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Abstract

Lynch syndrome is a cancer-predisposing syndrome inherited in an autosomal 
dominant manner, wherein colon cancer and endometrial cancer develop fre-
quently in the family, it results from a loss of function of one of four different 
protein (MLH1, MSH2, MSH6, and PMS2), which are the products of mismatch 
repair genes. An abnormal EPCAM gene at the position adjacent to the MSH2 
gene also inhibits MSH2 expression and causes Lynch syndrome.

Mismatch repair proteins are involved in repairing of incorrect pairing, includ-
ing point mutations and deletion/insertion of simple repetitive sequences, so-called 
microsatellites, that can arise during DNA replication. MSH2 forms heterodimers 
with MSH6 or MSH3 (MutSα, MutSβ, respectively) and is involved in mismatch-
pair recognition and initiation of repair. MLH1 forms a complex with PMS2 and 
functions as an endonuclease. If the mismatch repair system is thoroughly work-
ing, genome integrity is maintained at a high level. Lynch syndrome is a state of 
mismatch repair deficiency (MMRd) due to a monoallelic abnormality of the mis-
match repair genes. The phenotype indicating the mismatch repair deficiency can 
be frequently observed as a microsatellite instability (MSI) in tumors.

Generally, Lynch syndrome develops in adulthood, but MMR gene abnor-
malities are observed in children with different genotypes and phenotypes. 
Children with germline biallelic mismatch repair gene abnormalities were 
reported to develop conditions such as gastrointestinal polyposis, colorectal can-
cer, brain cancer, leukemia, and so on. This condition is called constitutional 
mismatch repair deficiency (CMMRD).
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In addition, for promoting cancer genome medicine in a new era, such as by 
utilizing immune checkpoints, it is important to understand the genetic and 
genomic molecular background, including the status of mismatch repair 
deficiency.
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Abbreviation

CMMR-D	 Constitutional mismatch repair deficiency
CNS	 Central nervous system
CTE	 Congenital tufting enteropathy
CTLA-4	 Cytotoxic T-lymphocyte-associated protein 4
IHC	 Immunohistochemical staining
ISI	 Immune checkpoint inhibitor
MLPA	 Multiple ligation-dependent probe amplification
MMR	 Mismatch repair
MSI	 Microsatellite instability
PCNA	 Proliferating cellular nuclear antigen
PD-1	 Programmed cell death protein 1
RFC	 Replication factor
TMB	 Tumor mutational burden

1.1	 �Introduction

Cancer is fundamentally a genetic disease, and pathogenic variants, also called 
“mutation,” are pivotal to its etiology and progression. Carcinogenesis develops by 
the accumulation of numerous genetic and epigenetic abnormalities [1–4]. 
Therefore, cancer has the following six characteristics: sustained proliferative sig-
naling, evasion of growth suppressors, resistance cell death, replicative immortality, 
angiogenesis induction, and activation of invasion and metastasis [5]. Therefore, 
elucidation of carcinogenesis is essential for therapeutic development [6]. Although 
rare, hereditary cancer syndromes are observed in cancers derived from any organ. 
In individuals with hereditary cancer syndrome, the initial cancer-causing patho-
genic variant is inherited through the germ cell and therefore, is already present in 
all 37 trillion cells that make up the body. Lynch syndrome (MIM# 120435) is an 
autosomal dominant syndrome with a penetration rate of about 80% characterized 
by several individuals in the family affected with colorectal cancer (CRC) or extra-
colonic tumors of the endometrium, stomach, small bowel, ureter, renal pelvis, 
ovary, and hepatobiliary tract [7].
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Lynch syndrome occurs due to loss of function of the mismatch repair mecha-
nism for genomic replication errors. This article outlines the basis of molecular 
genetics involved in Lynch syndrome.

1.2	 �DNA Repair System

The frequency of replication errors is 10−10 per base of DNA per cell division, and in 
an estimated 1015 cell divisions during an individual’s lifetime replication errors 
cause thousands of new DNA variants in the genome in every cell. Eukaryotes have 
multiple repair systems to avoid replication errors (Table 1.1) [8]. Maintaining DNA-
integrity through genome repair suppresses cancer development and progression by 
genomic abnormalities. Genes encoding molecules involved in genome repair are 
referred to as DNA repair genes and “caretaker tumor suppressor genes.”

