly, autophagy inhibition has also shown elevated cytotoxic effect of various
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chemotherapeutic drugs like 5-fluorouracil, irinotecan in colorectal cancer,
oesophageal cancer, etc. (Chen et al. 2011; Sasaki et al. 2010). Likewise, in
human hepatocarcinoma cell lines, autophagy level gets elevated with oxaliplatin
treatment, and suppression of autophagy enhances oxaliplatin-induced cell death
(Guo et al. 2013). Some of the leading drugs for treatment of lung cancers, like
topetocan and paclitaxel, also shows elevated autophagy levels in lung cancer
cells, which may ultimately aid in development of chemoresistance against these
drugs and inhibition of autophagy has shown promising role in prevention of
chemoresistance development against these drugs in lung cancer cells (Datta et al.
2019; Goldberg et al. 2012).

There are varieties of molecular mechanisms via which autophagy induction may
lead to chemoresistance development in various cancers; epidermal growth factor is
a key regulatory factor for cell survival. Through its binding to cell surface receptors,
EGF can induce the activation of three signalling pathways that aids in cancer
development and progression, Ras/MAPK, PI3K/Akt and JAK/STATs (Henson
and Gibson 2006). In malignant peripheral nerve sheath tumour (MPNST)
PD168393, an EGFR-TKI, may induce autophagy as a cytostatic but not a cytotoxic
response in malignant peripheral nerve sheath tumour (MPNST) cells that was
accompanied by suppression of Akt and mTOR activation. The aberrant expression
of PI3K/AKt pathway may also aid in chemoresistance development and PI3K/Akt
inhibitors may also lead to increased cytotoxicity of chemotherapeutic drugs against
cancer cells by autophagy blockage. In many pre-clinical models autophagy inhibi-
tion has shown increased cytotoxic effect, by elevated p53 activity. Vascular

Fig. 12.3 The modulation of chemoresistance and chemosensitivity by autophagy. Schematic
diagram depicting the activation of different cellular signalling pathways in cancer cells
through autophagy induction or inhibition, leading to chemoresistance or chemosensitivity,
respectively

12 Targeting Autophagy in Cancer: Therapeutic Implications 257



endothelial growth factor-C (VEGF-C) is a secreted growth factor involved in many
oncogenic processes, which shows autophagy promoting activities in many cancer
cells and VEGF-C inhibitors have been reported to increase cytotoxic effect of anti-
cancer drugs by downregulation of cellular autophagy. Activation of MAPK14/p38
also triggers survival-promoting autophagy to protect tumour cells against the
cytotoxic effects of chemotherapeutic drugs. In addition, various micro-RNAs may
also play key role in chemoresistance development by either inhibition or
up-regulation of cellular autophagy, for example inhibition of miR30a (a potent
autophagic inhibitor) may lead to chemoresistance development and elevated
expression of miR30a may aggravate cytotoxicity of cancer cells by inhibition of
autophagy; similarly, miR-199a-5p (an autophagic inducer) may lead to
chemoresistance development to cisplatin and vice versa. Moreover, recent reports
suggest that some paclitaxel resistant cell lines also show reduced expression of
miR16 and 17, which usually exhibits inhibitory effects on beclin-1 expression and
elevated expression of these miRNAs may increase sensitivity of these resistant cell
lines towards paclitaxel by down-regulation of autophagy (Chatterjee et al. 2015).

However, in spite of its clear prosurvival role, autophagy has also shown to have a
prodeath role under certain circumstances, following treatment with a specific set of
chemotherapeutic agents, either by enhancing the induction of apoptosis or
mediating ‘autophagic cell death’ by K-RAS, ERK pathways.

12.8 Autophagy Inhibitors

The autophagy inhibitors, whose effectiveness in in vivo and safety in clinical trials
have been approved by the FDA, are the antimalarial drugs chloroquine (CQ) and its
derivative hydroxychloroquine (HCQ); these are lysomotrophic drugs which raise
the lysosomal pH, thereby preventing fusion of lysosomes with autophagosomes and
thus, preventing autophagosomal degradation (Fox 1993; Mauthe et al. 2018). Both
CQ and HCQ have been investigated in preclinical studies or clinical trials. In
addition to antimalarial drugs, inhibition of autophagy by either pharmacological
approaches or via genetic silencing of autophagy regulatory genes such as Beclin
1, ATG6, ATG5, ATG7 or ATG12 (Table 12.1) also results in sensitisation of cancer
cells to a variety of chemotherapeutic drugs. Different autophagy inhibitors block
autophagy at different well-defined stages. For example, another antimalarial drug
bafilomycin A1 can inhibit autophagosome fusion with lysosomes and
autophagosome degradation in the final stage of autophagy. Class III PI3K inhibitors
(3-methyladenine (3-MA), LY294002 and Wortmannin) or knockdown of
autophagy regulatory genes are involved in the initiation/expansion stage of
autophagy (Liu et al. 2013; Zhao et al. 2012) (Table 12.1).

Although some previous articles have linked autophagy with cell death (Acharya
et al. 2011; Lin and Baehrecke 2015; Paul et al. 2020), increasing number of recent
research articles have also displayed the promising role of autophagy in cancer cell
survival, wherein autophagy inhibition enhanced the chemo-sensitivity of cancer
cells towards a wide range of chemotherapeutic drugs (Bhattacharya et al. 2016;
Cournoyer et al. 2019; Dyczynski et al. 2018; Ganguli et al. 2014; Pagotto et al.
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2017). In addition, many reports also suggest that autophagy inhibition may prevent
chemo-resistance development in many cancer cell lines (Belounis et al. 2016; Datta
et al. 2019). Hence, literature review has established the differential role of
autophagy under different conditions. Therefore, finding the exact role of autophagy
in a given cancer type, under a given condition is the key factor in determining the
clinical approach for apt cancer chemotherapy.

