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Abstract Natural resource monitoring and assessment is a vital step to formulate a
sustainable development plan. The introduction of various modern geospatial tech-
niques and tools like Remote Sensing (RS), Geographic Information System (GIS),
Global Positioning System (GPS), and information technology (IT) have provided
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powerful approaches of surveying, identifying, classifying, mapping, monitoring,
and characterization of the composition, extent, and distribution of various natural
resources. Geospatial techniques deal with the acquirement, storage, processing,
production, presentation, and dissemination of geoinformation. The information
obtained from RS, GPS, and through conventional methods could be used effec-
tively to create database in GIS platform for various spatial and temporal analysis
related to sustainable management of land resource and formulate environment-
friendly action plans. Major applications of geospatial technologies related to crops
and soils are crop inventory and monitoring, crop production estimates and fore-
casting, crop growth simulation modeling, crop yield estimation, precision agricul-
ture, soil mapping, land degradation assessment, soil erosion assessment, soil quality
assessment, digital soil mapping, digital terrain modeling, soil-landscape modeling,
land use/land cover mapping, agricultural land use planning, etc., which have a
far-reaching impact on mapping, monitoring, and management of crop and land
resources on sustainable basis. Geospatial approaches have made inroads across
different sectors both in private and public domain in various countries across the
world. Selected tools can help to restore the soil health, stop exploitation of the
natural resources, reduce energy consumption, carbon and water footprints, and
improve the productivity and sustainability under changing climate. Geospatial
technologies for crops and soils a novel tool for the food, nutritional, environmental,
and economic security for the future generations under limited natural resources.
This book will be helpful for the producers, researchers, teachers, and policymakers
to deal with the future alarming issues.
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1.1 Introduction

For about 2.5 million years, human species fed themselves by hunting animals and
gathering plants. Human ecological footprint was minimal. Nearly about
10,000 years ago, human started controlling and manipulating few animals and
plants species for their benefit. This leads to development of agrarian society with
concept of advance food security. It translated into population explosion and more
tilling for the extra food. Since then humans have been facing this cyclic phenom-
enon and surprisingly surviving it. But in the present scenario, horizontal expansion
of agricultural activities is limited. Hence, our sole effort has been directed toward
vertical expansion under limited resources.

The latest United Nations (UN) projections reveal that the world population will
rise from 6.8 billion to 9.1 billion in 2050, which leads to an increase in demand for
agricultural produces by 60% (Alexandratos and Bruinsma 2012). Other constraints
like fragmented land holdings, land degradation, deterioration of soil health, the
declining trend of the total crop productivity, as well as global climatic variations
have posed serious threats in agricultural growth and development. However, to
meet up with the future challenges to feed the 9 billion people of the world, there is a
need to halt the declining trend of the total crop productivity, minimizing the rate of
degradation of natural resources, and enhancing farm incomes through sustainable
resources development plan. The adoption of newly emerged technology and tools
like remote sensing (RS), geographic information System (GIS), global positioning
system (GPS) and information technology (IT) might play a major role to enhance
agricultural productivity in the future (Hakkim et al. 2016) through continuous
monitoring and assessment of the natural resources. The gamut of all these technol-
ogies and tools, termed as geospatial technology, is a rapidly growing and changing
field that assists the user in the collection, storage, analysis, interpretation, and
dissemination of spatial data. It is a cost-effective approach which includes acqui-
sition of real-time satellite images through RS, data analysis and management
through GIS, location services and geo-referencing through GPS, and web services
and outreach through IT. The advances in RS generate data for detailed inventory,
mapping, and monitoring of crop, land, and water resources on a large scale
(Gerhards et al. 2019). Satellite RS coupled with GIS and mobile app-based
positional information has emerged as an efficient tool for the sustainable develop-
ment in agriculture sector by optimizing input resources, minimizing the cost of
production, and risk of biotic/abiotic in nature. Such technologies have the capabil-
ities to provide ‘“Decision Support Scenarios” which could be vital for monitoring
the overall health of the agricultural sector and facilitate informed decision-making.
Some of the major applications of geospatial technologies related to agriculture are
crop inventory and monitoring (Schmedtmann and Campagnolo 2015; Ghazaryan
et al. 2018; Heupel et al. 2018), crop growth simulation modeling, crop yield
estimation (Huang et al. 2019; Ban et al. 2019; Phung et al. 2020), PA (Friedl
2018; Neupane and Guo 2019), soil mapping (Manchanda et al. 2002; Mulder et al.
2011), assessment of soil erosion (Woldemariam et al. 2018; Meena et al. 2018;
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Zabihi et al. 2019); assessment of soil quality (Paz-Kagan et al. 2014, 2015), digital
soil mapping (Ma et al. 2019; Wadoux et al. 2019), water management for irrigated
agriculture (Taghvaeian et al. 2018; Tazekrit et al. 2018; Ojo and Ilunga 2018),
agricultural land use planning (Ambika et al. 2016; Useya et al. 2019; Pareeth et al.
2019), etc. The medium and coarse resolution RS datasets can provide a regular and
synoptic coverage of crop and soil resources at a continental or regional level.
Whereas the fine-resolution satellite data helps in micro-level or farm-level agricul-
tural activities such as water resources mapping, drainage pattern, management of
fertilizers, pesticides, variable rate technology, crop insurance, crop damage assess-
ment, etc. RS data of optical, microwave, thermal, and hyperspectral domain has
proved to be a powerful tool to assess crop and soil properties in varying spatial and
temporal scales. Several researchers (Mulla 2013; Pareeth et al. 2019; Rotairo et al.
2019; Phung et al. 2020) have shown the usefulness of RS technology to get spatially
and temporally variable information for agriculture. A large number of satellite RS
data are available nowadays to the researcher for natural resources management such
as Moderate-Resolution Imaging Spectrometer (MODIS), Land Satellite (Landsat),
Sentinel, Resourcesat-2, Cartosat-1, Cartosat-2, Planet, and QuickBird, etc. The
number of satellite missions by various space agencies like National Aeronautics
and Space Adminstration (NASA), European Space Agency (ESA), Japan Aero-
space Exploration Agency (JAXA), China National Space Administration (CNSA),
Indian Space Research Organization (ISRO), etc., dedicated to RS, has increased
space resources sgnificantly over the past decades and will further increase over the
coming decades and beyond. Nowadays several countries from the Asia-Pacific,
South Asia, North America, and Europe are creating an Agricultural Market Infor-
mation System which utilizes geospatial tools to fuse basic socioeconomic and crop
statistics for the overall management of agriculture produce and demand—supply
chain. In nutshell, geospatial technology has become part and parcel of agriculture
management system. The technology has proven its potential and effectiveness, and
also provides scope of future development.

1.2 Current Challenges in Agriculture: Global Perspective

Agriculture, in generic sense, is harvesting of sunlight toward conversion of carbon
dioxide and water into carbohydrate/sugar. This basic translation is modulated by
prevailing weather, pests and diseases, soil, and plant resources. Often agriculture is
livelihood, not a profitable business, particularly in the third world countries. Hence,
agriculture is done sub-optimally with limited resources in majority of the global
arable land. This caters the biggest challenges as well as the opportunities of
agriculture.

