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Foreword

School of Environment and Natural Resources
Ohio Agricultural Research and Development Center

Carbon Management and Sequestration Center (C-MASC)
210 Kottman Hall | 2021 Coffey Rd, Columbus, OH 43210

lal.1@osu.edu | cmasc.osu.edu | 614-292-9069 Phone | 614-292-7432 Fax

The ever-growing world population will lead to enormous pressure on land
resources to produce food for 10 billion people in 2050. However, to meet the future
challenges of feeding the world population, there is a need for a continuous assess-
ment and prioritized intervention to halt the declining trends in crop productivity,
minimizing the rate of land degradation, reducing the environmental damage, and
enhancing farm income through a sustainable resource development plan. The
adoption of Geospatial Technologies encompassing techniques and tools related to
Remote Sensing (RS), Geographic Information System (GIS), Global Positioning
System (GPS), advanced data processing, Information Technology (IT)-driven out-
reach, and web-services might play the much-needed role of a fulcrum to increase
future agricultural productivity. Geospatial technologies can pave way for significant
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improvements in efficiency of input-use, resulting in cost savings on inputs and
precious resources. Geospatial tools can be used for soil profiling, satellite imagery,
and mapping results to assess nutrient deficiencies in site-specific location and fine
tune products (i.e., area-specific fertilizer mixtures for crops), which can help
promote judicious and balanced use of fertilizers rather than blanket applications
that can lead to several environmental issues .The goal is to develop agricultural
resources management options for advancing global food security, adapting and
mitigating climate change, and promoting “Sustainable Development Goals” of the
United Nations.

Therefore, this book is timely and highly pertinent because it addresses the
applications of geospatial technologies for crops and soils. It also provides informa-
tion about cost-effective measures, easy-to-understand interpretation, and the docu-
mentation needed to formulate sustainable action plans to achieve effective resource
management at global, national, regional, and farm level. The information collated in
this book is based on joint efforts of many scientists, professors, experts, and
researchers. It is a reflection of long years of professional experience of the authors
in reviewing, analyzing, and synthesizing the vast and dynamic field of expertise and
innovations. The authors have focused on many case studies that review a variety of
modern tools and techniques for data collection, storage, analysis, update, integra-
tion, interpretation, and representation for informed decision making. Specifically,
the book highlights availability and use of various spatial, temporal, and spectral
data to formulate sustainable resources development plans and associated chal-
lenges. The authors have explored and examined numerous advances such as
those related to precision farming, crop monitoring, crop production, soil moisture,
soil quality, land degradation, digital soil mapping, agricultural land use, etc.

Above all, authors have highlighted the use of proximal sensing, unmanned aerial
vehicle (UAV), and various modelling approaches to assessing crops and soils. They
have also described the applications of GIS which is considered one of the important
tools for decision making in a problem-solving environment dealing with
geo-information. They have elucidated that such technologies can monitor the
overall prospect of agriculture through its capabilities to provide decision support
scenarios. Hence, the book is a major contribution to the field of crop and soil
science by highlighting the importance of applied research. Finally, the contributors
have prepared the volume encompassing latest developments in the field of
geospatial technologies. This book is a pertinent reference material for
policymakers, researchers, students, and practitioners in soil science, agronomy,
ecology, and management of natural resources with specific focus on some global
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issues such as food and nutritional security, adaptation and mitigation of climate
change, soil quality, biodiversity, and the action plan for advancing the “Sustainable
Development Goals” of the United Nations.

Sincerely,

May 11, 2020

Distinguished University Professor of
Soil Science, SENR; Director, Carbon
Management and Sequestration Center,
The Ohio State University, Columbus,
OH, USA

Rattan Lal
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Preface

Human civilization has started facing an unprecedented situation towards the sus-
tainable use of natural resources for the ever-increasing population. The situation is
further complicated by the changes in temperature and rainfall patterns, increasing
extreme weather events, altered pest and disease profiles, and rapid degradation of
land and soil quality. So there is a need to introduce the latest technologies in
agriculture to enhance its production and also help policymakers make informed
decisions. Geospatial technologies and tools which includes Remote sensing (RS),
Geographical Information System (GIS), Global Positioning System (GPS), mobile
and web applications, etc., would provide unique capabilities to analyze multi-scale
multi-temporal datasets and generate decision supports to sustainable development,
food, nutritional environmental, and economic security. Satellite RS images of an
optical, microwave, thermal, and hyperspectral domain could provide a unique
instrument allowing a regular and synoptic coverage of crop and soil resources at
a continental or regional level. Hence, it proved to be a powerful tool to assess crop
and soil properties in varying spatial and temporal scales with cost-effectiveness.

This book is a compilation of the development in the field of geo-spatial technol-
ogies towards monitoring and assessment of crops and soils. The focus has been given
on the crop monitoring, crop growth and yield simulation modeling, crop yield
estimation, crop production estimation, retrieval of crop biophysical and biochemical
parameters, precision agriculture, etc. Moreover, soil moisture estimation, land deg-
radation assessment, soil quality assessment, digital soil mapping, hyperspectral, and
microwave remote sensing for crops and soils assessment have also been discussed in
detail. Further, special emphasis is provided to integrate multi-dimensional, multi-
temporal, multi-scale data, and its analytics towards informed decision making. The
objective of this book is to document the applications of space-based technologies for
crops and soil assessment for sustainable development of agriculture.

In general, this book is suitable for agronomists, soil scientists, environmentalists,
researchers, policymakers, and students who wish to simultaneously enhance the
production and profitability of land resources. Moreover, the editors have provided a
road map to achieve sustainable crops and soil management using geo-spatial
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technologies. All chapters are well-illustrated with case studies, figures, appropri-
ately placed data tables and photographs, and supported with extensive and most
recent references.

Hyderabad, Telangana, India

Hyderabad, Telangana, India Tarik Mitran
Varanasi, Uttar Pradesh, India Ram Swaroop Meena

Abhishek Chakraborty
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Abstract Natural resource monitoring and assessment is a vital step to formulate a
sustainable development plan. The introduction of various modern geospatial tech-
niques and tools like Remote Sensing (RS), Geographic Information System (GIS),
Global Positioning System (GPS), and information technology (IT) have provided
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powerful approaches of surveying, identifying, classifying, mapping, monitoring,
and characterization of the composition, extent, and distribution of various natural
resources. Geospatial techniques deal with the acquirement, storage, processing,
production, presentation, and dissemination of geoinformation. The information
obtained from RS, GPS, and through conventional methods could be used effec-
tively to create database in GIS platform for various spatial and temporal analysis
related to sustainable management of land resource and formulate environment-
friendly action plans. Major applications of geospatial technologies related to crops
and soils are crop inventory and monitoring, crop production estimates and fore-
casting, crop growth simulation modeling, crop yield estimation, precision agricul-
ture, soil mapping, land degradation assessment, soil erosion assessment, soil quality
assessment, digital soil mapping, digital terrain modeling, soil-landscape modeling,
land use/land cover mapping, agricultural land use planning, etc., which have a
far-reaching impact on mapping, monitoring, and management of crop and land
resources on sustainable basis. Geospatial approaches have made inroads across
different sectors both in private and public domain in various countries across the
world. Selected tools can help to restore the soil health, stop exploitation of the
natural resources, reduce energy consumption, carbon and water footprints, and
improve the productivity and sustainability under changing climate. Geospatial
technologies for crops and soils a novel tool for the food, nutritional, environmental,
and economic security for the future generations under limited natural resources.
This book will be helpful for the producers, researchers, teachers, and policymakers
to deal with the future alarming issues.

Keywords Agriculture · Geospatial · Geographic Information System · Information
Technology · Remote Sensing

Abbreviations

AI Artificial Intelligence
ALOS Advance Land Observing Satellite
APEX Airborne PRISM Experiment
AVIRIS Airborne Visible Infrared Imaging Spectrometer
CA Conservation Agriculture
CNSA China National Space Administration
CSA Climate-Smart Agriculture
DESIS DLR Earth Sensing Imaging Spectrometer
DGPS Differential Global Positioning System
EM Electromagnetic
ENVISAT Environmental Satellite
ESA European Space Agency
EWT Equivalent Water Thickness
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FAO Food and Agricultural Organization
FAPAR Fraction of Absorbed Photosynthetically Active Radiation
GHGs Greenhouse Gasses
GIS Geographical Information System
GPS Global Positioning System
HSI Hyperspectral Imager
ISRO Indian Space Research Organization
IT Information Technology
JAXA Japan Aerospace Exploration Agency
LAI Leaf Area Index
LANDSAT Land Satellite
MODIS Moderate-resolution Imaging Spectrometer
MRS Microwave Remote Sensing
NASA National Aeronautics and Space Administration
NAVSTAR Navigation System with Time and Ranging
NDRI Normalized Difference Red Edge Index
NDVI Normalized Difference Vegetation Index
NIR Near Infrared
PA Precision Agriculture
PALSAR Phased Array Type L-band Synthetic Aperture Radar
PF Precision Farming
RDVI Renormalized Difference Vegetation Index
RISAT Radar Imaging Satellite
RS Remote Sensing
SAR Synthetic Aperture Radar
SAVI Soil Adjusted Vegetation Index
SIF Sun Induced Fluorescence
SPAD Soil Plant Analysis Development
SPOT Système Pour l’Observation de la Terre
SWIR Shortwave Infrared Region
TIR Thermal Infrared
TM Thematic Mapper
TRS Thermal Remote Sensing
UAV Unmanned Aerial Vehicles
UN United Nation
USGS United States Geological Survey
VRT Variable Rate Technology
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1.1 Introduction

For about 2.5 million years, human species fed themselves by hunting animals and
gathering plants. Human ecological footprint was minimal. Nearly about
10,000 years ago, human started controlling and manipulating few animals and
plants species for their benefit. This leads to development of agrarian society with
concept of advance food security. It translated into population explosion and more
tilling for the extra food. Since then humans have been facing this cyclic phenom-
enon and surprisingly surviving it. But in the present scenario, horizontal expansion
of agricultural activities is limited. Hence, our sole effort has been directed toward
vertical expansion under limited resources.

The latest United Nations (UN) projections reveal that the world population will
rise from 6.8 billion to 9.1 billion in 2050, which leads to an increase in demand for
agricultural produces by 60% (Alexandratos and Bruinsma 2012). Other constraints
like fragmented land holdings, land degradation, deterioration of soil health, the
declining trend of the total crop productivity, as well as global climatic variations
have posed serious threats in agricultural growth and development. However, to
meet up with the future challenges to feed the 9 billion people of the world, there is a
need to halt the declining trend of the total crop productivity, minimizing the rate of
degradation of natural resources, and enhancing farm incomes through sustainable
resources development plan. The adoption of newly emerged technology and tools
like remote sensing (RS), geographic information System (GIS), global positioning
system (GPS) and information technology (IT) might play a major role to enhance
agricultural productivity in the future (Hakkim et al. 2016) through continuous
monitoring and assessment of the natural resources. The gamut of all these technol-
ogies and tools, termed as geospatial technology, is a rapidly growing and changing
field that assists the user in the collection, storage, analysis, interpretation, and
dissemination of spatial data. It is a cost-effective approach which includes acqui-
sition of real-time satellite images through RS, data analysis and management
through GIS, location services and geo-referencing through GPS, and web services
and outreach through IT. The advances in RS generate data for detailed inventory,
mapping, and monitoring of crop, land, and water resources on a large scale
(Gerhards et al. 2019). Satellite RS coupled with GIS and mobile app–based
positional information has emerged as an efficient tool for the sustainable develop-
ment in agriculture sector by optimizing input resources, minimizing the cost of
production, and risk of biotic/abiotic in nature. Such technologies have the capabil-
ities to provide “Decision Support Scenarios” which could be vital for monitoring
the overall health of the agricultural sector and facilitate informed decision-making.
Some of the major applications of geospatial technologies related to agriculture are
crop inventory and monitoring (Schmedtmann and Campagnolo 2015; Ghazaryan
et al. 2018; Heupel et al. 2018), crop growth simulation modeling, crop yield
estimation (Huang et al. 2019; Ban et al. 2019; Phung et al. 2020), PA (Friedl
2018; Neupane and Guo 2019), soil mapping (Manchanda et al. 2002; Mulder et al.
2011), assessment of soil erosion (Woldemariam et al. 2018; Meena et al. 2018;
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Zabihi et al. 2019); assessment of soil quality (Paz-Kagan et al. 2014, 2015), digital
soil mapping (Ma et al. 2019; Wadoux et al. 2019), water management for irrigated
agriculture (Taghvaeian et al. 2018; Tazekrit et al. 2018; Ojo and Ilunga 2018),
agricultural land use planning (Ambika et al. 2016; Useya et al. 2019; Pareeth et al.
2019), etc. The medium and coarse resolution RS datasets can provide a regular and
synoptic coverage of crop and soil resources at a continental or regional level.
Whereas the fine-resolution satellite data helps in micro-level or farm-level agricul-
tural activities such as water resources mapping, drainage pattern, management of
fertilizers, pesticides, variable rate technology, crop insurance, crop damage assess-
ment, etc. RS data of optical, microwave, thermal, and hyperspectral domain has
proved to be a powerful tool to assess crop and soil properties in varying spatial and
temporal scales. Several researchers (Mulla 2013; Pareeth et al. 2019; Rotairo et al.
2019; Phung et al. 2020) have shown the usefulness of RS technology to get spatially
and temporally variable information for agriculture. A large number of satellite RS
data are available nowadays to the researcher for natural resources management such
as Moderate-Resolution Imaging Spectrometer (MODIS), Land Satellite (Landsat),
Sentinel, Resourcesat-2, Cartosat-1, Cartosat-2, Planet, and QuickBird, etc. The
number of satellite missions by various space agencies like National Aeronautics
and Space Adminstration (NASA), European Space Agency (ESA), Japan Aero-
space Exploration Agency (JAXA), China National Space Administration (CNSA),
Indian Space Research Organization (ISRO), etc., dedicated to RS, has increased
space resources sgnificantly over the past decades and will further increase over the
coming decades and beyond. Nowadays several countries from the Asia-Pacific,
South Asia, North America, and Europe are creating an Agricultural Market Infor-
mation System which utilizes geospatial tools to fuse basic socioeconomic and crop
statistics for the overall management of agriculture produce and demand–supply
chain. In nutshell, geospatial technology has become part and parcel of agriculture
management system. The technology has proven its potential and effectiveness, and
also provides scope of future development.

1.2 Current Challenges in Agriculture: Global Perspective

Agriculture, in generic sense, is harvesting of sunlight toward conversion of carbon
dioxide and water into carbohydrate/sugar. This basic translation is modulated by
prevailing weather, pests and diseases, soil, and plant resources. Often agriculture is
livelihood, not a profitable business, particularly in the third world countries. Hence,
agriculture is done sub-optimally with limited resources in majority of the global
arable land. This caters the biggest challenges as well as the opportunities of
agriculture.

Feeding 9 billion of human population by 2050 is the target set by FAO
(Alexandratos and Bruinsma 2012). It requires increase of agricultural produce by
60% from present status. The target is really challenging and further complicated by
the changing global climatic pattern (Meena et al. 2018a). The world scientific
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community has reached to a broad consensus that the concentration of atmospheric
greenhouse gases, mainly carbon dioxide, has been increasing unprecedently, and
more so in the last few decades. This resulted in significant warming of global
climate as evident from rise in global average air and ocean temperature, widespread
melting of snow and ice, and rise in global average sea level. Studies across the globe
have reported these changes over European region (Hasanean 2001; Domonkos and
Tar 2003; Feidas et al. 2004), China (Liu et al. 2004), Japan and Korean peninsula
(Chung and Yoon 2000; Yue and Hashino 2003), Malaysia (Tangang et al. 2007),
Alaska (Stafford et al. 2000), and India (Revadekar et al. 2012; Chakraborty et al.
2017; Chakraborty et al. 2018). The warming pattern has also caused change in
rainfall pattern, increase in extreme weather events, altered pest and disease profiles
along with the crop phenology, and rapid degradation of land and soil quality
(Cleland et al. 2007; Das et al. 2013; Chakraborty et al. 2014). The phenomena of
the changing climatic and ecosystem condition have been found to be global in
nature, though they do exhibit considerable spatial and temporal variability at local
level.

To meet the demands of higher production, overexploitation of land may lead to
land degradation. At present 33% of arable land suffers from various kinds of
degradation processes. It is a global threat which leads to reduction in area and
productivity of 13.4 billion ha of global cultivable land (Reddy 2003). Agricultural
production is deleteriously affected due to inappropriate land care strategies in
maximum portions of the world (Lambin and Meyfroidt 2011; Lambin et al.
2013). Sometimes direct impact of land degradation may appear in rapid desertifi-
cation of semi-arid and arid region, frequent and intense drought occurrence, and
loss of productive topsoil and biodiversity (Gibbs et al. 2010; Lambin and Meyfroidt
2011; Meena et al. 2020). Besides land degradation, volatile weather and extreme
events would change the growing seasons; limit the availability of water; allow
weeds, pests, and disease to thrive; and reduce crop productivity drastically. Apart
from all the above-mentioned issues, some of the biggest problems facing the
agricultural sector in developing and under-developed countries are low yield,
fragmented land holdings, poor infrastructure, low use of appropriate and best
farming techniques, a decline in soil fertility etc., which are leading contributors to
low agricultural productivity. Hence, countries need to prioritize agriculture and
growing food with more sustainable methods.

1.3 Importance of Geospatial Technologies

To meet up with the future challenges to feed the 9 billion people of the world, there
is a need to continue investing in appropriate technologies to arrest the declining
trend of the total crop productivity, minimizing the rate of degradation of natural
resources, reducing environmental damage (including greenhouse gas emission),
and enhancing farm incomes through a sustainable resources development plan.
Over the few decades, the innovation in digital agricultural technologies such as
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precision farming (PF), crop monitoring and surveillance system, artificial intelli-
gence (AI) in agricultural decision supports, IT-driven extensions are gaining more
importance. The adoption of such newly emerged technology and tools into the
entire agriculture value chain might play major role in increasing agricultural
productivity in the future (Hakkim et al. 2016; Mitran et al. 2018a). These technol-
ogies help in continuous monitoring and assessment of the condition and availability
of the agricultural resources and simultaneously transformed agriculture into a
sustainable ecosystem. Further, it can also reduce the impact of agriculture on the
global environment by optimizing the use of water, fertilizer, fossil fuel, and land for
food production. The greenhouse gas emissions contributed by agriculture can also
be mitigated through adopting climate-smart practices.

1.4 Geospatial Tools and Techniques

The modern geospatial technologies include RS, GIS, GPS, proximal sensing,
mobile technology, etc., which can be used efficiently for agricultural resources
management and precision farming. The overall idea and integration of such tech-
nologies are presented in Fig. 1.1.

1.4.1 Remote Sensing

RS is the “science of making inferences about material objects from measurements,
made at distance, without coming into physical contact with the objects under study”
(Lillesand et al. 2015). A RS system consists of a platform (satellite, rocket, balloon,
etc.), where a sensor can be mounted to collect and or emit radiation/signal (Sabins
1997). RS can be “active” when a signal is emitted by a satellite and its reflection by
the object is detected by the sensor and “passive” when the object is illuminated by
sunlight and its reflection/emission is detected by the sensor (Ran et al. 2017a, b). RS
imagery along with GIS to process, alter, manipulate, store, and retrieve can very
effectively used for natural resource management. RS images can be obtained either
from sensor in satellite platform or boarded on small aircraft as aerial photography
(Mulla 2013). Aerial photography is the original form of RS and remains the most
widely used method until recently. It has few advantages, that is, aerial images are
generally of high resolution depending on the flight height (3–5 km). They are
relatively immune to the cloudiness, and acquiring time of the image can be
scheduled at will. Aerial photographs are different types such as black and white,
high- or low-altitude photographs, vertical/oblique, infrared, multi-spectral, etc. The
selection of aerial photographs depends on the purpose of the study. These photo-
graphs are very useful in small areas for micro-level investigation. Vertical aerial
photographs are mostly used in land use planning, cartography, specifically in
photogrammetric surveys, to generate topographic maps (Twiss et al. 2001). Oblique
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aerial photography is useful for environmental studies (Stewart et al. 2014). The
satellite RS for systematic natural resources management began with the launch of
the Earth Resources Technology Satellite (ERTS-1) by the USA in 1972, later
renamed as LANDSAT. Remote sensors, such as on-board radiometers or spectro-
radiometers allows the observation of large areas of the Earth surface (synoptic
capability) at different wavelengths (optical, infrared, thermal, etc.) of the electro-
magnetic (EM) radiation (multispectral capability) and at a frequent time interval
(multi-temporal capability). Optical RS deals with collecting radiation reflected and
emitted from the object under study within the EM spectrum of visible (0.4 μm),
near-infrared (NIR) and thermal infrared (TIR, 15 μm). Landsat, Sentinel-
2, Resourcesat, Quickbird, and SPOT satellites are the well-known multispectral
satellite sensors. Optical RS is one of the suitable technologies for the analysis,
surveying, mapping, and monitoring of soils and crops. However, using optical RS
datasets for mapping have several limitations. Instrument calibration, atmospheric
correction, and cloud screening for data especially during the monsoon period are
major limitations for optical RS. However, the introduction of microwave remote
sensing (MRS) overcame few issues such as monitoring the Earth’s surface,

Platforms for Imaging 
(Satellite, Drone etc.)

Global Positioning System

Satellite Images
(Various Spatial and 
Temporal Coverage)

Proximal Sensing, Mobile 
Technology for Ground 

truth 

Location details through 
GPS Receiver

Analysis in GIS platform 
(mapping, monitoring, 
measuring, modeling)

Maps Documentations Evidence

Fig. 1.1 A schematic diagram on geospatial technologies
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irrespective of day/night and even in cloudy weather conditions which make it more
effective and useful (Navalgund et al. 2007). The main advantages of MRS are its
ability to penetrate the clouds, rain, vegetation, and even very dry soil surfaces. EM
waves having frequencies between 109 and 1012 Hz are generally considered as
microwaves. Radar is an active MRS system in which the terrain is illuminated using
EM energy and the scattered energy returning from the terrain (known as radar return
or backscatter) is detected and recorded as images. Examples of radar RS instru-
ments include Synthetic Aperture Radar (SAR), scatterometers, altimeters, and radar
sounders. MRS technology is been widely used for crop monitoring during the rainy
season, soil moisture estimation, and land cover analysis. Sentinel-1, Radarsat-1&2,
Radar Imaging Satellite (RISAT-1), Environmental Satellite (ENVISAT), Advance
Land Observing Satellite–Phased Array type L-band Synthetic Aperture Radar
(ALOS-PALSAR) are the well-known satellite sensors that use microwave sensors.
Nowadays hyperspectral remote sensing is gaining more importance because of
choice for more bands (>200 bands) as compared to multispectral imagery (between
3 and 10 bands). Hyperspectral imaging sensors measures surface reflectance with a
given spatial resolution, covering an area instead of a single point (Gerighausen et al.
2012) and providing spectral information at high spatial density (Franceschini et al.
2015). Hyperspectral datasets have a greater potential to detect differences among
land and water features. For example, multispectral imagery can be used to map
cropped areas, while hyperspectral imagery can be used to map crop type too. The
growing demand for large-scale investigations related to natural resources manage-
ment and environmental issues has required the development of air- and spaceborne
imaging spectroscopy. Currently, airborne hyperspectral sensors predominate over
spaceborne imaging spectroscopy (Transon et al. 2018). Airborne sensors such as
Airborne Visible Infrared Imaging Spectrometer (AVIRIS ), DLR Earth Sensing
Imaging Spectrometer (DESIS), and Airborne PRISM Experiment (APEX) have
excellent potential for imaging spectroscopy (Rast and Painter 2019). Airborne
hyperspectral data has been widely used for crops and soil assessment such as
discrimination of crop type, retrieval of crop biophysical parameters, determination
of soil mineral content, organic matter, nitrogen, salinity status, iron oxide content,
and carbonate by using diagnostic absorption features of hyperspectral bands.
Upcoming spaceborne sensors with high revisit time (from 3 to 5 days), higher
spatial resolution, from several countries, are planned for launch in the coming years.

Besides hyperspectral RS, thermal remote sensing (TRS) is also gaining impor-
tance for natural resources and environmental studies. Thermal infrared radiation
refers to EM waves with a wavelength of between 3 and 20 μm. Most of the TRS
applications make use of 3–5 and 8–14 μm ranges. The major difference between the
near infrared and thermal infrared is that NIR is the reflected energy where thermal
infrared is emitted energy. The principle of TRS in agriculture is based on the
emission of radiation responding to the temperature of the leaf and canopy. How-
ever, the emission of radiation varies with air temperature and the rate of evapo-
transpiration (Maes and Steppe 2012; Gerhards et al. 2019). TRS is widely used for
the detection of plant responses to environmental and water stresses (Gago et al.
2015; Ramoelo et al. 2015; Khanal et al. 2017; Huang et al. 2018).
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RS technology has a great potential to acquire high spatial, spectral, and temporal
resolution data as input for PA (Gerhards et al. 2019). The advances in RS technol-
ogy generate data for detailed inventory, mapping, and monitoring of crop, land, and
water resources on large scale (Gerhards et al. 2019). A RS data user should be aware
of various data products and their use in respective domains in order to choose a
dataset. A variety of remote sensing satellite datasets with their specifications is
distributed through different websites from manufacturers, satellite operators, data
providers, and is presented in Table 1.1.

1.4.2 Proximal Sensing

Besides remote sensing, proximal sensing is also getting attention in agriculture
especially in precession farming. To overcome the constraints of satellite-based
remote sensing, modern world is emphasizing on the use of proximal sensing
techniques in PA to assess the growth and stress of crops. In proximal sensing, the
platforms are mostly handheld, tractor based, stationary installation, and robotics
managed, etc., and the sensors are in close contact to the object. The types of sensors
used in this case can be simple RGB or gray-level imaging, multispectral,
hyperspectral imaging, or IR-thermography (Rossel and Behrens 2010; Mulla
2013). Apart from reflectance, transmittance, and absorption, plant leaves can also
emit energy by fluorescence (Apostol et al. 2003) or thermal emission (Cohen et al.
2005). Sensors have significant uses in the field of agriculture, especially in the field
of plant monitoring. The information collected through the proximal and remote
sensors is always tied to efficient data analysis approaches such as advance machine
learning, data mining, spectral soil, and vegetation indices–based algorithms, iden-
tification of specific wavelength and feature, etc. The proximal RS is able to provide
information on both biotic and abiotic stresses such as nutrient deficiency, pests, and
diseases, etc. A number of proximal sensors such as Soil Plant Analysis Develop-
ment (SPAD) meter (Schepers et al. 1992), green seeker (Raun et al. 2002), crop
spec (Reusch et al. 2010), H-sensor artificial intelligence (Partel et al. 2019), etc.
have been developed for crop assessment. Besides crop sensors, proximal soil
sensors are also getting more attention in precision farming. Proximal soil sensors
allow inexpensive and rapid collection of quantitative, precise, high-resolution data,
which can be used to better understand soil temporal and spatial variability. Rossel
et al. (2011) provided description of proximal soil sensing techniques used and the
soil properties that can be measured by these technologies. The characterization of
the temporal and spatial variation of soil at field and landscape level using point-
based observation is time-consuming, expensive, and impractical. The remotely
sensed satellite images, as well as aerial photos, can provide excellent spatial
coverage; however, the measurement is, indirect, involves large uncertainties and
typically limited to the surface to surface soil (5–6 cm), hence not appropriate to
measure spatial and temporal variability at farm level. Such limitations make the
proximal soils sensing increasingly popular by filling the data gap between the lower
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resolution remotely sensed data and high-resolution point data (Adamchuk 2011;
Rossel et al. 2011). A number of the proximal sensors as well as methods such as
ground-penetrating radar, EM induction, electrical resistivity, magnetometry, optical
reflectance, gamma-ray spectroscopy, etc., have been used for farm- and landscape-
level soil survey to indirectly measure the spatial and temporal variability of soil
properties. Various soil physical and chemical properties such as soil texture,
porosity, pH, bulk density, soil structure, salinity, organic carbon, moisture content,
CaCO3 content, cation-exchange capacity, ionic composition, plant-available nutri-
ents, as well as metal content in contaminated soil, etc. can be assessed using various
proximal soil sensing methods (Doolittle and Brevik 2014; Dao 2018).

1.4.3 Geographic Information System

GIS is a computerized system for gathering information of Earth features with a
geographic reference system (latitude, longitude, coordinates, projection). Visual
representation either through map generation or any other digital image format
makes it a unique one to the users. It is a blend of computer technology and mapping
science of geography – regarded as computational geography (Kavita and Patil
2011). Many other terms synonymously used in place of GIS include spatial data
handling system (Marble and Peuquet 1983), geographic data system (White 1984),
spatial information system, geo-data system, geo-based information system, natural
resource information system (Clarke 1986), multipurpose cadastre, etc. The basic
functions of GIS are collection of Earth’s information, analysis, update, manipula-
tion, storage, complex relation and integration of data, interpretation and visual
representation for further decision-making through a systematic way integrating
personnel, institutions, hardware, data, and software (Supuwiningsih and Rusli
2017). What GIS does is basically capturing location-specific information and its
facile displaying to the user for better understanding, interpretation, and informed
decision-making.

GIS is an assemblage of computer hardware, software, storage device, modeling
or logical interface, operating personnel, and geographic information collected
through capturing device or remotely sensed tools (Chang et al. 2009; Pendleton
2012). GIS is dished out into two major groups (Gangwar 2013):

(i) Base data or core data or framework data (common for all applications): Data
includes information about elevation, natural or constructed features of the
Earth’s surface, geodetic frameworks for navigation, etc.

(ii) Thematic data (application-specific data): This data varies according to the
user’s application, for example, socioeconomic data from planning and cen-
suses, natural resource data, or modified forms of base data, etc.

GIS contains a database management system to handle two types of data: spatial
(real-world geo-referenced information) and attribute data (a characteristic feature of
objects). It undergoes spatial analysis to find out trends, patterns, shapes, and
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relationships of data. Spatial analysis is of different types like overlay analysis
(superimposing thematic layers to go insight of the data), proximity analysis
(to find out how much features are close to each other), buffer analysis (this is a
type of proximity analysis which is determined through distance around features and
applied to points, lines, or polygons to discover areas in or outside the buffer area)
(Farkas et al. 2016), etc. GIS incorporates only two kinds of data, namely vector- and
raster-featured data. Vector and raster featured data describe discrete and continuous
features, respectively. Vector-featured data comprises point (no dimension), line
(one dimension), and area or polygon (two dimensions), while raster-featured data
includes grid cells and pixels (Wieczorek and Delmerico 2009). Point is displayed
on screen or maps by reducing its scale as a symbol. For example, the corner of a
building is shown by a point as a representative of coordinates. Line, on the other
hand, connects two points and thus represents one dimension. For instance, the
boundary of a water body can be marked by a line. The area, as well as polygon,
represents two-dimensional specifications (community land or water body or vege-
tation land uses) by incorporating at least three connecting lines through different
points (Chang et al. 2009). Polygons have an area and perimeter values and are used
to represent a wide range of physical (types of soil, forests, and water bodies),
anthropogenic (land parcels, administrative boundaries), and other features
(Sugumaran and DeGroote 2011). In raster GIS, a unique reference coordinate or
cell address represents discrete attribute data contained a grid cell or pixel at a corner
or center. Raster format superimposes imageries over grid cells for better features’
identification, and pixel size or grid decides the resolution of images. Unlike vector
format, raster GIS undergoes scalar operations on spatially explicit data and requires
conversion into vector format before further operations. Nowadays, many GIS
software like ArcGIS, QGIS, Maptitude, GeoMedia, etc. can easily transform
those formats into each other. GIS provides data output and presentation through
charts and maps as these communicate better than words. Chart expresses the tabular
data in some graphical diagrams like area, bar, column, line, scatter, and pie.
GIS-based software has dynamic charts for automatic updating. On another side,
maps like planimetric, topographic, cadastral, image, thematic, etc. represent fea-
tures related to Earth through pictorial or symbolized formats embodied by scales,
coordinates, etc. A list of GIS software used for spatial data analysis is presented in
Table 1.2.

1.4.4 Global Positioning System

GPS is a satellite-based navigation system, capable of locating any positions on the
Earth. It can supply real-time, three-dimensional data regarding positions, naviga-
tion, and timing continuously 24 h/day. The development of GPS was primarily
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Table 1.2 A list of GIS software for spatial data analysis

GIS software Developer Country References

ArcGIS Environmental Systems
Research Institute (ESRI)

Redlands, Cali-
fornia, USA

https://www.esri.com/en-
us/arcgis

GeoMedia
(Hexagon)

Intergraph Madison, Ala-
bama, United
States

https://geospatial.
intergraph.com/products/
GeoMedia

QGIS Open Source Geospatial
Foundation

Chicago, USA https://qgis.org/en/site

SAGA-GIS Department of Physical
Geography, University of
Gottingen,

Germany https://www.saga-gis.org/
en

GRASS GIS GRASS Development Team Chicago, USA https://grass.osgeo.org/

gvSIG Open Source Geospatial
Foundation

Chicago, USA https://www.gvsig.org

ENVI Harris Geospatial Solutions Broomfield, Col-
orado, United
States

https://www.
harrisgeospatial.com

MapInfo
Professional

Pitney Bowes Stamford, Con-
necticut, USA

https://www.mapinfo.com

Global
Mapper

Blue Marble Geographics Hallowell,
Maine, USA

https://www.
bluemarblegeo.com/prod
ucts/global-mapper.php

Manifold GIS Manifold Software Limited USA https://www.manifold.net

Smallworld GE Energy Connections Cambridge,
England

https://www.ge.com

Bentley Map Bentley Systems,
Incorporated

Exton, Pennsyl-
vania, USA

https://www.bentley.com

MapViewer
and Surfer

Golden Software LLC Golden, Colo-
rado, USA

https://www.
goldensoftware.com

Maptitude Caliper Corporation Newton, Massa-
chusetts, USA

https://www.caliper.com

SuperGIS Supergeo Technologies Taipei, Taiwan https://www.supergeotek.
com

Super Map SuperMap Software Co., Ltd Beijing, China https://www.supermap.com

PCIGeomatica PCI Geomatics Markham,
Ontario, Canada

https://www.pcigeomatics.
com

IDRISI Clark Laboratories Worcester, MA
USA

https://clarklabs.org

AutoCAD
Map 3D

Autodesk San Rafael, Cali-
fornia, United
States

https://autodesk.com

Tatuk GIS TatukGISSp Gdynia, Poland https://www.tatukgis.com

MicroImages
(TNTgis)

MicroImages, Inc Lincoln,
Nebraska, USA

https://www.microimages.
com

(continued)
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made for military applications and it started mainly as a Navigation System with
Time and Ranging Global Positioning System (NAVSTAR GPS), but it was made
available for civilian use since the 1980s. There are at least 24 GPS satellites in
action for all the times which synchronize operations so that these repeated signals
are transmitted at the same instance. It can calculate its position in three dimensional
space when the receiver estimates the distance to at least four GPS satellites also
referred to as trilateration. Most of the handheld GPS have 20 m positional and 1 m
location accuracy. However, submeter location accuracy could also be obtained by
using Differential GPS (DGPS). There are no subscriptions or setup charges required
to use GPS. Hence, it can be accessed by anyone for any application which needs
location coordinates. This has opened many new avenues for spatial data analyses.
Nowadays farmers could access the GPS to perform site-specific farm activities. In
GPS, several satellites are involved in the identification of the actual position of farm
equipment within the field. GPS is a real-time, accurate, all-weather, economic, and
continuously available positioning system. Hence, it has emerged as a unique
surveying technique with wide range of applications in various domain. The major
applications of GPS in agriculture are as follows:

I. Geophysical and cadastral surveys
II. Determination of the precise location in the field for spatial variability

assessment
III. Determination of the precise location in the field for site-specific input

applications
IV. Yield mapping
V. Integration of all field-based variables such as the intensity of weeds, crop

yield, and soil moisture, etc. with RS data using DGPS
VI. Crop insurance value chain
VII. Agricultural supply chain
VIII. Disaster management and support

Table 1.2 (continued)

GIS software Developer Country References

MapMaker
Pro
(MapMaker)

Map Maker Limited Argyll, Scotland,
UK

https://www.mapmaker.
com

MapRite Envitia Reston, VA,
USA

https://www.envitia.com

Ilwis 52�North ILWIS
Community

Netherlands https://www.52north.org
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1.5 Role of Geospatial Technologies in Sustainable
Agriculture

The discoveries in the field of science and technology during the twentieth and
twenty-first centuries, especially geospatial technology, have enabled farmers to
effectively use farm inputs to maximize crop yield. Geospatial technologies play a
vital role in major agriculture application areas such as crop, soils, land, water,
climate, and risk-related studies with data, models, and analytics. The geospatial
technologies are playing a meaningful role in agriculture in the following ways:

(a) Easy and timely data acquisition
(b) Near real-time visualization and assessment of natural resources
(c) High-resolution and accurate mapping and assessment
(d) Optimize planning tools and techniques for agricultural activities (seeding,

irrigation, fertilization etc.)
(e) Facilitate real-time mapping and monitoring of farm operations
(f) Improve yield and productivity of crops
(g) Centralized management of spatial and nonspatial data at farm level
(h) In-season crop damage assessment
(i) Support to the crop insurance value chain
(j) Easy dissemination of agricultural data through web
(k) Improving farm incomes while minimizing risk

There are various approaches to optimize agricultural activities through
geospatial technologies such as climate-smart agriculture (CSA), precision farming
(PF), conservation agriculture (CA), etc. Such approaches can optimize the use of
farm inputs and resources which helps to reduce the cost of production and minimize
agricultural risk and hazards, hence, improve the crop productivity and farm income.
CSA coined by FAO is described as “agriculture that sustainably increases produc-
tivity, resilience (adaptation), reduces/removes greenhouse gases (GHGs) (mitiga-
tion), and enhances achievement of national food security and development goals”.
The adoption of CSA by farmers can improve crop production, increase economic
growth, reduce greenhouse gas emission, create jobs, and hence decline hunger and
poverty. PF is the use of geospatial tools and techniques to assess spatial and
temporal variability associated with crop production factors to enhance crop perfor-
mance and environmental quality (Pierce and Nowak 1999). It is also known as
satellite agriculture, PF can relate to an agricultural production system with a robust
set of technologies, including RS, GIS, GPS, and Variable Rate Technology (VRT)
which can propel agriculture into the computerized information-based world. Now-
adays geospatial technologies are playing a crucial role in CA. The real-time spatial
and temporal satellite data analysis helps in the formulation of a series of land
management practices that include soil management practices to reduce land degra-
dation, introduce cover crops, retention of crop residues, recommended suitable
cropping sequences, etc.
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1.6 Crop and Soil Factors Influencing Remote Sensing

There are several crop and soil attributes that influence remote sensing signal. The
amount of energy absorbed and transmitted by a plant leaf is affected principally by
the amount and type of chlorophyll content, leaf internal structure, leaf water
content, and leaf biomass content etc. It is further modulated by leaf area per unit
land, leaf arrangement (leaf angle distribution), background soil reflectance,
sun-sensor geometry at canopy level. Leaf-level synthetic spectral reflectance gen-
erated by PROSPECT-D model using different input parameters are presented in
Fig. 1.2 (http://opticleaf.ipgp.fr/index.php?page¼prospect). Among the plant pig-
ments, chlorophyll-a and chlorophyll-b absorb radiation strongly in the visible
wavelength range (400–700 nm) specifically 430 (blue) and 660 (red) nm for
chlorophyll-a; and 450 (B) and 650 (R) nm for chlorophyll-b. Both chlorophyll-a
and -b absorb light, but chlorophyll-a plays a dominant and critical role in converting
light energy to chemical energy (Pinter et al. 2003). Due to the absorption of
chlorophyll, the healthy green leaf shows very low reflectance values (~5–10%) in
the blue and red region of the EM spectrum. The green region exhibits comparatively
higher reflectance (~10–15%) making the plant leaf green in color. Sudden surge in
reflectance is observed (~40–50%) in the near-infrared (700–1000 nm) due to well-
developed leaf internal structure of spongy parenchyma and air space (Salama
2011). This is followed by two weak water absorption bands (970, 1200 nm) in

Fig. 1.2 Spectral response vegetation as influenced by chlorophylla + b content (Chl) in μg cm�2,
leaf structural parameters (N), equivalent water thickness (EWT) in cm, leaf mass per unit area
(LMA) g cm�2; carotenoid content in μg cm�2, brown pigment (arbitrary unit)
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NIR and two strong water absorption bands (1450, 1940 nm) in Shortwave Infrared
Region (SWIR). The response of leaf reflectance spectra with the variation of the
major inputs are presented in Fig. 1.2. Keeping other factors constant, the leaf
chlorophyll content has been varied from 10 to 40 μg cm�2 and the effect on the
reflectance spectra is observed in the visible region only (400–700 nm). The
absorption at blue and red bands has increased with the increase in the chlorophyll
content. The reflectance at green region has also decreased as the higher chlorophyll
content turn the leaf darker. The leaf internal structure (N) parameter is found to be
highly sensitive. The N parameter has been increased from 1 to 2.5 keeping other
inputs as constant, and the spectral reflectance is found to increase drastically. The
effect was found across the spectral band but more pronounced in the reflection
peaks than the absorption regions. The leaf wetness parameters, that is, Equivalent
Water Thickness (EWT) is found to have effect on the NIR and SWIR of the
spectrum. The spectral response with the increase of EWT from 0.01 to 0.04 cm,
keeping other variables constant, is presented in Fig. 1.2. With the increase in EWT,
the depth of the water absorption bands have increased. It has effectively brought
down the whole spectra from NIR to SWIR proportionately. The effect of leaf mass
per unit area (LMA) was found in NIR to SWIR with marginal effect. The reflec-
tance is found to be marginally decreased with no change in the absorption region.
As other parameters are kept constant, the increase in LMA made the leaf internal
structure more compact with less airspace. This results in a decrease of reflectance in
the NIR and SWIR regions, as depicted in Fig. 1.2. Please be informed that the
driving parameters of leaf reflectance act simultaneously and produce a mix response
in practical scenarios.

An interesting observation revealed that when a plant goes to the senescence
stage, reflectance begins to downhill in the near-infrared region (collapse of leaf
internal structure) and uphill in the red regions (loss of leaf chlorophyll). The
absorption mechanism of EM radiation in the pigments of green vegetation is
attributed to atomic excitation by photon, where the electron is bumped into higher
energy orbital that lies further from the nucleus (Jensen et al. 2008; Salama 2011).
On the contrary, a high value of plant reflectance in the near-infrared (NIR
700–1300 nm) region is an effect of leaf density and canopy arrangement. During
the senescence stage, a relatively faster degradation of chlorophylls compared to
carotenoids causes a significant increase in reflectance in the red wavelength.
However, a low value of reflectance at the NIR region is due to collapsing of the
spongy-mesophyll layer as the leaf comes under stress. In this decaying phase of the
plant, carotenes absorb blue and reflect green and red, resulting in the yellow
appearance of the leaves. Due to the death of brown pigments known as tannins,
leaf reflectance and transmittance in 400–700 nm decrease (Fourty et al. 1996;
Salama 2011). This distinct difference in reflectance behavior between the red and
NIR portions of the spectrum is the stimulus for the generation of spectral indexes
(Sripada et al. 2006). These indexes are very frequently used to assess various plant
canopy attributes such as biomass, chlorophyll and moisture content, leaf area index
(LAI), Nitrogen (N) content, etc.
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The most important contributing soil factors are moisture and organic matter
content which affect the amount of radiation reflected by bare soils. Reflection of
radiation from bare soil is also affected by soil texture, CaCO3, calcium, and iron
oxides (Rossel et al. 2006). Each soil property has its own specific spectral region
where reflectance is the strongest (Ben-Dor et al. 2007). In cultivated land, bare soil
and crop canopies are often both present. The mixing of the spectral signatures from
bare soil as well as crop canopies often confuses the interpretation of the reflectance
data. A few techniques are available to isolate information about plant characteristics
from the mixture of reflectance, which includes spectral indexes that adjust for soil
effects (Haboudane et al. 2004), spectral unmixing algorithm (Huete and Escadafal
1991), and derivative spectra (Demetriades-Shah et al. 1990).

1.7 Application of Geospatial Technologies in Crop Science

During late twentieth and early twenty-first centuries, the applications of RS and GIS
in crop science are gaining more attention through crop inventory/mapping and
management. RS is capable of providing spatially explicit and efficient crop inven-
tory (crop map, crop acreage estimation, crop production estimates etc.) and man-
agement (crop condition, crop damage, drought monitoring and assessment,
precision farming, cropping system analysis, etc.) as it can capture information at
wide ranges of spatial and temporal scales with wall-to-wall coverage (Liaghat and
Balasundram 2010). Typical vegetation signature across the EM domain
(400–2500 nm) is presented in Fig. 1.2. The leaf-level signature is principally
governed by the leaf pigments, leaf water content, leaf biomass, and internal
structures as discussed earlier. Hence, the crops having differences in these param-
eters produce unique signature of spectral reflectance. Further at the canopy level,
the signature is modulated by the unique crop spacing, canopy architecture, back-
ground soil exposure, etc. The crop signature can also be separated using the
temporal frame of the crop-growing season. Global- and regional-scale crop maps
have been successfully generated with considerable accuracy using the aforemen-
tioned spectral and temporal signatures. This becomes the basis of successful
monitoring and assessment of crop. The functionality of GIS enables integration
of other thematic services like soil maps, weather maps, and other resources maps
which facilitate rapid and reliable decision-making. The satellite remote sensing
application in crop science begins with the classification of land cover types with
major emphasis on crop types. However, nowadays the focus has been shifted more
toward the characterization of plant biophysical parameter, yield prediction, and
crop production forecasting. RS of agricultural has provided valuable insights into
various agronomic parameters such as start of the season, end of the season, seasonal
greenness, crop condition anomalies, crop damage, etc. One of the main advantages
of RS techniques is considered to be repeated information retrieval without any
destructive sampling of crops. The response of vegetation cover to different spectral
bands varies depending on the change in physical and biological properties of the
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vegetation canopies of different crops. Hence, various multispectral, broadband
vegetation indices such as Normalized Difference Vegetation Index (NDVI), Nor-
malized Difference Red Edge Index (NDRI), Soil-Adjusted Vegetation Index
(SAVI), etc. along with weather parameters derived from surface and satellite
observations have been widely used for crop studies (Schmedtmann and
Campagnolo 2015; Lira Melo de Oliveira Santos et al. 2019; Zortea and Rodrigues
2019). Nowadays the introduction of hyperspectral remote sensing enables
researchers to a more detailed analysis of crops such as crop classification, crop
condition, retrieval of crop biophysical and biochemical attributes, crop stress
(Ennouri and Kallel 2019; Virnodkar et al. 2020), as well as disease and pest etc.
(Bhattarai et al. 2019; Yones et al. 2019). Several researchers have developed
narrow-band vegetation indices using hyperspectral information for analysis and
monitoring of crops and retrieval of different biophysical and biochemical variables
of a plant (Shelestov et al. 2017; Pasqualotto et al. 2019; Darvishzadeh et al. 2019).
Accurate estimates of crop biophysical as well as biochemical variables like LAI,
fraction of absorbed photosynthetically active radiation (FAPAR), leaf moisture and
chlorophyll content, primary production, sun-induced fluorescence (SIF) from RS
can assist in determining vegetation physiological status (Penuelas et al. 1995). The
study of crop phenology and its seasonal dependence, and seasonal dependence
(Belanger et al. 1995), may serve as bioindicators of vegetation stress (Zarco-Tejada
et al. 2001), and are crucial for sustainable agriculture. The introduction of micro-
wave data enables the researcher to assess crops mainly in the rainy season during
kharif. The development in the field of satellite and sensor in the last few decades
makes a remote sensing–based approach as the most trusted and efficient tool to
pre-harvest crop production estimation. Geospatial tools along with various model-
ing approaches such as machine learning, principle component analysis, lambda–
lambda models, stepwise discriminant analysis, artificial intelligence, pattern recog-
nition, mobile computing, etc. have opened a new dimension in crop science
(Thenkabail et al. 2004). Similarly, process-based crop growth simulation models
using RS and GIS-based inputs have been proven potential tools for analyzing crop
behavior and yield prediction in various spatial and temporal scales. Nowadays, the
modern world is emphasizing on the use of proximal remote sensing techniques in
PA to assess the growth and stress of crops. Besides, unmanned aerial vehicle
(UAV) or drone is showing its potential in farm resource management by capturing
quality images of various aspects of crop cultivation especially monitoring the crop
health at relatively cheaper expenditure over other remote sensing tools (Primicerio
et al. 2012). Several researchers have reported the usage of geospatial technologies
in different aspects of crop science which is presented in Table 1.3.
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Table 1.3 Major applications of geospatial technologies in crop and soil science

Sl.
no. Application Description References

Crop Science

1. Crop identification, crop
type mapping

Multispectral satellite
datasets are capable of iden-
tifying and mapping a crop by
considering changes in
reflectance as a function of
plant phenology

Schmedtmann and
Campagnolo (2015),
Ghazaryan et al. (2018),
Heupal et al. (2018), Lira
Melo de Oliveira Santos
et al. (2019), Zortea and
Rodrigues (2019) and Sun
et al. (2019)

2. Crop acreage estimation The manual estimation of
areas under crop is laborious
and time consuming due to
vast size of lands. Geospatial
techniques can play a crucial
role the estimation of the
farmland on which a crop has
been planted

Li et al. (2011), Pan et al.
(2012), Craig and Atkinson
(2013) and Rotairo et al.
(2019)

3. Crop stress (nutrient,
moisture, etc.) and crop
condition health
assessment

RS can play an important role
in crop health monitoring and
the extent to which the crop
has withstood stress. Specific
absorption bands of the plant
pigment, crop moisture, and
crop vigor are useful to assess
crop condition

Katsoulas et al. (2016), Mee
et al. (2017), Ennouri and
Kallel (2019) and Virnodkar
et al. (2020)

4. Crop yield and production
forecasting and modeling

The expected crop yield and
production over a given area
or farmland can be estimated
before harvesting of the crop
using RS and GIS over a
given period of time. It uses
various crop information
such as crop phenology,
agronomic practices, crop
weather, moisture level in the
crops, soils map, etc. Nowa-
days crop yields are fore-
casted using RS input in
combination with various
statistical and machine learn-
ing approach using vegeta-
tion indices, phenology
matrices, crop maps and yield
proxies, etc. Crop growth
simulation model enabled
with in-season RS based crop
biophysical parameters is an
efficient tool in this aspect

Maki et al.(2017),
Kasampalis et al. (2018),
Huang et al. (2019), Ban
et al. (2019) and Phung et al.
(2020)

(continued)
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Table 1.3 (continued)

Sl.
no. Application Description References

5. Horticulture crop assess-
ment and management

High-resolution satellite or
aerial images are found to be
highly suitable for mapping
of horticultural and plantation
crops. Due to its unique tree
canopy and spacing, horti-
cultural crop produce typical
textural parameters of the
image. This is utilized for
rapid mapping and monitor-
ing of the horticultural crops.
The production estimates of
horticultural crops are still
under research and
development

Trout et al. (2008), Usha and
Singh (2013) and Marinelli
et al. (2019)

6. Crop damage assessment Crop damage can be due to
unseasonal rainfall, hail-
storm, pest and diseases,
drought, and flood, etc. RS
can be used to assess the crop
area damage if there is large-
scale destruction of crop can-
opy or leaf pigment. Current
year anomalies with respect
to normal year can also be a
reasonable proxy for this
purpose

Prabhakar et al. (2013),
Zhou et al. (2016), Boschetti
et al. (2015), Surek and
Nador (2015) and Sawant
et al. (2019)

7. Retrieval of crop biophys-
ical parameters

The multispectral and
hyperspectral indices are very
useful for quantification of
different biophysical and
biochemical parameters like
LAI, leaf chlorophyll con-
tents and leaf moisture con-
tent, etc. Different canopy
reflectance models are used
for this purpose

Clevers and Kooistra (2011),
Verrelst et al. (2015),
Shelestov et al. (2017),
Pasqualotto et al. (2019) and
Darvishzadeh et al. (2019)

8. Crop insurance High-resolution satellite data,
drone, aerial images, proxi-
mal sensor can be used to
assess crop growth, yield and
extent of crop damage, delay
in crop sowing, and moral
hazards at farm level, and
allow policymakers to pro-
vide insurance-related infor-
mation for claim settlement.
Geospatial technology can
also provide objective solu-
tion of crop cutting
experiment

De Leeuw et al. (2014),
Borgogno-Mondino et al.
(2019), Banerjee and Pandey
(2019) and Valverde-Arias
et al. (2020)

(continued)
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Table 1.3 (continued)

Sl.
no. Application Description References

9. Precision farming PF can improve crop produc-
tivity with the aid of RS, GIS,
and GPS, etc. It can help in
analysis and management of
spatial and temporal variabil-
ity of farm inputs such as
seeds, fertilizer, water, chem-
ical, etc. within the field

Andreo (2013), Qiu et al.
(2014), Mulla and Miao
(2016), Hakkim et al.
(2016), van Evert et al.
(2017), Nabi et al. (2017),
Castillejo-González (2018),
Friedl (2018) and Neupane
and Guo (2019)

10. Identification of pest and
diseases infestation

RS approach particularly
hyperspectral remote sensing
can play a vital role in the
monitoring pest and diseases
infestation in the crop field
and provide valuable data to
adopt more accurate pest and
diseases control mechanisms.
Disease and pest forewarning
system can also be developed
using satellite and weather-
based information

Ghobadifar et al. (2016),
Mahlein (2016), Bhattarai
et al. (2019) and Yones et al.
(2019)

11. Identification of harvesting
and planting dates

RS can monitor and observe
weather pattern, crop climate,
soil type, soil moisture, etc.
which are useful to predict
the planting and harvesting
seasons of various crop based
on area favorable for crop
sowing. Time series satellite
data analysis can also provide
crop phenological metrics
such as start of the season and
end of the season

Chen et al. (2011) and Rolim
et al. (2019)

12. Mapping of agricultural
land use and crop sown
area

The multispectral satellite
data is useful to map land use
and land cover for various
functions such as crop grow-
ing and landscaping, etc. It
can help in PA where specific
land soils are used for specific
purposes

Wu et al. (2014), Ambika
et al. (2016), Useya et al.
(2019) and Pareeth et al.
(2019)

Crop intensification RS can be used to identify the
in-season fallow area and also
the single and double
cropping systems. It can also
be used to assess the suitabil-
ity of taking up crops in the
fallow land

Estel et al. (2016), Bégué
et al. (2018), Löw et al.
(2018) and Dimov et al.
(2019)

(continued)
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Table 1.3 (continued)

Sl.
no. Application Description References

13. Crop biomass estimation The rapid, reliable, and accu-
rate economical estimation of
crop above-ground biomass
is possible through high-
resolution spatial and tempo-
ral satellite data,
hyperspectral data, drone,
aerial images

Niu et al. (2019), Dayananda
et al. (2019) and Han et al.
(2019)

Crop residues biomass Geospatial technology along
with crop statistics at admin-
istrative level can be used
assess the spatial distribution
of the surplus crop residue
biomass and facilitate utiliza-
tion of the same for biofuel/
biomass power plants

Wang et al. (2013)
and Chakraborty et al.
(2019)

Soil Science

1. Soil survey and mapping The most common and
important application of RS
in soil domain is soil map-
ping. Soil information as a
form of map is useful for PA,
crop growth simulation
model, water balance studies,
irrigation requirement, crop
suitability assessment, etc.

Dwivedi (2001), Manchanda
et al. (2002) and Mulder
et al. (2011)

2. Soil moisture monitoring RS techniques provide an
alternative way to measure
the spatial and temporal vari-
ability of soil moisture. Soil
moisture can be retrieved
either from optical/thermal/
microwave sensors or fusion
of these sensors. Such data
helps in estimation of the
amount of moisture present in
the soil and hence the type of
crop that can be grown in the
soil

Magagi et al. (2012),
Wagner et al. (2013), Akbar
and Moghaddam (2015),
Zhang and Zhou (2016),
Mohanty et al. (2017), Saha
et al. (2018) and Mohamed
et al. (2019)

3. Irrigation monitoring and
management of irrigated
agriculture

RS provides information
about amount of soil moisture
present in soil spatially and
temporally. Such data can be
used to determine whether a
particular soil is moisture
deficient or not which helps
in irrigation scheduling

Taghvaeian et al. (2018),
Tazekrit et al. (2018) and
Ojo and Ilunga (2018)

(continued)
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Table 1.3 (continued)

Sl.
no. Application Description References

4. Wasteland mapping and
land degradation assess-
ment; identification of
problematic soils

The advanced techniques
such as microwave and
hyperspectral and proximal
ground-based sensor data
with multivariate statistical
algorithm have increased the
efficiency of classification
and mapping of degraded
lands, problematic soils, etc.
This allows experts to iden-
tify the areas under degrada-
tion and areas that are still
intact. Such data are useful to
develop action plan for land
degradation neutrality for
optimum productivity

Yiran et al. (2012),
Mohamed et al. (2013),
Vicente-Serrano et al. (2015)
and Mao et al. (2018)

5. Soil erosion assessment
and modeling

Satellite-derived environment
parameters, DEM, LULC,
vegetation cover, grid
weather data are very useful
to predict annual field-scale
erosion rates through model-
ing approaches. Various
process-based models, such
as LISEM, EPIC, etc., are
using space-based inputs to
model soil erosion

Pandey et al. (2009),
Karaburun (2010), Mitasova
et al. (2013), Woldemariam
et al. (2018) and Zabihi et al.
(2019)

6. Digital/predictive soil
mapping

Availability of DEM and
high-resolution images and
different environmental
covariates allow to predict
and generate spatial soil
property map with the assis-
tance of computer-based sys-
tems, modeling, or GIS. Such
maps are very useful for pre-
cision farming and landscape
and environmental modeling

Carré et al. (2007), Minasny
and McBratney (2016),
Sreenivas et al. (2016),
Camera et al. (2017),
Forkuor et al. (2017), Mitran
et al. (2018b), Ma et al.
(2019) and Wadoux et al.
(2019)

7. Spatial variability of soil
properties/nutrients

GIS is a very useful tool to
generate spatial soil map
from point-based field obser-
vation. This helps in
assessing spatial variability of
soil parameters, nutrient con-
tent which allow farmers to
adopt site-specific nutrient
management

Zhang et al. (2003), Vasu
et al. (2017), Usowicz and
Lipiec (2017), Teng et al.
(2017) and Sharma and Sood
(2020)

(continued)
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1.8 Application of Geospatial Technologies in Soil Science

The conventional method of soil assessment is based on regular soil sampling
design, sample collection, sample preparation, and subsequent chemical analysis
in the laboratory. However, this approach is time-consuming, laborious, and costly
to assess soil over a large area. Moreover, such a method can give you point-based
information. Traditionally this information is represented as soil maps knowledge is
represented as soil maps conforming to the discrete model of spatial variation
(Heuvelink and Webster 2001). It shows polygons (represents homogeneous soils)
with boundaries where changes in soil parameters are considered to be abrupt.
However, the complete and accurate spatial information on soils is required for

Table 1.3 (continued)

Sl.
no. Application Description References

8. Soil quality assessment Geospatial techniques
involving the use of RS, GPS,
and GIS provide new
approaches for studying vari-
ous soil quality aspects in
different spatial as well as
temporal domains. Soil health
assessment through spectral
soil quality indexing is of
major focus nowadays

Ben-Dor and Banin (1995),
de Paul Obade and Lal
(2013) and Paz-Kagan et al.
(2014, 2015)

9. Soil fertility assessment
and management

RS and GIS are important in
the determination of soil
management practices based
on the soil fertility data col-
lected from the fields

Blaes et al. (2016),
AbdelRahman et al. (2016),
Song et al.(2018), Molin and
Tavares (2019) and Patel and
Ghosh (2019)

10. Land suitability and capa-
bility assessment

Soil survey information
coupled with RS data can be
integrated in the GIS to eval-
uate crop suitability for dif-
ferent soils or vice versa. This
helps in PA where specific
soils are used for specific
purposes

AbdelRahman et al. (2016),
Yohannes and Soromessa
(2018), Memarbashi et al.
(2017), Parry et al. (2018),
Purnamasari et al. (2019)
and Murti (2019)

11. Soil nutrient deficiency RS and GIS techniques can
be used to determine the
extent of soil and crop nutri-
ent deficiency and facilitate
the agricultural expert and
farmers to come up with
remedies that would increase
the nutrients level in crops via
soil hence improved the
overall crop yield

Meng et al. (2015), Hengl
et al. (2017) and Yousfi et al.
(2019)
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proper land use planning, soil management, and other activities linked to environ-
mental protection. In nature soil properties are spatially variable therefore it should
be estimated as a continuous variable rather than point values to have higher
accuracy and wide applications. The recent advancement of RS, GIS, and GPS has
enabled the researchers to assess land resources spatially and temporally. The
availability of wide ranges of spatial and temporal satellite datasets make soil survey
easier in the form of soil mapping. It can provide complete information about soil
resources of an area which is utmost important for an effective agricultural research
and advisory program. However, many soil properties can be better modeled with a
continuous model of spatial variation using digital mapping approaches. The
RS-based inputs along with secondary datasets such as slope, vegetation, climate,
etc. allow for a more quantitative approach to soil survey producing continuous
surfaces based on soil-forming factors which called “predictive” or digital mapping
technique (Carré et al. 2007; Sreenivas et al. 2016; Mitran et al. 2018b). Besides, this
approach gives spatial estimates of the uncertainty of the predictions. It uses a
regression analysis between in situ point measurements of soil quality data and
exhaustive satellite-derived indices to predict and upscale to larger areas spatially.
The digital soil maps are also an ideal input for spatially distributed models. The
satellite data along with digital soil map, land use, slope, and rainfall data derived
from RS data can help in delineating major land degradation processes such as water
and wind erosion, salt-affected soils, waterlogging, etc. along with its severity such
as undegraded, moderately degraded, degraded, and severely degraded (Mohamed
et al. 2013; Vicente-Serrano et al. 2015; Mao et al. 2018). A number of researchers
have used RS and GIS techniques for soil taxonomic study or soil classification. GIS
is also playing an important role in land resource inventories by assessing spatial
variability of soil properties through interpolation techniques, that is kriging
(Usowicz and Lipiec 2017; Teng et al. 2017; Sharma and Sood 2020). Nowadays
introduction of hyperspectral remote sensing enables researchers to a more detailed
analysis of soil fertility and quality (Paul Obade and Lal 2013; Paz-Kagan et al.
2014, 2015; Molin and Tavares 2019; Patel and Ghosh 2019). The quantitative
prediction of soil properties, soil salinity, soil organic carbon content, CaCO3

content, nutrient deficiency, etc. using hyperspectral data helps in formulating
optimum soil management practices. The availability of microwave data helps in
soil moisture estimation (Mohanty et al. 2017; Saha et al. 2018; Mohamed et al.
2019) and soil erosion studies (Woldemariam et al. 2018; Zabihi et al. 2019). RS and
GIS have also played a crucial role in land suitability and capability assessment by
identifying the problems associated with the soils (Memarbashi et al. 2017; Parry
et al. 2018; Purnamasari et al. 2019; Murti 2019). Several researchers have reported
the application of geospatial technologies in various aspects of soil science which is
presented in Table 1.3.
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1.9 Geospatial Technologies in Agriculture: Status
and Challenges

The application of geospatial technologies and tools for sustainable resources
management especially in agriculture has been advancing quite rapidly over the
last decade in the Asia-Pacific region (Indonesia, Australia, Malaysia, Japan, etc.),
South Asia (India), East Asia (China), Europe (Spain, Belgium, Netherlands), and in
North America (USA, Mexico). A global survey was carried out by geospatial media
and communication (2015) across the world (www.geospatialworld.net) and
reported that 29% of the response to the survey use geospatial technologies for
agricultural land use land cover mapping; 20% for crop inventory, acreage produc-
tion, harvesting and storage; 19% for mapping of soil, water, and land; 13% for
variable-rate technology; 7% for groundwater mapping and management; 12% for
site suitability analysis. In the Asia-Pacific region, RS and GIS are mostly used for
mapping of crops. Malaysia is mostly using RS and GIS for rice crop mapping and
monitoring. Indonesia is using such technologies for producing digital maps and for
land distribution of paddy field types. In Australia, these techniques are mostly used
for mapping of oil palms and sugarcane. In India, satellite images are using for large-
scale agricultural land use mapping, crop inventory, acreage estimation, crop pro-
duction, storage, and harvesting studies. However, in Europe, these technologies are
using for the automation of machinery and farm equipment, crop and water man-
agement, soil properties at a macro level, whereas agricultural land uses land cover
mapping, wasteland mapping, etc. at a micro-level. Although the major RS data
source in China is multispectral, they are using much higher spatial resolution data as
well as hyperspectral data for agricultural monitoring. The major RS applications in
agriculture in China are precision farming, crop yield, agricultural survey, and
disaster forecasting. In North America, agricultural land use land cover mapping is
the major use of geospatial techniques at a macro level, whereas crop disease
assessment and site suitability analysis is at a micro level. The major micro-level
applications of geospatial techniques are variable rate application and management
of farm inputs (seeds, fertilizers, chemicals, etc.), groundwater zonation for irrigation
suitability, drainage patterns, etc.