12.9 Clinical Trials

Owing to the opposing, context-dependent role of autophagy in cancer, several
studies have proposed that manipulation of autophagy, by stimulation or inhibition,
could enhance the efficacy of multiple cancer therapies. However, till date,

Table 12.1 Strategies used for inhibition of autophagy

Drug Target Effect

I. Pharmacological agents
Chloroquine Lysosomal pH Inhibit autophagosome fusion with lysosomes

and autophagosome degradation

Hydroxychloroquine Lysosomal pH Inhibit autophagosome fusion with lysosomes
and autophagosome degradation

Monensin Change endocytic
and lysosomal pH

Inhibit the initiation/expansion stage of
autophagy

Bafilomycin A1 Class III PI3K
inhibitor

Inhibit the initiation/expansion stage of
autophagy

3-Methyladenine Class III PI3K
inhibitor

Inhibit the initiation/expansion stage of
autophagy

Wortmannin Class III PI3K
inhibitor

Inhibit the initiation/expansion stage of
autophagy

LY294002 Class III PI3K
inhibitor

Inhibit the initiation/expansion stage of
autophagy

Pyrvinium Class III PI3K
inhibitor

Inhibit the initiation/expansion stage of
autophagy

II. Genetic silencing of autophagy regulatory genes
A. miRNA

miR-140 ATG12 inhibition Autophagy inhibition

miR-502 RAB1B Autophagy inhibition

miR106a/b ATG16L and ATG12 Autophagy inhibition

miR-183 UVRAG Autophagy inhibition

miR-22 BTG1 Autophagy inhibition

miR-4093p Beclin-1 Autophagy inhibition

B. si-RNA

ATG12-siRNA ATG12 Autophagy inhibition

ATG5-siRNA ATG5 Autophagy inhibition

Beclin1-siRNA Beclin1 Autophagy inhibition

ATG7-SiRNA ATG7 Autophagy inhibition

ATG6-siRNA ATG6 Autophagy inhibition
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chloroquine (CQ) and hydroxychloroquine (HCQ) are the only clinically approved
and available drugs to inhibit autophagy in clinical models. As tabulated in
Table 12.2, mounting preclinical evidences have documented that the inhibition of
autophagy with CQ or HCQ alone or in combination with other drugs or radiation
caused significant improvement in clinical outcome in cancer patients (Barnard et al.
2014; Briceno et al. 2003; Chude and Amaravadi 2017; Eldredge et al. 2013; Levy
et al. 2017; Mahalingam et al. 2014; Rangwala et al. 2014; Rojas-Puentes et al. 2013;
Vogl et al. 2014).

12.10 Conclusions

The significance of autophagy in tumourigenesis and cancer treatment makes it an
important target for therapeutic intervention. However, till date, autophagy and its
role in cancer are poorly understood. Therefore, the attempt to manipulate autophagy
should be designed depending on its specific role in that particular scenario of
malignancy. The two different and competing approaches of autophagy modulation

Table 12.2 Autophagy inhibitors and their clinical application in different types of cancers

Autophagy inhibitor Tumour
Additional
treatment

Clinical
trial
phase

Hydroxychloroquine
(HCQ)

1. Solid tumours and melanoma Temsirolimus I

2. Malignant solid tumours and
colorectal cancer

Vorinostat I

3. Non-Hodgkin’s lymphoma Doxorubicin I

4. Glioblastoma Temozolomide
and radiation

I/II

5. Refractory myeloma Bortezomib I

6. Pancreatic adenocarcinoma Gemcitabine or
capecitabine

I/II

7. Non-small cell lung cancer Erlotinib I

8. Adult solid neoplasm Sunitinib malate I

9. Advanced cancers MK-2206
(protein kinase B
(Akt inhibitor))

I

10. Small cell lung cancer Gemcitabine/
carboplatin

I/II

11. Renal cell carcinoma IL-2 I/II

12. Estrogen receptor-positive breast
cancer and prostate cancer

None I and II

Chloroquine 1. Glioblastoma Temozolomide
and radiation

2. Brain metastases: Non-small cell
lung cancer, small cell lung cancer
and ovarian cancer

Radiation II and
Pilot
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are generally adopted towards improvement in cancer therapy. Firstly, cancer cells
undergoing lethal autophagy could be exposed to mTOR inhibitors such as
rapamycin and its derivatives: CCI-779, RAD001 and AP23573 in order to aggra-
vate autophagic cell death culminating in suppression of a broad range of tumours
(Chan 2004). Secondly, in contrast to the above strategy, inhibition of protective
autophagy, with autophagy inhibitors such as chloroquine, hydroxychloroquine,
bafilomycin A, etc. enhances the therapeutic potential of cancer therapeutics through
sensitisation of the cancer cells to apoptotic cell death, as supported by mounting
number of clinical trials (Barnard et al. 2014; Chude and Amaravadi 2017; Kanzawa
et al. 2003; Levy et al. 2017; Mahalingam et al. 2014; Rangwala et al. 2014).
However, both of these attempts in modulation of autophagy yield best outcome
when combined with conventional cancer therapies.