Table 1.1  DNA repair systems and predisposition to cancer [8]

DNA repair Damage Characteristics Predisposition
Base excision 
Repair (BER)

Single 
strand

Repair mechanism for a single 
nucleotide in a single strand of DNA 
that is generated through oxidation (e.g., 
8-oxoguanine), alkylation (e.g., 
methylation), and deamination. No ATP 
required

MUTYH-
associated 
polyposis (MAP)

Nucleotide 
excision repair 
(NER)

Single 
strand

Repair mechanism against damage that 
causes DNA structure change over 
several tens of base pairs via pyrimidine 
dimer formation by ultraviolet exposure. 
ATP required

Xeroderma 
pigmentosum
Cockayne 
Syndrome

Mismatch repair: 
(MMR)

Single 
strand

Repair mechanism of base mismatch 
pairing caused in DNA replication (S 
phase). Usually, it corresponds to an 
error of one to several base pairs
ATP required

Lynch syndrome

Proofreading 
repair

Single 
strand

It occurs done during DNA replication.
In E. coli, 3′→5′ exonuclease of DNA 
polymerase I has this function. In 
humans, involvement of enzymes other 
than DNA polymerase is also 
conceivable

Polymerase 
proofreading 
associated 
polyposis (PPAP)

Homologous 
recombination 
(HR)

Double 
strand

When double stranded breaks occur in S 
phase/G2 phase, the cleaved portion of a 
normal allele is used as the template 
DNA. This mechanism restores the 
original sequence by recombination

Hereditary breast 
and ovarian cancer 
(HBOC)

Nonhomologous 
end-Joining 
(NHEJ)

Double 
strand

In double strand breaks in the G1 phase, 
this repair mechanism concentrates 
multiple molecules on the excised ends 
and directly combines them. In this 
repair, some nucleotides around the 
break part may be missing in some cases

LIG4 syndrome
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The mismatch repair system was recognized in 1961, with proposal that the cor-
rection of DNA base pair mismatches within recombination intermediates is the 
basis for gene conversion [9]. Elucidation of the mismatch repair system has been 
advanced by fundamental research based on Escherichia coli, developed four E. coli 
mutator genes: mutH, mutL, mutS, and uvrD [10–13]. Inactivation of any of these 
genes increases the generation of variants in the E. coli cell by 50-to 100-fold, indi-
cating the importance of this pathway in variant avoidance and genetic stability. The 
reduction in mutability afforded by the E. coli methyl-directed system has been 
attributed to its role in the strand-specific elimination of DNA errors (Table 1.2) [6, 
8, 14–19]. Research on the mismatch repair system has advanced extensively and 
has clarified its mechanism and role as an essential mechanism for maintaining 
genome integrity in organisms and involved in predisposition to cancer development.

1.3	 �Genes Responsible for Lynch Syndrome

Lynch syndrome, is called hereditary nonpolyposis colorectal cancer: HNPCC in 
the past, is an autosomal dominant inherited disorder caused by germline patho-
genic variants in DNA mismatch repair (MMR) genes. Patients with Lynch syn-
drome are at an increased risk of developing tumors from a young age and throughout 
their lifetime. Most of them suffer from multiple synchronous and/or metachronous 
primary tumors. Colorectal cancer and endometrial cancer (female) are well known 
in the tumor spectrum of Lynch syndrome. In addition, patients with Lynch syn-
drome have high potential for developing cancer of the urinary tract, the stomach, 
the small intestine, the biliary tract, the skin, the brain, and others.

Multiple types of human mismatch repair (MMR) proteins have been discovered 
and several encoding genes have been isolated so far. Currently, four types of MMR 
genes, MLH1 (MIM# 120436), MSH2 (MIM# 609309), MSH6 (MIM# 600678), 
and PMS2 (MIM# 600259), are used in the clinical applications related to Lynch 
syndrome. An outline of the responsible genes is shown in Fig. 1.1. The EPCAM, 
which encodes a cell adhesion molecule, is not an MMR gene, but its structural 
abnormality causes Lynch syndrome, because it is adjacent to the MSH2 gene [20]. 
This content will be described later.