Geospatial technologies play an influential role in the agriculture sector by
increasing yields, managing resources, prediction of outcomes, and improving
farm practices. However, the application and adoption of geospatial technologies
in agriculture are facing many problems and challenges, which vary from region to
region across the globe. The challenges can be technology related, farm related, data
related, and organization related. The major challenges at the organization level are
lack of proper geospatial policies, skilled manpower, financial resources, etc. The
lack of recent satellite images, topographic data, the spatial scale of data,
unavailability of cloud-free data, data interoperability, and different data format
are the major data-related challenges facing the agriculture sector to adopt geospatial
techniques. Technology-related issues involved compatibility and high cost of
hardware and software, lack of understanding in the correct application of the
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technology, inadaptability by the farmers at the grassroots, etc. Besides, a small
landholding of the farmers, environmental issues, and farm ownership issues, iden-
tification and estimation of area and production of short-duration crops grown in
fragmented landholdings, in particular during kharif/monsoon season, makes the
geospatial technology application more challenging.

1.10 Conclusions and Future Prospective

The rapid development in the field of geospatial technologies especially the remote
sensing and geographic information system play a key role to the sustainable
management of natural resources through extraction of the precise and desired
information to save the costly and infinitive natural resources for the future gener-
ation. Remote sensing data at the optical, microwave, thermal, and hyperspectral
domain has proved to be a powerful tool to assess the crop and soil properties in
varying spatial and temporal scales with cost-effectiveness. Remote sensing satellite
images can be used efficiently for crop growth monitoring, crop condition assess-
ment, crop acreage and yield estimation, precision farming, crop biomass estimation,
identification of pest and diseases infestation, soil survey and mapping, land degra-
dation assessment, soil moisture estimation, soil quality assessment, etc. Geographic
Information System is considered one of the important tools for decision-making in a
problem-solving environment dealing with geo-information. Such technologies and
tools can be used effectively for developing optimum management strategies or
suitable action plans to maintain the agricultural sustainability of any province. It is a
novel approach to save the energy consumption directly and indirectly, reduce input
and footprints of the ecosystems, and enhance the eco-intensification of the natural
resources for the food, nutritional, environmental, and economic security to the
growing population.
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Abstract The right time application of the right amount of input is a prerequisite to
optimizing profitability and sustainability with a lesser impact on environmental
degradation. Such can be achieved through precision farming (PF). It can offer a
great potential to minimize the yield gap by optimizing food production using best
management practices. It can also help to maintain the consumption of natural
resources at an ecologically benign and environmentally sustainable level. PF is a
holistic approach to enhance crop productivity with the aid of satellite-based tech-
nology and information technology (IT) to assess and manage the spatial and
temporal variability of resources and inputs such as seeds, fertilizers, chemicals,
etc. within the field. Application of remote sensing (RS) and geographic information
system (GIS) shows a great promise to precision agriculture (PA) because of its role
in monitoring spatial variability overtime at high resolution. This chapter highlights
various applications of RS and GIS techniques in PA or smart agriculture.

Keywords Decision support system · Geographic information system · Remote
sensing · Satellite farming
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2.1 Introduction

Innovative discoveries in the fields of science and technology and their subsequent
application in the agriculture field have enabled farmers to utilize their valuable
natural resources effectively and efficiently for obtaining maximum yield. These
developments have further been greatly supported by the use of sophisticated
machine, adoption of new planting practices, judicious use of manures and fertil-
izers, integrated pest management by using herbicides and pesticides, etc. (Andreo
2013). However, to meet up with the future challenges to feed the 9 billion people of
the world, there is a need to stop the declining trend of the total crop productivity,
minimizing the rate of degradation of natural resources, and enhancing farm
incomes. Other constraints like fragmented land holdings, trade liberalization on
agriculture, as well as global climatic variations have posed serious threats in
agricultural growth and development. The role of newly emerged technology adop-
tion might play major instruments to increase agricultural productivity in the future
(Hakkim et al. 2016). Therefore, the success of large-scale farming depends on the
culmination of information based on satellite remote sensing (RS) data with well-
documented spatial maps obtained through geographic information system (GIS)
which are the basis of precision farming (PF) (Brisco et al. 1998; Carr et al. 1991;
Palmer 1996).

PA is defined as the “the application of technologies and principles to manage
spatial and temporal variability associated with all aspects of agricultural production
to improve crop performance and environmental quality” (Pierce and Nowak 1999).
The efficient management of various farm inputs in a particular location requires a
qualitative and quantitative assessment of the infield variability (both, spatial and
temporal) (Khosla 2001; Patil and Bhalerao 2013). PF is considered as one of the
breakthroughs in agriculture (Crookston 2006), ranking below conservation tillage,
fertilizer and herbicide management, and improved crop genetics, and is a holistic
approach to improve crop productivity with the aid of information technology
(IT) and satellite-based technology (Finch et al 2014). The right time application
of the right amount of input in right location is a prerequisite to optimizing profit-
ability and sustainability with a lesser impact on environmental degradation (Mondal
et al. 2004; Mondal and Tewari 2007). Linsley and Bauer (1929) were credited to
drill the seed by adopting PF. However, the works of Johnson et al. (1983) and
Matthews (1983) initiated the modern PF (Stafford 2000).

2.1.1 Concept and Principle of Precision Farming

Precision farming (PF) or precision agriculture (PA) is an integrated information–
and production-based farming system utilizing adequate information, appropriate
technology, and proper management. The goal of precision PA is to enhance long-
term, site-specific and whole farm production efficiency, productivity, and net return
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without incurring any severe impact on the ecosystem of the surroundings (Earl et al.
1996; Andreo 2013). PF, as it is practiced today, had its beginnings in the mid-1980s
with two contrasting philosophies, namely, farming by soil (Larson and Robert
1991) versus grid soil sampling for delineation of management zones (MZs) (Bhatti
et al. 1991b; Mulla 1991, 1993; Mulla and Miao 2016).

PF is a breakthrough from the traditional management practice of soil and crop to
sophisticated management considering spatial and temporal variability within the
same field. It is a fine-tuning of total field management, where management deci-
sions are considered according to the variations in resource conditions. The PF can
be statistically represented as P ¼ 1�SD, where, SD is standard deviation. If SD is
0, then P ¼ 1, indicating a highly homogeneous field and if SD is 1, then P ¼ 0,
denoting maximum variability of field (Patil and Bhalerao 2013).

The basic principle of PF is to maximize the use efficiency of inputs considering
spatial and temporal variability within a field and reflected by the quantity and
quality of outputs. The five “R” concepts may be used in PA encompassing the
“right amount of input at the ‘right place’ at the ‘right time, from ‘right source’ with
‘right manner’” (Khosla 2008). In this sense, PF can relate to an agricultural
production system with a robust set of technologies, including RS, GIS, Global
Positioning System (GPS), and Variable Rate Technology (VRT), which can propel
agriculture into the computerized information–based world. The application of such
technologies can optimize production efficiency, quality, reducing production costs,
and reducing negative environmental impacts of farm practices – all at the location-
specific, site-specific, zonal level (Earl et al. 1996; Andreo 2013).

Farm machinery and equipment for PF are available for various farm operations,
including the tillage operation, sowing, transplanting, mechanical weeding, fertilizer
distribution, as well as spraying of pesticides, etc. (Fig. 2.1). Nowadays global
navigation satellite system (GNSS)–based vehicle guidance has been the most
widely adopted PA technology in developed countries (Heraud and Lange 2009).
GNSS-based navigation system auto steers the operation of tractors and other
machinery to minimize gaps and overlaps on the predefined paths. Several aviation
tools were used to guide operators to allow agricultural vehicles to use visual
feedback such as light bars or graphical displays. However, nowadays auto-guidance
systems steer agricultural vehicles under operation without direct input from oper-
ators. Autonomous agricultural vehicles known as Field Robots are the next logical
step in the automation of crop production system (Gebbers and Adamchuk 2010).

PF offers several benefits, including improved efficiency of farm management
inputs, increases in crop productivity or quality, and reduced transport of fertilizers
and pesticides beyond the edge of a field (Mulla et al. 1996).
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2.1.2 Objectives of Precision Farming

2.1.2.1 Increased Profitability and Sustainability

Maximum profit can be obtained in each zone or site in a field by balancing precise
amount of farm inputs (seeding rate, variety, herbicide, and insecticide) as per crop
needs, which can be determined by weather, soil characteristics (nutrient availability,
texture, and drainage) and historic crop performance. At the very same time, PF aims
at sustaining this profitability (Van Evert et al. 2017; Nabi et al. 2017; Meena et al.
2018) PA has an advantage for both farmers and society as a whole. For the farming
community, PA is expected to provide positive returns on investment, leading to an
increase in profitability; while for society, PA is attractive because it may increase
the sustainability of the farming (Pierce and Nowak 1999; Fleming et al. 2000;
Gebbers and Adamchuk 2010; Foley et al. 2011; Banu 2015; Basso et al. 2016).

Fig. 2.1 Flow diagram depicting precision agriculture in crop production
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2.1.2.2 Production Efficiency Optimization

The basic objective of PF is to optimize economic returns across a field. There is a
need to adopt the differential management approach to get optimum production at
each site or within each “zone.” The identification of variability in yield potential is a
prerequisite of PF, assuming a uniform yield potential of the field (Nabi et al. 2017).
MZs are used in PF to divide field regions which differ in their requirements for farm
inputs (Mulla 1991, 1993; Mulla and Miao 2016). The response of fertilizer,
irrigation, or pesticides can be delineated based on variations in crop yield, soil
type, topography, and soil properties (moisture content, pH, organic matter, etc.). RS
has been used to delineate MZs based on variations in soil organic matter (SOM)
content (Mulla 1997; Fleming et al. 2004; Christy 2008). Boydell and McBratney
(2002) used 11 years of Landsat Thematic Mapper imagery for a cotton field to
identify MZs based on yield stability.

2.1.2.3 Optimizing Product Quality

Optimization of product quality is another important concern for PF. This can be
achieved through sensors that detect the quality attributes of the crop and thus inputs
are to be applied accordingly (Hakkim et al. 2016). If quality premiums exist in
production systems, they may alter the quantity of input required to get optimum
profitability and agronomic response (Pierce and Nowak 1999; Gebbers and
Adamchuk 2010; Whelan and Taylor 2013; Nabi et al. 2017).

2.1.2.4 Efficient Use of Farm Inputs

PF involves efficient use of farm inputs, that is, fertilizer, chemicals, seeds, etc.,
according to the yield potential of the soil and judicious use of site-specific variable
rate application (VRA) of these agrochemicals (i.e. herbicides, insecticides) where
the problem appears (Nabi et al. 2017).

2.1.2.5 Soil Conservation, Water, Energy Surface, and Groundwater
Protection

A comprehensive approach to PF begins from crop planning and thus includes such
tillage practices that conserve the soil or disturb the soil to its minimum. Besides,
water is efficiently applied through techniques like drip irrigation, etc. In all these
cases, very less energy is used and thus PA leads to conservation of energy too (Nabi
et al. 2017). PF aims at safeguarding the environment by way of efficient use of
inputs like chemical fertilizers, etc. This prevents their leaching through groundwa-
ter or as runoff through surface water.
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2.1.2.6 Minimizing Environmental Impact

In PF, farmers follow precise management practices which may reduce the environ-
mental risk associated with uniform/blanket field treatments (Whelan and Taylor
2013). A better management decisions lead to judicious use of inputs to optimize
production needs, resulting decrease in the net loss of any inputs to the environment.
Though there may be possibilities of potential unintentional damages to the envi-
ronment associated with the production system. However, such damage risk can be
minimized through adoption of such a hi-tech method (Pierce and Nowak 1999;
Gebbers and Adamchuk 2010; Nabi et al. 2017).

2.1.2.7 Minimizing Risk

Most of the farmers considered risk management from two contrasting points of
view – assured income and environmental impact. Farmers frequently practice risk
management by committing an error by applying extra low-cost inputs (Whelan and
Taylor 2013). To ensure that the produce is harvested/sold on time and to get
guaranteed assured returns, farmers often follow the practice of extra spraying of
chemicals, extra fertilizer addition, buying more machinery, or hiring extra labor. PF
attempts to offer a risk management solution that may allow both income and
environment parameters to be considered. Thus, improved management strategy
depends on a better understanding of the soil–plant–animal–environment interaction
and more detailed use of emerging and existing information technologies (Pierce and
Nowak 1999; Whelan and Taylor 2013; Nabi et al. 2017).

2.1.3 Components of Precision Farming

2.1.3.1 Remote Sensing Technique

The science that makes inferences about material object from measurement made at
distance without coming into physical contact with the object under study is called
RS. RS comprises sensors to collect the reflected radiation from the object and a
platform such as an aircraft, balloon, rockets, satellite, or even a ground-based
sensor-supporting stand onto which the sensors could be attached. Various aircraft
and spacecraft imaging systems along with RS sensors are used nowadays. Indian
Remote Sensing Satellites (IRSS), French National Earth Observation Satellite (i.e.,
SPOT), IKONOS, etc. are some of the recent notable imaging system used in
spacecraft platforms. RS is a promising technology for PA as it effectively monitors
spatial variability overtime at high resolution (Moran et al. 1997). Various
researchers have reported the usefulness of RS technology to obtain spatially and
temporally variable information in PF (Hanson et al. 1995; Moran et al. 1997).
Moran et al. (1997) summarized the various application of RS as a source of various
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types of information for PF. However, there are several limitations found in using RS
data for mapping. The major limitations are calibration of the instrument, atmo-
spheric correction, and normalization of off-nadir effects on optical data. However,
during the monsoon period, cloud screening for data and image processing from
various airborne video and digital cameras also create a disadvantage of optical RS
(Moran et al. 1997).

A relatively cheap, available and marketable RS technology for PA is the need of
the hour in developing countries. Some of the pertinent requirements are as follows:

• Turnaround time should be low (24–48 h).
• Data cost should be less (~100 INR/acre/season).
• Spatial resolution should be high (minimum 2 m multispectral).
• Spectral resolution should be high (<25 nm).
• Temporal resolution should be high (minimum 5–6 data per season).

However, the delivery of analytical products in a simpler format may creat interest
among the users to purchase it in developing countiries (Ray et al. 2010; Sahoo
2011).

2.1.3.2 Geographic Information System

GIS could be referred to as a computerized data storage and retrieval system that
could be used for managing and analyzing spatial data. GIS presents analyzed
information in the form of maps that provides a better understanding of various
crop growth factors and soil fertility, pests, weeds, and other factors determining
yield. GIS map is useful for decision-making based on spatial relationship. Several
GIS software with various functionality and price are available nowadays. Many
farm information systems (FIS) are available where simple programs are used to
produce a farm-level database. Local Resources Information System (LORIS) is one
of such FIS. LORIS includes many modules capable of importing data, generating
raster files through different gridding methods, storing raster data in a database,
generating digital agro-resource maps, creating operational maps, etc. (Schroder
et al. 1997).

A comprehensive farm GIS contains base maps of topography, soil types, and
properties, etc. Information and data on yield, crop rotation, tillage, chemicals,
fertilizers, etc. could be stored in the system for obtaining useful information.
Thus, GIS could be useful for preparing the fertility and weed and pest intensity
maps based on which further recommendations of application rates of inputs could
be inferred.

2.1.3.3 Global Positioning System

GPS could be referred to as a satellite-based navigation system capable of locating
any positions on the Earth. Real-time, three-dimensional data regarding positions,
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navigation, and timing could be obtained through GPS continuously (24 h/day). The
development of GPS was primarily made for military applications, but it was made
available for civilian use since the 1980s. No charges for subscription or setup are
needed for using GPS. The system can be accessed with a GPS by anyone and can be
used in any application that requires location coordinates. The public availability of
the global positioning system (GPS) has opened many new avenues for spatial data
analyses.

Nowadays farmers access the GPS to perform site-specific activities. In GPS,
several satellites are involved in the identification of the actual position of farm
equipment within the field. When detection is done in single receiver mode (auton-
omous navigation), the accuracy of the GPS could be degraded due to various errors.
In PA, where a higher degree of accuracy is needed, the operation of the GPS has to
be done in a differentially corrected positioning mode, for instance by Differential
Global Positioning System (DGPS). DGPS is mostly used for yield mapping and
VRA in PA. GPS plays a significant role to determine the precise location in the field
for the study of spatial variability as well as for site-specific input applications. The
positional accuracy of the GPS is around 20 m with location accuracy of 1 m and
submeter could also be obtained by using DGPS. The availability of GPS approaches
to the farming system will make all field-based variables to be integrated. The
integration among field variables such as the intensity of weeds, soil moisture
content, yield, and RS data could be achieved by the use of GPS more specifically
by the use of DGPS.

2.1.3.4 Variable Rate Techniques

Variable Rate Technique is an equipment which is capable of altering the rate of
application of fertilizers, seeds, irrigation, chemicals, etc. according to the site- and
soil-specific requirement across the field. Adjustments in pesticides, herbicides,
nutrients, lime, and even seeding rates could be done according to the status or
problems of soils and the areas (Adamchuck and Mulliken 2005). VRT consists of a
variable rate control system having application equipment that performs a site-
specific application of inputs at the precise time. Management practices commonly
used in PF include variable-rate fertilizer (Diacono et al. 2013) or pesticide applica-
tion, variable rate seeding or tillage, and variable rate irrigation. Sylvester-Bradley
et al. (1999) reported that VRT is best fitted where prior knowledge of identified
large heterogeneity and predicted treatment zone is available. Besides, the lack of
appropriate sensor is the major problem (Goulding 2002). Murrell (2004) observed
that the application of variable N rates enhanced N use efficiency (NUE) over fixed
rates, but did not respond to increase in yield. Farmers are more likely to accept those
practices that increase yields as well as NUE (Murrell 2004; Olesen et al. 2004;
Goulding et al. 2008).
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2.1.3.4.1 Components of VRT

The VRT is consist of many technical components (Fig. 2.2). The basic component
of a typical map-based variable rate system is a cab-computer of controller equipped
with application software, an actuator that works according to the direction of
computer and controls the input rates, and a DGPS receiver that helps in
geo-referencing by providing the information about the position of the vehicle or
cab. After receiving the positional information through DGPS, the computer sets the
required application rate as a function of vehicle position by harmonizing with other
preexisting information and then sends a setpoint signal to the controller that
regulates the desired rate of application. Actual application rates for GPS position
could also be recorded by a VRT (Sökefeld 2010), which could be stored as a record
and could be reviewed further for future recommendation.

2.1.3.4.2 Variable Rate Application Methods

Variable Rate Application (VRA) methods could be classified into two groups based
on the use of GPS system in it or not. The two methods are map-based VRA and
sensor-based VRA (Table 2.1).

2.1.3.4.3 Map-Based VRA

This VRA method uses a GPS receiver and an electronic map or prescription map to
control the rate of application. An electronic map, also known as a prescription map,
is an electronic data file containing all important and specific information regarding
the input rates required for a particular field or condition. With the movement of the
applicator across the field (using the field position from GPS receiver), the input
concentration changes by matching with the desired rate preset of the particular
positions in the prescription map (by harmonizing the positions obtained from DGPS
receiver). Map-based VRA also uses map-based previous measurements that are
then implemented by employing several strategies which are based on crops, soils,
and location-specific information like yield of crops, topography, soil properties, RS
datasets, and others (Grisso et al. 2011).

2.1.3.4.4 Sensor-Based VRA

GPS or prescription maps are not used in this method. In this case, soil properties and
crop characteristics are assessed by the sensors attached to applicators and the report

Fig. 2.2 Basic components of variable rate technology (VRT)
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is then transferred to the control system where calculations of input rates are made.
The control system then relays the computed information of input rate to the
controller, based on which the final inputs are done to the specific site. One of the
notable advantages of sensor-based VRA is the use of real-time data using real-time
sensors instead of previously collected data in map-based VRA.

2.2 Usefulness of Remote Sensing Data in Precision
Farming

Applications of RS knowledge in the agricultural field have attracted a variety of
endeavors (Moran et al. 1997; Mani 2000; Pinter et al. 2003; Adamchuk et al. 2004;
Andreo 2013). The major endeavors are monitoring and mapping of soil properties
like organic matter and clay content, moisture percentage, pH and salinity level
(Corwin and Lesch 2003; Christy 2008; DeTar et al. 2008; Gomez et al. 2008); crop
yield and biomass study of canola, corn, cotton, sorghum, and wheat (Lelong et al.
1998; Yang et al. 2000, 2001; Shanahan et al. 2001; Seelan et al. 2003; Warren and
Metternicht 2005; Zhao et al. 2007); crop species classification (Rao 2008); crop
nutrient and water stress (Lelong et al. 1998; Erickson et al. 2004; Clay et al. 2006;

Table 2.1 Comparisons between map- and sensor-based VRA

S. No. Parameter VRA (map based) VRA (sensor based)

1 Brief method of
approach

Grid sampling followed by lab
analysis and generation of site-
specific maps. Finally the use of
VRA

Field information based on
real-time sensor, feedback
control measures, and finally
the use of VRA

2 Requirement of
DGPS/GPS

Important Not so important

3 Soil and plant
sample analysis
in laboratory

Required Not required

4 Mapping Important Not necessary

5 Requirement of
time

More Less

6 Constraints Cost of soil sampling and analysis Lack of appropriate sensors to
obtain soil- and plant-related
data

7 Operation
procedure

Difficult Easy

8 Operation skills Required Required

9 Sampling size 2–3 acres Individual spot

10 Acceptance
among the
farmers

It is popular in developing
countries

It is popular in developed
countries

Modified, Patil and Shanwad (2009)
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Moller et al. 2007; Tilling et al. 2007); infestations of weeds and their monitoring
(Lamb and Brown 2001; Thorp and Tian 2004; Scotford and Miller 2005; Gutierrez
et al. 2008); and plant diseases and infestation of insects (Seelan et al. 2003).

2.3 Satellite Remote Sensing in Precision Farming

Since the early 1970s literature reveals that satellites have been successfully utilized
for RS imagery in the field of agriculture (Bauer and Cipra 1973; Doraiswamy et al.
2003; Jewel 1989; Mulla 2013) (Table 2.2). Identification and inventorization of

Table 2.2 List of satellites and their suitability in precision agriculture

Satellite (year) Spectral bands with spatial resolution

Return
frequency
(d)

Suitability in
precision
agriculture

LiDAR (1995) VIS (vertical RMSE 10 cm) N/A High

Radar SAT (1995) C-band radar (30 m) 1–6 Medium

IKONOS (1999) Panchromatic, B, G, R, NIR (1–4 m) 3 High

Landsat 7 ETM + (1999) B, G, R, NIR, 2 SWIR, Panchromatic,
TIR (15, 30, 60 m)

16 Medium

SRTM (2000) C/X-band radar (30 m) N/A Medium

Terra EOS ASTER
(2000)

G, R, NIR and 6 MIR, 5 TIR bands
(15–90 m)

16 Medium

EO-1 Hyperion (2000) 400–2500 nm, 10 nm bandwidth
(30 m)

16 High

Rapid Eye (2008) B, G, R, red edge, NIR (6.5 m) 5.5 High

World View-2 (2009) P (0.5 m), B, G, Y, R, red edge, NIR
(1.84 m)

1.1 High

Cartosat 1 and Cartosat
2, Cartosat 2A (2005,
2007, 2009)

Panchromatic (0.5–0.85 μm)
Cartosat 1: 2.5 Cartosat 2, 2A: 0.8 m

5 High

Landsat 8 OLI (2013) B, G, R, NIR, 2 SWIR (30 m),
Panchromatic (15 m), 2 TIR (100 m)

16 Medium

SPOT 6 and 7 (2012 and
2014)

Panchromatic (1.5 m), B, G, R, NIR
(6.0 m)

1–4 High

Resourcesat 2 and 2A
(2011 and 2016)

AWiFS (56 m), LISS-III (23.5 m),
LISS-IV (5.6 m), B, G, R, NIR, MIR

2–3,
12–13,
25–26

High

KOMPSAT 3 and 3A
(2012 and 2015)

Panchromatic, B, G, R, NIR, MWIR
(KOMPSAT 3A: 0.55 and
KOMPSAT 3:0.70 m)

1.4 High

Sentinel 2A and 2B
(2015 and 2017)

B, G, R (10 m), 3 red edge (20 m),
2 NIR (10, 20 m), 3 SWIR (20 and
60 m)

5 High

P¼ purple, B¼ blue, G¼ green, R¼ red, IR¼ infrared, NIR¼ near infrared, MIR¼mid infrared,
TIR ¼ thermal infrared. Suitability classes L, M and H refer to low, medium and high respectively
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crops could be done with Landsat MSS and Thematic Mapper (TM) data within
certain limits (Morain and Williams 1975; Hanuschak et al. 1980; Ryerson et al.
1985; Ehrlich et al. 1990; Oetter et al. 2000; Blaes et al. 2005), SPOT imagery
(Buttner and Csillag 1989; Hanna et al. 2004; Xavier et al. 2005), and Indian Remote
Sensing (IRS) satellite data (Dutta et al. 1994; Panigrahy and Sharma 1997). Satellite
RS has created huge availability of remotely sensed data for research and various
applications (Liu 2015; Chi et al. 2016). Their use was generally observed in large-
scale classifications of crops (Bauer and Cipra 1973; Jewel 1989; Panigrahy and
Sharma 1997), monitoring of impacts on tillage (Casady and Palm 2002), as well as
to understand the effect of environmental factors like infestation and outbreaks of
diseases (Yang et al. 2005). The measurement of reflectance from the surface soils
with the help of Landsat TM data is a significantly efficient and accurate method for
topsoil organic carbon (SOC) content estimation (Baumgardner et al. 1985;
Henderson et al. 1989; Frazier 1989; Huang et al. 2007; Jaber and Al-Qinna 2011;
Yang et al. 2015). Based on Landsat imagery of bare soil, initiation of use of RS data
in PA was made to understand and study the spatial patterns of soil organic matter
(SOM) content (Bhatti et al. 1991a; Frazier and Jarvis 1990; Wilcox et al. 1994).
Mulla (1997) also reported the use of Landsat imagery data as auxiliary data coupled
with ground truth information for assessing the spatial patterns of soil phosphorus as
well as grain yield of wheat.

Satellite imaging systems with the fine spatial resolution with revisit cycles of a
very short period are generally used in researches regarding PA (Table 2.2) (Mulla
2013). Images with high spatial resolution provide provisions of identification and
area estimation of crops more accurately over the traditional practice. Attempts of
preparing maps of SOC contents using satellite multispectral imagery have been
made using 4-m IKONOS (Sullivan et al. 2005), and 10 and 20 m SPOT (Campbell
1996; Vaudour et al. 2013). In the past few years, the data of IKONOS and Quick
Bird data have been used for several applications (Mumby and Edwards 2002;
Sawaya et al. 2003; Wang et al. 2004). Notable operations including assessment of
nitrogen (N) deficiency in sugar beet, the efficiency of fungicides in wheat, etc. have
been made using IKONOS through spectral information of visible and near-infrared
bands (Seelan et al. 2003). Bausch and Khosla (2010) estimated values of normal-
ized green normalized difference vegetation index (NGNDVI) (Gitelson et al.
1996a, b) in irrigated maize from Quick Bird data which strongly correlates with
spatial patterns in N sufficiency. Quick Bird images (spatial resolution of 2.4 m)
were also found to be effective for determining olive plantation area, numbers of
trees, spatial patterns of tree canopies in concerned area and yields of olive (García
Torres et al. 2008; Castillejo-González 2018). Further, improvement in the
processing capability was noted as a result of the incorporation of additional spectral
information like the use of red-edge spectral wavelength (obtained from
WorldView-2) in PA. Performance of simulated WorldView-2 red-edge-based spec-
tral indices were used by Li et al. (2014) to assess concentration and uptake of N in
summer maize (Zea mays L). Enhanced availability of high-resolution optical
satellite data opens the avenues of new opportunities in PF through crop mapping
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and assessment (Turker and Ozdarici 2011; Yang et al. 2011; Drusch et al. 2012;
Hornacek et al. 2012; Li et al. 2013; Esch et al. 2014; Qiu et al. 2014).

Several trends could be noted on the uses of satellite-based RS data (Table 2.2).
First, the improvement is observed on spatial resolution from 80 m (Landsa) to
submeter in GeoEye and WorldView (Mulla 2013). Secondly, the improvement on
the frequency of revisit is noticed in WorldView as compared to Landsat which took
18 days. Third, an increase in number of spectral bands, that is, eight or more
(bandwidths >40 nm) in WorldView from four in case of Landsat (bandwidths
>60 nm) is observed. The introduction of hyperspectral sensors such as Hyperion
has provided further superior spectral resolution, (400–2500 nm with interval of
10 nm). With the betterment of spectral and spatial resolution of satellite datasets, the
use of reflectance data from these platforms has become more effective and reliable
in PA (Table 2.2).

The suitability of various spectral and spatial images in case of PA depends on
several factors like crop management practices, the capacity of farm equipment,
variation in farm inputs, farm unit area, and water resources, etc. (Olson 1998;
Al-Kufaishi et al. 2006; Lindblom et al. 2017; Friedl 2018; Neupane and Guo
2019). Improved spatial and spectral resolutions (1–3 m) are useful for estimating
spatial patterns of crop biomass or yield than computing variable rate of fertilization
(5–10 m). Accuracy of VRA of fertilizers is often limited by delay times of fertilizer
spreader (Chan et al. 2004). Improved spatial and spectral resolutions (0.5–1 m) are
generally useful in case of variable rate spraying of herbicides for spot weed control
as compared to variable rate irrigation (5–10 m) (Chan et al. 2004). In developing
countries mostly financially strong larger commercial farms are able to obtain higher
spatial and spectral resolution RS datasets compared to smaller farms (Mulla 2013).

Normalized Difference Vegetation Index (NDVI)–based estimation of spatial
patterns in crop biomass (Yang et al. 2000) and potential crop yield (Doraiswamy
et al. 2003) is becoming familiar in PA. NDVI is calculated based on the ratios in the
red and NIR portion of spectrum (Rouse et al. 1973) using the formula
NDVI¼ (NIR� Red)/(NIR + Red). It ranges from 0 to 1 as normalization processes
are used to calculate the index. NDVI exhibits a sensitive response toward green
vegetation even for areas with low vegetation covers (Xue and Su 2017). Hence, use
of this index is often observed in the assessment of regional and global vegetation.
NDVI shows a significant relation not only with the canopy structure and LAI but
also with canopy photosynthesis (Gamon et al. 1995; Grace et al. 2007). Despite
being used widely, various limitations are associated with NDVI (Thenkabail et al.
2010). Introduction of yield monitors capable to provide measurements of yield in
finer-scale resolution across large spatial areas could augment the capacity of RS in
the prediction of structural characteristics of crop, namely, LAI, biomass, and yield
(Karnieli et al. 2010; Sripada et al. 2005; Zhang et al. 2012). However, calibration in
RS is another important step as factors such as soil brightness, soil color, atmo-
sphere, cloud, cloud shadow, and leaf canopy shadow could affect the values of
NDVI (Xue and Su 2017).

Apart from NDVI, several broadband spectral indices (Table 2.3) have used in
PA (Sripada et al. 2006, 2008; Miao et al. 2009). The normalized red (NR) index is
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generally concerned with the portion of the spectrum where chlorophyll strongly
absorbs radiation. Contrarily, the normalized green (NG) index is associated with the
portion of the spectrum where absorption of radiation occurs through pigments other
than chlorophyll. Ratio vegetation index (RVI) is the ratio of NIR to red reflectance
(Jordan 1969) whereas the green–red vegetation index (GRVI) (Tucker 1979) is the
ratio of NIR to green reflectance. There are two types of NDVI, one usually deals
with NIR and R reflectance while the other is green normalized difference vegetation
index (GNDVI), which deals with NIR and G reflectance (Gitelson et al. 1996a, b).
The difference between reflectance in the NIR and R bands is generally considered to
compensate for the effects of soil reflectance to formulate difference vegetation
index (DVI) (Tucker 1979). Better performance of these indices was noted than
NIR and R ratio indices such as NDVI and RVI where compensation of soil effects is
not considered. According to Sripada et al. (2006), green difference vegetation index
(GDVI) (NIR-G) exhibited a better correlation with an economically optimum N rate
in corn than DVI (NIR-R). The main function of vegetation indices, other than
NDVI, is a compensation of the effects factors like soil background and atmospheric
conditions that hamper the vegetation spectral reflectance of crop characteristics
such as type of crops, leaf area index (LAI), or canopy biomass (Bouman 1995).
Exclusion of diminution of the effect of soil brightness (as the pixels in the image is a

Table 2.3 Use of different multispectral, broadband vegetation indices in precision agriculture

Index Definition References

NG G/(NIR + R + G) Sripada et al. (2005)

NR R/(NIR + R + G) Sripada et al. (2005)

GRVI NIR/G Sripada et al. (2005)

GSAVI 1.5 � [(NIR � G)/(NIR + G + 0.5)] Sripada et al. (2005)

GOSAVI (NIR � G)/(NIR + G + 0.16) Sripada et al. (2005)

NDRE (R790 � R720)/(R790 + R720) Barnes et al. (2000)

WDVI NIR � (C.red) Clevers (1997)

GNDVI (NIR � G)/(NIR + G) Gitelson et al. (1996a, b)

OSAVI (NIR � R)/(NIR + R + 0.16) Rondeaux et al. (1996)

ARVI (NIR � RB)/(NIR + RB) Kaufman and Tanre (1992)

MSAVI2 0.5 � [2 � (NIR + 1) � SQRT((2 � NIR + 1)2–
8 � (NIR � R))]

Qi et al. (1994)

SAVI 1.5 � [(NIR � R)/(NIR + R + 0.5)] Huete (1988)

DVI NIR � R Tucker (1979)

GDVI NIR � G Tucker (1979)

PVI SQRT((ρsoil�ρveg)
2
R�(ρsoil�ρveg)

2
NIR) Richardson and Weigand

(1977)

NDVI (NIR � R)/(NIR + R) Rouse et al. (1973)

RVI NIR/R Jordan (1969)

Modified, Mulla (2013)
G¼ green reflectance, NIR¼ near infrared, and R¼ red reflectance, RB¼ difference between Blue
and Red channel, C ¼ ratio between NIR and red reflectance of soil
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combination of vegetation and soil information) could be done by using distance-
based vegetation indices in cases where vegetation is sparse (Huete and Jackson
1988). Perpendicular vegetation index (PVI) (Richardson and Weigand 1977) and
SAVI are notable distance-based vegetation indices in recent days (Thiam and
Eastmen 1999). Many other indices have also been reported that are capable to
compensate the undesirable soil effects which include soil-adjusted vegetation index
(SAVI) (Huete 1988), modified soil-adjusted vegetation index (MSAVI) (Qi et al.
1994), optimized soil-adjusted vegetation index (OSAVI) (Rondeaux et al. 1996),
green soil-adjusted vegetation index (GSAVI, Sripada et al. 2005), green optimized
soil-adjusted vegetation index (GOSAVI), etc. On the other hand, the atmospheri-
cally resistant vegetation index (ARVI) is another type of index capable of consid-
ering atmospheric effect (Kaufman and Tanre 1992).

Major challenges regarding the use of satellite RS in PA were summarized by
Moran et al. (1997) and Yao et al. (2010), and according to them RS images in the
visible and NIR bands are restricted to cloud-free days when irradiance is relatively
consistent across time. Cloud cover could not affect only the radar imagery obtained
from satellites or airplanes. Calibration of raw digital numbers to true surface
reflectance, atmospheric corrections, geo-rectification of data by GPS-based ground
control locations are other notable challenges regarding this.

2.3.1 Satellite-Based Rice Monitoring (SRM) – A Case Study

The combined knowledge of integrated RS, crop modeling, and ICT tools in the
satellite-based rice monitoring (SRM) system (Fig. 2.3) is useful for the effective
dissemination of near-real-time and accurate information of growth and yield of rice.
Information regarding abiotic and biotic stresses under rice cultivation may be
generated which will be useful for end-users. Remote Sensing–Based Information
and Insurance for Crops in Emerging Economies (RIICE) technology is capable of
providing timely and accurate is capable of providing information about rice-planted
areas at village level. This information is about the start of the season and its
variability with geography, expected and actual yield, and the impact of any disaster
on specific rice-growing areas. The use of precise and real-time information obtained
from RIICE in the implementation of crop insurance programs has become a trend in
several countries (i.e., the Republic of India and the Socialist Republic of Vietnam).
In rice cultivation, for monitoring, mapping, and forecasting purposes such projects
have already shown significant success. A combination of RS, crop modeling, web
geographic information system (GIS), smartphone, unmanned aerial vehicles
(UAV), and Amazon Web Services (AWS) made such systems promising in various
countries. In 2016, over 24.5 million hectares of land under rice cultivation have
been monitored through these integrated systems with more than 85% accuracy
while the coverage area was only 1.6 million ha in the initial stages in 2012
(Sylvester 2018).
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2.3.2 Proximal Remote Sensing of Crops in Precision
Farming

To overcome the constraints of satellite-based RS, modern world is emphasizing on
the use of proximal RS techniques in PA to assess the growth and stress of crops.
Proximal RS is also an integrated system having components like sensors mounted
on tractors, spreaders, sprayers, or irrigation booms which combinedly could mon-
itor and conduct the real-time site-specific management of fertilizers, pesticides, or
irrigation (Hummel et al. 1996). Schepers et al. (1992) were the pioneers of assess-
ment of crop status through proximal sensing over RS where they had used a Minolta
soil plant analysis development (SPAD) meter for determining chlorophyll contents
of maize at silking stage under a range of N treatments by measuring leaf greenness.
After that, a significant number of sensors and spectral indexes were invented for
monitoring various crop properties (Table 2.4) associated with N stress in plants and
to set the basis for VRT.

Unavailability of direct estimation of the amount of N fertilizer needed to
overcome crop N stress is a notable constraint of the chlorophyll meter, Green
Seeker, Yara N, and Crop Circle sensors (Samborski et al. 2009). To overcome
this drawback, comparisons of sensor readings with reference strips values of crops
receiving sufficient N fertilizer were made by scientists (Blackmer and Schepers
1995; Kitchen et al. 2010; Raun et al. 2002; Sripada et al. 2008). These data were
used to develop N fertilizer response functions related to sensor readings to

Fig. 2.3 Satellite-based rice monitoring (SRM) sites in South Asia and Southeast Asia. (Adopted,
Sylvester (2018)
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recommend the required amount of N fertilizer to mitigate N stress in crops (Scharf
et al. 2011). Further experiments are still needed in this regard for getting superior
crops, site, and climate-specific responses.

2.3.3 Hyperspectral Remote Sensing in Precision Farming

Hyperspectral imaging is widely known as imaging spectroscopy. According to
Goetz et al. (1985), hyperspectral remote sensing (HRS) could be classically defined
as “The acquisition of images in hundreds of continuous registered spectral bands

Table 2.4 Developments in remote and proximal leaf sensing in precision agriculture

Year Innovation References

1992 SPAD meter (650, 940 nm) used to detect N defi-
ciency in corn

Schepers et al. (1992)

1995 Nitrogen sufficiency indices Blackmer and Schepers (1995)

1996 Optical sensor (671, 780 nm) used for on-the-go
detection of variability in plant nitrogen stress

Stone et al. (1996)

2002 Yara N sensor Link et al. (2002)

2002 Green Seeker (650, 770 nm) Raun et al. (2002)

2002 CASI hyperspectral sensor–based index measure-
ments of chlorophyll

Haboudane et al. (2002, 2004)

2002 MSS remote sensing of agriculture fields with UAV Herwitz et al. (2004)

2003 Fluorescence sensing for N deficiencies Apostol et al. (2003)

2004 Crop Circle (590, 880 nm or 670, 730, 780 nm) Holland et al. (2004)

2004 LASSIE (Real-time images of crop and soil
surfaces)

Lilienthal et al. (2004)

2005 Cropscan2000H – grain quality sensor Long et al. (2005)

2006 Field Spec (325–1075 nm) Rodriguez et al. (2006)

2010 CropSpec – Crop Canopy Sensor (735, 808 nm) Reusch et al. (2010) Topcon.

2010 The Multiplex – fluorescence-based optical sensor Ghozlen et al. (2010) FORCE-A,
Orsay, France

2011 OptRx (670, 730, 780 nm) Sudduth et al. (2011) AgLeader

2013 HandySpec (360–900 nm or 400–1100 nm) Weis et al. (2013) HandySpec
Field, Tec5, Oberursel, Germany

2013 Weedseeker – automatic spot spray system Weis et al. (2013) N-Tech,
Trimble

2014 ISARIA – real-time VR nitrogen sensor (670, 700,
740, 780 nm)

Haas (2014) Fritzmeier
Umwelttechnik

2017 See and Spray – smart spraying by artificial
intelligence

Chostner (2017) Blue River
Technology, USA

2019 H-sensor artificial intelligence (deep and transfer
learning)

Partel et al. (2019) Agricon
GmbH, Germany
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such that for each pixel a radiant spectrum can be derived.” Rather than the number
of bands available in the image, the narrow and continuous wavelength nature makes
it hyperspectral (Shippert 2004; Mohan and Porwal 2015). Reflectance data over a
wide spectral range are generally collected at small spectral increments (typically
10 nm) in HRS (Goetz et al. 1985). Pointing out of the particular frequency is the
crucial function in this technique with more number of bands to reduce the redun-
dancy (Bandyopadhyay et al. 2017), which improves the capability to assess the
spectral response of soils and vegetated surfaces in a more precise way. This opens
the avenue of a detailed insight regarding the spatial and spectral variability of bare
as well as vegetated surfaces (Mulla 2013).

National Aeronautics and Space Administration (NASA) launched the airborne
visible/infrared imaging spectrometer (AVIRIS) in 1987, which was the first
hyperspectral sensor (Goetz 1987; Tan 2017) and it was able to provide continuous
imagery from 380 to 2500 in bands with a spectral resolution of 10 nm and spatial
resolution of 20 m. AVIRIS became highly successful along the time, and in a
majority of hyperspectral analyses it is the principal source of data nowa-
days (Vorovencii 2009) . In 2000, NASA launched a satellite-based Hyperion sensor
(spectral coverage 0.40–2.50 μm), EO-1 for capturing hyperspectral images from
space mainly with the primary issue of mineralogical mapping (Kruse 2003).
However, these hyperspectral datasets are also very useful for crop- and soil-related
studies. Datt et al. (2003) reported that hyperspectral data obtained from Advanced
Land Imager (ALI) predicted spatial patterns in case of rice yield more precisely with
the help of derivative indexes and red-edge position as compared to the predictions
made by NDVI. Wu et al. (2010) in China observed that chlorophyll content in the
canopy and leaf area index could be measured in a nondestructive way for a
considerable range of crops by using vegetative indexes formulated based upon
red-edge reflectance data collected by hyperspectral ALI. Again, for assessing the
green leaf area index, the Compact Airborne Spectrographic Imager (CASI), an
aerial hyperspectral imaging system has also been used (Haboudane et al. 2002,
2004). Some handheld, boom-mounted, hyperspectral, and multispectral imaging
systems are also there in this regard, for example, The Crop Scan sensor
(CROPSCAN Inc., Rochester, MN, USA) (Andreo 2013).

Continuity, range, and spectral resolution of bands are the main factors that make
differences between hyperspectral and multispectral imaging. A number of plant and
soil parameter such as chlorophyll, cellulose, LAI, carotenoids, crop biomass, soil
moisture, soil nutrient, and organic matter can be sensed using hyperspectral data
(Haboudane et al. 2002; Goel et al. 2003; Oppelt and Mauser 2004; Zarco-Tejada
et al. 2004). A specific wavelength is most sensitive to a particular soil or crop
parameters. The crop LAI and biomass can be retrieve with a red band centered at
687 nm, whereas crop moisture content can be assessed with a NIR band centered at
970 nm (Thenkabail et al. 2010). Thenkabail et al. (2010) reported linkages of
33 more hyperspectral reflectance bands with certain characteristics of soils and
crops. Contrarily, there are limitations in the case of multispectral imaging which
could analyze based on single broadband combinations. Hence it is insensitive to
measure chlorophyll and others plant attributes at LAI values exceeding 3.0
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(Thenkabail et al. 2000). Another problem of this constraint is the interference of the
reflectance of bare soil at lower LAI values. According to Thenkabail et al. (2000),
three general categories of predictive spectral indices could be formulated using
hyperspectral data: (1) optimal multiple narrow-band reflectance indexes (OMNBR),
(2) narrow band NDVI, and (3) SAVI. The requirement of narrow bands is only two
to four in case of OMNBR to depict plant characteristics. However, the most
important information regarding plant parameters can be obtaining from shorter
green wavelength (500–550 nm), longer red wavelength (650–700 nm), red-edge
(720 nm), and two NIR (900–940 and 982 nm), spectral bands. This band-based
information is only available in narrow increments of 10–20 nm and cannot be
sensed in broad multispectral bands that are associated with older satellite imaging
systems. Improved statistical methods like partial least squares (PLS) (Viscarra
Rossel et al. 2006) and principal components analysis (PCA) (Geladi 2003) were
found useful for chemometric analysis of hyperspectral data. Besides, pattern rec-
ognition and classification such as object-based (Frohn et al. 2009) decision tree
(Wright and Gallant 2007) approaches are also useful. A range of narrowband
hyperspectral indexes (Table 2.5) have been used in PA (Haboudane et al. 2002,
2004; Li et al. 2010; Miao et al. 2007, 2009). Similar forms as broadband spectral
indices have also observed among many of these but they vary in terms of reflectance
bands for hyperspectral indices that are narrower. Such indices exhibited effective
responses to the canopy or leaf attributes such as LAI, chlorophyll, specific pig-
ments, or nitrogen stress etc. Along with the existing indices, continuous assess-
ments and innovations are also being made for the development of new
hyperspectral indices (Li et al. 2010; Thenkabail et al. 2011).

Several researchers (Yao et al. 2010; Thenkabail et al. 2011) studied promising
applications of HRS in PA. These applications include a diverse range of crops and
their biophysical and biochemical variables, such as yield (Wang et al. 2008),
chlorophyll a and b (Zhu et al. 2007; Delegido et al. 2010), total chlorophyll
(Haboudane et al. 2004), nitrogen content (Rao et al. 2007), carotenoid pigments
(Blackburn 1998), plant stress (Zhao et al. 2007), plant moisture (Penuelas et al.
1995), aboveground biomass (Thenkabail et al. 2004a, b), and biophysical variables
(Darvishzadeh et al. 2008; Thenkabail et al. 1994a, b; Alchanatis and Cohen 2010).

Application of HRS for variable-rate techniques, particularly nitrogen fertiliza-
tion depending on spatial patterns in chlorophyll content, could be considered as its
most concerning use in PF. As, in China, the performance of the MCARI/OSAVI705
index has been proved significantly superior over all other vegetation indexes in
terms of chlorophyll content assessment of a diverse range of agricultural canopy
types (Wu et al. 2010).

2.3.4 Microwave Remote Sensing in Precession Farming

Microwave remote sensing (MRS) can monitor the earth’s surface, irrespective of
atmospheric conditions and day/night which makes it more effective and useful
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Table 2.5 Hyperspectral narrow-band vegetation indices commonly used in precision agriculture

Index Definition References

SR5 R675/(R700 � R650) Chappelle et al.
(1992)

SR2 NIR/green ¼ R800/R550 Buschman and Nagel
(1993)

DI1 R800 � R550 Buschman and Nagel
(1993)

NDI3 (R734 � R747) /(R715 + R726) Vogelmann et al.
(1993)

SR4 R740/R720 Vogelmann et al.
(1993)

MSAVI 0.5[2R800 + 1� SQRT((2R800 + 1)2–8(R800� R670))] Qi et al. (1994)

SR3 R700/R670 McMurtrey et al.
(1994)

Greenness
index (G)

R554/R677 Smith et al. (1995)

RDVI (R800 � R670)/SQRT(R800 + R670) Rougean and Breon
(1995)

HVI R743/R 692 Gitelson et al.
(1996a, b)

MCARI [(R700 � R670) � 0.2(R700 � R550)] (R700/R670) Daughtry et al.
(2000)

NDVI (R800 � R680)/(R800 + R680) Lichtenthaler et al.
(1996)

NDWI (R857 � R1241)/(R857 � R1241) Gao (1996)

OSAVI (1 + 0.16) (R800 � R670)/(R800 + R670 + 0.16) Rondeaux et al.
(1996)

MSR (R800/R670 � 1) /SQRT(R800/R670 + 1) Chen (1996)

SR6 R672/(R550 � R708) Datt (1998)

SR7 R860/(R550 � R708) Datt (1998)

NDI1 (R780 � R710)/(R780 � R680) Datt (1999)

NDI2 (R850 � R710)/(R850 � R680) Datt (1999)

PSSRa R800/R680 Blackburn (1998)

PSSRb R800/R635 Blackburn (1998)

RVSI 0.5(R722 + R763) � R733 Merton and Hunting-
ton (1999)

RGRI Rred/Rgreen Gamon and Surfus
(1999)

SR1 NIR/red ¼ R801/R670 Daughtry et al.
(2000)

Green NDVI
(GNDVI)

(R801 � R550)/(R800 + R550) Daughtry et al.
(2000)

TVI 0.5 � [120 � (R750 � R550) � 200 � (R670 � R550)] Broge and Leblanc
(2000)

TCARI 3 � [(R700 � R670) � 0.2 � (R700 � R550) (R700/
R670)]

Haboudane et al.
(2002)

(continued)
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(Navalgund et al. 2007). Electromagnetic waves having frequencies between
109 and 1012 Hz are generally considered as microwaves. Radar is an active MRS
system (Reddy 2018) in which the terrain is illuminated using electromagnetic
energy and the scattered energy returning from the terrain (known as radar return)
is detected and recorded as images. In the case of both aircraft- and satellite-based
systems, radar return intensity varies with characteristics of terrain and radar systems
(Gupta and Jangid 2010). The various sensor parameters such as polarization,
incidence angle, etc. (Henderson and Lewis 1998; Sahebi et al. 2002; Gupta and
Jangid 2010) and physical parameters such as surface roughness, feature orientation,
and electrical (dielectric constant) property of the target (Ulaby et al. 1978; Dobson
and Ulaby 1986; Baghdadi et al. 2008; Sahebi and Angles 2010) generally governs
the microwave signatures. Terrain properties affect the frequency of radar scattering
(Reddy 2018). A given surface will appear very rough at higher frequency compared
to a lower frequency. Usually, a rise in the backscattering coefficient occurs with an
increase in frequency while the signal penetration depth rises with a rise in wave-
length in the microwave region. Multifrequency data are capable of distinguishing
types of roughness (Reddy 2018). The polarization of the incident wave also
influences the backscattering. The multiple scattering and volume scattering from
a complex surface, such as forest, cause depolarization. The radar backscattering
coefficient is greatly influenced by the angle of the incident energy. This dependency
of the backscattering coefficient toward the angle of the incident is mainly due to
surface roughness (Ulaby et al. 1986; Fung 1994).

The soil moisture estimation using MRS is mostly based on the strong depen-
dence of radar backscatter on the dielectric constant of soil. The dielectric constant of

Table 2.5 (continued)

Index Definition References

TCARI/OSAVI 3� R700 � R670ð Þ � 0:2 R700 � R550ð Þ½ � R700=R670ð Þ
1þ 0:16ð Þ R800 � R670ð Þ= R800 þ R670 þ 0:16ð Þ

Haboudane et al.
(2002)

NDNI
log 1=R1510 � log 1=R1680ð Þð �
log 1=R1510 � log 1=R1680ð Þð ��

" Serrano et al. (2002)

MCARI/
OSAVI

R700 � R670ð Þ � 0:2 R700 � R550ð Þ½ � R700=R670ð Þ
1þ 0:16ð Þ R800 � R670ð Þ= R800 þ R670 þ 0:16ð Þ

Zarco-Tejada et al.
(2004)

MTVI 1.2 � [1.2 � (R800 � R550) � 2.5 � (R670 � R550)] Haboudane et al.
(2004)

MCARI2 1:5 2:5 R800 � R670ð Þ � 1:3 R800 � R550ð Þ½ �
√ 2R800 þ 1ð Þ2 � 6R800 � 5√R670

� �� 0:5
h i Haboudane et al.

(2004)

NAOC*
NAOC ¼ 1�

R b

a
ρdλ

ρmax b�að Þ
Delegido et al.
(2010)

DCNI (R720 � R700)/(R700 � R670)/
(R720 � R670 + 0.03)

Chen et al. (2010)

R ¼ reflectance at the wavelength (nm) in subscript. NIR ¼ near-infrared reflectance. *(ρ refers to
reflectance, λ the wavelength, ρ max¼ maximum far-red reflectance, corresponding to reflectance at
the wavelength “b,” and “a” and “b” are the integration limits surrounding the chlorophyll well
centered at ~670 nm)
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dry soil at microwave frequency is about 3, while it is about 80 for water. The radar
backscattering coefficient (σ�) is strongly related to soil moisture due to high
dielectric constant of a mixture of soil and water (Wang 1980).

The linear increase in the backscattering coefficient could be observed with the
increase in soil moisture content. The development of a significant number of site-
specific empirical models has been made based on the relationship between the
backscattering coefficient and soil moisture content. The two factors that influence
the backscattering coefficient are soil surface moisture and soil roughness (Panciera
et al. 2013; Zhao et al. 2016; Huang et al. 2019). Many contradictions are there
regarding the effects of soil surface roughness and soil moisture content on the
backscattering coefficient where some consider that the effects of soil surface
roughness are greater than that of soil moisture content while others consider them
the same (Satalino et al. 2002; Rahman et al. 2008).

Several researchers effectively devoted their time in the incorporation of the
effect of surface roughness and crop cover using a theoretical approach based on
physical models (the integral equation model (IEM) (Fung et al. 1992; Fung 1994;
Srivastava et al. 2006) and advanced IEM (AIEM) (Chen et al. 2003; Pettinato et al.
2013; Choker et al. 2017; He et al. 2017). The development of some semiempirical
models over bare soils was also reported (Oh 2004; Dubois et al. 1995). The Oh
model is dependent upon the ratios of the measured backscatter coefficients HH/VV
and HV/VV for estimating volumetric soil moisture (mv) and surface roughness
(Hrms). The backscatter coefficients in HH and VV polarizations to the soil’s
dielectric constant and surface roughness were used in the model proposed by
Dubois (Baghdadi et al. 2016). Derivation of soil moisture over vegetated areas
could be made by the models used in bare land along with the vegetation scattering
models. Water Cloud Model is the most widely used vegetation scattering model
(Lievens and Verhoest 2011). The generalization of these empirical models over a
wide area results in problems of sensitivity limitation toward other target parameters,
including soil texture, surface roughness, and vegetation cover (Bertoldi et al. 2014).

For accomplishing various applications, the aforesaid interaction of microwaves
is widely used. Under rice cultivation, a distinctive pattern in backscatter could be
noticed throughout the growth stage. This is might be due to the result of interaction
between rice canopy structure, canopy water content, soils, and surface with SAR
properties such as band, polarization, and incident angle (Le Toan et al. 1997;
Chakraborty et al. 2005; McNairn and Shang 2016; Fikriyah et al. 2019). The
estimation of rice area is generally made based on the physical basis formed,
depending upon the characteristic temporal increase in backscattering coefficient
from rice transplanting stage to maximum vegetative stage (Patel et al. 1995;
Panigrahy et al. 1997, 2000; Parihar and Oza 2006). Three main mechanisms of
scattering that could explain the interactions between SAR and rice canopy structure
are (a) direct volume scattering from the rice canopy, (b) surface scattering from the
ground, and (c) multiple scattering (double-bounce) from the interaction between the
rice canopy and the ground surface (Bouvet and Le Toan 2011; Koppe et al. 2013).
Quad-polarization (VH, VV, HH, and HV) data provided by RADARSAT-2 were
found potent enough to retrieve parameters regarding rice canopy and to determine
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the biomass associated with the crop yield (Wu et al. 2011; Yang et al. 2012). For
monitoring the rice phenology, the sensor acts as an ideal data source. The exploi-
tation of the relationships of the backscattering coefficients and their combinations
versus the phenology of rice helps to measure HH/VV, VV/VH, and HH/VH ratios,
which are effective for monitoring of rice phenology (He et al. 2017).

In various studies where space and airborne SAR scatterometers and simulations
model are involved are found efficient for retrieving soil parameters (roughness and
moisture) and, to a lesser extent, the soil’s textural composition (Shi et al. 1997; Oh
2004; Holah et al. 2005; Zribi et al. 2005; Baghdadi et al. 2006, 2007; Srivastava
et al. 2006, 2009). In western Rajasthan, for detecting paleo-channel having high
moisture content at a depth of 45–75 cm covered by dry sand, the subsurface
penetration capability of radar has been used (Mehta et al. 1993).

