Chapter 5 M)
Hydrogen and Methane Generation from sz
Biowaste: Enhancement and Upgrading via
Bioelectrochemical Systems
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Abstract Bioelectrochemical systems (BESs) are emerging technologies that are
based on catalyzing (bio-)anode and (bio-)cathode reactions from waste biomass by
exoelectrogenic microorganisms. Microbial electrolysis cell (MEC), which is one of
the BESs’ technologies, is typically used to degrade organic wastes or wastewater
for bioenergy recovery and biosynthesis. As one of the promising biotechnologies
for resource recovery, value-added products have been obtained by MEC- or
ME-integrated systems, such as hydrogen, methane, ethanol, etc. The fundamental
reactions of (bio-)electron transport through anodic oxidation are well understood
and allow us to increase reactor performance and efficiency. More attentions have
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been recently paid to cathode reactions on proton/electron transport and recovery,
with or without microbial activities. Biogas upgrading systems have also been
promoted in integrated systems, by combining bioelectrochemistry with various
anaerobic processes. This chapter will focus on energy gas generation from waste
organics involved in bioelectrochemical pathways and give an overview of bottle-
necks and challenges related to this technology.

Keywords Bioelectrochemical systems - Microbial electrolysis cell - Hydrogen -
Methane - Biowaste

5.1 Principle for Hydrogen and Methane Generation via
Bioelectrochemical Systems

With the continuous stimulation of fossil fuel consumption and energy demand
growth, the need to combine energy security with the development of a more
sustainable energy sector is representing a severe global challenge. Some renewable
resources are considered promising to harvest clean energy. Hydrogen is in principle
an environmentally acceptable and clean energy vector that, however, is typically
produced from non-renewable fossil fuels such as natural gas or water. In theory,
bioelectrochemical systems (BESs) can be used to recover hydrogen from any
biodegradable organics on the (bio-) cathode, by harnessing the biocatalytic elec-
trolysis (bio-) anode, i.e., microbial electrolysis cell (MEC). Biocatalytic oxidation
of organic matter to hydrogen can occur at both the anode and the cathode. In MEC,
for instance, biodegradable organics can produce electrons through the biological
oxidation at the anode. Electrons flow then through an external circuit (going from
the anode to the cathode) and subsequently combine with protons to form hydrogen
under a small voltage (0.2-1.2 V), necessary to overcome thermodynamic barriers
(Cheng and Logan 2007). Additionally, H,, being one of the most effective electron
shuttles, can be exploited by microorganisms to produce small molecular com-
pounds such as methane (Fig. 5.1). Compared with other H,-/CH,-producing tech-
nologies, MEC, as bioelectrochemical power-to-gas, which can convert renewable
surplus electricity into hydrogen and methane, exhibits higher H,-/CH,4-producing
efficiency and wider diversity of substrate utilization, making it more advantageous,
especially for the valorization of low concentration and/or complex organic matter
(Logan et al. 2008).

5.1.1 Reactions Based on Extracellular Electron Transport

Based on whether there are microorganisms attached on the electrodes or not, MEC
can be divided into four categories: (1) full-biological double-chambered
(DC)  bioanode/biocathode MEC; (2) full-biological single-chambered
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Fig. 5.1 Schematic of H, DC power supp]y
and CH4 formation in the | |

microbial electrolysis
cell, MEC e e | | e e

Separator

(SC) bioanode/biocathode MEC; (3) half-biological double-chambered bioanode/
cathode MEC; and (4) half-biological double-chambered anode/biocathode MEC.
In general, biodegradable organic matter is oxidized by anodic exoelectrogenic
microorganisms and releases protons and carbon dioxide into the anolyte, while
electrons transfer to the anode in a typical dual-chamber MEC (Hamelers et al.
2010).
[Anodic reaction]

CH3COOH + 2H,0 — 2CO, + 8H" + 8¢, E* = 0.187 and E
= —0.289 V vs.SHE (5.1)

Electrons flow typically through an external circuit, driven by an external voltage.
Protons and carbon dioxide diffuse across the separator (such as ion exchange
membranes, size-selective membranes, stacks of membranes, or the cloth) to the
cathode, combining with electrons to be reduced to hydrogen or methane, depending
on the cathodic potential, which drives the H,/CH,4 production, affecting Gibbs’ free
energy (Jafary et al. 2015).

[Cathodic reaction]

Hydrogen formation:
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8H" + 8¢~ — 4H,,E° = 0and E = —0.412 V vs.SHE (5.2)

Methane formation:

CO; + 4H, — CH4 + 2H,0,E® = 0.227 Vand E = —0.248 V vs.SHE ~ (5.3)

Microbial electrolysis for hydrogen production can be considered as an advanta-
geous combination of conventional hydrogen production pathways. First, compared
to dark fermentation, “hydrogen-producing microorganisms” of MEC cannot
directly produce hydrogen but are capable of extracellular electron transfer, which
play a pivotal role. Besides, MEC can also handle more types of organic substrates
without the problem of fermentation end products, which provides a possible way to
thoroughly and fully degrade organic matter. In addition, the efficiency of hydrogen
production via dark fermentation (such as treated carbohydrate-rich wastewater) is
limited (Angenent et al. 2004), due to thermodynamical limitations involving endo-
thermic reactions (Hawkes et al. 2002; Kim et al. 2004; Oh et al. 2003). Second,
compared with photosynthetic biological hydrogen production (photosynthesis,
photo-fermentation), it is not restricted by light. Notably, photo-fermentation
requires enormous reactor surface areas to improve electron transfer and overcome
the diffuse nature of solar radiation and thermodynamical barriers, which are clearly
not economically viable (Hallenbeck and Benemann 2002). Third, the cathode
reaction has the same reaction as the electrolysis of hydrogen in the electrochemical
method, except that the electron source of the anode is different. As a consequence,
the electrons provided by the relevant microorganisms can save input energy, as
demonstrated by the minimum applied potential. The theoretical minimum potential
of hydrogen production reaction in MEC is 0.10 V (shown in the following,
Egs. (5.4) and (5.5)), whereas the theoretical minimum potential of hydrogen
production in industrial electrolysis is 1.2 V.

For the hydrogen production in MEC, the reaction between proton and electron
occurs only in the cathode; the semi-cell reaction of its electrochemical system is
briefly described as:

Anodic reaction : NAD" + H' 4 2e~ — NADH, E® = —0.320 V vs.SHE (5.4)
Cathodic reaction : 2H" + 2e~ — H,, E° = —0.420 V vs.SHE (5.5)

To enable a nonspontaneous reaction, electrons are required to flow from the
anode potential (—0.320 V, Eq. (5.4)) to the cathode potential (—0.420 V, Eq. (5.5)),
namely, from the high point to the low point. Thereby, MEC needs extra energy to
execute the reverse flow of electrons. Theoretically, this process needs to provide a
potential of at least 0.1 V to overcome the energy barrier, whereas in practice, an
additional voltage supply of minimum 0.13 V is needed to perform the cathode
hydrogen production. The reason for the extra voltage required is that electrochem-
ically active microorganisms or electroactive microorganisms (EAMs) consume
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some of available energy to sustain their own growth, resulting in microbes to
release electrons with a higher potential than the equilibrium potential. On the
other hand, the voltage applied to the reactor will also be lost as the consequences
of ohmic resistance of electrochemical bias and occurrence of overpotential
(Rozendal et al. 2006). Nevertheless, hydrogen generated through water electrolysis
actually requires at least a voltage of 1.6 V or more (Crow 1994; Rasten et al. 2003).

5.1.2 Functional Communities Involved
in Bioelectrochemical Systems

The term EAMs refers to those microorganisms that can directly or indirectly donate
electrons to an electrode (called exoelectrogens), or that accept electrons from the
electrode (known as electrotrophs) (Table 5.1). Thus far, the exoelectrogens isolated
from natural environment belong primarily to the phylum Proteobacteria and
Firmicutes, mostly facultative anaerobic microorganisms, which are capable of
gaining energy to sustain growth via anaerobic respiration and fermentation metab-
olism. Most exoelectrogens are Fe(Ill)-reducing bacteria (FRB), viz., the oxidized
iron is the final electron acceptor of the respiratory chain (Lovley 2006). There are
different strategies for transferring electrons to the anode, such as the mediated
interspecies electron transfer (MIET) (Cai et al. 2020) and the direct interspecies
electron transfer (DIET) (Logan et al. 2019; Lovley 2017). The latter requires direct
contact of the outer membrane cytochromes and electron transport proteins associ-
ated with outer cell surfaces on electrically conductive materials. MIET includes:
(1) self-generated mediators that facilitate the shuttling of electrons from the cells to
the anode; (2) electrically conductive pili, capable of long-range electron transfer;
and (3) diffusive exchange of electrons between species via soluble electron shuttles
such as H, (electron-accepting microbes are methanogens) (Table 5.1).

