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Abstract Process-based crop growth simulation models (CGSMs) have been
proven as a potential tool for analysing crop behaviour and yield prediction in
various spatial and temporal scales. Since the early 1960s, the crop growth models
(CGMs) have been used broadly: (1) as a tool for the policymakers to make an
informed decision for sustainable land management; (2) as a research tool supporting
the interdisciplinary studies covering agronomy, plant physiology,
agrometeorology, plant breeding, soil science, climate change, market intelligence,
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etc.; and (3) as a support tool for education and technology transfer. These models
are developed as point-based models to simulate the crop growth and development
for a homogeneous unit as a function of crop genotype, management practices, soil
physico-chemical properties, and weather variables. The point-based applications of
this model are best suited to the need of field experimentation, predicting, and
analysing the crop behaviour under different environmental scenarios. But this
approach is associated with limited applications at a regional scale under a hetero-
geneous real-world situation. In this context, satellite remote sensing
(RS) techniques could supplement the crop growth modelling particularly by gen-
erating “the missing spatial information” for the unit of simulation. Though these
two technologies developed independently, today, both of them can be used syner-
gistically under various spatial and temporal scales for overall agriculture develop-
ment under different socio-economic and climate change scenarios. The present
chapter will provide a brief introduction of the CGSM, its scope, and development
across the time epochs. It would further elaborate on the framework, methodology,
and issues to run the CGSMs at the spatial domain. The role of remote sensing
technique to retrieve crop biophysical parameters and its assimilation into CGSMs
are also discussed along with future scope and challenges.

Keywords Crop growth model · Data assimilation · Remote sensing · Simulation ·
Biophysical parameters

Abbreviations

CGM Crop Growth Model
CGSM Crop Growth Simulation Model
3DVAR Three-dimensional Variational Data Assimilation
4DVAR Four-dimensional Variational Data Assimilation
AGB Above-ground Biomass
AMIS Agricultural Market Information System
ANN Artificial Neural Network
ASTER Advanced Spaceborne Thermal Emission and Refelectance Radiometer
BRDF Bidirectional Refelectance Distribution Function
BRF Bidirectional Reflectance Factor
CGKF Constant Gain Kalman Filter
DA Data Assimilation
EnKF Ensemble Kalman filter
fAPAR Fractional Absorbed Photosynthetically Active Radiation
GIS Geographic Information System
GWD Gridded Weather Data
HBM Hierarchical Bayesian method
IDW Inverse Distance Weighting
KF Kalman Filter
LAI Leaf Area Index
LUE Light Use Efficiency
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MCMC Markov Chain Monte Carlo
MODIS Moderate Resolution Imaging Spectroradiometer
N Nitrogen
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
NOAA National Oceanic and Atmospheric Administration
pdf Probability Density Function
PF Particle Filter
PTFs Pedo-transfer Functions
RS Remote Sensing
RTM Radiative Transfer Model
SOC Soil Organic Carbon
UAV Unmanned Aerial Vehicle
VI Vegetation Index

4.1 Introduction

CGMs simulate crop yield as a function of environment, crop genotype, and crop
management factors mostly at a daily time step. Crop yield and production-related
information are very crucial in determining various agronomic as well as socio-
economic policy decisions that could affect the livelihood of a large section of the
human population (Kasampalis et al. 2018). These crop models also called crop yield
models or agriculture system models are just simplified depictions of the real world
(Van Ittersum and Donatelli 2003) represented by a set of mathematical equations
used to model the processes of the system (Oteng-Darko et al. 2013). Explanatory
process-based CGSMs comprise quantitative descriptions of the processes that
control the behaviour of a system (Penning de Vries et al. 1989; Dadhwal 2003)
and simulate the diurnal effects of environmental factors on the crop growth and
development processes. The process-based crop growth model simulates crop
growth processes at a daily timescale starting with the sowing of the crop to the
final crop harvestable maturity along with the quantitative information about the
crop growth and development at each time step. The equation used in the crop model
mathematically represents the elementary process of the “soil-plant-atmosphere”
system. Three main modules of the crop model could, therefore, be identified. The
soil module describes the processes of water and nutrient transport within the soil
profile. The mathematical equations for processes like infiltration, drainage, redis-
tribution, and nutrient transport particularly of nitrate are included in this module
(Brisson et al. 1998). The plant module controls two mechanisms: (i) crop growth
(biomass production-based on interception and assimilation of photosynthetically
active solar radiation and finally limited by senescence) and (ii) crop development
that simulates the phenology and drives growth by regulating source and sink
(Brisson et al. 1998).
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These process-based models are very much input data-intensive, hence posing a
challenge to create an input database with reasonable accuracy at a desirable scale to
run on an operational basis (Wallach et al. 2001). Hence, the application of these
models on a regional scale involves lots of assumptions and uncertainties. RS data
could be used that provide spatial information on weather, soil, crop type, crop
phenology, and crop condition information on a regional scale. This information is
assimilated into to crop growth model after proper validation, thus reducing the
uncertainty (Dorigo et al. 2007; Jin et al. 2018). The latest developments in
geospatial technology such as mobile phone-based position services and geograph-
ical information system (GIS) can also be linked to crop growth models to optimize
farm management practices, crop stress, and extreme weather events. These models
are also used to test the adaptability of new crop variety under different locations,
develop breeding strategies, and predict in-season yield. Boote et al. (1996) carried
out a detailed review to find out the potential applications and limitations of CGMs
and suggested that a particular model is applicable for a given situation and the same
can be replicated to alternate environmental setup with proper calibration. The model
prediction accuracy is highly dependent on the limitation of input data which in turn
restricts its scalability (Clevers et al. 2002). Nevertheless, CGMs can simulate the
impact of economic decisions in terms of crop management factors and weather
effects (Batchelor et al. 2002) and thus enable informed decisions making. To
summarize, the major limitations in the application of CGMs at a regional scale
are the generation of necessary high-quality and accurate input data (Bhatia 2014)
which may be cost-intensive and time-consuming.

4.1.1 Crop Growth Models: Scope and Development

Agricultural system modelling started long back in the late 1950s and specific crop
modelling activities started a decade later. Since the 1960s, a new era in agriculture
sciences started with the modelling of photosynthetic rates of crop canopies leading
to the development of Elementary CRop growth Simulator (ELCROS) and BAsic
CRop growth Simulator (BACROS) by de Wit (1965). In the 1970s, crop models
received significant attention (Pinter et al. 2003) with the first attempt to combine the
surveillance capacities of RS data with the predictive feature of crop models under
the Large Area Crop Inventory Experiment (LACIE) funded by National Aeronau-
tics and Space Administration (NASA) and National Oceanic and Atmospheric
Administration (NOAA). Such experiments were carried out to estimate wheat
production by combining RS data and crop models. They have developed a method
of estimating worldwide wheat production using LANDSAT data (Erickson 1984).
In the 1980s, the United States Department of Agriculture (USDA) had developed a
model for the tropical environment after a thorough understanding of the system and
its components (Jones et al. 2003; Roubtsova 2014) under International Benchmark
Sites Network for Agrotechnology Transfer (IBSNAT) program. This leads to the
development of a Decision Support System for Agrotechnology Transfer (DSSAT)
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(Johnson et al. 2003). A schematic representation of the development of these
process-based CGSMs over time is shown in Fig. 4.1. Process-based CGMs are
descriptive and dynamic, simulating the process of crop growth and development
through time in a phased manner using different sets of equations. These models are
equipped with modular functions defining various physiological and soil processes
as a function of driving variables like weather and crop management at each time
step (Wallach et al. 2014). Such models are more input data-intensive than empirical
or statistical models (Di Paola et al. 2016). Empirical or statistical models describe
the crop growth and yield response over sites where historical data are available and
mostly fail over different environmental conditions (Jones et al. 2017). This is the
most important limitation of empirical models for studying the implication of climate
change scenarios on crop growth and development. For example, location-specific
crop management practices may evolve to increase the crop adaptive capacity for the
future climate change scenarios, but these management practices were not consid-
ered in the limited data used to develop a particular empirical model (Jones et al.
2017). In this context, process-based CGMs are used as a potential tool not only for
analysing the impact of climate change but also for selecting best management
practices by optimizing all input resources to increase crop adaptability.