Mohan et al. (1990) studied optimal sensor configuration based on different
ground-based scatterometer data for application in soil moisture and vegetation
purposes. However, radar signal obeys a logarithmic function with the soil-surface
roughness irrespective of SAR configuration (Fung 1994; Ulaby et al. 1986). More
sensitivity of SAR data toward soil roughness could be observed at a higher angle of
incidence (Baghdadi et al. 2008; Baghdadi and Zribi 2006). Broadly, low frequency
(C, L band) and low incidence angle (7�–17�) are associated with soil moisture
applications.

The higher angle of incidence (>40�), higher the frequency (X, C) with multi-
polarization (HH, VV and HV) capability is required for crop inventory. At the time
of the monsoon period and flood inundation, the Radar Imaging Satellite (RISAT)
has been effective for monitoring crops in PF (Das and Paul 2015). SAR interfer-
ometry merges two SAR images of the identical scene captured from variable
positions and/or times required to map topography DEM generation and tracks out
small coherent movements (differential interferometry). Numerous researchers have
demonstrated the potential of SAR interferometry for various RS applications like
plant density mapping, plant height estimation, and surface water extent in adverse
weather conditions which could be used in PF. A few important findings of using
SAR interferometry for agricultural crop studies are presented in Table 2.6. Syn-
thetic aperture radar (SAR) images can be potentially used in the agricultural sector
for identification of crops and the on-field conditions, soil moisture, tilled conditions,
forecasting of yield and residue assessment, zone mapping and management, etc.
(McNairn and Brisco 2004).

2.4 Utility and Applications of GIS

GIS operations and functionality were reviewed by several authors (Maguire et al.
1991; Martin 1991; Bernhardsen 1992 and Environmental Systems Research Insti-
tute 1993). Laurini and Thompson (1998) compiled 10 major functions of GIS as
follows:
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(i) Automated Mapping: Replicating paper maps or toposheets into digital format
(ii) Thematic Mapping: Using target’s information and demographic data
(iii) Map Overlay or Composite Mapping: Mapping from stacked data layers
(iv) Spatial Querying: Gathering information about particular condition from a

database through identification
(v) Spatial Browsing: Searching information about particular condition from a

database through identification
(vi) Spatial Problem-Solving: Using deductive reasoning or eliminating irrelevant

spatial information for addressing the particular problem-solving and deci-
sion-making

(vii) Spatial Data Analysis: Testing the spatially explicit data for interpretation
(viii) Implementing Spatial Statistics: Using statistical tools for assessment of

spatial attributes of interest
(ix) Spatial Statistical Analysis: Testing statistically the spatial attributes of

interest
(x) Spatial Analysis: Carrying out simulation through a wide range of spatial

statistical tools available for further representation of spatial phenomena
(Foley et al. 1990; Laurini and Thompson 1992; Bonham-Carter 1994).

A typical GIS contains information about the usual features of a location, unique
or discriminate features within that location, changing trend of particular observation
parameters over time, spatial or landscape patterns of that location, and prediction of
the target’s change in future (Gangwar 2013). Its importance is widespread over
various disciplines and implementation sectors like agriculture, IT sectors, telecom-
munication, mining and exploration, environmental and ecological exploration and
maintenance, strategic studies for renewable energy resources, natural resource
identification, and management, as well as any other particulars associated with
earth’s spatial dwelling. Some potential management and decision-making applica-
tions of GIS in the agricultural sector are in PF, addressing pests and diseases, land
use planning, biodiversity assessment, resource identification, and mapping, crop
area marking and yield prediction, watershed and irrigation management, genetic
resources management, etc. (Mulla 1993; Mulla and McBratney 2000; Oliver 2010;
Mulla and Khosla 2015). GIS application in natural resource management has
already documented by many scientists such as forest pest impact modeling
(White 1984), modeling of narcotic crop sites (Waltz and Holm 1986), waste
disposal site modeling (Buckley and Hendrix 1986), water quality assessment
(Welch et al. 1986), CO2 effect analysis (Brekke 1986), etc. GIS enriches knowl-
edge and reduces uncertainty to improve and expedite decision-making, prevent
mistakes, and save cost. The integration of GIS with simulation modeling and RS
tools ensures a high range of applications in different scientific fields.
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2.4.1 Geostatistics: A Tool for Spatial Variability Assessment

Geostatistics has been evolved basically to characterize incompletely known spatial
features of the earth by incorporating multiple numerical techniques through prob-
abilistic models or pattern recognition techniques (Olea 2009). It always uses
sampling location details to find out the spatial correlation between measurements,
which makes it a distinct from classic statistical concepts. In the 1950s, the seminal
idea about geostatistics was put forwarded by Danie Krige to address doubt during
decision-making for carrying out expensive operations in mining and petroleum
industries (Zhang 2011). Later, mining industries’ data interpolation through
geostatistics was proposed by Matheron (1962). Gradually, geostatistics has
extended its prevalence in other earth science fields like forestry, soil mapping,
meteorology, ecology, hydrogeology, geomorphology, hydrology, geophysics,
geography, soil sciences, landscape ecology, epidemiology, environmental monitor-
ing and assessment, oceanography, sedimentology, agronomy, geochemistry, atmo-
spheric sciences, or any other discipline with spatial data (Myers 2008; Fischer
2015). In recent years, it has been successfully combined with RS and GIS for
accelerating its efficiency and broad coverage in the scientific arena. The term
“spatiotemporal statistics” (the scientific branch that analyses and interprets spatial
and temporal data) is often synonymously used instead of geostatistics (Journel
1986). Geostatistics has specifically expressed interpolation of scalar values, such
as strain ellipticity (Mukul 1998), soil properties, vectors treatments (Young 1987;
Lajaunie et al. 1997), curvilinear geometrical analysis (Xu 1996), kriging interpola-
tion for three-dimensional geometrics of earth surfaces (Lajaunie et al. 1997), etc.
Certainly, geostatistics is different from conventional statistics. Conventional statis-
tics provide analysis and interpretation of uncertainty occurrences due to limited and
error sampling. It does not quantify the space, magnitude, or other factors associated
with variability of uncertainty. It mainly considers discrete or individual data points.
Conversely, apart from the data distribution, geostatistics further employs tools to
determine spatial relationships, and thus provides accurate and bulk information
from limited and error sampling. Additionally, it predicts the probability of spatial
distribution of properties and minimizes uncertainty in data sampling. It mainly
considers differences in value and spatial locations of data points. Geostatistics is
based on the fact that at some scale autocorrelation of properties of an object occurs,
that is, in close proximity, data has homogeneity. It measures the sample (called
supports) to represent a population. This sample can be one or mean of several
others.

Principles of geostatistics mostly rely on Kriging. Kriging is defined as a linear
regression method for determining point values (or spatial means) at a random
location of earth from observations of its value from adjacent locations. The concept
of kriging was first put forward by Matheron (1962) for data points’ interpolation
and termed as an optimal prediction of a variable by interpolating its location with
data points in close proximity (Cressie 1990). Unlike other regression models,
kriging allows estimation of a single realization of the unbiased, random field.
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Kriging method is divided into five major types: simple kriging, ordinary kriging
(mostly used), anisotropic kriging (for analysis of geometric anisotropy), universal
kriging (analysis of local pattern or trends), and co-kriging (analysis using two or
more regionalized input variables) (Hendrikse 2000). Other types include indicator
kriging, disjunctive kriging, and log-normal kriging. Simple kriging assumes
stationarity of the first moment over the domain with known averages. Universal
kriging assumes polynomial trend (three steps: removal of drift in a specified
distance, kriging of secondary residuals, and outcome or estimated residuals from
secondary residuals’ kriging combined with a drift to determine properties of the real
surface) while indicator kriging incorporates indicator functions either in separate
form or in combination to predict transition probabilities. Disjunctive kriging is a
nonlinear expression of kriging. Lognormal kriging uses a logarithmic technique to
interpolate positive data. Ordinary kriging considers an unknown mean (constant)
over neighborhood search for data estimation of the target location. Anisotropic
kriging uses variogram surface inspection with various pixel sizes and the result
varies with scale change. Co-kriging is a combination of ordinary kriging operations
to identify and estimate poorly sampled variables (predict and) using well-sampled
variables (co-variable). The co-variables should be correlated either positively or
negatively. Studies conducted on the prediction of spatial variability in chemical
properties by Nourzadeh et al. (2012) revealed that Cokriging was the best method
for interpolating the chemical properties of soil. Kriging till date has spread its
application in various disciplines like the spatial variability maps of soil properties
(Franzen and Peck 1995; Hengl et al. 2004; Santra et al. 2008; Liu et al. 2008;
García-Tomillo et al. 2017), environmental science (Lajaunie 1984; Zirschky 1985;
Webster and Oliver 2007), hydrology (Mulla and Hammond 1988; Moslemzadeh
et al. 2011; Danilov et al. 2018), mining (Pan et al. 1993), natural resources for the
management of nutrients (Vieira et al. 2007; Chatterjee et al. 2015; Fathi and
Mirzanejad 2015; Metwally et al. 2019), RS (Mulla 1991; Oliver 2010; Mulla
2016), and modeling of microwave devices. Kriging not only provides spatial
autocorrelation, but also can replace stratified sampling if aggregates size is greater
than the distance between two sampling points (Webster and Oliver 2007). It
compensates for the data clustering and gives estimates of estimation error. Its
uniformity in all types of sampling and properties has made its broad range of
applications (Oliver and Carroll 2004; Oliver 2010, 2013). Oliver (2013) had
conducted a case study on a field which has complex geography with variations in
topography and soils in the Yattendon Estate in Berkshire. Based on variogram and
kriging, he generated various digital maps related to yield of crops, soil properties to
aid the farmer in decision-making, etc. He presented the short-range (30 m) and
long-range (130 m) spatial variations in wheat yield through interpolation technique
(Fig. 2.4).

The short-range variation is due to the management effects. However, the long-
range variation in yield is mostly related with the soil texture, that is, sand and clay
content and slope, hence the plateau area has the highest yield.
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2.4.2 Spatial Econometry

Compared with the above mentioned, spatial econometry is relatively a new disci-
pline in the scientific field (Arbia 2015). The idea was pioneered by Belgian
economist Jean Paelinck just 40 years ago (Paelinck and Klaassen 1979). It has
accelerated its speed from the last two decades due to the flood of problems
associated with digitization and explosive revolution of data in information and
technology and communication sectors. Spatial econometry is a scientific field that
offers analytical techniques for identifying interdependence of geographically neigh-
bor observations (areas or points) (LeSage 2005). This subfield of econometrics (i.e.,
application of statistical tools to make a quantitative analysis of actual economic
phenomena based on observations and understanding to formulate inference about
economic relationships) using regression models undergoes spatial autocorrelation
and heterogeneity for cross-sectional and panel data (Paelinck and Klaassen 1979;
Anselin 1988). Spatial interaction means a sample correlation about the location of

Fig. 2.4 The long-range (top) and short-range (below) spatial variation in yield. (Modified, Oliver
2013)
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observations. Spatial heterogeneity means the variability of econometric relation-
ships according to space. It has been spreading the essence of success, as it recalls
Gauss–Markov assumptions what the traditional econometrics forgot (LeSage
1999). Spatial econometrics though in adolescence stage, already has several appli-
cation fields like regional economics, real estate, criminology, demography, agricul-
tural economics, land use land cover, urban planning, industrial organization,
political sciences, psychology, demography, epidemiology, managerial economics,
education, economic development, health economics, public finance, innovation
diffusion, history, labor, resources, energy economics, transportation, social sci-
ences, food security, marketing, environmental studies, etc. (Arbia 2015). With the
help of various geostatistical and spatial data analysis tools and models, spatial
econometry interprets different economic phenomenon, namely interactions, spatial
concentration, external factors, etc.

2.4.3 Spatial Regression

Regression is a statistical process to evaluate the relationship between a variable of
interest (dependent) and one or more explanatory variables (predictors or indepen-
dent variables). The spatial dependence of observations is determined through
spatial autocorrelation (data attributes generated in response to the spatial pattern
in values). The spatial pattern is estimated with the help of global (Moran’s I,
Geary’s C, Getis/Ord Global G) as well as local (LISA and others) statistical
methods. The regression model of such characteristics (i.e., spatial autocorrelation)
is called a spatial regression model (Srinivasan 2015). Spatial autocorrelation is
observed when observations that are closer to each other in space have related
values. Spatial regression analysis aims to model, examine, and explore spatial
relationships and explains factors responsible for the spatial pattern. Ordinary least
square (OLS) is the best regression technique used so far. OLS provides a global
model of variable or process for further interpretation and prediction (Arc GIS Pro,
v. 10.7) using a single regression equation. Another important technique that has a
long use in geography and other associated disciplines is the geographically
weighted regression method (GWR). GWR provides a local model of variable or
process for prediction or interpretation by fitting the regression equation to every
aspect in the dataset (Kupfer and Farris 2007). Both OLS and GWR effectively
estimate liner relationships (either positive or negative). Spatial regression has
address two issues: (a) geographic features that are not spatially autocorrelated
(Lark 2000) and (b) nonstationary nature of properties that user wants to model
(Paciorek and Schervish 2006; Risser and Calder 2015; Risser et al. 2019).
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2.4.4 Delineation of Management Zones

PF is a time- or location (site)-specific farming method that relies on four “R”
principles: Right product, Right rate, Right time, and Right place. It aims in
managing spatial soil variability by addressing only the requirements for soil and
crop rather than the entire field (Doerge 1999; Mzuku et al. 2005). PF thus requires a
practical management approach to delineate its MZs. Similar MZs are the homoge-
neous areas having an analogous trend of yield limitation or improvement through
similar key factors in each case (Doerge 1999; Khosla and Shaver 2001; Fridgen
et al. 2004; Basso et al. 2007). However, delineation of such subfields is hard as there
exist strong interrelationships of biotic, abiotic, and climatic factors. Already several
approaches such as topography, soil properties through survey maps (Carr et al.
1991), soil sampling (Mulla 1991), terrain features through DEM (McCann et al.
1996; Lark 1998; Nolan et al. 2000), aerial photography (Fleming et al. 2000)
remotely sensed imageries (Bhatti et al. 1991b; Moulin et al. 1998), invasive
(Mulla 1991) and noninvasive samplings (Johnson and Richard 2003), etc. are in
practice to delineate management zones. Each management zone is unique (may it be
in requirements or results). The most important spatial information for demarcating
MZs has the characteristics of stability, quantitativeness (numerical), being rigorous
and nonstop sampled and should pose a relationship with crop yield and perfor-
mance directly. For the development of the management zone to carry out the PF,
several data on previous crop history, previous years’ yield map, soil properties, and
fertility, drainage, microclimate, pest problem, etc. about every portion of the field is
required. If some subregions of the field show similarity to each other, they are
marked as a particular management zone and, thus, the entire field is separated by
different types of management zones. As complex relationships among several
factors are continuously occurring in the field, the constraint arises on maintenance
and update of recorded data for making zone-wise application map for the next uses.
The problem further arises with the combined use of more than one variable (say, for
example, weed control and fertilizer management, organic nutrition and irrigation,
etc.). Therefore, a good management zone always requires help from flexible and
advanced GIS tools (Royal 1998). A proper combination of all types of collected
field information, knowledge about marking MZs, and modification or change of
formula with temporal variability of MZs are needed to address the challenge further.
GIS users for determining MZs should be ready for change and flexible enough to
convert the management layer in raster or vector format for running selected variable
rate applicators. The most effective management zone strategy changes with region
and growers. Available data on soil and crop conditions along with experience of
farmers and profound knowledge of users in computer and software handling, etc.,
all help to select ideal management zone.
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2.5 Geoinformatics in Precision Agriculture

Geoinformatics is part of scientific and technological field, which collects, differen-
tiates, stores, analyses, depicts, and transfuses information about the structure and
characteristic features of location in a secured way for the users to interpret well
(Raju 2003). On the other hand, Ehlers (2003) has stated that it is not only a branch
of science and technology, but also an art for acquiring spatial information to
analyze, store, visually represent, and transfuse further. There are several coined
definitions of Geoinformatics worldwide. Geoinformatics is a multidisciplinary field
and consists of several disciplines such as RS for acquiring images through earth
observation sensors, GIS for processing, interpretation of geoinformation, and
visually depicting outcomes through sheets or digitally for decision-making.
Besides, it provides an opportunity to prepare spatial databases, framing information
systems, modeling through manual–digital interaction using various wired and
wireless network interfaces. Geocomputation, cartographic technology, GPS, GIS,
web-mapping, geodesy, RS, photogrammetry, and geo-visualization are used in
Geoinformatics for geoinformation analysis. Geoinformatics is becoming more
efficient and acceptable in several sectors due to combining the improved analytical
efficiency, latest telecommunications opportunities, in a wide range of information,
and recent upgradation of image processing tools such as RS, GPS and GIS. The
flow chart of the working principle of Geoinformatics in a decision support system is
presented in Fig. 2.5. Nowadays Geoinformatics provides benefit to many regular
services such as urban planning and land uses, car transports, aviation, and maritime
transports, public health, meteorology and climatology, environmental modeling and
analysis, military, agriculture, oceanography, business planning, architecture, and
archaeological studies, telecommunications, and many more. In industrial, environ-
mental, commercial, and agricultural sectors and in various regional, national, and
international public or private organizations, in the field of research, survey, map-
ping, emergency support, etc., currently Geoinformatics plays a crucial role in better
decision-making and goal achievements.

2.5.1 Yield Monitoring and Mapping

Since yield is a major parameter representing the impacts of different on-field
agronomic factors, monitoring, mapping, as well as their relationship with spatial
and temporal variability of other agronomic attributes would help in the formation of
future strategy (Mondal et al. 2004). Thus, yield monitoring and mapping consist of
a vital and logical part for the system required for practicing PA. From the aspect of
PA, yield monitoring could be simply defined as a technique capable of generating
adequate information that could be used by the farmers for making better decisions
in the field (Wang 1999). Grain yield could be assessed field- or load-wise by yield
monitors. Some monitoring systems used in the case of forage crops collect
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information such as weight, water content, and several other parameters bale wise
(Davis et al. 2005).

2.5.1.1 Yield Monitoring in Precision Farming

The yield monitoring system provides the farmer with greater flexibility with instant
information about the condition of the field and crops based on which farmers could
take necessary steps (Thylen and Murphy 1996). In recent days, yield monitors
enable farm equipment to acquire a large range of information of grain yield,
moisture level, and soil properties and so on through their association with the
equipment (Fig. 2.6) which eventually made the decision-making process easier
for the farmers. So, the time of harvesting (Vellidis et al. 2001; Yang and Everitt
2002) fertilizer application, irrigations could be easily assessed along with the
mitigation of potential threat through improved understanding of yield-related traits
by analyzing geo-referenced data of particular field (Grisso et al. 2002). This
information is generally collected in data storage devices, which could be further
transferred and stored in personal computers in a variety of formats.

Fig. 2.5 Flowchart of the working principle of geoinformatics in a decision support system.
(Modified, Murai 1999)
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2.5.1.2 Yield Mapping in Precision Farming

The whole process of measurement, compilation, and presentation of georeferenced
crop yield data and other parameters such as grain moisture content in a consolidated
effective form such as in the form of a map is called yield mapping. Several sensors
dedicated to several parameters are generally employed in this whole process. These
sensors along with the DGPS receiver assess several sets of instantaneous data points
of several parameters based on which yield maps are developed (Arslan and Colvin
2002; Fulton et al. 2018). Many automated elements are involved in this system. For
instance, as a combine operator guides the farmers for crop cultivation and its
harvesting only, yield data collection is an automated system in the process of
yield mapping. So the flow of grain through the chute is continuously recorded
along with the recording of the field position of the harvester. Georeferenced yield
information is then transferred in a computerized system for interpolating with the
help of special software to generate yield maps of the field. The binary format is most
preferable as it is capable of storing digital data efficiently. But the conversion of this
binary data into standard text format is necessary as most of the software cannot
process the raw binary data. One cannot get the reason of yield variation from the
yield map as it only offers the information depicting the superior and inferior parts of
the field in terms of yield or it may provide an overview of variation of grain
moisture content in the field which would help farmers to decide whether to harvest
or not in that particular part of the field (Stoorvogel et al. 2016). Hence, farmers are
asked to apply their experience, indigenous knowledge, and supplementary infor-
mation to describe yield maps for upgrading their decision regarding crop manage-
ment to get maximum profit. Thus, the PF system is mainly the assemblage of
different elements and technologies in one effective system for performing success-
ful PA (Pfost et al. 1998, 1999; Blackmore et al. 2003; Zhang et al. 2008; Colaco
et al. 2015; Fulton et al. 2018).

Fig. 2.6 Flowchart of the steps of yield-monitoring process
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2.5.2 Fertilizer Recommendation

Recommendations of fertilizers depending on the analysis of soil and plant are
generally introduced for the betterment of productivity in agriculture as they are of
high efficiency mainly focused on the practical scientific techniques that deal with
the data obtained from the soil and plant analysis (Xia et al. 2011). The soil testing
and fertilizer recommendation methods are commonly implemented to improve
fertilizer efficiency for obtaining an augmented yield along with mitigating the
detrimental effects of long-term fertilization for specific crops (Black 1992; Wang
et al. 1998). The increase in crop growth due to better fertilization could also
contribute to building soil organic carbon content, which in turn influences the
distribution of nutrients in the soil as well as nutrient cycling. Thus, fertilizer
recommendation based on soil and plant analyses not only helps in promoting
crop productivity to meet the ever-increasing need of rising population but also
helps to maintain environmental sustainability. Hence, the use of this essential and
effective technique in modern agriculture not only ensures a steady production but
also facilitates optimum use of fertilizers which makes it a source-efficient and
environment-friendly approach (Xia et al. 2011; Wei and Qi 2013).

Traditionally over the years, the soil is sampled and tested in the laboratory for a
recommendation of fertilizers which is not only uneconomical but also time-
consuming. With the use of geospatial analysis, cost-saving and increment of
work efficiency can be successfully achieved (Tang et al. 2007).

The wide use of computers as a computing device in experiments and researches
regarding fertilizers was started between the 1970s and 1980s in the western world
(Haynes 1986). An increase in concerns regarding the development and application
of a various range of fertilizers was noted since the 1980s (Black 1992) and
computer-based fertilization decision systems were established by several developed
countries at that time. Auburn University coined a recommendation system
containing 52 fertilization standard types while the Agro Services International
Inc. starred to use a software-based system to determine the optimal nutrient
requirement and were able to give consultancy regarding 11 nutrients for 140 num-
bers of crops. “Crop-environment resources information system” was developed by
Richie and people got the recommendation of nitrogen-based on climates, crop
varieties, physiological characteristics, moisture and nutrient status for wheat and
corn cultivation (Haynes 1986; Black 1992). The emergence of the agricultural
production decision system integrating several systems such as scientists’ expertise,
simulation models, GIS, and RS took part in the development of technology.
AE-GIS, a decision support system equipped with crop models and GIS, was
developed by Florida State University agricultural and environmental studies. The
Decision Support System for Agrotechnology Transfer (DSSAT) was then devel-
oped by the University of Hawaii, which was capable of assessing the effects of
different environmental factors by using simulation models to help take appropriate
decisions further regarding management practices. In a similar period, GPFARM
developed by the United States Department of Agriculture (USDA) became a potent

86 P. K. Mani et al.



organization to support production decision-makers as it took economy, environ-
ment, and sustainability together into consideration.

Over time scientists developed expert systems on fertilizer recommendation for
crops based on the soil nutrient status of the field. Previously soil samples had to
collect in a scientific way, which was very cumbersome to the farmers (Ren et al.
2002; Wang et al. 2010). Application of Resource Information Database helped to
overcome such problems to some extent. Thus, this system of scientists’ expertise
was able recommend fertilization by cutting down complicated and time-consuming
procedures including soil sampling and analysis (Tang et al. 2007). Because of the
mutation of the past few decades, a combination of spatial information with soil
nutrient content database became necessary to study the distribution of nutrients in
agricultural fields (Mao and Zhang 1991; Qi et al. 2009).

Latest interventions like high-resolution satellite information, GPS, GIS, and
information technology hold good prospects of monitoring soil nutrient status and
in fertilizer management, land use planning which can be sustained for the future.
The satellite covers many types of information, namely landforms, geological
features, soil categories, erosion, land use, groundwater, and soil moisture which
increases the potential of the fertilizer recommendation process. The combined use
of RS, GPS, and GIS imparts positively on digital analysis and mapping of the
distribution of different nutrients in soils of a vast area quickly. RS, GIS and GPS in
recent days could assess the spatial variance of soil nutrients where geostatistics
forms the foundation of soil resource information database. Depending on laboratory
analysis and previous literature, soil testing and fertilizer recommendation models
and indices are made (Tang et al. 2007; Li et al. 2008). After indexing the nutrient
status of a particular field in the database of soil resources, scientists’ expertise
concludes fertilizer recommendation, dose, and application scheme for a specific
crop (Tang et al. 2007).

2.5.3 Digital Soil Mapping

Soil maps could be simply defined as mapping units where a specific type of soil
having characteristic properties is believed to be located. Digital soil mapping with
the assistance of computer-based systems covers various features or properties of
soil in the generated maps (Kumar 2018). Thus, digital soil mapping is nothing but
making databases of georeferenced information about the soil under certain resolu-
tion based on field observations and laboratory analysis along with environmental
considerations. Statistical and mathematical models are generally used to combines
soil observations and information dealing with correlation among RS data and
environmental attributes. Unlike soil mapping, soil-landscape mapping delivers a
land resource survey that deals with similar or associated soil types and repeating
patterns of landscapes (Schoknecht et al. 2004). Soil-landscape mapping is an
important tool for better and firm decision-making under variable management
practices, as land resource interpretation lowers the risk of implication of various
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practices. It also enhances the better understanding of biophysical processes, and
helps in strategies for land use planning in large-scale environmental regulation,
trading, monitoring, and mapping of natural resources, such as distribution and
prediction of soil carbon storage (Pieri 1997). Geospatial technologies in which
satellite-based imageries are used for simple monitoring purposes, such as soil
productivity, fertility, moisture status, etc., would help farmers to make future
decisions precisely.

Soil and landscape analyses have been significantly influenced by the advance-
ment of GIS-based digital terrain modeling (Mahmoudabadi et al. 2017). For soil
characteristics prediction, development of soil-landscape models have also been
made by combined use of both statistical modeling and digital terrain analysis
(Moore et al. 1993; McSweeney et al. 1994). In these cases, images acquired through
RS devices act as data source support for digital soil mapping (Ben-Dor et al. 2008;
Slaymaker 2001). For analyzing and modeling the land surface as well as studying
the relations between several components of the landscape such as topography,
anthropogenic, hydrological, geological, and biological components, digital terrain
analyses are generally used. Despite being a profitable and potent technology, soil
spectroscopy has not still been regularly applied during survey or monitoring. With
computer software’s upgradation, digital elevation models (DEMs) have become
popular. DEMs generally use remotely sensed data to produce 3-D landscape models
that are capable of delineating geomorphological and land surface features in a
precise way through visual interpretation. DEMs are also able to provide several
information regarding elevation, slopes, aspect maps, etc. with the help of which
efficiency of soil mapping can be augmented. Hence, for this purpose, logical
integration of remotely sensed imagery, soil data obtained from sampling, and digital
elevation models (DEMs) could upgrade the efficiency of the DSM system to
interpret and predict the soil properties (Grunwald 2009), and automated soil
mapping using DEMs has also been started. Significant positive correlation and
predictive features among terrain attributes and different soil properties have been
observed by Moore et al. (1993) and Gessler et al. (1995). Thus, the use of terrain
attributes along with soil features can act as secondary variables that could enhance
the interpolation accuracy of present soil information (Kumar and Singh 2016).

2.6 Modern Trend in Precision Farming: Use of Drones

The modern trend in monitoring natural resources, vegetation, and agrarian belts is
to adopt drones, that is, unmanned aerial vehicles (UAVs) that possess miniaturized
sensors (Jin et al. 2009; Wang and Wu 2010; Salami et al. 2014). They are rapid in
turnaround and offer very high-resolution imagery because of the proximity of
sensors to the surface to be monitored (Berni et al. 2009; Green 2013; Vanac
2014). As agriculture is the backbone for many developing countries like India,
there is an urgent need to incorporate RS in this sector at a cheap cost (~100 INR/
acre/season) with improved spatial (2 m multispectral or more), spectral (<25 nm),
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and temporal (minimum five to six times in each season) resolutions, reduced
turnaround time (24–48 h) for delivering analytical observations in simple and
easy to understand the way in case of PF (Hunt et al. 2005; Lelong et al. 2008;
Nebiker et al. 2008; Rango et al. 2009; Hardin and Hardin 2010; Xiang and Tian
2011). Unmanned aerial systems (UAS) have a great potential of capturing images of
spatial phenomena from a low altitude (Swain et al. 2007) and therefore this young
technology is now gaining attention in the agricultural sector in place of others.

One of the most active emerging areas of research in PA uses cameras mounted
on UAVs (Berni et al. 2009; Zhang and Kovacs 2012; Huang et al. 2018).
An Unmanned Aerial Vehicle (UAV) can be fully automated or instructed to be
automated or manually operated (Sylvester 2018). The development of UAV plat-
forms linked with various sensors (image, position, range, etc.) can effectively
capture multispectral images at a cm-level resolution which holds good prospects
in PF (Lelong et al. 2008; Turner et al. 2011; Guo et al. 2012; Primicerio et al. 2012;
Bendig et al. 2012; Lucieer et al. 2014; Nex and Remondino 2014; Colomina and
Molina 2014; Bansod et al. 2017), agriculture, and forestry management
(Grenzdörffer et al. 2008). Nowadays, UAVs are showing their potential in farm
resource management by capturing quality images of various aspects of crop culti-
vation, especially monitoring the crop health at relatively cheaper expenditure over
other RS tools (Primicerio et al. 2012). The UAVs are relatively inexpensive, can be
deployed rapidly at low altitudes when crop stress is starting to appear, and have the
flexibility to be flown during windy or partly cloudy conditions (Mulla and Miao
2016). In Table 2.7, differences of UAV from other RS tools are mentioned.

The successful use of UAVs or drones in PF is now gaining importance. For
instances, UAVs have potential applications in tracking out small weed zones
(in rangelands) (Hardin et al. 2007); crop water stress (Berni et al. 2009); biomass
monitoring (Hunt et al. 2005; Swain et al. 2010); in figuring out vineyard vigor
(Primicerio et al. 2012); in the identification of crop types such as rice (Swain et al.
2007, 2010), coffee (Johnson et al. 2004), wheat (Hunt et al. 2010), corn (Hunt et al.
2005), etc.; and in evaluating the effect of nutrient management on crops, etc.
Reports from Hunt et al. (2005) and Swain et al. (2007) showed the evidence of
identification capabilities of drones about the effects of the application of different
doses of nitrogen on crops.

Table 2.7 Differences of UAVs from various remote sensing tools

Tools Field of view Spatial resolution Usability Payload Data acquisition cost

UAV 50–500 m 0.5–10 cm # X *

Helicopters 0.2–2 km 5–50 cm ## X **

Airborne 0.5–5 km 0.1–2 m ## √ ***

Satellite 10–50 km 1–25 m – – ****

Modified, Candiago et al. (2015)
√: Unlimited, X: Limited, *Very low, **Medium, ***High, ****Very High, #Very good, ##Pilot
mandatory
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2.7 Major Challenges in Precision Farming

A well-documented improvement in crop yield, profitability, or environmental
quality remains rare in scientific literature, despite a large number of success stories
on PF. There are many technology-related, farm-related, data related, and organiza-
tion related issues, which are associated with the adoption of PF. The major
challenges as are follows:

• Technology-related issues involve compatibility and high cost of hardware and
software, and a lack of understanding in the correct application of the technology.

• Lack of reliable and inexpensive sensors, cloud-free data, different data
formats, etc.

• Most of the available sensors provide indirect measurement of soil and plant
attributes; however producers are looking for sensors which can provide direct
input for existing prescription algorithms (Dobermann et al. 2004).

• Issues with data interoperability: Farmers and researchers can easily collected
huge information within short span of time, but assessment, interpretation, and
transformation of these quality data into meaningful management decisions,
beneficial potentialities, and related risks have proven to be a difficult task.

• The major constraints for implementation of technology in farmers’ fields include
lack of awareness about current policies, lack of skills, and their uneducated
backgrounds.

• Inadaptability by the farmers at the grassroots: In developing countries, most of
the farmers have small and marginal landholdings and they are financially weak,
and thus afraid of the risks of change, so they reluctantly accept technological
interventions.

2.8 Conclusions and Future Perspectives

Remote sensing technology has a great potential to acquire various spatial, spectral,
and temporal resolution datasets which can be used as input for precision agriculture.
Remote sensing data at optical, microwave, thermal, and hyperspectral domains
prove to be a powerful tool to assess crop and soil properties in varying spatial and
temporal scales with cost-effectiveness. Satellite RS coupled with GIS and mobile
app-based positional information has emerged as an efficient tool for the sustainable
development in precision agriculture resources by optimizing input resources, min-
imizing the cost of production, and risk of biotic/abiotic in nature. Modernization
and advancement in space and information technologies have created a suitable
environment for the implication of PF in many countries. In most of the developing
countries, the problem of adoption of PF is due to small landholdings, so the
adoption of precision farming through community farming approach would be a
better option. The full potential of precision farming can only be exploited if the soil
scientists, agronomists, agricultural economists, and engineers develop simple and
robust methodologies and technologies for farmers.
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Abstract Consistent and near-real-time crop growth monitoring over a large scale
is a very crucial step for digital agriculture. An efficient tool for accurate retrieval of
different biophysical parameters is the basic requirement for crop growth monitor-
ing. Quantitative estimation of various crop biochemical and biophysical variables
with reliable accuracy is very useful for different applications related to agriculture,
ecology, and climate. This chapter briefly describes different methods and models
for the retrieval of various crop biophysical parameters using remote sensing
(RS) approaches. Leaf area index (LAI) is a vital attribute in many land-surface
vegetation and climate models which have many important applications. Leaf
chlorophyll and leaf water content are key parameters in many ecological processes,
such as photosynthesis, respiration, transpiration, and they also provide stress
information. The fraction of absorbed photosynthetically active radiation (fAPAR)
by crop vegetation is used as an essential climate variable (ECVs) and critical input
in many land-surface, crop growth and climate, ecological, water, and carbon cycle
models. This chapter highlights various retrieval methods of crop biophysical
parameters, including empirical, semiempirical, hybrid, physically based models
with various inversion algorithms like look-up table, neural network, genetic algo-
rithms, Bayesian networks, support vectors, etc.

Keywords Biophysical · Crops · Chlorophyll · Leaf Area Index · Remote Sensing ·
fAPAR · Inversion

Abbreviations

ANN Artificial Neural Network
DWI Depth Water Index
CCC Canopy Chlorophyll Content
CRM Canopy Reflectance Model
ECVs Essential Climate Variables
EM Electromagnetic Spectrum
ETM Enhanced Thematic Mapper
EWT Equivalent Water Thickness
fAPAR Fraction of Absorbed Photosynthetically Active Radiation
fCover Fractional Cover
GA Genetic Algorithm
GPR Gaussian Processes Regression
IO Iterative Optimization
LAI Leaf Area Index
LCC Leaf Chlorophyll Content
Landsat Land Satellite
LUT Lookup Table
MLRA Machine Learning Regression Algorithms
NDWI Normalized Difference Water Index
N Nitrogen
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NPP Net Primary Productivity
OLI Operational Land Imager
PAR Photosynthetically Active Radiation
PCR Principal Component Regression
PLSR Partial Least Squares Regression
R2 Coefficient of Determination
REGFLEC Regularized Canopy Rfelectance Model
REP Red-edge Position
RF Random Forests
RMSE Root Mean Square Error
RR Ridge (Regulated) Regression
RS Remote Sensing
RTM Radiative Transfer Model
SAC Spectral Angle Cosine
SMLR Stepwise Multiple Linear Regression
SVM Support Vector Machine
SVR Support Vector Regression
SWI Spectral Similarity Water Indices
SWIR Shortwave Infrared
TIR Thermal Infrared
TM Thematic Mapper
UAV Unmanned Aerial Vehicle
VIs Vegetation Indices
WAAI Water Absorption Area Index
WCM Water Cloud Model
WDVI Weighted Difference Vegetation Index
WSN Wireless Sensor Networks

3.1 Introduction

Quantitative estimation of various crop biochemical and biophysical parameters with
reliable accuracy is very useful for various application related to agriculture, ecol-
ogy, and environment (Houborg et al. 2007; Sehgal et al. 2013). The distribution of
these parameters over spatial and temporal scale plays a very significant role to
develop improved prediction models of crop yield and abiotic stress detection at a
regional level. Accurate estimation of crop biophysical as well as biochemical
variables through RS can help in understanding the physiological status of vegeta-
tion (Peñuelas et al. 1994; Meena et al. 2018), phenology and seasonal dependence
(Bélanger and Richards 1995), and serve as bioindicators of vegetation stress (Zarco-
Tejada et al. 2001), which are crucial for sustainable agriculture. Among various
parameters leaf area index (LAI), fraction of absorbed photosynthetically active
radiation (fAPAR), chlorophyll content, and water content, etc. are of primary

3 Retrieval of Crop Biophysical Parameters Using Remote Sensing 115



importance. RS techniques provide unique capabilities like repetivity, stability, cost-
effectiveness, and global to regional-level coverage which is enabling the wide-
spread use of estimation of biophysical variables in studies of land surface and
atmospheric processes (Houborg and Boegh 2008; Vohland et al. 2010). LAI,
defined as one-sided leaf surface area per unit ground surface area (Chen and
Black 1992), is used for understanding various ecological processes such as photo-
synthesis, transpiration, evapotranspiration, etc. and estimation of net primary pro-
duction (NPP) of terrestrial ecosystems (Bonan 1993; Meena et al. 2018a).
Researchers showed that LAI is a vital parameter for crop assessment, crop yield,
and production as well as ecosystem productivity model both in global and regional
scales (Rasmussen 1997; Running et al. 1989). It is also important for biosphere–
atmosphere interaction in some general circulation models (Yao et al. 2008). Apart
from LAI, parameters such as vegetation fraction and fAPAR have been included in
the list of essential terrestrial climate variables (Baret et al. 2013; Shelestov et al.
2017). These parameters can be employed to monitor and quantify crop health status
within agriculture monitoring tasks under the Global Agriculture Monitoring
(GLAM) initiative (Becker-Reshef et al. 2010). It is also very efficient to estimate
crop yield (Kogan et al. 2013; Kolotii et al. 2015) and predict crop production
(Gallego et al. 2014). At the same time, monitoring spatial patterns of biochemical
composition in plant foliage is required to understand growth dynamics in plant
communities (Hilker et al. 2012) and serve as bioindicators of vegetation stress
(Luther and Carroll 1999; Zarco-Tejada et al. 2001).

Plant biophysical parameter retrieval using RS techniques can be broadly classi-
fied as empirical (statistical or variable based) and analytical or physical (radiative)
approaches (Ustin et al. 2004; Hilker et al. 2012). Both these approaches have their
pros and cons. Empirical approaches are simple and computationally efficient,
making them highly desirable for large area RS applications (Tucker 1980; Colombo
et al. 2003; Souza et al. 2010). But these approaches lack generality, thereby
restricting the scale of application (Baret 1991; Hall et al. 1995). The physical
models describe the interaction of radiation within the canopy based on laws of
physics, providing an explicit relation between the canopy variables (biophysical
and biochemical) and canopy reflectance (Houborg and Boegh 2008; Verger et al.
2011). These techniques consider the relationship between the canopy variables with
that of the surface reflectance anisotropy, making them scientifically robust (Bacour
et al. 2002a; Pisek et al. 2011; Román et al. 2011; Chakraborty et al. 2015). These
techniques are scientifically robust and possess the capability of generalization, but
are limited by (a) the complexity of the process of canopy radiation interaction and
(b) use of inversion methods (Combal et al. 2002; Walthall et al. 2004; Baret and
Buis 2008; Yao et al. 2008). Therefore, a significant amount of research has been
done to overcome both these limitations. Different model inversion techniques like
numerical optimization, lookup table (LUT), artificial neural networks (ANN),
genetic algorithm (GA), principal component inversion (PCI), support vector
machines (SVM) regression, and several hybrid mechanisms are used (Jacquemoud
et al. 2000; Fang et al. 2003; Meroni et al. 2004; Walthall et al. 2004; Satapathy and
Dadhwal 2005; Durbha et al. 2007; Darvishzadeh et al. 2008; Kravchenko 2009;

116 N. Mridha et al.



Tuia et al. 2011; Sehgal et al. 2016). The objective of this chapter is to highlight
various retrieval methods of crop biophysical parameters, including an empirical,
semiempirical, hybrid, physically based model with various inversion algorithms.

3.2 Scope of Remote Sensing–Based Parameter Retrieval

Since 1972, with the launch of first civil earth observing satellite, Land Satellite 1 (
LANDSAT-1), RS technology has evolved as a vital tool for spatial and temporal
analysis of various bio-geophysical processes at different scales (Goward and
Williams 1997). Programs like Large Area Crop Inventory Experiment (LACIE)
and Agriculture & Resources Inventory Surveys through Aerospace Remote Sensing
(AgRISTARS ) proved that RS techniques could be successfully used for crop
identification, crop condition monitoring, acreage estimation, and production esti-
mation (Moran et al. 1997). To serve all these purposes, the retrieval of biophysical
parameters is the prerequisite step. Since the early days of the 1970s, researchers
across the world have been developing various techniques and methods to retrieve
the biophysical parameter using RS datasets. LAI, fractional cover (fCover), fAPAR,
and chlorophyll contents are the most common biophysical attributes retrieved using
RS-based approaches. Among all these, LAI representing the actual leaf surface
available for energy and mass exchange between the canopy and atmosphere is the
most frequently retrieved biophysical parameter. LAI is the key variable to model
crop evapotranspiration, biomass assimilation, and partitioning and yield estimation
(Broge and Mortensen 2002). fCover is related to gap fraction in the nadir direction
and mostly used for decoupling vegetation and soil effects for modeling processes
like evapotranspiration (Baret et al. 2006a). fAPAR is directly related to LAI and a
key variable for various crop growth simulation models and the primary productivity
model (Baret et al. 2006a, b). Plant chlorophyll content, an indicator of photosyn-
thetic potential, is the most important biochemical constituent of the plant. Leaf
chlorophyll content (LCC) is a sensitive indicator of crop response to nitrogen
(N) stress, as N is an important constituent of chlorophyll structure and internal
greenness of the leaf (Baret and Fourty 1997). Crop phenological information is the
key variable controlling the partitioning of assimilates in all the crop models that
simulate crop growth, development, and yield. Several researchers have used
RS-based crop phenology information (such as the start of the season, seasonal
greenness, the peak of the season, end of the season, etc.) that enhanced the agro-
ecosystem model outputs (Xin et al. 2002; Karnieli 2003).

3 Retrieval of Crop Biophysical Parameters Using Remote Sensing 117



3.3 Approaches to Remote Sensing–Based Retrieval

Several approaches have been developed worldwide to retrieve biophysical attri-
butes from RS datasets by many researchers. These approaches are broadly catego-
rized into two groups: (i) empirical approach based on statistical regression models
linking RS information with field-measured biophysical attributes (Pu and Cheng
2015; Kira et al. 2016); (ii) physical modeling approach based on radiative transfer
models (RTMs) simulating the canopy reflectance followed by inversion of these
RTMs to retrieve the targeted parameters (Campos-Taberner et al. 2016; Féret et al.
2017). In the empirical approach, linear statistical–based regression, nonlinear
methods like machine learning (deep learning, random forest, etc.) and dimension-
ality reduction methods such as partial least square regression (PLSR) etc. are
applied for retrieval process and mapping at a larger scale. This approach is based
on the computation of various narrow and broadband spectral vegetation indices and
spectral transformation, followed by the development of statistical models. Though
it is computationally fast, it lacks transferability, making its application limited in
varied spatial and temporal scales. On the other hand, physical approaches are based
on RTM, which considers canopy reflectance–based non-leaf angle distribution,
specular reflection of leaves, Lambertian characteristics of soil, and hotspot effects
of vegetation canopy, etc. Hence, these models are robust and transferable than
statistical models. At the same time, the major limitation in the physical approach is
the “ill-posed problem,” where a different combination of plant trait values can
produce the same reflectance spectra. The parameters like chlorophyll contents, etc.
are often retrieved by these models with higher accuracy as compared to biomass,
protein content, etc. This remains a challenge because these traits do not have a
prominent spectral signature (Homolova et al. 2013). The above-mentioned
approaches expanded into subcategories and combinations further, with progress
in data analytics, algorithms, and computational techniques. Hence, various retrieval
approaches can be further categorized into four subcategories (Verrelst et al.
2015a, b), which are discussed in the following section.

3.3.1 Methods Based on Parametric Regression

RS-based parametric regression method is based on the assumption of an explicit
relation between spectral observations and the biophysical parameters of interest.
Typically, a band combination is selected followed by suitable arithmetic formula-
tion. This includes computation of spectral vegetation indices (VIs) followed by
fitting of linear or nonlinear functions with the crop biophysical parameter of
interest. These VIs are mostly designed to enhance vegetation-sensitive spectral
features by reducing background noise (Glenn et al. 2008; Clevers 2014). Tradition-
ally these VIs are developed for sensors with broad spectral bands. A list of popular
broadband and narrowband indices commonly used for crop biophysical parameter
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retrieval is presented in Table 3.1. Researchers have proposed optimal band combi-
nations using two-dimensional correlation matrices, developed based on various
established spectral indices (Thenkabail et al. 2002; Mariotto et al. 2013; Rivera
et al. 2014). A “best performing index” can be selected out of these so-called
optimized or generic indices. At the same time, none of these VIs can potentially
use all available spectral information from quasi-continuous spectral datasets in case
of narrowband hyperspectral images. In this context, various “shape indices” are
developed to extract valuable information from quasi-continuous narrow bands to
the full extent.

The shape indices mostly used for crop monitoring are confined around the
red-edge position (REP). It corresponds to the position of the wavelength at the
maximum of the first derivative in the spectral reflectance curve in the red-edge
region (670–780 nm). This REP is sensitive and related to the canopy variables like
LAI, LCC, and canopy chlorophyll content (CCC), etc. These correlations have been
used by several researchers to derive LAI, LCC, and CCC (Clevers and Kooistra
2012; Delegido et al. 2013). Many researchers have also proposed normalized index,
taking finite integrals defined by specific spectral regions over visible and red-edge
wavelengths (Mutanga et al. 2005; Malenovský et al. 2006; Delegido et al. 2010).
Sometimes spectral derivatives are transformed into an index, instead of integration,
to relate the crop biophysical parameters (Zarco-Tejada et al. 2002; Le Maire et al.
2004). Continuum removal (CR) is another technique generally applied over the full
spectrum to get individual absorption features by normalizing it with a common
baseline (Clark and Roush 1984). It is employed to generate various maps on
chlorophyll content (Broge and Leblanc 2001), N content (Schlerf et al. 2010;
Mitchell et al. 2012), grassland biomass (Cho et al. 2007), and foliar water content
(Stimson et al. 2005), etc. Many researchers have also reported that the use of
narrow-band indices which are originally developed from broadbands do not always
improve the retrieval accuracy. In some cases, it may result in poor parameter
prediction (Broge and Leblanc 2000; Broge and Mortensen 2002). Alternatively,
the narrowband indices originally developed to retrieve leaf biochemical attributes
are mostly better than the broadband (Haboudane et al. 2004; Zarco-Tejada et al.
2005).

Parametric methods usually end in the regression model calibrated with experi-
mental data collected from a different environment, sensors set up at different scales,
and hence, highly empirical. Their predictive performance is vulnerable to the
different environmental and experimental setup, like change in surface properties
or sun-sensor geometry (Verrelst et al. 2008, 2010), etc. Therefore, these models are
most suitable and perform well under local conditions, and their application is
limited in a broader operational setting. The selection of appropriate bands, formu-
lation of suitable indices, and fitting appropriate parametric function are the basic
criteria for parametric regression to retrieve biophysical parameters. However,
Verrelst et al. (2015a, b) reported an important issue in using spectral VIs for
retrieval of biophysical parameters under the empirical approaches. It is necessary
to establish and validate the significant relationship between VIs and the biophysical
parameters of interest to adopt such approaches. This often demands costly and
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Table 3.1 List of major spectral indices used in crop biophysical parameter retrieval

Spectral
index Use Formula References

CAI Applicable for exposed
surface containing dried
plant material

0.5(ρ2000 + ρ2200) � ρ2100 Daughtry (2001)

DVI Distinguish between soil
and vegetation, LAI
retrieval

NIR � RED Tucker (1979)
and Yang et al.
(2007)

EVI Useful for higher LAI NIR� REDð Þ
NIRþ 6 � RED� 7:5 � BLUEþ 1ð Þ

Huete et al.
(2002)

GCI Leaf chlorophyll content ρNIR
ρGreen

� �
� 1

Gitelson et al.
(2003)

GNDVI More sensitive to chlo-
rophyll than NDVI

NIR� GREENð Þ
NIRþ GREENð Þ

Gitelson and
Merzlyak (1998)

NGRDI Chlorophyll retrieval GREEN� REDð Þ
GREENþ REDð Þ

Tucker (1979)
and Singhal
et al. (2019)

MCARI Relative abundance of
chlorophyll

[(ρ700 � ρ670) � 0.2
(ρ700 � ρ550)] � (ρ700/ρ670)

Daughtry et al.
(2002)

MSI Sensitive to leaf water
content

ρ1599
ρ819

� �
Ceccato et al.
(2001)

NDVI Measure of heathy and
green vegetation, LAI
retrieval

NIR� REDð Þ
NIRþ REDð Þ

Rouse et al.
(1974) and
Tillack et al.
(2014)

OSAVI Used for sparse vegeta-
tion with soil back-
ground, canopy
chlorophyll retrieval

NIR� REDð Þ
NIRþ REDþ 0:16ð Þ

Rondeaux et al.
(1996) and
Clevers et al.
(2017)

PRI Sensitive to change in
carotenoid pigment

ρ531 � ρ570
ρ531 þ ρ570

� �
Gamon et al.
(1997)

RENDVI Precision agriculture and
crop stress detection

ρ750 � ρ705
ρ750 þ ρ705

� �
Gitelson and
Merzlyak (1994)

REPI Canopy stress detection,
LAI retrieval

Wavelength of the maximum deriva-
tive of reflectance in red edge region
(690–740 nm)

Curran et al.
(1995); Pu et al.
(2003); Sun
et al. (2020)

SASI Soil and vegetation
moisture

Based on the NIR (858 nm) and
SWIR (1240 and 1640 nm) MODIS
bands

Khanna et al.
(2007)

SAVI Suppresses the effects of
soil, LAI retrieval

1:5 NIR� REDð Þ
NIRþ REDþ 0:5ð Þ

Huete (1988);
Broge and
Leblanc (2000)

SR Easy to understand and
valid over wide range of
LAI

NIR
RED

Birth and
McVey (1968)
and Eklundh
et al. (2003)

(continued)
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time-intensive measurement programs over a wide range of crops and varied canopy
conditions along with combinations of view/sun geometry.

3.3.2 Nonparametric Regression Methods

Nonparametric methods are directly defining regression models based on
RS-derived information. Hence, selection of spectral band explicitly and its trans-
formation is not required like parametric methods. Linear nonparametric regression
including stepwise multiple linear regression (SMLR), principal component regres-
sion (PCR), PLSR, and ridge regulated regression (RR), etc. are usually preferred
because of their optimal performance and simplicity. SMLR is useful for the
selection of appropriate spectral bands carrying important information on vegetation
parameters (Dorigo et al. 2007). Ramoelo et al. (2011) employed both SMLR and
PLSR to retrieve foliar N and phosphorus (P) in combination with CR techniques
using field spectrometer measurements. Both SMLR and PLSR have been used
successfully for retrieving soil properties particularly soil N content (Bartholomeus
et al. 2012; Miphokasap et al. 2012). PLSR technique can be used to retrieve foliage
nitrogen content using hyperspectral data (Coops et al. 2003; Huang et al. 2004).
Many studies show potentialities of the PLSR technique to retrieve crop biophysical
properties like LAI, stem biomass, and leaf nutrient concentrations, etc. (Cho et al.
2007; Im et al. 2009).

For the last few decades, a variety of nonparametric, nonlinear models also
known as machine learning regression algorithms (MLRAs) have been developed
and used extensively. Such techniques are capable to capture nonlinear relationships
of image features without explicitly knowing the underlying data distribution, hence
robust to work with various data types. They are also flexible enough to incorporate a
priori knowledge and can pool different data types into the analysis. Breiman (2001)
employed decision tree learning including Bagging Decision Trees (BDT) and

Table 3.1 (continued)

Spectral
index Use Formula References

TCARI Relative abundance of
chlorophyll

3[(ρ700 � ρ670) � 0.2
(ρ700 � 550) � (ρ700/670)]

Haboudane et al.
(2004)

NB: The formula is designed on the reflectance value for the spectral region/specific wavelength;
DVI Difference vegetation index, EVI Enhanced vegetation index, NDVI Normalized difference
vegetation index, NGRDI Normalized green–red difference index, GNDVI Green normalized
difference vegetation index, SR Simple ratio, SAVI Soil-adjusted vegetation index; OSAVI Opti-
mized soil-adjusted vegetation index, GCI Green chlorophyll index, MCARI Modified chlorophyll
absorption ratio index, RENDVIRed-edge normalized difference vegetation index; REPI Red-edge
position index, TCARI Transformed chlorophyll absorption reflectance index, PRI Photochemical
reflectance index, MSI Moisture stress index, CAI Cellulose absorption index, SASI Shortwave
angle slope index
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Random Forest (RF) approaches to improve the prediction accuracy of the retrieved
crop biophysical parameter. However, decision trees are often used as a classifica-
tion algorithm rather than in regression studies. Recently, RF approach has been
successfully used for mapping various vegetation properties like biomass (Le Maire
et al. 2011; Mutanga et al. 2012; Adam et al. 2014), LAI (Vuolo et al. 2013), canopy
N (Li et al. 2014), etc. These studies demonstrated that the RF technique has
performed better than conventional parametric linear or nonparametric methods.
Similarly, artificial neural networks (ANN) is another popular nonlinear and non-
parametric approach followed for parameter retrieval from RS datasets. Since the
mid-1990s ANN has been successfully used for mapping vegetation parameters (Jin
and Liu 1997; Paruelo and Tomasel 1997; Kimes et al. 1999). The most common
type of ANN is a feed-forward structure, facilitating the information flow in a
unidirectional forward mode where no cycling or looping is defined. This feed-
forward ANN uses experimental (field) data for training the model. ANN is suc-
cessfully used to estimate foliar N concentrations (Huang et al. 2004) and LAI
(Jensen et al. 2012) using hyperspectral data. Other techniques like kernel method
(Camps-Valls and Bruzzone 2009) are also reported in RS-based parameter retrieval
in bio-geo sciences. SVM is a supervised learning model with associated learning
algorithms and the most frequently used algorithm in nonparametric regression
methods. Initially, it has introduced for image classification studies, however, later
support vector regression (SVR) successfully utilized for retrieval of continuous
vegetation parameters. Karimi et al. (2008) had applied SVR to retrieve crop
biophysical attributes like plant height, foliar N concentration, and leaf chlorophyll
content, etc. from hyperspectral RS data. Verrelst et al. (2012) had used SVR along
with more recent kernel-based methods to retrieve bio-geophysical parameters such
as LAI, LCC, and fCover from simulated Sentinel-2,3 datasets. Similarly, Bayesian
networks (BNs) are recently developed probabilistic models, characterized by
graphical structures representing information on domains of uncertainty (Cooper
and Herskovits 1992). Kalacska et al. (2005) used BN models to retrieve LAI from
Landsat ETM. Similarly, Mustafa et al. (2011, 2012) used BNs to improve LAI
retrieval using MODIS and ASTER imageries. They have reported that LAI estima-
tion accuracy was improved with a forest growth model. Strength and weaknesses of
nonparametric regression methods were discussed in detail by Verrelst et al.
(2015a, b). They have concluded that none of these nonparametric methods could
be incorporated into an operational or global retrieval system with acceptable error.
A schematic diagram of the process flow of retrieval of biophysical parameters
through parametric as well as nonparametric regression is presented in Fig. 3.1.

3.3.3 Methods Based on Laws of Physics

Crop parameter retrieval based on physical model depends on laws establishing
cause–effect relationships. These models are parametrized based on the information
acquired through RTFs. Canopy reflectance model simulates reflectance based on
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the interaction between solar radiation and the leaf-canopy attributes using physical
laws. These models combine leaf optical model, canopy reflectance, and soil reflec-
tance model to calculate the top of the canopy reflectance. This calculated reflectance
has to be compared with observed reflectance recorded by RS data corrected for
atmospheric influences. Another way for linking RS observation is to compute
radiance from the radiation propagation model in the atmosphere (Verhoef and
Bach 2003). However, in this chapter discussion will be confined to reflectance at
canopy level, hence atmospheric models are not discussed here. Soil reflectance
significantly contributes to the top of the canopy-simulated reflectance under sparse
or low canopy coverage. Hence, soil reflectance models can play an important role in
such circumstances. Again, soil reflectance is a function of soil moisture, soil color,
surface roughness, soil organic matter, and inorganic carbon content, etc., and its
parameters are often fixed by using simple empirical formulae and scaling factors
(Atzberger et al. 2003; Baret et al. 2006a, b).

3.3.3.1 Leaf Optical Model

Leaf optical properties govern reflection, absorption, and transmission of radiation
by a leaf. It requires a thorough understanding of leaf microstructure (palisade and
spongy parenchyma), distribution of the biochemical constituents and air space, and
the anisotropic scattering of leaves (Jacquemoud and Ustin 2001). Nevertheless, leaf

Fig. 3.1 Schematic diagram for retrieval of biophysical parameters by empirical approach
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scattering and absorption properties are successfully explained more simply follow-
ing different approaches and models by various researchers. Some of these models
like the N-flux model, plate models, and ray tracing models are cited most often by
many researchers. N-flux models proposed by Fukshansky et al. (1991) and Richter
and Fukshansky (1996) are very simple models based on the concept of Kubelka–
Munk theory that considers leaf as being a slab of absorbing and diffusing material.
The inversion of this model is a complex process as it is very difficult to correlate the
specific absorption coefficient of a leaf with its biochemical composition and
concentration (Fukshansky et al. 1991). On the other hand, plate models are rela-
tively simple to replicate, based on the assumption that the leaf biochemical elements
are distributed homogeneously and responsible for absorption and Lambertian
scattering. Hence it makes the retrieval of biochemical comparatively simpler
through the inversion process. PROSPECT model is a very popular plate model
that has been successfully used by various researchers (Jacquemoud and Baret
1990). Ray tracing models are based on Monte Carlo simulations. It is a most
realistic accounting system for complex leaf internal structure by simulating the
propagation of photons within leaf foliage (Govaerts et al. 1996). However, its usage
is limited, as it requires a very detailed picture of individual cells along with their
spatial arrangement and optical constants within the foliage (Dorigo et al. 2007). It
makes the model computational-intensive both for forward simulation and subse-
quent inversion. In the radiosity model, the optical properties of a leaf are controlled
by distinct reflecting and transmitting components with a defined shape, position,
and orientation. The main advantage of this model is that leaf and canopy reflectance
could be simulated for any given view angle and wavelength once the RTFs model
equations are solved. However, the use of this model is also limited due to the initial
high computational load to form the view factor matrix and finding a solution for the
RTFs model. The algorithmic BDF model (ABM) proposed by Baranoski and
Rokne (2005) is a popular radiosity model. The Markov chains–based stochastic
model for leaf optical properties (SLOP) is also reported in the literature (Maier et al.
1999; Dorigo et al. 2007). Once again, these models demand higher computational
facilities than plate and N-flux models, hence are not fit for direct inversion.

3.3.3.2 Canopy Reflectance Model

It is based on the radiative transfer approach, assuming canopy as a turbid medium
where the canopy elements (leaves) are considered as a randomly distributed, small
absorbing, and scattering elements. Such models are the best fit for addressing
radiation propagation in most of the crops. The radiative transfer approaches are
best fitted in heterogeneous canopies like orchards, row crops, etc, where the
assumption of a horizontally homogenous and infinite canopy does not work prop-
erly. In sparse canopies where multiple scattering and shading are negligible because
of low zenith angles, geometrical models have been proposed to describe radiation
propagation (Chen and Leblanc 1997). The combination of radiative transfer and
geometrical approaches gives hybrid models. It assumes canopy as a translucent
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geometrical object (plants) where the turbid medium radiative transfer equation is
employed. Such models are useful for representing sparse canopies or forests. Some
of these 3D hybrid models such as the three-dimensional radiation interaction model
(TRIM) (Goel and Grier 1988), GeoSAIL (Huemmrich 2001), and the invertible
forest reflectance model ( INFORM ) (Schlerf and Atzberger 2006) are well
documented in the literature.