Table 1.2  DNA repair system for replication errors in Esherichia coli [8]

Step Pathway Protein activities

Mutation rate

per nucleotide

per generation











1 DNA synthesis 5′→3′-elongation activity of DNA polymerase 
III(α) (1000 nucleotides/s.)

10−5–10−6

2 Proofreading 3′→5′-exonuclease activity of DNA polymerase 
III(ε)

10−7

3 Mismatch 
correction

Mismatch correction proteins Mut S, Mut L, 
Mut H etc.

10−9–10−10
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In 1993, MSH2 gene was isolated at chromosome 2p22–p21  in 1993 and has 
high homology with the mutator phenotype gene, mutS of E. coli [21–24]. In 1994, 
as the second responsible gene of Lynch syndrome, MLH1, the E. coli mutL homo-
logue, was isolated from 3p22.2 [25–27]. In 1995, mismatch binding factors were 
found as the 100 kD MSH2 or as heterodimers of the 160 kD polypeptide called 
GTBP/MSH6 (for G/T binding protein), which was recognized as a new member of 
the MutS homologue [28, 29]. MSH6 gene was first reported by Japanese research-
ers as a gene responsible for Lynch syndrome [30, 31]. In 1994, a germline deletion 
of the PMS2 was also identified in families with Lynch syndrome. Moreover, addi-
tional deletions in tumor samples with microsatellite instability high (MSI-high) 
showed the presence of two-hits [32, 33].

1.4	 �Structure and Function of MMR Proteins

Each MMR protein encoded by the corresponding MMR gene has a unique function 
in repairing replication errors. Therefore, MMR proteins possess unique functional 
domains. When pathogenic variants of MMR genes occur in the DNA site corre-
sponding to the functional domain, DNA repair function may be impaired. Schematic 
representations of MLH1, MSH2, MSH6, and PMS2 proteins are shown in Fig. 1.2 
[8, 34–38]. Both MLH1 and PMS2 have an ATP binding domain and require ATP 
molecules for the endonuclease function.

MSH2 (2p21)

MLH1 (3p22.2)

PMS2 (7p22.2)

MSH6 (2p16.3) 

• Human homolog of the E. coli
  DNA mismatch repair gene mutL
• Consistent with the characteristic
  alterations in microsatellite
  sequences (RER+ phenotype) 
• Stabilization of the complex
  formed with PMS2 (MutLα)
• Cleavage of the DNA chain
  near both sides of the
  mismatched nucleotides

• Forming a heterodimer
  with MLH1
• This complex interacts
 with other complexes
 bound to mismatched 
 bases.

• MSH6 protein combines with 
  MSH2 to form a mismatch 
  recognition complex (MutSα)

• Similar to the MutS protein
• Recognition of mismatched 
  nucleotides, prior to their repair 

EPCAM (2p21)
• epithelial cellular adhesion 
  molecule (EPCAM)
• The mutations involved in 
  Lynch syndrome remove a
  region that signals the end
  of the gene

Chr. 2 Chr. 3

Chr.7

Gene MIM Locus No.of exon CDS (nt)
Product no. of
amino acid

MW (kDa)
of protein

MLH1 *120436 3p22.2 19 2218 756 84.6

MSH2 *609309 2p21 16 2802 934 104.7

MSH6 *600678 2p16.3 10 4080 1360 152.8

PMS2 *600259 7p22.1 15 2586 862 95.8

EPCAM *185535 2p21 9 942 314 35

Fig. 1.1  The genes responsible for Lynch syndrome [8]
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ATP binding domain, aa 31-122 