Fig. 4.1 Crop model developments over time. (Modified, Jin et al. 2018)
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4.1.2 Minimum Data Requirement and Applications

Agriculture system operates at several spatial scales such as field, farm, regional, or
global along with diverse temporal scales like hours, days, seasonal, and annual
(Ewert et al. 2011). Many crop models require a large number of input data. For
example, World Food Studies (WOFOST) used by the European Union Joint
Resources Centre Monitoring Agricultural Resources (MARS) Unit Mission
requires data for about 40 input parameters. However, the Food and Agriculture
Organization (FAO) has developed the AquaCrop model that requires comparatively
a smaller number of parameters (Mkhabela and Bullock 2012). The information
related to weather, soil, crop management, phasic development of the crop, growing
degree days, etc. are required for all crop growth model (Monteith and Moss 1977).
According to Nix (1983), these input datasets may range in timescale between hours,
daily, or weekly basis. For the first time, Hunt and Boote (1998) defined a minimum
input data needed for operating crop growth model. The input required for a crop
growth model can be categorized into a minimum and optimum/desirable for specific
applications along with initial parameters (Ritchie and Alagarswamy 2002) as
presented in Table 4.1. Weather is a driving force for CGSMs; hence, it needs
maximum and minimum temperature, rainfall, solar radiation, etc. on a daily or
weekly timescale depending on the defined time step of the model in a prescribed
format. Several curve-fitting approaches like extrapolation function and interpola-
tion are being followed over weather data for filling spatial and temporal data gaps in
the model operation. Similarly, most of the commonly used models take layer-wise
soil input data which includes various soil physico-chemical properties like bulk
density (BD), soil texture, soil organic carbon (SOC), water content at field capacity
and wilting point, initial nitrogen (N) content, and pH. Feeding the crop model with
the crop management information is the most challenging task particularly when a
simulation is carried out on a regional scale. The details of these data requirements
are discussed in the subsequent section along with the scale and resolution issues
involved in spatializing the CGSMs.

The economic outputs like grain yield, fruit yield, and biomass can be predicted
through crop models (Murthy 2003). The management applications of crop simula-
tion models can be categorized as follows:

Strategic application: To run the model before planting.
Practical application: To run the model before and during crop growth.
Forecasting application: To predict yield both before and during crop growth.
Besides the impact of climate change on crop growth and yield, crop vulnerability

and adaptability analysis can be assessed through crop growth simulation modelling
(Rosenzweig et al. 2014). These models are also useful to analyse the difference
between actual and attainable crop yield, i.e. yield gap analysis (Lobell et al. 2009;
van Ittersum et al. 2013). A list of popular CGSMs used worldwide along with their
special uses is presented in Table 4.2.

However, most of these models are not able to generate integrated information on
global climate change (greenhouse gas emission) and its impact on soil C and N

158 A. Biswal et al.



dynamics. They are strong either in environmental impact assessment or in crop
growth and soil component. Most of these models are not able to simulate the yield
loss due to weed, pest, and disease infestation and damage due to extreme weather
events like a hail storm and high wind.

Table 4.1 Minimum data requirement for a crop growth simulation model

Input category Weather Soil Crop management

Minimum Daily, min and max
temperature, precipi-
tation
Solar radiation

Water content at lower limit
and field capacity
(at10–20 cm soil depth)
Crop root depth
Hydraulic conductivity at
depths of soil which restrict
water flow

Characteristics of
crops
Date and depth of
planting
Density of plant pop-
ulation
Date, amount, and
depth of irrigation
Date, amount, and
types of fertilizers
Date, amount, and
quality of manure,
crop residues, etc.

Optional/desir-
able for specific
application

Daily, dew point tem-
perature, wind profile,
net radiation
Rainfall intensity

Water retention curves and
hydraulic conductivity
(at 10–20 cm depth)
Curve number of run-off
Surface albedo
Soil pH (10–20 cm depth)
SOC at upper depths
Soil textural information
(at 10–20 cm depths)
Surface water ponding
capacity
Soil BD (at 10–20 cm
depths)
Depth of groundwater and
bypass flow fraction

Row direction and
spacing
Pesticide inputs
Date of harvesting

Initial condition Water contents
(at 10–20 cm depths)
Soil nitrate and ammonium
content (at 10–20 cm
depths)
Soil extractable phosphorus
(if P subroutine is run) at
10–20 cm depths
Amounts and depth of
manure/fresh plant residue
incorporation

Modified, Ritchie and Alagarswamy (2002)
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Table 4.2 List of most popular crop growth simulation models, their usage and source

Crop model Specific usages Sources References

ALMANAC Plant community dynamics,
nutrient cycling, and pesti-
cide fate

https://www.ars.usda.gov/
plains-area/temple-tx/grass
land-soil-and-water-
research-laboratory

Xie et al. (2003)

APSIM To address the issues related
to long-term resource man-
agement in farming systems

Apsim Initiative http://
www.apsim.info

McCown et al.
(1996)

AgrometShell It can facilitate the inte-
grated assessment of ground
and satellite (coarse)-based
information under a com-
mon interface

http://www.hoefsloot.com/
agrometshell.htm

Di Paola et al.
(2016)

AquaCrop Studies yield response to
water, soil water, and salt
balances

http://www.fao.org/
aquacrop

Steduto et al.
(2009)

CENTURY Simulation of carbon and
nutrient dynamics over the
different types of
ecosystems

https://www.nrel.colostate.
edu/PROGRAMS/MODEL
ING/CENTURY/CEN
TURY.html

Gilmanov et al.
(1997)

CERES-
wheat

Decision-supporting tool for
the design of crop
management

http://nowlin.css.msu.edu/
wheat_book

Lobell and Burke
(2010)

COUP To model moisture, heat,
carbon, and nitrogen flows
in the soil-plant-atmosphere
continuum

https://www.coupmodel.
com

Jansson and
karlberg (2004)
and Jansson and
Karlberg (2010)

CROPGRO Computes canopy level
photosynthesis at hourly
basis using photosynthetic
parameters at leaf level and
canopy light interception

http://ecobas.org/www-
server/rem/mdb/cropgro.
html

Batchelor et al.
(2002)

CropSyst Study of cropping system,
simulation of multicrop on a
daily basis over multiple
years.

http://modeling.bsyse.wsu.
edu/CS_Suite_4/CropSyst/
index.html

Stöckle et al.
(2003)

CROPWAT Planning and management
of irrigation

http://www.fao.org/land-
water/databases-and-soft
ware/cropwat/en/

Desta et al.
(2017)

DAISY Dynamics of water, N, C,
and pesticides in the bioac-
tive zone near the soil
surface

https://soil modeling.org/
resources-links/model-por-
tal/daisy

Abrahamsen and
Hansen (2000)
and Palosuo et al.
(2011)

DSSAT It consists of crop simulation
models for more than
42 crops

http://dssat.net Jones et al.
(2003)

EPIC It is a cropping system
model that estimate soil
productivity as affected by
erosion

https://epicapex.tamu.edu Di Paola et al.
(2016)

(continued)
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Table 4.2 (continued)

Crop model Specific usages Sources References

FarmSim Evaluates a baseline and an
alternative farming technol-
ogy for a representative farm
using Monte Carlo simula
tion model

http://models.pps.wur.nl/
node/961

Di Paola et al.
(2016)

Fasset Focuses on the estimation of
farm management effects on
carbon and nitrogen dynam-
ics, particularly of emissions
of reactive N species

http://www.fasset.dk Olesen et al.
(2004)

GLAM GLAM is a regional-scale
crop model that was
designed to operate on the
grid of global and regional
climate models

http://www.see.leeds.ac.uk/
see-research/icas/
climate_change/glam/
download_glam.html

Challinor et al.
(2004)

GOSSYM Irrigation and fertilizer
management (N) and for
PGR application

– Gertsis and
Whisler (1997)

HERMES Plant growth, water, and N
dynamics in the soil-plant
system

http://www.zalf.de/de/
forschung_lehre/software_
downloads/Seiten/default.
aspx

Palosuo et al.
(2011)

INFOCROP Simulate the climate change
impacts on crop yield under
different scenarios; effects
of major pests on crop yield;
C and N dynamics

https://www.iari.res.in Aggarwal et al.
(2006)

DNDC Simulation of carbon and
nitrogen biogeochemistry
over the agroecosystems

http://www.dndc.sr.unh.
edu/

Li et al. (2000)

LINTUL Simulate crop growth model
under both potential and
rainfed conditions

– Spitters (1990)
and Spitters and
Schapendonk
(1990)

MONICA Transport and biochemical
turnover of C, N, and water
in agroecosystems

– Nendel et al.
2011

ORYZAv3 Simulate rice crop growth
and N dynamics

https://sites.google.com/a/
irri.org/oryza2000/about-
oryza-version-3

Li et al. (2000,
2017) and
Bouman and van
Laar (2006)

RothC Turnover of SOC in
non-waterlogged topsoil

– Diels et al.
(2004)

