
Chapter 12
Bio-electrochemical Remediation
of Petroleum Hydrocarbons

Anna Espinoza-Tofalos, Pablo Alviz-Gazitua, Andrea Franzetti, and
Michael Seeger

Abstract Bioelectrochemistry and, more specifically, microbial electrochemistry
are research fields that establish their fundaments on the molecular and electrochem-
ical link between microbes (also known as exoelectrogens or, focusing only on
bacteria, electrochemically active bacteria) and electrodes. Bioelectrochemistry can
be used as a strategy in bioremediation when traditional bioremediation is not an
option due to the lack of suitable electron acceptors, and in which bioelectrochemical
systems (BESs) are used for the removal of pollutants from the environment. For
example, in subsurface hydrocarbon-polluted water, the absence of final electron
acceptors may limit the biodegradation rate. Therefore, bioelectrochemical systems
can be used as a sustainable remediation technology. Moreover, microbial metabo-
lism can be stimulated in a BES when overpotential is applied, increasing the rate of
pollutant degradation. BES has been studied for the remediation at laboratory and
pilot scale of water, soil, and sediments affected by organic pollutants, such as
hydrocarbons (aliphatic, aromatic) and chlorinated compounds. In addition, BES
can be exploited as biosensors to detect organic pollutants in environmental matrices
and remote sites. One of the main challenges in this field is to scale up the
technology towards the commercial BES remediation applications.

12.1 Introduction

12.1.1 Petroleum Hydrocarbons as Pollutants

During the last century, the world economy has been based on petroleum and its
refined products, using it as the main manufacturing and energy source for industry
and people (Varjani 2017). Due to a growing economy, during 2015, the increase of
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oil requests in the world was 1.54 million barrels per day higher than the previous
year, especially in non-OECD countries (OPEC 2015). Environmental petroleum
release frequently occurs when oil is extracted or during the processes of refining,
transportation, and storage (Okoh 2006; Das and Chandran 2011; Fuentes et al.
2014; Varjani 2017). Spills in marine environments constitute less than 10% of total
hydrocarbon releases. Ninety percent of total discharge to the environment is
represented by routine activities (Ivshina et al. 2015). A review on polluted areas
in Europe identified around 1,170,000 possible contaminated sites (PCSs) and
127,000 contaminated sites of which around 45% have already been remediated
(Panagos et al. 2013).

Benzene, toluene, ethylbenzene, and xylenes (BTEX), polycyclic aromatic
hydrocarbons (PAHs), phenols, minerals, oil, and chlorinated hydrocarbons (CHC)
are petroleum components or derivatives. The distribution of contaminants in
groundwater shows two main classes of pollutants: hydrocarbons and heavy metals,
where petroleum pollution contributes jointly to 54.4% of groundwater contamina-
tion (Fig. 12.1b) (Panagos et al. 2013). The discharge of these compounds into the
environment is the principal reason for water and soil contamination (Holliger et al.
1997; Das and Chandran 2011). Even small oil spills into surface and subsurface
waters can cause high concentrations of hydrocarbons that often overpass the limits
dictated by the law (Spence et al. 2005).

The fate and distribution of hydrocarbons in the environment depend on several
biotic (Acton and Barker 1992) and abiotic factors as physical processes related to
weathering (Galt et al. 1991). It has been reported that petroleum components cause
mutations and death of water and soil biota (Couillard et al. 2005) due to their high
toxicity (Tang et al. 2011). Specific oil components have carcinogenic and neuro-
toxic properties, such as benzene, toluene, xylenes, naphthalene and n-hexane
(Ritchie et al. 2010). Petroleum spills in water that prevents sunlight to pass through
it affect not only the biota but also physical and chemical processes. Hydrocarbon-
polluted waters, soils, and sediments should not be used for agriculture, urbaniza-
tion, and as water source for people and animals. The removal of hydrocarbon
components from the environment involves physical, chemical, and biological
processes (Okoh 2006; Fuentes et al. 2014).