Feeding 9 billion of human population by 2050 is the target set by FAO
(Alexandratos and Bruinsma 2012). It requires increase of agricultural produce by
60% from present status. The target is really challenging and further complicated by
the changing global climatic pattern (Meena et al. 2018a). The world scientific
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community has reached to a broad consensus that the concentration of atmospheric
greenhouse gases, mainly carbon dioxide, has been increasing unprecedently, and
more so in the last few decades. This resulted in significant warming of global
climate as evident from rise in global average air and ocean temperature, widespread
melting of snow and ice, and rise in global average sea level. Studies across the globe
have reported these changes over European region (Hasanean 2001; Domonkos and
Tar 2003; Feidas et al. 2004), China (Liu et al. 2004), Japan and Korean peninsula
(Chung and Yoon 2000; Yue and Hashino 2003), Malaysia (Tangang et al. 2007),
Alaska (Stafford et al. 2000), and India (Revadekar et al. 2012; Chakraborty et al.
2017; Chakraborty et al. 2018). The warming pattern has also caused change in
rainfall pattern, increase in extreme weather events, altered pest and disease profiles
along with the crop phenology, and rapid degradation of land and soil quality
(Cleland et al. 2007; Das et al. 2013; Chakraborty et al. 2014). The phenomena of
the changing climatic and ecosystem condition have been found to be global in
nature, though they do exhibit considerable spatial and temporal variability at local
level.

To meet the demands of higher production, overexploitation of land may lead to
land degradation. At present 33% of arable land suffers from various kinds of
degradation processes. It is a global threat which leads to reduction in area and
productivity of 13.4 billion ha of global cultivable land (Reddy 2003). Agricultural
production is deleteriously affected due to inappropriate land care strategies in
maximum portions of the world (Lambin and Meyfroidt 2011; Lambin et al.
2013). Sometimes direct impact of land degradation may appear in rapid desertifi-
cation of semi-arid and arid region, frequent and intense drought occurrence, and
loss of productive topsoil and biodiversity (Gibbs et al. 2010; Lambin and Meyfroidt
2011; Meena et al. 2020). Besides land degradation, volatile weather and extreme
events would change the growing seasons; limit the availability of water; allow
weeds, pests, and disease to thrive; and reduce crop productivity drastically. Apart
from all the above-mentioned issues, some of the biggest problems facing the
agricultural sector in developing and under-developed countries are low yield,
fragmented land holdings, poor infrastructure, low use of appropriate and best
farming techniques, a decline in soil fertility etc., which are leading contributors to
low agricultural productivity. Hence, countries need to prioritize agriculture and
growing food with more sustainable methods.

1.3 Importance of Geospatial Technologies

To meet up with the future challenges to feed the 9 billion people of the world, there
is a need to continue investing in appropriate technologies to arrest the declining
trend of the total crop productivity, minimizing the rate of degradation of natural
resources, reducing environmental damage (including greenhouse gas emission),
and enhancing farm incomes through a sustainable resources development plan.
Over the few decades, the innovation in digital agricultural technologies such as



1 Geospatial Technologies for Crops and Soils: An Overview 7

precision farming (PF), crop monitoring and surveillance system, artificial intelli-
gence (Al) in agricultural decision supports, IT-driven extensions are gaining more
importance. The adoption of such newly emerged technology and tools into the
entire agriculture value chain might play major role in increasing agricultural
productivity in the future (Hakkim et al. 2016; Mitran et al. 2018a). These technol-
ogies help in continuous monitoring and assessment of the condition and availability
of the agricultural resources and simultaneously transformed agriculture into a
sustainable ecosystem. Further, it can also reduce the impact of agriculture on the
global environment by optimizing the use of water, fertilizer, fossil fuel, and land for
food production. The greenhouse gas emissions contributed by agriculture can also
be mitigated through adopting climate-smart practices.

1.4 Geospatial Tools and Techniques

The modern geospatial technologies include RS, GIS, GPS, proximal sensing,
mobile technology, etc., which can be used efficiently for agricultural resources
management and precision farming. The overall idea and integration of such tech-
nologies are presented in Fig. 1.1.

1.4.1 Remote Sensing

RS is the “science of making inferences about material objects from measurements,
made at distance, without coming into physical contact with the objects under study”
(Lillesand et al. 2015). A RS system consists of a platform (satellite, rocket, balloon,
etc.), where a sensor can be mounted to collect and or emit radiation/signal (Sabins
1997). RS can be “active” when a signal is emitted by a satellite and its reflection by
the object is detected by the sensor and “passive” when the object is illuminated by
sunlight and its reflection/emission is detected by the sensor (Ran et al. 2017a, b). RS
imagery along with GIS to process, alter, manipulate, store, and retrieve can very
effectively used for natural resource management. RS images can be obtained either
from sensor in satellite platform or boarded on small aircraft as aerial photography
(Mulla 2013). Aerial photography is the original form of RS and remains the most
widely used method until recently. It has few advantages, that is, aerial images are
generally of high resolution depending on the flight height (3—5 km). They are
relatively immune to the cloudiness, and acquiring time of the image can be
scheduled at will. Aerial photographs are different types such as black and white,
high- or low-altitude photographs, vertical/oblique, infrared, multi-spectral, etc. The
selection of aerial photographs depends on the purpose of the study. These photo-
graphs are very useful in small areas for micro-level investigation. Vertical aerial
photographs are mostly used in land use planning, cartography, specifically in
photogrammetric surveys, to generate topographic maps (Twiss et al. 2001). Oblique
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Fig. 1.1 A schematic diagram on geospatial technologies

aerial photography is useful for environmental studies (Stewart et al. 2014). The
satellite RS for systematic natural resources management began with the launch of
the Earth Resources Technology Satellite (ERTS-1) by the USA in 1972, later
renamed as LANDSAT. Remote sensors, such as on-board radiometers or spectro-
radiometers allows the observation of large areas of the Earth surface (synoptic
capability) at different wavelengths (optical, infrared, thermal, etc.) of the electro-
magnetic (EM) radiation (multispectral capability) and at a frequent time interval
(multi-temporal capability). Optical RS deals with collecting radiation reflected and
emitted from the object under study within the EM spectrum of visible (0.4 pm),
near-infrared (NIR) and thermal infrared (TIR, 15 pm). Landsat, Sentinel-
2, Resourcesat, Quickbird, and SPOT satellites are the well-known multispectral
satellite sensors. Optical RS is one of the suitable technologies for the analysis,
surveying, mapping, and monitoring of soils and crops. However, using optical RS
datasets for mapping have several limitations. Instrument calibration, atmospheric
correction, and cloud screening for data especially during the monsoon period are
major limitations for optical RS. However, the introduction of microwave remote
sensing (MRS) overcame few issues such as monitoring the Earth’s surface,
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irrespective of day/night and even in cloudy weather conditions which make it more
effective and useful (Navalgund et al. 2007). The main advantages of MRS are its
ability to penetrate the clouds, rain, vegetation, and even very dry soil surfaces. EM
waves having frequencies between 109 and 1012 Hz are generally considered as
microwaves. Radar is an active MRS system in which the terrain is illuminated using
EM energy and the scattered energy returning from the terrain (known as radar return
or backscatter) is detected and recorded as images. Examples of radar RS instru-
ments include Synthetic Aperture Radar (SAR), scatterometers, altimeters, and radar
sounders. MRS technology is been widely used for crop monitoring during the rainy
season, soil moisture estimation, and land cover analysis. Sentinel-1, Radarsat-1&2,
Radar Imaging Satellite (RISAT-1), Environmental Satellite (ENVISAT), Advance
Land Observing Satellite—Phased Array type L-band Synthetic Aperture Radar
(ALOS-PALSAR) are the well-known satellite sensors that use microwave sensors.
Nowadays hyperspectral remote sensing is gaining more importance because of
choice for more bands (>200 bands) as compared to multispectral imagery (between
3 and 10 bands). Hyperspectral imaging sensors measures surface reflectance with a
given spatial resolution, covering an area instead of a single point (Gerighausen et al.
2012) and providing spectral information at high spatial density (Franceschini et al.
2015). Hyperspectral datasets have a greater potential to detect differences among
land and water features. For example, multispectral imagery can be used to map
cropped areas, while hyperspectral imagery can be used to map crop type too. The
growing demand for large-scale investigations related to natural resources manage-
ment and environmental issues has required the development of air- and spaceborne
imaging spectroscopy. Currently, airborne hyperspectral sensors predominate over
spaceborne imaging spectroscopy (Transon et al. 2018). Airborne sensors such as
Airborne Visible Infrared Imaging Spectrometer (AVIRIS), DLR Earth Sensing
Imaging Spectrometer (DESIS), and Airborne PRISM Experiment (APEX) have
excellent potential for imaging spectroscopy (Rast and Painter 2019). Airborne
hyperspectral data has been widely used for crops and soil assessment such as
discrimination of crop type, retrieval of crop biophysical parameters, determination
of soil mineral content, organic matter, nitrogen, salinity status, iron oxide content,
and carbonate by using diagnostic absorption features of hyperspectral bands.
Upcoming spaceborne sensors with high revisit time (from 3 to 5 days), higher
spatial resolution, from several countries, are planned for launch in the coming years.