RZWQM Simulation of the effects of
agricultural management
practices on physical, chem-
ical, and biological pro-
cesses such as the movement
of water, nutrients, and pes-
ticides, and surface energy
balance

https://www.ars.usda.gov/
research/software/
download/

Chen et al.
(2019)

(continued)
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4.2 Spatialization of Crop Growth Simulation Models

CGMs assume the simulated unit to be homogeneous for soil type, weather vari-
ables, crop management, irrigation, fertilization, variety, sowing, etc. The “extent”
of CGMs is the entire region of interest, which could be a watershed or a big
command area or an administrative boundary like district or state. This “extent”
may consist of a finite number of smaller homogeneous areas called “support unit” or
“unit of simulation”. In reality, the region is often characterized by significant spatial
variability, which is difficult to account fully. The application of CGMs on a larger
area, than that for which it has been designed, is called the “spatialization” of the
CGM. This is the application of crop models on a regional scale with inherent large
heterogeneities in the soil, weather, and crop management factors between the units
of simulation. Thus, spatialization leads to an analysis of the use of CGMs on units
or scales outside the defined domain of validity of the hypotheses and the dedicated
scale of the original model. A crop growth model is characterized by a spatial and
temporal scale. But this review is confined to the spatial aspects since the focus of
this chapter is on the spatialization of the crop growth model. The change of scale
here pertains to the transition from a smaller unit of simulation to a bigger region.

Table 4.2 (continued)

Crop model Specific usages Sources References

SALUS Continuous monitoring of
crop and soil parameters
under different management
practices over the years

– Liu and Basso
(2020)

STICS It is able to model
intercropping systems and
crop rotation cycles

http://www.inra.fr/en/Scien
tists-Students/
Agriculturalsystems/All-
reports/Modelling-and-agro
systems/STICS-an-agron
omy-dynamo

Brisson et al.
(1998)

SUCROS Simulates both potential and
water-limited growth of a
crop

http://models.pps.wur.nl/
node/966

Bouman (1992)

SWAP Simulation of the flow and
transport processes at field
level, during growing sea-
sons and for long-term time
series

http://www.swap.alterra.nl Huang et al.
(2015)

WOFOST Recognizes three levels of
crop production: potential,
attainable (limited), and
actual (reduced) production.

http://www.wageningenur.
nl/en/Expertise-Services/
Research-Institutes/alterra/
Facilities-Products/Soft-
ware-and-models/
WOFOST.htm

Van Diepen et al.
(1989)

C carbon, N nitrogen, P phosphorus, PGR plant growth regulators
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According to Robert et al., change in the scale of the model involves alteration of the
scale of input-output data, validation, and the framework structure of the model. To
put it in the proper perspective, the water flow model in hydrodynamics is governed
by Navier-Stokes equations at a finer scale of soil pores. It is further generalized by
Darcy’s law at the scale of a soil column. The CGMs further upscale it with
generalized equations of the flow of water at a plot size of 1 m2 or even under the
controlled laboratory condition. In practice, the model parameters are fixed by
calibrating the model by experimentation on the scale of an agriculture field. The
models can be upscaled by (i) collecting input data for each unit of simulation under
the region of interest, (ii) considering the interaction between these simulation units,
and (iii) evaluating the performance of the output. All these three levels are linked
with the availability of spatial data, scale changes, and associated issues. All these
aspects of spatialization are discussed in detail in the following sections.

4.2.1 Issues and Methods Involved in Spatialization

The spatialization of a CGM involves space-time variation of the soil-plant-atmo-
sphere system. It could be addressed in two ways: firstly, by characterizing the
environmental variables like soil and weather and their interaction with the biolog-
ical system, and, secondly, by taking care of the diverse human-induced crop
management factors. The environmental data required for running a crop growth
model includes the weather variables like maximum and minimum temperatures,
precipitation, solar radiation, humidity, and wind speed, along with soil physico-
chemical properties. In reality, these data are not available everywhere at a desirable
scale; hence, they are usually measured or estimated for a given spatial unit (mete-
orological station and soil profile) for a limited number of locations within the region
of interest. To run crop models on a regional scale, it is, therefore, necessary to
estimate these parameters at the required scale for each unit of simulation. This
involves a spatial approximation, broadly categorized into three groups of
approaches. The first approach includes traditional choropleth mapping without
taking random components into consideration. Classical soil mapping techniques
(Legros 1996) comes under this approach. Thiessen polygons, trend analysis, or
arbitrary weighted averaging of data also belong to this traditional mapping category
(Laslett et al. 1987). The second category is based on statistical modelling consid-
ering the spatial variability, also termed as geostatistical techniques (Webster and
Oliver 1990; Goovaerts 1997). The most popular geostatistical method is kriging or
several modified forms of kriging to deal with different types of point-based,
continuous, and categorical variables, using normal, log-normal, or other probability
density functions. The geostatistical approach involves spatial interpolation to esti-
mate the missing values at a point in space based on known values at neighbouring
points. There are different types of spatial interpolation such as gridding, area
averaging, and the estimation of missing data from neighbouring stations. These
methods vary in their complexity, constraints on inputs, and computation

4 Spatialization of Crop Growth Simulation Model Using Remote Sensing 163



procedures. Various methods like kriging and co-kriging, inverse distance weighting
(IDW), and thin-plate splines, etc. are popular in regional soil, weather, and crop
analysis (Phillips et al. 1992; Hudson and Wackernagel 1994). IDW and simple
kriging are pure geostatistical techniques of spatial interpolation whereas co-kriging
takes advantage of additional knowledge obtained from external variables.
Geostatistical approaches are most suitable for variables exhibiting stationarity and
continuous spatial variations (Voltz andWebster 1990). Hence, it performs better for
soil and climatic variables such as mapping of rainfall, temperature (Voltz and
Webster 1990), soil texture, and soil pH (Creutin and Obled 1982; Van Meirvenne
et al. 1994). The third category of methods is known as mesoscale modelling where
the physics of the phenomenon is used to model its spatial behaviour (Takle 1995).
Here, the spatial estimation of a variable is made based on the simulation of the
processes that control the variable. For example, the prediction of the actual spatial
variability of soil physico-chemical properties can be done based on the simulation
of soil formation on a landscape scale (Minasny and McBratney 2001). But this kind
of process-based approach is being developed to be augmented with the crop models
on an operational basis.

As discussed above, the first approach is adopted by the EUMARS project, where
the model is made to run on gridded input data as reported by Dallemand and Vossen
(1995) and Rijks et al. (1998). An alternative approach was implemented by FAO
(Gommes et al. 1998) where the model was made to run on actual available data and
the yield output is subsequently interpolated using external variables like normalized
difference vegetation index (NDVI) to guide the interpolation. Similarly, satellite
enhanced data interpolation (SEDI) method is used for assisted interpolation taking
advantage of the correlation between the variables to be interpolated and the
environmental drivers (such as crop yield and NDVI/biomass). Hoefsloot (1996)
described this concept of interpolation along with the technique of software imple-
mentation. This technique is applicable to any parameter of interest having spatial
correlation and well distribution over the desirable extent of interpolation.

When the measured values of soil properties at each field are available, one
generally relies on soil surveys in order to proceed for the spatialization of the
crop growth model. These soil surveys provide information about the intrinsic
spatial variability of soil physico-chemical properties. Voltz and Webster (1990)
found that when soil properties vary abruptly classification is a better approach than
standard kriging method. Thus, soil maps available on different scales can serve as a
base for obtaining soil properties at the simulation unit. But in general, CGMs don’t
take soil types or soil textural classes as direct input. It requires quantitative
measurements of properties like soil depth, percentage of sand silt and clay, bulk
density, water-holding capacity, and hydraulic conductivity. Hence, quantitative
maps of soil properties need to be created from the existing soil map keeping the
scale factor in mind (Leenhardt et al. 1994). Soil maps at finer scales (i.e. 1:10000 or
1:25000) would provide better spatial variability of intrinsic soil properties than the
coarser soil maps of 1:100000. In this context, pedo-transfer functions (PTFs) have
been developed to derive soil properties difficult to measure from the widely
available basic soil properties (Bouma 1989). For example, soil hydraulic property
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is usually derived from soil textural information using PTFs. Several large soil
database such as World Inventory of Soil Emission Potential (WISE) (Batjes
1996), USDA Natural Resources Conservation Service (NRCS) pedon database
(NRCS, USDA 1994), UNSODA (Leij et al. 1996, 1997), and Hydraulic Properties
of European Soils (HYPRES) (Lilly et al. 1999) have been widely used for the
development of PTFs. In India, the National Bureau of Soil Survey and Land Use
Planning (NBSSLUP) soil maps available at 250k and 50k are used in PTFs to
generate quantitative soil properties and assimilate them to simulate CGMs at a
regional scale.