Presently, numerous research groups throughout the globe have focused on
delineating the detailed mechanism and signalling network of autophagy and under-
standing its intricate role in various types and stages of cancer. Henceforth, these
extensive studies could enlighten new strategies of enhancing the efficacy of the
currently available therapeutic options towards successful cancer cure.

Acknowledgement D.D.M. is thankful to “DBT-Research Associateship program in Biotechnol-
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Abstract

Autophagy is a highly conserved metabolic process to degrade cytoplasmic
materials, damaged organelles and aggregated milieus through formation of
autolysosome with the help of lysosomal acid hydrolases. This multistep event
has a dual role in the regulation of cancer. The termination step of autophagy
involving fusion of autophagosome and lysosome degrades autopahgic
cargo to establish the cellular homeostasis. This is the point which defines the
cytoprotective nature of autophagy in some cases and on the contrary, it also acts
as tumor suppressor step due to accumulation of autophagic vacuoles or excessive
autopahgic flux in most of the cancers. In this setting, many different drugs have
been developed and discovered to combat the various type of cancers through the
modulation of autophagy in the cancer cells either by its activation or suppression
mechanism. Interestingly, targeting the genes of stage-specific regulation of
autophagy could be a novel approach for the directive suppression and prevention
of cancer. Moreover, the endocytosis–autophagy crosstalk gives an edge to
develop drugs which specifically acts upon the cancer cells and modulate the
autophagy process. In addition, the drugs modulating the fusion step of
autophagy may be the novel molecule for the cancer therapeutics which needs
to be investigated further for future cancer treatment.
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13.1 Introduction

Autophagy is a conserved self-digestion process to maintain the cellular integrity
and homeostasis in the cells through vesicular trafficking pathways. The genes
regulating the process of autophagy are called ATGs and until now 41 ATGs have
been discovered in the case of yeasts (Mahapatra et al. 2019). This process helps in
nutrient recycling and removes damaged organelles, proteins to prevent many
disorders. It plays a pivotal role in the regulation of cancer by playing a dual role
in cancer regulation, i.e. by acting as a cytoprotective and cell death phenomenon.
Initially, it supports tumor progression by protecting the cancer cells but the exces-
sive events of autophagy lead to cell death in the case of cancer cells (Eskelinen
2011; Singh et al. 2018).

To date, three major types of autophagy have been reported, i.e. microautophagy,
macroautophagy, and chaperone-mediated autophagy but among them,
macroautophagy has been extensively studied and is referred to as autophagy from
here on in this chapter (Parzych and Klionsky 2014). It may be selective (e.g.,
mitophagy, pexophagy) or bulk degradation process and subdivided into four
distinct stages, i.e., (1) nucleation and initiation of the phagophore, (2) formation
of the matured autophagosomes, (3) fusion events with endosomes and/or
lysosomes, and (4) degradation of entrapped contents in autolysosomes or
autophagic flux (Deretic 2006). This stage-specific regulation of autophagy has a
vital role in the regulation of various metabolic pathways and although, all the steps
have their own significance, the fusion events play a crucial role in case of the
regulation of various diseases. It helps in the regulation of various physiological
homeostatic responses like nutrient recycling which helps in the attainment of the
nutrient need of the cells during stressed conditions. It decides the fate of the cargos
entrapped inside and hence, it has the major role to play in the clearance of the
milieus inside the cell to keep it clean and healthy (Levine 2007). Moreover, the
recovery of the depleted lysosomal pool by autophagic lysosome reformation also
depends upon the fusion events and hence, it regulates the promotion or healing of
many physiological disorders which are solely based on vesicular trafficking thera-
peutics (Chen and Yu 2018).

In this connection, we have described the role of stage-specific regulation of
autophagy in response to various conditions which specifically emphasized on the
fusion events and cancer progression in case of mammals. Moreover, we have tried to
establish a link between autophagic fusion with that of disease progression in
response to several genes. Then the role of different natural and synthetic
compounds has been discussed in the modulation of the stage-specific regulation
of autophagy and lastly, we have discussed the roles and challenges of natural
compounds in treating cancer.
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13.2 Mechanism of Autophagy

Autophagy is initiated by the formation of pre-autophagosomal structures called
omegasomes in the case of mammals which is the same as the phagophore assembly
site or PAS in case of yeasts. PI(3)P-enriched membranes modulate the formation of
omegasomes which are tethers to the endoplasmic reticulum (ER) by its FYVE
domain (Axe et al. 2008; Hurley and Young 2017). Furthermore, activation of
unc-51 like autophagy activating kinase-1 (ULK1) is essential for autophagy induc-
tion which is further regulated by the level of the signaling complexes like mTOR
and AMPK. In case of mammals, the initiation complex comprises of ULK1,
ATG13, and FIP200. Moreover, ULK1 activation leads to phosphorylation of
remaining complex members, i.e., ATG13 and FIP200. Then the
phosphatidylinositol is phosphorylated by phosphatidylinositol 3 kinase (PI3KC3)
and hence the phagophore nucleation took place followed by the activation of
Beclin-1 and Vps15/p150 in case of mammals. It helps in mobilization of effector
molecules onto the PAS and results in membrane elongation (Mahapatra et al. 2019;
Santana-Codina et al. 2017).