12.1.2 Remediation of Petroleum Hydrocarbon
Contaminated Sites

The removal of pollutants from the environment is a requirement for sustainable
development. Remediation technologies are applied in situ or ex situ. Physicochem-
ical and biological processes have been applied to the clean-up of contaminated
environments (Tyagi et al. 2011; Fuentes et al. 2014; Daghio et al. 2017). Physical
strategies include extraction, thermal desorption, soil washing, and filtration tech-
niques; while chemical treatments involve the addition of strong oxidant or reducing
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agents to lower the toxicity of the pollutants. Bioremediation is an attractive tech-
nology for the restoration of polluted waters and soils (Rojas et al. 2011; Fuentes
et al. 2014; Orellana et al. 2018). Bioremediation is an efficient, cost-effective, and
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Fig. 12.1 General distribution of contaminants affecting soil and groundwater in Europe (a) and
grouped by type of contaminants (b). Adapted from Panagos et al. (2013)
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eco-friendly technique that relies on the microbial capabilities to metabolize the
pollutants into harmless or less-toxic compounds, causing minimal ecological effects
(Atlas 1995; Morgante et al. 2010; Saavedra et al. 2010; Méndez et al. 2017;
Orellana et al. 2018; Durán et al. 2019). The most common strategies in bioreme-
diation are biostimulation and bioaugmentation. Biostimulation consists in the
stimulation of indigenous microorganisms with degradative capabilities through
the addition of nutrients and/or electron acceptors. Bioaugmentation is the applica-
tion of microorganisms that possess selective metabolic capabilities (Mrozik and
Piotrowska-Seget 2010; Fuentes et al. 2014). To bioremediate hydrocarbon contam-
inated water, the most common biostimulation approaches are bioventing, water
circulation systems, air sparging, and biobarriers. Bioventing is used mainly to
stimulate aerobic degradation processes by pulling air above the watercourse. In
water circulation systems, water is extracted and amended with electron acceptors
and nutrients and back injected into groundwater. During air sparging, compressed
air is injected, and oxygen is provided to enhance the natural aerobic microbial
degradation of pollutants. Biobarriers involve a permeable and biologically active
fence located perpendicularly to the plume, creating a zone of high microbial activity
(Alvarez and Illman 2005). Microorganisms have been vastly used to bioremediate
hydrocarbon-polluted environments (Tyagi et al. 2011), including soils (Rivelli et al.
2013; Fuentes et al. 2016), sediments (Militon et al. 2015), and water (Acton and
Barker 1992; Farhadian et al. 2008). Pollutants can be used by microorganisms as
carbon and energy sources, leading to their complete degradation (mineralization) or
are converted through detoxification processes into harmless compounds (Rivelli
et al. 2013). Microorganisms are the main biocatalysts for hydrocarbon bioremedi-
ation (Fuentes et al. 2014). Diverse microorganisms are capable to metabolize a wide
range of hydrocarbons through evolved mechanisms that activate these compounds
and generate metabolic intermediates that are funneled into central catabolic path-
ways (Méndez et al. 2011; Fuentes et al. 2014; Agulló et al. 2017; Durán et al. 2019;
Espinoza-Tofalos et al. 2020).

12.2 BES for the Remediation of Hydrocarbons

Biological strategies for the remediation of environmental matrices have several
advantages in comparison with physicochemical technologies. However, biological
techniques may have also drawbacks. For example, in bioaugmentation the fate of
added microorganisms is difficult to predict and in biostimulation, the addition of
nutrients and electron acceptors might present some disadvantages (e.g., the forma-
tion of toxic intermediates, the elevated cost of continuously insufflating air).
Moreover, when air is injected in soil or underground water, the probability that
most volatile hydrocarbons will be stripped is high. Thus, to trap the volatile
pollutants filters that may imply high cost should be used.

These limitations might be overcome by the application of bioelectrochemical
systems (BESs) for the remediation of hydrocarbons from underground water, soils,
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and sediments (Table 12.1). Figure 12.2 illustrates a BES for hydrocarbon bioreme-
diation. BES uses the redox gradient between a buried electrode and the hydrocar-
bons. Microorganisms that colonize the electrode surface oxidize these organic
pollutants in absence of oxygen using the electrode as a non-exhaustible electron
acceptor. Then, electrons are remotely transferred by the electrode to oxygen or other
thermodynamically favorable electron acceptor (Lovley 2011; Morris and Jin 2012;
Lu et al. 2014a, b).

BES-based technologies are advantageous compared with traditional bioremedi-
ation methods: (1) the electrode acts as an inexhaustible electron acceptor/donor and
(2) the co-localization of pollutants, microbes and electron acceptor, enhance the
removal of the contaminants (Lovley 2011; Wang et al. 2015).