For the spatialization of crop model, two main approaches are used to generate
weather inputs, namely, zoning and interpolation (Leenhardt et al. 2006). In the
zoning approach, the weather data of a meteorological station available in a specified
zone is considered as the representative weather for the entire zone. Another
alternative approach is the interpolation of the point weather data using nearest
neighbour, arithmetic mean, optimal interpolation, spline function, kriging, etc. to
generate spatial weather layers (Creutin and Obled 1982). The lack of observed daily
weather data at the required scale is the most challenging constraint to simulate the
effects of weather on crop growth and yields (Van Wart et al. 2013, 2015; Grassini
et al. 2015). Currently, gridded weather data (GWD) are generated at a regional and
global scale on an operational basis and regularly used in CGMs for decision
supports (Miner et al. 2013; Mourtzinis et al. 2016). GWD is usually generated
from satellite-derived weather information and/or interpolation of weather data from
available meteorological stations using stringent empirical algorithms at defined
spatial and temporal resolution. Influences of these gridded weather data on the
simulation of CGMs are studied by various authors (Angulo et al. 2013; Zhao et al.
2015; Rezaei et al. 2015). These studies are mostly based on GWD at a very coarse
spatial resolution like 50–100 km such as NASA-POWER (http:// power.larc.nasa.
gov/), NCEP (National Centre for Climate Prediction http://www.esrl.noaa.gov/psd/
data/gridded/data.ncep.reanalysis2.html), and CRU (Climate Research Unit; http://
badc.nerc.ac.uk/data/cru/). However, there is a lack of robust assessment of most
recently developed GWD with a higher spatial resolution (<20 km2), with respect to
their potential usage particularly in the application of crop growth simulation
models. The Prediction of Worldwide Energy Resources dataset from NASA
(NASA-POWER) has been widely used as weather inputs in various crop models
throughout the world. This is a weather database having daily weather attributes
including solar radiation and maximum and minimum temperature, for
100 � 100 km raster of the entire globe starting from 1983 to date. These data are
derived from satellite observations coupled with Goddard Earth Observing System
climate model to obtain complete terrestrial coverage on a daily timescale. The
quality evaluation of this NASA-POWER as input to the CGSMs has been carried
out with mixed results (White et al. 2008; Bai et al. 2010, Biswal et al. 2014).

A major issue of mapping soil and weather input data is the problem of change in
scale. Most often, the measurement units of weather data are smaller than the
simulation units; hence, the problem lies in upscaling of the measured or mapped
input data. This requires a thorough understanding and knowledge of the variable
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across space and its aggregation over the simulation unit. In some cases, the change
of scale could also be the other way round and requires downscaling of the weather
data to suit the simulation unit. For example, Priya and Shibasaki (2001) estimated
the required local information from meteorological stations of a national network
and digital terrain model with a large scale using a purely statistical approach. In the
context of spatial input data generation for CGMs, limited analysis has been done on
the sources of error and their propagation. Crosetto et al. (2000) and Tarantola et al.
(2000) presented a comprehensive approach to analysing uncertainty and sensitivity
through GIS-based models for accurate and precise results, but this study is generic
without specific application to CGMs. Poor-quality input data resulting from mea-
surement errors or poor spatial aggregation or disaggregation are often the main
source of errors in CGMs. Geographic information system (GIS) along with spatial
data analysis plays an important role in integrating the crop model output into a
larger geographic area (Delécolle et al. 1992; Ewert et al. 2011). Several researchers
have demonstrated the linkage between crop model, GIS, and RS technology for
regional crop forecasting (de Wit et al. 2010; Ma et al. 2013); precision agriculture
(Seelan et al. 2003); yield gap analysis (Sibley et al. 2014); agro-ecological zoning
(Ismail 2012); and crop suitability assessments (Mustafa et al. 2011; Mustak et al.
2015). Leitão et al. (2018) reported that broad-scale RS facilitates cost-efficient fast
and periodic monitoring of the ecosystem in a larger area but is less useful for local
scale applications (Leitao et al. 2018). With the advancement in RS technology,
particularly the development of multispectral and hyperspectral sensors, RS has been
proving its potential for upscaling vegetation parameters. But the trade-off among
various sensor resolutions, viz. spatial, temporal, spectral, and radiometric, is the
major limitation in the application of this technology. Further, it is a nearly impos-
sible task to measure plant parameters in situ across the simulation unit, but we can
always follow the empirical or physically based approach for biophysical parameter
retrieval using RS technique. Upscaling in environmental research involves a com-
bination of data generated at different temporal and spatial scales (Finke et al. 2002).
It is important to consider the “observation scale” (spatial and temporal resolution of
the measured data), “modelling scale” (temporal and spatial scale at which model
operates), “operational scale” (scale time and space where the process operates), and
finally the “geographic scale” (area of interest or target area of the research) in the
upscaling protocol (Wu and Li 2009). Understanding the complexity of scale is
essential as the mechanism of a model can be different at different scales. Models
optimized for a particular scale become ill-performing at another scale without
re-optimization (Wu and Li 2009). Heterogeneity is the intrinsic characteristic of
the earth’s surface which is a mosaic of different patches of vegetation type, soil, and
land use. Even when a landscape looks homogeneous at a particular scale, the
possibility of having inhomogeneity increases with the increase in the spatial
resolution (Wu et al. 2000). Hence, in the RS domain, heterogeneity is a relative
concept which is highly linked with the sensor spatial resolution (Li et al. 2014).
Besides heterogeneity, another issue is the “linearity” or “non-linearity” involved in
the scaling between the RS measurement and the biophysical parameter of interest
(Wu and Li 2009). Besides the issues of spatial resolution, the issues of temporal
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resolution of the sensors also need to be addressed. Li et al. (2014) demonstrated that
in agroecosystem studies, some parameters could be retrieved from sensors with
high spatial and low temporal resolution, whereas others need lower spatial and
higher temporal resolution. The scale of the system to be modelled always depends
on the objective of the study, and thus, identification of suitable scale for monitoring
a particular system is the most important factor (Chemin and Alexandridis 2006;
Alexandridis et al. 2008), along with different issues of aggregation and disaggre-
gation of RS-derived information with minimal uncertainty (Alexandridis et al.
2010). RS satellites with higher spatial resolution such as SPOT, IKONOS, and
Quickbird have a lower temporal resolution and narrow swath. On the other hand,
satellites with a lower spatial resolution (coarser than 300 m) such as Terra/Aqua
MODIS, NOAA, and AVHRR have daily global coverage. For crop modelling
studies, these coarse-resolution satellites are preferred as they can generate a time
series of information during the crop season. It should be noted that crop models are
not expected to provide spatial information per se; rather, they require spatial
information to operate. Thus, the combined use of RS data with crop models
provides significant advantages by generating the “missing spatial information”
expanding their coverage in two-dimensional spaces (Launay and Guerif 2005).
This spatial information is crucial for the varied application of crop models starting
from precision farming to regional yield prediction (Azzari et al. 2017). Further-
more, in-season monitoring of crops and providing preharvest yield estimation at
various spatial and temporal scales are important for decision-making in trading,
logistics, and insurance. This aspect of spatial data generation for running CGSMs is
discussed in detail under Sect. 4.3 of this chapter.