5.2 Hydrogen as the Main Product Using Microbial
Electrolysis Cells

Previously, the process of hydrogen generation via electrolyzing dissolved organic
matter, using EAMs acting as catalyst, was named ‘“biocatalyzed electrolysis”
(Rozendal et al. 2006); subsequently, it was referred to “electrochemically assisted
microbial production of hydrogen” (Liu et al. 2005). In earlier research on hydrogen
production in MEC, the reactor basically had the similar configuration as the MFC
reactor, composed of typical bipolar chamber structure made of glass, where two
electrode chambers were isolated by proton exchange membrane (PEM). These
initial studies primarily focused on hydrogen generation with acetate as the model
compound in MEC. The experimental results showed that the coulomb efficiency
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Table 5.1 Electroactive microorganisms (EAMs) in bioelectrochemical systems, BESs

Species Taxonomy Information Reference
Proteus vulgaris Proteobacteria Chemically immobilized onto the Allen and
surface of graphite felt electrodes, Bennetto
supporting continuous current (1993)
production
Shewanella a-Proteobacteria The first observation of a direct elec- | Kim et al.
putrefaciens IR-1 trochemical reaction via Fe(IIl)- (1999)
reducing bacteria in BES
Clostridium Firmicutes The first reported gram-positive bac- | Park et al.
butyricum EG3 terium (Fe(III)-reducing bacterium) in | (2001)
microbial fuel cell (MFC) can ferment
glucose to acetate, butyrate, CO,, and
H,
Desulfuromonas d-Proteobacteria Anaerobic marine microorganism Bond et al.
acetoxidans Geobacteraceae oxidizing acetate with concomitant (2002)
(family) reduction of elemental sulfur or Fe
(1)
Geobacter 6-Proteobacteria Oxidize a variety of aromatic con- Bond et al.
metallireducens Geobacteraceae taminants (benzoate, toluene) with (2002)
(family) the reduction of Fe(III)
Geobacter d-Proteobacteria The first report of microbial electric- | Bond and
sulfurreducens Geobacteraceae ity production solely by cells attached | Lovley
(family) to an electrode without electron (2003)
transfer mediator (potassium ferricy-
anide; thionine; neutral red; anthra-
quinone-2,6-disulfonate, AQDS);
oxidize acetate or H,
Rhodoferax p-Proteobacteria Isolated from anoxic subsurface sedi- | Chaudhuri
ferrireducens ments; dissimilatory Fe(Ill)-reducing | and Lovley
bacterium; electricity generation by (2003)
direct oxidation of glucose in
electron-shuttling mediatorless MFC
Aeromonas 8-Proteobacteria A facultative anaerobic bacterium, Fe | Pham et al.
hydrophila (III)-reducing bacterium, can reduce | (2003)
nitrate and sulfate
Pseudomonas y-Proteobacteria Excrete redox mediators (pyocyanin) | Rabaey
aeruginosa et al.
(2004)
Desulfobulbus &-Proteobacteria The first example of sulfate-reducing | Holmes
propionicus Desulfobulbaceae | bacteria that can preserve energy to et al.
(family) support their growth by electron (2004a)
transfer to insoluble electron accep-
tors, such as Fe(III) oxide and elec-
trodes, without the addition of
exogenous electron-shuttling
compounds
Geopsychrobacter d-Proteobacteria The first organism retrieved from an | Holmes
electrodiphilus Geobacteraceae anode, able to effectively oxidize et al.
(family) organic compounds at an electrode, (2004b)

(continued)
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Table 5.1 (continued)

Species Taxonomy Information Reference
gram-negative bacterium with abun-
dant c-type cytochromes
Geothrix fermentans | Acidobacteria The first report of a Fe(Ill)-reducing | Bond and
bacterium from outside the Lovley
Proteobacteria family capable of (2005)
complete oxidation of organic com-
pounds linked to electrode reduction
and synthesizing a soluble compound
to enhance electrode reduction
Escherichia coli y-Proteobacteria The first reported that E. coli-cata- Zhang
lyzed MFC with a carbon-based et al.
anode exhibited a higher power den- | (2006)
sity without electron mediators
Enterobacter Proteobacteria Gram-negative bacillus capable of She et al.
dissolvens utilizing phenanthrene and degrading | (2006)
xenobiotic compounds
Hansenula anomala | Ascomycota Yeast cells with redox enzymes pre- | Prasad
sent in their outer membrane (ferri- et al.
cyanide reductase, lactate (2007)
dehydrogenase) could communicate
directly with electrode surface and
contribute to current generation in
mediator-less MFC
Shewanella y-Proteobacteria Live in anaerobic and aerobic envi- Ringeisen
oneidensis DSP10 ronments; can reduce metals with/ et al.
without oxygen (2007)
Shewanella y-Proteobacteria Gram-negative facultative anaerobic | Bretschger
oneidensis MR-1 bacterium able to exploit a broad et al.
range of electron acceptors (2007)
The reduction of the highly toxic Xafenias
hexavalent chromium Cr(VI) via et al.
biocathodes (2013)
Rhodopseudomonas | a-Proteobacteria The first reported power production | Xing et al.
palustris DX-1 of 2.72 4+ 60 W m? by a newly iso- (2008)
lated strain of a photo(hetero)trophic
purple non-sulfur bacterium
Ochrobactrum a-Proteobacteria The first reported an Ochrobactrum Zuo et al.
anthropic YZ-1 species can produce electricity, iso- (2008)
lated via using a special U-Tube MFC
Desulfovibrio 6-Proteobacteria A sulfate-reducing bacterium was Zhao et al.
desulfuricans used to simultaneously remove sul- (2008)
fate and generate electricity in MFC
Acidiphilium a-Proteobacteria The first reported used an acidophile | Borole
cryptum as the anode biocatalyst in MFC et al.
(2008)
Klebsiella y-Proteobacteria Utilize directly starch and glucose to | Zhang
pneumoniae L17 generate electricity (DIET) et al.
(2008)

(continued)
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Table 5.1 (continued)

Species Taxonomy Information Reference
Thermincola sp. Firmicutes The first gram-positive bacterium Wrighton
strain JR isolated from a thermophilic MFC et al.
(2008)
Geobacter lovieyi Proteobacteria Reductive dechlorination of Strycharz
tetrachlorethene et al.
(2008)
Comamonas B-Proteobacteria An exoelectrogenic denitrifying bac- | Xing et al.
denitrificans terium isolated by dilution to (2010)
extinction
Acetobacterium Firmicutes Electroacetogenesis; autotrophic Marshall
(genus) microbiome et al.
(2013)

(CE, total recovery of electrons from acetate) of MEC could reach up to 60%, which
was much higher than that of MFC, reported in the same period. More than 90% of
electrons and protons generated via bacterial acetate oxidation were converted to
hydrogen. When further considering the maximum conversion rate of hydrogen,
assuming 78% of CE and 92% of electron recovery efficiency, it can be easily
calculated that 1 mol of acetate can produce approximately 3 mol of hydrogen.
Moreover, comparing the hydrogen production capacity of different organic acids
(acetate and butyrate), the results showed that acetate was more favorable to the
metabolism of microbes in MEC, with hydrogen yield from acetate being higher
than butyrate. Preliminary results showed that CE of acetate and butyrate could reach
50-65%, whereas that of glucose only reached 14-21%, which implied the feasibil-
ity of exploiting MEC to produce hydrogen and simultaneously degrade end prod-
ucts of dark fermentation (Liu et al. 2005).

CeH 206 + 6H,0 — 12H, + 6CO, (thermodynamically unfavorable)  (5.6)
C¢H,0¢ + 2H,0 — 4H, + 2CO, + 2C,H,0, (57)
C¢H 2,06 — 2H; + 2CO;, 4+ C4H30O, (5.8)

The stoichiometric yield of hydrogen production from glucose as the substrate
would be 12 mol H,/mol glucose, but this process (Eq. (5.6)) would require a large
amount of energy and is unlikely to occur (AG” =+3.2 kJ mol). This would
be translated into extremely low hydrogen yields when hydrogen is produced from
glucose, with acetate and butyrate as the only fermentation by-products. Theoreti-
cally, 4 mol H,/mol glucose can be obtained if only acetate is produced, while only
2 mol H,/mol glucose when butyrate is the exclusive end product. Not surprisingly,
usually only 2-3 mol H,/mol glucose can be produced in actual fermentation process
(albeit some thermophilic strains, e.g., Thermothoga can also reach yields around
3.5 mol Hy/mol glucose) (Logan 2004). In a combined process with glucose
fermentation to (2 moles of) acetate and subsequent conversion of acetate in an
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MEQC, the overall hydrogen production yield reached 8-9 mol H,/mol glucose, while
the supplied energy requirement (by external voltage) was equivalent to 1.2 mol H,/
mol glucose (Liu et al. 2005).