MutL , C-terminal domain, aa 216-335

PMS2, MLH3, PMS1 interaction C-terminal domain, aa 502-756

1 aa 756 aa

MLH1a

MutS N-terminal domain, aa 18-131

MutS , connector domain, aa 156-289

MutS core domain (MSH3/MSH6 interaction domain), aa 305-473 and 569-645

MutS clamp domain, aa 474-568

MSH3/MSH6 interaction domain, aa 875-934

MutS C-terminal domain, aa 875-934

1 aa 934 aa

MSH2

ATP binding domain, aa 620-855

b

PCNA binding motif, aa 4-11  

PWWP domain, aa 90-183

MSH2 interaction domain, aa 362-518

MutS conector domain, aa 538-699

MutS core domain, aa 739-931 and 1025-1102

MutS clamp domain,  932-1024

MutS C-terminal domain, aa 1127-1323 

1 aa 1360 aa

MSH6c

Fig. 1.2  Structure of mismatch repair proteins (a) MLH1, (b) MSH2, (c) MSH6, (d) PMS2 [8]
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Many human MMR related proteins have been identified as homologues of 
E. coli MMR proteins [8, 22–29, 39–49]. These include human homologues of 
MutS, MutL, ExoI, DNA polymerase δ (pol δ), proliferating cellular nuclear anti-
gen (PCNA), replication factor (RFC), DNA ligase I, and so on. MSH2 heterodi-
merizes with MSH6 or MSH3 to form MutSα or MutSβ, respectively. These are 
involved in the mismatch-pair recognition and initiation of repair [50–54]. In addi-
tion, various kinds of complexes such as MutLα, MutLβ, and MutLγ are formed and 
involved in the mismatch repair system [37, 38, 40, 51, 52, 54–63].

1.5	 �Mechanisms of Mismatch Repair

The mismatch repair (MMR) system consists of sequential steps for the recognition, 
removal, and resynthesis of the mismatch site in DNA. This system that maintains 
DNA fidelity is well conserved from E. coli to eukaryotes. A schematic diagram of 
the pathway is shown in Fig. 1.3 [8, 53, 58, 60, 62–82]. Base–base mismatches in 
double-strand DNA are recognized by MutSα (heterodimer of MSH2-MSH6). 
MutSα binds as a sliding clamp around the double-strand DNA. MutSα and MutLα 
form a tetrameric complex and then initiate the process of mismatch repair. The 
tetrameric complex recruits proliferating cell nuclear antigen (PCNA), replication 
factor C (RFC), exonuclease 1 (Exo 1) to remove the nascent (daughter) strand, and 
resynthesize the correct strand. Then, exonuclease 1 (Exo 1) is recruited and 
removes the nascent (daughter) strand around the error region. The resynthesis step 
is accomplished by DNA polymerase (Polδ or Polε) and Ligase 1.

1.6	 �Relationship Between MMR System and DNA Damages

Depending on the DNA damage pattern, specific mismatch repair molecules, and 
complexes are involved. The outline is shown in Fig. 1.4 [8, 50, 64, 66, 83–86]. The 
MutSα (heterodimer of MSH2-MSH6) contributes to mismatch recognition by 

Fig. 1.2  (continued)

ATP binding domain, aa 35-159

MutL, C-terminal domain, aa 227-364

MutL , N-terminal domain, aa 13-343

1 aa 862 aa

MLH1 interaction C-terminal domain, aa 678-822

Endonuclease active site, aa 698-715

PMS2d
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PCNARFC

EXOIPolymerase

Ligase I

Preservation of DNA fidelity

MSH2

MSH6

MLH1

PMS2

Phosphodeiester bond of nucleotides

Mismatch allele excision and DNA re-synthesis

Initiation of MMR

Mismatch/damage recognition
Structure formation and stabilization of MMR

Nick formation of mismatch/damage allele by
endonuclease

Fig. 1.3  Mechanistic model of mismatch repair [8]

G

T

Mismatch pair Abnormalities of repetitive sequence

2 nt1 nt ≥3 nt
--CTGCTG----AAAA-- --CACA--

MLH3

MLH1
MutLγ

MutL

MutSα

MutL PMS2MLH1

MSH6MSH2

MLH1 PMS2

MutSβMSH2 MSH3

Fig. 1.4  Schematic of DNA damage recognized by the mismatch repair pathway [8]
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single nucleotide substitution (e.g., G:T mismatch pair) and recognition of small 
insertion-deletion loops (IDL, e.g., error of the repeat number in adenine clusters), 
whereas MutSβ (heterodimer of MSH2-MSH3) contributes to the repair of small 
loops and relatively large damages up to about ten nucleotide loops. Recently, the 
function of MutSβ has attracted attention for its biological characteristics and as a 
prognostic factor of elevated microsatellite instability at selected tetranucleotide 
(EMAST) colorectal cancer, which shows instability in the repeat sequence of the 
tetranucleotides [87–91].