3.3.3.3 Inversion of Canopy Reflectance Model

The main aim of CRM is to find a set of input parameters that leads to the best fit
between simulated bidirectional and sensor measured reflectance (Combal et al.
2002). Therefore, the inversion problem is fixed to estimate the set of input param-
eters fed to CRM to achieve the best match between the two independent reflectance
values (simulated and measured) of a given canopy. The inversion of canopy RTM
with full-spectrum RS data is considered as a generic approach with a sound physical
base (Dorigo et al. 2007). But in reality, this inversion is not straightforward and
requires a careful trade-off between the realism and inversion possibility of the RTM
(Fig. 3.2). Generally, complex models require fixing of many parameters and are
more realistic but hard to invert. Whereas simpler models with fewer number of
parameters may be easier to invert though they are less realistic. Several techniques

Fig 3.2 Flowchart of RTM-based inversion approaches for retrieval of biophysical parameters
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have been used to find the best fit, such as lookup table approach (LUT), iterative
optimization, ANN, etc. Iterative optimization (IO) is a classical technique to invert
RTMs using RS data (Jacquemoud et al. 1995; Kuusk 1998; Zarco-Tejada et al.
2001).

The IO techniques use merit function minimization and optimization while
searching for the best fit between the measured and simulated reflectance by
iteratively running the canopy reflectance model using different sets of input param-
eters. A wide range of statistical and mathematical approaches such as quasi-Newton
algorithms (Bacour et al. 2002b), Markov Chain Monte Carlo approaches (Zhang
et al. 2005), and genetic algorithms (de Wit 1999) have used by many researchers for
finding the global minima. Several researchers have successfully retrieved biophys-
ical parameters using the IO method (Jacquemoud et al. 1995; Kuusk 1998; Zarco-
Tejada et al. 2001). However, it is computationally too intensive to be used for
operational retrieval programs. In the LUT approach, a large number of possible
spectra are generated using different combinations of input parameters within a
specified range. It is based on querying the LUT and applies a cost function for
optimization (Liang 2007) which reduces the summed differences between mea-
sured and simulated reflectance throughout the defined spectrum. In this approach,
the computationally most demanding step of the inversion process is performed
before inversion itself (Dorigo et al. 2007), thus making it faster. LUT inversion is
being successfully applied for retrieval of the biophysical parameters like LAI and
fAPAR on a global scale using MISR/MODIS data (Knyazikhin et al. 1999).

The success of retrieval of crop biophysical attributes using CRM is highly
dependent on the selection of appropriate model meeting the requirements of specific
canopy under consideration. Further retrieval accuracy is strongly dependent on the
selection of suitable inversion technique, an accurate canopy parameterization
realization along with the availability and use of prior knowledge (Combal et al.
2002; Liang 2004). Various physical modeling approaches based on RTMs have
demonstrated strong potential for retrieval of biophysical parameters. Nevertheless,
there are several limitations such as higher computational requirement and a rigid
parameterization. At the same time, ill-posed inversion problem arises when signif-
icantly varying input parameters of RTMs result in limited variability in simulated
spectra, making the parameter retrieval more challenging (Atzberger 2004). In a
physical modeling approach, RTMs account for the differences in canopy structure,
background soil reflectance, illumination, and viewing geometries, hence, making it
usable across multiple operational applications for canopy parameter retrieval
(Bacour et al. 2006).

3.3.4 Hybrid Method

This approach combines the flexibility and computational efficacy of nonparametric
methods with the generic properties of physically based RTM. Here, basically
inverse mapping technique is followed along with a nonparametric model which is
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trained with the RTMs simulated reflectance data. The hybrid approach uses all
available data to train nonlinear, nonparametric regression model in which LUTs are
used as input for machine learning. However, in LUT-based inversion approach, it
seeks for a simulated spectrum as close as observed one. The hybrid methods based
on ANN proved to be excellent algorithms which can deal with large datasets. Such
algorithms trained with RTM-generated data is a well-accepted approach for
retrieval of biophysical parameters from RS data (Baret et al. 1995; Kimes et al.
1998; Weiss and Baret 1999). PROSPECT-SAIL (PROSAIL) is the most popular
model used retrieve canopy water content across the USA, using Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) data (Trombetti et al. 2008). Richter et al.
(2009) retrieved LAI using sentinel-2 data and PROSAIL–ANN hybrid approach.
Yang et al. (2012) compared PCA approach with PROSAIL–ANN hybrid approach
for hyperspectral data. Durbha et al. (2007) retrieved LAI using SVR model on
Multiangle Imaging Spectroradiometer (MISR) data along with PROSAIL
simulations.

The Sentinel-2 datasets provided by European Space Agency consists of 13 spec-
tral bands covering the visible and NIR to SWIR region is very useful for crop
biophysical parameter retrieval. It gives systematic coverage with better temporal
resolution than many medium resolution optical sensors presently operating. The
SNAP (Sentinel Application Platform) software based on ANN approach is designed
to retrieve LAI, CCC, canopy water content (CWC), fAPAR, and fractional cover
using instantaneous observations from Sentinel-2. Djamai et al. (2019) reported that
it is possible to generate sub-weekly time series of vegetation biophysical parameters
at medium resolution (~20 m) by using Sentinel-2-like synthetic surface reflectance
data produced by merging clear-sky S2-multispectral imager data of Sentinel-2A
with daily bi-direction reflectance distribution function (BRDF)–adjusted MODIS
images. Brede et al. (2020) proposed a hybrid retrieval technique by combining
canopy RTMs with nonparametric machine learning regression algorithms
(MLRAs) as a fast and accurate method to retrieve LAI from data streams of
Sentinel-2A Multispectral Instruments (MSI), Landsat 7 ETM+, and Landsat 8 OLI.

3.4 Retrieval of Biophysical and Biochemical Parameters
of Crops

3.4.1 Retrieval of Leaf Area Index

LAI being the key structural characteristic of crops, because of its role in controlling
many biological and physical processes in plant canopies, remains the most crucial
parameter for retrieval (Darvishzadeh et al. 2008). It is widely used for crop
phenology detection, crop health monitoring, and crop yield modeling. It can also
serve as input for various climatic models to understand the land surface energy and
mass exchanges. Further, the leaf area acts as a boundary between the underlying
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plant microclimate and the atmosphere. This part of the plant is exposed, hence
easier to capture directly by RS. LAI has been retrieved through several approaches,
such as parametric regression approaches (red-edge position calculations, different
integration-based indices covering specific spectral regions, etc.); nonparametric
regression methods; linear nonparametric models like SMLR, PCR, PLSR, RR;
nonlinear and nonparametric models such as RF, ANN, SVM, Gaussian processes
regression (GPR); physically based RTM (PROSPECT, SAIL, PROSAIL, FLIGHT,
INFORM, etc.); and hybrid methods (ANN along with RTM, alternative machine
learning regression algorithms methods trained with RTM generated datasets, etc.)
(Verrelst et al. 2015a). Many researchers have used several techniques to retrieve
LAI using RS data (Table 3.2). Verrelst et al. (2015b) have compared all these
techniques for retrieval of LAI based on root mean square error (RMSE), coefficient
of determination (R2), and processing speed (second) (Table 3.3).

Verrelst et al. (2015b) have observed that the range of RMSE was quite high
(0.615–0.923) for parametric indices as compared to the nonparametric techniques
(0.436–0.803), indicating more robustness in prediction for nonparametric tech-
niques. The results of the coefficient of determination also showed a similar trend.
But the range of processing speed for parametric methods was quite low, and in
many cases they were faster than the nonparametric techniques, barring a few like
PCR (processing speed 0.003), PLSR (processing speed 0.010), etc. In the case of
inversion of physically based models the processing speed was quite higher as
compared to both the techniques while the RMSE and R2 were also similar. The
parametric techniques are very fast and provide the results instantly, followed by
nonparametric techniques while the application of physically based models is slow.
Hence appropriate techniques should be chosen for different applications based upon
the purpose, study area, and availability of computation facility.

3.4.2 Retrieval of Chlorophyll Content

Biochemical parameters of plants, that is, the pigments are mainly governed the
photosynthetic and physiological activities (Cornelissen et al. 2003). Chlorophyll
pigments which significantly regulate photosynthetic activities serve as the most
critical leaf biochemical parameters (Clevers and Kooistra 2012; Inoue et al. 2016).
Chlorophyll pigments can absorb solar radiation and help in photosynthetic light
reactions using its two functional forms namely chlorophyll a and b, each having
definite spectral properties (Lichtenthaler and Buschmann 2001). The total leaf
chlorophyll content (mass per unit leaf area) is largely accountable for any photo-
synthetic activity in the leaf and plays a major role in the adaptation process and
arresting the solar energy (Gitelson et al. 2006). Hence, it acts as a crucial indicator
of crop growth and nutrition status to evaluate stress due to diseases or infestation,
and heavy metal pollution in plants (Cui and Zhou 2017). Carotenoids (Car) and the
red pigments, anthocyanins (Anth), are also very important as they prevent damage
to the photosynthetic systems and leave from surplus lights respectively due to their
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Table 3.2 Methods and types of remote sensing datasets used for LAI retrieval

Methods/
techniques Crop/plant Data used

Specific
band/indices

Accuracy
RMSE
(m2 m�2) References

Parametric methods
Parametric
regression

Potato Sentinel-2 WDVI 0.36 Clevers et al.
(2017)

OSAVI, EVI,
MTVI

Corn, soybean,
wheat

Landsat TM
5 and Landsat
7ETM+

Red, green,
blue, NIR

<0.60 Liu et al.
(2012)

Parametric
regression

Summer
wheat, winter
barley

Non-imaging
hyperspectral
data

WDVI 0.22 Kneubühler
Mathias Naef
and Itten
Klaus (2000)

Nonparametric methods
Nonparametric
regression

Mixed crops
(corn, sor-
ghum, cotton,
and soybean)

Landsat 5 Red and NIR 0.42–0.90 Gowda et al.
(2015)

Nonparametric–
neural network

Maize, fruit
crops, mixed
crops (cereals,
alfalfa, pepper,
artichokes,
etc.)

Rapid Eye
data

Five
broadbands

0.61–0.91 Vuolo et al.
(2010)

Physical inversion methods
Radiative trans-
fer model – PR
OSAIL

Grassland/
saltmarsh

Sentinel-2 and
RapidEye

All bands and
their
combination

0.84–0.90 Darvishzadeh
et al. (2019b)

Radiative
Transfer
Model –PORO
SAIL

Wheat MODIS,
Landsat TM,
IRS LISS-3,
and field-
based
hyperspectral
data

All broad-
bands
of multispec-
tral data and
hyperspectral
data (400–
2500 nm)

0.36–0.52 Mridha et al.
(2014)

LUT inversion Maize, fruit
crops, mixed
crops (cereals,
alfalfa, pepper,
artichokes,
etc.)

Rapid Eye
data

Five broad
bands

0.35–0.93 Vuolo et al.
(2010)

REGFLEC Maize,
Soybean

Landsat 5 TM
and Landsat
7 ETM+

Green, Red,
NIR

1.25 Houborg et al.
(2015)

LUT inversion Wheat IRS LISS-3 All
broadbands

0.56 Sehgal et al.
(2016)

(continued)
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photo-protective role (Gitelson et al. 2003). Due to its immense importance, envi-
ronmentalists or ecologists use foliar chlorophyll content for various aspects of crop
monitoring. These include an assessment of the interaction between vegetation
health and biotic or abiotic environmental stress (Garnier et al. 2007), quality
assessment of habitat and identification of tree species (Delegido et al. 2014),
estimation of crop net primary production and precision farming (Navarro-Cerrillo
et al. 2014), along with ecosystem productivity calculation of any vegetation system
(Gitelson et al. 2006; Lavorel et al. 2011). Furthermore, LCC is recognized as one of
the “essential biodiversity variables” or “critical factor” in understanding ecosystem
response to climate change (Croft et al. 2017), where RS can play the vital role over
its timely monitoring (Skidmore et al. 2015; Darvishzadeh et al. 2019a). Many
researchers across the world have used various techniques and RS images for
retrieval of crop CCC which is presented in Table 3.4.

Table 3.2 (continued)

Methods/
techniques Crop/plant Data used

Specific
band/indices

Accuracy
RMSE
(m2 m�2) References

Hybrid methods
Hybrid method,
PROSAIL
model, and
MLRA

Mixed crops – – R2 > 0.96 Verrelst et al.
(2016)

Hybrid-polar-
ized SAR

Wheat RISAT-1 SAR
Backscatter
Signatures
(RH and RV)

0.41–0.77 Chauhan et al.
(2018)

PROSAIL with
machine learn-
ing (LSLR)

Wheat Sentinel-2 Band 3 to
7, 8a, 11, and
12

0.68 Upreti et al.
(2019)

Radiative trans-
fer model with
ANN

Cereal crops,
broadleaf
crops, grasses,
forests, etc.

ENVISAT-
MERIS

11 spectral
bands

RMSE:
0.09

Bacour et al.
(2006)

NB: EVI Enhanced vegetation index, OSAVI Optimized soil-adjusted vegetation index, REGFLEC
Regularized canopy reflectance model, LUT Lookup table, PLSR Partial least square regression,
NIR near-infrared, MODIS Moderate-Resolution Imaging Spectrometer, MERIS Medium-
Resolution Imaging Spectrometer, WDVI Weighted-difference vegetation index; MTVI Modified
triangular vegetation index, LSLR Least square linear regression, MLRA Multiple linear regression

Table 3.3 Comparison of performance of different LAI retrieval techniques

Techniques RMSE R2
Processing
speed (s) Reference

Parametric indices 0.61–0.92 0.61–0.82 0.02–0.12 Verrelst et al.
(2015b)Nonparametric 0.43–0.80 0.68–0.90 0.003–28.32

Physical model
inversion

0.79–0.87 0.67–0.74 0.31–0.90
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Table 3.4 Methods and remote sensing datasets used for canopy chlorophyll retrieval

Methods/
models Crops

Remote
sensing data
used

Specific band
(s)/indices

Accuracy
(RMSE) References

Parametric methods
Parametric
regression

Potato Sentinel-2 TCARI/
OSAVI

0.062–0.066 g
m�2

Clevers
et al.
(2017)

Green model
(RNIR/
RGreen) � 1

Soybean,
maize, differ-
ent species

MODIS,
MERIS

NIR, green Soybean:
0.18 gm m�2,
maize: 0.32 gm
m�2

0.25–0.70 gm
m�2

Gitelson
et al.
(2006)

Red-edge
model (RNIR/
RRed edge) � 1

Soybean,
maize, differ-
ent species

MODIS,
MERIS

NIR, red edge Soybean:
0.15 gm m�2,
maize: 0.31 gm
m�2

0.08–0.60 gm
m�2

Gitelson
et al.
(2006)

NGRDI Turmeric UAV-
mounted mul-
tispectral
sensors

Green, red 0.13 mg/g Singhal
et al.
(2019)

Nonparametric methods
Kernel Ridge
Regression

Turmeric UAV-
mounted mul-
tispectral
sensors

Green, red, red
edge and NIR

< 0.10 mg/g Singhal
et al.
(2019)

Neural
Network

Maize, fruit
crops, mixed
crops (cereals,
alfalfa, pep-
per, arti-
chokes, etc.)

Rapid Eye
data

Five broad-
bands blue,
green, red,
red-edge, and
NIR

0.25–0.70 gm
m�2

Vuolo
et al.
(2010)

Physical inversion methods
REGFLEC Maize,

soybean
Landsat 5 TM
and Landsat 7
ETM+

Green, red,
NIR

8.42 μg cm�2 Houborg
et al.
(2015)

Radiative
transfer
model
POROSAIL

Wheat MODIS,
Landsat TM,
and IRS LISS-
3 and field-
based
hyperspectral
data

All broadbands
of multispectral
data and
hyperspectral
data
(400–2500 nm)

0.34–0.36 g
m�2

Mridha
et al.
(2014)

LUT-
inversion

Maize, Fruit
crops, mixed

Rapid Eye
data

Five broad
bands blue,

(continued)
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Optical RS, especially the visible portion of the spectrum (400–700 nm), has a
long history in delivering approaches for estimating either chlorophyll or nitrogen
(N) in vegetation (Clevers and Kooistra 2012). As it is challenging to estimate
biochemical concentrations at leaf level especially for satellite-based RS and large
area approach, researchers prefer to focus on integrated biochemical contents at the
canopy level (i.e., observed from a remotely sensed platform). Hence, in this case,
the chemical concentration is expressed as the chemical amount per unit ground
surface area (Jones et al. 2007). Potentially all the approaches described for LAI
retrieval also apply for the retrieval of the pigment or specifically chlorophyll content
of the plant. As the chlorophyll pigments have very specific spectral absorption
bands, having robust scientific basis, hence very simple approaches like reflectance
at certain bands or simple vegetation indices have been widely used for its successful
retrieval (Gitelson et al. 2006). Apart from that, the inversion of a leaf to canopy
radiative transfer models have also been used to accurately estimate the chlorophyll
content by several researchers (Darvishzadeh et al. 2008; Clevers and Kooistra
2012). It is quite clear from Table 3.4 that plant CCC can be retrieved using RS

Table 3.4 (continued)

Methods/
models Crops

Remote
sensing data
used

Specific band
(s)/indices

Accuracy
(RMSE) References

crops (cereals,
alfalfa, pep-
per, arti-
chokes, etc.)

green, red,
red-edge and
NIR

RMSE:
0.31–0.50 gm
m�2

Vuolo
et al.
(2010)

LUT-
inversion

Wheat IRS LISS-3 All broadbands 0.35 gm m�2

0.89
Sehgal
et al.
(2016)

Hybrid Method
Hybrid
method curve
fitting,
LS-SVR,
RFR

Mixed crops
(oats, corn,
alfalfa, and
others)

CHRIS
datasets

Hyperspectral
indices
(50 nos.)

RMSE:
1.69–5.94 μg
cm�2

Liang et al.
(2016)

PROSAIL
with
(machine
learning)
PLSR

Wheat Sentinel-2 Band 3 to 7, 8a,
11, and 12

26.32 g cm�2 Upreti
et al.
(2019)

NB: TCARI Transformed chlorophyll in reflectance index, OSAVI Optimized soil-adjusted vegeta-
tion index, NGRDI Normalized green–red difference index, REGFLEC Regularized canopy
reflectance model, LUT Lookup table, PLSR Partial least square regression, NIR near-infrared,
MODIS Moderate-Resolution Imaging Spectrometer, MERIS Medium-Resolution Imaging Spec-
trometer, PSSR Pigment-specific simple ratio, RARS ratio analysis of reflectance spectra, LS-SVR
least squares support vector regression, RFR Random forest regression
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images through various modeling techniques with good accuracy. However,
retrieval accuracy varies with the nature of canopy, that is, sole crops or a mixture
of crops/species, retrieval techniques used, and the RS platform used (laboratory
based, field scale, or satellite scale, etc.). Based upon the requirement of the users,
proper approaches for estimation of chlorophyll content should be selected.

3.4.3 Retrieval of Moisture Content

The plant moisture content is a crucial variable for understanding the water stress in
vegetation during periods of drought. It also reflects the status of dryness which
helps in monitoring vegetation during the dry season due to their vulnerability to
wildfire (Ceccato et al. 2001). Besides, this parameter is of utmost importance for
understanding the process of progress in biomass burning which can be effectively
monitored through RS. Satellite RS provides the most objective, repetitive, and cost-
effective methods to monitor vegetation, specifically in remote areas where regular
basis ground measurements are not possible. Different satellite sensors working on
different parts of the electromagnetic spectrum (EM) for the monitoring of vegeta-
tion water content can be grouped into three broad categories: (i) Visible to short-
wave infrared (SWIR) spectrum between 0.4 and 2.5 μm, providing valuable spectral
information on crop biophysical parameters (Tucker 1980). (ii) Thermal infrared
(TIR) spectrum between 6.0 and 15.0 μm, delivering crucial information on thermal
dynamics, evapotranspiration, and water stress of crop vegetation (Moran et al.
1994). (iii) Microwave spectrum between 0.1 and 100 cm, giving information on
the dielectric constant linked to vegetation water content (Moghaddam and Saatchi
1999).

The results obtained from physical-based studies show that the SWIR region of
the EM spectrum (1.4–2.5 μm) is highly influenced by the plant tissue water (Tucker
1980; Gausman 1985). The wavelength at 1530 and 1720 nm seem to be most
suitable for vegetation water assessment (Faurtyot and Baret 1997).

Several physical or semiempirical models especially RTMs have been used to
simulate the effect of water content on spectral reflectance (Jacquemoud et al. 1994;
Faurtyot and Baret 1997). Ceccato et al. (2001) used reflectance values at 1600 nm to
estimate moisture content from a dataset of 37 species with a varying moisture
content, which was expressed as equivalent water thickness (EWT having unit
gm/cm2). They have reported a logarithmic relationship between reflectance and
EWT. At low EWT (vegetation is losing water or under stress), reflectance value is
more sensitive to EWT variations. As the EWT increases, the sensitivity of reflec-
tance to EWT diminishes and reflectance values saturate at higher EWT. Using the
single band reflectance, the logarithmic model could explain about 77% variation in
the observed EWT across 37 species (i.e. R2 ¼ 0.773). When a simple ratio of two
bands (R1600/R820) was used in the same type of logarithmic equation, it could
explain about 92% variations in the EWT (Ceccato et al. 2001). Further Atzberger
(2004) has used ANN-based inversion of SAILH+PROSPECT canopy reflectance
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model to retrieve EWT. The study employed an object-based model inversion to
retrieve EWT with a coefficient of determination of 0.92 and RMSE (%) of 10.6.
Pasqualotto et al. (2018) have shown that hyperspectral RS–based water absorption
area index (WAAI) and depth water index (DWI) could capture the variations in
water content in a much better way compared to the traditional indices for a
heterogeneous landscape (R2 of 0.8 and 0.7 and RMSE of 290 and 400 g/m�2

respectively for WAAI and DWI). Apart from optical RS, SAR datasets have also
been used for retrieving the crop water content. Chauhan et al. (2018) used hybrid-
polarized RISAT-1 SAR data for retrieving the plant water content of wheat. They
found a high coefficient of determination values between the observed and the
RS-estimated plant water content (R2 from 0.82 to 0.87) with low RMSE
(0.17–0.38 kg m�2).

However, many studies as mentioned above reported accurate retrieval of EWT,
but Vohland et al. (2010) and Sehgal et al. (2016) have reported poor retrieval of the
same parameter. The poor retrieval in these studies was due to the low range of EWT
in the experimental datasets barring the proper model development. Hence, the
application of retrieval techniques for plant moisture content should be selected
based on the purpose. The accuracy may vary depending on the range of real
variations of plant moisture in the training dataset. The various methods and RS
datasets used for crop moisture retrieval is presented in Table 3.5.

3.4.4 Retrieval of Fraction of Absorbed Photosynthetically
Active Radiation

The energy utilization ability of crop canopy is significantly characterized by the
fAPAR, which describes both energy exchange processes and vegetation structure.
fAPAR is prominently a basic crop biophysical parameter which is generally used to
estimate NPP using RS methods and considered as ECVs that helps in assessing
carbon and energy balance on global scale (D’Odorico et al. 2014). Many land-
surface models including NPP models, crop growth models, ecological models,
climate models, and water and carbon cycle models use fAPAR as critical input
(Liu et al. 1997; Scurlock et al. 1999; Liang 2004). fAPAR can be defined as the
solar radiation absorbed by crop vegetation within the spectral range of 400 nm to
700 nm, which is given by the following equation by Gobron et al. (2006):

fAPAR ¼ �
incoming solar fluxð Þ � flux to the groundð Þ

þ flux from the groundÞ � outgoing solar fluxð Þð �= incoming solar fluxð Þ
ð3:1Þ

When the crop area is close to 0 (pure soil), that is, the incoming solar flux is
equal to the flux to the ground and the reflected flux from the ground is equal to the
outgoing radiation flux, then the fAPAR will be 0. fAPAR can be measured as
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Table 3.5 Methods and remote sensing datasets used for moisture retrieval

Methods/
models

Crop/
plant

Remote
sensing data
used

Specific band
(s)/indices Accuracy References

Parametric
regression

Various
species
of trees,
crops,
and
plants

In situ datasets
of LOPEX93
and PAN-
AMA with
simulated
dataset of
PROSPECT

Spectral simi-
larity water
indices with
SAC effective
metric for leaf
water thickness

RMSE of 4.08%
(R2 ¼ 0.98),
3.63%
(R2 ¼ 0.95), and
8.11%
(R2 ¼ 0.80) for
PROSPECT,
LOPEX93, and
PANAMA,
respectively

Fang and
Liang
(2005)

Parametric
regression

Corn
and
soybean

Landsat Oper-
ational Land
Imager and
MODIS

NDWI The RMSE of
corn and soy-
bean field plant
VWC is 0.1 kg/
plant and
0.02 kg/plant,
the RMSE of
corn and soy-
bean field can-
opy VWC is
1.31 kg/m2 and
0.94 kg/m2,
respectively;

Xu et al.
(2020)

Semiempirical
WCM and NN
models

Wheat RISAT-1
SAR data
(hybrid
polarization)

C-band with
frequency of
5.35 GHz

RMSE of
0.38 kg m�2 to
0.17 kg m�2

Chauhan
et al. (2018)

PROSAIL +
hyperspectral
Indices

Corn,
potato,
garlic,
onion,
sugar
beet,
lucerne

HyMap WAAI
(971 and
1271 nm),
DWI (970 and
1200 nm)

R2¼0.7 to 0.8 Pasqualotto
et al. (2018)

Physical
model
(PROSPECT-
D +
PROSAIL)

Wheat
and corn

Hyperspectral
(PROSPECT
and PROSAIL
LUT)

Spectral range
of
930–1060 nm
with 970 nm as
water absorp-
tion band

Relative RMSE
(rRMSE) of
26% for wheat
and 23% for
corn

Wocher
et al. (2018)

Radiative
transfer model
POROSAIL

Wheat MODIS,
Landsat TM,
and IRS LISS-
3 and field-
based
hyperspectral
data

All broadbands
of multispectral
data and
hyperspectral
data
(400–2500 nm)

0.003–0.009 g
cm�2

Mridha
et al. (2014)

LUT-inversion Wheat IRS LISS-3 All board band 0.005 cm Sehgal et al.
(2016)

NB: DWI Depth water index, WAAI Water absorption area index, LUT Lookup table, NN Neural
network,WCMWater cloud model, SAC Spectral angle cosine, NDW; Normalized difference water
index, MODIS Moderate-Resolution Imaging Spectrometer, Landsat TM Land Satellite Thematic
Mapper



instantaneous at any specific moment or as daily by integrating instantaneous
fAPAR over the cosine of the solar zenith angle. As direct field measurement of
APAR is very difficult, it is indirectly estimated by measuring PAR using Quantum
sensor. fAPAR can be retrieved through different ways, using empirical methods
based on LAI or VIs or using RTMs. As fAPAR is positively correlated with LAI, it
is computed as a function of the extinction coefficient and LAI and used in
biogeochemical process models (Ruimy et al. 1999). Dong et al. (2015) estimated
fAPAR using field spectra simulated to Sentinel-2 reflectance which indicated that
VIs developed using the red-edge and NIR reflectance [red-edge normalized differ-
ence vegetation index (ND705), modified simple ratio-2 (mSR2), MERIS terrestrial
chlorophyll index (MTCI), red-edge simple ratio (SR705), and revised optimized
soil-adjusted vegetation index (OSAVI[705, 750])] linearly correlated to fAPAR with
high biomass. Zhang et al. (2014) reported an increased fAPAR in vegetative stage
which persisted relatively constant at the reproduction stage followed by a decreased
fAPAR during the senescence stage. They additionally proposed fAPARgreen which
shows visible seasonal trends than fAPAR.

fAPARgreen ¼ fAPAR� green LAI=green LAImaxð Þ ð3:2Þ

They found that fAPARgreen is significantly correlated to the red-edge NDVI, and
red-edge position (REP) derived from hyperspectral data correspond to Sentinel-2
bands throughout the crop growth period. The comparative study of the predictive
performance of vegetation indices for the entire growing season showed that REP
outperformed among all and can be recommended for monitoring seasonal dynamics
of fAPAR in a maize canopy. The various methods and RS datasets used for fAPAR
retrieval is presented in Table 3.6.

Computation of APAR through linear or nonlinear correlation with NDVI is very
common in many RS studies (Prince and Goward 1995). At the same time, it is
widely accepted to estimate the GPP and NPP using the NDVI–fAPAR and the LAI–
fAPAR correlations over different spatial scales (Running et al. 1989; Field et al.
1995). Yuan et al. (2015) used a physically based RTMs (invertible forest reflectance
model, INFORM) combined with ANN as an inversion algorithm for retrieval of
fAPAR in forests from multispectral Landsat-8 data. They have developed predic-
tive models through ANN between Landsat-8 reflectance and fAPAR and calibration
of INFORM were done followed by validation with 42 forest stands. The study
reported that there was a good agreement between the INFORM simulated spectra
and forest canopy reflectance correspond to Landsat bands. The INFORM model
performed well in terms of fAPAR retrieval using NN as an inversion algorithm with
acceptable accuracy (R2 ¼ 0.47, RMSE ¼ 0.11) and the accuracy keeps increasing
when pixels at steep terrain are excluded. The AVHRR and MODIS global
LAI/fAPAR are the most popular products available nowadays. These products
have generated data using RTMs with the empirical alternative algorithms. The
Canadian remote sensing center also developed a vegetation index–based fAPAR
model and produced a national fAPAR map at 10 days temporal and 1 km spatial
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resolution using AVHRR data (Chen 1996). The European Commission Joint
Research Center developed a JRC–fAPAR product using the RTM-based algorithms
with a spatial resolution of 10 km for the globe and 2 km for Europe. The empirical
retrieval algorithms can be successfully used for generating such fAPAR products,
but its applications are limited. The retrieval method based on physical models
seems to be more universal and useful as it accurately describes canopy multilayer
scattering using radiative transfer principles.

3.5 Conclusions

A comprehensive summary focusing on retrieval of crop biophysical parameters
namely LAI, leaf chlorophyll, and moisture content and fAPAR using RS is illus-
trated in this chapter. Various retrieval techniques such as vegetation index–based
regression models, semiempirical models, and physically based models are
discussed for estimations of aforementioned biophysical parameters. In order to
retrieve different biophysical parameters, most spectral indices can be used to obtain
some general regression equations for potential applications. But it may be limited
by sensitivity to types of leaves, canopy architecture, background, and locations. On
the other hand, as physical models consider the physical interaction processes,
generally outperformed over the regression model, particularly in terms of the
scale of application. But it is also constrained by the complexity of canopy radiation
interaction processes and the invertibility and computational efficiency of selected
inversion techniques. Depending on the different nature of data, a variety of cost
functions should be selected for a specific application. Future research goals in this
aspect may increase in accuracy and practicality of biophysical parameters retrieval
from hyperspectral data considering data redundancy. Obtaining seamless cali-
brated/corrected images must be the prerequisite for parameter retrieval from phys-
ically based models as the retrieval is significantly impacted by system error. As
most fAPAR retrieval algorithms do not separate direct and diffuse solar radiation
and consequently lead to underestimation, the physically based retrieval models
effectively consider this fact using the radiative transfer mechanism among multiple
canopy scattering and, thus, these are more universal and useful. Future research
works should ponder upon more and more toward refining the estimated retrieval
accuracy and the appropriateness of practical requirements.

3.6 Limitation and Future Perspectives

RTM inversion methods are basically iterative minimization calculations applied to
every pixel in the image to retrieve the input variable values fed to the RTMs.
Though in principle, it is possible to map all state variables, its success is associated
with the number of variables and their cross-relationship across the spectral domain
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(Mousivand et al. 2014). It is also reported that inversion routine optimized for a
single variable performs slightly better as compared to generic multiple output
inversion algorithms (Rivera et al. 2014; Verrelst et al. 2014). To date, very few
biophysical parameters are mapped routinely on a global scale over a longer period
of time. For example, LAI datasets are being retrieved and mapped fromMODIS and
CYCLOPESproducts for more than a decade now with gradual refinement over time
leading to more accurate estimates. RS data has the potential to help us retrieve
various biophysical parameters characterizing various agroecosystems, but there are
multiple challenges to upscale these parameters for wider application. The most
important factor limiting its application is the spectral, spatial, and temporal resolu-
tion of present operational sensors. Vannier et al. (2011) reported that spectral
resolution is as significant as its spatial resolution and therefore maps with lower
spatial but higher spectral resolution can provide us with more meaningful ecolog-
ical information. Typically, sensors can only record information pertaining to the
defined scale (Wu and Li 2009), hence upscaling is another important issue limiting
the application of RS data for parameter retrieval. According to Li et al. (2014),
spatial resolution of the sensor is another important factor to be considered for
retrieval of biophysical parameters for crops. Higher spatial resolution can minimize
uncertainly with respect to surface heterogeneity, but it can again lead to the problem
of mixed pixels. Still, a higher spatial resolution of sensors is not always the best
solution for RS-based studies of crop systems. The temporal resolution of the RS
system also plays an important role in vegetation monitoring. Retrieval models –
both empirical and physical – are developed and calibrated at small scales on
homogeneous surfaces. These models do not explicitly describe the scale and its
effect. Therefore, scale-specific calibration and parameterization is required to be
used for different agroecosystems.

The retrieval of crop biophysical parameters from different satellite sensors can
be significantly impacted due to data measurement uncertainties. The satellite data
requires advanced algorithms for calibration and atmospheric–radiometric–geomet-
ric corrections for improved surface reflectance products. In the case of global
retrievals of biophysical products, the main challenge is the spatial heterogeneity
of different biomes and the classification accuracy of land cover maps use for
representing the biomes. Inaccurate biome representation can contribute significant
errors in the LAI retrieval process, specifically over the regions undergoing dynamic
land cover change. The radiative transfer approach for retrieval is generally preferred
over the empirical approach due to its appropriate representation of physical pro-
cesses but it is inherently complex and limited to high computational efficiency for
inversion. Retrieval of biophysical parameters from hyperspectral images suffers
major drawbacks and inappropriate model development due to data redundancy
which can be substantiated by selecting optimum numbers of spectral bands.

Potential areas for future research are as follows:

• Increase in the accuracy and practicality of biophysical parameters retrieval from
hyperspectral RS data considering data redundancy.
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• Evaluation of robustness of minimization criteria and their performance can very
well be done using various cost functions with LUTs under skewed error distri-
bution and with large outliers.

• A statistical loss function may be designed based on penalized approximation
through a framework of parametric or nonparametric data.

• Improvement of accuracy and data continuity and the spatial and temporal
stability of existing LAI products which is critical to ensuring user requirement
effectively

• More use of artificial intelligence or advanced machine learning algorithms along
with cloud data for estimation of biophysical parameters over a larger scale.

• More investigations are required to explore the ambiguity induced by source and
viewing geometry, optical properties of leaf and soil, and atmospheric compo-
nents for retrieval of biophysical parameters using various information for dif-
ferent crops under diverse agricultural scenarios.

Advancement of sensor designing and retrieval algorithms may be more emphasized

• To better describe and reduce the actual ambiguities that are needed for the
execution of new land surface data assimilation systems.

• Future research on fAPAR retrieval needs to focus on modeling direct and diffuse
radiation separately (as under cloudy condition diffused radiation increases
significantly) for improving retrieval accuracy.
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Abstract Process-based crop growth simulation models (CGSMs) have been
proven as a potential tool for analysing crop behaviour and yield prediction in
various spatial and temporal scales. Since the early 1960s, the crop growth models
(CGMs) have been used broadly: (1) as a tool for the policymakers to make an
informed decision for sustainable land management; (2) as a research tool supporting
the interdisciplinary studies covering agronomy, plant physiology,
agrometeorology, plant breeding, soil science, climate change, market intelligence,
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etc.; and (3) as a support tool for education and technology transfer. These models
are developed as point-based models to simulate the crop growth and development
for a homogeneous unit as a function of crop genotype, management practices, soil
physico-chemical properties, and weather variables. The point-based applications of
this model are best suited to the need of field experimentation, predicting, and
analysing the crop behaviour under different environmental scenarios. But this
approach is associated with limited applications at a regional scale under a hetero-
geneous real-world situation. In this context, satellite remote sensing
(RS) techniques could supplement the crop growth modelling particularly by gen-
erating “the missing spatial information” for the unit of simulation. Though these
two technologies developed independently, today, both of them can be used syner-
gistically under various spatial and temporal scales for overall agriculture develop-
ment under different socio-economic and climate change scenarios. The present
chapter will provide a brief introduction of the CGSM, its scope, and development
across the time epochs. It would further elaborate on the framework, methodology,
and issues to run the CGSMs at the spatial domain. The role of remote sensing
technique to retrieve crop biophysical parameters and its assimilation into CGSMs
are also discussed along with future scope and challenges.

Keywords Crop growth model · Data assimilation · Remote sensing · Simulation ·
Biophysical parameters

Abbreviations

CGM Crop Growth Model
CGSM Crop Growth Simulation Model
3DVAR Three-dimensional Variational Data Assimilation
4DVAR Four-dimensional Variational Data Assimilation
AGB Above-ground Biomass
AMIS Agricultural Market Information System
ANN Artificial Neural Network
ASTER Advanced Spaceborne Thermal Emission and Refelectance Radiometer
BRDF Bidirectional Refelectance Distribution Function
BRF Bidirectional Reflectance Factor
CGKF Constant Gain Kalman Filter
DA Data Assimilation
EnKF Ensemble Kalman filter
fAPAR Fractional Absorbed Photosynthetically Active Radiation
GIS Geographic Information System
GWD Gridded Weather Data
HBM Hierarchical Bayesian method
IDW Inverse Distance Weighting
KF Kalman Filter
LAI Leaf Area Index
LUE Light Use Efficiency

154 A. Biswal et al.



MCMC Markov Chain Monte Carlo
MODIS Moderate Resolution Imaging Spectroradiometer
N Nitrogen
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
NOAA National Oceanic and Atmospheric Administration
pdf Probability Density Function
PF Particle Filter
PTFs Pedo-transfer Functions
RS Remote Sensing
RTM Radiative Transfer Model
SOC Soil Organic Carbon
UAV Unmanned Aerial Vehicle
VI Vegetation Index

4.1 Introduction

CGMs simulate crop yield as a function of environment, crop genotype, and crop
management factors mostly at a daily time step. Crop yield and production-related
information are very crucial in determining various agronomic as well as socio-
economic policy decisions that could affect the livelihood of a large section of the
human population (Kasampalis et al. 2018). These crop models also called crop yield
models or agriculture system models are just simplified depictions of the real world
(Van Ittersum and Donatelli 2003) represented by a set of mathematical equations
used to model the processes of the system (Oteng-Darko et al. 2013). Explanatory
process-based CGSMs comprise quantitative descriptions of the processes that
control the behaviour of a system (Penning de Vries et al. 1989; Dadhwal 2003)
and simulate the diurnal effects of environmental factors on the crop growth and
development processes. The process-based crop growth model simulates crop
growth processes at a daily timescale starting with the sowing of the crop to the
final crop harvestable maturity along with the quantitative information about the
crop growth and development at each time step. The equation used in the crop model
mathematically represents the elementary process of the “soil-plant-atmosphere”
system. Three main modules of the crop model could, therefore, be identified. The
soil module describes the processes of water and nutrient transport within the soil
profile. The mathematical equations for processes like infiltration, drainage, redis-
tribution, and nutrient transport particularly of nitrate are included in this module
(Brisson et al. 1998). The plant module controls two mechanisms: (i) crop growth
(biomass production-based on interception and assimilation of photosynthetically
active solar radiation and finally limited by senescence) and (ii) crop development
that simulates the phenology and drives growth by regulating source and sink
(Brisson et al. 1998).
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These process-based models are very much input data-intensive, hence posing a
challenge to create an input database with reasonable accuracy at a desirable scale to
run on an operational basis (Wallach et al. 2001). Hence, the application of these
models on a regional scale involves lots of assumptions and uncertainties. RS data
could be used that provide spatial information on weather, soil, crop type, crop
phenology, and crop condition information on a regional scale. This information is
assimilated into to crop growth model after proper validation, thus reducing the
uncertainty (Dorigo et al. 2007; Jin et al. 2018). The latest developments in
geospatial technology such as mobile phone-based position services and geograph-
ical information system (GIS) can also be linked to crop growth models to optimize
farm management practices, crop stress, and extreme weather events. These models
are also used to test the adaptability of new crop variety under different locations,
develop breeding strategies, and predict in-season yield. Boote et al. (1996) carried
out a detailed review to find out the potential applications and limitations of CGMs
and suggested that a particular model is applicable for a given situation and the same
can be replicated to alternate environmental setup with proper calibration. The model
prediction accuracy is highly dependent on the limitation of input data which in turn
restricts its scalability (Clevers et al. 2002). Nevertheless, CGMs can simulate the
impact of economic decisions in terms of crop management factors and weather
effects (Batchelor et al. 2002) and thus enable informed decisions making. To
summarize, the major limitations in the application of CGMs at a regional scale
are the generation of necessary high-quality and accurate input data (Bhatia 2014)
which may be cost-intensive and time-consuming.

4.1.1 Crop Growth Models: Scope and Development

Agricultural system modelling started long back in the late 1950s and specific crop
modelling activities started a decade later. Since the 1960s, a new era in agriculture
sciences started with the modelling of photosynthetic rates of crop canopies leading
to the development of Elementary CRop growth Simulator (ELCROS) and BAsic
CRop growth Simulator (BACROS) by de Wit (1965). In the 1970s, crop models
received significant attention (Pinter et al. 2003) with the first attempt to combine the
surveillance capacities of RS data with the predictive feature of crop models under
the Large Area Crop Inventory Experiment (LACIE) funded by National Aeronau-
tics and Space Administration (NASA) and National Oceanic and Atmospheric
Administration (NOAA). Such experiments were carried out to estimate wheat
production by combining RS data and crop models. They have developed a method
of estimating worldwide wheat production using LANDSAT data (Erickson 1984).
In the 1980s, the United States Department of Agriculture (USDA) had developed a
model for the tropical environment after a thorough understanding of the system and
its components (Jones et al. 2003; Roubtsova 2014) under International Benchmark
Sites Network for Agrotechnology Transfer (IBSNAT) program. This leads to the
development of a Decision Support System for Agrotechnology Transfer (DSSAT)
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(Johnson et al. 2003). A schematic representation of the development of these
process-based CGSMs over time is shown in Fig. 4.1. Process-based CGMs are
descriptive and dynamic, simulating the process of crop growth and development
through time in a phased manner using different sets of equations. These models are
equipped with modular functions defining various physiological and soil processes
as a function of driving variables like weather and crop management at each time
step (Wallach et al. 2014). Such models are more input data-intensive than empirical
or statistical models (Di Paola et al. 2016). Empirical or statistical models describe
the crop growth and yield response over sites where historical data are available and
mostly fail over different environmental conditions (Jones et al. 2017). This is the
most important limitation of empirical models for studying the implication of climate
change scenarios on crop growth and development. For example, location-specific
crop management practices may evolve to increase the crop adaptive capacity for the
future climate change scenarios, but these management practices were not consid-
ered in the limited data used to develop a particular empirical model (Jones et al.
2017). In this context, process-based CGMs are used as a potential tool not only for
analysing the impact of climate change but also for selecting best management
practices by optimizing all input resources to increase crop adaptability.

Fig. 4.1 Crop model developments over time. (Modified, Jin et al. 2018)
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4.1.2 Minimum Data Requirement and Applications

Agriculture system operates at several spatial scales such as field, farm, regional, or
global along with diverse temporal scales like hours, days, seasonal, and annual
(Ewert et al. 2011). Many crop models require a large number of input data. For
example, World Food Studies (WOFOST) used by the European Union Joint
Resources Centre Monitoring Agricultural Resources (MARS) Unit Mission
requires data for about 40 input parameters. However, the Food and Agriculture
Organization (FAO) has developed the AquaCrop model that requires comparatively
a smaller number of parameters (Mkhabela and Bullock 2012). The information
related to weather, soil, crop management, phasic development of the crop, growing
degree days, etc. are required for all crop growth model (Monteith and Moss 1977).
According to Nix (1983), these input datasets may range in timescale between hours,
daily, or weekly basis. For the first time, Hunt and Boote (1998) defined a minimum
input data needed for operating crop growth model. The input required for a crop
growth model can be categorized into a minimum and optimum/desirable for specific
applications along with initial parameters (Ritchie and Alagarswamy 2002) as
presented in Table 4.1. Weather is a driving force for CGSMs; hence, it needs
maximum and minimum temperature, rainfall, solar radiation, etc. on a daily or
weekly timescale depending on the defined time step of the model in a prescribed
format. Several curve-fitting approaches like extrapolation function and interpola-
tion are being followed over weather data for filling spatial and temporal data gaps in
the model operation. Similarly, most of the commonly used models take layer-wise
soil input data which includes various soil physico-chemical properties like bulk
density (BD), soil texture, soil organic carbon (SOC), water content at field capacity
and wilting point, initial nitrogen (N) content, and pH. Feeding the crop model with
the crop management information is the most challenging task particularly when a
simulation is carried out on a regional scale. The details of these data requirements
are discussed in the subsequent section along with the scale and resolution issues
involved in spatializing the CGSMs.

The economic outputs like grain yield, fruit yield, and biomass can be predicted
through crop models (Murthy 2003). The management applications of crop simula-
tion models can be categorized as follows:

Strategic application: To run the model before planting.
Practical application: To run the model before and during crop growth.
Forecasting application: To predict yield both before and during crop growth.
Besides the impact of climate change on crop growth and yield, crop vulnerability

and adaptability analysis can be assessed through crop growth simulation modelling
(Rosenzweig et al. 2014). These models are also useful to analyse the difference
between actual and attainable crop yield, i.e. yield gap analysis (Lobell et al. 2009;
van Ittersum et al. 2013). A list of popular CGSMs used worldwide along with their
special uses is presented in Table 4.2.

However, most of these models are not able to generate integrated information on
global climate change (greenhouse gas emission) and its impact on soil C and N
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dynamics. They are strong either in environmental impact assessment or in crop
growth and soil component. Most of these models are not able to simulate the yield
loss due to weed, pest, and disease infestation and damage due to extreme weather
events like a hail storm and high wind.

Table 4.1 Minimum data requirement for a crop growth simulation model

Input category Weather Soil Crop management

Minimum Daily, min and max
temperature, precipi-
tation
Solar radiation

Water content at lower limit
and field capacity
(at10–20 cm soil depth)
Crop root depth
Hydraulic conductivity at
depths of soil which restrict
water flow

Characteristics of
crops
Date and depth of
planting
Density of plant pop-
ulation
Date, amount, and
depth of irrigation
Date, amount, and
types of fertilizers
Date, amount, and
quality of manure,
crop residues, etc.

Optional/desir-
able for specific
application

Daily, dew point tem-
perature, wind profile,
net radiation
Rainfall intensity

Water retention curves and
hydraulic conductivity
(at 10–20 cm depth)
Curve number of run-off
Surface albedo
Soil pH (10–20 cm depth)
SOC at upper depths
Soil textural information
(at 10–20 cm depths)
Surface water ponding
capacity
Soil BD (at 10–20 cm
depths)
Depth of groundwater and
bypass flow fraction

Row direction and
spacing
Pesticide inputs
Date of harvesting

Initial condition Water contents
(at 10–20 cm depths)
Soil nitrate and ammonium
content (at 10–20 cm
depths)
Soil extractable phosphorus
(if P subroutine is run) at
10–20 cm depths
Amounts and depth of
manure/fresh plant residue
incorporation

Modified, Ritchie and Alagarswamy (2002)
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Table 4.2 List of most popular crop growth simulation models, their usage and source

Crop model Specific usages Sources References

ALMANAC Plant community dynamics,
nutrient cycling, and pesti-
cide fate

https://www.ars.usda.gov/
plains-area/temple-tx/grass
land-soil-and-water-
research-laboratory

Xie et al. (2003)

APSIM To address the issues related
to long-term resource man-
agement in farming systems

Apsim Initiative http://
www.apsim.info

McCown et al.
(1996)

AgrometShell It can facilitate the inte-
grated assessment of ground
and satellite (coarse)-based
information under a com-
mon interface

http://www.hoefsloot.com/
agrometshell.htm

Di Paola et al.
(2016)

AquaCrop Studies yield response to
water, soil water, and salt
balances

http://www.fao.org/
aquacrop

Steduto et al.
(2009)

CENTURY Simulation of carbon and
nutrient dynamics over the
different types of
ecosystems

https://www.nrel.colostate.
edu/PROGRAMS/MODEL
ING/CENTURY/CEN
TURY.html

Gilmanov et al.
(1997)

CERES-
wheat

Decision-supporting tool for
the design of crop
management

http://nowlin.css.msu.edu/
wheat_book

Lobell and Burke
(2010)

COUP To model moisture, heat,
carbon, and nitrogen flows
in the soil-plant-atmosphere
continuum

https://www.coupmodel.
com

Jansson and
karlberg (2004)
and Jansson and
Karlberg (2010)

CROPGRO Computes canopy level
photosynthesis at hourly
basis using photosynthetic
parameters at leaf level and
canopy light interception

http://ecobas.org/www-
server/rem/mdb/cropgro.
html

Batchelor et al.
(2002)

CropSyst Study of cropping system,
simulation of multicrop on a
daily basis over multiple
years.

http://modeling.bsyse.wsu.
edu/CS_Suite_4/CropSyst/
index.html

Stöckle et al.
(2003)

CROPWAT Planning and management
of irrigation

http://www.fao.org/land-
water/databases-and-soft
ware/cropwat/en/

Desta et al.
(2017)

DAISY Dynamics of water, N, C,
and pesticides in the bioac-
tive zone near the soil
surface

https://soil modeling.org/
resources-links/model-por-
tal/daisy

Abrahamsen and
Hansen (2000)
and Palosuo et al.
(2011)

DSSAT It consists of crop simulation
models for more than
42 crops

http://dssat.net Jones et al.
(2003)

EPIC It is a cropping system
model that estimate soil
productivity as affected by
erosion

https://epicapex.tamu.edu Di Paola et al.
(2016)

(continued)
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Table 4.2 (continued)

Crop model Specific usages Sources References

FarmSim Evaluates a baseline and an
alternative farming technol-
ogy for a representative farm
using Monte Carlo simula
tion model

http://models.pps.wur.nl/
node/961

Di Paola et al.
(2016)

Fasset Focuses on the estimation of
farm management effects on
carbon and nitrogen dynam-
ics, particularly of emissions
of reactive N species

http://www.fasset.dk Olesen et al.
(2004)

GLAM GLAM is a regional-scale
crop model that was
designed to operate on the
grid of global and regional
climate models

http://www.see.leeds.ac.uk/
see-research/icas/
climate_change/glam/
download_glam.html

Challinor et al.
(2004)

GOSSYM Irrigation and fertilizer
management (N) and for
PGR application

– Gertsis and
Whisler (1997)

HERMES Plant growth, water, and N
dynamics in the soil-plant
system

http://www.zalf.de/de/
forschung_lehre/software_
downloads/Seiten/default.
aspx

Palosuo et al.
(2011)

INFOCROP Simulate the climate change
impacts on crop yield under
different scenarios; effects
of major pests on crop yield;
C and N dynamics

https://www.iari.res.in Aggarwal et al.
(2006)

DNDC Simulation of carbon and
nitrogen biogeochemistry
over the agroecosystems

http://www.dndc.sr.unh.
edu/

Li et al. (2000)

LINTUL Simulate crop growth model
under both potential and
rainfed conditions

– Spitters (1990)
and Spitters and
Schapendonk
(1990)

MONICA Transport and biochemical
turnover of C, N, and water
in agroecosystems

– Nendel et al.
2011

ORYZAv3 Simulate rice crop growth
and N dynamics

https://sites.google.com/a/
irri.org/oryza2000/about-
oryza-version-3

Li et al. (2000,
2017) and
Bouman and van
Laar (2006)

RothC Turnover of SOC in
non-waterlogged topsoil

– Diels et al.
(2004)

RZWQM Simulation of the effects of
agricultural management
practices on physical, chem-
ical, and biological pro-
cesses such as the movement
of water, nutrients, and pes-
ticides, and surface energy
balance

https://www.ars.usda.gov/
research/software/
download/

Chen et al.
(2019)

(continued)
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4.2 Spatialization of Crop Growth Simulation Models

CGMs assume the simulated unit to be homogeneous for soil type, weather vari-
ables, crop management, irrigation, fertilization, variety, sowing, etc. The “extent”
of CGMs is the entire region of interest, which could be a watershed or a big
command area or an administrative boundary like district or state. This “extent”
may consist of a finite number of smaller homogeneous areas called “support unit” or
“unit of simulation”. In reality, the region is often characterized by significant spatial
variability, which is difficult to account fully. The application of CGMs on a larger
area, than that for which it has been designed, is called the “spatialization” of the
CGM. This is the application of crop models on a regional scale with inherent large
heterogeneities in the soil, weather, and crop management factors between the units
of simulation. Thus, spatialization leads to an analysis of the use of CGMs on units
or scales outside the defined domain of validity of the hypotheses and the dedicated
scale of the original model. A crop growth model is characterized by a spatial and
temporal scale. But this review is confined to the spatial aspects since the focus of
this chapter is on the spatialization of the crop growth model. The change of scale
here pertains to the transition from a smaller unit of simulation to a bigger region.

Table 4.2 (continued)

Crop model Specific usages Sources References

SALUS Continuous monitoring of
crop and soil parameters
under different management
practices over the years

– Liu and Basso
(2020)

STICS It is able to model
intercropping systems and
crop rotation cycles

http://www.inra.fr/en/Scien
tists-Students/
Agriculturalsystems/All-
reports/Modelling-and-agro
systems/STICS-an-agron
omy-dynamo

Brisson et al.
(1998)

SUCROS Simulates both potential and
water-limited growth of a
crop

http://models.pps.wur.nl/
node/966

Bouman (1992)

SWAP Simulation of the flow and
transport processes at field
level, during growing sea-
sons and for long-term time
series

http://www.swap.alterra.nl Huang et al.
(2015)

WOFOST Recognizes three levels of
crop production: potential,
attainable (limited), and
actual (reduced) production.

http://www.wageningenur.
nl/en/Expertise-Services/
Research-Institutes/alterra/
Facilities-Products/Soft-
ware-and-models/
WOFOST.htm

Van Diepen et al.
(1989)

C carbon, N nitrogen, P phosphorus, PGR plant growth regulators
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According to Robert et al., change in the scale of the model involves alteration of the
scale of input-output data, validation, and the framework structure of the model. To
put it in the proper perspective, the water flow model in hydrodynamics is governed
by Navier-Stokes equations at a finer scale of soil pores. It is further generalized by
Darcy’s law at the scale of a soil column. The CGMs further upscale it with
generalized equations of the flow of water at a plot size of 1 m2 or even under the
controlled laboratory condition. In practice, the model parameters are fixed by
calibrating the model by experimentation on the scale of an agriculture field. The
models can be upscaled by (i) collecting input data for each unit of simulation under
the region of interest, (ii) considering the interaction between these simulation units,
and (iii) evaluating the performance of the output. All these three levels are linked
with the availability of spatial data, scale changes, and associated issues. All these
aspects of spatialization are discussed in detail in the following sections.

4.2.1 Issues and Methods Involved in Spatialization

The spatialization of a CGM involves space-time variation of the soil-plant-atmo-
sphere system. It could be addressed in two ways: firstly, by characterizing the
environmental variables like soil and weather and their interaction with the biolog-
ical system, and, secondly, by taking care of the diverse human-induced crop
management factors. The environmental data required for running a crop growth
model includes the weather variables like maximum and minimum temperatures,
precipitation, solar radiation, humidity, and wind speed, along with soil physico-
chemical properties. In reality, these data are not available everywhere at a desirable
scale; hence, they are usually measured or estimated for a given spatial unit (mete-
orological station and soil profile) for a limited number of locations within the region
of interest. To run crop models on a regional scale, it is, therefore, necessary to
estimate these parameters at the required scale for each unit of simulation. This
involves a spatial approximation, broadly categorized into three groups of
approaches. The first approach includes traditional choropleth mapping without
taking random components into consideration. Classical soil mapping techniques
(Legros 1996) comes under this approach. Thiessen polygons, trend analysis, or
arbitrary weighted averaging of data also belong to this traditional mapping category
(Laslett et al. 1987). The second category is based on statistical modelling consid-
ering the spatial variability, also termed as geostatistical techniques (Webster and
Oliver 1990; Goovaerts 1997). The most popular geostatistical method is kriging or
several modified forms of kriging to deal with different types of point-based,
continuous, and categorical variables, using normal, log-normal, or other probability
density functions. The geostatistical approach involves spatial interpolation to esti-
mate the missing values at a point in space based on known values at neighbouring
points. There are different types of spatial interpolation such as gridding, area
averaging, and the estimation of missing data from neighbouring stations. These
methods vary in their complexity, constraints on inputs, and computation
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procedures. Various methods like kriging and co-kriging, inverse distance weighting
(IDW), and thin-plate splines, etc. are popular in regional soil, weather, and crop
analysis (Phillips et al. 1992; Hudson and Wackernagel 1994). IDW and simple
kriging are pure geostatistical techniques of spatial interpolation whereas co-kriging
takes advantage of additional knowledge obtained from external variables.
Geostatistical approaches are most suitable for variables exhibiting stationarity and
continuous spatial variations (Voltz andWebster 1990). Hence, it performs better for
soil and climatic variables such as mapping of rainfall, temperature (Voltz and
Webster 1990), soil texture, and soil pH (Creutin and Obled 1982; Van Meirvenne
et al. 1994). The third category of methods is known as mesoscale modelling where
the physics of the phenomenon is used to model its spatial behaviour (Takle 1995).
Here, the spatial estimation of a variable is made based on the simulation of the
processes that control the variable. For example, the prediction of the actual spatial
variability of soil physico-chemical properties can be done based on the simulation
of soil formation on a landscape scale (Minasny and McBratney 2001). But this kind
of process-based approach is being developed to be augmented with the crop models
on an operational basis.

As discussed above, the first approach is adopted by the EUMARS project, where
the model is made to run on gridded input data as reported by Dallemand and Vossen
(1995) and Rijks et al. (1998). An alternative approach was implemented by FAO
(Gommes et al. 1998) where the model was made to run on actual available data and
the yield output is subsequently interpolated using external variables like normalized
difference vegetation index (NDVI) to guide the interpolation. Similarly, satellite
enhanced data interpolation (SEDI) method is used for assisted interpolation taking
advantage of the correlation between the variables to be interpolated and the
environmental drivers (such as crop yield and NDVI/biomass). Hoefsloot (1996)
described this concept of interpolation along with the technique of software imple-
mentation. This technique is applicable to any parameter of interest having spatial
correlation and well distribution over the desirable extent of interpolation.

When the measured values of soil properties at each field are available, one
generally relies on soil surveys in order to proceed for the spatialization of the
crop growth model. These soil surveys provide information about the intrinsic
spatial variability of soil physico-chemical properties. Voltz and Webster (1990)
found that when soil properties vary abruptly classification is a better approach than
standard kriging method. Thus, soil maps available on different scales can serve as a
base for obtaining soil properties at the simulation unit. But in general, CGMs don’t
take soil types or soil textural classes as direct input. It requires quantitative
measurements of properties like soil depth, percentage of sand silt and clay, bulk
density, water-holding capacity, and hydraulic conductivity. Hence, quantitative
maps of soil properties need to be created from the existing soil map keeping the
scale factor in mind (Leenhardt et al. 1994). Soil maps at finer scales (i.e. 1:10000 or
1:25000) would provide better spatial variability of intrinsic soil properties than the
coarser soil maps of 1:100000. In this context, pedo-transfer functions (PTFs) have
been developed to derive soil properties difficult to measure from the widely
available basic soil properties (Bouma 1989). For example, soil hydraulic property
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is usually derived from soil textural information using PTFs. Several large soil
database such as World Inventory of Soil Emission Potential (WISE) (Batjes
1996), USDA Natural Resources Conservation Service (NRCS) pedon database
(NRCS, USDA 1994), UNSODA (Leij et al. 1996, 1997), and Hydraulic Properties
of European Soils (HYPRES) (Lilly et al. 1999) have been widely used for the
development of PTFs. In India, the National Bureau of Soil Survey and Land Use
Planning (NBSSLUP) soil maps available at 250k and 50k are used in PTFs to
generate quantitative soil properties and assimilate them to simulate CGMs at a
regional scale.