After the successful nucleation of the phagophore membrane, it is elongated to
form the complete and closed double-membrane vesicular structures called
autophagosomes. This undergoes a two-step process for completion which mimics
like ubiquitin-like reactions. At first the E1 ubiquitin-activating enzyme, ATG7
activates the ATG12 which is linked to ATG5 by E2 ubiquitin-conjugating enzyme,
i.e., ATG10. Hence formed complex ATG12–ATG5 is then formed the ternary
complex by interacting with ATG16L1 which again as a whole act as E3 like
ubiquitin ligase. Post formation of this ternary complex or the E3 ubiquitin ligase
the second reaction is triggered by the addition of phosphatidylethanolamine to the
ATG8 family proteins like LC3, GATE-16, and GABARAP. Hence, the ATG8
family members remain as a marker of the autophagy which is recovered from the
cytosolic side after the successful completion of the autophagy but the proteins
facing inwards or which are present inside are gets degraded by the action of the acid
hydrolases of the lysosomes (Kabeya et al. 2004; Panda et al. 2015; Qiu et al. 2013;
Weidberg et al. 2011). These conjugation systems result in the formation of closed
vesicle autophagosomes that are available with entrapped cargos for degradation by
lysosomal hydrolases (Fig. 13.1).

The matured autophagosomes are readily available for the fusion with lysosomes
to form a closed structure known as autolysosomes. Autolysosomes are the
organelles in which cargo degradation took place and the newly formed nutrients
are recycled back for the maintenance of the homeostasis (Klionsky et al. 2014).
Several genes have been reported to control these fusion events. It is mainly of two
types where the mature autophagosome can directly fuse with the lysosome to form
an autolysosome or first with late endosome to form an amphisome and then with the
lysosome to form the autolysosomes (Sanchez-Wandelmer and Reggiori 2013). It
has been reported that the insertion of SNARE followed by the recruitment of HOPS
complex onto the membrane is the major regulator of the fusion process. Further-
more, STX-17 interacts with SNAP-29 and VAMP-8 to facilitate these fusion events
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(Itakura et al. 2012). Likewise, TECPR1 is able to interact with PI3P to recruit
autophagosomes onto the lysosomes to modulate the fusion process (Chen et al.
2012). On successful completion of the fusion process, the cargo gets degraded and
the cells are released from the stressed condition to facilitate the normal functioning.

Earlier it is believed that fusion event is the termination step of autophagy for the
attainment of homeostasis in the cells. But due to autophagy, lysosomes are depleted
in the cells and has to be counterbalanced to continue the autophagy and other
lysosome assocaited processes. This stage is overcome by the process of formation
of newly formed lysosomes from the existing autolysosomes by the phenomenon
called autophagic lysosome reformation (ALR) (Chen and Yu 2013). The newly
formed lysosomes may again be available for the continuation of the autophagy
process in the cells. It is started by the recruitment of the KIF5B, Clathrin, and
phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) onto the autolysosomes when the
mTOR gets reactivated and it results in the formation of a tubule (Du et al. 2016; Liu
and Klionsky 2018; Rong et al. 2012; Zhang et al. 2016). This tubule is then
elongated and gets budded off to form a new vesicle called as protolysosome. It
happens only after the dissociation of the Rab7 from the autolysosomes and when
the lipid status is normal (Chen and Yu 2017; Guerra and Bucci 2016). These newly
formed protolysosomes get matured to form the active functional lysosomes. These
lysosomes are again available for the other processes in the cell to maintain the
lysosomal homeostasis (Fig. 13.2).

13.3 Autophagic Fusion in the Regulation of Cancer

Autophagy plays an essential role in the regulation of cancer. It shows a dual
regulation mechanism, i.e., it may act as a tumor promoter or tumor suppressor
agent depending upon the circumstances. This conditional mechanism imparts a
major contribution to carcinogenesis and its prevention (Yun and Lee 2018). Drugs
and therapy used for the control and prevention of different cancers are mostly
targeted the autophagic pathways and hence can able to regulate the cancer progres-
sion. Moreover, autophagic genes have been reported to regulate cancer progression,
e.g., Beclin-1 acts as a haploinsufficient tumor suppressor gene (Edinger and
Thompson 2003). Targeting various steps of autophagy could have potent anticancer
effect to regulate cancer growth and progression. Out of them the last step of
autophagy has the utmost significance, i.e., the fusion between autophagosomes
and the lysosomes. This step decides the fate of the inner cargos and maintenance of
the homeostasis inside the cells. It also plays a vital role in the regulation of
lysosomal homeostasis in the cells through ALR as discussed before.

This fusion event mainly depends upon two major components, i.e.,
autophagosomes and lysosomes. If any of the components is incompetent then it
halts the fusion between them. So, for the completion of the successful fusion;
competent and active functional autophagosomes and lysosomes are the utmost
need for the process (Lőrincz and Juhász 2020). Several genes have been reported
to regulate these processes. Silent mating type information regulation 1 (SIRT1) has
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a dual role in the case of cancer progression. It deacetylates the proteins to regulate
their function. It is reported to have increased expression in several cancers like
gastro-esophageal junction (GEJ) cancer, breast cancer, colorectal adenocarcinoma,
hepatocellular carcinoma, gastric cancer, non-small cell lung cancer, soft tissue
sarcomas, ovarian cancer, prostate cancer, cervical cancer, medulloblastoma, and
lymphoma. It helps in the deacetylation of ATG5, ATG7, ATG8 and promotes
nuclear translocation of FoxO1, which subsequently elevates the level of Rab7,
which is essential for fusion of autophagosome and lysosomes. Hence, indirectly
SIRT1 promotes fusion events and modulates autophagy to promote cancer progres-
sion in gastric cancer (Qiu et al. 2015). Furthermore, Plac8 has a critical role in the

