
Chapter 6
Electricity-Driven Microbial Factory
for Value-Added Resources Recovery from
Waste Streams

Mohamed Mahmoud

Abstract Over the past few decades, there is a paradigm shift towards recovering
value-added products from contaminated water bodies due to the high cost and
energy consumption associated with their treatment and disposal. Microbial electro-
chemical technologies, including electrofermentation (EF), represent a promising
option for the production of a wide range of useful products from waste streams. EF
technology holds a great promise to improve the output of traditional fermentation
by controlling the microbial metabolism through regulating the intracellular and
extracellular redox balance, leading to produce chemicals of interest with improved
selectivity, specificity, and product recovery. This chapter provides a state-of-the-art
analysis for the recent research advancement and technology development. This
chapter also discusses the possible microbial community interactions and how it
might affect the overall efficiency of EF systems. An overview is given on the
integration possibilities of EF with the existing wastewater treatment process that
most likely will lead to successful utilization of waste streams and biomass treatment
towards developing value-added biorefinery for sustainable circular economy.

Keywords Electrofermentation · Electrochemically-active bacteria · Microbial
electrochemical technology; · Microbial competition · Value-added products

6.1 Background

The global energy demand is currently about 13,864 million tons of oil equivalent
(Mtoe) annually with over 85% of this demand is being provided from fossil fuels
combustion (BP 2019), leading to ~35 gigatons of carbon dioxide (CO2) emission
released into the atmosphere (Dowell et al. 2017; IPCC 2014). Replacing the current
means for energy production with more sustainable, carbon-neutral energy sources
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remains a challenge that is facing our society (Brockway et al. 2019; Liu and
Rajagopal 2019). Fortunately, this demand can be met from the bioconversion of
waste streams to value-added products, such as biochemicals and biofuels. For
example, approximately 2.2 million m3 of wastewater and 2 billion tons of municipal
solid waste (MSW) are globally released to the environment every year (Kaza et al.
2018; WWAP (United Nations World Water Assessment Programme) 2017). The
release of these potentially harmful waste streams into environment without proper
treatment has been a serious cause for concern over the past few decades. Therefore,
converting waste streams into various forms of renewable energy creates a “win-
win” scenario that solves a wicked waste-management challenge, reduces the cost
associated with conventional waste streams treatment, produces renewable energy,
and recovers value-added products (Rittmann 2008). Theoretically, energy produced
from organic-rich waste streams is approximately a few order of magnitude higher
than energy required for wastewater treatment processes (Dubrawski et al. 2019;
Logan and Rabaey 2012; Heidrich et al. 2011).

One option for bioenergy production from waste streams is the “anaerobic
digestion (AD),” in which different microbial groups convert complex organic
compounds under strict anaerobic condition to organic acids and hydrogen gas
(H2), which are subsequently consumed by methanogens to generate methane gas
(CH4) (Fig. 6.1) (Li et al. 2015; Metcalf and Eddy 2003; Rittmann and McCarty
2001). Despite the benefit of producing CH4 from waste streams digestion, the low
conversion yield of CH4 to electricity (i.e., 30–40%) limits the application of AD to
treat low- and medium-strength wastewater. In addition, AD technology is suscep-
tible to process instability and low biogas production, mainly due to the low organic

Fig. 6.1 Anaerobic food
web, which involves several
groups of microorganisms to
mediate the
biotransformation of
complex waste streams into
value-added products
(Adopted from Mahmoud
2016)

120 M. Mahmoud



contents in donor substrates, organic acids accumulation, decrease in the reactor pH,
and/or high-level of free ammonia (Mao et al. 2015; Rajagopal et al. 2013; Chen
et al. 2008). Thus, AD has often been used to stabilize concentrated waste streams,
such as waste activated sludge generated during aerobic domestic wastewater treat-
ment and food wastes (Peccia and Westerhoff 2015; McCarty et al. 2011). Although
the coupling of aerobic treatment of wastewater with anaerobic stabilization of waste
activated sludge to generate biogas seems to be beneficial, this integration allows
only a tiny fraction of this organic matter to be recovered, making the current
wastewater treatment practices energy-negative processes (McCarty et al. 2011).