For the spatialization of crop model, two main approaches are used to generate
weather inputs, namely, zoning and interpolation (Leenhardt et al. 2006). In the
zoning approach, the weather data of a meteorological station available in a specified
zone is considered as the representative weather for the entire zone. Another
alternative approach is the interpolation of the point weather data using nearest
neighbour, arithmetic mean, optimal interpolation, spline function, kriging, etc. to
generate spatial weather layers (Creutin and Obled 1982). The lack of observed daily
weather data at the required scale is the most challenging constraint to simulate the
effects of weather on crop growth and yields (Van Wart et al. 2013, 2015; Grassini
et al. 2015). Currently, gridded weather data (GWD) are generated at a regional and
global scale on an operational basis and regularly used in CGMs for decision
supports (Miner et al. 2013; Mourtzinis et al. 2016). GWD is usually generated
from satellite-derived weather information and/or interpolation of weather data from
available meteorological stations using stringent empirical algorithms at defined
spatial and temporal resolution. Influences of these gridded weather data on the
simulation of CGMs are studied by various authors (Angulo et al. 2013; Zhao et al.
2015; Rezaei et al. 2015). These studies are mostly based on GWD at a very coarse
spatial resolution like 50–100 km such as NASA-POWER (http:// power.larc.nasa.
gov/), NCEP (National Centre for Climate Prediction http://www.esrl.noaa.gov/psd/
data/gridded/data.ncep.reanalysis2.html), and CRU (Climate Research Unit; http://
badc.nerc.ac.uk/data/cru/). However, there is a lack of robust assessment of most
recently developed GWD with a higher spatial resolution (<20 km2), with respect to
their potential usage particularly in the application of crop growth simulation
models. The Prediction of Worldwide Energy Resources dataset from NASA
(NASA-POWER) has been widely used as weather inputs in various crop models
throughout the world. This is a weather database having daily weather attributes
including solar radiation and maximum and minimum temperature, for
100 � 100 km raster of the entire globe starting from 1983 to date. These data are
derived from satellite observations coupled with Goddard Earth Observing System
climate model to obtain complete terrestrial coverage on a daily timescale. The
quality evaluation of this NASA-POWER as input to the CGSMs has been carried
out with mixed results (White et al. 2008; Bai et al. 2010, Biswal et al. 2014).

A major issue of mapping soil and weather input data is the problem of change in
scale. Most often, the measurement units of weather data are smaller than the
simulation units; hence, the problem lies in upscaling of the measured or mapped
input data. This requires a thorough understanding and knowledge of the variable
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across space and its aggregation over the simulation unit. In some cases, the change
of scale could also be the other way round and requires downscaling of the weather
data to suit the simulation unit. For example, Priya and Shibasaki (2001) estimated
the required local information from meteorological stations of a national network
and digital terrain model with a large scale using a purely statistical approach. In the
context of spatial input data generation for CGMs, limited analysis has been done on
the sources of error and their propagation. Crosetto et al. (2000) and Tarantola et al.
(2000) presented a comprehensive approach to analysing uncertainty and sensitivity
through GIS-based models for accurate and precise results, but this study is generic
without specific application to CGMs. Poor-quality input data resulting from mea-
surement errors or poor spatial aggregation or disaggregation are often the main
source of errors in CGMs. Geographic information system (GIS) along with spatial
data analysis plays an important role in integrating the crop model output into a
larger geographic area (Delécolle et al. 1992; Ewert et al. 2011). Several researchers
have demonstrated the linkage between crop model, GIS, and RS technology for
regional crop forecasting (de Wit et al. 2010; Ma et al. 2013); precision agriculture
(Seelan et al. 2003); yield gap analysis (Sibley et al. 2014); agro-ecological zoning
(Ismail 2012); and crop suitability assessments (Mustafa et al. 2011; Mustak et al.
2015). Leitão et al. (2018) reported that broad-scale RS facilitates cost-efficient fast
and periodic monitoring of the ecosystem in a larger area but is less useful for local
scale applications (Leitao et al. 2018). With the advancement in RS technology,
particularly the development of multispectral and hyperspectral sensors, RS has been
proving its potential for upscaling vegetation parameters. But the trade-off among
various sensor resolutions, viz. spatial, temporal, spectral, and radiometric, is the
major limitation in the application of this technology. Further, it is a nearly impos-
sible task to measure plant parameters in situ across the simulation unit, but we can
always follow the empirical or physically based approach for biophysical parameter
retrieval using RS technique. Upscaling in environmental research involves a com-
bination of data generated at different temporal and spatial scales (Finke et al. 2002).
It is important to consider the “observation scale” (spatial and temporal resolution of
the measured data), “modelling scale” (temporal and spatial scale at which model
operates), “operational scale” (scale time and space where the process operates), and
finally the “geographic scale” (area of interest or target area of the research) in the
upscaling protocol (Wu and Li 2009). Understanding the complexity of scale is
essential as the mechanism of a model can be different at different scales. Models
optimized for a particular scale become ill-performing at another scale without
re-optimization (Wu and Li 2009). Heterogeneity is the intrinsic characteristic of
the earth’s surface which is a mosaic of different patches of vegetation type, soil, and
land use. Even when a landscape looks homogeneous at a particular scale, the
possibility of having inhomogeneity increases with the increase in the spatial
resolution (Wu et al. 2000). Hence, in the RS domain, heterogeneity is a relative
concept which is highly linked with the sensor spatial resolution (Li et al. 2014).
Besides heterogeneity, another issue is the “linearity” or “non-linearity” involved in
the scaling between the RS measurement and the biophysical parameter of interest
(Wu and Li 2009). Besides the issues of spatial resolution, the issues of temporal
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resolution of the sensors also need to be addressed. Li et al. (2014) demonstrated that
in agroecosystem studies, some parameters could be retrieved from sensors with
high spatial and low temporal resolution, whereas others need lower spatial and
higher temporal resolution. The scale of the system to be modelled always depends
on the objective of the study, and thus, identification of suitable scale for monitoring
a particular system is the most important factor (Chemin and Alexandridis 2006;
Alexandridis et al. 2008), along with different issues of aggregation and disaggre-
gation of RS-derived information with minimal uncertainty (Alexandridis et al.
2010). RS satellites with higher spatial resolution such as SPOT, IKONOS, and
Quickbird have a lower temporal resolution and narrow swath. On the other hand,
satellites with a lower spatial resolution (coarser than 300 m) such as Terra/Aqua
MODIS, NOAA, and AVHRR have daily global coverage. For crop modelling
studies, these coarse-resolution satellites are preferred as they can generate a time
series of information during the crop season. It should be noted that crop models are
not expected to provide spatial information per se; rather, they require spatial
information to operate. Thus, the combined use of RS data with crop models
provides significant advantages by generating the “missing spatial information”
expanding their coverage in two-dimensional spaces (Launay and Guerif 2005).
This spatial information is crucial for the varied application of crop models starting
from precision farming to regional yield prediction (Azzari et al. 2017). Further-
more, in-season monitoring of crops and providing preharvest yield estimation at
various spatial and temporal scales are important for decision-making in trading,
logistics, and insurance. This aspect of spatial data generation for running CGSMs is
discussed in detail under Sect. 4.3 of this chapter.

4.2.2 Establishment of Spatial Framework

GIS tool enables the point-based crop model to simulate regional crop growth
development and yield. Depending on the types of linkages of the model to GIS,
three types of interfaces are identified: (i) linking, (ii) combining, and (iii) integrating
(Hartkamp et al. 1999). The selection of interface is highly dependent on the factors
like the objective of the research and expertise of the user along with the available
computational framework. Simple linkage strategies employ GIS for spatially
displaying the model outputs using interpolation techniques. In this approach,
communication between GIS and the model takes place through unique identifiers
of grid cells or polygons existing in input-output files and transferring the data back
and forth in ASCII or binary format (Dadhwal 2003). The linkage of WOFOST
model to ARC/INFO illustrates this aspect well (van Laanen et al. 1992) though in
this approach, the full potential of GIS is not exploited. In combining strategy, the
model is configured with interactive tools of GIS enabling automatic data exchange
along with displaying model results (Burrough 1996). This approach usually
involves complex programming and data management than the “linkage” approach.
An illustration of this technique is presented by Engel et al. (1997) in the
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Agricultural and Environmental GIS (AEGIS) with ArcView. Integration is still
more complex than the above-mentioned approaches and involves the incorporation
of one system into the other. The application of GIS interfacing in modelling had
been initiated in the mid-1980s particularly in the field of hydrological modelling.
The GIS-enabled applications of crop models have been demonstrated by various
researchers worldwide, such as regional/global crop yield calculation and produc-
tivity analysis (Calixte et al. 1992), precision farming, climate change, and agro-
ecological zonation (Aggarwal 1993). Lal et al. (1993) had carried out regional
productivity analysis using DSSAT-BEANGROW and AEGIS. Han et al. (1995)
studied potato yield and N leaching distribution for site-specific crop management
by developing an interface between PC ARC/INFO GIS and SIMPOTATO simula-
tion model at South Central Washington state. Aggarwal (1998) suggested a land-
use option for Haryana state in India by integrated simulation modeling, expert
knowledge, and GIS optimization techniques. In this study, agro-ecological land
units were delineated by overlapping maps for soil attributes and climatic normal
rainfall in GIS-IDRISI. Similarly, Sehgal (2000) developed a protocol of near-real-
time crop monitoring system for crop condition assessment and yield forecasting for
the Haryana region of India linking WTGROWS with GIS assimilating RS-derived
biophysical parameters. Ines et al. (2002) studied water use efficiency of rice, maize,
and groundnut at basin scale for the Laoag River basin in the Philippines using a
GIS-enabled crop growth model. Junguo Liu (2009) presented “GEPIC”, a
GIS-based model to estimate crop water productivity regionally with a spatial
resolution of 30 arc-minutes. Cedrez and Hijmans (2018) computed the potential
yield (Yp) of crops for the entire world using WOFOST and LINTUL model.

4.3 Remote-Sensing-Based Retrieval of Crop Biophysical
Parameters

Process-based CGSMs can incorporate physiological as well as biological knowl-
edge of plants and are also capable to model the interaction between plants and their
environment. In these models, vegetation state variables, such as developmental
phase, leaf area index (LAI), above-ground biomass (AGB) are linked to driving
variables like nutrient availability, weather conditions, and management factors. The
final output of these models is the crop yield or accumulated biomass (Dele’colle
et al. 1992). Hence, the information related to the crop canopy state variables such as
LAI and AGB is a prerequisite to simulate the CGMs. Several techniques have been
used to retrieve canopy state variables from reflective RS observations
(400–2500 nm) by many researchers. Moulin et al. (1998) had proposed the use of
sensors to parameterize CGMs based on the measurement of actual crop status.
Several authors carried out studies related to the potential use of sensors including in
situ, proximal sensing, and RS sensors to enhance prediction of CGM (Hoefsloot
et al. 2012; Bai et al. 2012). However, the estimation of biophysical attributes in situ
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is a laborious and time-consuming task (Weiss et al. 2004) even with the help of
automation systems. Hence, satellite-based RS data is the only source of information
to retrieve biophysical parameters at regional scales (Camacho et al. 2013; Kolotii
et al. 2015; Shelestov et al. 2015). Retrieval of biophysical parameters using various
spatial and temporal RS data has been an active area of research for the past several
decades (Wiegand et al. 1992; Chen et al. 2002; Walthall et al. 2004; Ganguly et al.
2012; Li et al. 2015a, b).

The existing biophysical parameter retrieval methods are empirical or physical in
nature. Physically based models simulate spectral response based on input such as
leaf constituents, canopy architecture, sun-viewing geometry, background soil
(Ganguly et al. 2012; Li et al. 2015a, b), and inverted back using observed spectral
response and limited known input parameters. Different techniques like lookup
tables (Ganguly et al. 2012), numerical optimization, and machine learning
(Walthall et al. 2004; Verrelst et al. 2012, 2013) techniques are successfully used
for inversion of the model. The empirical models basically linked biophysical
attributes with various RS-based spectral indices (Turner et al. 1999; Fensholt
et al. 2004; Verrelst et al. 2012). These models are quite easier to implement, site-
specific, and data-driven. Hence, its scalability is limited. The selection of the most
sensitive and informative spectral features is important in the empirical approach.
The addition of all possible spectral features increases the complexity and dimen-
sionality and required optimization to make the empirical model simple for regional
applications. The details of these approaches and methods are discussed in Chap. 3
of this book.

4.3.1 Importance of Remotely Sensed Crop Biophysical
Parameters

LAI is the most important crop biophysical parameter and a vital component of the
process-based CGMs. It’s a dimensionless quantity representing a one-sided leaf
area per unit ground surface area. Spatially explicit measurements and retrieval of
LAI from RS data are indispensable to model for simulation of ecological variables
and processes at regional scales (Green et al. 1997). Recent studies have successfully
demonstrated the retrieval of LAI using different parametric and nonparametric
regression as well as physically based models (Cho et al. 2007; Im et al. 2009; Liu
et al. 2018; Xie et al. 2019; Upreti et al. 2019). The RS data is also used to retrieve
fractional absorbed photosynthetically active radiation (fAPAR) as it is highly
related to dry matter production of a crop (Dong et al. 2013). Hilker et al. (2008)
had conducted an experiment to retrieve fAPAR using spaceborne RS data for
modelling plant dry matter production. They concluded that NDVI and enhanced
vegetation index (EVI) are most promising for retrieval of fAPAR. Upreti et al.
(2019) retrieved fAPAR through a hybrid approach using a neural network to train
PROSAIL canopy reflectance model. Similarly, LUE is one of the key biophysical
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parameters require to calculate potential plant production. Hilker et al. (2010) have
used the photochemical reflectance index (PRI) using narrow bands of 531 and
570 nm to retrieve LUE. However, it is difficult to upscale this retrieval process to
canopy level at a regional scale (Rahman et al. 2001; Hilker et al. 2008).

Biomass production estimation is one of the main areas of research in modelling
of vegetation growth and development. However, most of the RS satellites can
measure AGB, as not able to observe below-ground biomass (Lee 1978). Several
kinds of research have demonstrated successful biomass retrieval using RS data
(Claverie et al. 2009; Jin et al. 2015a, b).

Water stress is one of the critical limiting factors for the growth and development
of crops which leads to a yield gap between actual and potential production. Hence,
information regarding plant or crop moisture content is important for crop growth
and yield modelling. Many researchers across the globe have used various RS-based
indices, spectral information along with climate data to retrieve crop moisture stress.
Lee et al. (2010) reported the use of thermal infrared (3–12 μm) for crop water
estimation. Jackson et al. (1981) used the crop water stress index (CWSI) to measure
crop moisture. Govender et al. (2009) reported the use of middle- and shortwave
infrared bands for plant water stress measurement. Two most popular spectral
indices, namely, normalized difference water index (NDWI) by Gao (1996) and
water band index (WBI) by Penuelas et al. (1993), are being used to measure crop
moisture content. Djamai et al. (2019) carried out studies on the retrieval of canopy
water content using Sentinel-2 and Landsat-8 data.

Plant nitrogen content (N) is one of the most important biochemical constituents
of leaf chlorophyll content and therefore strongly correlated to plant photosynthetic
activity (Diacono et al. 2013). Several researchers have found strong correlations
between spectral indices and plant chlorophyll content. Yao et al. used NDVI to
retrieve chlorophyll in wheat crops. Bagheri et al. (2012) employed soil adjusted
vegetation index (SAVI), modified soil adjusted vegetation index (MSAVI), and
optimized soil adjusted vegetation index (OSAVI) for leaf chlorophyll retrieval of
corn. Jain et al. (2007) used several red-edge bands to retrieve chlorophyll content in
potato. Clevers and Gitelson (2012) estimated plant N and chlorophyll content using
MERIS and Sentinel-2 data using an empirical approach. Similarly, Miphokasap
et al. (2012) used ground-based hyperspectral data for retrieval of canopy N content
using the empirical method.

4.3.2 Scale Issues in Remote-Sensing-Based Parameter
Retrieval

The retrieval of parameters by inverting models does not express the characteristics
of scale explicitly; they may be suitable for homogeneous surface or point measure-
ment (Raffy 1992). Chehbouni et al. 2000 stated that it is not appropriate to use the
locally calibrated relationships, between the modelled and observed variables, at a
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regional scale simply by scaling the parameter. As a result, they need to be
reparameterized to adapt to the new circumstances since the driving forces or
mechanisms may be totally different at different scales. Hence, a model designed
and calibrated at the leaf scale may not hold good at the canopy level. Consequently,
the models or algorithms developed at one scale need to be revised for its application
to other scales, and the impact of scale on the mechanism of the model or algorithms
is to be investigated prior to changing the scale. Scale applicability of basic laws of
physics such as Lambert’s law (Li and Strahler 1985), Beer’s law (Albers et al.
1990), and Planck’s law (Li et al. 1999) at the pixel level is being discussed by
various researchers. Their results suggested that the scale applicability needs to be
considered carefully for retrieval of the model at different scales. Besides this, the
heterogeneity of land surface and the linearity or non-linearity of retrieved param-
eters are also highly related to scale. In reality, heterogeneity is a surface property
varying over scenes (Garrigues et al. 2006) and is a relative concept highly depen-
dent on the sensor resolution. As the spatial resolution of the sensor becomes finer,
the possibility of pixel heterogeneity increases. The surface heterogeneity greatly
affects the parameter retrieval strategy using RS data (Chen 1999). Garrigues et al.
(2006) suggested two strategies to minimize the errors in scale change; the first one is
to quantify the intra-pixel heterogeneity, and the second is to define proper pixel size
to capture the variability and minimizing the intra-pixel variability. There is no
arbitrary conclusion about the effect of linearity or non-linearity of retrieval models
on scale change. When the retrieval models for different cover types are quite
different, the linear retrieval models could also be affected highly by scale effect
(Chen 1999). At the same time, when the medium is homogeneous, non-linear
retrieval models also cause no scale effect as demonstrated by the Taylor series
expansion (Hu and Islam 1997; Garrigues et al. 2006). Chen (1999) suggested that
scaling error is more when a non-linear algorithm is applied to mixed pixels with
different land cover types. Various authors proposed different techniques to mini-
mize the scale effect in RS-based retrieval of biophysical parameters (Verhoef 1984;
Jacquemoud and Baret 1990; Raffy 1992; Tian et al. 2003). Hu and Islam (1997)
demonstrated that different parameterization and assumptions in retrieval models
can lead to a different conclusion for the same physical process. There are conflicting
conclusions in the literature describing whether the products are scale-dependent or
scale-free. There is relevant literature addressing these scale-change issues, such as
bidirectional reflectance distribution function(BRDF) and albedo (Liang et al. 2002),
temperature (Liu et al. 2006), emissivity (Zhang et al. 2004), carbon flux
(Thorgeirsson and Soegaard 1999; Sasai et al. 2007), soil moisture (Hu et al.
1997; Oldak, et al. 2002; Manfreda et al. 2007; Das and Mohanty 2008), NDVI
and vegetation fraction (Jiang et al. 2006; Tarnavsky et al. 2008), LAI (Hu and Islam
1997; Chen 1999; Fernandes et al. 2004; Garrigues et al. 2006; Jin et al. 2007;
Hufkens et al. 2008), net primary production (NPP), and gross primary production
(GPP) (Simic et al. 2004; Turner et al. 2004). It can be concluded that we need to
change the scale of the retrieval models through appropriate assumptions and
approximation. Furthermore, there should be a clear separation of system errors
from the errors arising from retrieval models due to scale changes.
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4.4 Assimilation of Parameters into the Process-Based Crop
Growth Simulation Model

The objective of the spatialization of a crop growth model is to simulate the crop
growth and development on a regional scale, where significant spatial variability in
soil, weather, and crop state variables exists along with the large uncertainties
(Hansen and Jones 2000). These uncertainties result in large errors in crop growth
simulation and yield estimation. In this context, RS technology plays an important
role by facilitating input data generation for CGMs particularly generating the
“missing spatial information” and thereby reducing the uncertainty in the
spatialization of CGMs and yield estimation. The recent development in RS tech-
nology helps us to generate accurate, reliable, and quantitative information on soil,
weather, and crop parameters at the regional scale. Many researchers have retrieved
canopy state variables, soil, and weather parameters using different techniques and
RS data. A detailed list of some of these studies that are relevant from the crop
modelling point of view is presented in Chap. 3 of this book. Several researchers
have used RS to retrieve crop state variables or soil properties over large areas, such
as fAPAR (Sakowska et al. 2016; Upreti et al. 2019), LAI (Fang et al. 2008; Jiang
et al. 2014; Liu et al. 2018; Pasqualotto et al. 2019), fraction of vegetation cover
(fCover) (Djamai et al. 2019), biomass (Claverie et al. 2009; Jin et al. 2015a, b), leaf
N content (Huang et al. 2013), evapotranspiration (Huang et al. 2015), and soil
properties (Dente et al. 2008; Ines et al. 2013; Chakrabarti et al. 2014).

These retrieved biophysical parameters of soil, weather, or crop canopy states
need to be integrated with CGMs. In recent years, rapid and parallel development in
CGMs as well as in RS and information technology (IT) leads to the development of
their combined applications. The availability of higher spatial resolution sensors
such as Sentinel-2, SPOT-6, Landsat-8, Rapid Eye, World View-2, and GeoEye-1
with high temporal frequency combined with wide spatial coverage and low oper-
ating cost facilitates operational crop growth monitoring and assessment in regional
scale. Similarly, there has been rapid development in IT leading to robust compu-
tational infrastructures, algorithms, and techniques for processing huge RS data and
generating relevant information for improving the predictive capability of CGMs
both in temporal and spatial scales (Launay and Gue’rif 2005). In this context,
various data assimilation (DA) techniques have been developed allowing a formal
and well-understood way to combine the predictions of simulation models with RS
or ground-based observations. In this process, the model predictions are matched
with the observed data limiting the errors due to poor local parameterization. Further
fine-tuning could be done by retrieving the local parameters using RS techniques
(Xi et al. 2019). In the context of DA, one needs to first distinguish observed
variables (RS or ground-based), state variables (crop model system generated),
model parameters (establishing relationships between observed and state variable),
and output variables (crop yield in most of the DA) (Delécolle et al.1992). Several
algorithms and techniques have been developed worldwide to facilitate DA through
the combined use of crop models with RS data (Mass 1988; Guerif and Duke 2000;
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Dente et al. 2008; Curnel et al. 2011; Wang et al. 2013; Huang et al. 2015) to
improve the accuracy of CGMs and in turn estimation accuracy of crop yield in
regional scale. Various DA methods usually optimize the difference between the
measured evidence (RS observation) and modelled prediction by using Bayes’ rule
(Huang et al. 2019a, b). Many techniques have been developed to carry out this
Bayesian update, and their relative advantage is based on the assumption made to
solve for the posteriori analysis for probability density function (pdf) of the param-
eter or state variable.

The schematic flow diagram of a typical DA system involving crop model and
RS-derived biophysical parameters is presented in Fig. 4.3. A point-based crop
growth simulation model is to be calibrated and validated on a field scale, and the
most sensitive parameters of the model need to be fixed along with the smart
assumption of the less sensitive and difficult to measure parameters in the study
region. The calibrated model will then be able to simulate crop growth and devel-
opment. Then, the calculated uncertainties in the calibrated parameters propagate
through the model to account for the limitations in the process of calibration and
parameterization. After the calibration, the model is ready to simulate the crop
growth by providing local predictions of a large number of biophysical variables
such as development state (DVS), LAI, AGB, evapotranspiration (ET), and soil
moisture. At the same time, satellite-based RS has the potential to provide an
independent estimate of these parameters over large areas. Then the DA methods
will seek to update the uncertain model simulations of LAI, AGB, SM, etc. to match
the certain observations obtained through earth observation (EO) systems so that pdf
is consistent with both the model and observation. The model with the embedded
DA process can run in the forward direction towards the harvest to simulate crop
growth and yield using the short-term as well as seasonal weather forecasts.

4.4.1 Methods of Remote Sensing Data Assimilation

Extensive reviews on the assimilation of RS-derived biophysical parameters into
CGMs have been carried out previously by several authors (Maas 1988; Delecolle
et al. 1992; Liang 2005; Dorigo et al. 2007; Lewis et al. 2012; Kasampalis et al.
2018; Jin et al. 2018). Similarly, various techniques have been developed to integrate
RS observations in the agroecosystem models. In general, three different strategies
are applied which are described by researchers worldwide (Dele’colle et al. 1992;
Moulin et al. 1998; Olioso et al. 1999; Makowski et al. 2002; Bach and Mauser
2003). Three broad methods of DA, i.e. calibration, forcing, and updating tech-
niques, have been used globally and are discussed in the following section.
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4.4.1.1 Calibration Method

The main aim of the calibration method is to minimize the differences between the
RS data and the simulated data of the crop model using an optimization algorithm.
The initial parameters of crop models are adjusted to optimally match with the
simulated state variables of the crop model with the RS data (Fig. 4.2a). While
calibrating the sensitivity, uncertainty analysis of crop models is carried out manu-
ally or automatically running the model using a set of realistic parameters within
range. Several studies have been carried out using RS DA into crop models using the
calibration method. The main disadvantage of the calibration method is to parame-
terize the complex relation existing among the model variables. The popular algo-
rithms are mentioned as below:

(a) Maximum likelihood solution (MLS) (Dente et al. 2008)
(b) Simplex search algorithm (SSA) (Launay and Guerif 2005; Ma et al. 2008;

Claverie et al. 2009; Ma et al. 2013)
(c) Least squares method (LSM) (Zhao et al. 2013)
(d) Powell’s conjugate direction method (PCDM) (Fang et al. 2008, 2011)
(e) Shuffled complex evolution (SCE-UA) (Shen et al. 2009; Ren et al. 2009, 2011;

Jin et al. 2010; Ma et al. 2013; Wang et al. 2014; Huang et al. 2015)
(f) Very fast annealing algorithm (VFSA) (Dong et al. 2013)

Fig. 4.2 Schematic representation of different methods for the assimilation of remotely sensed
model state variables in agroecosystem models: (a) calibration, (b) forcing, and (c) updating.
(Adopted, Dele’colle et al. 1992)
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(g) Particle swarm optimization algorithm (PSO) (Wang et al. 2014; Liu et al. 2014;
Jin et al. 2015a)

4.4.1.2 Forcing Method

Forcing methods use the RS data to replace the crop model simulation data
(Fig. 4.2b) at each time step. The time step may be daily, weekly, or monthly
which may not match with the temporal resolution of satellite data in most of the
cases. Under normal circumstances, the temporal resolution of a satellite is less than
the time step of the crop model. RS observations are available at a predefined
temporal resolution of the satellite observations and generally less frequent than
the model time step. Hence, various interpolation techniques like wavelet
approaches, linear interpolation, and fast Fourier transformations (Roerink et al.
2000) have been used to fill the gaps between two observations. It helps to derive
state variables as per the required time steps of the model. LAI data retrieved from
RS images are most often used as an input parameter and state variable into a crop
growth model. Huang et al. (2001), Clevers et al. (2002), Schneider (2003), Abou-
Ismail (2004), Hadria et al. (2006), Thorp et al. (2010), Tripathy et al. (2013), and
Yao et al. (2015) have retrieved LAI using different RS data. The simulated results of
crop models were directly replaced by the retrieved LAI to improve the simulated
LAI, AGB, and yield of crop models. Morel et al. (2012) used the estimated
interception efficiency index (ε) and fAPAR as input into the MOSICAS model
for estimating the yield of sugar beet and sugarcane, respectively. DA of RS data into
the crop model is easy to operate using the forcing method. During this process, the
simulated state variables were only replaced by the retrieved state variables derived
from RS data.

4.4.1.3 Updating Methods

The updating method deals with continuous updating of model state variables with
RS-based variables as per the availability (Fig. 4.2c). This method is based on the
assumption that an updated state variable at each time step better simulates the state
variable. It improves the accuracy of the simulated state variable at a succeeding time
step. It is also referred to as sequential DA and many algorithms have been
developed for this assimilation technique (McLaughlin 2002). These methods pro-
vide more flexibility in terms of data availability, but accounts for the errors in both
observed and modelled state variables may affect the final output.

4.4.2 Issues in Data Assimilation

The assimilation of RS-derived biophysical and biochemical state variables into
CGSMs can improve its predictive performance at a regional scale (Launay and
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Gue’rif 2005). However, RS-derived state variables may contain some observational
error (Bastiaanssen et al. 1998). In forcing method, the model follows the observed
state variable and may include observation errors. However, the “calibration” and
“updating” methods offer more flexibility in the assimilation of RS-based state
variables and their associated errors in the model. Nouvellon et al. (2001) reported
that the calibration method could generate more representative parameters based on
the simplified physical description of the underlying processes and thus improves
model prediction. But it’s only applicable if there are a sufficient number of
observations, and the observation error is also small. As it needs more computation
time for the optimization process to assimilate RS data, the calibration method finds
limited applications. However, this problem can be overcome by testing more robust
and less time-consuming procedures such as methods based on extended and
non-linear Kalman filtering (KF) (Nouvellon et al. 2001). The updating method
has significantly reduced the computational times as compared to the calibration
method as it requires a single run. Besides, in updating methods, the model state
variables need to be adjusted during the model run itself and often intervene in the
model structure and processing loops to a large extent. Walker et al. (2001) con-
cluded that KF is a superior over the forcing method using a synthetic case. It has
been successfully demonstrated that RS-derived biophysical variables can be uti-
lized to calibrate parameters and initialize variables such as initial LAI and sowing
date (Maas 1988; Guerif and Duke 2000). It can also be used to adjust or replace a
state variable (LAI and fAPAR) in agroecosystem models (Bach and Mauser 2003;
Launay and Gue’rif 2005). Most of these studies were carried out at subregional to
local scales. However, these models can still be operated at the individual field level
with high-resolution satellite data such as SPOT, Landsat TM, and Sentinel. Further,
at these scales, the spatial and temporal resolution of RS images becomes a critical
factor (Dele’colle et al. 1992; Launay and Gue’rif 2005).

4.4.3 Data Assimilation Algorithms

The currently used DA algorithms include KF, ensemble Kalman filter (EnKF),
particle filter (PF), hierarchical Bayesian method (HBM), three-dimensional varia-
tional data assimilation (3DVAR), and four-dimensional variational data assimila-
tion (4DVAR). All these algorithms are discussed in detail in the following section
under the broad categories of the variational approach, KF and Bayesian Monte
Carlo approaches. The variational approach can optimize a given criterion such as
the minimization of a cost function, hence solving the assimilation problem. It is
observed that in a wide range of functions, optimizers are used to solve a generic cost
function problem for DA into a crop growth model. 3DVAR can assimilate obser-
vations without considering temporal dependency (Lorenc 1986). It can use the
complex observation operator, hence making it easier to assimilate for state variables
of non-director-related non-linear observations. However, 3DVAR model is limited
in practical applications because of higher computational cost. Hence, 4DVAR was
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developed using 3DVAR algorithm to overcome such problems. 4DVAR integrates
the solution over time (Le Dimet and Talagrand 1986). LAI or FAPAR is the mostly
used linking variables between satellite observations and models. This is probably
due to their straight forward representation or the connecting point within the crop
growth simulation model and the wider availability of satellite-derived LAI and/or
FAPAR products (Fig. 4.3).

Many researchers have explored the empirical relationship between various
vegetation indices (VIs) with LAI and fAPAR or using radiative transfer models
(RTMs) to convert LAI to reflectance. However, it is important to understand the
limitations of the observation operators, in both cases. The assimilation of fAPAR is
not necessarily the same as assimilating VIs. KF method cannot be used to address
high-dimensional data. Hence, it is often difficult to generate inputs for crop canopy
state variables, structure, and model uncertainty. To overcome these problems,
Evensen (1994) developed the EnKF. Many studies have demonstrated that the
EnKF method is very helpful for DA between crop models and RS data (Crow
and Wood 2003; Hadria et al. 2006; De Wit and Van Diepen 2007; Bolten et al.
2009; Nearing et al. 2012). The KF equations hold good only with linear CGMs and
linear observation operators and assume all the statistical functions as Gaussian.
However, dynamic crop models are often not linear, as the growth process is affected
by many factors, such as solar radiation, temperature, moisture, and other crop
management factors. These interactions cannot be simulated adequately by linear

Fig.4.3 A schematic framework of spatialized crop growth simulation model with EO data
assimilation
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models. Hence, a standard KF cannot be employed directly for carrying out the
assimilation process.

If direct RS-based measurements such as backscatter coefficients, radiance, and
reflectance are to be assimilated, the local linear approximation needs to be feasible.
If these approximations are available by using emulators (Gómez-Dans et al. 2016),
then EKF might be an efficient alternative to the EnKF (Evensen 2009). RS-derived
products can give direct, uncertainty-quantified measurement of state vector com-
ponents like LAI. It can be directly connected to the model predictions. KF will be a
good choice if the error related to the data product follows Gaussian distribution. It is
a sequential approach to measure state vector at different points of time by consid-
ering the probability distribution of the variables for each time frame. It uses a series
of measurements related to statistical noise; other errors are observed over time.
Hence, the estimation of an unknown variable using such approaches tends to be
more accurate than those based on a single measurement alone. However, the use of
EnKF is an alternative approach to assimilate such products as most of the CGMs are
non-linear.

The filtering approaches are casual as compared to the variational approach due to
the only use of past information to assimilate a current observation. The variation
approaches need information from the whole assimilation temporal window,
resulting in a more constrained problem compared to filters (Huang et al. 2019a).
Besides, filtering approaches facilitate near real-time operation with an on-line
updating facility. The similarity between KF and 4DVAR is the fact that both follow
the Gaussian assumption and Bayes’ rule. However, in CGMs and non-linear
observation operators, the uncertainties in the model don’t follow Gaussian distri-
bution, assuming normality in the posterior might be a poor choice. Rather,
sampling-based methods like Markov chain Monte Carlo (MCMC) (Gilks and
Roberts 1996) is a good choice. It uses the Markov chain to produce samples from
the posterior pdf that will work for any problem, provided that the chain is allowed to
run for a sufficient number of iterations. Again, a convergence of the chain is hard to
diagnose. Hence, many thumb rules (R^ indicator) are usually employed (Cowles
and Carlin 1996; Gelman et al. 2013). MCMC methods are more appropriate where
the dimensionality of the problem is not very high. These methods become slow
when the dimensionality is very high; hence, it is difficult to achieve convergence in
the desired timescales. The functional equivalents of MCMC are sequential Monte
Carlo methods, such as particle filters (PF). PF facilitates the propagation of
non-Gaussian distributions through complicated CGMs. PF shows some potential
for DA to integrate RS-derived biophysical parameters with a crop model as
compared to widely used EnKF (Jiang et al. 2014; Machwitz et al. 2014; Chen
and Cournède 2014). An important consideration for PF is that a large number of
particles may be required to reliably describe the posterior pdf, particularly when the
dimensionality of the problem increases. The approach appears to be promising for
non-linear CGMs. Several researchers have demonstrated the applications of PF for
crop model parameterization and uncertainty analysis (Makowski et al. 2002; Iizumi
et al. 2009; Dumont et al. 2014). A detailed list of various algorithms and their
usages along with crop models and RS data is presented in Table 4.3.
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4.5 Future Scopes and Challenges

The spatial crop growth model can simulate regional crop growth development and
yield using GIS and RS data. Studies conducted worldwide reported high simulation
accuracies of the model on a coarser scale. But there is a scope to further improve
upon the existing models to operate at a finer simulation unit like village or Gram
Panchayat level without losing the accuracy. The crop models used today have their
intrinsic limitations. Most of the crop models do not have the modules to simulate
the impact of diseases, pest infestation, and climatic disasters such as flooding, hail,
strong winds, and high temperature. The genetic coefficients of crop varieties in the
crop models are fixed by field trials or from literature, and it is not possible to
generate such coefficients on a regional scale by carrying out a large number of field
experiments. Similarly, feeding the crop models with spatially divergence crop
management information like input for irrigation, fertilization, sowing, etc. is fur-
thermore challenging. Difficulties are also encountered to accommodate high spa-
tiotemporal variations of the soil and weather parameters. Hence, the error is also
high in parameterizing the soil properties such as soil moisture, soil texture, soil
nutrients, carbon, and nitrogen content and daily weather inputs like maximum,
minimum temperature, rainfall, and solar radiation. Low accuracy in the input data
results in poor prediction of the model simulation. Most of the models assume
uniform field growth situations (like the potential and water-limited production
conditions), but in reality, several limiting factors can occur in the field. Hence,
the actual field conditions are beyond the defined boundary conditions of the model
range. These errors introduced through parameterization of crop model, hence
influencing the accuracy of biomass, LAI, and yield estimates both at regional and
global scales. To reduce the above-mentioned error, the following general issues
need to be addressed:

What are the sensitive input parameters for the model?
Which of these parameters can be retrieved accurately through RS technique

and how?
Which are the most suitable assimilation techniques for incorporating RS data into

the model?
What is the effect of assimilation on simulated output?
What is the effect of spatial and temporal resolution on the predictive power of the

model?

At the same time, some of the specific methods have been followed to reduce the
uncertainty in simulation such as (1) the addition of modules for simulating the
impact of diseases, insect/pest infestation, and climatic disasters and (2) combination
of global sensitivity analysis such as Morris, extended Fourier amplitude sensitivity
test (EFAST), intelligent optimization algorithms (IOA), MCMC, GA, general
likelihood uncertainty estimation (GLUE) for parameter optimization and model
accuracy improvement. Hence, the development of IOA for carrying out sensitivity
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analysis, calibration, and validation of crop models along with RS data retrieval and
assimilation will be a demanding area of research in the future.

The prediction accuracy of crop models is improved through the assimilation of
RS data. However, the RS data mainly obtained using various optical sensors may
also contain some errors in a regional domain (Huang et al. 2001; Duchemin et al.
2003; Hadria et al. 2006; Thorp et al. 2010; Yao et al. 2015). Currently, the VIs
derived from RS data is difficult to satisfy the requirement of crop models both
temporally and spatially. Further, RS has challenges such as directional problem,
scale effect and scale transformation, and retrieval techniques and method. These
factors impact the retrieval accuracy of canopy state variables using RS data and at
the DA chain (X. Jin et al. 2018). Crop area delineation is the foremost prerequisite
of spatialization of CGMs, and towards this end, object-oriented image analysis
(Blaschke 2010; Qi et al. 2012; Gu et al. 2017) could provide better representative
crop maps for the models. Object-oriented classification enables the acquisition of a
variety of spatial and textural features from multi-temporal RS images and carries
out segmentation followed by crop area delineation. Improved algorithms based on
machine learning techniques (Skakun et al. 2015; Guo et al. 2016) are very much
useful for pixel-level classification and analysis of multispectral and multi-temporal
RS data. Currently, the key problem of many RS-based parameter retrieval is due to
the ill-posed issues during the inversion process (Li et al. 2015a,b). Though there is
no definitive solution to the inversion problem, the introduction of the prior knowl-
edge could provide better convergence. The uncertainty introduced by DA could be
improved by combining different DA algorithms (such as a combination of EnKF
and 4DVAR) (Dong et al. 2013). Development in the area of hyperspectral RS data
can further improve the estimation accuracy of canopy state variables and soil
properties at the field scale based on a combination of spectral shapes and spectral
indices (Frels et al. 2018). With the fast development of versatile, lightweight, and
low-cost portable sensors on the unmanned aerial vehicle (UAV) platform, newer
avenue of RS data generation with the high spatial and temporal resolution is
evolving (Bendig et al. 2015; Adao et al. 2017). Though this UAV technology is
best suited to acquire high spatial and temporal RS data at the field scale, it does not
provide regional-scale data promptly because of the small spatial coverage of UAV.
To improve the stress detection and crop monitoring activities through RS,
fluorescence-based sensors have been developed recently. In this context, Fluores-
cence Explorer (FLEX) of the European Space Agency is expected to monitor the
photosynthetic activity of vegetation through chlorophyll fluorescence on a global
scale. Fluorescence is considered to be a more accurate and earlier indicator of plant
growth and stress than other biophysical parameters used (LAI, fAPAR), but the
fluorescence data product would at a coarser scale account for its weak signal.
Hence, lots of research is required on this fluorescence data retrieval and assimilation
into the crop model. The recent trend in the development of constellations of
nanosatellites (mass < 10 kg) is another area of research in satellite RS. An
operational example is the constellation of Planet Lab’s “Doves”, which are
designed to cover the globe daily at 3–5 m spatial resolution. Development of
intelligent algorithm to handle big data generated through multiple sensors on
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different platforms and assimilating these data into process-based CGSMs at the
required scale and resolution will become key research directions in the future.

4.6 Conclusions

Crop models and RS had parallel development courses, and both the technology
complement each other. At the same time, the spatialization of CGMs demands the
synergistic use of both. The combined use of various RS datasets and crop models
using new DA methods could improve the retrieval accuracy of crop canopy state
variables, soil properties, etc. The major challenge in the spatialization of CGMs is to
address various issues and limitations of both techniques. In this chapter, a detailed
discussion is carried out on the evolution, scope, and limitation of popular process-
based crop growth simulation models at the beginning. The techniques and issues
involved in the spatialization of crop models particularly the development of a
spatial framework on the GIS environment and addressing the availability of data
at various scales are discussed with emphasis on soil, weather, and retrieved crop
biophysical parameters. Spatialization involves a change of scales in input, pro-
cesses, and output. Various limitations of scale change are addressed in this chapter
under various sections. The retrieval of biophysical parameters from RS data and its
subsequent assimilation into the model is the central theme around which the entire
concept of spatialization of the crop growth model revolves around. Different
techniques for retrieval of crop biophysical parameters from RS data such as
empirical, physical, and hybrid approaches are presented along with some of their
recent application. This section also covers scale effect, optimal scale, and pixel
heterogeneity and related issues involved in the retrieval process. The concept of RS
DA into a crop growth model is discussed along with various algorithms. A list of
recent studies on RS DA is presented. An attempt is made to cover all recent
development and future scope for research in the area of spatialization of crop
growth models.
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Crop Monitoring Using Microwave Remote
Sensing

P Srikanth, Abhishek Chakraborty, and C S Murthy

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
5.2 Basics of Microwave Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.2.1 Passive Microwave Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
5.2.2 Active Microwave Remote Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.3 Microwave Interaction with the Agriculture Crops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.3.1 Wavelength/Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.3.2 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5.3.3 Incidence Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
5.3.4 Target Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

5.4 Crop Type Identification and Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.4.1 Mapping of Rice Cropped Area and Delineating the Date of Transplantation

from the Temporal Sentinel-1A SAR Data: A Case Study . . . . . . . . . . . . . . . . . . . . . . 214
5.4.2 Assessment of Flood-Affected Rice Cropped Area by Integrating Synthetic

Aperture Radar and Optical Data: A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
5.5 Retrieval of Crop Parameters Using Microwave Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

5.5.1 Crop LAI Estimation Using Microwave Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
5.5.2 Crop Biomass Estimation Using Microwave Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

P. Srikanth (*)
Crop Assessment Division, Agricultural Sciences and Applications Group, National Remote
Sensing Center, Department of Space, ISRO, Hyderabad, Telengana, India
e-mail: srikanth_p@nrsc.gov.in

A. Chakraborty
Agroecosystem and Modeling Division Agricultural Sciences and Applications Group, National
Remote Sensing Centre Department of Space, ISRO, Hyderabad, Telangana, India
e-mail: abhishek_c@nrsc.gov.in

C. S. Murthy
Agricultural Sciences and Applications Group, National Remote Sensing Centre, Department of
Space, ISRO, Hyderabad, Telangana, India
e-mail: murthy_cs@nrsc.gov.in

© Springer Nature Singapore Pte Ltd. 2021
T. Mitran et al. (eds.), Geospatial Technologies for Crops and Soils,
https://doi.org/10.1007/978-981-15-6864-0_5

201

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-6864-0_5&domain=pdf
mailto:srikanth_p@nrsc.gov.in
mailto:abhishek_c@nrsc.gov.in
mailto:murthy_cs@nrsc.gov.in
https://doi.org/10.1007/978-981-15-6864-0_5#DOI


Abstract Satellite-based preharvest estimates of agricultural output are an essential
requirement of agriculture management and policy. Optical remote sensing is limited
by the cloudy and obscure weather conditions during monsoon season. Microwave
signal can penetrate cloud, haze, and fog making it suitable for mapping and
monitoring of crops in all weather conditions. The interaction of the microwave
with the crop canopy is greatly influenced by the senor characteristics such as
wavelength, angle of incidence, and polarization and also the target properties
such as surface roughness, crop geometry, and soil and vegetation water content.
Synthetic aperture radar (SAR) data has been successfully used for mapping of
flooded rice crop. Limited success has also been received for wheat, corn, and
soybean crops with reasonable accuracies. Crop biophysical parameters such as
leaf area index (LAI) and crop biomass can also be retrieved with limited uncertainty
using different wavelength, polarization, and incident angle of SAR data. Synergistic
use of SAR and optical data showed promising results in the assessment of crop
parameters and condition at regional level. This chapter provides a brief introduction
to microwave remote sensing (MRS) and its interaction with crop canopy at different
wavelength and polarization followed by few case studies showcasing successful
utilization of SAR date for agricultural crop monitoring.

Keywords Biomass · Crops · Leaf area index · Microwave · Polarization · Synthetic
Aperture Radar

Abbreviations

EM Electromagnetic
FIR Far Infrared
LAI Leaf Area Index
MIR Middle Infrared
MRS Microwave Remote Sensing
NDVI Normalized Difference Vegetation Index
NIR Near Infrared
RADAR Radio Detection and Ranging
RS Remote Sensing
SAR Synthetic Aperture Radar
SWIR Short-wave Infrared
UV Ultraviolet
WCM Water Cloud Model

5.1 Introduction

Agriculture is the backbone of a nation as it ensures food security and social stability.
It is the mainstay of the economy in many developing countries. The Sustainable
Development Goal 2 (SDG2) addresses “End hunger, achieve food security and
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improved nutrition, and promote sustainable agriculture”. It requires seamless
interconnected activities to support sustainable agriculture, empowerment of small
and marginal farmers, promotion of gender equality, eradication of rural poverty,
ensuring healthy lifestyles, combating climate change, etc. Geospatial technology
plays a very vital role in agroecosystem services to achieve SDG2 goals (Mitran
et al. 2018; Meena et al. 2020). Regular mapping and monitoring of crop growth and
preharvest production estimates is an essential requirement of agriculture manage-
ment and policy decisions. Satellite-based remotely sensed data offer near-real-time
mapping of crop area, crop condition and growth, crop damage, and production
estimate at the regional/national level. Visible, near-infrared (NIR), and short-wave
infrared (SWIR) regions of the electromagnetic (EM) spectrum have been exten-
sively used successfully to derive the agriculture outputs. But these regions have
some inherent limitations for different weather conditions. The availability of
analysis-ready optical data is limited during the cloudy and obscure weather condi-
tions as it is affected by cloud, haze, fog, and other atmospheric constituents like
aerosols, water vapour, and dust. Some of the adverse impacts of the atmosphere on
the optical data can be corrected, while the effect of cloud, haze, and fog remains
unresolved as optical wavelengths cannot penetrate them. These challenging weather
conditions cause great difficulties in the establishment of crop mapping procedures,
area and production estimations, and retrieval of biophysical parameters, particularly
during kharif/monsoon season. The microwave region of the EM spectrum, having
higher wavelengths, can penetrate cloud, haze, and fog. Thus, it provides valuable
data at all weather conditions. It can also operate during night-time in contrast to the
optical sensors. The microwave wavelengths are sensitive to surface geometry and
dielectric properties. They can penetrate soil and crop canopy depending on the
operating wavelength or frequency and incident angle. So, it is capable to provide
subsurface or below canopy information in selected situations. Depending on the
configuration of the microwave sensor such as wavelength, polarization, phase,
incidence angles, a wealth of information about the target object can be obtained.
These characteristic properties of the microwave sensors have potential applications
in the field of agriculture monitoring and assessment. This book chapter deals with
some of the basic principles of MRS (passive and active), the interaction of the
microwaves with agriculture crops, identification and mapping of selected crops, and
retrieval of crop biophysical parameters with some limited case studies.

5.2 Basics of Microwave Remote Sensing

The EM spectrum has been divided into different regions, namely, gamma rays,
X-ray, ultraviolet (UV), visible, NIR, middle infrared (MIR), far infrared (FIR),
microwave, and radio wave based on increasing wavelength and decreasing fre-
quencies (Fig. 5.1). The optical wavelengths can be focused with lenses and range
between 0.3 and 15 micrometres (basically the reflective and emissive portion of the
EM spectrum). This region is most widely used for remote sensing (RS) purpose
followed by the MIR and FIR. The microwave region in the EM spectrum ranges
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approximately from 1 cm to 1 m wavelength represented by different bands as
shown in Fig. 5.1. Microwave wavelengths are relatively longer than optical wave-
lengths in the visible and infrared regions and hence got special characteristics which
are important for RS. Longer wavelengths have the capability to penetrate clouds,
haze, dust, fog, and moderate rainfall, and also, the microwave radiation is almost
transparent to atmospheric constituents compared to the optical wavelengths. These
special properties of the microwave wavelengths make it possible to sense the
microwave energy in almost all-weather conditions, and also, microwave sensors
can be operated in daytime and night-time. RS in the microwave region can be either
active or passive.

5.2.1 Passive Microwave Remote Sensing

A passive microwave sensor detects the naturally emitted microwave energy within
its field of view. This emitted energy depends on the various properties of the surface
or emitting objects such as moisture (dielectric properties) and temperature. An
example of typical passive microwave sensors is scanners or radiometers. Basically,
an antenna is employed to detect and record microwave energy. Because of the
longer wavelengths, the energy available to the detector or antenna is quite small
compared to optical wavelengths. Thus, a larger field of view is required to detect
enough energy to record a signal. This is the reason why the spatial resolution of the
data acquired by most of the passive microwave sensors is relatively coarser. One of
the important applications of passive MRS in agriculture is the surface soil moisture
estimation. A series of operational passive microwave satellites have been providing
such information, i.e. Scanning Multichannel Microwave Radiometer (SMMR)
(1978–1987), Special Sensor Microwave Imager (SSM/I) of Defence Meteorologi-
cal Satellite Program since 1987, the microwave imager from the Tropical Rainfall
Measuring Mission (TRMM) since 1997, Advanced Microwave Scanning
Radiometer–Earth Observing System (AMSR-E) on-board of NASA EOS Aqua
satellite since 2002, Soil Moisture and Ocean Salinity (SMOS) since 2009, and

Fig. 5.1 Electromagnetic spectrum with different spectral regions in the increasing order of the
wavelength
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recently Advanced Microwave Scanning Radiometer-2 of JAXA’s Global Change
Observation Mission first Water (GCOM-W1) since 2012.

5.2.2 Active Microwave Remote Sensing

Active microwave sensors use their own source of microwave energy to illuminate
the target. These sensors are either imaging or non-imaging. Radio detection and
ranging (RADAR) is the most important active microwave sensor. It can operate any
time during day or night and has the major advantages to penetrate through the
moderate rain, cloud, haze, etc. The examples of active microwave sensors are radar
altimeters, scatterometers, synthetic aperture radar (SAR), etc. SAR is most widely
used for earth observation applications and natural resources assessment. Some of
the past, present, and future SAR satellite missions are presented in Table 5.1.

Table 5.1 List of some of the past, present, and future SAR satellites

Sl. no. SAR satellites Frequency band Active period Operator

1 ERS-1 C 1991–2000 ESA

2 ERS-2 C 1995–2011 ESA

3 Envisat C 2002–2012 ESA

4 Sentinel-1 C 2014-present ESA

5 JERS-1 L 1992–1998 JAXA

6 ALOS-1 L 2006–2011 JAXA

7 ALOS-2 L 2014-present JAXA

8 Radarsat-1 C 1995–2013 CSA

9 Radarsat-2 C 2007–present CSA

10 Radarsat constellation C 2019–present CSA

11 TerraSAR-X X 2007–present DLR

12 TanDEM-X X 2010–present DLR

13 RISAT-1 C 2012–2017 ISRO

14 NISAR L and S Future NASA and ISRO

15 COSMO-SkyMed X 2007–present ASI

16 PAZ X 2018–present INTA

17 KOMPSat-5 X 2013–present KARI

ERS European Remote Sensing Satellite, Envisat Environmental Satellite, JERS Japanese Earth
Resources Satellite, ALOS Advanced Land Observing Satellite, Radarsat Radar Satellite, RISAT
Radar Imaging Satellite, NISAR NASA-ISRO Synthetic Aperture, KOMPSat Korea Multiple-
purpose Satellite, ESA European Space Agency, JAXA Japan Aerospace Exploration Agency,
CSA Canadian Space Agency, DLR Deutsches Zentrum für Luft- und Raumfahrt E.V, ISRO
Indian Space Research Organization, NASA National Aeronautics and Space Administration, ASI
Italian Space Agency (ASI), INTA Instituto Nacional de Técnica Aeroespacial, KARI Korea
Aerospace Research Institute
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5.3 Microwave Interaction with the Agriculture Crops

The interaction of the microwave with the target is greatly influenced by the sensor
characteristics and also by some of the target properties. The operating wavelength,
polarization, and incidence angle are important parameters of the SAR sensor that
control the microwave interaction with crops/soils.

5.3.1 Wavelength/Frequency

EM waves including RADAR signals are categorized according to their frequency
or, equivalently, according to their wavelength. Wavelength is the distance between
successive crests or trough of waves (Fig. 5.2). Agricultural crop/soil components
that have the dimensions comparable to or larger than the incident wavelengths tend
to cause larger reflections/scattering when the polarization alignment is in agreement
with the structural alignment of the surface components (McNairn and Brisco 2004).

Longer wavelengths can penetrate more into the crop canopy and hence enable us
to get the information about the underlying soil compared to shorter wavelengths
(Ulaby et al. 1986). The microwave portion of the EM spectrum is quite wide,
relative to the visible and infrared. There are many bands commonly used and given
code letters such as Ka (0.8–1.1 cm), K (1.1–1.7 cm), Ku (1.7–2.4 cm), X
(2.4–3.8 cm), C (3.8–7.5 cm), S (7.5–15 cm), L (15–30 cm), and P (77–136 cm)
in the increasing order of their wavelengths. Most commonly used wavelength bands
for agriculture applications are X, C, and L bands. The microwave signal interacts
with the objects based on its geometric dimension/orientation and dielectric proper-
ties. L band being higher in wavelength (15–30 cm) interacts less with the crop
canopy elements and can penetration more to get the under-canopy features, whereas
C and X bands interact more with the crop leaves/branches and provide information
related to the crop canopy. The shorter radar wavelengths will tend to interact more

Fig. 5.2 Wavelength and frequency
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with the canopy elements and saturate early by the upper part of the canopy. As
wavelength increases, the signal goes deeper into the crop canopy, and the saturation
effect is less comparatively. Thus, the X band with around 3 cm wavelength will see
the upper part of dense crops, whereas L band with 15–30 cm wavelength could
provide information on the soil or bottom portion of the crop. C band was found to
be suitable for crops with low biomass, whereas L band performs better for high
biomass crops (McNairn et al. 2009). The interaction of X, C, and L bands with crop
canopy varies with the type of crop, canopy architecture, canopy moisture, biomass,
and soil background. Hence, a suitable microwave band needs to be selected based
on the purpose and type of applications.

5.3.2 Polarization

An EM wave (satellite signal) consists of a coupled oscillating electric and magnetic
field which are orthogonal to each other and also to the direction of travel (Fig. 5.3).
Conventionally, polarization refers to the orientation of the electric field vector of the
EM wave. When the electric field oscillates in a single direction, it is called linearly
polarized. In the case of circular or elliptical polarization, the electric field rotates at a
constant rate in a plane as it travels. Based on the rotational direction of the electrical
field to the direction of travel, it is further classified as right or left circular
polarization. In the field of RS, horizontal and/or vertical polarization terms are
widely used. If the electric field vector of the EM wave is parallel to the object plane
or the earth, it is called horizontal polarization. Likewise, in the case of vertical
polarization, the electric field vector is perpendicular to the earth or object plane.

Fig. 5.3 Orientation of
magnetic and electric field
vector of an EM wave. The
polarization of the wave is
the same as the electric field,
and in this case, it is
horizontal
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Most of the SAR sensors are designed to transmit microwave signals either in
horizontally (H) or vertically polarized (V). Similarly, the antenna receives the signal
either in horizontally or vertically polarized backscattered energy. Some radar can
transmit H and V simultaneously and receive both simultaneously. These two
polarization states of the microwave signal are conventionally designated by the
letter “H” for horizontal and “V”, for vertical. Thus, we can have four combinations
of the polarizations: HH (horizontal transmit and receive), HV (horizontal transmit
and vertical receive), VH (vertical transmit and horizontal receive), and VV (vertical
transmit and receive). The first letter denotes the transmitted polarization and a
second letter for received polarization. HH and VV are termed as co-polarizations
or like polarizations. HV (or VH) is the depolarization component and found to be
positively correlated with the vegetation volume. Dual polarization SAR systems
can provide the images in two polarization combinations (HH + HV or VV + VH).
Some SAR sensors are capable of acquiring the data in all linear polarization
combinations (HH + HV + VV + VH) and termed as a quad-pol system. Polarimetric
SAR systems are capable of acquiring the data in all four polarizations by conserving
a coherent phase between transmitted and received polarizations. Different polari-
zation components should be selected based on the type of crop, its growth stage,
canopy architecture, spacing, and soil/water background. For example, HH polari-
zation was found to have more penetration compared to VV polarization for small
grain cereal crops like rice and wheat with vertically oriented canopy. The VV
polarization gets attenuated with vertically oriented stems/leaves, whereas HH can
go deeper into the canopy and provide better information thereof (McNairn and
Brisco 2004). SAR sensors with single-polarization configuration (HH or VV)
provide one-dimensional datasets and hence require multi-date coverage for mean-
ingful information on crop type. In contrast, multi-polarization single date data can
provide much better information on the crop-type due to the increased dimension-
ality (McNairn and Brisco 2004). Some SAR sensors can also transmit circular
polarization and receive circular polarization (LL, left circular transmit and left
circular receive; RR, right circular transmit and right circular receive), whereas
some can transmit in circular polarization and receive in linear (RH, right circular
transmit and horizontal receive; RV, right circular transmit and vertical receive)
(Misra et al. 2013). Circular polarization is mostly required for geological and
interplanetary applications. However, recent research shows its potential to assess
land resources.

5.3.3 Incidence Angle

The incident angle (θ) refers to the angle between the incident radar beam and the
direction perpendicular to the ground surface (Fig. 5.4). It is further modified as a
local incident angle (θi) considering the surface normal to the local slope. Incidence
angle at which the SAR image is acquired also influences the interaction of the radar
energy. In crops, low (or steep) incidence angles can penetrate the crop canopy. The

208 P. Srikanth et al.



radar waves travel more vertically at steeper incidence angles, so the scattering of
RADAR wave at these incidence angles is less influenced crop canopy and can
provide information about the soil properties. The radar waves travel longer paths
and interact more through the vegetation canopy at wide (or high) incident angles
(Valcarce-Diñeiro et al. 2018). Hence, the wide incidence angle has less penetration
into the crop canopy, especially for crops with large biomass. This resulted in the
saturation of the radar backscatter of a wide incident angle at a lower leaf area index
(LAI) (Jiao et al. 2011). The horizontally polarized microwaves can penetrate the
canopy to a greater extent as compared to vertically polarized waves at steep angles,
and hence, the more information about the underlying soil can be obtained from HH
polarization (McNairn and Brisco 2004). However, it was reported by some
researchers (Lopez-Sanchez et al. 2011; Ramana et al. 2017) that RADAR return
from crop canopy does not vary significantly with change in incidence angle during
the early vegetative (low biomass and LAI) and late vegetative stages (high biomass
and LAI).

5.3.4 Target Parameters

Scattering of microwave radiation from a natural land surface depends on the
geometrical properties of the surface element (soil surface roughness height and
correlation length, vegetation canopy shape, dimensions, the orientation of stems,
leaves, ears, etc.) and its electrical properties or dielectric constant mainly govern by
the moisture content (Weeks et al. 1996; Della Vecchia et al. 2006). The variations of
the backscattering coefficient from different (roughness) surfaces with the change in
the incident angle are presented in Fig. 5.5. The relatively smooth or slightly rough
surface cause near specular scattering (directional). Hence, the backscattering

Fig. 5.4 Reference geometry showing incident and local incident angle
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coefficient is found to be high at a steep incidence angle due to specular (directional)
scattering towards the antenna. As the incidence angle increases, the scattered signal
bounces away from the antenna, and the backscattering coefficient sharply declines.
In contrast, rough surfaces cause diffused scattering (random directions). The back-
scattering coefficient at steep incidence angles is found to be low for a rough surface
in comparison to a smoother one. But a decrease in the backscattering coefficient
with the increase in the incident angle is found to be less in rough surface than that of
a smoother one. It is apt to note here that the backscattering ratio of high and low
incident angles can act as a good proxy for surface roughness. The crop canopy
above the ground further competes with the interactions. In simple terms, the crop
canopy adds to the surface roughness by increasing the number of scattering
elements in terms of stems, leaves, branches, etc. and enhances the volume scatter-
ing. Initially, the backscatter is found to be low when the crop is at the germination or
early vegetative stage. It is observed to be increased gradually with the increase in
crop biomass.

The backscatter also influenced by the dielectric properties of the target object. In
RADAR RS, the dielectric property is mainly governed by the soil and vegetation
water content. Free water causes specular scattering, hence producing a low return
for a side-looking antenna. Bound water (as in the case of soil moisture and plant
water content) causes more RADAR return. Hence, dry soil looks darker in the SAR
image, and moist soil will produce a brighter appearance. Above-ground crop
canopy also adds to the equivalent water thickness of the object plane and causes
more backscattering.