Fig. 13.2 Genetic regulation of stage-specific autophagy and autolysosome reformation. Autophagic
vesicle autophagosome and the endocytic vesicle lysosomes have distinct set of genes which gets
interacted to facilitate the fusion process with the help of Rab7 and SNAP-29 adaptor proteins. Then
the successive autophagic fusion cycles lead to depletion in the lysosomal pool inside the cells. Hence,
the protein like KIF5B, Clathrin, and PI(4,5)P2 are recruited onto autolysosome to form a tubule like
structure which will buds off to form a protolysosome after the dissociation of Rab7. Then it is
matured to form a active functional lysosome which helps in reestablishment of the lysosomal pool
inside the cells by the process of autophagic lysosome reformation
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progression of pancreatic cancers. It shows lysosomal localization in the case of
vesicular trafficking and it has been reported that depletion of Plac8 does not lead to
alteration in the lysosomal pH but results in a significant decrease in the LAMP-
2 and LC3 co-localization signifying its role in the regulation of fusion events in case
of cancer. It specifically targets the late stages of autophagy whereas the initial stages
remain unaltered. Hence, the accumulation of autophagosomes took place inside the
cells leading to cell death in the case of pancreatic cancer cells (Kinsey et al. 2014).
Moreover, the endocytic protein Rab7 has several roles in the maturation of vesicles
like late endosomes and fusion of autophagosomes with lysosomes. It is a major
adaptor protein that establishes the crosstalk between autophagy and endocytosis. It
has been observed that the dysregulation and aberration of Rab7 inside the cells may
lead to various diseases including cancer. Hence, it is an effective agent regulating
the fusion events in the case of autophagy and hence regulating the cancer progres-
sion (Liang and Jung 2010; Zhang et al. 2009). In addition, LAMP-3 another
lysosomal marker is reported to control the lysosomal fusion process. The addition
of drug tamoxifen elevated the expression of LAMP-3 and autophagy in breast
cancer. When the LAMP-3 is depleted inside, the cell shows the absence of fusion
events as suggested by LC3-LAMP-1 co-localization assay in the case of MCF7
breast cancer cells. Hence, LAMP-3 involves autophagy induction and shows
tamoxifen resistance in the case of breast cancer cells (Nagelkerke et al. 2014).
Another gene MALAT1 is found to activate autophagy and promote tumor progres-
sion in case of pancreatic cancer. It elevates the autophagy levels by regulating HuR
and TIA-1. Depletion of MALAT1 results in the depletion of well-known fusion
marker LAMP-2 and an increase in the expression of p62. Hence, MALAT1 might
regulate the fusion events for its oncogenic response in pancreatic cancer cells.
Although, it seems that depletion of MALAT1 involves a decrease in the degrada-
tion of cargos, the actual mechanism still needs to be investigated which will give a
novel target for pancreatic cancer cells (Li et al. 2016). Furthermore, BAP31 has
shown an antitumor mechanism and resides on the ER sites. It interacts with STX-17
in normal conditions and hence prevents the autophagic response in normal
conditions. When BAP31 is depleted inside the cells, STX-17 is free to interact
with ATG14L and regulate the autophagy response in cancer cells. BAP31 acts as a
tumor suppressor gene and inhibits the autophagy to regulate cell death in cancer
cells and also acts as a sequester molecule for STX-17. But STX-17 also has a
pivotal role in fusion events. So, the role of BAP31 in regulating autophagy and
STX-17 should be investigated in detail to confirm the stage-specific regulation of
autophagy (Machihara and Namba 2019). Moreover, p62 an adaptor protein for
autophagy shows a dual role in the regulation of cancer. Elevation in expression of
p62 is a marker for the accumulation of cargo inside the vesicles and hence, it
signifies the inhibition of late stages in autophagy. But a high level of p62 is also
observed in tumor promotion and it is implicated to resistance towards chemother-
apy in cancer cells. So, for the prognosis of cancer, it might act as a valuable marker
for the scientific community (Islam et al. 2018). These genes have been involved in
the regulation of cancer by modulating the autophagic response inside the cells.
They might affect different stages of autophagy for the modulation of cancer
pathways but the late-stage autophagic regulation has an utmost upper hand in this
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regard. As the late-stage autophagy inhibition is the point to decide the dual role of
autophagy in cancer progression and metastasis, it is the need of the hour to target
these genes to make them a potential tracker for the prognosis of various cancers and
their therapeutics (Fig. 13.2).