A more recent technology for waste valorization is the “microbial electrochemical
technologies (METs),” which are unique platforms that utilize electrochemically-
active bacteria (EAB) to catalyze bioelectrochemical reactions. EAB have the
capability to exchange electrons beyond their outermost membranes with an electron
acceptor (i.e., anode) or an electron donor (i.e., cathode), leading to convert organic
compounds into electricity, methane, hydrogen, hydrogen peroxide, or other value-
added products (Zou and He 2018; Malvankar and Lovley 2014; Rittmann 2008;
Lovley 2008). Despite the growing interest in METs research, only a few studies
have addressed the scaling-up of METs with the majority of published research were
performed using laboratory-scale MET reactors (i.e., <<1 liter) (Heidrich et al.
2013; Cusick et al. 2011; Logan 2010). Therefore, the main challenge to commer-
cialize the METs is to improve the electron recovery and the productivity of value-
added products, while reducing its high capital, and operation and maintenance
(O&M) cost, especially when complex waste streams used as donor substrates
(Logan 2010; Rittmann 2008).

Similar to the biodegradation of complex organic matter in AD (Fig. 6.1), the
biodegradation of organic matter in METs must be occurred through a cascade of
anaerobic reactions, including fermentation and anode respiration. Given that EAB
have limited ecological capability to consume a limited number of donor substrates
(such as acetate), fermentation represents a crucial step to generate simple products
that EAB can efficiently consume (Pant et al. 2010). For example, Ge et al. (2014)
showed that the energy recovery of MET systems was inversely proportional to the
degree of substrate complexity (expressed as chemical oxygen demand (COD)).
They observed that the highest energy recovery was achieved when acetate used as
the main sole donor substrate (i.e., 0.40 kWh/kgCOD compared to only 0.17 kWh/
kgCOD for domestic wastewater and 0.04 kWh/kgCOD for industrial wastewater). The
main cause for this low energy recovery, especially for substrate of low solid
contents (e.g., landfill leachate), is the inhibition of fermentation not anode respira-
tion (Mahmoud et al. 2016). Despite the fact that fermentation and anode respiration
can be occurred in the same reactor (Mahmoud et al. 2014), the integration of METs
with anaerobic digestion to perform some or the majority of fermentation in a
separate reactor seems to be beneficial for METs (Katuri et al. 2019; Escapa et al.
2016; Mahmoud et al. 2014).
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6.2 Fermentation as an Essential Step in Wastewater
Biodegradation

Fermentation represents a crucial step in anaerobic food web, in which soluble
organic matter (i.e., the products of particulate organic matter hydrolysis) is
converted to organic acids, alcohols, and H2 (Temudo et al. 2007; Bolzonella et al.
2005). It is considered a central step whether the final product is CH4 in AD, electric
current or H2 in METs (Rittmann 2008). The hallmark of the fermentation process is
that fermenting bacteria extract energy from biodegradable donor substrates without
the need of external electron acceptors (e.g., nitrate and oxygen), where the electron
acceptors are originated from the initial donor substrates. Fermentation often relies
on substrate-level phosphorylation to drive adenosine triphosphate (ATP) generation
(Rodríguez et al. 2006; Metcalf and Eddy 2003; Rittmann and McCarty 2001). Thus,
fermentation involves a rearrangement of donor substrate molecules into simpler
products (i.e., organic acids, alcohols, and H2) (Fig. 6.2).

Considering the mixed-culture fermentation of glucose, one mole of glucose
could theoretically produce 2 moles of acetate, and 4 moles of H2 (Eq. (6.1)) that
its partial pressure should be maintained at a very low level in order to make
fermentation thermodynamically favorable (Mahmoud et al. 2017; Angelidaki
et al. 2011; Rodríguez et al. 2006; Thauer et al. 1977).