Fig. 5.5 Backscatter
variations with surface
roughness and incidence
angle. (Adopted, Ulaby et al.
1982)
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5.4 Crop Type Identification and Mapping

Geospatial map of a crop showing its spatial distribution is one of the basic and
essential requirements for many applications such as drought, in-season crop con-
dition, crop parameter retrieval, crop damage due to flood-pest-disease, and
preharvest production estimate (Chang-an et al. 2019). RS technology has been
used extensively, for decades, in inventorying and mapping of some of the major
food grain crops of the world. Rice is one of the main staple food crops particularly
in South East Asia (He et al. 2018, ricepedia.org and worldatlas.com; Nelson et al.
2014). Monitoring the rice and its seasonal fluctuations is a critical task because
more than half of the world’s population consumes rice daily. Timely and reliable
information on the area under the rice crop and its preharvest production are of
immense use in many of these countries (Setiyono et al. 2017). Monsoon season is
the main rice-growing season in South East Asia, though rice is also grown in the dry
season with assured irrigation conditions. Due to some agronomic advantages, rice
saplings are transplanted in the puddled field under flooded conditions. It is further
grown under standing water throughout the season except during maturity. This
unique practice of rice cultivation provides the basis for monitoring rice crops using
SAR data during the monsoon period. There is substantial literature on the use of
SAR data for rice crop mapping with well-established procedures over different
regions of the world (Le Toan et al. 1997; Kurosu et al. 1997; Chakraborty and
Panigrahy 2000; Choudhury and Chakraborty 2006; Bouvet et al. 2009; Parihar et al.
2012; Nelson et al. 2014; Setiyono et al. 2017; Nguyen and Wagner 2017; Minh
et al. 2019; Hassan et al. 2019). The SAR backscattering coefficient (also termed as
sigma nought) is found to be very low due to specular reflection by the standing
water in the rice fields during the puddling (a tillage practice) or transplantation stage
of the crop. The backscatter gradually increases with an increase in the number of
tillers and stems and attains its peak during the maximum vegetative growth stage of
the crop. It remains in plateau during the reproductive phase of the crop as there is no
further increase in above-ground biomass, and the crop goes through flowering,
grain formation, grain filling, grain hardening stages, etc. The backscatter marginally
decreases as the crop starts senescing and reaches its harvesting stage. The typical
temporal backscattering coefficients of HH polarized C-band SAR data over rice
crop are presented in Figs. 5.6 and 5.7. This sudden dip of backscatter return due to
puddling and transplanting of the rice crop is unique, unlike other crops. Hence, it
forms the basis for the identification of a pixel as rice or non-rice based on the
continuous monitoring of the pixel using a multi-temporal backscatter signature. The
approach not only classifies the rice crop but also could provide the probable date of
transplantation.

The rice cropped area thus generated can further be used for different value
additions. One of such examples is to assess flood-affected rice area due to cyclonic
heavy rainfall. Microwave scattering at the transplanting stage is dominated by
specular reflection which results in low returned HH and very low HV signal
(Le Toan et al. 1997). Rice backscatter at the heading stage is much higher than
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Fig. 5.6 Temporal backscatter profile of rice crop in HH-polarization C-band RISAT-1 SAR data:
Dip in the backscatter represents the transplantation stage of the crop ((a) July transplanted rice
crop, (b) August transplanted rice crop)

Fig. 5.7 Manifestation of rice crop in HH-polarization RISAT-1 SAR images at different time
frame: Yellow rectangular box indicates rice crop transplanted in the first week of July, green oval
indicates rice crop transplanted in the first week of August, and blue square box indicates the rice
crop transplanted in the last week of August; the bottom right image is the RGB combination of
07 Jul, 01 Aug and 26 Aug images
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that at the transplantation stage due to double-bounce scattering between rice and
ground surface and volume scattering from leaves and stems (Zhang et al. 2011).
Different classification approaches such as decision rule-based classification, super-
vised classification, and machine learning techniques (random forest, support vector
machine) are used by many researchers for rice crop area mapping based on temporal
backscatter signatures of SAR data (Chakraborty et al. 1997; Nelson et al. 2014;
Onojeghuo et al. 2018; Hassan et al. 2019; Minh et al. 2019; Phung et al. 2020). The
separability of the rice crop and other land covers can be enhanced using amplitude
ratio and arithmetic product of HH and HV dual-polarized SAR images (Zhang et al.
2011). Further, Mansaray et al. (2017) reported higher overall classification accura-
cies by combining the multi-date backscatter coefficients generated from Sentinel-
1A SAR data and optical indices derived from the LANDSAT data. This study also
concluded that temporal backscatter from VH polarization is the optimal one for rice
crop mapping due to its consistent increase with the growth of the crop.

MRS has been successfully used for mapping of flooded rice crop in many
countries. Apart from rice crops, limited success has also been made for other
crops like wheat, corn, and soybeans. Wheat crop leaf orientation is erectophyle in
nature meaning its canopy elements are near-vertically oriented. As a result, HH
polarized backscatter is found to be more than VV polarized (Mattia et al. 2003;
Brown et al. 2003). This differential response of HH and VV polarized backscatter is
further enhanced with the increase in incidence angle from 20� to 40� (Brown et al.
2003). Hence, a simple rule-based approach using the HH/VV backscatter ratio is
found to be useful for discriminating the wheat from non-wheat classes (Satalino
et al. 2009). The classification accuracy of the wheat crop can further be improved by
combining SAR coherence and texture information along with the linear dual
(VV and VH) polarizations (Zhou et al. 2017). Hence, multi-temporal C-band
SAR images with different polarization combinations can reliably map winter
wheat operationally (Skakun et al. 2015). However, the best results for wheat crop
classification can be obtained by combining optical and SAR data (Skakun et al.
2015; Zhou et al. 2017). In addition to the mapping of the wheat crop, its key
phenological parameters, namely, germination, heading, and soft dough stage, also
can be mapped with reasonable accuracies using the time series VV, VH dual-
polarization SAR data (Nasrallah et al. 2019). Similarly, SAR data can also be
used for crops with spreading types of canopies (planophyle) such as corn or
maize. The C-band SAR backscatter is found to increase sharply in the initial growth
stages of maize crop as it grows very fast in terms of crop height, leaf area, and
attains canopy closure. Further, the rate of increase of backscatter slows down as
there is no addition of canopy elements rather an accumulation of biomass of
existing canopy structures (Wiseman et al. 2014). This typical behaviour of SAR
backscatter can be used to classify maize (corn) crops with an accuracy of more than
90% (Skakun et al. 2015).
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5.4.1 Mapping of Rice Cropped Area and Delineating
the Date of Transplantation from the Temporal
Sentinel-1A SAR Data: A Case Study

5.4.1.1 Study Area

The study was conducted in parts of Bhadrak district (20.99� N, 86.60�E), in the
Odisha state of India.

5.4.1.2 Data Used

Multi-date Sentinel-1A VV-polarization data was used to delineate the date of
transplantation and mapping of rice cropped area. It is available at 10 m pixel
spacing with 12-day temporal resolution. A total 18 number of scenes (available
from 7 June to 23 September 2017) were used in the present study.

5.4.1.3 Method of Approach

The schematic diagram of the methodology followed to delineate the rice cropped
area is presented in Fig. 5.8. The Sentinel-1A data was first radiometrically
corrected, and speckle was suppressed using a suitable filter. The digital number
(DN) values were converted into a backscattering coefficient and corrected for local
terrain undulation using the digital elevation model. This terrain corrected backscat-
ter images were layer stacked, and the statistics of backscattering coefficient over the
rice training sites (using field data) were extracted. Temporal backscatter profiles of
the selected training sites of rice crops are plotted and presented in Fig. 5.9. The
decision rules were formulated based on the temporal backscatter response to
classify rice crops. These rule sets were also used to delineate the rice cropped
pixels. Further, the date of transplantation of rice crop has been retrieved
and mapped.

5.4.1.4 Salient Findings

The temporal backscatter profiles as presented in Fig. 5.9 showed the typical dip
(�21 to �16 dB) of the backscattering coefficient over the rice area of Bhadrak
district of Odisha during the puddling and transplanting activities as discussed
earlier. But there were variations in the intensity and position of the dips. Based
on the position and extent of dip, various types of profiles were identified over the
rice area in the study site. These different types of profiles represent different dates of
rice transplantation and could provide insight into the spatial patterns of staggered
sowing of rice crops. The total rice cropped area in the study site found to be
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Fig. 5.8 Schematic diagram of the methodology followed to delineate rice crops using Sentinel-1A
SAR data
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114 thousand ha during kharif (monsoon) in 2017. The RGB of the temporal SAR
and the classified rice map are presented in Fig. 5.10a and 5.10b, respectively. There
are at least six different transplantation dates that were identified from June to
September of 2017 within the total rice area. The staggering in the sowing/trans-
plantation of the rice crop was also mapped and spatially depicted in Fig. 5.11. The
area under each transplantation date was assessed and presented in Fig. 5.11.

Fig. 5.9 Temporal backscatter profiles of rice crop in Bhadrak district

216 P. Srikanth et al.



The results of the study show that the rice cropped area could be successfully
mapped at 10 m spatial resolution using Sentinel-1A multi-date data. The date of
transplantation of rice crop also could be mapped with 12 days interval at 10 m pixel
resolution. The derived information is one of the important inputs to the crop
simulation models for the rice crop yield estimation.

5.4.2 Assessment of Flood-Affected Rice Cropped Area by
Integrating Synthetic Aperture Radar and Optical Data:
A Case Study

5.4.2.1 Study Area

A cyclone referred to as “Titli” caused havoc rainfall and damage on the east coast of
India during the second week of October 2018. This study aims to assess the affected
rice cropped area in the Srikakulam district (18.53� N; 83.98�E) of Andhra Pradesh
state of India.

5.4.2.2 Data Used

Multi-temporal Sentinel-1 SAR and maximum composites of normalized difference
vegetation index (NDVI) of Sentinel-2 multispectral data corresponding to pre- and
post-cyclone were used in the study.

Fig. 5.10 (a) RGB of the Sentinel-1A SAR data, (b) classified map of rice crop
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5.4.2.3 Method of Approach

The in-season rice cropped areas were derived from the temporal SAR data follow-
ing the methodology presented in Fig. 5.8. A decision rule-based classification
approach of the temporal backscatter was employed to delineate the rice cropped
area. Flood inundation map generated by the Disaster Management Support Group
of National Remote Sensing Centre was also used in this study. This flood layer was
generated using multiple near real-time and pre- and post-event optical and SAR
satellite data. It mainly accounts for the flood inundation under fully submerged
conditions. But from satellite images, it was observed that there were some areas

Fig. 5.11 Dates of transplantation of rice crop as mapped from the temporal Sentinel-1 data
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adjacent to the flood layer which were partially submerged. To account for this, a
500 m buffer around the flood layer was generated and used in this study. Pre-event
(1 September to 13 October 2018) and post-event (13 October to 31 October 2018),
maximum value composite of NDVI (NDVImax) images of the rice cropped area
were derived from Sentinel 2 data. Flood inundation layer and buffer layer were
intersected with the rice crop layer to extract the rice crop area under inundation.
Further, NDVI deviation classes were computed and classified the total rice crop
area under inundation into different severity classes based on the reduction in the
NDVI from pre- to post-event.

5.4.2.4 Salient Findings

NDVImax corresponding to the pre- and post-cyclonic event are presented in
Fig. 5.12. The result shows that there is a significant reduction in the NDVI
in post-cyclonic event. To find out the rice cropped area affected due to Titli cyclone,
the flood layer has been intersected with the rice cropped area. The rice cropped area
under the flood layer was found to be 18,610 ha. The deviation of the NDVI of rice
crop from pre-cyclone to post-cyclone was computed and classified into four classes
(very severe, severe, moderate, and slight) based on the percent reduction in the
NDVI. In addition to the flood layer, some rice areas surrounding the flood layer got

Fig. 5.12 NDVI maximum composite images corresponding to pre- and post-Titli cyclone
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affected by the cyclone which showed a higher reduction in NDVI values. To
account for the affected rice cropped area surrounding the flooded layer, a 500 m
buffer area around the flood area was generated, and the total rice cropped area
affected due to cyclone in and around the flooded regions was computed (Fig. 5.13).
The severity class wise statistics are provided in Table 5.2. The results of the study
show that the flood-affected rice cropped area could be successfully mapped by the
synergistic use of SAR and optical data. The derived information is one of the
important inputs to the farmers and government to settle the insurance claim.

5.5 Retrieval of Crop Parameters Using Microwave Data

Crop biophysical parameters such as LAI, crop height, and biomass are descriptors
of plant growth and can serve as vital inputs to yield forecasting models (Betbeder
et al. 2016). LAI is defined as a one-sided leaf area per unit ground area. LAI is an

Fig. 5.13 (a) Flood inundation layer and additional flood area under 500 m buffer. (b) Affected rice
cropped area under flood layer. (c) Additional affected rice cropped area surrounding the flood layer
under 500 m buffer. (d) Zoomed view of the NDVI reduction classes of rice crop in and around
flood inundated area
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important crop biophysical parameter as it determines the fractional absorbed pho-
tosynthetically active radiation (fAPAR) and the intern controls the photosynthetic
processes (Jonckheere et al. 2004). Similarly, crop biomass is related to carbon
accumulated over the crop growing season. Crop biophysical parameters are pri-
marily monitored through two approaches: field measurements by surveyors and
retrievals through appropriate models using remotely sensed data. The field mea-
surements are time-consuming, expensive, and difficult to upscale. Hence, it is not
suitable for regional-, national-, and global-level applications (Weiss et al. 2004;
Boote et al. 1996). RS-based approach offers several advantages for estimating the
crop growth parameters at regional, national, and global scales. Several studies have
demonstrated the estimation of crop biophysical parameters using the multispectral
and hyperspectral data in VNIR region of the EM spectrum (Broge and Leblanc
2001; Fang and Liang 2005; Pandya et al. 2006; Wang et al. 2007; Wang et al. 2011;
Richter et al. 2010; Dong et al. 2012; Thorp et al. 2012; Shelestov et al. 2017; Sun
et al. 2018; Xie et al. 2018). However, such measurements are sometimes affected by
the cloudy weather conditions, thus leading to the uncertainty in the parameter
estimation. In this context, SAR data has great potential for assessing these param-
eters due to its all-weather observation capability.

Many scattering models have been developed, including empirical, semi-
empirical, and physical models to relate SAR backscatter to crop parameters
(Clevers and van Leeuwen 1996; Ferrazzoli et al. 1999; McNairn et al. 2002;
Chakraborty et al. 2005; Dabrowska-Zielinska et al. 2007; Chen et al. 2007; Inoue
et al. 2014; Zhang et al. 2014). Among these, the empirical models are the simplest
ones to estimate the crop parameters; however, these empirical models are site-
specific (Graham and Harris 2003; Shelestov et al. 2017). The physical model
generally describes the interaction between radar signals vs. targets and mainly
consists of complicated equations. However, the practical implementation of such
models is limited as these models require a lot of input parameters resulting in
uncertainty (Dong et al. 2012; Inoue et al. 2014). Considering the physical back-
ground and the simplicity, semi-empirical models can be a good compromise
between the empirical and physical models.

Table 5.2 Affected rice cropped area due to flood inundation during Titli cyclone

Class

Affected area
under flood
layer (ha)

Additional affected area
around the flood layer (ha)

Total affected
area (ha)

< �40% (very severe) 4089 955 5044

�30 to �40% (severe) 3520 1070 4590

�20 to �30% (moderate) 3492 2244 5736

�10 to �20% (slight) 3437 5429 8866

Total 14,538 9698 24,236
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5.5.1 Crop LAI Estimation Using Microwave Data

LAI is an excellent indicator of crop health and development and hence used as an
input parameter for several crop growth and yield forecasting models (Kross et al.
2015; Pandya et al. 2006). The spatiotemporal information of LAI is often used in
agricultural monitoring, ecological modelling, climate change studies and global
circulation models to compute energy and water fluxes (Chase et al. 1996). Many
researchers studied the sensitivity of SAR backscatter to crop LAI using empirical
and semi-empirical methods. Empirical methods use statistical regression between
the SAR backscatter and LAI. Satalino et al. (2006) reported that the co-polarization
ratio of HH and VV at an incidence angle of 40� correlated well with LAI of wheat
crop. Lin et al. (2009) reported that the cross-polarization ratio of HV and HH is
having the highest correlation with the LAI of sugarcane crops. Significant correla-
tions were observed for C-band linear (HH/HV/VV/VH) and circular (LL/RR)
backscatter coefficients at 25� incidence angle for both corn and soybeans, while
the correlations were lower at 39� incident angle as penetration of the wide angles
into the crop canopy is limited for large-biomass crops (Jiao et al. 2011). As
discussed at the beginning of this section, empirical models are site-specific and
have limited scope for expanding it to a larger area. Recently, the water cloud model
(WCM) has been the most popular and widely used semi-empirical model for
estimating the LAI using SAR data. The crop parameter retrieval using WCM is
carried out in two steps: the first step is the calibration of the model, and the second
one is the inversion of the parameters. The WCM was initially proposed by Attema
and Ulaby (1978), and the vegetation cover/layer was assumed as a homogeneous
anisotropic scatterer to ignore the multiple scattering effects between vegetation and
soil (Ulaby et al. 1984). Later, many researchers have modified this model to make it
more simplified. Kweon and Oh (2014) modified the WCM by incorporating leaf
angle distribution of canopy to accurately estimate the backscattering coefficients.
Various scattering layers of the crop at different phenological stages were incorpo-
rated by Yang et al. (2016) to estimate the rice biophysical parameters using
modified WCM. Tao et al. (2016) introduced the modified version of WCM by
incorporating the vegetation fraction and integral equation model to retrieve the LAI
based on C-band SAR and optical data. C-band polarimetric SAR data has been used
by Beriaux et al. (2015) for retrieving LAI in maize fields using WCM and Bayesian
fusion technique. It is observed that cross-polarization is sensitive for high LAI
values and VV polarization is suitable for LAI <2. Hosseini et al. (2015) retrieved
LAI of corn and soybean crops with reasonable accuracy using C- and L-band SAR
data. A new LAI estimation approach was developed by them through the coupling
of WCM and soil moisture model by Ulaby et al. (1978) (soil moisture model for
bare soil). Yang et al. (2016) proposed a modified WCM (MWCM) to estimate the
rice crop LAI and dry/wet biomass.
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5.5.2 Crop Biomass Estimation Using Microwave Data

Crop biomass represents the carbon accumulation by the crop over some time and
has a direct relationship with agricultural crop yield/production. Previous research
showed that the SAR backscattering coefficient is sensitive to crop biomass and
hence affected by the shape geometry and dimensions of plant constituents such as
leaves, branches, and stems (Ulaby et al. 1984; Baronti et al. 1995; Ferrazzoli et al.
1997). Therefore, crops with the same biomass may have different values of the
backscattering coefficient. L band is the suitable wavelength (frequency) band for
studying the contribution from crops characterized by relatively broad leaves, while
the use of C band is suitable for investigating narrow-leaf crops (Macelloni et al.
2001). Chen et al. (2007) found a significant empirical relationship between the
backscattering coefficients ofENVISATASAR alternating polarization HH/HV data
and the rice biomass. Mattia et al. (2003) reported that at a wide incidence angle
(40�) C-band like-polarization ratio (HH/VV) was closely correlated to wheat
biomass, whereas, at steep angles (23�), the ratio was positively related to wheat
biomass up to the heading stage and dropped by 2 dB thereafter. Wiseman et al.
(2014) demonstrated that dry biomass of corn, canola, and soybeans has significant
correlations with Radarsat-2 C-band SAR backscatter and polarimetric parameters.
Dry biomass of corn and canola was found to have strong correlations with SAR
entropy. In the case of soybeans crop, the HV was found to be most sensitive to
biomass. Gao et al. (2013) used both optical and radar data (Huan Jing-1 and RA
DARSAT-2, respectively) for estimating structural parameters of maize, including
LAI, height, and biomass. Hosseini et al. (2019) successfully used optical and SAR
data to model corn biomass (both wet and dry) with reasonable accuracy in agricul-
tural lands in Canada. Recently, Reisi-Gahrouei et al. (2019) developed multiple
linear regression and artificial neural network-based models to estimate the biomass
of different crops using time series of L-band polarimetric data from Uninhabited
Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The results indicated that an
artificial neural network provides more accurate biomass estimates compared to
multiple linear regressions. Mandal et al. (2019) have used the multi-target random
forest regression method to estimate plant area index and wet biomass of wheat crop.

5.6 Conclusions

SAR datasets have been widely used to map some of the word’s important crops
such as rice, wheat, and corn. Each crop, because of its package of practices and
canopy architecture, is sensitive to different radar frequencies (X or C or L),
polarization, and incidence angle. C-band SAR data was found to be suitable for
the low biomass crops, whereas longer wavelengths (L band) were found to be
suitable for assessing the large biomass crops. Multi-temporal, multi-frequency, and
multi-polarized SAR datasets were found to provide more information on crops
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compared to single-dimensional data. However, single-date polarimetric data
acquired in suitable bio-window of the crop may give comparable crop classification
accuracies as that of optical data. SAR and optical data complement each other, and
the synergistic use of both data will result in better crop classification. SAR data was
also found to be suitable for assessing the crop biophysical parameters such as LAI
and biomass. Several researchers have established a site-specific empirical relation-
ship between the SAR backscatter and crop biophysical parameters. Semi-empirical
models based on physical and experimental data were found to be easier to optimize
and hence were widely used by many researchers. WCM is one of the most widely
used semi-empirical models, because of its simplicity in parameterization and
inversion. LAI and biomass were estimated by many researchers using various
modified versions of this model with relatively low uncertainty. Recent studies
used machine learning approaches for the parameterization of these models. SAR
data could provide assured and reasonably accurate estimation of crop parameters as
it is less affected by adverse weather conditions; hence, it can be used in crop
simulation models for better yield forecasts in the future. SAR data is an essential
requirement during the natural disasters like cyclones, floods, and typhoons to map
the inundation extent as well as to assess the impact of such events on the crops that
are affected during this period.
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Abstract The ever-increasing global population demands a steep increase in food
grain production. To cope up with this demand and maintain a steady supply, proper
crop monitoring and production forecasting systems are some of the major require-
ments. Advance estimation of crop yield is useful for different stakeholders to plan
standard agronomical practices, procurement, determine storage availability, trans-
portation, price fixation, and marketing of agricultural products. This estimation can
be done by statistical analysis using traditional ground-based study or by using
remotely sensed data. The developments in the field of satellite and sensor technol-
ogies in the last few decades have established the second method as the most trusted
and efficient tool to forecast crop production. Its time and cost-effectiveness with
precise estimation capacity ascertain its competence. This chapter presents an
exhaustive discussion on the role of these methods (particularly satellite remote
sensing) in crop yield estimation. Analysis and transformation of space data to
process different vegetation indices and their use in crop production estimation
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have been detailed. These vegetation indices are generally used as an explanatory
variable in different traditional and advanced statistical models. Further, recent
advancements in modeling techniques have introduced applications like machine
learning, artificial intelligence, pattern recognition, mobile computing, etc., and thus
opened a new dimension in production forecasting processes. This chapter also tried
to focus on these rapidly evolving sectors and their possible contribution to the crop
yield estimation.

Keywords Machine learning · Space data · Statistical modelling · Vegetation
indices · Yield estimation
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CI-TARS Crop Identification Technology Assessment for Remote Sensing
CropSyst Cropping Systems Simulation Model
DSSAT Decision Support System for Agrotechnology Transfer
EMR Electromagnetic Radiation
ESA European Space Agency
EVI Enhanced Vegetation Index
FASAL Forecasting Agricultural Output Using Space, Agrometeorology

and Land-Based Observations
GCES General Crop Estimation Surveys
GVI Green Vegetation Index
IRS Indian Remote Sensing
ISRO Indian Space Research Organisation
LACIE Large Area Crop Inventory Experiment
LISS Linear Imaging Self-Scanning
MODIS Moderate-Resolution Imaging Spectroradiometer
MSAVI Modified Soil-Adjusted Vegetative Index
MSG-SEVIRI Meteosat Second Generation-Spinning Enhanced Visible and

Infrared Imager
NDVI Normalized Difference Vegetation Index
NIR Near-Infrared
NOAA National Oceanic and Atmospheric Administration
NRSC National Remote Sensing Centre
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OSAVI Optimized Soil-Adjusted Vegetation Index
RDVI Renormalized Difference Vegetation Index
RS Remote Sensing
SAR Synthetic Aperture Radar
SAVI Soil-Adjusted Vegetation Index
SIMRIW Simulation Model for Rice–Weather Relations
SPOT Système Pour l’Observation de la Terre
SUFALAM Space Technology Utilization for Food Security, Agricultural

Assessment and Monitoring
SVM Support Vector Machines
VNIR Visible and Near-Infrared

6.1 Introduction

Maximizing crop yield to meet the demand of the increasing population is a major
challenge for scientists and policymakers of twenty-first century. To feed the future
world population, an estimated overall rise of 70% food production between 2005 to
2050 is required (Alexandratos and Bruinsma 2012). However, we are far behind to
achieve targeted yield potential even after maintaining today’s best management
practices. To match this demand, maybe a new green revolution is required. Along
with sustainable advanced technologies and integrated management practices, math-
ematical modeling for precise crop production estimation will be one of the major
pillars for this.

The initial crop simulation models were developed for direct yield estimation
only. Those models were made to simulate an idealized planting condition with no
sensitivity towards abiotic stresses and long-term predictive ability. Besides, field
experiments and trials were primarily concentrated on the goal of increasing pro-
duction by eliminating yield-reducing factors. With passage of time, a comprehen-
sive monitoring system was developed at the regional and national levels. The
United States and European countries started to generate forecasting data for regions
of interest. This led the foundation of several country-based empirical models trained
with in situ yield data.

The use of satellite remote sensing (RS) in agriculture and especially for crop
production estimation is a comparatively newer approach (Deb and Chakraborty
2018). RS is capable of providing spatially explicit and efficient crop yield predic-
tion as it can capture information at wide ranges of spatial and temporal scales with
wall-to-wall coverage. Any area of interest can be revisited frequently with a backup
of huge archived historical data. In countries like India, where the economy largely
depends on agriculture, an early forecast of agricultural production is of utmost
importance for making a national budget, contingency planning, and anticipating the
market demands. Satellite RS has been proved worthy in this context in the last few
decades and increasingly getting popular as an evolving technology by providing
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standardized, cheaper, and faster crop yield estimation (Bauman 1992). The preci-
sion of crop production modeling using space or air data get sophisticated with the
advancement of satellite or aerial sensors and ways of image processing. The
following sections have detailed the continuous line of developments in this context.

6.2 Traditional Ways for Crop Yield Estimation: Global
and Indian Perspective

Over the years, several global approaches were tested to select suitable crop yield
forecasting systems. The initiative was started in western countries but later
expended worldwide. It is difficult to draw a chronology of the estimation techniques
due to their interdependency and interconnectivity. However, field survey-based
estimation was the first one to start. Initially, previous year’s yield data along with
detailed field surveys and farmer-level interviews were used to forecast yield of next
year. Crop reporters’ opinions and meteorological phenomena were the two main
methods for yield forecasting up to 1929 throughout the world (Irwin 1938; Meena
et al. 2018).

In India, using statistical tools for crop yield estimation is not new. Even ancient
books like Kautilya’s Arthashastra mentioned different statistical processes for crop
yield estimation. As far as the use of modern crop statistics is concerned, it was first
used in 1884 in India for estimation and forecasting of wheat yield (Dadhwal et al.
2002). In 1940, Professor P. C. Mahalanobis of Indian Statistical Institute and P. V
Sukhatme of Indian Council of Agricultural Research first initialized Crop Cutting
Experiments (CCE) in India to estimate crop yield. The method was very straight-
forward and used the dry weight of the production. Later, to carry out General Crop
Estimation Surveys (GCES), Stratified Multistage Random Sampling design was
used. Professor Mahalanobis also rejuvenated the large-scale sample survey tech-
nique (Mahalanobis 1952). The advantage of a sample survey is that it deals with
only a part of a huge number of variables with a smaller scale of operation. Under the
guidance of Professor Mahalanobis, National Sample Survey Office (NSSO) was
established in 1970 from the modification of the National Sample Survey Unit of the
Indian Statistical Institute (ISI). The NSSO started to analyze, interpret, and compile
big data with the aim of yield forecasting. Since 1999, it started acting under the
Ministry of Statistics and Programme Implementation.

From the initial day, the Ministry of Agriculture used to prepare the crop
production estimation based on land revenue systems for different listed crops. Till
today, the yield forecast for Kharif crop is usually prepared during July–August
every year (depending on the commencement of southwest monsoon) and the result
is reviewed during December–January. For Rabi crop, the advance estimate is given
during December–January, and the result is reviewed during April after information
for the respective crop production is available (Singh 2012). This forecasting
technique is not foolproof and suffers from several shortcomings like delay in
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reporting, several non-sampling errors, etc. Even noncompletion of enumeration was
reported up to the tune of 20% for sample villages from 1982–83 to 1984–85. These
traditional methods involve high-end statistical techniques with complex stratified
multistage sampling designs and extensive field data surveys.

The traditional approach for crop yield estimation is generally precise for an area
as large as a district. However, when the need is to estimate crop statistics with
accuracy for a comparatively smaller area like for a block or tehsil, the number of
crop cutting experiments are needed to be much higher, making this method a very
costly affair. On the other hand, for a very large spatial scale like a state or country,
massive human resource involvement is required with huge cost and time. In this
regard, RS and modeling-based cost production estimation can be a very effective
alternative tool. This less labor-intensive and highly precise technique has advan-
tages over traditional crop yield estimation methods in terms of its geographical
coverage as well as spatial and temporal resolution (Satir and Berberoglu 2016).

6.3 Crop Yield Modeling and Use of Remotely Sensed Data

Application of RS in the civilian domain was first started in the United States around
1960. Since its inception, one of its main application focuses was in agriculture and
especially for crop area estimation. After the launch of first Landsat with Multispec-
tral Scanner (sensor) in 1972, its digitally processed output images came into use for
crop yield forecasting. Projects like Crop Identification Technology Assessment for
Remote Sensing (CI-TARS), Large Area Crop Inventory Experiment (LACIE), and
Agriculture and Resources Inventory Surveys through Aerospace Remote Sensing
(AgRISTARS) were started. The CI-TARS program was the first full-phase dem-
onstration to show the capabilities of RS to monitor crop (corn and soybean)
inventory in the United States. The LACIE and AgRISTARSprograms were initiated
for implementing Landsat-based agricultural applications and were financially
supported by multiple agencies. The National Oceanic and Atmospheric Adminis-
tration (NOAA) started to perform large-scale crop monitoring as well as yield
forecasting since 1980 using Advanced Very High Resolution Radiometer
(AVHRR) (Bolton and Friedl 2013; Roy et al. 2014). However, all of these or any
other remotely sensed data-based programs for yield estimation need some kind of
mathematical modeling. The following sections detailed the different approaches
for that.

6.3.1 Use of Vegetation Indices as Input Variable for Model

The response of vegetation cover to different spectral bands varies, depending on the
change in physical and biological properties of the vegetation canopies of different
crops (Datta and Deb 2012). If there are gross differences in biomass canopies, the
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reflectance captured by multispectral scanners (mounted in satellite or airplane) can
distinguish them. However, the vegetation canopy reflectance usually gets
influenced by background brightness like reflectance from soil or other components
exposed within canopy covers. In general, vegetation pigments can be identified by
the optical region of the electromagnetic radiation (EMR) while vegetation geometry
and dielectric property (of vegetation biomass water) can be recognized by the
microwave region of EMR (Dadhwal et al. 2002). Several studies have established
that reflectance from blue, green, and red bands has a high correlation with green
vegetation health and thus RS using these EMR bands remains highly successful for
estimating crop yield. In addition to these visible bands, the reflectance of healthy
vegetation in near-infrared (NIR) region is very high. The strong absorption of red
band and high reflectance of NIR from healthy vegetation canopies has been used to
generate indicative mathematical vegetation indices.

One of the most common vegetation indexes is the Normalized Difference
Vegetation Index (NDVI) and has been in use since the 1980s in crop yield
forecasting. The NDVI is a fast, effective, and promising complement for conven-
tional survey-based crop health monitoring and production estimation and adopted
by scientists worldwide. It is calculated as the ratio of red and NIR bands of any pixel
and the expression for calculation of NDVI is as below:

NDVI ¼ ρNIR � ρR
ρNIR þ ρR

ð6:1Þ

Here, ρNIR and ρR represent spectral reflectance from NIR and red wavelengths
respectively.

To use NDVI for crop production estimation, ground-observed crop data of a
location should be mathematically compared with the NDVI value of a pixel of the
satellite image, covering that location. A large set of data can serve as a good input
variable for model building. For example, Fig. 6.1 shows a continuous NDVI map of
an area of the Bundelkhand region of India, and then compares the ground-observed
biomass with pixel NDVI values.

Although NDVI is the most widely used vegetation index for crop production and
yield forecasting, there are several other indices suitable for application in various
conditions and can be optimized to serve required purposes.

Renormalized Difference Vegetation Index (RDVI) is one of them. RDVI has
been proved to have the capability to establish a relationship with vegetation
biophysical parameters. It can be calculated as follows:

RDVI ¼ ρNIR � ρRð Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρNIR þ ρR

p ð6:2Þ

An important concern in any vegetation index is the interference caused by soil
background. For instance, the reflectance value of an area (pixel), 50% covered by
soil, and rest by crop canopy cannot be properly represented by NDVI. To address
this issue, indices have been developed considering a factor, which minimizes soil
brightness by calibration. Soil Adjusted Vegetation Index (SAVI) is an example,
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which has been developed by adding soil brightness adjustment factor in NDVI
equation.

Fig. 6.1 (a) Satellite data–derived NDVI map of the area of Bundelkhand, India, and (b) compar-
ison of ground-observed vegetation biomass of some locations with respective NDVI values.
(Adopted, Deb et al. 2017)
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SAVI ¼ ρNIR � ρR
ρNIR � ρR þ L

� �
� 1þ Lð Þ ð6:3Þ

Here L is the adjustment factor, L ¼ 0.25 in case of high vegetation, L ¼ 0.5 for
intermediate vegetation density, and L ¼ 1.0 for low vegetation density. The SAVI
has further been revised to develop Modified Soil-Adjusted Vegetative Index
(MSAVI) as per the Eq. 6.4.

MSAVI ¼ 1
2

2ρNIR þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρNIR þ 1ð Þ2 � 8 ρNIR � ρRð Þ

q� �
ð6:4Þ

Another soil-adjusted vegetative index is Optimized Soil-Adjusted Vegetation Index
(OSAVI), which reduces the soil background reflectance in both low and high
vegetation cover.

OSAVI ¼ 1þ 0:16ð Þ ρNIR � ρRð Þ
ρNIR � ρR þ 0:16

ð6:5Þ

There are also some indices, which use additional optical bands than red and NIR.
Green Vegetation Index (GVI) uses reflectance from green (ρG) and NIR bands.
Enhanced Vegetation Index (EVI) considers blue band (ρB) along with red and NIR
bands.

GVI ¼ ρNIR � ρGð Þ= ρNIR þ ρGð Þ ð6:6Þ

EVI ¼ 2:5� ρNIR � ρR
ρNIR þ 6� ρR � 7:5� ρB þ 1

� �
ð6:7Þ

These indices are particularly good under certain land cover conditions. For exam-
ple, EVI performs well where land is covered by thick vegetation and it (EVI) can
reduce the background and atmospheric noises. All these indices have proved as
excellent input variable in models for crop production forecasting, as detailed below.

6.3.2 Traditional Statistical Models

Crop yield depends largely on the fluctuation of weather and climate changes.
Researchers generally use conceptual or numerical models to anticipate how crop
production will respond to all these changes. These numerical models are developed
based on years of researches on crop physiology and reproduction so that these
models can emulate the crop production system. One class of such models is trained
with extensive plant physiology (like evapotranspiration data, photosynthesis) and
meteorological input data, which are the main factors affecting crop production.
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These models predict crop performances in field conditions, which are subjects to
unpredictable weather fluctuations causing difficulty calibrating the models.

In another class of models, the yield is simulated using space-borne data. Differ-
ent vegetation indices, as the derivatives of remotely sensed data, are used as model
input parameters. This class of models has been popularly used for the last three
decades for agricultural applications across the world (Ren et al. 2008; Deb et al.
2017). In one of the established methods, satellite images are used to capture the
completion of the vegetation stage of a crop in a specific area. The vegetation
indices, derived from the satellite data for that/those exact pixel/s, are then correlated
with ground crop yield for prediction. In India, National Remote Sensing Centre
(NRSC) is involved in yield prediction of few major crops like rice, wheat, sorghum,
etc. at the district level through Crop Acreage and Production Estimation (CAPE)
project. Markov Chain Model is another regularly used simulation for crop yield
estimation (Deb et al. 2018). For the crop production model, Kogan et al. (2012)
used vegetation health indices (vegetation condition index and temperature condi-
tion index), derived from AVHRR data for 21 years (1985–2005). In studies, where
the variation in yield for such a long period has to be taken into consideration, time-
series models are generally used for forecasting crop production.

Traditional regression models have limitations as the relationship between veg-
etation physiology and RS data–derived vegetation indices is complex and often not
just simple linear. Thus, in the last decades, nonlinear models and multiple linear
regression became popular among researchers. Nonlinear models are found to
demonstrate a good correlation between vegetation properties and spectral reflec-
tance. Again, at times modeling crop yield also requires consideration of multiple
variables (Bendig et al. 2015; Deb et al. 2017). Figure 6.2 depicts a predicted yield
map of three crops in an area of Mediterranean Turkey. A stepwise linear regression
model was used here for yield estimation, using vegetation indices as explanatory
variables (Satir and Berberoglu 2016).

6.3.3 Simulation Models

These models simulate crop growth and its yield using independent variables like
weather conditions, soil conditions, and crop management. However, remotely
sensed data can also be used as input in these models for larger spatial coverage,
better perception about leaf area index, a light interception by the crop canopy.
Multispectral and especially hyperspectral remote sensing can reveal important
spectral properties of crop canopy and thus has the potential to provide precise
information on plant biophysical properties. Some popular crop simulation models
are Cropping Systems Simulation Model (CropSyst), Agricultural Production Sys-
tems sIMulator (APSIM), Decision Support System for Agrotechnology Transfer
(DSSAT), etc. The CropSyst model was developed by the Department of Biological
Systems Engineering of Washington State University and can develop a multi-crop,
multiyear simulation model. The APSIMmodel is a very advanced simulation model
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for agricultural production and stands for Agricultural Production Systems Simula-
tor. It was developed by the Commonwealth Scientific and Industrial Research
Organisation (CSIRO). The DSSAT is a simulation model that can predict for
more than 25 crops (Jame and Cutforth 1996). This model can predict the growth
and yield of the crops, soil nitrogen and carbon balances, soil, and plant water. In the
DSSAT model, the incorporation of remotely sensed data has enabled better crop
yield estimation potential in a single-season time scale (Kasampalis et al. 2018). On
the other hand, Synthetic Aperture Radar (SAR) remote sensing data is used to
improve the accuracy of rice yield in regional scale through theSIMRIW(Simulation
Model for Rice–Weather Relations) crop model (Maki et al. 2017).

6.3.4 Use of Machine Learning and Artificial Intelligence

Another option is the use of advanced modeling techniques like Machine Learning.
The advantage of machine learning in crop production modeling is its capacity to

Fig. 6.2 Yield prediction map of corn, cotton, and wheat by stepwise linear regression using
vegetation indices as input variables. The study area is at Çukurova plane, Turkey. (Adopted, Satir
and Berberoglu 2016)
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mimic any real ecological process. There are several machine learning techniques
like Artificial Neural Networks (ANN), Support Vector Machines (SVM), Decision
Tree, Genetic Programming, Random Forests, etc. These models have appeared as a
better substitute due to their advantages like nonlinearity, input–output mapping,
adaptivity, generalization, and fault tolerance (Mountrakis et al. 2011; Lu et al.
2014). At the time of estimating crop yield using machine learning, the use of RS
data as an input variable is a common practice. Predominantly these models are built
by comparing vegetation indices with original ground yield data. After validation of
the model on a small scale, it can be applied over a larger area. Machine learning, in a
true sense, is a multivariate application and can involve thousands of variables. The
working principle of machine learning algorithms is called universal approximation,
which means no prior knowledge about the existing relationship between the dataset
is required. It learns the underlying pattern from a training set of data. The use of
machine learning techniques in combination with RS data results in precise crop
yield estimation for a larger area. Among machine learning, the two most popular
choices for precise crop yield forecasting are ANN and SVM. However, these are
considered black-box models as they come up with predicted values only but not
with the prediction equation. This issue can be dealt with models like Genetic
Programming. Figure 6.3 depicts a comprehensive procedure to estimate crop
production using various mathematical models and RS derived vegetation indices
as an input variable.

Fig. 6.3 Flowchart describing crop yield estimation process using satellite data and mathematical
models
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6.4 Present Operational Programs and Its Success

In recent years, spaceborne RS has seen a lot of improvements in respect to both
radiometric calibration and spatial and spectral resolution. One big step was the
launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) by NOAA.
The frequency of observations for both AVHRR and MODIS are satisfactory and
widely available across the world with a few processed themes. However, coarse
spatial resolution is an issue for both of them. For MODIS these are 250 m (bands
1 and 2), 500 m (bands 3–7), and 1000 m (bands 8–36) while for AVHRR it is
1.1 km for local area coverage and 4 km for global coverage. The development in the
front of spatial resolution saw huge progress after the launch of the Landsat satellite
series by United States and with free access to the data. While the Multispectral
Scanner (mounted on Landsat 1–5) has a spatial resolution of 68 m� 83 m, it is even
finer for the Thematic Mapper (Landsat 4–5), Enhanced Thematic Mapper+
(Landsat 7), and Operational Land Imager (Landsat 8) (30 m). However, the
accessibility of a major amount of this medium-resolution data is very limited on a
regional scale (Bolton ad Friedl 2013). Another problem with Landsat data is its less
temporal repetition. For example, Landsat 7 and 8 has 16-day repetition period. It
throws a huge challenge for agricultural farm applications, which require more
frequent data for monitoring and assessment of crop growth stages. To overcome
this challenge, an innovative way has been found out by the researchers through
which high-resolution images obtained from Landsat can be merged with higher
frequency data like MODIS or AVHRR data.

The path shown by the United States about the use of RS data in crop yield
estimation was followed by many other countries from Asia and Europe. In Europe,
monitoring agriculture through space data commenced to provide technical support
to the European Agricultural Guidance and Guarantee Fund and to apply RS
technology for the agricultural monitoring in the member states. This project helped
to formulate effective and efficient Common Agricultural Policy for the European
countries. The use of RS data in crop yield estimation got further established by
some multinational space programs like SPOT-vegetation, Meteosat Second
Generation-Spinning Enhanced Visible and Infrared Imager (MSG-SEVIRI), and
MODIS-Terra. The precise and timely forecast of crop yield by these remotely
sensed data-based projects got backed-up by a defined sampling approach, crop
identification, and monitoring on more than one date and rigorous field survey. At
present, the European Space Agency (ESA) has satellites like SPOT 7 with a spatial
resolution of 1.5 m only (panchromatic) and 6 m (multispectral). Even Sentinel-2
data of up to 10 m resolution have been made free by ESA.

In the space race and space-data application, India also holds a major global role.
Indian Space Research Organisation (ISRO) started to use RS in crop yield studies
with the launching of the Indian Remote Sensing (IRS) program in 1988. Space
Application Centre and NRSC (earlier known as National Remote Sensing Agency)
took the lead role here in collaboration with other Indian institutes. A national project
named Large Area Crop Acreage was launched by the Ministry of Agriculture for
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yield forecasting for few major crops like rice, wheat, groundnut, sorghum, mustard,
sugarcane, and cotton. Later this project got renamed CAPE. Use of high-resolution
RS data, advanced modeling, and subsequent precise yield forecasting made this
program a huge success for preparation of national crop inventory. The CAPE
project was also proved to be a good source of knowledge about crop yield and
spectral relationship, factors affecting crop area discrimination, and the importance
of timely information for accurate crop yield forecasting. Operational success of
CAPE encouraged another updated program named Forecasting Agricultural Output
Using Space, Agrometeorology and Land-Based Observations (FASAL). It was
initiated with extensive goal of nationwide multi-crop forecasting with consideration
of Indian monsoon data, national economic data, and ground data, recorded at
different stages of crop growth. Following the success of FASAL, an umbrella
program named SUFALAM (Space Technology Utilization for Food Security,
Agricultural Assessment and Monitoring) has been initiated by ISRO with multiple
objectives like yield forecasting for selected crops, promotion of precision farming,
crop insurance, upgradation of agro-advisory-based services, etc. A similar program
was launched for monitoring horticultural crops like onion, potato, and mango under
the name Coordinated Programme on Horticulture Assessment and Management
Using Geoinformatics (CHAMAN). Mahalanobis National Crop Forecast Centre
took a major role here.

In Indian RS history, IRS 1A and 1B mounted sensor Linear Imaging Self-
Scanner�1 (LISS-I) was a milestone. It was widely used as the major data source
for crop yield modeling during the late 1980s and the early 1990s. The LISS-II data
from the same satellites were preferred to model multiple crops when grown
simultaneously. These data had a spatial resolution of 72.5 m (LISS-I) and
36.25 m (LISS-II). With continuous upgradation of space technology, India
achieved multispectral sensors with a finer spatial resolution like LISS-III (23.5 m)
(mounted on IRS 1C, 1D, Resoursesat 1, 2, 2a) and LISS-IV (5.8 m) (mounted on
Resoursesat 2, 2a). Further, panchromatic data up to 0.25 m are available now from
Cartosat 3, 3a, and 3b. At present, a combination of these multispectral and pan-
chromatic data can lead to precise estimation of crop yield up to the village or even
farm level.

Besides the government-controlled initiatives, private commercial RS industry
has made a big leap toward a variety of applications in recent years. It includes crop
monitoring–based crop insurance, food security, resource management planning,
etc. Several factors are responsible for this boom in technical business, such as easy
availability of location identification technology (like Global Positioning System);
massive development in telecommunications; huge innovation in robotics, machine,
and deep learning; drone technology; etc. Widespread development in free and open-
source software is also helping the small firms to invest in this sector. In this front,
several startups companies are now working by introducing artificial intelligence and
computer vision in aerial and satellite imagery analysis. They are enabling farmers to
make better decisions to improve crop health and yield. They have also been proved
helpful in bridging the gap between first mile and last mile, that is, benefit of using
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high-end technology like RS for farmers and the planning of their farming
operations.

6.5 Conclusion and Future Perspective

In our present capacity, the basic limitation in crop production estimation is proper
identification of “maximum yield potential.” Although, RS made the data interpre-
tation easier with improved accuracy, it does not mean that the future trajectories of
yield potential can be estimated without hassle (Chen et al. 2018). Besides, envi-
ronmental variation does not follow any known equation. With the present knowl-
edge, it is hard to take account of uncertain factors like global warming or soil health
degradation and their impact on crop production. Researches in coming years should
concentrate on these grounds. Another future direction should be wider use of SAR
data as it provides information on crop physical structure and moisture status in
addition to biological properties. Use of SAR data also outperforms optical data due
to its cloud-free, all-weather, day–night sensing capability (Zhang et al. 2014). On
the contrary, inclusion of hyperspectral data along with multispectral data can
minimize overfitting problem arises from co-linearity between multispectral
wavebands.

No modelling or classification algorithm is full proof. They have their own
advantages and limitations. Therefore, more research should be carried out on
mixed classification approaches that utilize both visual and quantitative analytics.
Modern classification systems sometimes suffer from overfitting of data as well as
spatial mis-interpolation (Yang et al. 2019). Future research should wave off this
uncertainty by stronger integration of data, at process level or output level. Finally,
regional-level crop production models should be a major focus in coming years as
regional risk in agriculture, management practices, and local weather–mediated
variability cannot be estimated from large area survey. Hopefully, the fast develop-
ment in RS and modelling technology will finetune these aspects of crop production
estimation in the near future.
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Abstract Light energy absorbed by plant chlorophyll pigments is principally uti-
lized for photosynthesis. The surplus energy is dissipated as heat or re-emitted as
chlorophyll fluorescence (CF). The CF is wavelength specific and directly linked to
the efficiency of the photosystems I and II. Hence, it is one of the few direct
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assessments of vegetation condition, growth processes, and productivity. The active
CF retrievals are computationally simple but lack scalability; hence, passive mea-
surement in terms of solar-induced chlorophyll fluorescence (SIF) from ground-
based, airborne, and space-borne instruments is popular for regional or global
monitoring of vegetation condition. The retrieval of SIF from upwelling radiance
from vegetation canopy, though complex, is one of the promising developments in
the field of remote sensing. Significant research works have been done on the
instrumentation, measurement, retrieval, and application of CF for crop/vegetation
monitoring and assessment. The present book chapter reviews the basic concepts of
chlorophyll fluorescence, its measurement, major SIF retrieval techniques and its
applications along with future challenges.

Keywords Chlorophyll fluorescence · Crop condition · Crop stress · Fraunhofer line
depth · Gross primary productivity · Pulse-amplitude modulation · Photosynthetic
efficiency · Sun-induced chlorophyll fluorescence

Abbreviations

Cab Chlorophyll a and b Content
CF Chlorophyll Fluorescence
CFIS Chlorophyll Fluorescence Imaging Spectrometer
ESA European Space Agency
FAPAR Fraction of Absorbed Photosynthetically Active Radiation
Fd Ferrodoxin
FL Fraunhofer Line
FLD Fraunhofer Line Depth
FLEX Fluorescence Explorer
FWHM Full Width Half Maxima
GOME-2 Global Ozone Monitoring Experiment-2
GOSAT Greenhouse Gases Observing Satellite
GPP Gross Primary Productivity
LUE Light Use Efficiency
MERIS Medium Resolution Imaging Spectrometer
MetOp-A, -B Meteorological Operational Satellite A or B
MODIS Moderate Resolution Imaging Spectroradiometer
MODTRAN Moderate Resolution Atmospheric Transmission
NADP Nicotinamide adenine Dinucleotide Phosphate
NPP Net Primary Productivity
NPQ Non-photochemical Quenching
OCO Orbiting Carbon Observatory
PAM Pulse-amplitude Modulation
PAR Photosynthetically Active Radiation
PCA Principal Component Analysis
PQ Photochemical Quenching
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PRI Photochemical Reflectance Index
PROSPECT PROpriétésSPECTrales
PSI Photosystem I
PSII Photosystem II
RTM Radiative Transfer Model
S-5P Sentinel-5 Precursor
SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric

Chartography
SCOPE Soil-Canopy-Observation of Photosynthesis and Energy Fluxes
SEN2FLEX Sentinel-2 and Fluorescence Experiment
SFM Spectral fitting methods
SIF Sun-induced Chlorophyll Fluorescence
SNR Signal-to-noise Ratio
SR Spectral Resolution
SVD Singular Value Decomposition
TANSO-FTS Thermal and Near-Infrared Sensor for Carbon Observation

Fourier Transform Spectrometer
TROPOMI Tropospheric Monitoring Instrument

7.1 Introduction

When a substance is irradiated by some energy (generally light), it absorbs part of it
and occasionally re-emits at a higher wavelength as fluorescence. This phenomenon
is found in the plant system as chlorophyll fluorescence. Living plant cells capture
solar energy through the “photosynthesis” process and convert it into chemical
energy as food. In doing so, part of the absorbed solar energy is re-emitted as
chlorophyll fluorescence (CF). In recent decades, analysis of CF has emerged as
an excellent method to check the performance of photosynthetic machinery in the
plant as it is directly linked with the functional status of photosystem II present in the
thylakoid of the chloroplast. Since its first discovery by Sir David Brewster in 1834
(Brewster 1834) and subsequently pioneer investigations by Kautsky and Hirsh
(1931), McAlister and Mayer (1940), Duysens and Sweers (1963), Govindjee
(1995), and others, today, we have made significant progress to assess the CF signal
from leaf to regional level, from laboratory to in-situ conditions, and from actual
measurement to radiative transfer modelling. CF can be analysed through active
instruments based on pulse-amplitude modulation (PAM), and fluorescence yield
parameters could be generated to link it to the photosynthetic efficiencies. On the
other hand, passive measurement of CF as sun-induced chlorophyll fluorescence
(SIF) has gained attention during the recent years as its estimation using remote
sensing techniques at specific narrow bandwidths has widespread applications in
regional productivity monitoring, early stress detection, plant biophysical parameter
retrieval, etc. With the progress of electro-optics technology, it is now possible to
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sense the weak SIF signal in a very narrow spectral range through remote sensors.
Successful SIF retrieval is being carried out from ground-based (Liu et al. 2015a, b),
airborne (Zarco-Tejada et al. 2009), and satellite sensors (Guanter et al. 2007;
Frankenberg et al. 2011a, b). SIF consists of the emission in the red and far-red
regions of the electromagnetic spectrum with two broad peaks at 690 and 740 nm.
Passive measurement of SIF in this narrow spectral region and assessing the
photosynthetic machinery of vegetation is the challenge of remote sensing commu-
nity. SIF retrieval technique developments were mostly made by ground-based/
airborne sensors and are being scaled up at satellite platform. Till now, no satellite
is launched dedicatedly for SIF measurement, but attempts have been made to
retrieve SIF from suitable narrow-band observations available on different atmo-
spheric satellites like GOSAT, MetOp-GOME, OCO2, and Sentinel-5P. Hence,
satellite-based estimation of chlorophyll fluorescence opens up a plethora of new
and innovative applications of remote sensing data for regional crop monitoring.
This chapter aims to concisely review the basics of chlorophyll fluorescence, its
origin, active and passive retrieval techniques, and the applications of SIF from
remote sensing point of view.

7.2 Basics of Chlorophyll Fluorescence

7.2.1 Photosynthesis and Emission of Chlorophyll
Fluorescence

Photosynthesis is the primary process to harvest solar energy and the basis of life for
almost all living creature on the planet earth. Photosynthesis is mainly a three-step
process composed of carbon dioxide (CO2) diffusion to the chloroplast, light
absorption by pigment system, and reduction of CO2 into sugars (Govindjee
2004). Two chlorophyll-protein complexes, namely, photosystem II (PS-II) and
photosystem I (PS-I), residing in the thylakoid membrane of the chloroplast, partic-
ipate in the light-driven transfer of an electron to reduce the NADP+ (Whitmarsh and
Govindjee 2002). Splitting of water occurs at PS-II which absorb the light energy at
680 nm and transfer the electron to plastoquinone (Pq). Pq in turn carries the electron
to a series of protein complexes (cytochrome-bf, plastocyanin) before reaching to
PS-I. PS-I absorb light at 700 nm and further reduce another protein complex known
as ferredoxin (Fd) in the stroma of the chloroplast. Fd, in conjunction with Fd–
NADP+ reductase (FNR) enzyme, reduces NADP+ to NADPH and releases the ATP
to reduce the CO2 into sugar through a series of dark reactions in Calvin-Benson
cycle (Bendall and Manasse 1995). The schematic diagram presents a simplistic
representation of the linear electron transfer pathway of the photosynthesis process
(Fig. 7.1).

Light-harvesting pigments are mostly chlorophyll-a (Chl-a), chlorophyll-b
(Chl-b), and carotenoids, residing in the antenna complexes of the PS-I and PS-II.
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The absorption spectra of these pigments are shown in Fig. 7.2 (Johnson 2016).
Chl-a and Chl-b have their absorption peaks in blue and red regions, while the
carotenoids absorb light in the blue region only. Hence, leaves appear as yellow/red
in the case of chlorophyll disintegration. Chl-a molecules, present in PS-I and PS-II,
absorb a certain quantity of energy and reach to an excited state (marked as * in
Fig. 7.1). This excitation energy of Chl-a molecules gets quenched by various ways
to bring the Chl-a into the ground state. There can be three modes of the release of
this energy (Fig. 7.3): (1) through a photochemical method to reduce the CO2 into
sugar as explained in Sect. 7.1 also known as photochemical quenching (PQ);
(2) non-photochemical quenching (NPQ), i.e. thermal dissipation; and
(3) re-emission at a relatively higher wavelength as chlorophyll fluorescence (CF).
Both the photosystems involve in CF but show spectral and intensity differences
among each other (Fig. 7.3). PS-I absorbs the light in the infrared region of 700 nm
and emits CF in an infrared region of 740 nm, also known as CF740 or far-red CF,

Fig. 7.1 Electron transport pathway in light reaction of photosynthesis

Fig. 7.2 Absorption spectra of chlorophyll and carotenoid pigments. (Modified, Johnson 2016)
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whereas the PS-II absorbs at a red wavelength (680 nm) and emits at a relatively
higher wavelength of the red region, i.e. 690 nm (CF690 known as red CF).

Although both PS-I and PS-II emit CF, PS-I CF remains invariant with the plant
stress or photosynthetic mechanism, whereas PS-II CF shows significant sensitivity
and measurable changes toward the level of plant stress, the functional efficiency of
the photosystem, photoprotective mechanism, heat dissipation mechanism, etc.
Hence, PS-II CF is more important to assess the photosynthetic mechanism, electron
transport rate, and CO2 assimilation in the plant.

7.2.2 Quenching Mechanisms and Analysis

7.2.2.1 Active Measurement with Kautsky Fluorometer

One of the earliest observations of CF was made by Kautsky and Hirsh in 1931.
They measured the rate of increase in the yield of chlorophyll fluorescence after
exposing the leaf extract from dark to light. This typical change in the intensity of CF
with time after illuminating a dark-adapted chlorophyll pigment to continuous light
is popularly known as the Kautsky effect, and the curves generated with these
observations are called Kautsky curve. A typical Kautsky curve is shown in
Fig. 7.4. It can be observed that initially, the CF intensity increases with the time
range (in the order of microseconds) and achieves its peak called maximum CF (Fm).
The CF intensity further decreases and reaches a steady-state level called steady-
state CF (Ft). The initial rise in CF is caused by the activation of all reaction centres
of PS-II leading to an increase in the photochemical quenching (PQ). It achieves Fm
when all the reaction centres get saturated. The later slowdown of CF is caused by

Fig. 7.3 Fate of absorbed light by chlorophyll and typical chlorophyll fluorescence emission
spectra between 600 and 800 nm
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non-photochemical quenching (NPQ), i.e. the protective mechanism of dissipating
heat. In a healthy plant cell, the time to reach a steady-state CF level is around
15–30 min with the significant variations between the plant species (Johnson et al.
1990).

7.2.2.2 Active Measurement with Pulse-Amplitude Modulation
Fluorescence

PAM is another technique for quenching analysis and active measurement of CF
parameters. In this technique, instead of continuous light, a high-intensity light pulse
is used to measure the CF emission, and it is a more efficient and popular technique
to measure CF in the presence of background measuring light (Schreiber 2004).
PAM-fluorometer-based observations are mostly taken in two modes, i.e. dark-
adapted and light-adapted. The leaf needs to be put in dark for 20–60 min before
the dark adapted measurement. Dark-adapted measurement allows the determination
of the maximum potential quantum efficiency of PS-II also represented as Fv/Fm. Fv/
Fm is also known as “intrinsic quantum yield” (Kitajimaand Butler 1975). Fv/Fm has
both photochemical and non-photochemical components (Baker 2008). Fv/Fm mea-
surement is very fast which takes only 1–2 s. The base or ground fluorescence (F0) is
measured first with a weak modulating light (ML) beam; then, a saturation pulse
(SP) is applied at a higher wavelength to saturate the receptors at PS-I. The
application of SP raises the fluorescence to a maximum value, Fm. Figure 7.5
shows different measured parameters in the dark-adapted and light-adapted phase
through a typical PAM fluorescence curve. Fv/Fm does not measure photosynthetic
efficiency while photosynthesis is taking place.

Fig. 7.4 A typical Kautsky curve of a green leaf. (Adopted, Ritchie 2006)
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In PAM fluorometry, mostly three types of light pulses are used, i.e. measuring/
modulating light (ML) which does not affect PS-II, actinic light (AL) which opens
the reaction centre of the PS-II, and saturation light/pulse (SP) which closes the
PS-II.

In the light-adapted measurements, the leaf surface is directly illuminated with
AL, and SP is turned on and off repeatedly. This process induces the fluorescence to
reach a maximum value (Fm'). The initial increase of Fm' with few pulses is known
as “photochemical quenching” which is related to the electron transport rate in the
light reaction of photosynthesis (Edwards and Baker 1993). Subsequent pulses of
saturating light lead to a decline in fluorescence intensity due to “non-photochemical
quenching”, i.e. NPQ (Oxbrough and Baker 1997). PAM instruments measure CF at
a definite wavelength only, i.e. the wavelength of ML, while the signal produced by
SP and AL is not detected by the instruments. SP and AL only change the redox
potential of PS-II and not generate the CF. The measured CF at different redox
potentials of PS-II helps in studying the health status of PS-II (Guo and Tan 2015). A
list of commonly used fluorescence quenching parameters is given in Table 7.1.