In principle, MFC and MEC have similar functional microbes, including bacteria
capable of extracellular electron transfer and other collaborative bacteria. Conse-
quently, in the early stage of MEC research, the start-up mode was basically to first
adapt the inoculum to obtain the corresponding functional flora by virtue of MFC
electricity production, and then shifting into the MEC reactor operation (Cheng and
Logan 2007; Call and Logan 2008; Hu et al. 2008; Call et al. 2009; Guo et al. 2010).
Thus, in order to obtain an anodic syntrophic consortium between fermentative and
anode respiring bacteria (ARB), Montpart et al., for example, first utilized the
effluent from an already working MFC, composed of ARB (Montpart et al. 2015).
The inoculum was fed with acetate and propionate, and subsequently with sludge
from culture flasks, containing fermentative bacteria, in order to develop the
syntrophic consortium. Once the syntrophic consortium had colonized well in
MEFC, the biologically enriched anode was transferred into a single-chamber MEC,
treating synthetic wastewater (comprising different complex carbon substrates, i.e.,
glycerol, milk, and starch) to evaluate hydrogen production (Montpart et al. 2015).
In the study by Liu et al., the authors unraveled the effects of different MEC start-up
modes on hydrogen production and microbial communities (Liu et al. 2010).
Interestingly, the results indicated that the start-up conditions with applied voltages
(MEC mode) had a strong influence on the performances of MEC reactors, from the
perspective of both CE and COD removal efficiency, and presented larger effect on
gas composition, especially on the production of hydrogen. The hydrogen produc-
tion of the reactor, directly started as MEC, was generally higher than that of the one
initially operated in the MFC mode. Microbial community analysis results further
demonstrated that microbial communities developed in MECs were well separated
from those present under start-up conditions, implying that reactor operation affected
microbial community composition (Liu et al. 2010). Subsequently, Lee et al. col-
lected the effluent from an acetate fed-batch MEC operated for over 9 months as an
inoculation to the upflow single-chamber MEC, reaching a production rate of 4.3 +
0.06 m®> m~> d~! of H, with 27-49 kg m > d~! removal rate of COD (Lee and
Rittmann 2010).

Various pure substrates have been well investigated in two-chamber MECs for
hydrogen production (Cheng and Logan 2007), including glucose, cellulose, and
various fermentative products (acetate, butyrate, etc.). Near-stoichiometric yields
have been obtained by those MEC tests. However, mixed substrates or complex
organic matters are still leading to low conversion yields. In summary, simple or
pure substrates, like acetate as model substrate, are employed in MECs for mecha-
nism analysis of electron transfer or electron flow calculation, while mixed or
complex substrates are commonly studied for scaling up reactors or practical
treatment.
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5.2.1 Simple Carbon Sources for Hydrogen Production

Acetate, a by-product of dark fermentation of glucose, was typically used as a model
substrate to ferment hydrogen in MEC research.

Rozendal et al. first reported biocatalyzed acetate for electrohydrolysis via EAMs,
inoculated from the effluent of an electrochemical cell, which was previously
acclimatized with sludge from a full-scale upflow anaerobic sludge blanket
(UASB) reactor, treating sulfate-rich papermill wastewater for five months (Rozendal
et al. 2006). A relatively large double-chamber MEC reactor with a volume of up to
3.3 L, separated by a cation-selective membrane, was operated under an applied
voltage of 0.5 V, achieving a hydrogen production rate of 0.02 m* m > d~'. The CE
and cathodic electron recovery efficiency reached 92% and 57%, respectively. It is
worth mentioned that the previous research pointed out the existence of
methanogens at the anode, resulting in hydrogen loss, and speculated about the
possible impacts, viz., the loss of partial CE and the decreasing numbers of electrons
delivered to the anode by competing for consumption of acetate. Unfortunately, this
study did not focus on the phenomenon of the electromethanogenesis and did not
further analyze microbial communities. In contrast, the authors assumed that the
abovementioned consumption was insignificant compared to the H, recovery loss at
the cathode, because the H, generated at the cathode would diffuse to the anodic
chamber and be used as electron donor for biocatalysis.

Chae et al. employed a two-chambered MEC, fed with acetate, to elucidate the
effects of applied voltages on the hydrogen production. They found that the hydro-
gen yields generally increased with applied voltages (from 0.1 to 1.0 V), obtaining a
maximum H, yield of 2.1 mol/mol acetate. Moreover, the higher voltage implied a
higher electron loss at the anode, compared to that of the cathode (Chae et al. 2008).
Jeremiasse and colleagues obtained the maximum H, production rate using acetate
and applying 1.0 V (Jeremiasse et al. 2010). In fact, the applied voltage is crucial for
hydrogen formation and also significantly affects the H, conversion efficiency.
Although hydrogen can theoretically be produced at the cathode by applying a
circuit voltage greater than 0.14 V (Rozendal et al. 2006; Liu et al. 2005), in reality,
higher voltages are required due to the overpotential. In practice, cathodic hydrogen
generation can be considered negligible when applying below 0.30 V (Hu et al.
2008; Chae et al. 2008).

Table 5.2 presents a comprehensive overview of MEC performances obtained in
different studies, using simple carbon sources.

5.2.2 Complex Carbon Sources for Hydrogen Production

Hydrogen can be generated via biocatalytic electrolysis (MEC) with the potential to
efficiently convert a variety of dissolved organic matter and refractory wastes from
wastes or wastewaters. Even substrates that were previously considered to be
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unfitting for producing hydrogen, according to the endothermic conversion reac-
tions, can now be valorized by means of MECs.

There is a limited amount of carbohydrates from waste activated sludge (WAS)
suitable for utilization by hydrogen-producing microorganisms; thereby, low H,
yield is typically harvested from the WAS fermentation. Lu et al. obtained H, yields
of 15.08 &+ 1.41 mg-H,/g-VSS from alkaline-pretreated WAS, which was 2.66-fold
of that with raw WAS (5.67 + 0.61 mg-H,/g-VSS) in the two-chamber MEC
(TMEC). However, more than 13 times higher H, production rate was achieved in
the single-chamber MEC (SMEC) with alkaline-pretreated WAS, compared to
TMEC (Lu et al. 2012b). Besides carbohydrates, there were other substrates (includ-
ing proteins and their acidification products, such as volatile fatty acids), supporting
hydrogen generation in MECs. In addition, it was further confirmed that
electrohydrogenesis can react on both the exo-polymeric compounds and the
intracellular ones.

Crop castoffs are considered to be a feasible feedstock for dark fermentation to
generate hydrogen, thanks to the simple operation and low-energy requirements
(Ghimire et al. 2015); however, this process is always associated to the formation of
various by-products, mainly volatile fatty acids such as acetate and butyrate (Pan
et al. 2010; Xing et al. 2011). Therefore, the integration of dark fermentation with
MEC represents an effective way to convert biomass and main fermentation dead-
end products into hydrogen (Marone et al. 2017). In order to further enhance
hydrogen yield, Li et al. first investigated the effect of pre-adaptation and acclima-
tization strategies of the MFC anode biofilm grown on diverse substrates and
subsequently transferred to the MEC. A maximum H, production rate of
4.52 4+ 0.13 m® m? d~' under the highest current density of 480 + 11 A m°
was achieved in a pre-acclimatized anode fed with butyrate (applying 0.8 V), while
the one treated with acetate reached 3.56 £ 0.22m> m > d ' and 346 + 11 Am >
(Li et al. 2017). Notably, the H, yields and removal efficiency of butyrate were
substantially higher than in the case of any other substrates (i.e., corn stalk fermen-
tation, ethanol, propionate, or even acetate) (Li et al. 2017).

Table 5.3 presents a comprehensive overview of complex carbon sources that
have been used in MEC studies.