Fig. 6.2 Selected fermentation pathways involved in the mixed-culture glucose fermentation
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C6H12O6 þ 2H2O ! 2 CH3COO
� þ 4H2 þ 2CO2 þ 2Hþ ΔG

∘

rxn

¼ �8:59 kJ=e� ð6:1Þ

In order to make fermentation thermodynamically feasible, hydrogen partial
pressure must be maintained at a low level (Hallenbeck 2009; Stams and Plugge
2009; McInerney et al. 2008). However, increasing the hydrogen partial pressure
would induce a metabolic shift in the fermentation pathways and stoichiometry
towards producing more reduced organic acids (e.g., butyrate, lactate, and propio-
nate) instead of producing acetate and H2. The main reason for this detouring is that
at high hydrogen partial pressure microbes tend to replenish the NAD+ and oxidized
ferredoxin pools to continue fermentation, resulting in production of more reduced
organic acids (Angenent et al. 2004).

Another major challenge for fermentations is that the product spectrum as well as
microbial population structure and diversity can be significantly altered by changing
the operating conditions, including pH (Lu et al. 2011; Metcalf and Eddy 2003),
organic matter loading (Temudo et al. 2008), the degree of substrate complexity
(Saint-amans et al. 2001; Himmi et al. 2000), the presence of inhibitory compounds
(Mahmoud et al. 2017), and temperature (Batstone et al. 2002). For instance,
Velasquez-Orta et al. (2011) showed that the microbial fuel cell (MFC) performance,
in terms of COD removal and power density generation, was significantly affected
by the degree of substrate complexity. The highest power density was reported when
acetate used as the sole donor substrate (99 � 2 mW/m2) compared to only 4 �
2 mW/m2 for starch, mainly due to that different initial donor substrates have distinct
degree of substrate degradation and fermentation pathways. In another study, Zhang
et al. (2014) revealed that the microbial community structure of AD bioreactors
significantly changes as a function of the influent donor substrate composition,
probably due to the inability of many microbes to use certain substrates to grow,
leading to a dramatic change in mixed-culture community structure towards species
that have the ability to consume these substrates.

6.3 Overcoming the Fermentation Bottlenecks Through
Electricity-Driven Fermentation

In an early review, Rabaey and Rozendal (2010) discussed the possibility to alter the
fermentation pathways towards the production of targeted chemicals and
bioproducts by inserting polarized electrodes in the bulk solution of AD reactors,
which was later called “electrofermentation (EF)” (Rabaey and Rozendal 2010). The
role of polarized electrodes is to provide an external source of either oxidizing or
reducing power, leading to stimulate microbial metabolism in traditional fermenta-
tion bioreactor towards producing targeted chemicals and enhancing the microbial
growth (Agler et al. 2011). In this platform, the supplied electric current allows the
organic matter fermentation to proceed under imbalanced redox conditions by
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altering the extracellular and intracellular NAD+/NADH balance and oxidation-
reduction potential (ORP) (Moscoviz et al. 2016).

In anodic EF, organic-rich substrates (e.g., carbohydrate and protein), which are
the main source of electrons and energy, are fermented into more oxidized final
products. In this case, the anode acts as the terminal electron acceptor. In contrast,
the working electrode in cathodic EF (i.e., cathode) supplies electrons to the micro-
bial cells, leading to convert the initial substrates into more reduced final products
(Kracke and Krömer 2014).