1.7	 �EPCAM as the Gene Responsible for Lynch Syndrome

EPCAM is located at 2p21 adjacent to the MSH2 on the 5′ upstream and encodes the 
EPCAM protein, expressed on the membrane of cells in epithelial tissues and 
plasma cells, and is involved in cell-cell adhesion function [92, 93]. Although 
EPCAM is not the direct responsible gene of Lynch syndrome, but it is located just 
17 kb upstream of MSH2. The deletion of EPCAM affects MSH2 gene expression, 
resulting in Lynch syndrome. The schema is shown in Fig. 1.5 [8, 20]. The cis-
deleted alleles inhibit MSH2 expression and finally causes Lynch syndrome in 1.3% 
of the affected families [20, 94].

In addition, biallelic inactivation of EPCAM is responsible for congenital tuft-
ing enteropathy (CTE, MIM# 613217) with an estimated incidence of one in 
50,000–100,000 births in Western Europe [95–98]. CTE presents within the first 
months of life with severe chronic watery diarrhea and growth restriction. 
EPCAM abnormalities responsible for CTE are usually missense mutations, non-
sense mutations, minute insertions/deletions, and splicing errors, unlike Lynch 
syndrome [98].

5’ 3’

EPCAM MSH2

EpCAM mRNA MSH2 mRNA

5’ 3’<<deletion>>

EpCAM-MSH2
fusion transcriptTranscriptional read-through

Lollipops: CpG sites in the promoter region
of the MSH2 gene

Blue lollipops: methylated CpG sites

Lollipops: CpG sites in the promoter
region of the EPCAM gene

Lollipops: CpG sites in the promoter
region of the EPCAM gene

Fig. 1.5  A cis-deletion of EPCAM gene causes an epimutation of the MSH2 gene [8]
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1.8	 �Constitutional Mismatch Repair Deficiency Syndrome

Constitutional mismatch repair deficiency syndrome (CMMR-D) is caused by bial-
lelic homozygous or compound heterozygous pathogenic germline pathogenic vari-
ants of MMR genes and is a distinct childhood cancer preposition syndrome (MIM# 
276300) with an autosomal recessive inheritance [99–101]. In biallelic germline 
pathogenic variant carriers of MMR genes, hematological malignancies, brain/cen-
tral nervous system (CNS) tumors, and Lynch syndrome associated carcinomas 
develop frequently. In the gastrointestinal tract, bowel adenomatous polyposes are 
often observed as premalignant lesions that require differential diagnosis from 
FAP. By the way, the pathological condition classified as a subtype of FAP called 
Turcot’s syndrome is considered to be exactly CMRR-D [102, 103].

The median age at diagnosis of hematological malignancies and brain/CNS 
tumors was respectively, 6.6 (age range: 1.2–30.8) and 10.3 (age range: 3.3–40) 
years. However, Lynch syndrome-associated tumors developed later (median age at 
diagnosis: 21.4 years (age range: 11.4–36.6)). Moreover, the spectrum of Lynch 
syndrome is mostly colorectal cancer and/or endometrial cancer [104]. Various non-
neoplastic features are related to CMMR-D including Cafe au lait spots (NF1 like), 
skin hypopigmentation, mild defects in immunoglobulin class switching recombi-
nation, agenesis of the corpus callosum, cavernous brain hemangioma, capillary 
hemangioma of the skin, combination of various congenital malformations, and 
lupus erythematosus.