5.2.3 Hydrogen Loss Evaluation for Microbial Electrolysis
Cells

In practice, hydrogen production is boosted in MECs during the initial operation;
however, the production of methane is an inevitable consequence for long-term
operation of the mixed flora reactor, in most cases. Undesired H, sinks, especially by
methanogens, have been a serious issue in MEC operations, although H, has a low
solubility (i.e., 0.0016 g H, can be dissolved into 1 kg water at 293 K). In order to
inhibit methanogens’ growth, MEC reactors can be put in aerobic conditions for
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10 min after each feed cycle, then replenished with fresh medium, and finally flushed
with oxygen-free gas to reestablish anaerobic conditions (Selembo et al. 2009b).
Except for bioelectrodes exposed to air intermittently (Call and Logan 2008; Call
et al. 2009; Lu et al. 2010), there are other strategies adopted to avoid
methanogenesis: (1) operation under lower pH (Hu et al. 2008) or lower temperature
conditions (Lu et al. 2011), ultraviolet irradiation (Hou et al. 2014a); (2) washout of
methanogens by lowering hydraulic retention time (HRT) (Wang et al. 2009);
(3) reducing carbonate concentration (Rozendal et al. 2008); and (4) methanogen
inhibitor addition (e.g., 2-bromoethanesulfonate) (Chae et al. 2010). Unfortunately,
the abovementioned strategies only focus on repressing methanogenesis but over-
look other routes of H, consumption, including H, oxidized by exoelectrogens, or
homoacetogenic microorganisms utilizing H, and CO, to synthesize acetate (2CO, +
4H, — CH3COOH + 2H,0) (Parameswaran et al. 2009). Both paths are commonly
defined as hydrogen recycling between the anode and the cathode (Lee et al. 2009),
which does not lead to dramatic H, loss, but improves the overpotential loss and
prolongs duty cycle, eventually resulting in low H, recovery (Parameswaran et al.
2011). It seems to be essential to minimize the diffusion of H, toward the anode, to
rapidly separate H, from the MEC reactor (Lee and Rittmann 2010). Instead of
conducting top-down inhibition of methanogenesis, Lu et al. employed a novel
approach to actively harvest H, by extracting it from the reactor, using a
gas-permeable hydrophobic membrane and vacuum, leading to 3.32- to 4.29-folds
higher H, yield than that of the conventional spontaneous release, without CH,
detection (Lu et al. 2016). But the decreased biofilm growth, accumulation of
foulants, and exorbitant cost related to the membrane will be a big challenge in the
future.

5.3 Methane as the Main Product in Integrated Anaerobic
Systems

Microbial electrolysis system can improve methane production by electrochemical
enhancement process (Villano et al. 2011). Traditionally, the planktonic anaerobic
bacteria (PAB) and electrochemically active bacteria (EAB) coexist in MEC and
disperse in liquid and electrode surface, respectively (Cheng et al. 2009). Methane
production partly depends on electron transfer function of PAB and EAB, which are
responsible for the carbon dioxide reduction process. In addition, this process can
also make use of electrons supplied by current. Hydrogenotrophic methanogens are
generally regarded to exploit H, as the sole electron donor to reduce CO, for
methanogenesis. In reality, recent research has clarified that the electron donor
source of hydrogenotrophic methanogens is very extensive. There are mainly two
ways through which methanogens directly acquire electrons: (1) supply of electrons
through electrodes and (2) microorganisms with extracellular electron transport
capability (Rotaru et al. 2014a; Fu et al. 2015).
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According to the type of substrate utilization, the potential mechanisms of
methane formation in a bioelectrochemical system can be divided into two catego-
ries: one is through electron transfer, i.e., by means of DIET from the (bio-)cathode,
and the other one is through interspecies hydrogen transfer among hydrogen-
producing and hydrogen-consuming methanogens. Furthermore, in some cases,
acetate and formic acid are formed by means of DIET from electrodes or via acetate-
and formate-producing microorganisms (along with H, production); hence, acetate
and formic acid can be further decarboxylated by acetotrophic methanogens to
produce CHy. Possible paths of methane formation on the (bio-)cathode are shown
in Fig. 5.2.

5.3.1 Microbial Extracellular Electron Transfer Driving
Methane Production

Carbon dioxide, methyl compounds, or acetate can be converted into methane in the
microbial methanogenesis process. The fundamental pathways are shown in Fig. 5.3.
There are two principal ways of obtaining electron donors for acetoclastic or
hydrogenotrophic methanogens to generate methane: one is to directly harvest
electrons through electrodes and the other is to utilize microorganisms capable of
extracellular electron transport to capture electron donors.

Methanosaeta is a typical acetoclastic methanogen that exclusively uses acetate
for methanogenesis. Morita et al. found that Geobacter was the dominant bacteria in
microbial aggregates in cultured anaerobic digestion (AD) reactors, whereas
Methanosaeta is the most abundant methanogen, indicating for the first time a
possible DIET process with methanogenic wastewater aggregates. Microbial aggre-
gates possess metallic-like conductance similar to the conductive pili of Geobacter
sulfurreducens (Morita et al. 2011). Among microbial aggregates formed by the
combination of Geobacter metallireducens and Methanosaeta harundinacea, the
former can provide electrons to the latter. DIET between Geobacter and
Methanosaeta can be used for methane formation (Rotaru et al. 2014b), which
changed the viewpoint that the archaeca Methanosaeta exclusively uses acetate to
produce methane. In addition, metatranscriptomic analysis further revealed that
Methanosaeta also has the capacity to reduce carbon dioxide for methane production
in AD reactors. The relationship between Geobacter and Methanosaeta is similar to
that between fermentation bacteria and syntrophic methanogens, which is based on
electron transfer. Kaur et al. found that Geobacter exhibited a clear overwhelming
competition for acetate utilization, compared to Methanosaeta in the open circuit
(Kaur et al. 2014). Further, Jung et al. demonstrated positive correlation between
external resistance and methanogenesis, also showing that the substrate competition
among exoelectrogens and methanogens might be influenced by the same external
resistance, thus suggesting that the anode potential can regulate the competition
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Fig. 5.2 Possible pathways for methane generation in the microbial electrolysis cell, MEC

between extracellular electron transfer bacteria and methanogens (Jung and Regan
2011).

Methanosarcina belongs to the facultative acetoclastic methanogen, which can
utilize a wide variety of substrates, including acetate, methanol, methylamine, and
hydrogen. Rotaru et al. found the evidence that Methanosarcina barkeri participated
in DIET with Geobacter metallireducens. The study showed that the exploitation of
activated carbon particles can replace pili for long-range electron transport, which
implied that conductive materials can act as a substitute carrier for pili to perform
electron transfer between species (Rotaru et al. 2014a). The close contact is neces-
sary for the implementation of DIET, which may be attributed to the conductivity of
pili, whose conductivity is ~5 mS cm~' (Malvankar et al. 2011). The applied
voltage, driving electrons through the external circuit and stimulating methane
formation, is comparable to the transmission method through the pili. Nevertheless,
on the contrary, the external circuit is not limited by the protein structure and the
transmission scale, which can attain long-range electron transfer and display excel-
lent conductivity.

Hydrogen and formic acid at the cathode can also become electron transfer
mediators. This is different from DIET achieved by the conductive mediator, and
the (bio-)cathode methanation process is in a way more controllable and expandable.
On the other hand, the microbial electrosynthesis process based on carbon dioxide
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Fig. 5.3 Metabolic pathways of methanogens

reduction at the cathode can also promote the synthesis of chemical substances such
as acetate and formic acid (Lee et al. 2017). Altogether, the (bio-)cathode
methanogenesis process through DIET prevailingly comprises: (1) hydrogen pro-
duced by electrochemical processes that can diffuse into microorganisms to maintain
microbial metabolism; (2) hydrogen produced by redox proteins (such as hydroge-
nase) then used as electron transport mediators; (3) since electrons can pass through
the redox transmembrane protein, such as cytochrome c, they can be transferred from
the electrodes into the microbes (Kumar et al. 2017). From a macro perspective, we
can conclude that: (1) hydrogen evolution reaction (HER) occurs directly at the
cathode (or from microorganisms on the electrode surface, E°=—0.41 V) and then
hydrogen is absorbed by hydrogenotrophic methanogens and combined with car-
bonate to form methane (Wang et al. 2009); (2) certain methanogens receive
electrons directly from the cathode and combine it with carbonate to generate
methane (E° = —0.24 V) (Cheng et al. 2009; Van Eerten-Jansen et al. 2012);
(3) homo-acetogens attached to the cathode surface receive electrons from the
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electrode and synthesize acetate utilizing carbonate (Nevin et al. 2011), and
acetotrophic methanogens utilize acetate to generate methane (E° = —0.28 V).

5.3.2 Electricity-Stimulated Anaerobic Methanogenesis
Process Using Different Substrates

Conventional methanogenesis primarily depends on the hydrogen or formic acid for
interspecies electron transfer in methanogenic environments (Stams and Plugge
2009). It is energetically difficult to complete proton reduction due to negative
redox potential of NADH/FADH, (NAD*/NADH, E° = —0.32 V, FADH/FADH,,
E° = —0.22 V), when hydrogen is used as the electron transport carrier. Therefore,
anaerobic microorganisms usually use ferredoxin Fd (Fd,./Fd,cq, E°=-0.398 V or
lower), as a common redox mediator for catalyzing hydrogen evolution reaction
(Stams and Plugge 2009). However, some methanogens do not possess cyto-
chromes; thus, Fd and coenzyme F50 (F420/F420Ho, E° = 0.357 V) can help these
methanogens, as the most vital hydrogen scavengers, without cytochrome to oxidize
hydrogen at extremely low concentrations. Hydrogen is the common product at the
cathode of BESs and is also the electron donor for hydrogenotrophic methanogens,
as a bridge for converting biohydrogen to biomethane in MEC. Furthermore,
hydrogenotrophic methanogens can be highly enriched at the cathode (Lovley
2017; Siegert et al. 2015), and there is also DIET that does not require hydrogen
for catalysis (Cheng et al. 2009). Obviously, Methanococcus maripaludis with
knocked out hydrogenases was able to directly obtain electrons from the cathode
to reduce carbon dioxide into methane (Lohner et al. 2014).