EF systems have been commonly used to improve the production of a wide
spectrum of value-added products from different waste streams (Table 6.1). Similar
to AD, the complex organic matter in METs is biodegraded through a cascade of
bioelectrochemical reactions under strict anaerobic condition. First, the particulate
organic matter is hydrolyzed to soluble monomer, which is then converted into
organic acids, alcohols, and H2 by fermenting bacteria. Then, the majority of
fermentation by-products are further converted into acetate and H2. Finally, acetate
and H2 are consumed by either EAB (the desired pathway) or methanogens to
generate CH4 (the undesired pathway) (McCarty et al. 2011; Parameswaran et al.
2010; Thauer et al. 2008; Rittmann and McCarty 2001). Generally, there are two
main H2-consumers in the anode of MET systems rather than EAB:
hydrogenotrophic methanogens and homoacetogens (Mahmoud et al. 2017).
Hydrogenotrophic methanogens consume H2 as the main donor substrate to produce
CH4 (Eq. (6.2)) (Stams and Plugge 2009; Thauer et al. 2008), while homoacetogens
also consume H2 to yield acetate (Eq. (6.3)) (Schuchmann and Müller 2014). Thus, it
is a challenge to minimize the conversion of H2 to CH4, in the presence of
hydrogenotrophic methanogens; however, there are several attempts to limit or
inhibit the activity of methanogens, such as using chemical inhibitors (Zhu et al.
2015; Parameswaran et al. 2010), employing active harvesting of H2 (Lu et al. 2016),
altering operational conditions (Mahmoud et al. 2017), and genetically modifying
EAB (Awate et al. 2017).

HCO3
� þ 4H2 þ Hþ ! CH4 þ 3H2O ΔG

∘

rxn ¼ �16:38 kJ=e� ð6:2Þ

2CO2 þ 4H2 ! CH3COO
� þ Hþ þ 2H2O ΔG

∘

rxn ¼ �11:88 kJ=e� ð6:3Þ

Recently, Zhao et al. (2015) studied the role of polarized electrodes for enhancing
CH4 production in AD bioreactor fed with waste activated sludge. Despite the
obvious increase in CH4 production compared to control experiments (without
polarized anodes), mass balance revealed that >50% of CH4 production was orig-
inated from unknown pathway. Microbial community analysis as well as fluores-
cence in situ hybridization (FISH) revealed the dominance of Methanosaeta and
Geobacter species in electric-anaerobic sludge digester bioreactors. Owing to the
increase in biofilm conductivity, they concluded that polarized anode facilitated
organic matter degradation and electron exchange between methanogens and
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Geobacter species. In more recent study, Luo et al. (2016) documented the positive
role of polarized electrode for enhancing CH4 production under ammonia stress.

Taken together, these available laboratory-scale studies demonstrate that EF
platform opens up new opportunities to integrate METs with the existing AD
technology in order to solve the problems associated with conventional AD tech-
nology, such as low product yield, slow hydrolysis/fermentation rate (Park et al.
2018), the requirement of long sludge and hydraulic retention times (Song et al.
2016), and the process instability at low temperature (Liu et al. 2016).

In cathodic EF, the electrode acts as the source of electrons to stimulate EF
towards production of more reduced final products, including 1,3-propandiol
(1,3-PDO), butanol, and polyhydroxyalkanoates (PHA), with high purity and rate
(Xue et al. 2017; Moscoviz et al. 2016; Kracke and Krömer 2014). For instance,
Choi et al. (2014) showed that a positive working potential (i.e., +0.045V vs. standard
hydrogen electrode (SHE)) triggered a metabolic shift in Clostridium pasteurianum
towards production of NADH-consuming metabolite, such as 1,3-PDO from glyc-
erol fermentation and butanol from glucose. More recently, there are efforts to use
mixed-culture microbial community for glycerol electrofermentation to selectively
produce 1,3-PDO (Roume et al. 2016; Xafenias et al. 2015; Zhou et al. 2013).

Although the use of electric current has been proved to be effective tool to drive
the microbial, allowing the production of targeted chemicals of interest, it seems to
be a challenge to build successful mixed-culture microbiomes that are resilient to
improve the EF selectivity and specificity (Schievano et al. 2016). Dennis et al.
(2013) revealed that change in microbial community structure was significantly
associated with change in electrofermentation pathway of glycerol and product
spectrum. Zhou et al. (2015) observed that the sharp decrease of 1,3-PDO production
from glycerol over long time of operation (>150 days) was associated with loss of
the dominant Citrobacter spp.