4.2.2 Establishment of Spatial Framework

GIS tool enables the point-based crop model to simulate regional crop growth
development and yield. Depending on the types of linkages of the model to GIS,
three types of interfaces are identified: (i) linking, (ii) combining, and (iii) integrating
(Hartkamp et al. 1999). The selection of interface is highly dependent on the factors
like the objective of the research and expertise of the user along with the available
computational framework. Simple linkage strategies employ GIS for spatially
displaying the model outputs using interpolation techniques. In this approach,
communication between GIS and the model takes place through unique identifiers
of grid cells or polygons existing in input-output files and transferring the data back
and forth in ASCII or binary format (Dadhwal 2003). The linkage of WOFOST
model to ARC/INFO illustrates this aspect well (van Laanen et al. 1992) though in
this approach, the full potential of GIS is not exploited. In combining strategy, the
model is configured with interactive tools of GIS enabling automatic data exchange
along with displaying model results (Burrough 1996). This approach usually
involves complex programming and data management than the “linkage” approach.
An illustration of this technique is presented by Engel et al. (1997) in the
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Agricultural and Environmental GIS (AEGIS) with ArcView. Integration is still
more complex than the above-mentioned approaches and involves the incorporation
of one system into the other. The application of GIS interfacing in modelling had
been initiated in the mid-1980s particularly in the field of hydrological modelling.
The GIS-enabled applications of crop models have been demonstrated by various
researchers worldwide, such as regional/global crop yield calculation and produc-
tivity analysis (Calixte et al. 1992), precision farming, climate change, and agro-
ecological zonation (Aggarwal 1993). Lal et al. (1993) had carried out regional
productivity analysis using DSSAT-BEANGROW and AEGIS. Han et al. (1995)
studied potato yield and N leaching distribution for site-specific crop management
by developing an interface between PC ARC/INFO GIS and SIMPOTATO simula-
tion model at South Central Washington state. Aggarwal (1998) suggested a land-
use option for Haryana state in India by integrated simulation modeling, expert
knowledge, and GIS optimization techniques. In this study, agro-ecological land
units were delineated by overlapping maps for soil attributes and climatic normal
rainfall in GIS-IDRISI. Similarly, Sehgal (2000) developed a protocol of near-real-
time crop monitoring system for crop condition assessment and yield forecasting for
the Haryana region of India linking WTGROWS with GIS assimilating RS-derived
biophysical parameters. Ines et al. (2002) studied water use efficiency of rice, maize,
and groundnut at basin scale for the Laoag River basin in the Philippines using a
GIS-enabled crop growth model. Junguo Liu (2009) presented “GEPIC”, a
GIS-based model to estimate crop water productivity regionally with a spatial
resolution of 30 arc-minutes. Cedrez and Hijmans (2018) computed the potential
yield (Yp) of crops for the entire world using WOFOST and LINTUL model.

4.3 Remote-Sensing-Based Retrieval of Crop Biophysical
Parameters

Process-based CGSMs can incorporate physiological as well as biological knowl-
edge of plants and are also capable to model the interaction between plants and their
environment. In these models, vegetation state variables, such as developmental
phase, leaf area index (LAI), above-ground biomass (AGB) are linked to driving
variables like nutrient availability, weather conditions, and management factors. The
final output of these models is the crop yield or accumulated biomass (Dele’colle
et al. 1992). Hence, the information related to the crop canopy state variables such as
LAI and AGB is a prerequisite to simulate the CGMs. Several techniques have been
used to retrieve canopy state variables from reflective RS observations
(400–2500 nm) by many researchers. Moulin et al. (1998) had proposed the use of
sensors to parameterize CGMs based on the measurement of actual crop status.
Several authors carried out studies related to the potential use of sensors including in
situ, proximal sensing, and RS sensors to enhance prediction of CGM (Hoefsloot
et al. 2012; Bai et al. 2012). However, the estimation of biophysical attributes in situ
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is a laborious and time-consuming task (Weiss et al. 2004) even with the help of
automation systems. Hence, satellite-based RS data is the only source of information
to retrieve biophysical parameters at regional scales (Camacho et al. 2013; Kolotii
et al. 2015; Shelestov et al. 2015). Retrieval of biophysical parameters using various
spatial and temporal RS data has been an active area of research for the past several
decades (Wiegand et al. 1992; Chen et al. 2002; Walthall et al. 2004; Ganguly et al.
2012; Li et al. 2015a, b).

The existing biophysical parameter retrieval methods are empirical or physical in
nature. Physically based models simulate spectral response based on input such as
leaf constituents, canopy architecture, sun-viewing geometry, background soil
(Ganguly et al. 2012; Li et al. 2015a, b), and inverted back using observed spectral
response and limited known input parameters. Different techniques like lookup
tables (Ganguly et al. 2012), numerical optimization, and machine learning
(Walthall et al. 2004; Verrelst et al. 2012, 2013) techniques are successfully used
for inversion of the model. The empirical models basically linked biophysical
attributes with various RS-based spectral indices (Turner et al. 1999; Fensholt
et al. 2004; Verrelst et al. 2012). These models are quite easier to implement, site-
specific, and data-driven. Hence, its scalability is limited. The selection of the most
sensitive and informative spectral features is important in the empirical approach.
The addition of all possible spectral features increases the complexity and dimen-
sionality and required optimization to make the empirical model simple for regional
applications. The details of these approaches and methods are discussed in Chap. 3
of this book.

4.3.1 Importance of Remotely Sensed Crop Biophysical
Parameters

LAI is the most important crop biophysical parameter and a vital component of the
process-based CGMs. It’s a dimensionless quantity representing a one-sided leaf
area per unit ground surface area. Spatially explicit measurements and retrieval of
LAI from RS data are indispensable to model for simulation of ecological variables
and processes at regional scales (Green et al. 1997). Recent studies have successfully
demonstrated the retrieval of LAI using different parametric and nonparametric
regression as well as physically based models (Cho et al. 2007; Im et al. 2009; Liu
et al. 2018; Xie et al. 2019; Upreti et al. 2019). The RS data is also used to retrieve
fractional absorbed photosynthetically active radiation (fAPAR) as it is highly
related to dry matter production of a crop (Dong et al. 2013). Hilker et al. (2008)
had conducted an experiment to retrieve fAPAR using spaceborne RS data for
modelling plant dry matter production. They concluded that NDVI and enhanced
vegetation index (EVI) are most promising for retrieval of fAPAR. Upreti et al.
(2019) retrieved fAPAR through a hybrid approach using a neural network to train
PROSAIL canopy reflectance model. Similarly, LUE is one of the key biophysical
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parameters require to calculate potential plant production. Hilker et al. (2010) have
used the photochemical reflectance index (PRI) using narrow bands of 531 and
570 nm to retrieve LUE. However, it is difficult to upscale this retrieval process to
canopy level at a regional scale (Rahman et al. 2001; Hilker et al. 2008).

Biomass production estimation is one of the main areas of research in modelling
of vegetation growth and development. However, most of the RS satellites can
measure AGB, as not able to observe below-ground biomass (Lee 1978). Several
kinds of research have demonstrated successful biomass retrieval using RS data
(Claverie et al. 2009; Jin et al. 2015a, b).

Water stress is one of the critical limiting factors for the growth and development
of crops which leads to a yield gap between actual and potential production. Hence,
information regarding plant or crop moisture content is important for crop growth
and yield modelling. Many researchers across the globe have used various RS-based
indices, spectral information along with climate data to retrieve crop moisture stress.
Lee et al. (2010) reported the use of thermal infrared (3–12 μm) for crop water
estimation. Jackson et al. (1981) used the crop water stress index (CWSI) to measure
crop moisture. Govender et al. (2009) reported the use of middle- and shortwave
infrared bands for plant water stress measurement. Two most popular spectral
indices, namely, normalized difference water index (NDWI) by Gao (1996) and
water band index (WBI) by Penuelas et al. (1993), are being used to measure crop
moisture content. Djamai et al. (2019) carried out studies on the retrieval of canopy
water content using Sentinel-2 and Landsat-8 data.

Plant nitrogen content (N) is one of the most important biochemical constituents
of leaf chlorophyll content and therefore strongly correlated to plant photosynthetic
activity (Diacono et al. 2013). Several researchers have found strong correlations
between spectral indices and plant chlorophyll content. Yao et al. used NDVI to
retrieve chlorophyll in wheat crops. Bagheri et al. (2012) employed soil adjusted
vegetation index (SAVI), modified soil adjusted vegetation index (MSAVI), and
optimized soil adjusted vegetation index (OSAVI) for leaf chlorophyll retrieval of
corn. Jain et al. (2007) used several red-edge bands to retrieve chlorophyll content in
potato. Clevers and Gitelson (2012) estimated plant N and chlorophyll content using
MERIS and Sentinel-2 data using an empirical approach. Similarly, Miphokasap
et al. (2012) used ground-based hyperspectral data for retrieval of canopy N content
using the empirical method.