In addition to the diffusion of hydrogen, formic acid can also be used as an
electron intermediary to achieve interspecies electron transfer. The discovery of
formic acid transfer pathway was due to the fact that the sole hydrogen transfer
rate could not match the methane production rate from butyrate degradation in the
bioreactor (Thiele and Zeikus 1988). However, only part of the methanogens can
utilize formic acid, even though the transfer diffusion rate of formic acid is 100-fold
that of hydrogen. Hence, formic acid also becomes an electron loss during the
methanogenesis process. Moreover, it is extremely difficult to evaluate the contri-
bution of hydrogen and formic acid to methanogenesis; on the other hand, the
electron transfer process in traditional AD relies on two pathways, resulting in
restricted possibilities for methane yield enhancement.

MEC:s, as emerging technologies for anaerobic wastewaters/wastes treatment and
energy recovery, can be regarded as a practical integrative step to address some
obstacles of AD, such as poor operational stability, low biogas yields, and qualities
(Wang et al. 2020a). Importantly, the integrated electricity-stimulated anaerobic
system can treat multiple wastes, regulate the establishment of microbial community
structures and electron transfer paths, and dramatically improve energy efficiency
and overall systems stability. Bo et al., for instance, employed waste activated sludge
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as substrate in a MEC reactor (at an applied voltage of 1.0 V) for methane generation
and obtained 2.3 times higher rates than the conventional AD (Bo et al. 2014).
Furthermore, various kinds of biowastes can be employed in such microbial elec-
trolysis integrated anaerobic systems for methane production, including black waste-
water (Zamalloa et al. 2013), digested pig slurry (Cerrillo et al. 2016), distillery
wastewater (Feng et al. 2017), food waste leachate (Lee et al. 2017), beer wastewater
(Sangeetha et al. 2017), food waste (Zhi et al. 2019), etc. Table 5.4 presents a
comprehensive overview of different substrates that have been tested so far.

5.4 The Energy Efficiency Calculation Formulas Involved
in Microbial Electrolysis Cells

The performances of MEC reactors are typically evaluated using various parameters.
In this section, we will present the main calculations, which are primarily based on
the products associated to hydrogen and methane metabolism.

5.4.1 Essential Parameters Calculation

H, or CH, production rate (Yu,, Ycn,):

The daily volumetric H, or CH,4 production rates are obtained by dividing the
produced volumetric H, or CH, yield by each cycle and normalize it with the
effective working liquid volume of the reactor per day.

AVHZ
YH2 t- Vliqmd (59)
o AVCH4
Yo, = Vigud (5.10)

where Yy, and Yy, are the H, or CH, production rate (m® m~3 reactor d1); Ay,
and AVCH4 are the average H, or CHy production for each batch (mL/batch);

t represents the residence time of each batch (d, day); and Viquiq is the effective
working volume of the reactor.

Coulomb Efficiency (CE)

Coulomb efficiency is used to measure the electron recovery efficiency of the
microbial anode (Wang et al. 2020b). CE can be used as the metrics for evaluating
the performance of the electrodes in BESs, combined with overpotential, which
shows the energy loss at the electrodes (Hamelers et al. 2010). Coulombic efficiency
can be an indicator to differentiate the involvement of anodic oxidation and
acetoclastic methanogenesis in the removal of acetate. Calculations for the
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Coulombic efficiency (CE) and COD removal efficiency (CRE) can be found in
previous studies (Yang et al. 2019).

CE =< » 100% (5.11)
Or
Q=1It= /idt (5.12)
_ b-F-m o b-F- (CODin - CODoul) : Vliquid
R T o, (5.13)

where Q is the actual amount of organic matter via anode microbial degradation; Qr
is the theoretical calculated amount of substrate oxidation; [ is the current (A or
C s~ "), which is calculated by Ohm’s law (I = Vyjiage/Rex) from the voltage (Vyoitage)
drop measured across the resistor (R.y); ¢ is the time (s); b is the total number of
electrons transferred by oxidation (O,) of 1 mol substrate, b = 4 (acetate); F =
96,485 C mol ™! is the Faraday constant; CODj,¢ is the initial chemical oxygen
demand of substrate, before the reaction (mg L™'); COD. is the final chemical
oxygen demand of substrate after the reaction (mg L™"); M is the relative molecular
mass of the substrate (g mol™); Mo, =32g- mol~! is the relative molecular mass
of 02.

Current Density (CD)

There are two approaches to express current density: the first is based on the
projected electrode (anode or cathode) area (I4, A m_z) and the other is based on
the total reactor effective working volume (Iy, A m73) (Wang et al. 2020c).

Electrode overpotential (EO), taking hydrogen generation as an example:
Anode and cathode overpotential are calculated as (Eeq, anodes Eeq, cathode):

EO = Epeas — Eeq (5.14)
where Ey,.. represents the measured anode/cathode potential (V vs. NHE), while E

is the equilibrium/theoretical anode/cathode potential (V vs. NHE), using the Nernst
equation (based on the acetate).

CH3COO0™ + 4H,0 — 2HCO; ™ + 9H' + 8¢~

/ RT [CH;COO™]
Eeqanode = E(a)mde  NsubstrateF In ([HCO%]Z[H"']Q (5.15)

2H' +2e¢~ — H,



NUNUOD
55 (Ponunuod)

1

(8100 ‘opoue S0 :opoue

: e HHS "SA A 80— |  onyders pe) ‘Aep 01 DA v Aumgs
m o[ S6'1 121 Je renuojod opoyie) |  Ienuein uoqie) gy | snonunuo) av| ,JNdDd  2od Sid :qv
& qydes paje S'L
g -1[0JX9 pue ‘9qnjoueu oL
w 6601 L1 uoqres [rempnut 9°¢
=} SIT'T e8L'1 ‘OPHOIYD [0 9°¢
2 (L10D) ecr'l 09°1 ‘oLiqey 1oqy anyders ‘Hd enpur (VES Yim | 195eMIIsEM
m ‘e 30 Suoq 290°1 61L1 0] LM pajeoLIqe] VN | Ssnonunpuop Y asvn) dda Arorusiq
£ 10°N
8 :opoyIed
m Qv woly
5 Kamys Sid
8 pa1sagip
m Y0€ @aws pary
2 (9100 gsow L9 0 -1y :epoue
A LR HHS SAA 0 [0918 = 8 DdN v ‘Aumngs
m O[[LI3D So'l Se'l 1e fenuojod apouy | - sso[urelg uoqren 0l | snonunpuoy ‘av,| ,Ndd Od 5 :qv
S
£ 0D
g (A60-) 1D3V/3V SA A 1 :apoyed
w (S100) T $€°0 01 90— 1DBEN
g R uuZ VN F 0¢°C | woxy renuajod apoyre) 3[ons uoqren 40 yoreq 0| LNdD Od ‘opouy
g P
£ (€102 §'¢ DN Tye Ioyemalsem
W e ‘P O ‘0T DHN SueIquIouL 3oelq
k= eo[[ewey 0 S I'0F 0°C| Usow [oo)s sso[ulel§ ‘av yaedq | 0c-av moyim | paje[nuis
m QUAIRJY | eseardul qoseatout (A) 93eyjoa parddy | spoye) opouy | (Aep) own apowr (77) 9zis |  uonemn3yuod | sajensqns
2 Kouaroye el uonuAY uonerndQ | 103080y 101089y
£ eaowar | uononpoxd
= aoo YHD [BLIOJEUL 9pO1OA[q
v SwAISAs J1qoIoRUER PAJRIZIUL SISA[ONOJ[Q [BIQOIdIW Y} UT uononpold Queyjow Joj pasn sajensqns JUAIPIJ 'S dqel



= pim

Mu pajeod a3pnrs
M (®9107) o ysniq pajea
. el VN € 80 uoqe) | anydern [4 yareq S0 OS | -hoealsem
= (s100|  (A€0) (A €0 Teqd (uonsazip) agpnys
Te 30 Suaq 1! 'l 90 €0 | onydern oqm o (44 yoreg [4 N ASEM
a3pnrs
(¥102) 01 [9918 = pajea
Twogd| (A0DE| (AODET 70| SsouIel§ uoqgren S0 yoreg 81°0 OS | -hoealsem