1.9	 �Genetic Testing for Lynch Syndrome

In order to select high-risk individuals with Lynch syndrome from among patients 
with colorectal cancer and to increase the efficiency of detecting germline patho-
genic variants, microsatellite instability (MSI) testing and/or immunohistochemical 
staining (IHC) of MMR proteins is recommended as universal tumor screening and 
is recommended to do first [102, 105, 106]. The MSI testing is a method to easily 
identify events in which genetic integrity has been damaged due to repair failures of 
DNA replication errors using simple repeated microsatellite sequences [107–111]. 
Five types of repeat markers including mononucleotide and dinucleotide repeats 
have been used, but recently mononucleotide repeat markers have been preferred. 
Cases with different numbers of repeats between normal tissue-derived DNA and 
cancer-derived DNA are considered as positive [112]. If two or more of the five 
markers show instability, the tumor is evaluated as MSI-high (MSI-H). The results 
of MSI-H colorectal cancer are shown in Fig. 1.6. If one of the markers shows insta-
bility, the tumor is considered as MSI-low (MSI-L). If positive markers are not 
observed, the mismatch repair system is evaluated to be proficient and is called 
MS-stable (MSS).

Immunohistochemical staining of MMR proteins can reveal damaged molecules 
using specific antibodies. Staining with four antibodies: MLH1, MSH2, MSH6, and 
PMS2 can predict the gene causing Lynch syndrome (Table 1.3) [113–120].
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For MSI testing, sensitivity ranged from 66.7 to 100.0% and specificity ranged 
from 61.1 to 92.5%, whereas for IHC staining, sensitivity ranged from 80.8 to 
100.0%, and specificity ranged from 80.5 to 91.9% [121].

Approximately 10–15% of sporadic colorectal cancers show MSI-H findings. 
The cause is mostly the loss of MSH1 protein due to methylation of the MLH1 gene 
promoter region. About half of MSI-H sporadic colorectal cancers show BRAF 
V600E mutation, which is rarely detected in colorectal cancers from patients with 
Lynch syndrome. MLH1 methylation analysis and BRAF V600E mutation testing in 
colorectal cancers can improve the efficiency of the diagnosis for Lynch syndrome 
[36, 122].

Final genetic testing for Lynch syndrome is performed using DNA sequencing 
in selected cases excluding sporadic colon cancer from all colorectal cancers. For 
a long time, genetic testing has mainly been performed using Sanger sequencing, 
and multiplex ligation-dependent probe amplification (MLPA) has been adopted 

stable

unstable unstable unstable

unstable

Intact site

Intact site

Cancer
tissue

Cancer
tissue

MSI-H
(4/5)

BAT25:(+) BAT26:(+) D2S123:(+)

D17S250:(+)D5S346:(–)

Fig. 1.6  Analytic image of MSI testing: four out of five markers show microsatellite instability [8]

Table 1.3  IHC findings associated with MLH1, MSH2, MSH6, and PMS2 mutations [8]

Mutation of MMR genes
IHC staining
MLH1 MSH2 MSH6 PMS2

MLH1 − + + −
MSH2 + − − +

MSH6 + + − +

PMS2 + + + −

1  Molecular Mechanism of Lynch Syndrome
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for a wide range of abnormalities such as large deletions/insertions [123]. Clinical 
genetics is currently transitioning from phenotype-directed single gene testing to 
multigene panels [124]. Multigene panel testing using next generation sequencing 
for hereditary colorectal cancer has been evaluated as a feasible, timely, and cost-
effective approach compared to single gene testing [125]. Previously, the distribu-
tion of germline pathogenic variants in MMR and EPCAM genes in Lynch 
syndrome was thought to predominantly occur in MSH2 and MLH1 and less fre-
quently in MSH6 and PMS2. As a result of multigene panel testing without univer-
sal tumor screening, Espenschied et  al. reported that MSH6 pathogenic variants 
were the most frequent, followed by PMS2, MSH2, MLH1, and EPCAM (Table 1.4) 
[8, 123, 126–128]. About 12% of individuals carrying MMR gene pathogenic vari-
ants have breast cancer alone. Furthermore, even MMR gene pathogenic variant 
carriers do not always meet the criteria for Lynch syndrome or the BRCA1/BRCA2 
testing criteria. However, MSH6 and PMS2 germline pathogenic variants are asso-
ciated with an increased risk for breast cancer [126, 129]. Table  1.4 shows the 
gene-specific distributions of germline variants by the types of abnormalities in 
mismatch repair genes. Most MSH2, MLH1, and MSH6 pathogenic variants were 
truncated types such as nonsense mutations or frameshift mutations [8, 130]. 
Knowledge of choice of analysis method is important. A wide range of rearrange-
ments were detected at 10%, 7%, and 10% for MSH2, MLH1, and PMS2, respec-
tively. Therefore, the selection of an appropriate analysis method is required for 
genetic testing.