Besides hyperspectral RS, thermal remote sensing (TRS) is also gaining impor-
tance for natural resources and environmental studies. Thermal infrared radiation
refers to EM waves with a wavelength of between 3 and 20 pm. Most of the TRS
applications make use of 3—5 and 8—14 pm ranges. The major difference between the
near infrared and thermal infrared is that NIR is the reflected energy where thermal
infrared is emitted energy. The principle of TRS in agriculture is based on the
emission of radiation responding to the temperature of the leaf and canopy. How-
ever, the emission of radiation varies with air temperature and the rate of evapo-
transpiration (Maes and Steppe 2012; Gerhards et al. 2019). TRS is widely used for
the detection of plant responses to environmental and water stresses (Gago et al.
2015; Ramoelo et al. 2015; Khanal et al. 2017; Huang et al. 2018).
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RS technology has a great potential to acquire high spatial, spectral, and temporal
resolution data as input for PA (Gerhards et al. 2019). The advances in RS technol-
ogy generate data for detailed inventory, mapping, and monitoring of crop, land, and
water resources on large scale (Gerhards et al. 2019). A RS data user should be aware
of various data products and their use in respective domains in order to choose a
dataset. A variety of remote sensing satellite datasets with their specifications is
distributed through different websites from manufacturers, satellite operators, data
providers, and is presented in Table 1.1.

1.4.2 Proximal Sensing

Besides remote sensing, proximal sensing is also getting attention in agriculture
especially in precession farming. To overcome the constraints of satellite-based
remote sensing, modern world is emphasizing on the use of proximal sensing
techniques in PA to assess the growth and stress of crops. In proximal sensing, the
platforms are mostly handheld, tractor based, stationary installation, and robotics
managed, etc., and the sensors are in close contact to the object. The types of sensors
used in this case can be simple RGB or gray-level imaging, multispectral,
hyperspectral imaging, or IR-thermography (Rossel and Behrens 2010; Mulla
2013). Apart from reflectance, transmittance, and absorption, plant leaves can also
emit energy by fluorescence (Apostol et al. 2003) or thermal emission (Cohen et al.
2005). Sensors have significant uses in the field of agriculture, especially in the field
of plant monitoring. The information collected through the proximal and remote
sensors is always tied to efficient data analysis approaches such as advance machine
learning, data mining, spectral soil, and vegetation indices—based algorithms, iden-
tification of specific wavelength and feature, etc. The proximal RS is able to provide
information on both biotic and abiotic stresses such as nutrient deficiency, pests, and
diseases, etc. A number of proximal sensors such as Soil Plant Analysis Develop-
ment (SPAD) meter (Schepers et al. 1992), green seeker (Raun et al. 2002), crop
spec (Reusch et al. 2010), H-sensor artificial intelligence (Partel et al. 2019), etc.
have been developed for crop assessment. Besides crop sensors, proximal soil
sensors are also getting more attention in precision farming. Proximal soil sensors
allow inexpensive and rapid collection of quantitative, precise, high-resolution data,
which can be used to better understand soil temporal and spatial variability. Rossel
et al. (2011) provided description of proximal soil sensing techniques used and the
soil properties that can be measured by these technologies. The characterization of
the temporal and spatial variation of soil at field and landscape level using point-
based observation is time-consuming, expensive, and impractical. The remotely
sensed satellite images, as well as aerial photos, can provide excellent spatial
coverage; however, the measurement is, indirect, involves large uncertainties and
typically limited to the surface to surface soil (5-6 cm), hence not appropriate to
measure spatial and temporal variability at farm level. Such limitations make the
proximal soils sensing increasingly popular by filling the data gap between the lower
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resolution remotely sensed data and high-resolution point data (Adamchuk 2011;
Rossel et al. 2011). A number of the proximal sensors as well as methods such as
ground-penetrating radar, EM induction, electrical resistivity, magnetometry, optical
reflectance, gamma-ray spectroscopy, etc., have been used for farm- and landscape-
level soil survey to indirectly measure the spatial and temporal variability of soil
properties. Various soil physical and chemical properties such as soil texture,
porosity, pH, bulk density, soil structure, salinity, organic carbon, moisture content,
CaCOs; content, cation-exchange capacity, ionic composition, plant-available nutri-
ents, as well as metal content in contaminated soil, etc. can be assessed using various
proximal soil sensing methods (Doolittle and Brevik 2014; Dao 2018).

1.4.3 Geographic Information System

GIS is a computerized system for gathering information of Earth features with a
geographic reference system (latitude, longitude, coordinates, projection). Visual
representation either through map generation or any other digital image format
makes it a unique one to the users. It is a blend of computer technology and mapping
science of geography — regarded as computational geography (Kavita and Patil
2011). Many other terms synonymously used in place of GIS include spatial data
handling system (Marble and Peuquet 1983), geographic data system (White 1984),
spatial information system, geo-data system, geo-based information system, natural
resource information system (Clarke 1986), multipurpose cadastre, etc. The basic
functions of GIS are collection of Earth’s information, analysis, update, manipula-
tion, storage, complex relation and integration of data, interpretation and visual
representation for further decision-making through a systematic way integrating
personnel, institutions, hardware, data, and software (Supuwiningsih and Rusli
2017). What GIS does is basically capturing location-specific information and its
facile displaying to the user for better understanding, interpretation, and informed
decision-making.

GIS is an assemblage of computer hardware, software, storage device, modeling
or logical interface, operating personnel, and geographic information collected
through capturing device or remotely sensed tools (Chang et al. 2009; Pendleton
2012). GIS is dished out into two major groups (Gangwar 2013):

(i) Base data or core data or framework data (common for all applications): Data
includes information about elevation, natural or constructed features of the
Earth’s surface, geodetic frameworks for navigation, etc.

(i) Thematic data (application-specific data): This data varies according to the
user’s application, for example, socioeconomic data from planning and cen-
suses, natural resource data, or modified forms of base data, etc.