Polyhydroxyalkanoates (PHA) is another targeted chemical that can be produced
during the cathodic EF of glucose. In a proof-of-concept study, Srikanth et al. (2012)
observed high accumulation of PHA (19% of dry cell weight) with high
hydroxybutyrate concentration(~89%) by providing a microaerophilic environment
in the cathode of an MET with glucose as the sole carbon source.

6.4 Towards Building Successful Microbiome: Teamwork
or Coexistence?

Despite the fact that the EET mechanism in METs has not yet been fully elucidated,
there are 2 main mechanisms through which EAB can exchange electrons with
electrodes: direct electron transfer and indirect (or mediated) electron transfer
(Fig. 6.3) (Torres et al. 2010). Indirect electron transfer relies on redox active shuttles
that transfer electrons between EAB and solid surfaces by altering their oxidation
states. The extracellular shuttles can be either a secondary microbial metabolite (e.g.,
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phenazine and flavins) or synthetic molecules (e.g., Anthraquinone-2,6-disulfonic
acid, neutral red, and cobalt(III) sepulchrate) (Kracke et al. 2018; Torres et al. 2010;
Marsili et al. 2008; Emde and Schink 1990). For direct electron transfer, EAB
community has the ability to exchange electrons with solid surfaces via direct
contact of redox proteins embedded within the EAB outer membrane (e.g.,
nanowires) (Malvankar and Lovley 2014; Lovley 2008). These mechanisms have
been commonly postulated in anodic and cathodic EF systems (Moscoviz et al.
2016; Torres et al. 2010; Rabaey and Rozendal 2010). Although the study of EET in
the anode of METs in early studies has focused only on two Gram-negative,
mesophilic EAB: Shewanella oneidensis MR-1 and Geobacter sulfurreducens,
there are so far over 100 isolated EAB that have the ability to transfer the electron
to/from solid surfaces (Logan et al. 2019; Doyle and Marsili 2018).

EAB community performing indirect electron transfer (e.g., S. oneidensis MR-1)
is often characterized with low current density generation (i.e.,�1 A/m2) mainly due
to the slow diffusion of redox shuttles, although they are capable of using ferment-
able donor substrates, such as glucose, as the main source of energy and electrons.
On the other hand, EAB community performing respiration via solid-conductive
mechanism (e.g., G. sulfurreducens) are capable of producing much higher current
density; however, their metabolic capability is limited to only consume simple
substrates, including acetate and H2 (Torres et al. 2010; Marsili et al. 2008). In
order to overcome this limited metabolic capability, Speers et al. (2014) proposed a
successful strategy to use a co-culture of an EAB (G. sulfurreducens) and a
fermenting bacterium (Clostridium cellobioparum) to enhance glycerol fermentation
into ethanol. Interestingly, Lusk et al. (2015) used a pure-culture thermophilic
bacterium—Thermoanaerobacter pseudethanolicus—that has the ability to ferment
complex donor substrates (e.g., xylose, glucose, and cellobiose) and perform anode
respiration without the addition of redox mediators.

Despite the benefits of using pure cultures in EF systems for higher selectivity and
specificity of fermentation reactions, mixed-culture EF systems may be advanta-
geous to simplify the fermentation process. Owing to the high robustness and

Fig. 6.3 Proposed electron transport mechanisms used by EAB (Adopted from Mahmoud 2016;
Torres et al. 2010)
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functional stability of mixed-culture microbial community compared to pure cul-
tures, mixed-culture EF systems can handle a wide range of complex waste streams,
such as real wastewater. It was previously demonstrated in different MET configu-
rations that EAB rely on fermenting bacteria to provide their “fuel” by converting
complex organic matter into simple donor substrates (Logan et al. 2019; Mahmoud
et al. 2017; Parameswaran et al. 2010). These syntrophic interactions—either by
mediated interspecies electron transfer (MIET) via the diffusion of electron carriers
(i.e., H2 and formate) (Parameswaran et al. 2010) or direct interspecies electron
transfer (DIET) in presence of conductive materials (Lovley 2017)—are required to
maintain the concentrations of fermentation by-products below a threshold limit to
make the fermentation thermodynamically favorable (Kiely et al. 2011).