(1D8V/3V sA Tenuajod

L6'1 €6'1 apoue) A STO—

<Ll L91 €0~
(¥100) LS'T LS'T Se0— djejaoe
‘[e 10 oeyZ Se'l 6¢’1 70— pox ayrydern S0 yoreg 0l (dsvn) DS wnipog
(€100 (aso10ms)
HLRE 19JBMIISEM
Sueyz 1el 6'¢ 80 1o} uoqren [| snonunpuoy [4 (dsvn) DS onayIuAg
a3pn[s
(€100 8¢°¢l 8’1 sarerd pajeAnae
‘[e 1o OnH VN 1711 V'l ysour Aof[e ny/LL, VN yoreg Sro JS | dlqoleuy
fOOH®N
:opoyred
Qv woly
LB A Armys 3id
:opoyied Ppa1sadip
T pataly
NUARIY |  oseatoul goseatoul (A) 93eyjoa parddy | spoye) opouy | (Aep) own spouwt (77) 9z1s | uoneIn3yuod sorensqng

Kouaroye el uonuaY uoneradp | 10108y 101083y
[eaowar | uononpoid
aoo YHD [eLIsjell 9pOnosTy

108

(ponunuoo) g Aqe],



109

5 Hydrogen and Methane Generation from Biowaste: Enhancement and Upgrading via. . .

(ponunuoo)

119 a3pns
6102) ydesd ysniq 93emas pue
'Rz JVN| (A¥0)8T TI'80Y0°TO| “OMd/LL uoqre) | (31YS) ST | snonunuod 810 OS | 9isem pooq
dLMM
Jo Yuey
(A 81 uonere
(8100 -90)| (A81-90) oy woly
e oelX | 8CI-€O0T| 6L1-0CI €T81°CI8090 ysour Kof[e ny/LL, VN yoreg Sro OS | o8pnys mey
(8100) IN M pajeod ysaw (ags)
‘Te 39 yred 0’1 €0l €0 uoqred drydern P OcC yoredq 0c OS | <Isem pooq
Vel
TET'T
(L10D) | (A 90pue :23pn[s a3pn[s
TR €OOIT| O0I'T‘60T 90 uoqred d)sem pue
[erefen 1950000 19500N[D €'0| SnoAmIA pare[nONaY ({74 yoreq 80 S 9500N[D
dv-DOdN | dv-DdiN
JSOMO[ AU} | ISOMO] o}
uo paseq uo paseq Sl
(L100) 1T1 ¥0'€ I Isjemalsem
e 9O1'1 01'e ysowr ysniq SLO 1999
eipoodueg ‘SO°1 12! 100 + 08°0 [93IN uoqren ¢'0| snonunuon sVN oS [eoynIy
(L100) IN gm Sreyoe9[
‘e 10997 VN L1 €0 | pajeod ysowr ayyderny 0C yoreq Sl OS | <isem pooq
o'l 9I'l Sl
YAl LT 01
(L100) 1T1 174! L0
‘e 19 1049 611 ST 0] ysniq 1aqy uoqres 9 yoregq LTO N asoonH
(9100 uoqred 108
‘[e 39 I 9°¢ 99-¢'¢ S0 PpajeAnoe Ienuels 4! yoreg 200 oS wmipos

1d [wo
/3w g0




B. Wang et al.

110

SuIN UONUAIAI SPI[OS ‘L3S
$10)08alI yojeq Surouanbas Ygs,
S[qe[IeAR JOU ‘YA,

apouE Y} [Im PAYOrIS SeA JeL A[quasse aponodfe pue Jojesedss o VIS,
Queliquiow 23UBYDIXD UOTED ‘WD),
[01u0d Ay 0} paredwiod (%) AdusIdYId erowar GO Pue der uononpoid 1o plRIL PHY JO SP[oj pasearour AL,

DHIN ToquIRyD-9[qnop 0} s19JaI D ‘DHIA JoquIeyd-9[3uls 0] SI9JaI )G,

QUAIRJY | eseardul Josearour (A) 93eyjoa parddy | spoye) opouy | (Aep) own apowr (77) 9z1s | uoneIngyuod sajensqng
Kouaroye el uonuAY uonerndQ | 103080y 101089y
[eaowar | uononpoid
aoo YHD [BLIOJEUL 9pO1OA[q

(ponunuoo) g Aqe],



5 Hydrogen and Methane Generation from Biowaste: Enhancement and Upgrading via... 111

' RT P
0 H2
Eeq, cathode = Ecathode - nHzF In ([H+]2> (5.16)
where EY . = 0.187 V is the equilibrium anode potential at standard conditions;

T = 298 K is the absolute temperature (105 Pa) (Logan et al. 2006); ngupsirate = 8 1S
the number of electrons needed to generate H, by oxidizing one mol acetate
(Table 5.5); R=28.3141] K~ mol™ is the ideal gas law constant, under the standard
biological condition, Eeq anoge = — 0.279 V (Logan et al. 2008). Eg;thode is the
equilibrium cathode potential at standard conditions, assuming [H*] = 1 mol L™,
then EY .. = 0 V; nyy, = 2 is the amount of electrons needed to generate 1 mol H,
for hydrogen evolution reaction, under the standard biological condition, Eeq, cath-
ode = — 0.414 V (Logan et al. 2008). When at unit partial H, pressure and 30 °C
(303 K), the cathode overpotential reduces to (Jeremiasse et al. 2010):

Eeq, cathode = —0.060 pH (517)

5.4.2 The Contribution for Production of Hydrogen
and Methane in MECs

The source of hydrogen and methane is evaluated by comparing the volume gener-
ated by the current or detected by gas chromatograph, that is, the different contri-
butions of H, or CH, production coming from the current or the substrate (acetate).

The theoretical production of hydrogen generated based on the measured current

and substrate consumption (T'v,, es TV, ) 1 giVeN by:

TV, cumen = n{l 21; Vin (5.18)
TV, e = %ﬁvhqmd V. (based on the mearsured COD conceration)
2 (5.19)
TV, e = b, ViguiaA Caceue V. (based on the mearsured acetate conceration)

M acetate

(5.20)

The theoretical production of methane generated based on the current and
SUbStrate Consumptlon (TVCH4—cun-em’ TVCH4—acela!e) ls glven by:
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Table 5.5 The number of moles of electrons per mole of common substrate (n), based on the half-
cell reactions

Substrate M upstrate: Half-cell reaction Neubstrate’
Acetate 60.05 C,H,0, + 2H,0 — 2CO, + 8H* + 8¢~ 8
Formate 46.03 CH,0, — CO, + 2H" + 2¢~ 2
Propionate 74 C3H¢O, + 4H,0 — 3CO, + 14H* + 14e~ 14
Lactate 90.08 C3HgO3 + 3H,0 — 3CO, + 12H" + 12e~ 12
1,3-Propanediol 76.09 C;Hg0, + 4H,0 — 3CO, + 16H" + 16e~ 16
Glycerol 92.09 C3HgO3 + 3H,0 — 3CO, + 14H" + 14e” 14
Glucose 180.16 CeH 2,06 + 6H,O — 6CO, + 24H* + 24e™ 24

M ubstrate, the relative molecular mass of the substrate
N ubstrates the number of moles of electrons per mole of common substrate consumed

_ J1dt

TVCH4 —current

5.21
- (5.21)
o ACcetate Vliquid

TVCHHCE[ale = V.u (based on the mearsured acetate concentration)

M acetate

(5.22)

where Ty o @0d Ty, ., Tepresent the theoretical production rate of H, or CHy
generated by the current for every batch, after being normalized to the effective
working liquid volume of the reactor, per day (m* m reactor d™');  is the current
(AorC sfl), calculated by Ohm’s law (I = Vyqage/Rex) from the voltage (Vyoiage)
drop, measured across the resistor (R.y); ¢ is the time (s); f Idt is the coulombs
produced by the current, (C); ny,= 2 for H, and ncy, = 8 for CH4 are the number of
electrons needed to generate 1 mole H, (2H" + 2e~ — H,) or CH4 (CO, + 8H" + 8¢~
— CH4 + 2H,0); F = 96,485 C mol ™! is the Faraday constant; bo, is a conversion
factor based on the stoichiometric relation between electrons in COD and H, gas,
equaling to 1 mol H, per 16 g O,; by, =4 is a conversion factor based on the
stoichiometric conversion of the amount of one mol acetate consumed to generate
the amount of mol equaling to 4 mol H, per 1 mol acetate (CH;COOH + 4H,O —
2CO, + 4H,); V,, = 22.4 L mol " is the gas constant. vy, eewe A4 Ty e
represent the theoretical volume of H, or CH4 generated by the substrate (acetate) for
every fed-batch, based on the acetate converted to methane (CH;COOH — CH, +
CO,) (m> m~? reactor d™'); ACOD and AC,cere are the changes in substrate
concentration with every fed-batch (mg L™"); Viiquia 18 the effective working volume
of the reactor, mL; M,ceae = 60.05 g mol ! is the relative molecular mass of the
substrate (acetate).
Thus,
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VH, current .
CE = 2" (based on the mearsured acetate conceration) (5.23)

TVH2 —acetate

5.4.3 The Energy Calculation Involved in MECs

The overall hydrogen recovery (Ry) is given by:

RH2 _ AVHZ _ ny,
TVHZ—acelms ﬂ
nkF
2Fn .
== (based on the mearsured acetate conceration) (5.24)

[t

Cathodic hydrogen recovery (Ry, cat) is given by:

Ay,

RHz,cal = (525)

TVH2 —current

The overall hydrogen recovery is used to evaluate the ratio of recovered H,
compared to the maximum potential H, recovery, based on the substrate utilization
(Wagner et al. 2009). Cathodic hydrogen recovery is used to evaluate the fraction of
electrons that form H, from the overall amount of electrons reaching the cathode,
namely generating current.