Yield (Y-II,ΔF/Fm0, or Fm0�Fs/Fm0) indicates the ratio of the amount of light used
in photochemistry in PS-II to the amount of light absorbed by chlorophyll associated
with PS-II. (Genty et al. 1989; Maxwell and Johnson 2000). Y-II also represents the
achieved efficiency of PS-II under the current light condition and steady-state
photosynthetic rate. Y-II is related linearly with carbon assimilation for C3 plants
and curvilinear for C4 plants due to photorespiration and pseudo-cyclic electron
transport in C4 plants (Genty et al. 1989, 1990).

Fig. 7.5 A typical PAM fluorescence curve: modulating light (ML), actinic light (AL), saturation
light (SP) (Adopted, Misra et al. 2012)
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Table 7.1 List of commonly used quenching parameters

Parameter Formula Description Significance References

F – CF emission from dark-
adapted leaves

Not directly used for
assessing the photo-
synthetic performance
as these are affected
environmental factors

Baker and
Rosenqvist
(2004)F0or Fs0 – CF emission from

light-adapted leaves
also known as “steady-
state CF”

F0 – Minimum CF from
dark-adapted leaf

CF level when reac-
tion centres of PS-II
are openF00 – Minimum CF from

light-adapted leaf

Fm – Maximal CF from dark-
adapted leaf

CF level when reac-
tion centres of PS-II
are openFm0 – Maximal CF from

light-adapted leaf

Fv – Variable fluorescence
from dark-adapted leaf

Represents the ability
of PS-II to perform
photosynthesisFv0 – Variable fluorescence

from light-adapted leaf

Fq0 (Fm0�F0) Difference in fluores-
cence between Fm0 and
F0

Photochemical
quenching (PQ) due to
open PS-II centres

Maxwell
and John-
son (2000)

Fv/Fm (Fm�Fo)/Fm Maximum photosyn-
thetic efficiency of PS-II

Maximum efficiency
at which light is
absorbed by antennae
of PS-II

Fq0/Fm0 (Fm0�F0)/Fm0 PS-II operating
efficiency

Estimates the effi-
ciency at which light
absorbed by PS-II
antennae is used for
photochemistry
Also represented as
YII or ΔF/Fm0

Fv0/Fm0 (Fm0�Fo0)/Fm0 Maximum efficiency
PS-II

Gives an estimate of
operating efficiency if
all the PS-II centres
were open

Fq0/Fv0 (Fm0�F0)/(Fm0–
Fo0)

PS-II efficiency factor Relates the PS-II max-
imum efficiency to the
PS-II operating effi-
ciency, known as the
coefficient of photo-
chemical quenching
(qP)

ETR PPFD� 0.84�-
0.5 � (ΔF/Fm0)

Electron transport rate Electron transport rate
through PS-II

NPQ (Fm�Fm0)/Fm0 Non-photochemical
quenching

Relates with the rate
constant for heat loss
from PS-II
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7.3 Sun-Induced Chlorophyll Fluorescence and Its
Retrieval

Sun-induced chlorophyll fluorescence (SIF) is another synonymous term used for
CF measured between red and far-red region (650–850 nm) under natural sunlight
condition. SIF is commonly used term for remote estimation of CF using the
reflected radiance upwelling from the plant canopy. SIF contribution to the reflected
radiance is of the order of 2–5%, hence making it challenging to decouple the SIF
signal from the reflected radiance (Maxwell and Johnson 2000). Figure 7.6 shows a
representative illustration of the apparent reflectance hyperspectral curve measured
with a field spectroradiometer (red line) overlaid on fluorescence-filtered actual
reflectance hyperspectral curve (black line). Two peaks in the apparent reflectance
can be observed at 690 and 740 nm showing feeble CF signals.

A number of techniques have been proposed to retrieve the SIF from the radiance
data and have been explained in details in various reviews by Meroni et al. (2009),
Liu et al. (2015a, b), Frankenberg and Berry (2018), Mohammed et al. (2019),
Cendrero-Mateo et al. (2019), Ni et al. (2019), etc.

7.3.1 Fraunhofer Line Depth-Based Retrieval

To separate the SIF part from the reflected radiance, the principle of Fraunhofer line
depth (FLD) is popularly utilized (Plascyk 1975; Plascyk and Gabriel 1975). FLD
principle makes use of filling of the solar Fraunhofer lines (Hα: 656.4 nm, Fe:
758.8 nm and KI: 770.1 nm) or telluric oxygen absorption bands (O2-B: 687 nm,

Fig. 7.6 Schematic representation of actual reflectance curve (black line) and CF- contaminated
apparent reflectance curve (red line) of a groundnut crop
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O2-A: 760 nm) to retrieve the SIF signal. FLD principle assumes that the reflectance
and SIF are wavelength-independent within the narrow absorption bands and make
use of radiance observations at two separate wavelengths: one within the absorption
band and the other outside the absorption band (λin and λout in Fig. 7.7).

Since the upwelling radiance (L (λ)) from the canopy contains two components,
i.e. reflected radiance and SIF, it can be mathematically expressed as

L λð Þ ¼ R λð Þ:E λð Þ
π þ F λð Þ ð7:1Þ

where λ is the wavelength, R is actual reflectance (in fraction), E (λ) is the
downwelling irradiance from the sun at λ wavelength, and F is the upwelling SIF
from the canopy. Since L (λ) is directional in nature; hence, E (λ) is divided by π. The
apparent reflectance from the canopy (R*(λ)) is computed as

R� λð Þ ¼ π:L λð Þ
E λð Þ ¼ R λð Þ þ π:F λð Þ

E λð Þ ð7:2Þ

SIF is retrieved through solving Eqs. 7.1 and 7.2 using the E and L observations
inside (λin) and outside (λout) the absorption feature, i.e.

L λinð Þ ¼ R λinð Þ:E λinð Þ
π

� �
þ F λinð Þ ð7:3Þ

Fig. 7.7 Irradiance and radiance curve measured through ASD Fieldspec3 on the groundnut
canopy and representation of 3-FLD principle

7 Concepts and Applications of Chlorophyll Fluorescence: A Remote Sensing. . . 255



L λoutð Þ ¼ R λoutð Þ:E λoutð Þ
π

� �
þ F λoutð Þ ð7:4Þ

FLD principle is based on the assumption that the R (λin) ffi R (λout), which dose
not hold good for broad bandwidths. Hence, several modifications of FLD methods
are suggested by various researchers. Maier et al. 2003 suggested a 3-FLD method
that uses two λout and one λin. The 3-FLD method assumes a linear relation between
R (λin) and R (λout). Another approach was presented by Gomez-Chova et al. (2006)
and Moya et al. (2006) as cFLD, where they introduced two coefficients to account
for changes in R and F at λin and λout. The iFLDmethod as suggested by Alonso et al.
(2008) uses hyperspectral data to generate the correction factors for changes in R and
F. The extended FLD (eFLD) method was demonstrated by Mazzoni et al. (2007).
All the FLD methods exploit the radiance data and compute the SIF in its physical
unit, i.e. Wm�2sr�1μm�1.

Mohammed et al. (2019) have categorized the Fraunhofer line methods into two
categories: (1) a physical based model applied at specified Fraunhofer line as utilized
in GOSAT, OCO-2, and Sentinel-5P, and (2) a data-driven statistical approach using
principal component analysis (PCA) or singular value decomposition (SVD) as in
GOME-2-derived SIF. SIF retrieval using solar Fraunhofer lines requires high
spectral resolution (better than 0.1 nm), high radiometric resolution, and very high
signal-to-noise ratio (SNR), while the retrieval of SIF using telluric oxygen absorp-
tion features can be possible with the relatively coarser spectral resolution and
relatively lower SNR.

7.3.2 Spectral Fitting Methods Based Retrieval

Spectral fitting method (SFM) is an improvement over FLD method for SIF retrieval
where all available hyperspectral bands are utilized for R and F estimation at each
wavelength through spectral curve fitting (Zhao et al. 2018; Cogliati et al. 2019). The
SFM methods include fluorescence spectrum reconstruction (FSR) by Zhao et al.
2014, the full-spectrum spectral fitting (F-SFM) by Liu et al. (2015a, b), and the
advanced FSR (aFSR) by Zhao et al. (2018). Different fitting functions are utilized
for fluorescence spectrum reconstruction. A linear fitting function was applied by
Meroni and Colombo 2006, quadratic function by Mazzoni et al. 2008, and n-degree
polynomial by Guanter et al. 2009. To apply various SFM, a model named SpecFit
was developed by Cogliati et al. (2015a, b) to construct full spectrum SIF using cubic
spline fitting method.
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7.3.3 Reflectance-Based Retrieval

Reflectance-based methods exploit the apparent reflectance measured at a specific
wavelength in the range of 650–800 nm and convert it into an index to qualitatively
express SIF information. The reflectance-based approach cannot estimate SIF in its
physical unit. Spectral indices can be generated either using reflectance data (Zarco-
Tejada et al. 2000a, b) or derivatives of the reflectance data (Zarco-Tejada et al.
2003). Most of the reflectance-based indices use the reflectance value at
two-wavelength, one affected by SIF (near 685 and 740 nm) and other less or not
affected by SIF.

Laboratory studies conducted by Zarco-Tejada et al. 2000a, b showed the sensi-
tivity of few reflectance-based indices (eg. R680/R630, R685/R630, R687/R630 and R690/
R630) towards the maximum photosynthetic efficiency of PS-II (Fv/Fm). These
indices showed a significant correlation with the diurnal changes in the Fv/Fm. In
the same study, the red-edge-based derivative indices (e.g. D730/D706 and DP21
(Dλp/D703), where D is the derivative of reflectance and λp is the inflection point of
the reflectance spectrum in the red-edge spectral region) were also tested and related
with the chlorophyll a and b content (Cab) of the leaves. The red-edge region
between 685 and 740 nm is most widely used to generate reflectance-based indices
to utilize the double-peak feature of reflectance derivatives (Zarco-Tejada et al.
2000b, 2003; Das et al. 2014) in 690–710 nm region. The typical double-peak
feature appears due to the combined effect of SIF emission and low Cab content. A
comprehensive list of reflectance-based indices used for the retrieval of SIF is listed
in the review paper by Meroni et al. 2009. The reflectance-based indices are best
suited for SIF retrieval in laboratory conditions where there is a lack of natural
sunlight.

7.3.4 Sun-Induced Chlorophyll Fluorescence Retrieval Using
Radiative Transfer Models

The recent approach for SIF retrieval is based on solving the process-based radiative
transfer models (RTM) or energy balance models where the reflection and CF
emission behaviour of leaf/canopy is simulated using biophysical and biochemical
properties, bidirectional radiative distribution function (BRDF) of the plant. SIF
emission from leaf/canopy is a complex response to environmental and physiolog-
ical factors. To model the SIF emission, several RTM have been evolved in the last
few decades; these include leaf-level models based on PROSPECT like
FluorMODleaf (Pedrós et al. 2010) and Fluspect (Vilfan et al. 2016) and canopy-
level models like FLSAIL model (Rosema et al. 1991), FluorSAIL (Miller et al.
2005), FluorFLIM model (Zarco-Tejada et al. 2013), SCOPE model (Vander Tol
et al. 2009), and mSCOPE (Yang et al. 2017).
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7.3.4.1 FluorMOD-Based Retrieval

One of the widely used model at leaf-level SIF estimation is FluorMOD which is
based on a hemispherical radiative transfer model, MODTRAN4, and an extension
of leaf model PROSPECT-5 (Feret et al. 2008). The FluorMOD simulates the SIF of
a fresh leaf between 640 and 840 nm for any excitation light of the visible spectrum
(Pedros et al. 2010). The parameters used for FluorMOD are listed in Table 7.2.

FluorMOD also considers the reabsorption of emitted light within the leaf and
estimate the upward and downward SIF between 400 and 700 nm. Further, a canopy
level SIF model was developed by Verhoef (2005) as FluorSAIL. The
FluorMODleaf and the FluorSAIL models were linked into a FluorMOD graphical
user interface (GUI) by Zarco-Tejada et al. 2006 (Fig. 7.8). FluorMOD-GUI facil-
itates the simulation of SIF through varying the leaf and canopy attributes and is
widely used for model calibration/validation.

7.3.4.2 Soil-Canopy Observation of Photosynthesis and Energy
Flux-Based Retrieval

SCOPE model by Van der Tol et al. (2009) is a combination of energy balance,
radiative transfer model and leaf biochemical model. The model simulates the
radiation transport in a multilayer canopy as a function of solar zenith angle and
leaf orientation to estimate the SIF in the view direction. Table 7.3 provides the lists
of input parameters required by the SCOPE model for estimating the SIF.

SCOPE model is widely used recently to invert the vegetation functional prop-
erties like LAI, vegetation water content, and GPP using the satellite estimated SIF
data (Zhang et al. 2014; Bayat et al. 2018; Hu et al. 2018; Pacheco-Labrador et al.
2019; Dutta et al. 2019). Celesti et al. (2018) have proposed a new method to retrieve
the biophysical parameters from the canopy-level high-resolution apparent reflec-
tance data using numerical inversion of the SCOPE model. In this model, a full
spectrum of SIF is retrieved through computing the residual between the modelled
and measured reflectance data.

Table 7.2 List of parameters used in FluorMOD leaf (Pedros et al. 2010)

Symbol Parameter name

N Number of elementary plates, leaf structural parameter

Cab Total chlorophyll content

Ccx Total carotenoid content

Cw Equivalent water thickness

Cm Dry matter content

σII/σI Relative absorption cross section of PS-I and PS-II

τI and τII Fluorescence quantum efficiency of PS-I and PS-II
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Fig. 7.8 GUI-based FluorMOD software. (Zarco-Tejada et al. 2006)

Table 7.3 The input parameters used for SCOPE simulations (Zhang et al. 2014)

Symbol Parameters

Cab Chlorophyll a + b content

Cdm Dry matter content

Cw Leaf equivalent water thickness

Cs Senescent material

N Leaf structural parameters

LIDFa, b Leaf angle distribution parameter a and b

w Leaf width

m Ball-Berry stomatal conductance parameter

Rd Dark respiration rate at 25 �C as fraction of Vcmax

λc Cowan’s water use efficiency parameter

ρ Leaf thermal reflectance

τ Leaf thermal transmittance

ρs Soil thermal reflectance

LAI Leaf area index

hc Canopy height
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7.4 Ground and Airborne Instrumentation
for Sun-Induced Chlorophyll Fluorescence Retrieval

Field instrumentation helps in understanding the SIF retrieval mechanism and its
relationships with biophysical properties of the plant and facilitate upscaling from
the canopy to the landscape levels (Porcar-Castell et al. 2014a, b). SIF retrieval at the
canopy and regional scale is entirely based on the spectroscopic measurements.
Since the SIF signal contributes a very small part of the reflected radiance, a highly
specialized spectroradiometer with fine (FWHM 1–5 nm) or ultrafine (FWHM
<1 nm) spectral resolution (SR) is required to capture the irradiance/radiance signal
and to apply different FL-based or other retrieval techniques. Methods used for SIF
retrieval depend on the SR and dynamic range of spectroradiometer; e.g. SFM and
statistical-based retrieval methods require radiance/reflectance data with ultrafine
resolution (Meroni et al. 2010; Guanter et al. 2013), while FLD-based retrieval using
O2-A and O2-B bands may be possible with fine-resolution spectra (Plascyk 1975;
Damm et al. 2011).

Although there is no instrument which directly provides the SIF value at the
different wavelength the researcher customizes different models of
spectroradiometer for indirect retrieval at canopy level based on its SR, sampling
interval, noise equivalent delta radiance (nEΔL, signal to noise ratio), the field of
view, etc. Table 7.4 lists some of the most widely used spectroradiometers for SIF
retrieval at field scale.

Julitta et al. (2016) have compared four different spectroradiometers and con-
cluded that for accurate far-red (740 nm) SIF retrieval, an SR less than 1.0 nm is
required, while red SIF (690 nm) retrieval requires better than 0.5 nm SR. A detailed
review about the instrument setup, protocols, and sensor characteristics for SIF
retrieval is presented in Pacheco-Labrador et al. (2019), Aasen et al. (2019), and
Cendrero-Mateo et al. (2019). Liu et al. (2015a, b) have presented the effect of SR
and SNR on the canopy-level SIF retrieved using FLD methods. Ground-based
spectrometers/radiometers are mostly customized as per the requirement for SIF
estimation.

There are various customized SIF measuring systems which are being used for
field-based applications or validation of the satellite-derived SIF. Most of them are
customization of Ocean Optics sensors. Ocean Optics HR2000-based systems
include TriFLEX used by CRNS France (Daumard et al. 2012) and FluoSpec by
Brown University (Yang et al. 2015). Ocean Optics HR4000-based systems are
S-FLUO box by JRC and JB Hyperspectral, Germany (Julitta et al. 2016); Multi-
plexer Radiometer Irradiometer (MRI) by University of Milan-Bicocca, Milan, Italy
(Cogliati et al. 2015a, b); etc. Ocean Optics QE Pro-based systems are FluoSpec2 by
the University of Virginia (Yang et al. 2018a, b); FloX by JB Hyperspectral,
Germany (Wohlfahrt et al. 2018); andPICCOLO-DOPPIO, University of Edinburgh,
Scotland (Mac Arthur et al. 2014).

Recently, a tower-based permanent mounted radiometer is becoming popular for
simultaneously measuring the SIF, carbon, and water fluxes from agroecosystems or
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forest ecosystems. FUSION is one such prototype developed by Goddard’s Space
Flight Center, NASA, by assembling two ocean optics spectrometers USB 4000 and
HR 4000 (Julitta et al. 2016). Other tower-mounted SIF measuring systems are
AutoSIF (Xu et al. 2018), PhotoSpec (Grossmann et al. 2018), etc.

Hyperspectral imagers are being used for UAV and airborne observations. Most
of the hyperspectral imagers are coarser in SR, and the SIF estimations are mostly
based on the reflectance derived indices or radiative transfer modelling. The list of
the few airborne sensors used for SIF studies is in Table 7.4. HyPlant, CFIS, and
Hyperspec are few airborne sensors that have been dedicatedly made for full-range
SIF retrieval for satellite-derived SIF data validation. A detailed review of various
instruments and systems for SIF measurements can be found in Bandopadhyay
et al. (2020).

7.5 Satellite-Based Sun-Induced Chlorophyll Fluorescence
Retrieval and Products

The first dedicated SIF measuring satellite Fluorescence Explorer (FLEX) is planned
for launch in 2022 by European Space Agency (ESA). FLEX along with the tandem
mission of Sentinel-3 (S-3) will focus on the measurement of SIF along with
reflectance and surface temperature so that the SIF signal can be interpreted precisely

Table 7.4 List of commonly used spectroradiometers for estimation of SIF

Instrument
Spectral
range (nm)

FWHM
(nm)

Sampling
interval (nm) SNR

Imaging/non-
imaging

Ocean Optics HR4000
narrow range

670–857 0.2 0.05 250 Non-imaging

Ocean Optics MAYA 650–803 0.44 0.08 450 Non-imaging

Ocean Optics QE Pro 645–810 0.5 0.17 1080 Non-imaging

Ocean optics HR4000
full range

197–1115 1.0 0.3 590 Non-imaging

ASD FieldSpec Pro 350–2500 3.0 1.4 4000 Non-imaging

Spectra Vista GER 1500 350–1050 3.2 1.0 4000 Non-imaging

Headwall photonics
Hyperspec

670–780 0.25 0.05 680 Imagine

HySpex Mjolnir VS-620 400–1000 3.0 1.0 180 Imagine

ROSIS 430–860 7.0 4.0 – Imagine

CASI 350–2500 2.2 1.4 480 Imagine

APEX 380–2500 5.7 1.75 625 Imagine

HyPlant 670–780 0.25 0.11 210 Imagine

NASA/JPL
CFIS

737–772 <0.1 0.05 – Imagine

ROSIS Reflective Optics System Imaging Spectrometer, CASI Compact Airborne Spectrographic
Imager, APEX Airborne Prism Experiment
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at regional scales (Mohammed et al. 2014). The FLEX mission will consist of two
imaging spectroradiometer, i.e. FLORIS-HR andFLORIS-LR. The FLORIS-HR will
be operating in red (O2-B, 677–697 nm) and far-red (O2-A, 740–780 nm) region
separately and will produce the spectral data with 0.3 nm SR. While FLORIS-LR
will collect the data in 500–780 nm range with SR of 2 nm. The Swath of FLEX
mission will be 150 km with a ground sampling of 300 m and repetitivity of less than
27 days (Vicent et al. 2016).

Till now, the SIF retrieval is being carried out using the high-resolution radiance
data from the atmospheric satellites meant for measuring atmospheric trace gas
concentrations. The first attempt for SIF retrieval for the land surface was done by
Guanter et al. (2007) using Medium Resolution Imaging Spectrometer (MERIS)
sensor onboard Envisat-1 satellite. The first global coverage of far-red SIF data was
produced using TANSO-FTS sensor on GOSAT satellite with the independent
efforts by Frankenberg et al. (2011a, b), Joiner et al. (2012), and Guanter et al.
(2012). SIF retrieval algorithms were further applied on Scanning Imaging Absorp-
tion spectrometer for Atmospheric Chartography (SCIAMACHY) sensor onboard
Envisat (Joiner et al. 2012; Wolanin et al. 2015; Köhler et al. 2015; Khosravi et al.
2015), on Global Ozone Monitoring Experiment 2 (GOME-2) sensor onboard
MetOP satellite (Joiner et al. 2013), on high-resolution Orbiting Carbon Observatory
2 (OCO-2) satellite data (Frankenberg et al. 2014), on Atmospheric Carbon dioxide
Grating Spectroradiometer (AGCS) onboard TanSat satellite (Du et al. 2018), and
TROPOspheric Monitoring Instrument (TROPOMI) onboard Sentinel-5P (Kohler
et al. 2018). Currently, global SIF data from GOME-2, OCO-2, and TROPOMI are
freely available for scientific communities to perform regional vegetation studies.
The specifications of SIF products from the current sensors are listed in Table 7.5.

Table 7.5 Current SIF products from satellite

Sensors
(Satellite)

Ground
footprint
(km � km)

Temporal
resolution
(days)

FWHM
(nm) Retrieval method

TANSO-FTS
(GOSAT)

10 * 10 3 0.025 FLD at KI band
(769.9–770.25 nm)

GOME-2
(MetOp)

40 * 40 29 0.5 Filling-in of the O2-A band
(principal component approach)

OCO-2 1.3 * 2.2 16 0.04 Radiative transfer model using
O2-A band

TROPOMI
(Sentinel-5P)

7*7 16 0.5 Filling-in of the O2-A band
(principal component approach)

ACGS
(TanSat)

2 * 2 16 0.04 Statistical method (singular vec-
tor decomposition, SVD)
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7.6 Applications of Chlorophyll Fluorescence

Chlorophyll fluorescence parameters provide a deep insight into the photosynthesis
machinery especially photosystem-II; hence, it is a very useful tool to study the
vegetation response to radiation (Falkowski and Raven 2013). CF has a wide range
of applications from estimation of chlorophyll concentration to regional-level pro-
ductivity assessment, from aquatic to land vegetations, from varietal screening to
stress adaptation studies, etc. (Baker and Rosenqvist 2004; Guo and Tan 2015).
There are vast applications of CF on oceanic phytoplankton, aquatic plants, and
forest vegetation; however, this section is emphasized on the agricultural applica-
tions. Both the active (PAM-based CF) and passive (SIF) measurement methods
provide the information on photosynthesis mechanism, but their measurement pro-
tocols are different in terms of physical units, intensity, and wavelength. PAM-based
instruments can measure the CF parameters (e.g. Fv/Fm, Fv0/Fm0, ETR, NPQ) and
have vast applications at leaf and molecular level. On the other hand, the SIF-based
instruments cannot measure the CF parameters but has added advantages to measure
CF at different wavelengths and at canopy or field level. Figure 7.9 depicts various
applications of CF in plant/crop related studies and researches. For the sake of
simplicity, the applications of CF in agriculture are discussed in following three
subsections.

Fig. 7.9 Applications of CF in crop-related studies
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7.6.1 Applications of Pulse-Amplitude Modulation-Based
Chlorophyll Fluorescence

Active measurement of CF through PAM instruments provides a rapid, reliable,
non-destructive, and cost-effective method for monitoring the health condition of
vegetation. PAM instruments can measure a number of quenching parameters under
various protocols (dark-adapted, light-adapted, continuous quenching analysis)
which can be related to the leaf biophysical/biochemical properties, gaseous
exchanges, and photochemistry. PAM-derived CF indices are used in many of the
studies for assessing the PS-II status under drought stress (Fracheboud and Leipner
2003; Woo et al. 2008; Mishra et al. 2012), flooding stress (Ezin et al. 2010; Caudle
and Maricle 2012), light stress (Critchley and Smillie 1981; Van Kooten and Snel
1990; Lichtenthaler and Burkart 1999), chilling stress (Zhang et al. 2010; Kalaji
et al. 2016), heat stress (Wu et al. 2014; Azam et al. 2015), salinity stress (Dkhil and
Denden 2012), nutrient stress (Afzal et al. 2014), heavy metal toxicity (Paunov et al.
2018), herbicidal stress (Liu et al. 2013; Guo and Tan 2015), and pathogens and
diseases (Ivanov and Bernards 2016).

Abiotic stress like drought changes the photosynthetic activity which intern is
reflected in the chlorophyll-a concentration of leaves. CF parameters like dark-
adapted Fv/Fm and light-adapted Fv0/Fm0 help in understanding the structure and
function of PS-II (Longenberger et al. 2009). It is now proven that a permanent
decrease in Fv/Fm and Fv0/Fm0 is a reliable indicator of low efficiency of PS-II
because of photoinhibition. Figure 7.10 shows the effect of imposed water stress
on the fluorescence parameters, viz. photochemical efficiency and photosynthetic
yield of a cotton cultivar which were highly correlated with the measured leaf
properties like chlorophyll content index, stomatal conductance, and leaf tempera-
ture (Choudhary et al. 2013).

Figure 7.11 depicts the spectral reflectance curve and fluorescence parameters,
viz. F0, Fm0, and Y (II) of different irrigation treatments on groundnut crop. It can be
observed that at the optimum irrigation level, i.e. irrigation water to cumulative pan
evaporation (IW:CPE ratio) of 0.8, the CF parameters were at its maximum, while
they decrease on either side because of the lack of or excess of water (Choudhary
et al. 2014). Spectral properties can further be correlated with the CF parameters.

Nutrient deficiency also affects the structure and function of PS-II, but in this
case, the Fv/Fm is not so sensitive parameter. CF-based parameters like performance
index using observations on the multiple leaves were found to be highly correlated
with the nutrient deficiencies (Živčák et al. 2014). For the plants under salinity stress,
the Fv/F0 ratio and ETR decrease significantly (Pereira et al. 2000). Likewise, with
the quenching parameters, it is possible to differentiate between different crop
stresses, and hence, CF is considered to be an important tool for screening varieties
of crops for different stress (Narina et al. 2014).
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Fig. 7.10 Effect of water stress on the PAM fluorescence parameters and leaf properties of a cotton
cultivar GIHV218

Fig. 7.11 Effect of different irrigation treatments on the PAM fluorescence parameters and leaf
spectral properties of a groundnut cultivar
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7.6.2 Applications of Sun-Induced Chlorophyll Fluorescence

Remote sensing of CF is based on the retrieval of SIF and its applications to
understanding the dynamic changes in the photosynthetic machinery. Unlike
PAM-based CF measurements, SIF is measured in a very narrow spectral range
and is highly sensitive to the ambient light conditions. Most of the SIF applications
are linked to the seasonal dynamic of photosynthesis measured from permanent
towers, airborne platform, or satellites (Rascher et al. 2009). Successful SIF retrieval
from the tower and its applications are presented by Rossini et al. (2010a, b, 2016)
and Drolet et al. (2014). Zarco-Tejada and co-workers have made significant pro-
gress in the airborne SIF for its applications from stress detection to parameter
retrieval (Zarco-Tejada et al. 2009, 2013). Satellite-based SIF applications for
regional productivity assessment, stress detection, etc. were demonstrated by
Damm et al. (2010), Zhang et al. (2016), Wagle et al. (2016), and Wei et al.
(2018). Some of the reviewed applications of the SIF are summarized below:

7.6.2.1 Sun-Induced Chlorophyll Fluorescence for Water Stress
Monitoring

GOME-2-derived SIF were correlated with tower-based GPP to assess and monitor
the drought of 2012 in Great Plains by Wang et al. 2016. They found a significant
correlation between SIF and palmer drought severity index. They concluded that the
SIF is more sensitive than NDVI for drought assessment during peak growing
season. Leaf-level early water stress was detected by Ni 2016 using SIF derived
from FLD method and SCOPE-based modelling. Hsiao et al. (2010) suggested a
dynamic fluorescence index (DFI), derived from LED-based fluorescence imaging,
to detect the seedling water stress.

7.6.2.2 Sun-Induced Chlorophyll Fluorescence for Productivity
Assessment

Numerous work has been carried out on SIF-GPP relationship at canopy level from
spectroradiometer data and at regional level from satellite-derived SIF data, and it
was concluded that the far-red SIF is significantly correlated with the fAPAR and
GPP (Rossini et al. 2010a, b; Yang et al. 2015). Figure 7.12 shows the monthly
average SIF data derived from GOME-2 sensor for the Indian subcontinent and its
relationship with flux-tower measured GPP.

Regional net primary production (NPP) was correlated with the GOME-2 SIF for
consecutive 3 years by Patel et al. 2018 and found a better agreement than the
integrated NDVI. High-resolution SIF (1.35 km � 2.25 km) from OCO-2 satellite
showed a significant correlation with flux tower-based GPP for midday and daily
time scale (Li et al. 2018). Duveiller and Cescatti (2016) downscale the GOME-2
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data from 0.50 to 0.05 and showed its agreement with the GPP at a smaller scale.
Smith et al. 2018 analysed GOME-2 SIF, OCO-2 SIF, and flux tower-based GPP
data and concluded that the SIF can successfully capture seasonal and inter-annual
GPP dynamics. Scale issues between SIF and GPP have been addressed by Wood
et al. 2017. Wei et al. 2019 used OCO-2 SIF at 757 and 771 nm for predicting
autumn crop production in China. In this study, SIF outperformed the MODIS-
derived indices. Recently Peng et al. (2020) have gone one step ahead and applied
OCO-2, TROPOMI, and GOME-2 SIF data along with broadband vegetation indices
for crop-specific yield assessment of soybean and maize.

7.6.2.3 Sun-Induced Chlorophyll Fluorescence for Nutrient Stress
Studies

Subhash and Mohanan (1997) used laser-induced SIF intensity ratio, i.e. F690/F730 to
identify nutrient stress in sunflower. They used curve fitting method (Gaussian
spectral function) to derive fluorescence intensity from laser-induced fluorescence
spectra. Cendrero Mateo in his PhD thesis (Cendrero Mateo 2013) has concluded
that daily SIF dynamics is able to differentiate the water and nitrogen stress in wheat
crop. Belanger et al. 2007 used different fluorescence ratios to the detection of
nitrogen stress in potato. Photosynthetic activities under cadmium stress on tomato
crop were studied by Cherif et al. (2011) using red and far-red SIF retrieved from
Ocean Optics USB 4000 spectrometer.

Fig. 7.12 Monthly averaged GOME 2A SIF data and its relationship with flux tower (located rice
crop at Maruteru, Andhra Pradesh, India)-derived monthly average GPP (Unpublished work)

7 Concepts and Applications of Chlorophyll Fluorescence: A Remote Sensing. . . 267



7.7 Challenges in Sun-Induced Chlorophyll Fluorescence
Retrieval

Detangling SIF signal from reflected radiance data is the major core area of research
in SIF spectrometry. The current SIF products rely on one wavelength or a narrow
bandwidth; future challenge lies in estimating the full range SIF, i.e. from 670 to
760 nm. Satellite-derived SIFs are mainly concentrated to the far-red SIF, while the
red SIF is even more important for plant research as it is linked with the PS-II. There
is a need to standardize and harmonize the SIF retrieval method as each method
(e.g. FLD, SFM, RTM) has its pros and cons (Frankenberg and Berry 2018). Better
atmospheric correction to reduce the bias in SIF estimate is the next requirement. SIF
retrieved from the radiative transfer modelling requires canopy parameters to build a
sound reflectance model; hence, further research is needed to quantify these canopy
parameters. SIF-based product validation depends on the ground instrumentation
networks which are sparse. The SR and SNR need to be further improved for
accurate ground-based SIF retrieval.

7.8 Conclusions

Chlorophyll fluorescence is a mechanism to dissipate the excess energy absorbed by
the photosynthetic machinery in plant leaves at some higher wavelength than the
absorbed one. Quenching analysis helps in finding the proportion of light partici-
pating in photochemical (photosynthesis) processes, non-photochemical processes,
and fluorescence. Chlorophyll fluorescence emits in the range of 670–760 nm with
two peaks, one at 690 nm (red SIF) and other 740 nm (far-red SIF). As the SIF
contributes only 2–5% of the reflected radiance, its retrieval is challenging. Various
retrieval techniques have been proposed in which the FLD-based retrieval is the
most popular, while RTM-based retrieval is more process-oriented. Instrumentation
specifications are being tuned for SIF retrieval and have been demonstrated in recent
studies from the ground and aerial platforms for successful SIF retrieval. Satellite-
based SIF retrieval techniques have been successfully demonstrated for few atmo-
spheric satellites like GOSAT-TANSOFTS, MetOp-GOME-2, OCO-2, and Sentinel
5P-TROPOMI . These SIF products were applied for the regional estimation of
productivity, stress detection, and phenological studies. The future of vegetation
remote sensing lies in the successful retrieval of SIF signals at a more disaggregated
level. ESA-FLEX mission of 2022 is one step toward this effort.
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Abstract The regular monitoring of soil physical, chemical, and biological proper-
ties is very essential, due to its role in soil ecosystem functions. A cost-effective
alternative for soil monitoring corresponds to spectral sensing techniques. Soil
spectral sensing techniques can support decision-making in agricultural systems at
both time and spatial scales, maximizing food production while preserving an
adequate soil condition. Due to the large number of ground, airborne, and orbital
spectral sensors operating today, this technology has been increasingly assimilated
by soil scientists. However, it is important to have an adequate comprehension about
the technique principles and limitations. This chapter provides a wide perspective
about the soil spectral sensing in the visible (vis: 350–700 nm), near-infrared (NIR:
700–1000 nm), and shortwave infrared (SWIR: 1000–2500 nm), considering reflec-
tance data at different acquisition levels. Here, it is discussed how soil constituents
interact with EMR and the resulting soil spectral behaviors. We describe the
predictive potential of vis-NIR-SWIR data for quantitative assessment of soil and
which soil attributes have been reliably estimated and the most commonly used vis-
NIR-SWIR equipment, as well as their advantages and limitations. Finally, we
discuss the current application in soil science and future perspectives.

Keywords Applicability of soil sensing · Hyperspectral sensors · Proximal and
remote sensing · Soil predictive potential · Spectral libraries

Abbreviations

ACORN Atmospheric CORrection Now
ANN Artificial Neural Network
ATCOR ATmospheric CORrection
ATREM ATmospheric REMoval algorithm
AVIRIS Airborne Visible/Infrared Imaging Spectrometer
CIE Commission internationale de l’éclairage
CHRIS Compact High-Resolution Imaging Spectrometer
DS Direct Standardization
EMR Electromagnetic Radiation
EnMAP Environmental Mapping and Analysis Program
EPO External Parameter Organization
FAO Food and Agriculture Organization
FLAASH Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
FOV Field of View
FS Field Spectroscopy
GPS Global Positioning System
HATCH High-accuracy ATmosphere Correction for Hyperspectral data
HISUI Hyperspectral Imager Suite
HyspIRI Hyperspectral InfraRed Imager
IS Imaging Spectroscopy
ISDAS Imaging Spectrometer Data Analysis System
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LS Laboratory Spectroscopy
MESMA Multiple Endmember Spectral Mixture Analysis
ML Machine Learning
MSC Multiplicative Scatter Correction
NIR Near-infrared
OSC Orthogonal Signal Correction
PA Precision Agriculture
PLSR Partial Least Square Regression
PRISMA Hyperspectral Precursor of the Application Mission
PS Proximal Sensing
PSp Point Spectroscopy
QUAC Quick Atmospheric Correction
RF Random Forest
RMS Root Mean Square
RMSE Root Mean Square Error
RPD Ratio of Performence to Deviation
RPIQ Ratio of Performence to Interquartile
RS Remote Sensing
SHALOM Spaceborne Hyperspectral Applicative Land and Ocean Mission
SM Soil moisture
SNR Signal-to-Noise Ratio
SNV Standard Normal Variate
SOC Soil Organic Carbon
SOM Soil Organic Matter
SS Soil Spectroscopy
SSLs Soil Spectral Libraries
SSS Soil Spectral Sensing
SVM Support Vector Machine
SWIR Shortwave Infrared
VNIR Visible and Near-Infrared

8.1 Introduction

Soil is an extremely important component of the earth’s biosphere, influencing the
ecosystems functioning and the maintenance of environmental quality at local and
global scales (Glanz 1995). Soil condition is influenced by numerous management
practices, including cultivation, irrigation, fertilization, and clearing of natural veg-
etation (Doran 2002). An important step in the evaluation of land management
suitability is to assess the soil condition (Karlen et al. 1997; Doran and Zeiss
2000). Thus, regular monitoring of soil physical, chemical, and biological properties
is very essential, for its role in soil ecosystem functions (Bouma and Montanarella
2016). A cost-effective alternative for soil monitoring corresponds to spectral
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sensing techniques. Soil spectral sensing (SSS) has been recognized by the Global
Soil Partnership from the Food and Agriculture Organization (FAO 2019) as a key
method for the improvement of governance and promoting sustainable management
of soils. The diversity, concentration, and size of inorganic and organic components
in soils result in specific behaviors of the reflected electromagnetic radiation (EMR).
The method requires no chemicals and is able to detect various soil properties
simultaneously (Nocita et al. 2015). Besides that, SSS techniques can support
management decision-making in agricultural systems at both time and spatial scales,
maximizing yields while preserving an adequate soil condition (Aitkenhead et al.
2017). Due to a large number of ground, airborne, and orbital spectral sensors
operating today, this technology has been increasingly assimilated by soil scientists
(Ben-Dor et al. 2009). However, it is still important to have an adequate compre-
hension of their principles and limitations. This chapter provides a wide perspective
about the SSS in the visible (vis: 350–700 nm), near-infrared (NIR: 700–1000 nm),
and shortwave infrared (SWIR: 1000–2500 nm), considering reflectance data at
different acquisition levels. Here, it is discussed how soil constituents interact with
EMR and the resulting soil spectral behaviors. We describe the predictive potential
of vis-NIR-SWIR data for quantitative assessment of soil and which soil attributes
have been reliably estimated and the most commonly used vis-NIR-SWIR equip-
ment, as well as their advantages and limitations. Finally, we discuss the current
application in soil science and future perspectives.

8.2 Definitions in Soil Sensing

Many definitions have been proposed to describe the study of soils by its reflectance
data, which are often related or even synonymous (Fig. 8.1). Here we discuss some
of the most common definitions, including SSS, remote sensing (RS), proximal
sensing (PS), soil spectroscopy (SS), point and imaging spectroscopy (PSp and IS),
as well as laboratory and field spectroscopy (LS and FS).

Soil spectral sensing is probably one of the broadest terms concerning the
acquisition of EMR with no direct contact with the targeted object. According to
Demattê et al. (2015), such a definition removes the relativity from terms like
proximal and remote. This is an advantage, especially when dealing with multi-
sensor monitoring systems, where spectral data are acquired from ground,
air� or spaceborne sensors. Usually, the term remote sensing is applied to define a
concept similar to SSS, where it is considered as the acquisition of information about
an object without touching it (Fussel et al. 1986). According to Francis and Reeves
(1977), a more adequate definition considers RS as “the noncontact recording of
information from the ultraviolet, visible, infrared, and microwave regions of the
electromagnetic spectrum by means of instruments such as scanners and cameras
located on mobile platforms, such as aircraft or spacecraft, and the analysis of
acquired information by means of photo interpretive techniques, image interpreta-
tion, and state-of-the-art image processing system.” Some authors also discriminate
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RS by the spectral range evaluated, where optical (ultraviolet, visible, and infrared
ranges) and radar/microwave (microwave range) remote sensing are usually
employed (Joshi et al. 2016; Notarnicola et al. 2006). Fussel et al. (1986) indicate
that the word “remote,” from Latin remotus, means not only distant but also indirect,
acting upon something indirectly, not arising from a primary or proximate action, not
immediately present to the senses, and controlled indirectly or from a distance. Over
time, this ambiguity has resulted in eventual miscommunication, as well as many
attempts by researchers to propose alternate definitions.

Soil scientists who work with information measured at shorter ranges have been
using the expression proximal sensing (Rossel et al. 2011), which not only recog-
nizes small distances between the sensor and sensed object but indirectly assumes
that the term “remote” should be considered as a reference of distance. Although
recently adopted in soil science, the term has been mentioned in literature for a
considerable time, such as in Price (1986), which describes PS as the acquisition of

Fig. 8.1 Diagram representing the relation among terms
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information from a ground-based platform that is in close proximity to the target or
object of interest. This concept focuses on the detection of information about an
object in a short distance, primarily in the field, using not only spectral sensors but
also any measurement device (Rossel et al. 2011). Three commonly used synonyms
for the term proximal sensing include in situ sensing, close-range sensing, and field
spectroscopy.

Another expression commonly observed in literature and directly related to the
abovementioned terms is spectroscopy. According to Ben-Dor et al. (2018), a
spectrum is a collection of discrete energies covering a wide spectral range of
photons that travel along with the energy source, surface, and sensor pathways,
after removing the atmospheric and source effects. Therefore, spectroscopy is
concerned with the absorption, emission, or reflection of EMR by atoms or mole-
cules (Hollas 2005). Information retrieved by soil spectra can be discriminated by
both point and image spectroscopy, which can be obtained in the laboratory, field, or
from air and space domains. Soil reflectance at point scale (i.e., point spectroscopy)
can be performed at short distances and under controlled conditions, preferably
using standard protocols, being described as laboratory spectroscopy (Escribano
et al. 2017). Alternatively, portable spectroradiometer can be used at field conditions
(field spectroscopy), also acquiring information at short distances, but under
noncontrolled conditions. Intrinsic characteristics of field measurements are varia-
tions in viewing angle, illumination conditions, as well as soil roughness, moisture,
management, and sealing (Ben-Dor and Banin 1995). In general, FS gives less
accurate results than LS, mainly due to the uncontrolled natural conditions in the
field. On the other hand, FS information is retrieved over larger areas, and it can also
provide a fairly good indication of spatial variability of soil properties (Escribano
et al. 2017).

While PS has a good but limited potential to provide spatially explicit informa-
tion, imaging spectroscopy is defined by Goetz et al. (1985) as the image acquisition
in hundreds of contiguous and registered spectral bands from which reflectance
spectra can be derived. IS can be employed at a short distance, where measurements
can be retrieved at laboratory or field conditions. Although IS sensors are an
excellent option at a short distance, Ben-Dor et al. (2009) see a bigger potential at
airborne and space domains. According to these authors, the IS is a new and
invaluable resource, which improves the RS by expanding point spectroscopy into
a spatial domain and under field conditions.

8.3 Hyperspectral Sensors

The first soil spectroscopy studies were conducted between the 1960s and 1970s,
and although the method gained visibility, technology was not advanced enough for
an adequate implementation (Bowers and Hanks 1971; Goetz 2009). In the last
decades, the computational advances and the miniaturization of important electronic
components allowed the development of better hyperspectral sensors and data
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processing techniques. Such a fact resulted in the increased availability of spectral
and spatial information for environmental studies. A hyperspectral sensor measures
contiguous wavelengths (bands), and no gaps occur through which important infor-
mation might not be detected (Goetz 2009). The necessity to adequately describe
spectral features results in sensors with hundreds of contiguous and narrower bands
(usually >100 bands).

A great number of soil spectroscopy studies perform laboratory measurements
using benchtop or portable equipment. Generally, these spectroradiometers provide
readings every 1 or 3 nm, resulting in excellent information for the soil’s character-
ization and properties predictions (Lagacherie et al. 2008). FS readings can be
retrieved by static or on-the-go methods. Static measurements are performed by
holding a spectroradiometer fore-optic on a soil surface, eventually by a penetrom-
eter mounting (Bricklemyer and Brown 2010). This method has been applied to
exposed pit walls (Ben-Dor et al. 2008), exterior walls of soil core holes (Ben-Dor
et al. 2008), or the surface of intact soil cores (Waiser et al. 2007; Morgan et al.
2009).

Another option is to perform on-the-go measurements, which usually require a
spectroradiometer enclosed within or connected to an implement that is inserted into
the soil and pulled by a tractor (Bricklemyer and Brown 2010; Kweon et al. 2013)
(Fig. 8.2). Mouazen et al. (2007) developed a spectrometer attached to a subsoiler to
perform carbon and moisture measurements. Kodaira and Shibusawa (2013) devel-
oped a real-time soil sensor mounted on a tractor and equipped with one micro-CCD
camera and two spectrometers to investigate soil. Christy (2008) proposed an on-the-
go system for collecting vis-NIR-SWIR spectra. Recently, on-the-go sensors have
gained significant importance over imaging sensors (air- and spaceborne), mainly
due to the limitations imposed by crop residue and consequently soil surface
coverage (Adamchuk et al. (2004). On the other hand, performing spectral readings
with a sensor moving through the soil can cause inconsistent soil presentation and
smearing. Furthermore, spectral data averaged over some traveling distance can
provide different behaviors depending on the acquisition time and velocity and
consequently degrade the accurate vis-NIR-SWIR predictions (Waiser et al. 2007;
Morgan et al. 2009).

The growing demand for large-scale investigations related to environmental
issues has required the development of air- and spaceborne IS. Imaging sensors
measure surface reflectance with a given spatial resolution, covering an area instead
of a single point (Gerighausen et al. 2012) and providing spectral information at high
spatial density (Franceschini et al. 2015). Currently, airborne sensors predominate
over spaceborne IS (Table 8.1) (Transon et al. 2018). Airborne sensors such as
AVIRIS and APEX have excellent potential for IS (Rast and Painter 2019). These
sensors were developed to facilitate the study of terrestrial targets, having a high
spectral and spatial resolution and flexible revisit time and providing measurements
of atmospheric properties from the ground to altitudes of 20 km (Gholizadeh et al.
2018; Schumann et al. 2013). Besides that, the possibility of maneuvering the
sensors’ platform (aircraft) allows users to measure the same target from different
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angles. Besides that, some of the airborne sensors have been used as a pre-simulation
for studies of upcoming satellite sensors (e.g., HySpex, APEX, and AVIRIS).

Differently from airborne sensors, the spaceborne ones have the advantage of
covering even larger areas and having lower costs for the users, therefore enabling
large-scale environmental monitoring and assessments. There are few spaceborne
hyperspectral sensors, even when considering the upcoming launches (Transon et al.
2018). Some of the most relevant spaceborne sensors are the Hyperion and the
Compact High-Resolution Imaging Spectrometer (CHRIS). Hyperion, onboard of
the EO-1 platform, was a NASA satellite mission that operated for 17 years

Fig. 8.2 Veris Optic Mapper with soil electrical conductivity and optical sensors (a), and the
estimated soil organic matter (SOM) maps and conventionally measured SOM (colored squares) of
two agricultural fields (b) in the USA. (Adopted, Kweon et al. (2013))
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(2000–2017). CHRIS on the European Space Agency’s PROBA platform orbits the
Earth since 2001 and records spectra in the vis-NIR-SWIR region. Although very
useful for several soil and environmental applications, the main disadvantage of
these sensors is the low signal-to-noise ratio (Castaldi et al. 2016), which provided
inaccurate results.

Upcoming spaceborne sensors, from several countries, are planned for launch in
the next years and are very promising for environmental studies (Table 8.2). They
provide high revisit time (from 3 to 5 days), higher spatial resolution and demon-
strate high feasibility for predicting several soil properties (Castaldi et al. 2016,
2019). The upcoming sensors here described are the Environmental Mapping and
Analysis Program (EnMAP) from German Space Agency (Guanter et al. 2015);
Hyperspectral Precursor of the Application Mission (PRISMA) from Italian Space
Agency (Pignatti et al. 2013); Hyperspectral InfraRed Imager (HyspIRI) from
NASA mission (Lee et al. 2015); Hyperspectral Imager Suite (HISUI), developed
by the Japanese Ministry of Economy, Trade, and Industry; HYPXIM developed
by a French ad hoc group of science and defense users (Briottet et al. 2011); and
Spaceborne Hyperspectral Applicative Land and Ocean Mission (SHALOM),
co-found and managed by the Italian and Israeli Space Agency (Natale et al.
2013).

8.4 Interactions Between EMR and Soil

The soil spectrum is a cumulative property resulting from interactions between EMR
and each soil component (Bowers and Hanks 1971), where changes in soil compo-
sition can affect the resulting soil spectral behavior (Fig. 8.3). Such components
partially absorb or reflect the incoming EMR, depending on the macroscopic and
microscopic interactions with the soil system.

Ben-Dor et al. (1999) named the physical or chemical parameters that signifi-
cantly affect the nature and shape of a soil spectrum as chromophores. They are
divided into two categories, chemical or physical. In soils, chemical chromophores
can be discriminated as minerals (clay, iron oxide, primary minerals – feldspar – salt,
and hard-to-dissolve substances such as carbonates, phosphates), SOM, and water
(Ben-Dor et al. 1999). Physical chromophores are properties that affect the whole
spectral region and waveband positions, but they do not directly relate to the
chemical functional group (Ben-Dor et al. 1999). Some examples of physical
chromophores are particle size variation and refraction indexes of a material. A
comprehensive review of each chemical and physical chromophore in soils is given
in Ben-Dor et al. (1999, 2002), Clark (1999), and Ben-Dor (2002).

While Ben-Dor et al. (1999) adopted the term chromophores, Stenberg et al.
(2010) simply divided soil attributes into two groups, the spectrally active and
non-active attributes. Terra et al. (2021) proposed other classification, first- and
second-order spectral relations. First-order soil properties directly affect soil spectra,
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modifying their overall reflectance intensities and absorption features due to mac-
roscopic and microscopic interactions. Second-order soil properties do not directly
affect soil spectra, where they do not produce absorption features or change reflec-
tance intensities. However, these properties are generally adsorbed or depend on
functional groups of minerals and organic compounds.

Regardless of the term, the most important aspect here is to understand that soil
spectroscopy is a promising tool, but it has some restrictions. When employing such
information, the user must be aware of the soil attributes that can actually be inferred
from the spectrum, as well as the interrelations between the attributes in soil system.

8.4.1 Macroscopic and Microscopic Interactions

Interactions at macroscopic level are directly related to EMR diffraction and scat-
tering phenomena, which result from soil physical and textural properties.
Depending on particle size distribution, structure, and compaction, soils will have
different reflectance intensities (albedo). In fact, compaction has an important role
in spectral measurements, once it affects the surface roughness (microrelief). In
rougher surfaces, diffuse (scattered) reflectance and shading increases, resulting in
attenuation of spectra’s intensity (Adams and Filice 1967; Townsend 1987). On the
other hand, smoother surfaces present higher directional (specular) reflectance and
increased intensity. High reflectance intensities are also related to the presence of
transparent minerals, such as quartz in sand fraction, which do not absorb energy. In
general, soil minerals are trans-opaques, simultaneously reflecting and absorbing
radiance in different spectral ranges. Other soil attributes, such as SOM and

Fig. 8.3 The vis-NIR-SWIR spectral behavior of dry mineral soils highlighting changes in
reflectance intensities and absorption features with their causes due to different mineral and organic
compositions. (Adopted, Terra et al. 2021)
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moisture, produce an overall attenuation of the soil reflectance intensity, due to the
absorption of electromagnetic energy through all spectral range (Terra et al. 2018).

Differently from macroscopic interactions, the microscopic phenomena are
responsible for absorption features (negative peaks) in soil spectrum, being depen-
dent on soil mineral and organic composition (Fig. 8.3). These interactions occur in
the first 10 to 50 μm of soil surface and are related to the EMR absorption by atoms
and molecules (functional groups) of organic and mineral compounds (Baumgardner
et al. 1986). The main soil organic functional groups are aromatics (C-H), amines
(N-H), alkyls (C-H), carboxyls (C¼O), amides (C¼O), aliphatics (C-H), methyls
(C-H), phenolics (C-OH), polysaccharides (C-O), and carbohydrates (C-O). The
main inorganic functional group is hydroxyl (-OH), which is exposed on the outer
surface of phyllosilicate and oxidic clay minerals (silanol, Si]-OH; aluminol,
Al]-OH; and ferrol, Fe]-OH) (Sparks 2002), being also observed in water molecules.

8.4.2 Spectral Features and Soil Attributes

The features observed in the vis-NIR spectrum (350–1000 nm) are mostly related to
interactions between radiation and ions in the minerals crystalline structure of iron
oxidic minerals. Such interactions take place at electronic level and result in
rearrangement of valence electrons due to charge-transfer and crystal-field effects
(Sherman and Waite 1985). In soils, these electronic transitions occur mostly in iron
oxides, since Fe is a transition metal and the ferric ion (Fe3+) is present in hematite
(Fe2O3) and goethite (FeOOH) (Fig. 8.4). In the visible range, these absorptions with
different intensities explain the reddish and yellowish colors that hematite and
goethite give to soils, respectively (Fig. 8.4). Magnetite (FeO.Fe2O3) and ilmenite
(FeTiO3) are also iron oxides; both are opaque minerals with reflectance spectra
presenting very low albedo (< 5%) and no clear absorption features between
350 and 1100 nm. Their absorbed radiance is related to ionic and intra-ionic
charge-transfer (Hunt 1977).

In the SWIR (1000–2500 nm), microscopic interactions occur due to
non-fundamental molecular vibrations (Hunt 1977). In soils, these vibrations are
basically related to stretching overtone of OH bond at 1400 nm, bending-stretching
combination of molecular H2O at 1900 nm, and bending-stretching combination of
aluminum-hydroxyl bond (Al-OH) at 2200 nm (Hunt and Salisbury 1971a)
(Fig. 8.3). Hydroxyl molecules and molecular H2O are found in the structures of
phyllosilicate clay minerals. These minerals are formed by a combination of silicon
tetrahedral sheets (O2� groups coordinated around Si4+) and one alumina octahedral
sheet (OH� groups coordinated around Al3+). They are discriminated into 1:1
(Si-tetrahedron + Al-octahedron) and 2:1 (Si-tetrahedron + Al-octahedron +
Si-tetrahedron) clay minerals, corresponding to kaolinite (1:1) and mica or smectite
(2:1) groups (Hunt and Salisbury 1971b), respectively. Once different phyllosilicates
share the same absorption features (i.e., 1400 nm, 1900 nm, and 2200 nm), their
distinction is only possible by the shape, width, and intensity of such features.
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Kaolinite presents a dissymmetry at 2205 nm toward higher wavelengths and
relatively weak features at the three features. Once 2:1 clay minerals present water
molecules strongly adsorbed on the interlayer surfaces, absorption features at
1400 nm and 1900 nm are quite strong (Demattê and da Silva Terra 2014). In
cases where high water contents are observed, these two bands become deeper and
broader with their maximum absorptions shifted to 1450 nm and 1940 nm. This
process is followed by a general decrease of the soil albedo, resulting from macro-
scopic interaction (Bowers and Hanks 1971). At soil saturation conditions, typical
absorptions of liquid water at 760 nm, 970 nm, and 1190 nm can also be observed,
mainly in spectra of quartz sandy soils with low organic matter content (Tian and
Philpot 2015).

Other features strongly influenced by soil attributes are positioned at 2260 nm and
2350 nm (Fig. 8.2). The first one is related to gibbsite [Al (OH)3], which is the main
aluminum oxide observed in heavily weathered soils. In this case, the feature results
from the bending-stretching combination of aluminum-hydroxyl bond (Al-OH). In
incipient soils or areas with regular liming, i.e., systems with high content of
carbonate minerals (calcite CaCO3; dolomite [CaMg (CO3)2]), the soil spectrum
presents a characteristic feature at 2350 nm. This spectral behavior is produced by a
third stretching overtone of C-O bonds (Hunt and Salisbury 1971b).

Fig. 8.4 Electronic transitions of iron ions in the hematite and the spectral behavior of hematitic
soils, indicating why some soils are red colored. (Adopted, Terra et al. 2021)
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Besides all the inorganic compounds here described, spectral features might be
influenced by SOM. Even in spectra of “mineral soils,” where organic carbon
contents are generally lower than 12% (IUSS Working Group WRB 2015), it
might be possible to detect absorptions across NIR-SWIR ranges, which are
assigned to stretching overtones in more than ten organic compounds (Rossel and
Behrens 2010; Terra et al. 2015; Rossel and Hicks 2015). However, organic carbon
peaks are easily masked by stronger absorptions of oxide and phyllosilicate clay
minerals and water.

8.5 Soil Modeling by Point and Imaging Spectroscopy

Since the soil spectral behavior is directly related to the concentrations of organic
and mineral components, as well as elements absorbed on their surfaces, soil
properties predictions can be reliably acquired by coupling spectroscopic and
chemometric tools. PSp and IS have been used in spatio-temporal analysis of soils,
both providing satisfactory-good predictions (Ben-Dor et al. 2009; Chabrillat et al.
2013; Demattê et al. 2015). The difference between them is related to the fact that
point data, usually acquired at laboratory conditions, allow the user to perform
sample preparation and have little or no influence of external factors (e.g., atmo-
spheric conditions), differently from aerial and orbital platforms. Terra et al. (2021),
Demattê et al. (2015), and Rossel et al. (2006) provide a comprehensive discussion
about the potential of vis-NIR-SWIR reflectance in the soil evaluation.

8.5.1 Influence of Sample and Environment Conditions
in Soil Spectroscopy

Soil sample preparation is extremely common when performing laboratorial mea-
surements and might have considerable influence in soil predictions. Usually,
samples are oven-dried at 45 �C for 48 h and later sieved to <2 mm, in order to
reduce the particle size effect in spectral measurements (Ben-Dor and Banin 1995).
Miltz and Don (2012) investigated the impact of sample preparation on spectra and
found that drying (oven-dried vs. air-dried) and grinding (grinding vs. crushing and
sieving) decreased the error for organic carbon predictions. In this case, grinding was
the most influent factor accounting for 35% of the error. It has also been reported that
grinding (or ball milling) has great effect on clay content prediction performances.
Soil particles grinding has a substantial effect on spectra increasing overall reflec-
tance, especially in soils with high clay content, as aggregates are crushed (Stenberg
et al. 2010). Drying of samples also increases the total reflectance, but in addition the
absorption bands at 1400 and 1900 nm are attenuated (Krishnan et al. 1980).
Chakraborty et al. (2019) indicated that moisture, from non-dried samples, can
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increase measurement errors up to 29%. Recently, protocols have been established
for spectral acquisition geometries and soil preparation, in order to standardize LS
measurements and enable spectral data sharing and intercomparison of predictions
from different laboratories (Ben Dor et al. 2015; Rossel et al. 2016).

While external factors are adequately controlled in laboratory, field and aero/
orbital spectroscopy are largely influenced by soil surface roughness, covering (e.g.,
green vegetation, crop residues, litter and soil crusts) and moisture. These environ-
mental factors are extremely variable in both space and time, and the combined
effects that they have on a spectrum are still not well understood (Escribano et al.
2017). Irregularities in soil surfaces produce shadow areas, where light do not
directly reach the surface. Reflectance of rougher surfaces is lower than energy
reflected from directly illuminated soil fragments (Chabrillat et al. 2019). Although
their shape is quite similar, the spectrum of ploughed soils (rough surface) has
overall reflectance lower than that related to sunlit fragments (Cierniewski and
Gulinski 2010). According to Matthias et al. (2000), the surface of a sandy soil
had a decrease of 25% in reflectance after ploughed. Potter et al. (1987) found the
opposite effect in sandy soils, but in this case, authors indicated a combined effect of
ploughing and subsequent wetting (rainfall) and drying of surface, which resulted in
soil crust. Soil crust corresponds to a thin and platy layer at the soil surface that is
exposed to solar radiation and consequently can be detected by remote sensors
(Agassi et al. 1981). In this case, reflectance of crust-covered soils is higher than
the ones without a crust (Goldshleger et al. 2009). Therefore, the influence of soil
roughness on spectral reflectance is variable, especially after tillage treatments.

The development of soil crust is not only controlled by mechanic forces but also
biogenic/organic process (Chabrillat et al. 2019). In arid regions it is possible to
observe surfaces with a biogenic crust (Pinker and Karnieli 2007). The biogenic
crust corresponds to lower and nonvascular (microphytic) plants, which covers a thin
layer of the soil upper surface (Rogers and Lange 1972). O'neill (1994) indicated that
soil spectral features around 2080–2100 nm are influenced by cellulose and conse-
quently by microphytic crust. Karnieli and Tsoar (1995) indicated a decrease in the
soil’s albedo due to the microphytic crust, which resulted in the false identification of
anomalies in soils.