Although methanogens represent the main trophic guild in anaerobic digesters to
produce CH4from organic wastes, methanogens represent undesired competitors for
EAB, since they can compete for space and food (Siegert et al. 2015). They can
produce CH4 by two pathways: (1) aceticlastic methanogenesis by oxidizing acetate
(Eq. (6.4)) and (2) hydrogenotrophic methanogenesis by oxidizing H2 (Eq. (6.2)).
Owing to the thermodynamic and kinetic advantages of EAB over aceticlastic
methanogens, EAB usually outcompete aceticlastic methanogens (Parameswaran
et al. 2010; Esteve-Nunéz et al. 2005); hence, they are not a competitor for acetate-
consuming EAB. However, hydrogenotrophic methanogens have metabolic advan-
tage over EAB for H2 consumption, thereby minimizing the possibility of H2

harvesting or its conversion into another useful product, such as electric current
(Mahmoud et al. 2017). Among several possibility to inhibit methanogens, chemical
inhibitors (e.g., 2-bromoethanesulfonate) seem to be the most effective option for
inhibiting methanogens, although using chemical inhibitors is not practically feasi-
ble for industrial applications of EF and other MET as well as they are toxic
(Karthikeyan et al. 2017; Mahmoud et al. 2017; Lu et al. 2016; Zhu et al. 2015;
Parameswaran et al. 2010; Chae et al. 2010; Freguia et al. 2008).

CH3COO
� þ H2O ! CH4 þ HCO3

� ΔG
∘ ¼ �3:88 kJ=e� ð6:4Þ

Another potential competitor for EAB is sulfate-reducing bacteria (SRB). Sulfate
reduction process in the anodic EF systems is likely to occur, particularly for sulfate-
rich organic waste streams, such as food wastewater, petrochemical effluents, and
pulp and paper wastewater (Hao et al. 2014). Although there is no comprehensive
study showing the impact of sulfate on the performance of EF systems, a recent
study revealed the applied current in a microbial electrolysis cell favored sulfate
removal from sulfate-rich wastewater (Wang et al. 2017). Their results suggest that
EAB can integrate with SRB to remove organic matter and sulfate, although they did
not study the effect of sulfate on anode respiration. In another study, Lee et al. (2012)
showed that increasing the sulfate concentration had a negative effect on the
performance of MFCs as indicated from low power density generation and electron
recovery.

6 Electricity-Driven Microbial Factory for Value-Added Resources Recovery from. . . 129



Given that nitrate can be reduced in strict anaerobic conditions, it represents a real
risk for EAB in the anode of MET reactors, including anodic EF systems. Nitrate
reduction by nitrate-reducing bacteria (NRB) (or denitrifiers) is an undesired pro-
cess, since it would limit the substrate availability for EAB (Sukkasem et al. 2008).
For instance, Jin et al. (2019) showed that supplementing the anode of an MFC with
nitrate (100 mg-N/L) decreased Coulombic efficiency (CE) by ~2.2-fold (from
63.9% to 29.4%). In another study, Kashima and Regan (2015) studied the impact
of nitrate on the efficiency of pure-culture electrochemically-active bacterium (i.e.,
Geobacter metallireducens). The addition of nitrate (10 mM) resulted in a remark-
able reduction of CE (from ~78% to ~4%). A likely reason for low CE and electron
losses is the competition between EAB and NRB for substrate and space.

6.5 EAB–Electrode Interaction and EF Systems
Architecture

So far, the majority of published research were performed using small-scale EF
systems. Thus, the successful scaling-up of EF systems (and other MET as well) will
greatly depend on the selection of biocompatible electrodes that favor the microbe-
electrode interactions as well as the system design and architecture (Logan et al.
2006). The ideal electrodes for EF systems should have: (1) a relatively high
electrical conductivity; (2) high chemical stability; (3) low cost; (4) large accessible
specific surface area; and (5) high mechanical strength (Hindatu et al. 2017; Xie et al.
2015).