GIS contains a database management system to handle two types of data: spatial
(real-world geo-referenced information) and attribute data (a characteristic feature of
objects). It undergoes spatial analysis to find out trends, patterns, shapes, and
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relationships of data. Spatial analysis is of different types like overlay analysis
(superimposing thematic layers to go insight of the data), proximity analysis
(to find out how much features are close to each other), buffer analysis (this is a
type of proximity analysis which is determined through distance around features and
applied to points, lines, or polygons to discover areas in or outside the buffer area)
(Farkas et al. 2016), etc. GIS incorporates only two kinds of data, namely vector- and
raster-featured data. Vector and raster featured data describe discrete and continuous
features, respectively. Vector-featured data comprises point (no dimension), line
(one dimension), and area or polygon (two dimensions), while raster-featured data
includes grid cells and pixels (Wieczorek and Delmerico 2009). Point is displayed
on screen or maps by reducing its scale as a symbol. For example, the corner of a
building is shown by a point as a representative of coordinates. Line, on the other
hand, connects two points and thus represents one dimension. For instance, the
boundary of a water body can be marked by a line. The area, as well as polygon,
represents two-dimensional specifications (community land or water body or vege-
tation land uses) by incorporating at least three connecting lines through different
points (Chang et al. 2009). Polygons have an area and perimeter values and are used
to represent a wide range of physical (types of soil, forests, and water bodies),
anthropogenic (land parcels, administrative boundaries), and other features
(Sugumaran and DeGroote 2011). In raster GIS, a unique reference coordinate or
cell address represents discrete attribute data contained a grid cell or pixel at a corner
or center. Raster format superimposes imageries over grid cells for better features’
identification, and pixel size or grid decides the resolution of images. Unlike vector
format, raster GIS undergoes scalar operations on spatially explicit data and requires
conversion into vector format before further operations. Nowadays, many GIS
software like ArcGIS, QGIS, Maptitude, GeoMedia, etc. can easily transform
those formats into each other. GIS provides data output and presentation through
charts and maps as these communicate better than words. Chart expresses the tabular
data in some graphical diagrams like area, bar, column, line, scatter, and pie.
GIS-based software has dynamic charts for automatic updating. On another side,
maps like planimetric, topographic, cadastral, image, thematic, etc. represent fea-
tures related to Earth through pictorial or symbolized formats embodied by scales,
coordinates, etc. A list of GIS software used for spatial data analysis is presented in
Table 1.2.

1.4.4 Global Positioning System

GPS is a satellite-based navigation system, capable of locating any positions on the
Earth. It can supply real-time, three-dimensional data regarding positions, naviga-
tion, and timing continuously 24 h/day. The development of GPS was primarily
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Table 1.2 A list of GIS software for spatial data analysis
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GIS software | Developer Country References
ArcGIS Environmental Systems Redlands, Cali- | https://www.esri.com/en-
Research Institute (ESRI) fornia, USA us/arcgis
GeoMedia Intergraph Madison, Ala- https://geospatial.
(Hexagon) bama, United intergraph.com/products/
States GeoMedia
QGIS Open Source Geospatial Chicago, USA https://qgis.org/en/site
Foundation
SAGA-GIS Department of Physical Germany https://www.saga-gis.org/
Geography, University of en
Gottingen,
GRASS GIS GRASS Development Team | Chicago, USA https://grass.osgeo.org/
gvSIG Open Source Geospatial Chicago, USA https://www.gvsig.org
Foundation
ENVI Harris Geospatial Solutions | Broomfield, Col- | https://www.
orado, United harrisgeospatial.com
States
Maplnfo Pitney Bowes Stamford, Con- | https://www.mapinfo.com
Professional necticut, USA
Global Blue Marble Geographics Hallowell, https://www.
Mapper Maine, USA bluemarblegeo.com/prod
ucts/global-mapper.php
Manifold GIS | Manifold Software Limited | USA https://www.manifold.net
Smallworld GE Energy Connections Cambridge, https://www.ge.com
England
Bentley Map Bentley Systems, Exton, Pennsyl- | https://www.bentley.com
Incorporated vania, USA
MapViewer Golden Software LLC Golden, Colo- https://www.
and Surfer rado, USA goldensoftware.com
Maptitude Caliper Corporation Newton, Massa- | https://www.caliper.com
chusetts, USA
SuperGIS Supergeo Technologies Taipei, Taiwan https://www.supergeotek.
com
Super Map SuperMap Software Co., Ltd | Beijing, China https://www.supermap.com
PCIGeomatica | PCI Geomatics Markham, https://www.pcigeomatics.
Ontario, Canada | com
IDRISI Clark Laboratories Worcester, MA https://clarklabs.org
USA
AutoCAD Autodesk San Rafael, Cali- | https://autodesk.com
Map 3D fornia, United
States
Tatuk GIS TatukGISSp Gdynia, Poland | https://www.tatukgis.com
Microlmages | Microlmages, Inc Lincoln, https://www.microimages.
(TNTgis) Nebraska, USA | com

(continued)
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Table 1.2 (continued)

GIS software | Developer Country References

MapMaker Map Maker Limited Argyll, Scotland, | https://www.mapmaker.

Pro UK com

(MapMaker)

MapRite Envitia Reston, VA, https://www.envitia.com

USA

Tlwis 52°North ILWIS Netherlands https://www.52north.org

Community

made for military applications and it started mainly as a Navigation System with
Time and Ranging Global Positioning System (NAVSTAR GPS), but it was made
available for civilian use since the 1980s. There are at least 24 GPS satellites in
action for all the times which synchronize operations so that these repeated signals
are transmitted at the same instance. It can calculate its position in three dimensional
space when the receiver estimates the distance to at least four GPS satellites also
referred to as trilateration. Most of the handheld GPS have 20 m positional and 1 m
location accuracy. However, submeter location accuracy could also be obtained by
using Differential GPS (DGPS). There are no subscriptions or setup charges required
to use GPS. Hence, it can be accessed by anyone for any application which needs
location coordinates. This has opened many new avenues for spatial data analyses.
Nowadays farmers could access the GPS to perform site-specific farm activities. In
GPS, several satellites are involved in the identification of the actual position of farm
equipment within the field. GPS is a real-time, accurate, all-weather, economic, and
continuously available positioning system. Hence, it has emerged as a unique
surveying technique with wide range of applications in various domain. The major
applications of GPS in agriculture are as follows:

I. Geophysical and cadastral surveys
II. Determination of the precise location in the field for spatial variability
assessment
III. Determination of the precise location in the field for site-specific input
applications
IV. Yield mapping
V. Integration of all field-based variables such as the intensity of weeds, crop
yield, and soil moisture, etc. with RS data using DGPS
VI. Crop insurance value chain
VII. Agricultural supply chain
VIII. Disaster management and support
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1.5 Role of Geospatial Technologies in Sustainable
Agriculture

The discoveries in the field of science and technology during the twentieth and
twenty-first centuries, especially geospatial technology, have enabled farmers to
effectively use farm inputs to maximize crop yield. Geospatial technologies play a
vital role in major agriculture application areas such as crop, soils, land, water,
climate, and risk-related studies with data, models, and analytics. The geospatial
technologies are playing a meaningful role in agriculture in the following ways:

(a) Easy and timely data acquisition

(b) Near real-time visualization and assessment of natural resources

(c) High-resolution and accurate mapping and assessment

(d) Optimize planning tools and techniques for agricultural activities (seeding,
irrigation, fertilization etc.)