Electron reduction efficiency (E,) is given by:

E, = Qe o 1009 (5.26)
Q
Ocn, =8 ncy, - F (5.27)
Ideal gas law:
PV
ncH, = ﬁ (528)

where this equation is used under experimental condition (25 °C, 1 atm, i.e.,
1011.325 kPa).

Electron reduction efficiency (E,) is used to measure the capacity of electron
reduction by catalysis at the cathode surface.

The total input energy (Winpu) is given by:
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Winput = Weleclricity + Wubstrate (529)

where Wiy is the total amount of energy added to the entire system, kJ; Weiecrricicy
(Wg) is the amount of energy added to the circuit by the power source, kJ, adjusted
for losses across the resistor; Wyypspate (Ws) is the amount of energy added by the
substrate (kJ).

The input electricity energy (W) is given by:

ST (IEqpAt — IPRecAt)

Wi = 1000

(5.30)

where E,, is the voltage applied, using the power source (V); Af is the time
increment for n data points measured during a batch cycle (s); and R, is the external
resistor (Q).

The input substrate energy (W) is given by:

Ws == nsAHS (531)

where ng represents the substrate consumed (in terms of number of moles) per batch

cycle; AHjy is the heat of combustion of the substrate, AH cerae = 870.28 kJ mol ',

AHgjycero = 1655.4 kI mol ™", AHjucose = 2802.7 kI mol ™~ (Selembo et al. 2009b).
The total gained energy (Wgaineq) 18 given by:

Wgained = WHz + WCH4 = anAHH2 + nCH4AHCH4 (532)

where Wy, and Wy, are the energy content generated from H, or CHy (kJ); ny, and
ncy, are the number of moles of H, or CH4 produced during a batch cycle; AHy, =
285.83 kJ mol ! and AHcy, =890 kJ mol ! are the calorific values of H, and CHy,
based on the heat of combustion (upper heating value).

The methane revenue (Rcy,) is given by:

Ycn,AHcn,

Rcu, = P, v

(5.33)

where P, = 0.10 £ kW' h™' is the standard price of electricity (referenced from
business rates in the UK) (Aiken et al. 2019); Rcy, is the revenue from methane
(£-m " reactor day '); n = 35% is the electrical efficiency with a combustion engine
as converter.

5.4.4 The Energy Recovery Efficiency

The total energy recovery efficiency (1u.1) i given by:
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ol = Mg + Ns (5.34)

where 7, 18 the ratio of energy output evaluated by produced H, or CHy4 to the total
energy input composed of electricity input and substrate (acetate) consumption in the
entire system; 7 is the ratio of the energy content of H, or CH,4 produced to the input
electrical energy required; and 7 is the ratio of output energy evaluated by produced
H, or CH, to the input energy from the consumed acetate.

The electrical energy recovery efficiency (ng) is given by:

Ng = V‘ZZZ (based on H; as the main biogas) (5.35)
W
Ng = WC;? (based on CHy4 as the main biogas) (5.36)

The substrate energy recovery efficiency (y5) is given by:

ng = V‘E/V}? (based on H, as the main biogas) (5.37)
ns = W(/:? (based on CHy4 as the main biogas) (5.38)

The conversion efficiency of substrate (fgupsiace) 1S given by:

V2
nH, v~ . .
Neubstrate = CoanToes ¥ 100%(based on Hj as the main biogas) (5.39)
Nsubstrate M
NCH, - -
TR 100%(based on CH, as the main biogas) (5.40)
Nsubstrate M

where Asupsiate 1S the substrate conversion efficiency; ngypsuae 1S the electron per
single mole of substrate; ny, and ncy, are the electrons yielded by H, or CHy; and
Ciubstrate 1S the substrate concentration (mg L.

5.5 Efficiency Improvement for Electron Transport

The electron transfer process is critical for the methanogenesis on the microbe-
electrode interface. The electron transfer process of the cathode is similar to that of
the anode, except for the direct electron transfer by direct contact and an indirect
electron transfer process using hydrogen as a mediator (Miriam et al. 2011). Previous
studies have illustrated that hydrogen is an important electron intermediate in the
formation of cathodic methane, as well as an important electron donor for basophilic
hydrogenotrophic methanogens. Compared with other pathways (Fig. 5.3),
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hydrogen as an electron donor has the advantage of facilitating the enrichment of a
wider range of hydrogenotrophic methanogens by diffusion, which is beneficial to
improve the methane production rate. Therefore, it is more advantageous to enhance
the hydrogen-to-methane pathway by strengthening the hydrogen evolution reaction
for the enrichment of hydrogenotrophic methanogens, viz., promoting the hydrogen-
mediated electron transfer process.

The formation of hydrogen at the cathode primarily depends on the electrochem-
ical reaction process. Different electrode materials can affect the electron transfer
rate and thus restrict the rate of HER. Furthermore, the characteristics of the biofilm
also trigger differences in electron recovery efficiency, which further affect hydro-
gen yield. On the reaction interface between electrodes and microorganisms, the
final electron acceptor is influenced by microorganism types and material properties.
Under the conditions of non-pure cultures and non-specific materials, the electrons
transmitted to energy metabolism and anabolic processes are different (since diverse
microorganisms have different electronic respiratory chains), consequentially
resulting in a variety of products. As a consequence, many undesirable
by-products are ultimately produced, which affects the electron recovery efficiency.

The microbial community structure plays a decisive role in the distribution of
reactive products, and the properties of the electrode materials can cooperate with the
microorganisms to capture certain specific electron acceptors, subsequently resulting
in high electron transfer recovery. In order to further strengthen bioenergy recovery,
the electron transfer process is primarily facilitated in terms of electrode material
modification and microbial community regulation. On the one hand, it can promote
the rate of electron transfer on the interface of the bioelectrodes, improving the
ability of catalyzing HER on the cathode. Furthermore, it can increase the recovery
efficiency of electron transfer to the target end products.

5.5.1 Cathode Materials Upgrading

To date, one of the main drawbacks of BESs large-scale application, particularly
with MEC, is the demand for costly materials, e.g., platinum in cathode. These
materials are often favored due to the dramatic electrocatalytic activity for H,
evolution, although the performance is negatively influenced by a number of differ-
ent components that can be found in waste streams. Therefore, more sustainable and
low-cost cathodes for bioenergy production via BESs are becoming urgent (Villano
et al. 2010). Recently, microbial biocathodes have exhibited more widespread
applications, e.g., bioremediation systems for biological reduction of oxidized
contaminants (Aulenta et al. 2008, b), biological reduction of nitrates to nitrogen
(Clauwaert et al. 2007), or electrochemical reduction of CO, to CH, (Villano et al.
2010).