4.3.2 Scale Issues in Remote-Sensing-Based Parameter
Retrieval

The retrieval of parameters by inverting models does not express the characteristics
of scale explicitly; they may be suitable for homogeneous surface or point measure-
ment (Raffy 1992). Chehbouni et al. 2000 stated that it is not appropriate to use the
locally calibrated relationships, between the modelled and observed variables, at a
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regional scale simply by scaling the parameter. As a result, they need to be
reparameterized to adapt to the new circumstances since the driving forces or
mechanisms may be totally different at different scales. Hence, a model designed
and calibrated at the leaf scale may not hold good at the canopy level. Consequently,
the models or algorithms developed at one scale need to be revised for its application
to other scales, and the impact of scale on the mechanism of the model or algorithms
is to be investigated prior to changing the scale. Scale applicability of basic laws of
physics such as Lambert’s law (Li and Strahler 1985), Beer’s law (Albers et al.
1990), and Planck’s law (Li et al. 1999) at the pixel level is being discussed by
various researchers. Their results suggested that the scale applicability needs to be
considered carefully for retrieval of the model at different scales. Besides this, the
heterogeneity of land surface and the linearity or non-linearity of retrieved param-
eters are also highly related to scale. In reality, heterogeneity is a surface property
varying over scenes (Garrigues et al. 2006) and is a relative concept highly depen-
dent on the sensor resolution. As the spatial resolution of the sensor becomes finer,
the possibility of pixel heterogeneity increases. The surface heterogeneity greatly
affects the parameter retrieval strategy using RS data (Chen 1999). Garrigues et al.
(2006) suggested two strategies to minimize the errors in scale change; the first one is
to quantify the intra-pixel heterogeneity, and the second is to define proper pixel size
to capture the variability and minimizing the intra-pixel variability. There is no
arbitrary conclusion about the effect of linearity or non-linearity of retrieval models
on scale change. When the retrieval models for different cover types are quite
different, the linear retrieval models could also be affected highly by scale effect
(Chen 1999). At the same time, when the medium is homogeneous, non-linear
retrieval models also cause no scale effect as demonstrated by the Taylor series
expansion (Hu and Islam 1997; Garrigues et al. 2006). Chen (1999) suggested that
scaling error is more when a non-linear algorithm is applied to mixed pixels with
different land cover types. Various authors proposed different techniques to mini-
mize the scale effect in RS-based retrieval of biophysical parameters (Verhoef 1984;
Jacquemoud and Baret 1990; Raffy 1992; Tian et al. 2003). Hu and Islam (1997)
demonstrated that different parameterization and assumptions in retrieval models
can lead to a different conclusion for the same physical process. There are conflicting
conclusions in the literature describing whether the products are scale-dependent or
scale-free. There is relevant literature addressing these scale-change issues, such as
bidirectional reflectance distribution function(BRDF) and albedo (Liang et al. 2002),
temperature (Liu et al. 2006), emissivity (Zhang et al. 2004), carbon flux
(Thorgeirsson and Soegaard 1999; Sasai et al. 2007), soil moisture (Hu et al.
1997; Oldak, et al. 2002; Manfreda et al. 2007; Das and Mohanty 2008), NDVI
and vegetation fraction (Jiang et al. 2006; Tarnavsky et al. 2008), LAI (Hu and Islam
1997; Chen 1999; Fernandes et al. 2004; Garrigues et al. 2006; Jin et al. 2007;
Hufkens et al. 2008), net primary production (NPP), and gross primary production
(GPP) (Simic et al. 2004; Turner et al. 2004). It can be concluded that we need to
change the scale of the retrieval models through appropriate assumptions and
approximation. Furthermore, there should be a clear separation of system errors
from the errors arising from retrieval models due to scale changes.
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4.4 Assimilation of Parameters into the Process-Based Crop
Growth Simulation Model

The objective of the spatialization of a crop growth model is to simulate the crop
growth and development on a regional scale, where significant spatial variability in
soil, weather, and crop state variables exists along with the large uncertainties
(Hansen and Jones 2000). These uncertainties result in large errors in crop growth
simulation and yield estimation. In this context, RS technology plays an important
role by facilitating input data generation for CGMs particularly generating the
“missing spatial information” and thereby reducing the uncertainty in the
spatialization of CGMs and yield estimation. The recent development in RS tech-
nology helps us to generate accurate, reliable, and quantitative information on soil,
weather, and crop parameters at the regional scale. Many researchers have retrieved
canopy state variables, soil, and weather parameters using different techniques and
RS data. A detailed list of some of these studies that are relevant from the crop
modelling point of view is presented in Chap. 3 of this book. Several researchers
have used RS to retrieve crop state variables or soil properties over large areas, such
as fAPAR (Sakowska et al. 2016; Upreti et al. 2019), LAI (Fang et al. 2008; Jiang
et al. 2014; Liu et al. 2018; Pasqualotto et al. 2019), fraction of vegetation cover
(fCover) (Djamai et al. 2019), biomass (Claverie et al. 2009; Jin et al. 2015a, b), leaf
N content (Huang et al. 2013), evapotranspiration (Huang et al. 2015), and soil
properties (Dente et al. 2008; Ines et al. 2013; Chakrabarti et al. 2014).

These retrieved biophysical parameters of soil, weather, or crop canopy states
need to be integrated with CGMs. In recent years, rapid and parallel development in
CGMs as well as in RS and information technology (IT) leads to the development of
their combined applications. The availability of higher spatial resolution sensors
such as Sentinel-2, SPOT-6, Landsat-8, Rapid Eye, World View-2, and GeoEye-1
with high temporal frequency combined with wide spatial coverage and low oper-
ating cost facilitates operational crop growth monitoring and assessment in regional
scale. Similarly, there has been rapid development in IT leading to robust compu-
tational infrastructures, algorithms, and techniques for processing huge RS data and
generating relevant information for improving the predictive capability of CGMs
both in temporal and spatial scales (Launay and Gue’rif 2005). In this context,
various data assimilation (DA) techniques have been developed allowing a formal
and well-understood way to combine the predictions of simulation models with RS
or ground-based observations. In this process, the model predictions are matched
with the observed data limiting the errors due to poor local parameterization. Further
fine-tuning could be done by retrieving the local parameters using RS techniques
(Xi et al. 2019). In the context of DA, one needs to first distinguish observed
variables (RS or ground-based), state variables (crop model system generated),
model parameters (establishing relationships between observed and state variable),
and output variables (crop yield in most of the DA) (Delécolle et al.1992). Several
algorithms and techniques have been developed worldwide to facilitate DA through
the combined use of crop models with RS data (Mass 1988; Guerif and Duke 2000;
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Dente et al. 2008; Curnel et al. 2011; Wang et al. 2013; Huang et al. 2015) to
improve the accuracy of CGMs and in turn estimation accuracy of crop yield in
regional scale. Various DA methods usually optimize the difference between the
measured evidence (RS observation) and modelled prediction by using Bayes’ rule
(Huang et al. 2019a, b). Many techniques have been developed to carry out this
Bayesian update, and their relative advantage is based on the assumption made to
solve for the posteriori analysis for probability density function (pdf) of the param-
eter or state variable.

The schematic flow diagram of a typical DA system involving crop model and
RS-derived biophysical parameters is presented in Fig. 4.3. A point-based crop
growth simulation model is to be calibrated and validated on a field scale, and the
most sensitive parameters of the model need to be fixed along with the smart
assumption of the less sensitive and difficult to measure parameters in the study
region. The calibrated model will then be able to simulate crop growth and devel-
opment. Then, the calculated uncertainties in the calibrated parameters propagate
through the model to account for the limitations in the process of calibration and
parameterization. After the calibration, the model is ready to simulate the crop
growth by providing local predictions of a large number of biophysical variables
such as development state (DVS), LAI, AGB, evapotranspiration (ET), and soil
moisture. At the same time, satellite-based RS has the potential to provide an
independent estimate of these parameters over large areas. Then the DA methods
will seek to update the uncertain model simulations of LAI, AGB, SM, etc. to match
the certain observations obtained through earth observation (EO) systems so that pdf
is consistent with both the model and observation. The model with the embedded
DA process can run in the forward direction towards the harvest to simulate crop
growth and yield using the short-term as well as seasonal weather forecasts.

4.4.1 Methods of Remote Sensing Data Assimilation

Extensive reviews on the assimilation of RS-derived biophysical parameters into
CGMs have been carried out previously by several authors (Maas 1988; Delecolle
et al. 1992; Liang 2005; Dorigo et al. 2007; Lewis et al. 2012; Kasampalis et al.
2018; Jin et al. 2018). Similarly, various techniques have been developed to integrate
RS observations in the agroecosystem models. In general, three different strategies
are applied which are described by researchers worldwide (Dele’colle et al. 1992;
Moulin et al. 1998; Olioso et al. 1999; Makowski et al. 2002; Bach and Mauser
2003). Three broad methods of DA, i.e. calibration, forcing, and updating tech-
niques, have been used globally and are discussed in the following section.
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4.4.1.1 Calibration Method

The main aim of the calibration method is to minimize the differences between the
RS data and the simulated data of the crop model using an optimization algorithm.
The initial parameters of crop models are adjusted to optimally match with the
simulated state variables of the crop model with the RS data (Fig. 4.2a). While
calibrating the sensitivity, uncertainty analysis of crop models is carried out manu-
ally or automatically running the model using a set of realistic parameters within
range. Several studies have been carried out using RS DA into crop models using the
calibration method. The main disadvantage of the calibration method is to parame-
terize the complex relation existing among the model variables. The popular algo-
rithms are mentioned as below:

(a) Maximum likelihood solution (MLS) (Dente et al. 2008)
(b) Simplex search algorithm (SSA) (Launay and Guerif 2005; Ma et al. 2008;

Claverie et al. 2009; Ma et al. 2013)
(c) Least squares method (LSM) (Zhao et al. 2013)
(d) Powell’s conjugate direction method (PCDM) (Fang et al. 2008, 2011)
(e) Shuffled complex evolution (SCE-UA) (Shen et al. 2009; Ren et al. 2009, 2011;

Jin et al. 2010; Ma et al. 2013; Wang et al. 2014; Huang et al. 2015)
(f) Very fast annealing algorithm (VFSA) (Dong et al. 2013)

Fig. 4.2 Schematic representation of different methods for the assimilation of remotely sensed
model state variables in agroecosystem models: (a) calibration, (b) forcing, and (c) updating.
(Adopted, Dele’colle et al. 1992)
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(g) Particle swarm optimization algorithm (PSO) (Wang et al. 2014; Liu et al. 2014;
Jin et al. 2015a)

4.4.1.2 Forcing Method

Forcing methods use the RS data to replace the crop model simulation data
(Fig. 4.2b) at each time step. The time step may be daily, weekly, or monthly
which may not match with the temporal resolution of satellite data in most of the
cases. Under normal circumstances, the temporal resolution of a satellite is less than
the time step of the crop model. RS observations are available at a predefined
temporal resolution of the satellite observations and generally less frequent than
the model time step. Hence, various interpolation techniques like wavelet
approaches, linear interpolation, and fast Fourier transformations (Roerink et al.
2000) have been used to fill the gaps between two observations. It helps to derive
state variables as per the required time steps of the model. LAI data retrieved from
RS images are most often used as an input parameter and state variable into a crop
growth model. Huang et al. (2001), Clevers et al. (2002), Schneider (2003), Abou-
Ismail (2004), Hadria et al. (2006), Thorp et al. (2010), Tripathy et al. (2013), and
Yao et al. (2015) have retrieved LAI using different RS data. The simulated results of
crop models were directly replaced by the retrieved LAI to improve the simulated
LAI, AGB, and yield of crop models. Morel et al. (2012) used the estimated
interception efficiency index (ε) and fAPAR as input into the MOSICAS model
for estimating the yield of sugar beet and sugarcane, respectively. DA of RS data into
the crop model is easy to operate using the forcing method. During this process, the
simulated state variables were only replaced by the retrieved state variables derived
from RS data.

4.4.1.3 Updating Methods

The updating method deals with continuous updating of model state variables with
RS-based variables as per the availability (Fig. 4.2c). This method is based on the
assumption that an updated state variable at each time step better simulates the state
variable. It improves the accuracy of the simulated state variable at a succeeding time
step. It is also referred to as sequential DA and many algorithms have been
developed for this assimilation technique (McLaughlin 2002). These methods pro-
vide more flexibility in terms of data availability, but accounts for the errors in both
observed and modelled state variables may affect the final output.

4.4.2 Issues in Data Assimilation

The assimilation of RS-derived biophysical and biochemical state variables into
CGSMs can improve its predictive performance at a regional scale (Launay and
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Gue’rif 2005). However, RS-derived state variables may contain some observational
error (Bastiaanssen et al. 1998). In forcing method, the model follows the observed
state variable and may include observation errors. However, the “calibration” and
“updating” methods offer more flexibility in the assimilation of RS-based state
variables and their associated errors in the model. Nouvellon et al. (2001) reported
that the calibration method could generate more representative parameters based on
the simplified physical description of the underlying processes and thus improves
model prediction. But it’s only applicable if there are a sufficient number of
observations, and the observation error is also small. As it needs more computation
time for the optimization process to assimilate RS data, the calibration method finds
limited applications. However, this problem can be overcome by testing more robust
and less time-consuming procedures such as methods based on extended and
non-linear Kalman filtering (KF) (Nouvellon et al. 2001). The updating method
has significantly reduced the computational times as compared to the calibration
method as it requires a single run. Besides, in updating methods, the model state
variables need to be adjusted during the model run itself and often intervene in the
model structure and processing loops to a large extent. Walker et al. (2001) con-
cluded that KF is a superior over the forcing method using a synthetic case. It has
been successfully demonstrated that RS-derived biophysical variables can be uti-
lized to calibrate parameters and initialize variables such as initial LAI and sowing
date (Maas 1988; Guerif and Duke 2000). It can also be used to adjust or replace a
state variable (LAI and fAPAR) in agroecosystem models (Bach and Mauser 2003;
Launay and Gue’rif 2005). Most of these studies were carried out at subregional to
local scales. However, these models can still be operated at the individual field level
with high-resolution satellite data such as SPOT, Landsat TM, and Sentinel. Further,
at these scales, the spatial and temporal resolution of RS images becomes a critical
factor (Dele’colle et al. 1992; Launay and Gue’rif 2005).

4.4.3 Data Assimilation Algorithms

The currently used DA algorithms include KF, ensemble Kalman filter (EnKF),
particle filter (PF), hierarchical Bayesian method (HBM), three-dimensional varia-
tional data assimilation (3DVAR), and four-dimensional variational data assimila-
tion (4DVAR). All these algorithms are discussed in detail in the following section
under the broad categories of the variational approach, KF and Bayesian Monte
Carlo approaches. The variational approach can optimize a given criterion such as
the minimization of a cost function, hence solving the assimilation problem. It is
observed that in a wide range of functions, optimizers are used to solve a generic cost
function problem for DA into a crop growth model. 3DVAR can assimilate obser-
vations without considering temporal dependency (Lorenc 1986). It can use the
complex observation operator, hence making it easier to assimilate for state variables
of non-director-related non-linear observations. However, 3DVAR model is limited
in practical applications because of higher computational cost. Hence, 4DVAR was
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developed using 3DVAR algorithm to overcome such problems. 4DVAR integrates
the solution over time (Le Dimet and Talagrand 1986). LAI or FAPAR is the mostly
used linking variables between satellite observations and models. This is probably
due to their straight forward representation or the connecting point within the crop
growth simulation model and the wider availability of satellite-derived LAI and/or
FAPAR products (Fig. 4.3).

Many researchers have explored the empirical relationship between various
vegetation indices (VIs) with LAI and fAPAR or using radiative transfer models
(RTMs) to convert LAI to reflectance. However, it is important to understand the
limitations of the observation operators, in both cases. The assimilation of fAPAR is
not necessarily the same as assimilating VIs. KF method cannot be used to address
high-dimensional data. Hence, it is often difficult to generate inputs for crop canopy
state variables, structure, and model uncertainty. To overcome these problems,
Evensen (1994) developed the EnKF. Many studies have demonstrated that the
EnKF method is very helpful for DA between crop models and RS data (Crow
and Wood 2003; Hadria et al. 2006; De Wit and Van Diepen 2007; Bolten et al.
2009; Nearing et al. 2012). The KF equations hold good only with linear CGMs and
linear observation operators and assume all the statistical functions as Gaussian.
However, dynamic crop models are often not linear, as the growth process is affected
by many factors, such as solar radiation, temperature, moisture, and other crop
management factors. These interactions cannot be simulated adequately by linear

Fig.4.3 A schematic framework of spatialized crop growth simulation model with EO data
assimilation
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models. Hence, a standard KF cannot be employed directly for carrying out the
assimilation process.

If direct RS-based measurements such as backscatter coefficients, radiance, and
reflectance are to be assimilated, the local linear approximation needs to be feasible.
If these approximations are available by using emulators (Gómez-Dans et al. 2016),
then EKF might be an efficient alternative to the EnKF (Evensen 2009). RS-derived
products can give direct, uncertainty-quantified measurement of state vector com-
ponents like LAI. It can be directly connected to the model predictions. KF will be a
good choice if the error related to the data product follows Gaussian distribution. It is
a sequential approach to measure state vector at different points of time by consid-
ering the probability distribution of the variables for each time frame. It uses a series
of measurements related to statistical noise; other errors are observed over time.
Hence, the estimation of an unknown variable using such approaches tends to be
more accurate than those based on a single measurement alone. However, the use of
EnKF is an alternative approach to assimilate such products as most of the CGMs are
non-linear.