(e) Facilitate real-time mapping and monitoring of farm operations

(f) Improve yield and productivity of crops

(g) Centralized management of spatial and nonspatial data at farm level

(h) In-season crop damage assessment

(1) Support to the crop insurance value chain

(j) Easy dissemination of agricultural data through web

(k) Improving farm incomes while minimizing risk

There are various approaches to optimize agricultural activities through
geospatial technologies such as climate-smart agriculture (CSA), precision farming
(PF), conservation agriculture (CA), etc. Such approaches can optimize the use of
farm inputs and resources which helps to reduce the cost of production and minimize
agricultural risk and hazards, hence, improve the crop productivity and farm income.
CSA coined by FAO is described as “agriculture that sustainably increases produc-
tivity, resilience (adaptation), reduces/removes greenhouse gases (GHGs) (mitiga-
tion), and enhances achievement of national food security and development goals”.
The adoption of CSA by farmers can improve crop production, increase economic
growth, reduce greenhouse gas emission, create jobs, and hence decline hunger and
poverty. PF is the use of geospatial tools and techniques to assess spatial and
temporal variability associated with crop production factors to enhance crop perfor-
mance and environmental quality (Pierce and Nowak 1999). It is also known as
satellite agriculture, PF can relate to an agricultural production system with a robust
set of technologies, including RS, GIS, GPS, and Variable Rate Technology (VRT)
which can propel agriculture into the computerized information-based world. Now-
adays geospatial technologies are playing a crucial role in CA. The real-time spatial
and temporal satellite data analysis helps in the formulation of a series of land
management practices that include soil management practices to reduce land degra-
dation, introduce cover crops, retention of crop residues, recommended suitable
cropping sequences, etc.
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1.6 Crop and Soil Factors Influencing Remote Sensing

There are several crop and soil attributes that influence remote sensing signal. The
amount of energy absorbed and transmitted by a plant leaf is affected principally by
the amount and type of chlorophyll content, leaf internal structure, leaf water
content, and leaf biomass content etc. It is further modulated by leaf area per unit
land, leaf arrangement (leaf angle distribution), background soil reflectance,
sun-sensor geometry at canopy level. Leaf-level synthetic spectral reflectance gen-
erated by PROSPECT-D model using different input parameters are presented in
Fig. 1.2 (http://opticleaf.ipgp.fr/index.php?page=prospect). Among the plant pig-
ments, chlorophyll-a and chlorophyll-b absorb radiation strongly in the visible
wavelength range (400—700 nm) specifically 430 (blue) and 660 (red) nm for
chlorophyll-a; and 450 (B) and 650 (R) nm for chlorophyll-b. Both chlorophyll-a
and -b absorb light, but chlorophyll-a plays a dominant and critical role in converting
light energy to chemical energy (Pinter et al. 2003). Due to the absorption of
chlorophyll, the healthy green leaf shows very low reflectance values (~5-10%) in
the blue and red region of the EM spectrum. The green region exhibits comparatively
higher reflectance (~10-15%) making the plant leaf green in color. Sudden surge in
reflectance is observed (~40-50%) in the near-infrared (700-1000 nm) due to well-
developed leaf internal structure of spongy parenchyma and air space (Salama
2011). This is followed by two weak water absorption bands (970, 1200 nm) in
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NIR and two strong water absorption bands (1450, 1940 nm) in Shortwave Infrared
Region (SWIR). The response of leaf reflectance spectra with the variation of the
major inputs are presented in Fig. 1.2. Keeping other factors constant, the leaf
chlorophyll content has been varied from 10 to 40 pg cm ™2 and the effect on the
reflectance spectra is observed in the visible region only (400700 nm). The
absorption at blue and red bands has increased with the increase in the chlorophyll
content. The reflectance at green region has also decreased as the higher chlorophyll
content turn the leaf darker. The leaf internal structure (N) parameter is found to be
highly sensitive. The N parameter has been increased from 1 to 2.5 keeping other
inputs as constant, and the spectral reflectance is found to increase drastically. The
effect was found across the spectral band but more pronounced in the reflection
peaks than the absorption regions. The leaf wetness parameters, that is, Equivalent
Water Thickness (EWT) is found to have effect on the NIR and SWIR of the
spectrum. The spectral response with the increase of EWT from 0.01 to 0.04 cm,
keeping other variables constant, is presented in Fig. 1.2. With the increase in EWT,
the depth of the water absorption bands have increased. It has effectively brought
down the whole spectra from NIR to SWIR proportionately. The effect of leaf mass
per unit area (LMA) was found in NIR to SWIR with marginal effect. The reflec-
tance is found to be marginally decreased with no change in the absorption region.
As other parameters are kept constant, the increase in LMA made the leaf internal
structure more compact with less airspace. This results in a decrease of reflectance in
the NIR and SWIR regions, as depicted in Fig. 1.2. Please be informed that the
driving parameters of leaf reflectance act simultaneously and produce a mix response
in practical scenarios.

An interesting observation revealed that when a plant goes to the senescence
stage, reflectance begins to downhill in the near-infrared region (collapse of leaf
internal structure) and uphill in the red regions (loss of leaf chlorophyll). The
absorption mechanism of EM radiation in the pigments of green vegetation is
attributed to atomic excitation by photon, where the electron is bumped into higher
energy orbital that lies further from the nucleus (Jensen et al. 2008; Salama 2011).
On the contrary, a high value of plant reflectance in the near-infrared (NIR
700-1300 nm) region is an effect of leaf density and canopy arrangement. During
the senescence stage, a relatively faster degradation of chlorophylls compared to
carotenoids causes a significant increase in reflectance in the red wavelength.
However, a low value of reflectance at the NIR region is due to collapsing of the
spongy-mesophyll layer as the leaf comes under stress. In this decaying phase of the
plant, carotenes absorb blue and reflect green and red, resulting in the yellow
appearance of the leaves. Due to the death of brown pigments known as tannins,
leaf reflectance and transmittance in 400-700 nm decrease (Fourty et al. 1996;
Salama 2011). This distinct difference in reflectance behavior between the red and
NIR portions of the spectrum is the stimulus for the generation of spectral indexes
(Sripada et al. 2006). These indexes are very frequently used to assess various plant
canopy attributes such as biomass, chlorophyll and moisture content, leaf area index
(LAI), Nitrogen (N) content, etc.
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The most important contributing soil factors are moisture and organic matter
content which affect the amount of radiation reflected by bare soils. Reflection of
radiation from bare soil is also affected by soil texture, CaCOs, calcium, and iron
oxides (Rossel et al. 2006). Each soil property has its own specific spectral region
where reflectance is the strongest (Ben-Dor et al. 2007). In cultivated land, bare soil
and crop canopies are often both present. The mixing of the spectral signatures from
bare soil as well as crop canopies often confuses the interpretation of the reflectance
data. A few techniques are available to isolate information about plant characteristics
from the mixture of reflectance, which includes spectral indexes that adjust for soil
effects (Haboudane et al. 2004), spectral unmixing algorithm (Huete and Escadafal
1991), and derivative spectra (Demetriades-Shah et al. 1990).