13.4 Molecules in Promotion of Autophagic Fusion

Although the autophagy process is regulated by certain genes and the basic pathway
is already well established some molecules modulate the stage-specific regulation of
autophagy. It might enhance the frequency of the autophagy for the autophagic
clearance inside the cells or inhibit a specific step in autophagy process. Curcumin an
anticancer drug against malignant glioma, chronic myeloid leukemia, and esopha-
geal cancer cells have the ability to induce the autophagic response inside the cells to
provoke cell death and control cancer cell proliferation. It helps in increased
expression of autophagic protein Beclin-1 and LC3 turnover. Hence, it plays an
active role in autophagosome biogenesis. Furthermore, Reserveratol a phytoalexin
shows anticancer activity against various type of cancers. It helps in the induction of
autophagy by Beclin-1 independent pathway. It regulates the autophagy response by
modulation of mTOR and Akt level inside the cells (Zhang et al. 2012). Drug
resistance is the most common problem faced now a days for treating several cancers
(Vasan et al. 2019). Due to the development of resistance against the specific drugs
those are very much ineffective against the same due to the insensitivity of the cells
(Munck et al. 2014). This may be due to the deregulation of apoptotic pathways in
those resistant cells. But drugs like Saikosaponin-d which is a SERCA inhibitor, is
found to modulate the cell death phenomenon in case of the cervical and breast
cancer cells which are incompetent for undergoing apoptosis. Saikosaponin-d
modulates Beclin-1 independent autophagic activity by increasing the frequency of
autophagic flux. As the flux turnover increases the autophagy turnover also increases
simultaneously (Wong et al. 2013). Silibinin which is a natural flavonoid has
anticancer property against breast cancer cells. It has been reported that silibinin
induces cell death in breast cancer cells by autophagy-dependent pathway by
triggering ROS production and depletion in the ATP level. It can activate the
ATG12–ATG5 axis formation for the modulation of autophagy but it was observed
that in the presence of autophagic inhibitor like 3-Methyladenine (3-MA) and
Bafilomycin A1 (Baf-A1) the cell death induction potential of silibinin reduces
significantly. Hence, it is clear that it can activate autophagy to speed up the
autophagic flux turnover and regulate cell death in breast cancer cells (Jiang et al.
2015). Pterostilbene is an effective anticancer agent against bladder cancer cells. It
helps in the induction of autophagy through the inhibition of Akt/mTOR/p70S6K
pathway and causes activation of the MEK/ERK1/2 pathway. It has been observed
that Pterostilbene along with autophagy inhibitors like 3-MA and Baf-A1 is a much
more potent anticancer drug against bladder cancer cells (Chen et al. 2010). Further-
more, Rottlerin is a potential anticancer agent against bladder cancer cells. It checks
the cell proliferation by caspase-independent pathway. As per reports, the level of
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caspases and PARP which are the potent marker of the apoptosis remain unaltered.
But it can induce autophagy to some great extent which might play an active role in
regulation of cell death in bladder cancer cells or it may be said that it is an active
molecule having a potent role in autophagic cell death mechanism (Qi et al. 2016).
Furthermore, the isoflavonoid Genistein isolated from Genista tinctoria shows its
cytotoxic effects in ovarian cancer. It is also a potent autophagy inducer and triggers
the autophagosome biogenesis in A2780 cells by regulating the Akt expression
(Gossner et al. 2007; Spagnuolo et al. 2015). Another small molecule Berberine
has an active role in checking the growth of liver cancer cells. It can able to induce
apoptosis by mitochondrial-dependent pathway. In addition to this, it can also
activate autophagy cascade by modulating the Akt/mTOR pathway and trigger
Beclin-1 dependent autophagy to form the mature autophagosomes which help in
autophagic clearance of the cells (Wang et al. 2010). Furthermore, a quinine methide
triterpenoid Celastrol shows anticancer activity against gastric cancer cells both
in vitro and in vivo. It helps in inhibiting the cell proliferation in gastric cancer
cells and simultaneously elevated the expression of autophagic marker proteins
ATG5, ATG7, Beclin-1, and also the LC3 turnover. Hence, it might cause higher
turnover of autophagic flux in case of gastric cancer cells, which leads to cell death
(Lee et al. 2014). In addition to that, a bufadienolide from toad venom Arenobufagin
shows its anticancer potential against hepatocellular carcinoma (HCC). It can able to
inhibit cell proliferation by triggering apoptosis and helps in cell survival by
inducing autophagic response inside the cells. It triggers the autophagic flux turnover
for autophagic clearance in the cells which will restore the nutrients that supports
tumor progression through PI3K/Akt/mTOR-dependent pathway. But the simulta-
neous addition of stage-specific autophagy inhibitors like 3-MA, Baf-A1, and
chloroquine (CQ) could lead to enhanced cell death in hepatocellular carcinoma
(HCC). Hence, the compound arenobufagin along with autophagy inhibitor can be a
novel combined therapy compound against HCC in the case of humans (Zhang et al.
2013). Likewise, several compounds have been reported to induce autophagy in case
of various cancers. But in most of the cases, autophagy plays a protective role for the
progression of tumor growth and metastasis by maintaining the homeostasis within
the cells. So, even if the compound activates autophagy they need another inhibitor
for inducing cell death phenomenon in case of cancer to control their proliferative
rate. Hence, scientists must focus to search for compounds which can inhibit the
process of autophagy in stage-specific manner to control the disease progression in
case of various cancer conditions (Table 13.1).

13.5 Molecules Inhibiting Autophagic Fusion in Regulation
of Cancer Progression

The process of autophagy is well known for its dual role in cancer. On one hand, it
inhibits cancer initiation but on the other, it helps in cancer progression in later
stages. Hence therapeutic regulation of autophagy has a critical role in the war
against cancer. Moreover, inhibition of protective autophagy and the promotion of
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autophagic cell death in cancer cells are our target to be achieved. Various
compounds including a large number of natural products isolated and purified
from plants are now gaining importance for targeting various key pathways in cancer
therapeutics including the tumor-promoting autophagy response.