Morris and Jin (2008) used a BES to couple hydrocarbons removal with electric
power production. BESs have been applied to study the electrochemical-driven
biodegradation of hydrocarbons in water (Morris et al. 2009; Franzetti et al. 2017;
Espinoza-Tofalos et al. 2018; Palma et al. 2018a, b, 2019), soils (Wang et al. 2012,
2019), and sediments (Morris and Jin 2012; Cruz Viggi et al. 2015).

12.2.1 BES for the Remediation
of Hydrocarbon-Polluted Water

The remediation of several classes of hydrocarbons has been studied in BES: single
compounds (Rakoczy et al. 2013; Wei et al. 2015; Palma et al. 2018a, b), mixtures
(Adelaja et al. 2017; Palma et al. 2019), and wastewater (Morris et al. 2009;
Majumder et al. 2014; Srikanth et al. 2016; Daghio et al. 2017; Roustazadeh
Sheikhyousefi et al. 2017; Mohanakrishna et al. 2018; Espinoza-Tofalos et al. 2020).

Benzene degradation by microbial communities has been studied in microbial
fuel cells (MFC) and polarized BES. The limitations of these systems have been
studied, providing special attention to the cathodic abiotic reaction. Oxygen is the
most studied and used electron acceptor on the cathodic chamber (Rakoczy et al.
2013; Wei et al. 2015; Liu et al. 2018). However, also ferricyanide (Wu et al. 2013)
and anoxic cathodes have been employed in BES for the removal of aromatic
hydrocarbons (Daghio et al. 2018; Palma et al. 2018a, b, 2019). Air-cathodes in
MFC configuration often lead to oxygen diffusion through the cation exchange
membrane (Rabaey and Verstraete 2005; Morris et al. 2009; Adelaja et al. 2015).
Oxygen diffusion from the cathodic chamber to the anodic one in BES for benzene
removal has been reported by compound-specific isotope analysis, revealing that
monohydroxylation is the benzene activation step (Rakoczy et al. 2013; Wei et al.
2015). To study the BES-based technology for in situ remediation, a mixed culture
from a polluted site or refinery wastewater should be used as inoculum due to the
high abundance of hydrocarbon-degrading microorganisms. A novel
bioelectrochemical reactor configuration, “the bioelectric well,” revealed higher
phenol removal when the bioelectrochemical reactor was re-inoculated with refinery
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wastewater compared with municipal activated sludge inoculation (Palma et al.
2018b). In this study, the anode was potentiostatically set at +0.2 V versus SHE
and the cathode was maintained anoxic. The application of an external voltage may
be advantageous because it stimulates microbial metabolism (Wagner et al. 2010).
This is related to the fact that the main factor that determines the optimal metabolic
conditions in a reactor is the potential of the terminal respiratory proteins used by
exoelectrogenic bacteria (Wagner et al. 2010). Therefore, the optimal imposed
voltage should be tested depending on the inoculum and the type of pollutants.
Two and three electrodes configurations have been studied. When the anode was
potentiostatically polarized, applied voltages ranged between +200 mV and
+500 mV in studies for the removal of toluene, phenol, and BTEX (Zhang et al.
2010; Daghio et al. 2016; Palma et al. 2018a, b). However, microbial metabolism
can be stimulated also by applying a voltage difference between anode and cathode
(two electrodes configuration). This set-up presents the advantage to require less
sophisticated instrumentation (especially if an in situ application is required),
because just a power supply is needed but not a potentiostat. However, the disad-
vantage is that the working potential is no longer controlled and varies depending on
the redox conditions of the medium.

Fig. 12.2 General scheme of BES for petroleum hydrocarbons remediation. BES remediation of
hydrocarbons uses the redox gradient between electrodes. Under anaerobic conditions, electroactive
microorganisms use hydrocarbons as electron donors towards an anode that acts as a virtually
inexhaustible electron acceptor. In ex situ systems, electroneutrality is maintained by ions transport
through an ion-permeable medium or membrane. Electrons travel via an external circuit to the
cathode, where they are finally transferred to a suitable electron acceptor. Electricity can be an
output product of this process. In addition microbial metabolism may be stimulated by applying an
external overpotential through a power source (two electrodes configuration; a voltage difference is
applied between electrodes) or with a potentiostat (three electrodes configuration illustrated in this
figure; a selected voltage may be imposed on the working electrode)
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12.2.2 BES for the Remediation of Hydrocarbon-Polluted
Sediments

Sediments are environmental matrixes particularly suitable to be treated with micro-
bial electrochemical technologies for two main reasons: (1) sediments are anoxic,
thus optimal for bioelectrochemical oxidation on the anode surface, and (2) sedi-
ments are water-saturated, hence electrolytic conditions are guaranteed (especially
marine sediments). Due to the favorable conditions for their development, sediment
microbial fuel cells (SMFC) have been studied for the degradation of hydrocarbons.