1.7 Application of Geospatial Technologies in Crop Science

During late twentieth and early twenty-first centuries, the applications of RS and GIS
in crop science are gaining more attention through crop inventory/mapping and
management. RS is capable of providing spatially explicit and efficient crop inven-
tory (crop map, crop acreage estimation, crop production estimates etc.) and man-
agement (crop condition, crop damage, drought monitoring and assessment,
precision farming, cropping system analysis, etc.) as it can capture information at
wide ranges of spatial and temporal scales with wall-to-wall coverage (Liaghat and
Balasundram 2010). Typical vegetation signature across the EM domain
(400-2500 nm) is presented in Fig. 1.2. The leaf-level signature is principally
governed by the leaf pigments, leaf water content, leaf biomass, and internal
structures as discussed earlier. Hence, the crops having differences in these param-
eters produce unique signature of spectral reflectance. Further at the canopy level,
the signature is modulated by the unique crop spacing, canopy architecture, back-
ground soil exposure, etc. The crop signature can also be separated using the
temporal frame of the crop-growing season. Global- and regional-scale crop maps
have been successfully generated with considerable accuracy using the aforemen-
tioned spectral and temporal signatures. This becomes the basis of successful
monitoring and assessment of crop. The functionality of GIS enables integration
of other thematic services like soil maps, weather maps, and other resources maps
which facilitate rapid and reliable decision-making. The satellite remote sensing
application in crop science begins with the classification of land cover types with
major emphasis on crop types. However, nowadays the focus has been shifted more
toward the characterization of plant biophysical parameter, yield prediction, and
crop production forecasting. RS of agricultural has provided valuable insights into
various agronomic parameters such as start of the season, end of the season, seasonal
greenness, crop condition anomalies, crop damage, etc. One of the main advantages
of RS techniques is considered to be repeated information retrieval without any
destructive sampling of crops. The response of vegetation cover to different spectral
bands varies depending on the change in physical and biological properties of the
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vegetation canopies of different crops. Hence, various multispectral, broadband
vegetation indices such as Normalized Difference Vegetation Index (NDVI), Nor-
malized Difference Red Edge Index (NDRI), Soil-Adjusted Vegetation Index
(SAVI), etc. along with weather parameters derived from surface and satellite
observations have been widely used for crop studies (Schmedtmann and
Campagnolo 2015; Lira Melo de Oliveira Santos et al. 2019; Zortea and Rodrigues
2019). Nowadays the introduction of hyperspectral remote sensing enables
researchers to a more detailed analysis of crops such as crop classification, crop
condition, retrieval of crop biophysical and biochemical attributes, crop stress
(Ennouri and Kallel 2019; Virnodkar et al. 2020), as well as disease and pest etc.
(Bhattarai et al. 2019; Yones et al. 2019). Several researchers have developed
narrow-band vegetation indices using hyperspectral information for analysis and
monitoring of crops and retrieval of different biophysical and biochemical variables
of a plant (Shelestov et al. 2017; Pasqualotto et al. 2019; Darvishzadeh et al. 2019).
Accurate estimates of crop biophysical as well as biochemical variables like LAI,
fraction of absorbed photosynthetically active radiation (FAPAR), leaf moisture and
chlorophyll content, primary production, sun-induced fluorescence (SIF) from RS
can assist in determining vegetation physiological status (Penuelas et al. 1995). The
study of crop phenology and its seasonal dependence, and seasonal dependence
(Belanger et al. 1995), may serve as bioindicators of vegetation stress (Zarco-Tejada
et al. 2001), and are crucial for sustainable agriculture. The introduction of micro-
wave data enables the researcher to assess crops mainly in the rainy season during
kharif. The development in the field of satellite and sensor in the last few decades
makes a remote sensing—based approach as the most trusted and efficient tool to
pre-harvest crop production estimation. Geospatial tools along with various model-
ing approaches such as machine learning, principle component analysis, lambda—
lambda models, stepwise discriminant analysis, artificial intelligence, pattern recog-
nition, mobile computing, etc. have opened a new dimension in crop science
(Thenkabail et al. 2004). Similarly, process-based crop growth simulation models
using RS and GIS-based inputs have been proven potential tools for analyzing crop
behavior and yield prediction in various spatial and temporal scales. Nowadays, the
modern world is emphasizing on the use of proximal remote sensing techniques in
PA to assess the growth and stress of crops. Besides, unmanned aerial vehicle
(UAYV) or drone is showing its potential in farm resource management by capturing
quality images of various aspects of crop cultivation especially monitoring the crop
health at relatively cheaper expenditure over other remote sensing tools (Primicerio
et al. 2012). Several researchers have reported the usage of geospatial technologies
in different aspects of crop science which is presented in Table 1.3.
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Table 1.3 Major applications of geospatial technologies in crop and soil science

S1.

no. | Application Description References

Crop Science

1. Crop identification, crop Multispectral satellite Schmedtmann and

type mapping datasets are capable of iden- | Campagnolo (2015),
tifying and mapping a crop by | Ghazaryan et al. (2018),
considering changes in Heupal et al. (2018), Lira
reflectance as a function of Melo de Oliveira Santos
plant phenology et al. (2019), Zortea and

Rodrigues (2019) and Sun
et al. (2019)

2. Crop acreage estimation The manual estimation of Lietal. (2011), Pan et al.
areas under crop is laborious | (2012), Craig and Atkinson
and time consuming due to (2013) and Rotairo et al.
vast size of lands. Geospatial | (2019)
techniques can play a crucial
role the estimation of the
farmland on which a crop has
been planted

3. | Crop stress (nutrient, RS can play an important role | Katsoulas et al. (2016), Mee

moisture, etc.) and crop in crop health monitoring and | et al. (2017), Ennouri and

condition health the extent to which the crop | Kallel (2019) and Virnodkar

assessment has withstood stress. Specific | et al. (2020)
absorption bands of the plant
pigment, crop moisture, and
crop vigor are useful to assess
crop condition

4. | Crop yield and production | The expected crop yield and | Maki et al.(2017),

forecasting and modeling

production over a given area
or farmland can be estimated
before harvesting of the crop
using RS and GIS over a
given period of time. It uses
various crop information
such as crop phenology,
agronomic practices, crop
weather, moisture level in the
crops, soils map, etc. Nowa-
days crop yields are fore-
casted using RS input in
combination with various
statistical and machine learn-
ing approach using vegeta-
tion indices, phenology
matrices, crop maps and yield
proxies, etc. Crop growth
simulation model enabled
with in-season RS based crop
biophysical parameters is an
efficient tool in this aspect

Kasampalis et al. (2018),
Huang et al. (2019), Ban

et al. (2019) and Phung et al.
(2020)

(continued)
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SL

no.

Application

Description

References

5.

Horticulture crop assess-
ment and management

High-resolution satellite or
aerial images are found to be
highly suitable for mapping
of horticultural and plantation
crops. Due to its unique tree
canopy and spacing, horti-
cultural crop produce typical
textural parameters of the
image. This is utilized for
rapid mapping and monitor-
ing of the horticultural crops.
The production estimates of
horticultural crops are still
under research and
development

Trout et al. (2008), Usha and
Singh (2013) and Marinelli
et al. (2019)

Crop damage assessment

Crop damage can be due to
unseasonal rainfall, hail-
storm, pest and diseases,
drought, and flood, etc. RS
can be used to assess the crop
area damage if there is large-
scale destruction of crop can-
opy or leaf pigment. Current
year anomalies with respect
to normal year can also be a
reasonable proxy for this
purpose

Prabhakar et al. (2013),
Zhou et al. (2016), Boschetti
et al. (2015), Surek and
Nador (2015) and Sawant

et al. (2019)

Retrieval of crop biophys-
ical parameters

The multispectral and
hyperspectral indices are very
useful for quantification of
different biophysical and
biochemical parameters like
LALI, leaf chlorophyll con-
tents and leaf moisture con-
tent, etc. Different canopy
reflectance models are used
for this purpose

Clevers and Kooistra (2011),
Verrelst et al. (2015),
Shelestov et al. (2017),
Pasqualotto et al. (2019) and
Darvishzadeh et al. (2019)

Crop insurance

High-resolution satellite data,
drone, aerial images, proxi-
mal sensor can be used to
assess crop growth, yield and
extent of crop damage, delay
in crop sowing, and moral
hazards at farm level, and
allow policymakers to pro-
vide insurance-related infor-
mation for claim settlement.
Geospatial technology can
also provide objective solu-
tion of crop cutting
experiment