Inhibition of tumor-promoting autophagy is now considered as a novel way of
targeting cancer and in this regard, several drugs are tested and found effective in
inhibiting autophagy by targeting the fusion of the autophagosome with a lysosome
in vitro. Among them, CQ and its derivative hydroxychloroquine (HCQ) are the two
most effective drugs which are under clinical trial. The effect of CQ on
autophagy inhibits the autophagic degradation process by limiting the delivery of
sequestered cargo into the lysosome by blocking the fusion of the autophagosome
with the lysosome and not through inhibiting the lysosomal action (Mauthe et al.
2018). Andrographolide (Andro), a diterpenoid lactone isolated from Andrographis
paniculata is well known for its anticancer and anti-inflammatory effect but it has
also been reported to be a potent inhibitor of protective autophagy by disrupting
autophagosome–lysosome fusion without affecting the lysosomal function. Thus
Andro treatment along with cisplatin, a DNA-damaging agent, leads to the sensiti-
zation of cancer cells towards apoptotic cell death (Zhou et al. 2012). Ginsenoside
Ro (Ro) a natural product isolated from the plant Panax ginseng leads to autophagy

Table 13.1 Drugs targeting autophagy pathway to promote autophagosome and lysosome fusion

Drug name Source
Autophagy
target References

Curcumin Curcumin longa Beclin-1,
LC3

Zhang et al.
(2012)

Reserveratol Polygonum cuspidatum Akt, mTOR Zhang et al.
(2012)

Saikosaponin-
d

Bupleurum falcatum L. LC3 Wong et al.
(2013)

Silibinin Silybum marianum ATG12,
ATG5

Jiang et al.
(2015)

Pterostilbene Pterocarpus, Vitis vinifera leaves, some
berries (e.g., blueberries and cranberries),
and in grapes

Akt, mTOR,
p70S6K

Chen et al.
(2010)

Rottlerin Synthetic molecule also known as
mallotoxin

LC3 Qi et al. (2016)

Genistein Genista tinctoria Akt Gossner et al.
(2007),
Spagnuolo
et al. (2015)

Berberine Coptidis rhizoma Akt, mTOR Wang et al.
(2010)

Celastrol Trypterigium wilfordii Beclin-1,
ATG5,
ATG7, LC3

Lee et al.
(2014)

Arenobufagin Bufadienolide from toad venom PI3K, Akt,
mTOR

Zhang et al.
(2013)
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inhibition by targeting autophagosome–lysosome fusion. Ro influences the lyso-
somal acidification and inhibits lysosomal Cathepsin activity, thus leads to an
accumulation of LC3 and an increase in p62 in esophageal cancer cell lines. Ro
mediated autophagic hindrance occurs through increasing ROS production by ESR2
(estrogen receptor 2)–NCF1 (neutrophil cytosolic factor 1) axis. Ro modulates the
5-FU induced protective autophagy and sensitizes chemoresistant esophageal cancer
cells to cell death. Hence Ro could be used as a novel anticancer weapon in
combination with others to counteract chemoresistance (Zheng et al. 2016).
Berbamine (BBM), another natural compound, is reported to inhibit autophagy
through inhibition of SNARE-mediated autophagosome–lysosome fusion in breast
cancer cells through inhibition of the interaction between SNAP-29 and VAMP-8.
Furthermore, BBM upregulates the expression of BNIP3 and induces the interaction
between BNIP3 and SNAP-29. Hence such autophagy inhibitory effect of BBM
could be exploited for their potential anticancer strategies through inhibition of
autophagosome–lysosome fusion in different cancers (Fu et al. 2018). Oblongifolin
c (Oc), extracted from Garcinia yunnanensis hu, is also reported to be a potent
autophagy inhibitor as it inhibits autophagic flux through targeting autophagosome–
lysosome fusion. Furthermore, Oc obstructs the lysosomal proteolytic activity
through alteration of lysosomal acidification and reducing lysosomal cathepsin
expression. Such anti-autophagic activity of Oc has been well explored as a potential
strategy against cancer as it can sensitize the cancer cells to Caspase-3-dependent
apoptosis in vitro. Furthermore, combined treatment with Oc and caloric restriction
exaggerates anticancer efficacy of Oc in vivo (Lao et al. 2014). Withaferin A (WFA)
and Withanolides isolated from the plantWithania somnifera were reported to block
the autophagic flux and decrease lysosomal proteolytic activity, thus inhibiting the
autophagosome–lysosome fusion in breast cancer cell lines. However, this action of
WFA is not through alteration of the characteristic of autophagolysosome but
through inhibiting the lysosomal protease activity. Furthermore, WFA is a potent
AMPK inhibitor and hence in combination with 2-deoxyglucose it helps in inducing
apoptosis and inhibits breast cancer growth (Muniraj et al. 2019). ECDD-S27, a
compound derived from plant’s arylnaphthalene lignan glycoside, i.e.,
cleistanthin A, was reported to have potent anticancer activity through targeting
the autophagy process. ECDD-S27 treatment leads to impaired autophagic flux and
the accumulation of autophagic vacuoles inside the cells. The mechanism of its
action is through targeting the V-ATPase and thus hindering the lysosomal acidifi-
cation (Paha et al. 2019). In addition to that, Vacuolin1 another compound which
inhibits the fusion between autophagosome and lysosome and thereby hinders the
autophagic process is reported to be more efficient as well as less toxic than
chloroquine. Vacuoline1 targets the lysosomal acidification and calcium influx to
the lysosome and thereby inhibits the lysosomal activity. Also, vacuoline1 mediates
autophagosome–lysosome fusion inhibition by activation of the Rab5 GTPase activ-
ity, because the knockdown of Rab5 significantly hinders the fusion inhibition by
vacuoline1 whereas the overexpression of the same enhances the fusion inhibition.
However, though Rab5 activation is required for vacluolin1-mediated fusion inhibi-
tion, it is not the only target. Along with Rab5 activation, vacuoline1 alkalinize
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lysosomal system, reduces calcium concentration of lysosome and altogether these
affect the autophagosome–lysosome fusion process (Lu et al. 2014). Further-
more, Pulsatilla saponin D (PSD) another potent autophagy inhibitor leads to
inhibition of autophagosome–lysosome fusion and thereby autophagic cargo degra-
dation. PSD is also reported for significant inhibition of lysosomal acidification and
activation of lysosomal cathepsin in breast cancer cell lines. Such anti-autophagic
activity of PSD through blockage of autophagosome–lysosome fusion and lyso-
somal acidification can be a good anticancer strategy and the use of PSD along with
camptothecin will increase its anticancer potential in breast cancer (Wang et al.
2019). So the natural products paved a nice way towards the cancer prevention and
therapeutics not only by inhibiting tumor-promoting autophagy but also by
sensitizing the chemoresistant tumors towards cell death (Table 13.2).