Owing to their biocompatibility, low cost, and high electrical conductivity,
carbon-based electrodes, including graphite brush, carbon cloth, graphite felt, carbon
brush, granular activated carbon, and carbon fibers, have been widely used for METs
research (ElMekawy et al. 2017; Xie et al. 2015). In addition, altering the surface
chemistry of electrodes by either adding conductive catalysts (e.g., carbon nanotube,
graphene, and iron oxide) or conducting polymers (e.g., polyaniline and hydrogels)
has resulted in enhancing the bacterial colonization and microbe-electrode interac-
tions, thereby reducing the surface electron transfer resistance and improving the
extracellular electron (EET) rate (Hindatu et al. 2017). Other surface treatment
approaches (e.g., acid treatment (Feng et al. 2010), ammonia treatment (Call et al.
2009), surfactant treatment (Guo et al. 2014a), heat treatment (Wang et al. 2009),
and flame oxidation (Guo et al. 2014b) have been applied to alter the surface
chemistry of electrodes, facilitating the microbe-electrode interaction and enhancing
biocompatibility properties of electrodes. In addition, other non-carbon electrodes
(e.g., stainless steel, gold, and titanium) have also been used for METs research;
however, their small accessible specific surface area and relatively high cost would
limit their application for large-scale MET reactors (Fan and Liu 2014; Richter et al.
2008; Dumas et al. 2008).
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Most of recent EF studies have paid more attention to understand the fundamental
aspects of EF systems rather than the reactor design and architecture. Single-
chamber EF system (i.e., without using ion-exchange membranes) seems to be
ideal to upgrade the existing AD technologies for wastewater treatment, such as
municipal sludge and food-processing wastewater. This approach would enhance the
efficiency of AD, while keeping its O&M relatively low. However, if the purpose of
EF system is to recover high-purity chemicals, EF should occur in multi-chambered
EF systems equipped with of ion-exchange membranes (bipolar membrane, anion-
exchange membrane, and cation-exchange membrane). For example, Roume et al.
(2016) used a 3-chambered cathodic EF system to enhance the bioelectrochemical
reduction of glycerol to 1,3-PDO. Using arrays of selective membranes, they
reported a high production yield of 1,3-PDO (i.e., 0.72mole of 1,3-PDO per
1 mole of glycerol). Similarly, Andersen et al. (2014) revealed that using an
anion-exchange membrane remarkably enhanced the extraction and upgrading of
short-chain carboxylates into esters during bioelectrochemical fermentation.

6.6 Conclusion and Future Perspectives

EF is an emerging platform that integrates electrochemistry with traditional fermen-
tation. In EF systems, the polarized electrodes can act as either electron acceptor
(i.e., anodic EF) or electron donor (i.e., cathodic EF), leading to stimulate microbial
metabolism in traditional fermentation bioreactor to produce targeted chemicals with
high purity, to enhance microbial growth, to improve the microbial interspecies
interactions, and/or to achieve carbon breakdown or chain elongation. Despite the
great promise of this hybrid technology, it is still in its infancy. Multidisciplinary
studies are required:

1. to understand the microbial community interaction and how it affects the micro-
bial metabolism as well as cultivating new microbial isolates that are capable of
improving the selectivity and specificity of EF. Owing to the recent advances in
molecular biology and culture-independent tools and techniques, both options
seem to be easily achievable,

2. to improve the EF system architecture and design, including the electrode mate-
rials and shapes. This remarkably improvement of EF efficiency has to be
accompanied with novel reactors design that should have a relatively low cost
and high availability,

3. to investigate the possibility of integration with other existing wastewater treat-
ment processes, such as anaerobic digestion, and

4. to find a practical way to improve the extraction of the produced chemicals.
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