Different configurations have been tested, from the double chamber where
processes can be well controlled (Zhang et al. 2010; Daghio et al. 2016; Bellagamba
et al. 2017), to the single chamber that reproduces better an in situ application
(Morris and Jin 2012; Cruz Viggi et al. 2015; Sherafatmand and Ng 2015; Hamdan
et al. 2017; Li et al. 2017; Palma et al. 2018b). In single chamber SMFC, the anode is
buried into the sediment and the cathode can be placed on the overlying aerobic
water or completely submerged (which does not guarantee oxic reactions on the
cathode surface). In studies with aerated cathodes, phenanthrene removal reached
89% (Hamdan et al. 2017), whereas PAHs (including benzo(a)pyrene, benzo(k)-
fluoranthene, and benzo(a)fluoranthene) were efficiently removed up to 94%
(Li et al. 2017). Interestingly, in a study that compared aerated vs anoxic cathodes,
SMFCs achieved 42% naphthalene, 31% acenaphthene, and 36% phenanthrene
removal when an aerobic cathode was operated, and 77%, 53%, and 37% removal,
respectively, when the cathode was placed under anaerobic conditions
(Sherafatmand and Ng 2015). This demonstrates that both configurations can be
used, depending on the overlying water oxygen concentrations and/or operational
requirements. An innovative set-up, the so-called “oil-spill snorkel” simplifies the
system set-up, by burring part of a single conductive material (the snorkel) in the
sediment (that acted as an anode) and leaving the other half on the overlying
O2-containing water (oxic zone) (Cruz Viggi et al. 2015). Even if this design showed
lower performances than other similar studies (21% TPH removal within 22 days), it
is an inexpensive and simple alternative for the removal of hydrocarbons from
sediments.

12.2.3 BES for the Remediation
of Hydrocarbon-Polluted Soils

The remediation of hydrocarbon-polluted soils with BES-based technologies has not
been extensively investigated. However, since Huang et al. (2011) proposed this
technology to remediate phenol-contaminated soil in a MFC, the use of this tech-
nology has found a new field of application.

Soils polluted with phenol (Huang et al. 2011) but mainly soils contaminated by
petroleum hydrocarbon were studied in soil MFC (Xin et al. 2012; Lu et al. 2014a, b;
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Zhang et al. 2014; Yu et al. 2017; Wang et al. 2019). Unlike BES technologies for
water remediation, soil studies have been focused in MFC-based designs that
stimulate the microbial metabolism without external polarization, by using
potentiostatically controlled buried anodes with air-cathodes, the so-called soil
microbial fuel cells. Water content (Xin et al. 2012; Wang et al. 2019), the distance
between anodes ( Lu et al. 2014a, b; Yu et al. 2017), or both factors (Xin et al. 2012;
Wang et al. 2019) are the most studied variables, but also reactor design (e.g.,
U-shape) (Xin et al. 2012), electrodes arrangement (horizontal or vertical) (Zhang
et al. 2014), electrodes materials (Lu et al. 2014a), and soil texture (Lu et al. 2014a;
Wang et al. 2019).

Water content is indeed a key parameter for the successful remediation of
hydrocarbon-polluted soils. High water contents (possibly up to saturation) are
needed to favor mass transport phenomena and to lower the internal resistance
(Xin et al. 2012). In a study with saturated vs unsaturated conditions, at the end of
the experiment (248 days) a maximum of 59% and 45% TPH were removed in
saturated sandy and clay soils, respectively, which was approximately 48% (sandy
soil) and 55% (clay soil) higher than under unsaturated conditions.