13.6 Potential Challenges and Future Perspectives

Many documents have been reported on natural and synthetic molecules to modulate
autophagy and cancer in human systems for possible cancer therapeutics. Although
the in vitro assay of those compounds already established in relation to autophagy
and cancer, the preclinical and clinical trials are yet to be confirmed. As per now,
autophagy is a multistep process having a dual role in case of the cancer progression
and metastasis. The drugs discovered to date mainly targeting autophagy to various
stages in it. Mostly, they can induce autophagy for the survival of the cells by
promoting the autophagic flux turnover. This can generate a nutrient pool that can be

Table 13.2 Drugs inhibiting autophagosome and lysosome fusion targeting lysosomal pathway

Drug name Source Mode of action References

Chloroquine and
hydroxychloroquine

Synthetic
molecule

Lysosomal activity remains intact Mauthe
et al. (2018)

Andrographolide Andrographis
paniculata

Lysosomal activity remains intact Zhou et al.
(2012)

Ginsenoside Ro Panax ginseng Inhibits lysosomal cathepsin
activity

Zheng et al.
(2016)

Berbamine Berberis
amurensis
Rupr

Affects the interaction between
SNAP29 and VAMP8

Fu et al.
(2018)

Oblongifolin-c Garcinia
yunnanensis hu

Alter lysosomal pH and decreases
cathepsin activity

Lao et al.
(2014)

Withaferin A Withania
somnifera

Decreases lysosomal protease
activity

Muniraj
et al. (2019)

ECDD-S27 Synthetic
molecule

Affects lysosomal pH by targeting
V-ATPase

Paha et al.
(2019)

Vacuoline1 Small molecule Targets lysosomal acidification
and Calcium influx

Lu et al.
(2014)

Pulsatilla saponin D Pulsatilla
chinensis

Alter lysosomal pH and decreases
cathepsin activity

Wang et al.
(2019)
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reused by the cells to maintain the homeostasis (He et al. 2018). Also, excessive
autophagy leads to a loss in the lysosomal pool inside the cells and can be recovered
by the process of ALR which is essential to maintain the lysosomal homeostasis in
the cells. Hence, the genes which are localized to lysosomes mostly drive the fusion
between autophagosome and lysosomes to facilitate the autophagic response. This
fusion point is also essential because of its relevance in autophagy and endocytosis
crosstalk (Mahapatra et al. 2019). So, it is essential to target the fusion step of
autophagy which is known to be the termination step to date. As this step decides the
fate of the cells, i.e., in case of excessive autophagic flux turn over or in the absence
of autophagic flux results in cell death in most of the cancer cells due to the
deprivation of nutrients or the accumulation of autophagic vacuoles, respectively
(Bialik et al. 2018; González-Polo et al. 2005). Whereas, the undisturbed fusion
leads to cytoprotective autophagy in cancer cells. Hence, the fusion step aids the dual
role to play during cancer for autophagy response inside the cells. So, it is an open
challenge for the scientists to rediscover and rethink about the directive inhibition or
modulation of autophagy in cancer patients to achieve the actual effective and
cancer-specific drugs targeting those specific cancer cells. As the reports suggested
a critical role of the endocytosis in regulation of autophagy, it is the most crucial step
to redesign the drugs which can specifically act upon the cancer cells and modulate
the autophagic response in those cells to get a better and specific therapeutic
approach in cancer patients. Hence, it is the need of the hour to check the efficacy
of drugs targeting this fusion process to find a novel therapeutic approach for cancer
progression and metastasis.

13.7 Conclusion

Although science has been progressed much for a decade on the advancement of
cancer therapeutics by natural components which targets stage-specific regulation of
autophagy; it is the need of the time to establish preclinical and clinical approaches
toward these targets. These compounds target various genes and pathways in the
cells, so doing in vitro validation is not enough for the therapeutic strategies against
cancer. The disease models for different cancers need to be established for the
enforcement of these drugs and their validation. Moreover, natural therapeutics
have an edge over classical methods like surgery, irradiation, and chemotherapy
due to its less toxicity and commercial availability. It can be potentially used by
many of the victims irrespective of the socio-economic status of the patients. Hence,
it is the time to focus on these novel targets for the service of mankind in cancer
prevention and its therapeutics.
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