The filtering approaches are casual as compared to the variational approach due to
the only use of past information to assimilate a current observation. The variation
approaches need information from the whole assimilation temporal window,
resulting in a more constrained problem compared to filters (Huang et al. 2019a).
Besides, filtering approaches facilitate near real-time operation with an on-line
updating facility. The similarity between KF and 4DVAR is the fact that both follow
the Gaussian assumption and Bayes’ rule. However, in CGMs and non-linear
observation operators, the uncertainties in the model don’t follow Gaussian distri-
bution, assuming normality in the posterior might be a poor choice. Rather,
sampling-based methods like Markov chain Monte Carlo (MCMC) (Gilks and
Roberts 1996) is a good choice. It uses the Markov chain to produce samples from
the posterior pdf that will work for any problem, provided that the chain is allowed to
run for a sufficient number of iterations. Again, a convergence of the chain is hard to
diagnose. Hence, many thumb rules (R^ indicator) are usually employed (Cowles
and Carlin 1996; Gelman et al. 2013). MCMC methods are more appropriate where
the dimensionality of the problem is not very high. These methods become slow
when the dimensionality is very high; hence, it is difficult to achieve convergence in
the desired timescales. The functional equivalents of MCMC are sequential Monte
Carlo methods, such as particle filters (PF). PF facilitates the propagation of
non-Gaussian distributions through complicated CGMs. PF shows some potential
for DA to integrate RS-derived biophysical parameters with a crop model as
compared to widely used EnKF (Jiang et al. 2014; Machwitz et al. 2014; Chen
and Cournède 2014). An important consideration for PF is that a large number of
particles may be required to reliably describe the posterior pdf, particularly when the
dimensionality of the problem increases. The approach appears to be promising for
non-linear CGMs. Several researchers have demonstrated the applications of PF for
crop model parameterization and uncertainty analysis (Makowski et al. 2002; Iizumi
et al. 2009; Dumont et al. 2014). A detailed list of various algorithms and their
usages along with crop models and RS data is presented in Table 4.3.
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4.5 Future Scopes and Challenges

The spatial crop growth model can simulate regional crop growth development and
yield using GIS and RS data. Studies conducted worldwide reported high simulation
accuracies of the model on a coarser scale. But there is a scope to further improve
upon the existing models to operate at a finer simulation unit like village or Gram
Panchayat level without losing the accuracy. The crop models used today have their
intrinsic limitations. Most of the crop models do not have the modules to simulate
the impact of diseases, pest infestation, and climatic disasters such as flooding, hail,
strong winds, and high temperature. The genetic coefficients of crop varieties in the
crop models are fixed by field trials or from literature, and it is not possible to
generate such coefficients on a regional scale by carrying out a large number of field
experiments. Similarly, feeding the crop models with spatially divergence crop
management information like input for irrigation, fertilization, sowing, etc. is fur-
thermore challenging. Difficulties are also encountered to accommodate high spa-
tiotemporal variations of the soil and weather parameters. Hence, the error is also
high in parameterizing the soil properties such as soil moisture, soil texture, soil
nutrients, carbon, and nitrogen content and daily weather inputs like maximum,
minimum temperature, rainfall, and solar radiation. Low accuracy in the input data
results in poor prediction of the model simulation. Most of the models assume
uniform field growth situations (like the potential and water-limited production
conditions), but in reality, several limiting factors can occur in the field. Hence,
the actual field conditions are beyond the defined boundary conditions of the model
range. These errors introduced through parameterization of crop model, hence
influencing the accuracy of biomass, LAI, and yield estimates both at regional and
global scales. To reduce the above-mentioned error, the following general issues
need to be addressed:

What are the sensitive input parameters for the model?
Which of these parameters can be retrieved accurately through RS technique

and how?
Which are the most suitable assimilation techniques for incorporating RS data into

the model?
What is the effect of assimilation on simulated output?
What is the effect of spatial and temporal resolution on the predictive power of the

model?

At the same time, some of the specific methods have been followed to reduce the
uncertainty in simulation such as (1) the addition of modules for simulating the
impact of diseases, insect/pest infestation, and climatic disasters and (2) combination
of global sensitivity analysis such as Morris, extended Fourier amplitude sensitivity
test (EFAST), intelligent optimization algorithms (IOA), MCMC, GA, general
likelihood uncertainty estimation (GLUE) for parameter optimization and model
accuracy improvement. Hence, the development of IOA for carrying out sensitivity
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analysis, calibration, and validation of crop models along with RS data retrieval and
assimilation will be a demanding area of research in the future.

The prediction accuracy of crop models is improved through the assimilation of
RS data. However, the RS data mainly obtained using various optical sensors may
also contain some errors in a regional domain (Huang et al. 2001; Duchemin et al.
2003; Hadria et al. 2006; Thorp et al. 2010; Yao et al. 2015). Currently, the VIs
derived from RS data is difficult to satisfy the requirement of crop models both
temporally and spatially. Further, RS has challenges such as directional problem,
scale effect and scale transformation, and retrieval techniques and method. These
factors impact the retrieval accuracy of canopy state variables using RS data and at
the DA chain (X. Jin et al. 2018). Crop area delineation is the foremost prerequisite
of spatialization of CGMs, and towards this end, object-oriented image analysis
(Blaschke 2010; Qi et al. 2012; Gu et al. 2017) could provide better representative
crop maps for the models. Object-oriented classification enables the acquisition of a
variety of spatial and textural features from multi-temporal RS images and carries
out segmentation followed by crop area delineation. Improved algorithms based on
machine learning techniques (Skakun et al. 2015; Guo et al. 2016) are very much
useful for pixel-level classification and analysis of multispectral and multi-temporal
RS data. Currently, the key problem of many RS-based parameter retrieval is due to
the ill-posed issues during the inversion process (Li et al. 2015a,b). Though there is
no definitive solution to the inversion problem, the introduction of the prior knowl-
edge could provide better convergence. The uncertainty introduced by DA could be
improved by combining different DA algorithms (such as a combination of EnKF
and 4DVAR) (Dong et al. 2013). Development in the area of hyperspectral RS data
can further improve the estimation accuracy of canopy state variables and soil
properties at the field scale based on a combination of spectral shapes and spectral
indices (Frels et al. 2018). With the fast development of versatile, lightweight, and
low-cost portable sensors on the unmanned aerial vehicle (UAV) platform, newer
avenue of RS data generation with the high spatial and temporal resolution is
evolving (Bendig et al. 2015; Adao et al. 2017). Though this UAV technology is
best suited to acquire high spatial and temporal RS data at the field scale, it does not
provide regional-scale data promptly because of the small spatial coverage of UAV.
To improve the stress detection and crop monitoring activities through RS,
fluorescence-based sensors have been developed recently. In this context, Fluores-
cence Explorer (FLEX) of the European Space Agency is expected to monitor the
photosynthetic activity of vegetation through chlorophyll fluorescence on a global
scale. Fluorescence is considered to be a more accurate and earlier indicator of plant
growth and stress than other biophysical parameters used (LAI, fAPAR), but the
fluorescence data product would at a coarser scale account for its weak signal.
Hence, lots of research is required on this fluorescence data retrieval and assimilation
into the crop model. The recent trend in the development of constellations of
nanosatellites (mass < 10 kg) is another area of research in satellite RS. An
operational example is the constellation of Planet Lab’s “Doves”, which are
designed to cover the globe daily at 3–5 m spatial resolution. Development of
intelligent algorithm to handle big data generated through multiple sensors on
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different platforms and assimilating these data into process-based CGSMs at the
required scale and resolution will become key research directions in the future.

4.6 Conclusions

Crop models and RS had parallel development courses, and both the technology
complement each other. At the same time, the spatialization of CGMs demands the
synergistic use of both. The combined use of various RS datasets and crop models
using new DA methods could improve the retrieval accuracy of crop canopy state
variables, soil properties, etc. The major challenge in the spatialization of CGMs is to
address various issues and limitations of both techniques. In this chapter, a detailed
discussion is carried out on the evolution, scope, and limitation of popular process-
based crop growth simulation models at the beginning. The techniques and issues
involved in the spatialization of crop models particularly the development of a
spatial framework on the GIS environment and addressing the availability of data
at various scales are discussed with emphasis on soil, weather, and retrieved crop
biophysical parameters. Spatialization involves a change of scales in input, pro-
cesses, and output. Various limitations of scale change are addressed in this chapter
under various sections. The retrieval of biophysical parameters from RS data and its
subsequent assimilation into the model is the central theme around which the entire
concept of spatialization of the crop growth model revolves around. Different
techniques for retrieval of crop biophysical parameters from RS data such as
empirical, physical, and hybrid approaches are presented along with some of their
recent application. This section also covers scale effect, optimal scale, and pixel
heterogeneity and related issues involved in the retrieval process. The concept of RS
DA into a crop growth model is discussed along with various algorithms. A list of
recent studies on RS DA is presented. An attempt is made to cover all recent
development and future scope for research in the area of spatialization of crop
growth models.
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