Most studies indicate that the radius of influence (ROI) is a key factor and that
TPH removal rates decrease with the distance from the anode (Yu et al. 2017) due to
less microbial electrochemical activities and mass transfer phenomena. However Lu
et al. (2014a) concluded that the TPH degradation rates in BESs were higher than
those in control reactors operated at open circuits, suggesting that bioelectrochemical
stimulation had a positive influence on the pollutants removal, even at a certain
distance from the electrodes. In any case, water content and distance from electrodes
are highly linked. Wang et al. (2019) reported that TPH removal was not enhanced
when measured 35 cm far from the anode (in comparison with open circuit controls)
when the soil was unsaturated. However, under saturation conditions, at 35 cm of
distance, an increase in toluene removal (11%) was observed in saturated sandy
soils. Interestingly, saturated soils may inhibit classical aerobic bioremediation of
hydrocarbons but enhance bioelectrochemical bioremediation. In a report focused on
the study of ROI, the authors concluded that the TPH degradation rate was highly
dependent on the radius of influence during the first samplings (days 5 and 15) but
became a less significant variable with longer incubation times. On day 120, a
maximum of 90% (68% in control) of TPH was removed from soil, and the soil
TPH fraction was independent on the distance from the anodes (Lu et al. 2014b). By
correlating the amount of TPH degradation and the radial distance from the BES
anodes, it was possible to predict the ROI after a specific time of treatment.
However, the ROIs may be influenced by some soil characteristics such as water
content, matrix permeability, and porosity, besides the type of pollutant.

The structure of microbial communities is indeed influenced by the use of an
electrode as an electron acceptor. Lu et al. (2014a) reported that Proteobacteria was
the most abundant phylum in the polluted soils treated with MFC technology.
However, Actinobacteria, Bacteroidetes, Firmicutes, and Acidobacteria were also
observed. Differences in composition of bacterial communities were observed in
non-contaminated (mainly Proteobacteria and Actinobacteria) and hydrocarbon-
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contaminated soils (higher levels of Proteobacteria). Proteobacteria increased by
conventional and BES bioremediation. Interestingly, an increase of Firmicutes was
observed specifically in BES hydrocarbon remediation. Mainly Proteobacteria were
observed at the carbon cloth anode, whereas Firmicutes showed an increase in the
biochar anode. Wang et al. (2019) reported that the dominant genus on the bioanodes
was Geobacter (~27%), which is a model electroactive and hydrocarbon-degrading
bacterium.

12.3 Challenges

Remediation using BES has been studied at laboratory and pilot scale. One of the
main challenges is to scale up remediation technology using BES towards commer-
cial applications. To improve the remediation efficiency by BES, critical physico-
chemical parameters should be determined and modulated, and the radius of
influence of electrodes in matrices should be increased. Proteobacteria and specifi-
cally Geobacter genus have been associated with BES. Nevertheless, most of the
electrode organisms in BES are unknown and have not yet been cultivated. There-
fore, the microbial communities involved in BES remediation processes should be
further characterized. Next-generation sequencing technologies and metagenomic
approaches will be useful to determine the main microbial players in BES involved
in the removal of the petroleum hydrocarbons in different matrixes, and the mech-
anisms involved in the degradation and extracellular electron transfer. Main
microbes should be cultivated, and their metabolism characterized. These studies
will be useful to increase the knowledge of the process for the design of improved
remediation processes using BES towards knowledge-driven engineering for com-
mercial applications.

12.4 Conclusions and Future Perspectives

BES has been applied for the remediation of several classes of hydrocarbons from
water, soil, and sediments in different polluted scenarios. Degradation of hydrocar-
bons by microbial communities has been studied in MFC and polarized BES.
Oxygen is the most used electron acceptor on the cathodic chamber, but also anoxic
cathodes have been employed in BES for hydrocarbon bioremediation. The appli-
cation of an external voltage through polarization by a potentiostat of the anode
(from +200 to +500 mV vs SHE) could stimulate microbial degradation of diverse
hydrocarbons, but other voltages can be studied depending on the characteristics of
the matrix including the microbial community. MFC in different configurations
(double and single chambers) have been used for the degradation of hydrocarbons
in sediments. In addition, few studies reported bioelectrochemical treatment of
polluted soils. The saturation of soil with water is critical for successful
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bioelectrochemical remediation of hydrocarbon-polluted soils. The microbial com-
munities are key players for BES bioremediation, but the degrading microorganisms
are largely unknown. The main challenge of remediation using BES is to scale up the
process for commercial applications and in situ bioremediation. BES remediation
processes represent an attractive alternative to develop a robust and sustainable
technology for the clean-up of petroleum hydrocarbon-polluted waters, sediments,
and soils for a circular economy.
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