Table 1.4  Germline mutation analyses in the responsible genes in Lynch syndrome [8]

(a) Distribution of mutations in overall mismatch repair genes and EPCAM

Gene
MSH2 
(%)

MLH1 
(%)

MSH6 
(%)

PMS2 
(%)

EPCAM 
(%)

Publication 
year Ref#

Distribution of mutations in 
overall mismatch repair 
genes and EPCAM gene

23.7 21.6 29.4 24.2 1.2 2017 [126]
21.2 39.4 18.2 21.2 – 2017 [127]
36 40 18 6 – 2016 [128]
34 40 18 8 – 2014 [129]

(b) Distribution of the types of germline variants in mismatch repair genes [130]
Variant type MSH2 (%) MLH1 (%) MSH6 (%) PMS2 (%)
Missense 31 40 49 62
Nonsense or frameshift 49 40 43 24
In-frame 2 2 3 1
Splice 8 11 3 3
Large rearrangement 10 7 2 10

K. Tamura
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1.10	 �Effectiveness of Immune Check Point Blockades 
and a Hypermutable State (High Tumor 
Mutational Burden)

As cancer cells escape the host immune system by suppressing T cell activation, 
thus exert an immunosuppressive function due to immune checkpoint molecules. 
The immune checkpoint molecules include cytotoxic T-lymphocyte-associated pro-
tein 4 (CTLA-4) and programmed cell death protein 1 (PD-1, CD279), and so on 
[131, 132], which were found to negatively control the immune system [133, 134]. 
In human cancer treatment, anti-PD-1 antibody was found to be effective for non-
small cell lung cancer, malignant melanoma, and renal cell cancer and was also 
clinically applicable in safety [135]. The clinical efficacy of PD-1 inhibitor was 
found to be higher in mismatch repair-defective colorectal and non-colorectal can-
cers compared to proficient-mismatch repair cancers [136]. According to recent sur-
vey results, as shown in Fig.1.7, high tumor mutational burden (TMB) is an excellent 
biomarker for predicting the efficacy of immune checkpoint inhibitors (ICIs) [137–
139], and the group of colorectal cancer patients with the biological characteristics 
of mismatch repair deficient (MMRd) has a significantly better response to ICIs 
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Fig. 1.7  Correlation between tumor mutational burden (TMB) and objective response rate with 
immune checkpoint inhibitors [137]
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than those with mismatch repair proficient (MMRp) [136, 137]. In gastrointestinal 
cancer, because the state of microsatellite instability high (MSI-H) state has been 
shown to correlate well with high TMB based on an analysis of many cancer 
genomes, the microsatellite instability (MSI) testing is used as a standard biomarker 
to predict the response of ICIs [140–142].

1.11	 �Future Directions

The cancer-accumulating family reported by Warthin AS more than 100 years ago 
led to the establishment of Lynch syndrome by the vigorous genetic epidemiologi-
cal approach of Lynch HT et al. On the other hand, mismatch repair genes have been 
elucidated as part of the genome integrity system of Escherichia coli and yeast. 
These basic researchers worked together to understand the clinical, genetic, and 
molecular biological aspects of Lynch syndrome. With its natural history and 
molecular biological characteristics clarified, presymptomatic diagnosis by genetic 
testing for at-risk persons in the family, and appropriate medically actionable inter-
ventions, such as early diagnosis, are becoming possible.

The development of ICIs is a major milestone in the treatment of patients with 
Lynch Syndrome. Most malignant tumors in patients with LS have MSI-H status 
and are expected to respond to ICIs. These studies have shown new possibilities for 
the treatment of hereditary tumor syndrome. In future, we hope that advances in the 
integrated understanding of the clinical and molecular biology of Lynch syndrome 
will lead to the development of novel diagnostic methods and effective treatments.
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