De Leeuw et al. (2014),
Borgogno-Mondino et al.
(2019), Banerjee and Pandey
(2019) and Valverde-Arias
et al. (2020)

(continued)
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S1.

no. | Application Description References

9. | Precision farming PF can improve crop produc- | Andreo (2013), Qiu et al.
tivity with the aid of RS, GIS, |(2014), Mulla and Miao
and GPS, etc. It can help in (2016), Hakkim et al.
analysis and management of | (2016), van Evert et al.
spatial and temporal variabil- | (2017), Nabi et al. (2017),
ity of farm inputs such as Castillejo-Gonzalez (2018),
seeds, fertilizer, water, chem- | Friedl (2018) and Neupane
ical, etc. within the field and Guo (2019)

10. | Identification of pest and | RS approach particularly Ghobadifar et al. (2016),

diseases infestation hyperspectral remote sensing | Mahlein (2016), Bhattarai

can play a vital role in the etal. (2019) and Yones et al.
monitoring pest and diseases | (2019)
infestation in the crop field
and provide valuable data to
adopt more accurate pest and
diseases control mechanisms.
Disease and pest forewarning
system can also be developed
using satellite and weather-
based information

11. | Identification of harvesting | RS can monitor and observe | Chen et al. (2011) and Rolim

and planting dates weather pattern, crop climate, | et al. (2019)

soil type, soil moisture, etc.
which are useful to predict
the planting and harvesting
seasons of various crop based
on area favorable for crop
sowing. Time series satellite
data analysis can also provide
crop phenological metrics
such as start of the season and
end of the season

12. | Mapping of agricultural The multispectral satellite Wau et al. (2014), Ambika

land use and crop sown
area

data is useful to map land use
and land cover for various
functions such as crop grow-
ing and landscaping, etc. It
can help in PA where specific
land soils are used for specific
purposes

et al. (2016), Useya et al.
(2019) and Pareeth et al.
(2019)

Crop intensification

RS can be used to identify the
in-season fallow area and also
the single and double
cropping systems. It can also
be used to assess the suitabil-
ity of taking up crops in the
fallow land

Estel et al. (2016), Bégué
et al. (2018), Low et al.
(2018) and Dimov et al.
(2019)

(continued)
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S1.
no. | Application Description References
13. | Crop biomass estimation The rapid, reliable, and accu- | Niu et al. (2019), Dayananda

rate economical estimation of
crop above-ground biomass
is possible through high-
resolution spatial and tempo-
ral satellite data,
hyperspectral data, drone,
aerial images

et al. (2019) and Han et al.
(2019)

Crop residues biomass

Geospatial technology along
with crop statistics at admin-
istrative level can be used
assess the spatial distribution
of the surplus crop residue
biomass and facilitate utiliza-
tion of the same for biofuel/
biomass power plants

Wang et al. (2013)
and Chakraborty et al.
(2019)

Soil Science

1. | Soil survey and mapping | The most common and Dwivedi (2001), Manchanda
important application of RS | et al. (2002) and Mulder
in soil domain is soil map- etal. (2011)
ping. Soil information as a
form of map is useful for PA,
crop growth simulation
model, water balance studies,
irrigation requirement, crop
suitability assessment, etc.

2. | Soil moisture monitoring | RS techniques provide an Magagi et al. (2012),
alternative way to measure Wagner et al. (2013), Akbar
the spatial and temporal vari- | and Moghaddam (2015),
ability of soil moisture. Soil Zhang and Zhou (2016),
moisture can be retrieved Mohanty et al. (2017), Saha
either from optical/thermal/ et al. (2018) and Mohamed
microwave sensors or fusion | et al. (2019)
of these sensors. Such data
helps in estimation of the
amount of moisture present in
the soil and hence the type of
crop that can be grown in the
soil

3. |Irrigation monitoring and | RS provides information Taghvaeian et al. (2018),

management of irrigated
agriculture

about amount of soil moisture
present in soil spatially and
temporally. Such data can be
used to determine whether a
particular soil is moisture
deficient or not which helps
in irrigation scheduling

Tazekrit et al. (2018) and
Ojo and Ilunga (2018)

(continued)
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4. | Wasteland mapping and The advanced techniques Yiran et al. (2012),
land degradation assess- such as microwave and Mohamed et al. (2013),
ment; identification of hyperspectral and proximal Vicente-Serrano et al. (2015)
problematic soils ground-based sensor data and Mao et al. (2018)
with multivariate statistical
algorithm have increased the
efficiency of classification
and mapping of degraded
lands, problematic soils, etc.
This allows experts to iden-
tify the areas under degrada-
tion and areas that are still
intact. Such data are useful to
develop action plan for land
degradation neutrality for
optimum productivity
5. Soil erosion assessment Satellite-derived environment | Pandey et al. (2009),
and modeling parameters, DEM, LULC, Karaburun (2010), Mitasova
vegetation cover, grid et al. (2013), Woldemariam
weather data are very useful | etal. (2018) and Zabihi et al.
to predict annual field-scale (2019)
erosion rates through model-
ing approaches. Various
process-based models, such
as LISEM, EPIC, etc., are
using space-based inputs to
model soil erosion
6. | Digital/predictive soil Availability of DEM and Carré et al. (2007), Minasny
mapping high-resolution images and and McBratney (2016),
different environmental Sreenivas et al. (2016),
covariates allow to predict Camera et al. (2017),
and generate spatial soil Forkuor et al. (2017), Mitran
property map with the assis- | et al. (2018b), Ma et al.
tance of computer-based sys- | (2019) and Wadoux et al.
tems, modeling, or GIS. Such | (2019)
maps are very useful for pre-
cision farming and landscape
and environmental modeling
7. | Spatial variability of soil GIS is a very useful tool to Zhang et al. (2003), Vasu

properties/nutrients

generate spatial soil map
from point-based field obser-
vation. This helps in
assessing spatial variability of
soil parameters, nutrient con-
tent which allow farmers to
adopt site-specific nutrient
management

et al. (2017), Usowicz and
Lipiec (2017), Teng et al.
(2017) and Sharma and Sood
(2020)

(continued)
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8. | Soil quality assessment Geospatial techniques Ben-Dor and Banin (1995),
involving the use of RS, GPS, | de Paul Obade and Lal
and GIS provide new (2013) and Paz-Kagan et al.
approaches for studying vari- | (2014, 2015)
ous soil quality aspects in
different spatial as well as
temporal domains. Soil health
assessment through spectral
soil quality indexing is of
major focus nowadays

9. Soil fertility assessment RS and GIS are important in | Blaes et al. (2016),

and management the determination of soil AbdelRahman et al. (2016),

management practices based | Song et al.(2018), Molin and
on the soil fertility data col- Tavares (2019) and Patel and
lected from the fields Ghosh (2019)

10. |Land suitability and capa- | Soil survey information AbdelRahman et al. (2016),

bility assessment coupled with RS data can be | Yohannes and Soromessa

integrated in the GIS to eval- | (2018), Memarbashi et al.
uate crop suitability for dif- (2017), Parry et al. (2018),
ferent soils or vice versa. This | Purnamasari et al. (2019)
helps in PA where specific and Murti (2019)
soils are used for specific
purposes

11. | Soil nutrient deficiency RS and GIS techniques can Meng et al. (2015), Hengl

be used to determine the
extent of soil and crop nutri-
ent deficiency and facilitate
the agricultural expert and
farmers to come up with
remedies that would increase
the nutrients level in crops via
soil hence improved the
overall crop yield

etal. (2017) and Yousfi et al.
(2019)