In general, upgrading electrode materials primarily focus on reducing the mass
transfer resistance of materials and the catalytic resistance. Based on the low
hydrogen evolution potential of nickel foam (NF), the high catalysis efficiency of
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earth-abundant transition metal phosphides, and low cost, Cai et al. studied a
one-step phosphorization of NF; the authors used phosphorous vapor to fabricate a
3D biphasic NisP4-NiP, nanosheet matrix, acting as an electron transfer cathodic
tunnel for H,, coupled with a bioanode (Cai et al. 2018). A productivity of
9.78 + 0.38 mL H, d~ ' cm™? was obtained, which was 1.5-fold higher than NF
alone, and even higher than that described for commercially available Pt/C of
528 mL d ™' cm ? (Cai et al. 2016a) and 4.94 mL d~' cm ™ (Hou et al. 2014b).
In addition, in order to replace the precious metal Pt, many transition metals,
e.g., molybdenum, stainless steel, nickel foam, and other materials, are used as the
matrixes, which can be further modified to improve the electrocatalytic activity of
the electrode. Selembo et al. compared the effects of different stainless steel alloys
(SS 304, 316, 420, A286) and nickel alloys (Ni 201, 400, 625, HX) using sheet metal
cathodes in MEC, on hydrogen production, and found SS A286 displayed the best
performance of 1.5 m’ H, m>d'at09V (Selembo et al. 2009a). Call et al.
confirmed that the stainless steel brush cathode with specific surface area can achieve
the maximum productivity of 1.7 & 0.1 m® H, m* d~' at 0.6 V, compared to
graphite brush cathode and flat stainless steel cathode (Call et al. 2009). Similarly,
Su et al. also found that 3D macroporous stainless steel fiber felt cathode with high
electrochemical active surface area has superior catalytic properties for H, evolu-
tion, achieving 3.66 £ 0.43 m® H, m™ d! (current density of 17.29 + 1.68A m™) at
0.9 V (Su et al. 2016). Hrapovic et al. successfully electrodeposited Ni on porous
carbon paper, as cathode, obtaining the maximum H, production rate of
54 m®m™3 d_l, when Ni loaded between 0.2 and 0.4 mg cm_z, on the contrary,
no any increase of hydrogen production under the coelectrodeposition of Pt and Ni
(Hrapovic et al. 2010).

Figure 5.4 presents a comprehensive overview of cathode materials that have
been used in MEC studies to enhance hydrogen and methane production.

5.5.2 Functional Microbial Community Regulation

In the traditional methanogenesis process, various volatile acids (such as propionate,
butyrate, valerate, etc.) need to be converted into acetate and hydrogen by
acetogenesis, before being used by acetoclastic and hydrogenotrophic methanogens,
respectively. It is generally believed that 70% of the source of methane is derived
from acetate and 30% from the contribution of hydrogen (Angenent et al. 2004).
However, the growth rate of methanogens is slower than that of fermentative
microorganisms, which limits the increase in the rate of methanogenesis. In view
of this limitation, a methanogenic process based on extracellular electron transfer is
developed inside a conventional anaerobic bioreactor (Liu et al. 2016a). This
pathway allows direct electron transfer at the anode, using coenzyme cytochrome
¢ with both oxidized and reduced states, extending the substrate types for
methanogenesis. During extracellular electron transport of methanogenesis, the
EAB can utilize various types of substrates, such as acetate and propionate, while
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Sheet metal Stainless steel alloy:
SS304, SS316,
SS420, SSA286

Sheet mesh Nickel

Y

(— NiMn
NiMnZn
NiMnZn-PtRu
NiMnZn-PtPd
NiMo
NiwW
MoS, (molybdenum disulfide)
Fe
W (tungsten carbide)
Ti
Pd nano-particles
Carbide

\_ Biocathode

Porous material coated with catalyst @

3D type cathode Fiber brush q
Foam material v

Fig. 5.4 Different cathode types of materials used in the microbial electrolysis cell, MEC

Metal type cathode

Carbon substrates
type cathode <
(carbon brush,
carbon cloth)
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Cathode materials type

—

—

the electrons generated by oxidizing substrates can pass through an external circuit
to drive the reduction of carbon dioxide at the cathode to form methane. Meanwhile,
hydrogen also generates from electrons and protons, which can promote the growth
of hydrogenotrophic methanogens, counteracting the limitations of traditional
acetoclastic methanogens.

Cai et al. coupled the AD with the MEC to treat waste activated sludge and
enhance methane generation (Cai et al. 2016b). Based on the results of Illumina
MiSeq sequencing, methanogens were enriched in the cathode biofilm (particularly
hydrogenotrophic Methanobacterium and acetoclastic Methanosaeta), with two
primary methanogenic pathways taking place at the cathode. This implied the
possibility of increasing methane production, while reducing WAS digestion time,
by controlling the bioelectrochemisty of the process.

Quorum sensing is an essential strategy for microbial community regulation and
cell-to-cell communication in biofilms. The principle is that microbes secrete sig-
naling molecules to affect the physiological activities of surrounding microorgan-
isms, such as mobility, sporulation, biofilm formation, virulence, but also symbiosis,
competition, toxicity, antagonism, antibiotics production, etc. (Miller and Bassler
2001). Acylated homoserine lactones (AHLs) are a representative signaling mole-
cule that can also be used to regulate the interspecies communication process. AHLs
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can be synthesized by bacteria like Pseudomonas sp. and degraded via chemical or
biological pathways. In recent studies, it has been shown to enhance the respiratory
activity associated with electron transfer, facilitating the capacity of electron transfer
between cells and electrodes (Toyofuku et al. 2007). This increase in respiratory
activity is mainly attributed to two strategies: one is by changing the physiological
characteristics of microorganisms, including the cell membrane transmittance (Yong
et al. 2013) and gene expression (Hu et al. 2015) (acting directly on the microor-
ganism itself), and the other is by regulating processes related to electron shuttles for
the biosynthesis, such as phenazines (Rabaey et al. 2005) (acting on the extracellular
synthesis). Both strategies have been demonstrated to effectively increase the elec-
trochemical activity of microorganisms. Cai et al. employed short-chain AHLs
(30C6), as intraspecific signaling molecules to modulate the biofilm community
of bioelectrodes in single-chamber MECs. Surprisingly, the overall performance
parameters of MECs with AHLs addition were significantly enhanced, including
hydrogen yields, CE, electron recovery efficiency, and energy efficiency (Cai et al.
2016c¢). The lower internal resistance of reactors was verified via electrochemical
impedance spectra (EIS). Noticeably, more EAB and fewer hydrogen scavengers,
especially homo-acetogens Acetoanaerobium and Acetobacterium, and
methanogens, especially hydrogenotrophic methanogen Methanobrevibacter, were
detected in cathodic microbial aggregation (Fig. 5.5), which further confirmed the
potential of regulating microbial communities by AHLs for strengthening electron
transfer and hydrogen production in MEC, and impeding methanogenesis without
any chemical inhibitors added (Cai et al. 2016c).

5.6 Bottlenecks and Challenges

MECs provide a promising potential to boost renewable hydrogen and methane
generation from biowastes, possibly providing a new horizon to address imminent
challenges in the energy sector, related to the rapidly growing population and fast
developing industries. Importantly, MEC as an environmental-friendly technology
not only displays a sustainable role in bioenergy recovery, but also simultaneously
disposes and valorizes wastes. Undoubtedly, there are big challenges, such as
fluctuating performances of MECs and costs of large-scale units, significantly
constraining the transfer of bioelectrochemical technology from the laboratory to
full scale. For example, system architecture, operating parameters, biological param-
eters determination, and techno-economic evaluation (such as products revenue,
reproducibility, durability, scalability, etc.) need to be implemented and optimized,
in order to bring this technology closer to the market.

Noticeably, there are four significant issues that need to be taken into consider-
ation: (1) seeking alternative renewable energy, like solar, wind, waste heat, geo-
thermal and marine energy, to improve sustainability or input energy saving;
(2) increasing purities of biogas (H, or CHy); (3) optimizing the electrode space
layout to maximize efficiency in the limited reactor space; and (4) catalyzing the
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Fig. 5.5 The comparison of specific functional microbial community compositions on genus level
between the anode and the cathode in the presence or absence of acylated homoserine lactones,
AHLs. (a) is based on three functional microbial categories; (b—d) are subdivided into the specific
categories of functional genera classification, including electrochemically active bacteria, EAB,
homo-acetogens, and methanogens (reproduced from Cai et al. 2016¢)

surface characteristics of the electrode and evaluating the electrochemical parame-
ters of the composites. In the future, it will be strategic to integrate MECs with other
waste treatment technologies to expand their scopes and applications. According to
reactor configurations, alloy metal materials (like stainless steel mesh) will allow to
form different configurations with large surface area, low overpotential, and low
internal resistance of the system, at the same time promoting functional microor-
ganisms adhesion to the electrodes. For the development of the electrode module
system, it is necessary to pay more attention not only to the microstructure and the
material properties of the electrodes, but also to three-dimensional electrode struc-
ture configuration with engineering application potential. The engineering applica-
tion of MEC technology is promoted by modifying the conductive polymer on a
single substrate, applying nanomaterials to improve electrode conductivity and
specific surface area, and enhancing electron transfer performance and catalytic
activity of bioelectrodes.

In conclusion, new assembly strategies will be explored, based on micro-nano
interface of micro-electrode. Also, high-throughput sequencing, stable isotope
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labeling, and other scientific methods are comprehensively employed to further
reveal the function and structure of electrode microbial flora in depth, and shed
light on microbial interactions, as well as extracellular electron transfer mechanism,
based on electron mediator, nanowire, and cytochrome. Overall, these approaches
are expected to provide technical and theoretical understanding for the development
of viable and sustainable applications of MEC technology.
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