1.8 Application of Geospatial Technologies in Soil Science

The conventional method of soil assessment is based on regular soil sampling
design, sample collection, sample preparation, and subsequent chemical analysis
in the laboratory. However, this approach is time-consuming, laborious, and costly
to assess soil over a large area. Moreover, such a method can give you point-based
information. Traditionally this information is represented as soil maps knowledge is
represented as soil maps conforming to the discrete model of spatial variation
(Heuvelink and Webster 2001). It shows polygons (represents homogeneous soils)
with boundaries where changes in soil parameters are considered to be abrupt.
However, the complete and accurate spatial information on soils is required for
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proper land use planning, soil management, and other activities linked to environ-
mental protection. In nature soil properties are spatially variable therefore it should
be estimated as a continuous variable rather than point values to have higher
accuracy and wide applications. The recent advancement of RS, GIS, and GPS has
enabled the researchers to assess land resources spatially and temporally. The
availability of wide ranges of spatial and temporal satellite datasets make soil survey
easier in the form of soil mapping. It can provide complete information about soil
resources of an area which is utmost important for an effective agricultural research
and advisory program. However, many soil properties can be better modeled with a
continuous model of spatial variation using digital mapping approaches. The
RS-based inputs along with secondary datasets such as slope, vegetation, climate,
etc. allow for a more quantitative approach to soil survey producing continuous
surfaces based on soil-forming factors which called “predictive” or digital mapping
technique (Carré et al. 2007; Sreenivas et al. 2016; Mitran et al. 2018b). Besides, this
approach gives spatial estimates of the uncertainty of the predictions. It uses a
regression analysis between in situ point measurements of soil quality data and
exhaustive satellite-derived indices to predict and upscale to larger areas spatially.
The digital soil maps are also an ideal input for spatially distributed models. The
satellite data along with digital soil map, land use, slope, and rainfall data derived
from RS data can help in delineating major land degradation processes such as water
and wind erosion, salt-affected soils, waterlogging, etc. along with its severity such
as undegraded, moderately degraded, degraded, and severely degraded (Mohamed
et al. 2013; Vicente-Serrano et al. 2015; Mao et al. 2018). A number of researchers
have used RS and GIS techniques for soil taxonomic study or soil classification. GIS
is also playing an important role in land resource inventories by assessing spatial
variability of soil properties through interpolation techniques, that is kriging
(Usowicz and Lipiec 2017; Teng et al. 2017; Sharma and Sood 2020). Nowadays
introduction of hyperspectral remote sensing enables researchers to a more detailed
analysis of soil fertility and quality (Paul Obade and Lal 2013; Paz-Kagan et al.
2014, 2015; Molin and Tavares 2019; Patel and Ghosh 2019). The quantitative
prediction of soil properties, soil salinity, soil organic carbon content, CaCO;
content, nutrient deficiency, etc. using hyperspectral data helps in formulating
optimum soil management practices. The availability of microwave data helps in
soil moisture estimation (Mohanty et al. 2017; Saha et al. 2018; Mohamed et al.
2019) and soil erosion studies (Woldemariam et al. 2018; Zabihi et al. 2019). RS and
GIS have also played a crucial role in land suitability and capability assessment by
identifying the problems associated with the soils (Memarbashi et al. 2017; Parry
et al. 2018; Purnamasari et al. 2019; Murti 2019). Several researchers have reported
the application of geospatial technologies in various aspects of soil science which is
presented in Table 1.3.
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1.9 Geospatial Technologies in Agriculture: Status
and Challenges

The application of geospatial technologies and tools for sustainable resources
management especially in agriculture has been advancing quite rapidly over the
last decade in the Asia-Pacific region (Indonesia, Australia, Malaysia, Japan, etc.),
South Asia (India), East Asia (China), Europe (Spain, Belgium, Netherlands), and in
North America (USA, Mexico). A global survey was carried out by geospatial media
and communication (2015) across the world (www.geospatialworld.net) and
reported that 29% of the response to the survey use geospatial technologies for
agricultural land use land cover mapping; 20% for crop inventory, acreage produc-
tion, harvesting and storage; 19% for mapping of soil, water, and land; 13% for
variable-rate technology; 7% for groundwater mapping and management; 12% for
site suitability analysis. In the Asia-Pacific region, RS and GIS are mostly used for
mapping of crops. Malaysia is mostly using RS and GIS for rice crop mapping and
monitoring. Indonesia is using such technologies for producing digital maps and for
land distribution of paddy field types. In Australia, these techniques are mostly used
for mapping of oil palms and sugarcane. In India, satellite images are using for large-
scale agricultural land use mapping, crop inventory, acreage estimation, crop pro-
duction, storage, and harvesting studies. However, in Europe, these technologies are
using for the automation of machinery and farm equipment, crop and water man-
agement, soil properties at a macro level, whereas agricultural land uses land cover
mapping, wasteland mapping, etc. at a micro-level. Although the major RS data
source in China is multispectral, they are using much higher spatial resolution data as
well as hyperspectral data for agricultural monitoring. The major RS applications in
agriculture in China are precision farming, crop yield, agricultural survey, and
disaster forecasting. In North America, agricultural land use land cover mapping is
the major use of geospatial techniques at a macro level, whereas crop disease
assessment and site suitability analysis is at a micro level. The major micro-level
applications of geospatial techniques are variable rate application and management
of farm inputs (seeds, fertilizers, chemicals, etc.), groundwater zonation for irrigation
suitability, drainage patterns, etc.

Geospatial technologies play an influential role in the agriculture sector by
increasing yields, managing resources, prediction of outcomes, and improving
farm practices. However, the application and adoption of geospatial technologies
in agriculture are facing many problems and challenges, which vary from region to
region across the globe. The challenges can be technology related, farm related, data
related, and organization related. The major challenges at the organization level are
lack of proper geospatial policies, skilled manpower, financial resources, etc. The
lack of recent satellite images, topographic data, the spatial scale of data,
unavailability of cloud-free data, data interoperability, and different data format
are the major data-related challenges facing the agriculture sector to adopt geospatial
techniques. Technology-related issues involved compatibility and high cost of
hardware and software, lack of understanding in the correct application of the
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technology, inadaptability by the farmers at the grassroots, etc. Besides, a small
landholding of the farmers, environmental issues, and farm ownership issues, iden-
tification and estimation of area and production of short-duration crops grown in
fragmented landholdings, in particular during kharif/monsoon season, makes the
geospatial technology application more challenging.

1.10 Conclusions and Future Prospective

The rapid development in the field of geospatial technologies especially the remote
sensing and geographic information system play a key role to the sustainable
management of natural resources through extraction of the precise and desired
information to save the costly and infinitive natural resources for the future gener-
ation. Remote sensing data at the optical, microwave, thermal, and hyperspectral
domain has proved to be a powerful tool to assess the crop and soil properties in
varying spatial and temporal scales with cost-effectiveness. Remote sensing satellite
images can be used efficiently for crop growth monitoring, crop condition assess-
ment, crop acreage and yield estimation, precision farming, crop biomass estimation,
identification of pest and diseases infestation, soil survey and mapping, land degra-
dation assessment, soil moisture estimation, soil quality assessment, etc. Geographic
Information System is considered one of the important tools for decision-making in a
problem-solving environment dealing with geo-information. Such technologies and
tools can be used effectively for developing optimum management strategies or
suitable action plans to maintain the agricultural sustainability of any province. It is a
novel approach to save the energy consumption directly and indirectly, reduce input
and footprints of the ecosystems, and enhance the eco-intensification of the natural
resources for the food, nutritional, environmental, and economic security to the
growing population.
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