In general, it is very unlikely to find bare soils at the field. Usually, the soil surface
is partially or completely covered by vegetation and organic and inorganic debris.
Bartholomeus et al. (2007) indicated that a vegetation cover of more than 20%
prevents accurate soil properties estimation. In other cases, only a few percent
fractional vegetation cover were sufficient to dramatically decrease the accuracy of
SOC and clay predictions (Bartholomeus et al. 2011). The soil spectral region most
strongly affected by green vegetation is between 680 nm and 1300 nm, due to the
steep rise in reflectance that it causes (e.g., Ammer et al. 1991). Dry vegetation has
great influence on the albedo of the vis-NIR region and in absorption features of the
SWIR region, due to cellulose, lignin, and water (Ben-Dor et al. 2018). According to
Murphy and Wadge (1994), in soil-vegetation mixtures, crop residues (dead vege-
tative tissue) have greater impact on soil spectra than green vegetation, especially on
the 2200 nm absorption feature.
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If soil spectra are measured with air- or spaceborne sensors, not only the condi-
tions of surface will influence the data but also the atmospheric gases and aerosols
between the measured surface and the sensor. The vis region is influenced by
absorption of ozone (around 600 nm), aerosol scattering (monotonous decay from
400 to 800 nm), oxygen (760 nm), and water vapor (730 nm and 820 nm) (Fig. 8.5).
NIR and SWIR are affected by absorption of water vapor (940, 1140, 1380, and
1880 nm), oxygen (around 1300 nm), carbon dioxides (around 1560, 2010, and
2080 nm), and methane (2350 nm) (Ben-Dor et al. 2018) (Fig. 8.5). Therefore, users
should be aware of the possible issues with the dataset before employing predictive
models to soil reflectance spectra of air- and spaceborne sensors.

8.5.2 Spectra Preprocessing

Once soil spectra have been measured, it is usually applied a preprocessing tech-
nique to the raw data to remove irrelevant information, which could affect the
potential of predictive models (Gholizadeh et al. 2013). These techniques aim to
decrease the noise and enhance possible spectral features related to the predicted soil
property. One of the most common preprocessing methods is the log-transform from
reflectance (R) into absorbance (A ¼ log (1/R)), which preserves a linear correlation
between radiance and concentrations. The Kubelka-Munk function, multiplicative
scatter correction (MSC), and standard normal variate (SNV) are interesting options
to deal with scattering effects (Terra et al. 2021). Among the functions used for noise

Fig. 8.5 SimulatedAVIRISsoil spectrum and the major gas absorption features which overlap with
soil features. (Adopted, Ben-Dor et al. 2018)
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effects removal, the most common are the averaging spectra, Savitzky-Golay trans-
formation (Savitzky and Golay 1964), and moving average filters. To highlight
absorption peaks, it is recommended techniques such as continuum removal (Clark
and Roush 1984), baseline correction, first- and second-derivative processing, and
wavelet transform (Ricker 1953).

With the development of portable sensors and the increasing use of FS, different
methodologies have been employed to reduce effects from environmental factors on
the field spectra, consequently enhancing the model’s predictive performance.
Minasny et al. (2011) implemented the external parameter orthogonalization
(EPO; Roger et al. 2003) to remove the effects of moisture in spectra of rewetted
soil, improving predictions of soil carbon. The EPO-processed spectra from samples
with highest moisture content had an R2¼ 0.87, while the same spectra without EPO
preprocessing presented R2 of 0.56 and higher bias value. Ackerson et al. (2015)
used the EPO to remove effects of soil water content, roughness, aggregation, and
temperature variations from field measurements. The EPO-processed data provided
much better prediction capabilities, with an improvement in RMSE and R2 of
418 g kg�1 to 98 g kg�1 and 0.59 to 0.82, respectively. Another method employed
to remove the influence of in situ factors is the direct standardization (DS) algorithm.
Ji et al. (2015) used DS to reduce the effects of environmental factors on field
spectra, aiming to improve the performance of OC models. Franceschini et al. (2018)
tested the EPO, DS, and orthogonal signal correction (OSC), to remove the effects of
in situ factors from on-the-go data acquired with a vis-NIR-SWIR spectrometer. In
this case, OSC had the best overall performance for the evaluated soil properties.

When dealing with data from remote sensors, the pretreatment process requires a
few more steps. Images acquired by these sensors need geometric and radiometric
corrections. Geometric correction is concerned with placing the measurements or
derivative products in their proper planimetric (map) location (Jensen and Jensen
2013). Radiometric correction aims to improve the accuracy of surface spectral
reflectance, emittance, or back-scattered measurements, acquired with RS systems
(Johannsen and Daughtry 2009; Jensen 2005). The most important external variables
that can cause remote sensor data to exhibit radiometric and geometric error are the
terrain elevation, slope, aspect, and atmosphere (Jensen 2005). Among these vari-
ables, correction of the atmospheric effects is one of most discussed, and several
algorithms have been proposed to correct RS data.

The first algorithms corresponded to empirical methods such as internal average
reflectance approach (Kruse, Raines, and Watson 1985) and flat field approach
(Roberts, Yamaguchi, and Lyon 1986). Conel et al. (1987) developed the empirical
line (EL) method, which requires field measurements (spectra) of distinct targets for
the correction. Later, Bernstein et al. (2005) proposed the quick atmospheric cor-
rection (QUAC), a semiempirical correction method that determines atmospheric
compensation parameters from the information contained within the image such as
pixel endmember spectra (i.e., pure, unmixed pixels in the scene). This approach
allows the retrieval of reasonably accurate reflectance data even when a sensor has
no proper radiometric or wavelength calibration or the solar illumination intensity is
unknown (Jensen 2005).
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Once empirical approaches are fairly restrictive, depending on image statistics
and field reflectance measurements, many researchers have developed theoretical
modeling techniques. Such techniques simulate absorption and scattering effects of
atmospheric components using a radiative transfer model (Minu et al. 2016). Some
of the modeling techniques described in literature corresponds to ATmospheric
REMoval algorithm (ATREM) (Gao et al. 1993), ATmospheric CORrection
(ATCOR) (Richter 1993), Imaging Spectrometer Data Analysis System (ISDAS)
(Staenz et al. 1998), Fast Line-of-sight Atmospheric Analysis of Spectral Hyper-
cubes (FLAASH) (Adler-Golden et al. 1998), High-accuracy ATmosphere Correc-
tion for Hyperspectral data (HATCH) (Qu et al. 2001), and Atmospheric
CORrection Now (ACORN) (ACORN 2002). Even though these are robust models,
the resulting spectra still present residual atmospheric absorptions and scattering
effects (Clark et al. 2002).

8.5.3 Soil Predictive Potential by Different Acquisition Levels

To perform robust predictive models, soil spectra must be associated with multiple
linear or nonlinear regression techniques based on machine learning
(ML) algorithms, such as support vector machines (SVM), artificial neural networks
(ANN), boosted trees, random forest (RF), partial least squares regression (PLSR),
and deep learning (Padarian et al. 2019a, b). The performances of prediction models
depend on the size and spectral variability of soil datasets (local, regional, country, or
global) and generally are assessed by the R2 (coefficient of determination), RMSE
(root mean square error), RPD (ratio of performance to deviation), and RPIQ (ratio
of performance to interquartile) (Bellon-Maurel et al. 2010; Ramirez-Lopez et al.
2013a, b). Currently there are several studies in literature performing an
intercomparison among the most common multivariate calibration models, in order
to define the best methods for soil attributes prediction (e.g., Padarian et al. 2019a, b;
Reda et al. 2019; Yang et al. 2019).

8.5.3.1 First-Order Attributes

The model’s robustness tends to be related to the soil attributes evaluated, where the
first-order ones have greater chance of being adequately predicted (Terra et al. 2021).
In literature, these are usually the attributes with highest coefficient of determination
and lowest error (Fig. 8.6). Generally, these properties are strongly correlated with
reflectance or absorbance data, and their concentrations are better quantified by ML
algorithms (Terra et al. 2015). The most commonly predicted attribute is clay
content, where spectroscopic predictions started in the mid-1990s (Ben-Dor and
Banin 1995; Janik and Skjemstad 1995; Janik et al. 1998) and adequate perfor-
mances have been described since then (R2� 0.75). Sand and clay spectral modeling
are usually more efficient than other soil properties; therefore they are considered the
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most relevant ones. Spectroscopy is also promising for total organic carbon pre-
dictions, being successfully applied in several cases (Bellon-Maurel et al. 2010;
Terra et al. 2015; Xu et al. 2018). Fractions of soil organic carbon (SOC), such as
particulate, humic, and resistant fractions, and SOM composition, such as carbohy-
drate, protein, lignin, lipid, and black carbon, have been accurately modeled by
reflectance spectroscopy (Cécillo et al. 2012; Rossel and Hicks 2015). Although
carbon is a first-order attribute, the models’ performances are still variable (Rossel
et al. 2016).

Another attribute significantly correlated to reflectance is soil moisture; conse-
quently modeling of water content at soil field capacity (by laboratory vis-NIR-
SWIR spectroscopy) presents good performance (R2 > 0.80) (Fig. 8.6) (Ben-Dor
et al. 2008; Demattê et al. 2006). Similarly, abundances of phyllosilicates and oxides
have been successfully quantified by reflectance spectroscopy based on different
techniques (Terra et al. 2015). Oxides extracted by acid digestion suggesting min-
eralogical compositions such as SiO2, Fe2O3, Al2O3, TiO2, and MnO have also been
accurately predicted (Ben-Dor and Banin 1995; Terra et al. 2015). Concentrations of
calcium carbonates ranging from 10% to 75% were satisfactorily estimated by
Ben-Dor and Banin (1995) with standard errors of 5.9% and 7.9% for calibration
and prediction models, respectively.

Fig. 8.6 R2 of prediction models described in literature. Values inside parenthesis represent
the total number of predictions. Proximal sensing R2 were retrieved from Terra et al. (2021), and
the remote sensing ones from literature review (Anne et al. 2014; Bartholomeus et al. 2011;
Ben-Dor et al. 2002; Casa et al. 2013; Castaldi et al. 2014; Choe et al. 2008; DeTar et al. 2008;
Gerighausen et al. 2012; Gomez et al. 2012, 2008; Guo et al. 2019; Hbirkou et al. 2012; Hively et al.
2011; Lu et al. 2013; Peón et al. 2017; Qi et al. 2018; Selige et al. 2006; Steinberg et al. 2016; Tan
et al. 2020; Vohland et al. 2017; Wang et al. 2010; Yang et al. 2016; Zhang et al. 2013). Coefficients
are grouped in physical (Ph.A) and chemical attributes (Ch.A), heavy metals (HM), macro- (Macro)
and micronutrients (Micro), and mineralogy (Mineral)
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8.5.3.2 Second-Order Attributes

Even though second-order properties do not affect soil spectra, there is a great
interest in employing reflectance spectroscopy analysis to predict plant nutrients in
soils, in particular macro- and micronutrients (Terra et al. 2019). Quantifying the
concentration of elements in the soil solution, corresponding to the fraction available
for plant absorption, will probably not provide robust models (Janik et al. 1998).
Attempts to predict soil nutrients based on reflectance spectroscopy indicated highly
variable R2 values in vis-NIR-SWIR range for calcium (0.01–0.9), magnesium
(0.12–0.90), potassium (0–0.9), phosphorus (0.02–0.92), and nitrogen (0.09–0.9)
(Fig. 8.6). Among these elements, nitrogen has presented better results with mean
R2 > 0.70 (Fig. 8.6).

This same issue is observed for predictions of micronutrients, but due to the
lowest natural concentration of those nutrients, they would not be detected by the
technique even if they had specific spectral absorptions in the vis-NIR-SWIR range
(Soriano-Disla et al. 2014). The most common micronutrients evaluated by soil
spectroscopy are Cu, Mn, Fe, and Zn (Fig. 8.6). As expected, performances of the
models are highly variable, and their mean R2 values are usually low-satisfactory for
B (R2 ranging between 0.4 and 0.74), Cu (0.01–0.71), Fe (0.19–0.9), Mn (0.01–0.7),
Na (0.08–0.68), and Zn (0.26–0.57).

Although heavy metals are second-order attributes, they are generally adsorbed or
depend on functional groups of minerals and organic compounds, which in turn are
spectrally active attributes. Therefore, their concentrations may be indirectly
modeled by reflectance spectroscopy. Some researchers have described good fitting
between conventional wet analyses and vis-NIR-SWIR predictions, where the per-
formance of these models is related to a local covariation between the predicted
element and first-order property (Sarathjith et al. 2014). Researchers are mostly
focused in arsenic (As), cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and
zinc (Zn), although predictions of mercury (Hg) and chrome (Cr) are also reported
(Fig. 8.6). The R2 for vis-NIR-SWIR models are also highly variable, and their mean
values are usually satisfactory for Cd (R2 ranging between 0.3 and 0.97), Cr
(0.44–0.98), Cu (0.25–0.95), Mo (0.64–0.97), and Ni (0.5–0.92) (Fig. 8.6). In
general, spectroscopic models for predictions of other heavy metals (As, Fe, Mn,
Pb, and Zn) have presented unsatisfactory mean R2.

The different laboratory methods used to define the standard values, as well as the
different fractions assessed (e.g., extractable, exchangeable, and total), probably
contribute to the large variation described here (Chang et al. 2001). Furthermore,
fractions most related to concentration of the element in solution, rather than to the
chemistry of the soil matrix, will probably be poorly predicted (Soriano-Disla et al.
2014). The good predictions of soil macronutrients are related to covariations
between element assessed and first-order soil attributes. Ca, Mg, and K are usually
predicted based on the covariation with mineralogical properties (Chang et al. 2001).
N is highly correlated with SOM and carbon concentrations, mostly because of the
amide groups. Accurate spectral predictions of phosphorus concentration in soils are
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related to its covariation with clay mineralogy and organic matter content (Iznaga
et al. 2014; Sarathjith et al. 2014; La et al. 2016).

8.5.3.3 Comparing Proximal and Remote Sensors

Due to the limited availability of hyperspectral data from air- and spaceborne
sensors, the number of researches quantifying soil properties from RS is significantly
reduced when compared to the proximal sensors (Fig. 8.6). In both cases, the
attributes most evaluated are clay and sand content, as well as SOM and carbon
(Fig. 8.6). The predictive potential of proximal and RS is slightly different, and
proximal sensors have a higher potential, which is related to the lower influence of
the external factors. Such factors attenuate the data signal and impact in soil
reflectance measured with RS. Remotely sensed data is affected by many external
factors, including atmospheric conditions (Anderson et al. 1994; Richter and
Schläpfer 2002; Mulder et al. 2011), structural effects, sensors spectral resolutions,
geometric distortions, and spectral mixture of features (Kriebel 1978; Richter and
Schläpfer 2002; Mulder et al. 2011). Since PS and RS have different field of view,
differences can also be related to the measurement scale. In this case, the spectrum
from a satellite pixel usually averaged out more signal than punctual ground
measurements.

The inherent trade-off between fully covering the study site with RS data of lower
detail and accuracy, or having a more proximal and detailed set of punctual
(or spatial) measurements is a non-solvable problem. It demonstrates a basic
dilemma in environmental sensing studies, not only related to the quality/coverage
of measurements but also to the cost and time required by surveys and data
acquisition systems (Lopez and Frohn 2017). This trade-off is the reason why the
synergistic use of remotely and proximally sensed data is a key element needed to
solve questions at multi-scale research (Demattê et al. 2015). Besides that, it is
important to perform a careful selection of the sensing techniques for a particular soil
study, which will result in the most suitable dataset and scale for the desired
application.

8.6 Soil Spectral Libraries

One of the major gaps in the effective monitoring of soils with vis-NIR-SWIR data is
the calibration of robust spectroscopic models, which must be able to assess attri-
butes from a wide range of soil types (Cécillon et al. 2009). Researchers have
suggested that the development of large soil spectral databases could facilitate the
use of spectroscopy, reducing the number of calibration samples required for local
and regional applications, as well as facilitating soil monitoring from spectroscopy
(McCarty et al. 2002; Shepherd and Walsh 2002; Brown 2007). These large data-
bases are defined by Brown et al. (2006) as soil spectral libraries (SSLs). The SSLs
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are discriminated as local, regional, or global, according to their geographical extent
and the represented soil variability. Local libraries refer to field-scale datasets, while
the regional SSLs represent a greater geographic extent, such as physio-climatic
zones. The global libraries consist of the world’s major soil taxa, being built from
samples of multiple continents (Brown et al. 2006). SSLs are intended for two
purposes mainly: (a) to be used in RS procedures as in situ measurements for
calibration and/or endmembers selection in data processing or (b) for modeling of
soil properties by reflectance spectroscopy (Brown 2007; Brodský et al. 2011a;
Selige et al. 2006; Rossel et al. 2006).

There are a considerable number of vis-NIR-SWIR SSLs spread around the world
for national and continental uses, with significant amounts of soil samples (> 1000)
per library, such as in Africa (Shepherd and Walsh 2002; Stevens et al. 2013), the
USA (Brown et al. 2006), Europe (Stevens et al. 2013), Czech Republic (Brodský
et al. 2011b), Belgium (Genot et al. 2011), Denmark (Knadel et al. 2012), China
(Li et al. 2015), Brazil (Demattê et al. 2019), and Australia (Rossel and Webster
2012). At world scale, Brown et al. (2006) measured and analyzed the spectra of
4184 soil samples with great compositional diversity from across the Americas,
Africa, and Asia. Recently, the combined effort of several researchers allowed the
creation of a global soil spectral library with more than 23,600 samples (Rossel et al.
2016).

Many studies in the literature describe how to develop and use SSLs (Shepherd
and Walsh 2002; Guerrero et al. 2016; Rossel et al. 2016), but basically it is
important to consider (a) the number of samples that are needed to adequately
describe the soil variability at the targeted site; (b) the methods used to sample,
handle, prepare, store, and scan soils; and (c) the reference analytical methods used
(Rossel et al. 2008). Even if the libraries are built following rigorous procedures, it
might not contain enough diversity to allow prediction of soil properties (Guerrero
et al. 2010). On the other hand, the accuracy of spectroscopic models usually
decreases when the SSLs contain an extremely heterogeneous set of samples
(Wetterlind and Stenberg 2010; Ramirez-Lopez et al. 2013a, b; Shi et al. 2015),
consequently presenting limited performance at local and regional scales.

There are many attempts to enhance the accuracy of regional/global SSL’s
models, aiming to predict soil properties at local scale. One of them is the addition
of new local samples to an established SSL, process also known as “spiking” (Brown
2007; Wetterlind and Stenberg 2010). Some studies report improvements in soil
predictions when combining SSLs, local samples, and spiking techniques (Brown
2007; Guerrero et al. 2010). There are also methods which perform local statistical
modeling, such as locally weighted regression (Igne et al. 2010), LOCAL (Gogé
et al. 2012), and fast Fourier transform local-weighted regression (Gogé et al. 2014).
These methodologies optimize the calibration process by subsetting or weighting
SSL’s samples, according to their degree of spectral similarity with the targeted soils.
In this specific case, the term “local” describes a set of samples with similar spectral
features, irrespective of their spatial proximity (Shi et al. 2015). Another strategy
corresponds to the spatially constrained models, which basically define SSL subsets
according to geospatial data, e.g., agrogeological zones, agricultural fields, or soil
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types (Stevens et al. 2010; Vasques et al. 2010; Wetterlind and Stenberg 2010;
McDowell et al. 2012; Shi et al. 2015).

Recently, studies are also exploring approaches that combine soil spectral librar-
ies and other georeferenced information (Shepherd and Walsh 2002), such as from
digital terrain models, field observations, and multi- and hyperspectral RS imagery
(e.g., Vågen et al. 2006; Viscarra Rossel 2011; Vasques et al. 2015; Rizzo et al.
2016). Using the Australian SSL, Rossel et al. (2011) performed maps of kaolinite,
illite, and smectite for the whole country at two depths (0–20 cm, 60–80 cm). Rizzo
et al. (2016) produced a digital soil map using as training set vis-NIR-SWIR spectra
from local soil samples, a regional spectral library, and terrain attributes. The authors
indicated the potential of combining local reflectance measurements and a regional
SSL to improve soil mapping campaigns. Demattê et al. (2018) used a regional SSL
to validate a multispectral satellite composite image of bare soils. Later, the authors
used such image to define high-resolution soil attributes maps. Mendes et al. (2019)
employed an SSL to calibrate spectral transfer functions which were capable of
predicting the spectral reflectance from subsurface soil, based on the surface soil
reflectance. These functions were combined to satellite images to map the soil
spectral behavior at soil subsurface layers.

Although a promising tool for soil monitoring, some issues must be addressed
before employing a SSL. A matter of great concern when developing large spectral
libraries is the involvement of multiple personnel, laboratories, and instruments
(Brown et al. 2006; Croft et al. 2012). Such aspects can increase uncertainties in
measurements of both reflectance and soil properties. The vis-NIR-SWIR spectra
present subtle variations even when obtained on supposedly identical equipment.
Therefore, a model calibrated with spectra from a specific instrument could not
perform adequately when employing information from another spectroradiometer
(Cécillon et al. 2009; Croft et al. 2012). Efforts must focus on increasing the quality
of the analytical data and the impact of global datasets to predict local data (Cambule
et al. 2012).

8.7 Applications of vis-NIR-SWIR Data

8.7.1 Soil Organic Carbon Stock

A relevant mechanism for climate change mitigation is to reduce the carbon dioxide
in the atmosphere by soil carbon assimilation (Lal 2014). In this process, it is
extremely important to define the carbon pools and evaluate stocks changes, but an
adequate assessment of SOC stocks requires extensive sampling and soil analyses
(Goidts et al. 2009). Several studies describe the capacity of vis-NIR-SWIR data to
predict SOC content (Wetterlind and Stenberg 2010; Nocita et al. 2015). While
such studies frequently report predictions of gravimetric SOC (SOCg) on a mass
basis, carbon accounting requires volumetric SOC (Roudier et al. 2015). According
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to Bellon-Maurel and McBratney (2011), the prediction of volumetric SOC (SOCv)
by vis-NIR-SWIR spectroscopy can be performed indirectly or directly. The first
one, respectively, estimates SOCg and bulk density (ρb) independently and later
calculates stocks based on such predictions. The other option is to predict SOCv

directly from the vis-NIR-SWIR spectra, employing a model calibrated with con-
ventional SOCy measurements. The direct prediction is considered the best one,
once it reduces uncertainty propagation in predictions (Bellon-Maurel &
McBratney 2011).

The potential of direct predictions is described by Cambou et al. (2016), which
estimated SOC stock from partially disturbed cores (sampled with a manual auger)
and indicated that vis-NIR-SWIR spectroscopy had reasonable performance
(R2

val ¼ 0.70, SEPc ¼ 2.0 g C dm� 3). Rodier et al. (2015) measured vis-NIR-
SWIR spectra from intact soil cores (at field conditions) and later tested both direct
and indirect prediction methods to detect vertical changes in SOC stocks. The
authors found no statistical difference in accuracy between these approaches and
suggested that the direct prediction of SOCv is the most feasible option. Lobsey and
Rossel et al. (2016) developed a technique that uses gamma-ray attenuation and vis-
NIR-SWIR spectroscopy to measure ex situ the bulk density of wet soil cores and
later perform indirect predictions of SOC stocks. It provided accurate and verifiable
predictions, allowing stocks to be reliably predicted by indirect means. Later, Rossel
et al. (2017) developed the Soil Condition Analysis System. It integrates an auto-
mated soil core sensing system with statistical analytics and modeling to characterize
soil at fine depth resolutions. It includes a γ-ray attenuation densitometer to measure
bulk density and a vis-NIR-SWIR spectroradiometer. The system is capable of
providing spatially explicit estimates of total SOC, particulate, humus, and resistant
organic.

Priori et al. (2016) combined laboratory vis-NIR-SWIR and passive gamma-ray
data to directly map C stocks of the topsoil (0–30 cm) in agricultural fields. Pre-
dictions were interpolated using geographically weighted multiple regression, ele-
vation, and gamma-ray maps. The prediction model had a R2 of 0.77 and RMSE of
0.67 kg m�2, indicating the model’s potential for monitoring the effects of manage-
ment and erosion on soil carbon. Guo et al. (2019) described the potential of SOC
stocks being mapped by laboratory and airborne vis-NIR-SWIR spectroscopy. They
indicated that differences between laboratory (R2¼ 0.66, RPIQ¼ 2.39) and airborne
spectral (R2 ¼ 0.42, RPIQ ¼ 1.84) predictions are mostly related to atmospheric and
soil surface conditions. The authors also describe airborne data as very useful for
digital soil mapping and dynamic monitoring of carbon pools.

According to the literature, both direct and indirect predictions can provide
adequate stock prediction, and although good results are observed, there is still
room for improvement. The main issue of field sensors is to simultaneously predict
the bulk density and SOCg or even to directly measure the SOCy. This is considered
by Bellon-Maurel and McBratney (2011) a great challenge. Furthermore, there are
few studies like Guo et al. (2019), which evaluate the potential of hyperspectral soil
RS. With the launching of new spaceborne sensors, it is essential to develop studies
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combining point and image spectroscopy to improve the predictive potential and
generate highly detailed maps of SOC stocks.

8.7.2 Soil Moisture

Soil moisture (SM) affects several processes in soil system, having a direct relation-
ship with global climate and weather and influencing in several hydrometeorological
processes (Petropoulos et al. 2015), such as evapotranspiration and precipitation. For
those reasons, spatiotemporal monitoring of SM is highly desirable (Lobell and
Asner 2002). Soil SM strongly affects the albedo and features in NIR region (Lobell
and Asner 2002; Ben-Dor et al. 2009). Predictions of SM in laboratory and field
generally provide good-excellent results (Fig. 8.6). Dalal and Henry (1986), for
example, used NIR spectroscopy and regression analysis and found an R2 of 0.9.

Attempts have been made to spatially predict SM content by on-the-go sensors
(at field conditions), and some had good performance. Christy (2008) calibrated an
on-the-go hyperspectral sensor for SM prediction, using the spectral ranges at
350–1050 and 900–1700 nm. They found R2 ranging from 0.79 to 0.82. Kodaira
and Shibusawa (2013) used a real-time vis-NIR-SWIR soil sensor to measure several
soil properties in field. The authors found a good performance for SM (R2 ¼ 0.95)
when they employed the 500–1600 nm spectral range and second derivative as
pretreatment. Although a reasonable option, Franceschini et al. (2018) indicated
that on-the-go sensors present higher predictions error compared with laboratory
measurements.

The number of studies predicting SM from air- and spaceborne sensors is still
limited; nevertheless, they are promising. Bach and Mauser (1994) combined a
model for internal reflectance with absorption coefficients into Beer’s law (Palmer
and Williams 1974; Lekner and Dorf 1988). Later, the authors applied the process in
the prediction of water contents with an AVIRIS image of an irrigated field in
Germany. Ben-Dor et al. (2002) used DAIS-7915 hyperspectral airborne sensor to
measure saturated and field moisture in clayey soils and found that airborne sensors
are feasible for providing reliable predictions for SM, with R2 > 0.65. Whiting et al.
(2004) isolated the influence of the fundamental water band from soil samples with
different gravimetric moisture contents. They fitted an inverted Gaussian function
centered on the assigned fundamental water absorption region at 2800 nm, over the
logarithmic soil spectra continuum. Based on this method and an AVIRIS image,
they were able to map the soil surface moisture content in two fields located in the
USA and Spain. Haubrock (2008) and Haubrock et al. (2004, 2008) developed a
model for predicting gravimetric SM based on RS techniques. The method combined
point and IS (especially reflectance at 1800 nm and 2119 nm) and hydrological
measurements. Such technique was applied to HyMap airborne images to map soil
surface moisture at a field in Germany (Fig. 8.7; Haubrock et al. 2008). In this case,
RS data was highly correlated with the field moisture content measured at the time of
the overflight. Finally, Finn et al. (2011) used HIS hyperspectral airborne sensor to
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correlate the SWIR bands with SM measured in situ. These authors not only
indicated the potential of HIS sensor to detect SM but also described the bands
between 1300 and 1670 nm as highly correlated with SM (r > 0.70).

8.7.3 Precision Agriculture

Agricultural fields are heterogeneous in terms of soil conditions, varying in space
and time (Ge et al. 2011). Conventional soil fertility recommendations are based in
elaborated sampling procedures, which provide “average” soil fertility values from a
given field. Such procedure usually results in either too much or too little fertilizer
locally applied (Stoorvogel et al. 2015). The advent of global positioning systems
(GPS) led to the development of the precision agriculture (PA) concept. PA aims to
improve the efficiency of resources use by employing variable rate applications
(Stenberg et al. 2010). Information needed by PA include high-resolution (<10 m)
maps of soil properties. The sampling density used to develop these maps is often
defined without background information regarding the soil variability (Franzen and
Peck 1995). Furthermore, sustainable agriculture practices are hindered by the costs
associated with the high sampling density required by PA (Ramirez-Lopez et al.
2019).

Soil vis-NIR-SWIR spectroscopy can provide detailed spatial sampling over a
site, generating a good continuous description of soil variability (Demattê et al.
2015). Using only vis-NIR-SWIR laboratory spectra, Ramirez-Lopez et al. (2019)
defined the optimal set size and the best samples with which to calibrate vis-NIR
models. Later, robust block kriging was used to predict particle size fractions and
calcium content maps. The results indicated that samples selection based on vis-
NIR-SWIR spectra considerably decreased the need for soil sampling and conven-
tional chemical analysis. Rizzo et al. (2016) spatialized the soil vis-NIR-SWIR
spectral behavior at farm scale and used this information along with fuzzy

Fig. 8.7 HyMap airborne image (a) and the corresponding soil surface moisture map (b) at a field
in Germany. (Modified, Ben-Dor et al. (2009) and Haubrock et al. (2008))
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c-means clustering to define soil mapping units. Based on fuzzy centroids, the
authors defined representative samples to each mapping unit. Christy (2008)
employed an on-the-go vis-NIR-SWIR spectroradiometer in eight fields in central
Kansas, USA. For each field, a clustering k-mean algorithm was used to select
15 sample locations that best represented the spectral data space. He evaluated the
potential of the system not only to define sampling locations but also to perform real-
time spatial prediction of soil attributes. In fact, acquiring spatial explicit data at high
density and measuring soil surface at adjustable depth are the main advantages of on-
the-go reflectance measurements (Franceschini et al. 2018).

Soil spectroscopy data can be also employed to aid in management practices.
Rossel et al. (2010), for example, developed a soil fertility index for sugarcane
production and mapped it using laboratorial vis-NIR-SWIR spectra and terrain
attributes. Tekin et al. (2013) produced lime recommendation maps using online
vis-NIR measurements, with R2 ¼ 0.81 and RMSEP ¼ 0.20. Maleki et al. (2007)
carried out on-the-go measurements of soil spectra in two fields located in Belgium.
They used such information to optimize the variable rate application of elemental
P. In this case, P was calculated from vis-NIR-SWIR spectra, and subsequently the
required elemental P was determined. The authors described herein and many others
in literature (e.g., Schirrmann et al. 2011; Kweon et al. 2013; Franceschini et al.
2018) indicated laboratorial and FS as useful tools to describe the spatial variability
of soil fertility or quality. Air- and spaceborne hyperspectral sensors can also be used
in PA (Bajwa and Tian 2005; Stamatiadis et al. 2013), but in this case retrieving soil
spectral data is fairly difficult due to crop residues covering the fields surface
(Franceschini et al. 2018).

8.7.4 Soil Degradation by Erosion

Inappropriate human activities and land exposure to adverse climatic conditions can
result in soil quality loss and degradation (Tóth et al. 2008). This is of great concern,
once degraded soils do not adequately provide ecosystem services as it originally
could. Soil degradation is affected by many processes, but one of most important is
the erosion. There is a global loss of 75 million tons of soils every year, which costs
approximately $400 billion (Eswaran et al. 2001; Ben-Dor et al. 2009). Eroded soils
usually present significant alteration on physical and chemical properties, such as
color, pH, SOM, texture, structure, consistence, coarse fragments, free iron oxides,
CaCO3, and/or clay minerals (De Alba 2003; Escribano et al. 2017). These attributes
are considered excellent indicators when evaluating changes in soil conditions.

Spectroscopy can provide all the required information for an adequate assessment
and monitoring of soil degradation processes (Shoshany et al. 2013). In this case, the
degradation is detected by evaluating spatiotemporal alterations in soil indicators.
Most of these indicators are spectrally active and consequently can be monitored by
hyperspectral data acquired with ground or airborne sensors.
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Many studies on soil properties and conditions have been carried out to define the
spatial variability of soil properties and erosion processes on local and regional
scales (Hill and Schütt 2000; Ben-Dor et al. 2006; Vrieling 2006; Corbane et al.
2008; Escribano et al. 2017). Jarmer et al. (2007) developed regression functions
built on CIE (Commission internationale de l’éclairage) color coordinates and
specific absorption features from HyMap imagery, to design a degradation assess-
ment and monitoring system over southeastern Spain. Schmid et al. (2016) acquired
soil hyperspectral data from AISA sensors and combined them to morphological and
physicochemical ground data to map classes of soil erosion and accumulation stages.
According to the authors, it was possible to detect different soil horizons at surface
due to different intensity of erosion processes, which in turn have distinct soil
properties. They calibrated a support vector machine algorithm to extrapolate the
erosion and accumulation stages to the whole region (Fig. 8.8). Žížala et al. (2017)
used soil properties maps (SOC stock, sand, silt, clay, Fe, and CaCO3) derived from

Fig. 8.8 Soil erosion and degradation mapping from AISA sensors hyperspectral images. (Mod-
ified, Chabrillat et al. (2019); Schmid et al. (2016))
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hyperspectral data of CASI1500 and SASI600 sensors, along with digital elevation
models and fuzzy classification, to define soil erosion classes in farms of Czech
Republic. Rossel et al. (2017) accessed soil degradation by analyzing soil organic C
stocks and condition with vis-NIR-SWIR proximal sensing. Bracken et al. (2019)
applied the Multiple Endmember Spectral Mixture Analysis (MESMA) to data from
sensors AISA Eagle and Hawk and detected soil erosion in a semiarid Mediterranean
environment. In this case, the authors found an overall accuracy of 70.3% when
using the unmixing fraction maps and terrain derivatives.

The results described herein indicate that when modeling erosion processes, point
and image spectroscopy can monitor important variables, which have currently been
poorly or not detected by other methods (Haubrock et al. 2004, 2008). On the other
hand, most of the modeling processes proposed till now cannot provide information
about areas that are prone to erosion, but not yet affected (Ben-Dor et al. 2009). One
of the few studies trying to address such problem was developed by Makisara et al.
(1995). The authors used an airborne AISA sensor, in southern Israel to detect
problematic areas in the image and define locations with plowing priority, in order
to increase the water infiltration rate and consequently reduce the chance of erosion.
With the development and launching of new hyperspectral sensors, it is important
that researchers keep expanding the capabilities of spectroscopy to detect and
prevent soil erosion process.

8.8 Conclusions and Future Perspectives

In this brief review, we discussed the advances in point and IS and how it has been
supporting scientists in the spatiotemporal characterization of soils. Although the
methodology has limitations concerning which attributes can truly be monitored by
vis-NIR-SWIR spectral range, spectroscopy is definitely an important data source in
different topics of soil science. The technique is already capable of describing soil
condition/quality and providing real-time information. With the development of
public datasets (e.g., soil spectral libraries) and low-cost portable sensors or free
aerial/orbital images, the technique will be even more accessible and consequently
easily employed to help farmers and decision-makers. The SSLs stored on the cloud
and combined to machine learning algorithms will be able to deploy robust predic-
tion models at farm scale, reducing the need for conventional soil analysis. The soil
assessment process will be faster and therefore the decision-making will become
more assertive.

Although the technology is currently restricted by issues in miniaturization, in the
medium term, sensors will become even more accessible (e.g., hyperspectral imag-
ing based on smartphones cameras), leading to the increased use of IS in the
upcoming decades (Stuart et al. 2019). Furthermore, the Unmanned Aerial Vehicle
platforms will provide greater flexibility than more conventional sensing strategies,
allowing the user to define important parameters such as survey size and flight
altitude, resulting in better data sources for the application. In parallel, the upcoming
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high signal-to-noise ratio satellite imaging will provide spectroscopy data for the
next 5 years (EnMAP, SHALOM, PRISMA), resulting in a major step toward the
operational quantitative monitoring of soil surfaces at large scales (Escribano et al.
2017).

Finally, the integration of proximal and remote soil spectral sensors (covering
different spectral ranges and platforms) provides the ability to improve the prediction
accuracy of individual soil properties. Apparently, the combination of multiple
sensors has been the best alternative for the assessment of soil properties at real
time, and future work should focus in the design and evaluation of such strategy.
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Chapter 9
Digital Soil Mapping: The Future Need
of Sustainable Soil Management

Priyabrata Santra, Mahesh Kumar, N. R. Panwar, and R. S. Yadav
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Abstract Digital soil mapping (DSM) involves in development of a statistical or
mathematical model to estimate soil class or properties at unsampled locations using
information on spatial variation of soil properties and different covariates affecting
soil formation process. There are three main approaches followed in DSM, and these
are geostatistical approach, state-factor (clorpt) approach, and pedotransfer function
(PTF) approach. In the geostatistical approach, spatial variation parameters (nugget,
sill, and range) are identified from a spatial soil database using semivariogram
followed by making unbiased estimate of soil properties at unsampled location
through kriging. In the state-factor (clorpt) approach, the soil formation theory is
the backbone. In this approach soil is considered to be influenced by five major
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factors: climate (cl), organism (o), relief (r), parent material (p), and time (t).
Therefore, abundantly available information on these factors in different digital
platforms are exploited to develop model to estimate soil properties at unsampled
location. The PTF approach is used to develop digital soil maps of complex soil
properties and difficult to measure soil properties. In this approach digital soil map of
basic soil properties is first developed using the first two approaches, which are then
combined to map of complex soil properties through PTF model. All these three
approaches of DSM are discussed in detail along with assessment of its accuracy and
uncertainty. Through the DSM approaches, available legacy soil data may be
converted to digital products for its better accessibility and utility, e.g., through
development of soil information system.

Keywords Digital soil mapping · Geostatistical modeling · Hyperspectral soil
signatures · Machine learning · Pedotransfer functions · Soil information systems

Abbreviations

DEM Digital Elevation Model
DSM Digital Soil Mapping
DSMM Digital Soil Mapping and Modeling
ANN Artificial Neural Network
AWI Arid Western India
IK Indicator Kriging
KED Kriging with External Drift
k-NN k-nearest neighborhood
LCCC Lin’s Concordance Correlation Coefficient
LK Lognormal Kriging
MLR Multiple Liner Regression
OK Ordinary Kriging
PK Probability Kriging
PTF Pedotransfer Function
RF Random Forest
RK Regression Kriging
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SVR Support Vector Regression
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9.1 Introduction

Mapping soil properties has been conventionally done through surveying efforts
followed by laboratory analysis. Soil maps developed by the conventional approach
are generally hard copy maps and therefore are not easily accessible to end users.
Moreover, mapping units of these maps are delineated based on soil profile data and
surveyor’s field experience. These mapping units sometimes represent quite a large
area in the field, and thus soil properties of interest vary considerably within a unit.
With the advancement of geostatistics and abundant availability of digital informa-
tion on earth features, there is a possibility to map soil properties utilizing available
soil data and auxiliary information on earth features and environmental variables.
Through this approach, available legacy soil data may be converted to digital
products for its better accessibility and utility. Moreover, in the context of digital
India and soil health missions, it is timely and apt to prepare the digital soil maps for
different regions of the country.

In a conventional approach, mapping of soil is done by expert surveyor based on
his field observations and few auxiliary information, e.g., aerial photographs, remote
sensing imageries, geological maps, vegetation pattern maps, etc. Information on
different soil properties is attached to each polygon or mapping unit of the map.
These labeled polygon maps are often called digital soil maps since the late 1970s.
However, in a true sense, these maps cannot be called as digital soil maps; rather it
can be called as digitized soil maps. In the DSM methodology, a statistical or
mathematical model is developed to estimate soil class or properties at unsampled
locations using the information on spatial variation of soil properties and different
covariates affecting the soil formation process. DSM have recently gained impor-
tance in different parts of the world (McBratney et al. 2003; Lagacherie et al. 2006;
Behrens and Scholten 2006; Grunwald 2009; Sanchez et al. 2009; Minasny and
McBratney 2016). To get quantitative answers on the role of soil in carbon seques-
tration and its impact on biomass production and human health, the GlobalSoilMap.
net project has been implemented by FAO and UNESCO in the year 2006. World
Soil Information Centre (ISRIC, Netherland) has been working on several projects
on DSM, e.g., Global Soil Information Facilities (GSIF), Africa Soil Information
Service (AfSIS), World Inventory of Soil Emission Potentials (WISE), Soil and
Terrain Database (SOTER), etc. Apart from these international programs, several
countries have initiated their DSM programs, e.g., DIGISOL in Europe, OzDSM in
Australia, NCSS DSM program of the USA, etc. Some of the digital soil products
available in the WebGIS version are soil map of Scotland (http://www.soilsscotland.
gov.uk/data/soilsurvey25k.php), soil information systems of California (http://
casoilresource.lawr.ucdavis.edu/soilwebapps/), etc. All these DSM programs were
based on legacy soil data available from different surveying efforts; however rapidly
measurable soil spectral signatures have potential to improve the accuracy of the
developed map (Shepherd and Walsh 2002; Brown et al. 2006; BenDor et al. 2009;
Rossel et al. 2016; Katuwal et al. 2018).
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Quantifying the spatial variation of soil properties for mapping purpose has been
studied in India long ago by Agarwal and Gupta (1998) and Dahiya et al. (1998)
followed by several researchers (Das 2007; Santra et al. 2008, 2012a, b, 2017a, b, c;
Kamble and Aggrawal 2011; Chatterjee et al. 2015, Singh et al. 2016). Recently,
Santra et al. (2017a, b, c) made a comprehensive review of DSM in India. Scattered
efforts have been made by several researchers in India for soil spectral library
generation (NBSS&LUP 2005; Saxena et al. 2003; Srivastava et al. 2004; Singh
et al. 2014). Reflectance spectra of soil have also been used for the rapid character-
ization of soil properties. For example, (i) Santra et al. (2009) characterized soil
hydraulic properties using proximal spectral reflectance, (ii) Gulfo et al. (2012)
assessed soil moisture content using hyperspectral reflectance, (iii) Divya et al.
(2014) characterized soil texture using hyperspectral reflectance, (iv) Kaduputiya
et al. (2010) assessed soil nutrient contents using diffused reflectance spectra, etc.
Apart from these, reflectance spectroscopy has been recently applied to estimate
several soil properties in West Bengal, Rajasthan, Karnataka, etc. (Sharathjith et al.
2014; Santra et al. 2015, Mohanty et al. 2016; Gupta et al. 2016; Chakraborty et al.
2017). A detailed review of hyperspectral signature-based soil resource assessment
is available in Das et al. (2015).

9.2 Digital Soil Mapping Methodology

DSM is the digital way of mapping soil properties. The digital way indicates the
application of several computation methods and modeling approaches in the map-
ping procedure and finally presenting the soil maps in digital format rather than hard
copy. A big advantage of the digital format of the soil map is the easy accessibility of
it to end users. There are three main approaches followed in DSM or digital soil
mapping and modeling (DSMM) as depicted in Fig. 9.1. These are the geostatistical
approach, state-factor (clorpt) approach, and PTF approach. In the geostatistical
approach, spatial variation parameters (nugget, sill, and range) are identified from
a spatial soil database using semivariogram followed by making an unbiased esti-
mate of soil properties at an unsampled location through kriging. In the state-factor
(clorpt) approach, the soil formation theory proposed by Dokuchaev (1883) and
Jenny (1941) is the backbone. In this approach, soil is considered to be influenced by
five major factors: climate (cl), organism (o), relief (r), parent material (p), and time
(t). Therefore, abundantly available information on these factors in different digital
platforms are exploited to develop a model to estimate soil properties at an
unsampled location. Later on, the clorpt approach is slightly modified by McBratney
et al. (2003) including soil itself and the spatial locations of samples as a factor in the
soil formation process, which is termed as “scorpan” approach. The pedotransfer
approach is used to develop digital soil maps of complex soil properties and difficult
to measure soil properties. In this approach, a digital soil map of basic soil properties
is first developed using the first two approaches, which are then combined to map of
complex soil properties through the PTF model. The PTF models are typically the
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regression-based models relating to complex soil properties with basic soil proper-
ties. Nowadays, PTFs are not only restricted to regression-based models; rather
several advanced machine learning tools are applied.

9.3 Legacy Soil Data and Digital Soil Mapping

Surveying efforts during the past few decades have led to the development of large
soil databases in different parts of the world but are often left as unused after
achieving the primary goal of the survey. This large soil database is often called a
legacy soil database. The legacy soil database of a country or a target ecosystem may
be utilized to develop digital soil maps, which then can be reutilized by stakeholders
in different land management decisions. However, these legacy soil data need to be
harmonized both temporally and depth-wise. In the case of temporal harmonization,
the time-dependent changes of soil properties, if any, are identified, and then soil
properties at a particular time reference are computed. In the case of depth harmo-
nization, the soil properties for standard soil depths are computed using the spline
technique. Six standard soil depths as followed by FAO Global Soil Mapping
protocol are 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm.

A schematic diagram to utilize legacy soil data in DSM is presented in Fig. 9.2.
There are several sources of legacy soil data (e.g., soil series-level database, soil
atlas, local soil archive, published soil data in journals, etc.), which may be collated
together in a single platform. If the number of soil sampling points in the legacy soil

Fig. 9.1 Digital soil mapping approaches
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data is large enough to draw the semivariogram plot and to identify the spatial
variation pattern, then we can straightway go for DSM using standard procedure.
Otherwise, additional sampling effort may be required to fill the gap in sampling
locations in order to compute the robust semivariogram model. For this purpose, a
test region in the targeted spatial domain for DSM may be identified, and spatial
variation pattern of the selected soil properties may be identified. Using this known
spatial variation pattern, probabilistic sampling design may be formulated to increase
the sampling density within the extent of the target area. Later on, information on
several covariates may be used to develop accurate digital soil maps of the target
area.

9.4 Scale Issue in DSM

Accuracy and uncertainty of digital soil maps largely depend on the scale of spatial
data. The scale is defined by scale triplets (Blöschl and Sivapalan 1995), which are
spacing, support, and extent (Fig. 9.3). The spacing is defined as the distance
between a pair of sampling points, the extent is defined as the maximum distance
between two sampling points in two-dimensional space of a spatial data, and the
support is defined as the ground area from where the sample is collected and
analyzed in the laboratory to represent it as a point data in a spatial database.
These three scale triplets uniquely specify the scale of a spatial soil database and
generally help to identify the pattern in the data. For example, the spatial extent of a

Fig. 9.2 A framework of DSM using legacy soil data
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spatial soil database in a farmer’s field may be a maximum 100–200 m in India,
whereas for a state-level spatial soil database, the extent is about 600–800 km. The
support for measurement of bulk density in the field is about 5 cm, whereas if we
take multiple samples from a field and then composting it to a single value for that
field, then the support of that measurement will be total field block. Spacing is
another important scale parameter in the DSM approach specifically in the
geostatistical approach. If the minimum spacing between a sampling pair in the
spatial database is large, then it will not be able to capture the spatial variation
parameter. In the case of large spacing, the sampling density is low, whereas in
closed spaced sampling points, the sampling density is high. It is always desirable to
have large sampling density in the spatial database; however, the cost and time
involved in achieving this optimistic sampling density is also needed to be looked
into.

Therefore, the scale issue of a spatial soil database needs to be resolved first, and
it depends on the soil properties on which we are interested to identify the spatial
variation. The effect of the sampling scale on hydrological processes is beautifully
depicted schematically by Blöschl and Sivapalan (1995), which is presented here in
Fig. 9.4. This explanation for the hydrological process in the figure is also true for the
spatial pattern of soil properties. In the figure, the solid line represents the natural
variation of soil properties, whereas the small circles represent sampling locations. In
general, it is not possible to collect soil samples from all possible locations to capture
the full natural variability of the target soil property. Rather, we collect soil samples
from a subset of all possible locations. For example, if we take soil samples
following Fig. 9.4a, we fail to capture the microscale variation in the data because
the spacing is too large to capture this small-scale variation. This type of spatial
pattern may be observed for soil nutrient content which is highly influenced by
specific land management practices followed in fragmented land units in an area.
Under such a situation, the spacing between sampling pairs needs to be decreased or
the sampling density needs to be increased, and this change in sampling scale is
again to be optimized with sampling budget and time constraints. In another case, as
shown in Fig. 9.4b, if the extent of the data is too small, then it will not capture the
large-scale variability. Therefore, we need to increase our survey area to include
large-scale variations of the soil property in the data. In this case, we may ignore
excessive sampling with small separation distance; rather we may shift our focus to

Fig. 9.3 The scale triplet (spacing, extent, and support). (Adopted, Blöschl and Sivapalan 1995)
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include sampling pairs with large separation distance. Such type of large-scale
variation may be observed in soil properties which are more influenced by parent
material, which has large spatial continuity. In the third case as depicted in Fig. 9.4c,
if the support is quite large, then most of the variability in the data will be smoothed
out. Measurement of soil properties is generally done based on samples collected
from the field using an auger or sampling core with a cross-sectional area having
4–5 cm diameter. Therefore, support of measurements of soil properties is about 4–5
cm, which is often assumed as point support considering the large extent of the field
as compared to the support. Sometimes, in situ measurement of soil properties is
carried out with large support, e.g., about 20–40 cm for infiltration measurements,
about 2–4 m for in situ measurement of soil water retention, etc. Often, we composite
the soil samples from multiple locations in a field and in the process we increase the
support of measurements to rule out the random variation in the field. In a regional-
scale soil mapping, the support of measurements may be increased to 1 ha by making

Fig. 9.4 The effect of measurement scale on capturing the “true” spatial pattern. The circles are the
measurements, and the thin line is the “true” spatial pattern. (Adopted, Blöschl and Sivapalan 1995)
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multiple measurements in 1 ha field and then averaging it to a single value. However,
in a field-scale soil mapping, such an increase in support is not desirable. From the
above discussion, we understand that issue of sampling scale can be resolved after
gathering knowledge on natural variation of soil properties. The question may be
asked that “how we can know the natural variation of a soil property so that we can
optimize the sampling strategy?” Natural variation of a soil property in an area may
be approximated from previously identified spatial variation parameters of the target
soil property from a nearby place. Otherwise, it may also be approximated from a
preliminary survey. Later on, sampling efforts may be designed through probabilistic
sampling theory with prior knowledge on spatial variation identified in the prelim-
inary survey.

9.5 Geostatistical Approach of Digital Soil Mapping

In geostatistics, soil property at a particular location [Z(x)] is considered as a set of
values following a probability distribution and not just a single value. Therefore, at
each possible location x, a soil property, Z(x), is considered as a random variable
with a mean, μ, and a variance, σ2. This description of random variable of Z(x)
applies to infinitely many locations in space. At each possible location in space (xi,
i¼1, 2, 3. . .), it has its own probability distribution. Therefore, a range of possible
values exists at a particular location following the probability distribution, and this is
called an ensemble. One member from this ensemble for a particular location is
called as realization of the property and is represented as Z(xi). A set of random
variables or multiple realizations, Z(x1), Z(x2). . .Z(xi), is called as a random function,
a random process, or a stochastic process. The set of true values of Z at each possible
location that comprise the true realization of the random function is known as a
regionalized variable.

Following the regionalized variable theory, values of the variables which are
located near to each other are expected to be similar, whereas values of the variables
which are separated from each other by a large distance are expected to be dissimilar.
This relation of regionalized variables may be described by covariance. In classical
statistics, covariance of two variables z1 and z2 for n pair of observations can be
written as

C z1, z2ð Þ ¼ 1
n

Xn
i¼1

zi,1 � z1ð Þ zi,2 � z2ð Þ ð9:1Þ

Likewise, in geostatistics, the covariance of a regionalized random variable, Z, for
two locations (x1 and x2) can be written as
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C x1, x2ð Þ ¼ E z x1ð Þ � μ x1ð Þf g z x2ð Þ � μ x2ð Þf g½ � ð9:2Þ

However, we cannot simply calculate the covariance because we do not know
exactly the value of μ(x1) and μ(x2). We have measured only one value at each
location x1 and x2. To solve this problem, assumption of stationarity comes into
picture.

The stationarity rule of geostatistics implies that the distribution of a random
process has certain parameters that are stationary across all possible locations in
two-dimensional space. The first-order stationarity states that the expected value of a
regionalized variable at any location is constant for all x, which is mathematically
written as E[Z(x)]¼μ. Assuming the first-order stationarity rule, we can replace mean
of the regionalized variable at all possible location [μ(x1), μ(x2),. . .μ(xi)] by a single
value μ. The value of μ can be estimated from arithmetic averaging of measured
values at multiple locations. The second-order stationarity rule states that the squared
deviation of the value from μ at all possible locations is also constant and equals to
square of standard deviation. Mathematically, the second-order stationarity is written
as E [{Z(x)-μ}2]¼ σ2. Another rule of second-order stationarity defines the
stationarity of covariance, which states that covariance of the regionalized variables
located at two locations xi and xj depends only on their separation distance and not on
their absolute positions. By applying this stationarity rule, it can be stated that for
any pair of observation points xi and xj separated by a lag distance h, E [{Z (xi)-μ}{Z
(xj)-μ}]¼ C (xi,xj) and is constant for any given h. Therefore, the constancy of mean,
variance, and covariance as discussed above are called as the second-order
stationarity or weak stationarity.

After considering the stationarity rule, the auto-covariance function can be
rewritten as

COV Z xð Þ,Z xþ hð Þ½ �
¼ E Z xð Þ � μf g Z xþ hð Þ � μf g½ �
¼ E Z xð Þf g Z xþ hð Þf g � μ2

� �
¼ C hð Þ

ð9:3Þ

The above covariance is also called as auto-covariance since it represents the
covariance of Z with itself but at different locations. To remove the dependence of
auto-covariance on scale, i.e., h, it is often represented as dimensionless parameter
autocorrelation, ρ(h):

ρ hð Þ ¼ C hð Þ
C 0ð Þ ð9:4Þ

where C (0) is the covariance at lag 0, which is actually σ2.
After assuming the stationarity rules, problem arises again to consider μ to be

constant within the sampling domain. Generally, μ changes in field as we keep on
increasing the extent of sampling domain, and variances also increase with increase
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in area of interest. Here, Matheron (1965) identified the problem and proposed the
intrinsic hypothesis, which states that for a short separation distance at least, the
difference between Z(x) and Z(x+h) is zero and the term covariance is replaced by
variance of the difference in Z(x) and Z(x+h). In mathematical formula, these two
hypotheses are written as

E Z xð Þ � Z xþ hð Þ½ � ¼ 0 ð9:5Þ

VAR Z xð Þ � Z xþ hð Þ½ � ¼ E Z xð Þ � Z xþ hð Þf g2
h i

¼ 2γ hð Þ ð9:6Þ

where γ(h) refers to semivariance, which is obviously the half of the variance.

9.5.1 Semivariogram

Semivariance as a function of h is called the semivariogram. From field measure-
ments of soil properties at multiple locations, experimental semivariograms bγ hð Þ for
different lag distances h are calculated as follows (Goovaerts 1998):

bγ hð Þ ¼ 1
2N hð Þ

XN hð Þ

i¼1

Z xið Þ � Z xi þ hð Þ½ �2 ð9:7Þ

where N (h) is the number of data pairs within a given lag class, Z (xi) is the value of
the variable at the location xi, and Z (xi+h) is the value of the variable at a lag of
h from the location xi. Experimental semivariograms [bγ hð Þ ] as obtained from
Eq. (9.7) are generally fitted in standard models so as to obtain the spatial variation
parameters: nugget (C0), sill (C + C0), and range (a). Weighted least square tech-
nique is generally followed in fitting procedure, and the weight to semivariogram
value at each lag is assigned in such a way that it is inversely proportional to the
number of pairs for that particular lag. Sometimes, the semivariogram values at
smaller lags are assigned with higher weights than the semivariogram values at large
lag distance. During semivariogram calculation, maximum lag distance is generally
taken as half of the minimum extent of sampling area so as to minimize the border
effect. We are not discussing here the isotropic and anisotropic semivariogram. For
general purpose, omnidirectional or isotropic semivariogram is followed if there is
no trend of direction on the data. However, if there is strong trend of x- and y-
direction on the data, the anisotropic semivariogram may also be calculated. Best-fit
semivariogram model is selected with the lowest value of fitting error. Four com-
monly used semivariogram models are spherical, exponential, Gaussian, and linear,
and mathematical expressions of these models are given below:
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Spherical model : γ hð Þ ¼ C0 þ C 1:5
h
a
� 0:5

h
a

� �3
" #

if 0 � h

� a; otherwise C0 þ C ð9:8Þ

Exponential model : γ hð Þ ¼ C0 þ C1 1� exp � h
a

� �� 	
for h � 0 ð9:9Þ

Gaussian model : γ hð Þ ¼ C0 þ C 1� exp
�h2

a2

� �� 	
for h � 0 ð9:10Þ

Linear model : γ hð Þ ¼ C0 þ C1
h
a

� 	
if h < a; otherwise ¼ C0 þ C1 ð9:11Þ

Apart from these four standard models, the Matern model is also quite often used.
The parameter a in all these semivariogram models indicates range up to which
spatial correlation between a pair of observation exists, beyond which a pair of
observations is not spatially correlated. However, in case of exponential and Gauss-
ian models, a represents the theoretical range, whereas practical range for these two
semivariogram models is the lag distance at which semivariogram value reaches to
95% of sill. In all the above semivariogram models, nugget is expressed as C0, which
actually quantifies microscale variation and measurement error for the respective soil
property, whereas partial sill (C) indicates the amount of variation which can be
defined by spatial correlation structure.

All these semivariogram models as discussed above are called as bounded
semivariogram models or authorized semivariogram models. Apart from bounded
semivariograms, there are some unbounded semivariograms also. The major feature
of unbounded semivariogram is continuous increase in semivariogram values with
lag distance and is generally expressed by the formula γ(h) ¼ whα, where γ(h) is the
semivariogram for a lag distance h, w describes the intensity of variation, and α
describes the curvature. For a value of α¼1, the semivariogram is unbounded liner
and w is simply the gradient. The parameter α has lower limit 0 and upper limit 2. In
case of α<1, the semivariogram looks like convex upward, whereas for α>1, the
semivariogram looks like concave upward. It is very strange to obtain unbounded
variation or infinite variation of a feature on earth surface. However, often we
observe infinite variation on this planet. This is so because we have been encoun-
tering more variation as long as we have been incorporating new regions into survey.
This type of unbounded variation is observed if the environmental variables and
parent material have influence on soil property. Thus, the unbounded variation is
often neglected; rather a bounded semivariogram model is generally tried to fit in the
experimental variograms. For this purpose, we generally detrend the influence of
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direction (x- and y-direction), environmental covariates, and other earth features on
soil properties. After detrending, the residual value is again fitted in standard models.

Experimental and fitted semivariogram of soil organic carbon (SOC) and major
nutrient (N, P, and K) contents in an intensively cultivated village at Gayeshpur,
West Bengal, is presented in Fig. 9.5 (Chatterjee et al. 2015). From these
semivariogram structures, it is observed that spatial variation pattern is different
for different soil properties. Spherical semivariogram model was found best fitted for
N and P content, whereas the linear model is best fitted for SOC content, and the
exponential model is best fitted for K content. If we look at the range of spatial
variation, it is higher in P content and less in N content. It indicates that spatial
variation of P content shows more spatial continuity than other soil properties in this
case. The variation of N content is highly random since it is highly influenced by
external inputs of nitrogenous fertilizer. These semivariograms also show that how
much the proportion of total sill is contributed by the nugget component. The more is
the nugget component, the less is the spatial variation component and the more is the
randomness. In a pure nugget model, the total variation is contributed by nugget and
there is no spatial component.

9.5.2 Kriging

Once the semivariogram parameters are identified, it is possible to estimate the soil
property at unsampled location through kriging approach, and ordinary kriging
(OK) is mostly followed for this purpose. In OK, the unbiased estimates of soil

Fig. 9.5 Semivariogram of SOC and major soil nutrient contents (N, P, and K) in an intensively
cultivated village in West Bengal, India. (Adopted, Chatterjee et al. 2015)
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properties at unsampled locations, bz uð Þ , are computed through weighted linear
combinations of measured soil attributes at neighbor points z (uα) located within a
neighborhood centered around u:

bz uð Þ ¼
Xn uð Þ

α¼1

λαz uαð Þ ð9:12Þ

where λα is the weight assigned to the measured data points z(uα) located within a
given neighborhood, W(u) centered on u. Weights for n number of neighbor points
are chosen in such a way so that error variance, σ2E uð Þ ¼ Var z � uð Þ � z uð Þf g , is
minimized under the constraint of no bias of the estimator. Figure 9.6 shows a map
of soil organic content in a farmer’s field at Jaisalmer, Rajasthan, prepared through
OK approach (Santra et al. 2012a). From Fig. 9.6, it may be noted that the range of
SOC content is around 150 m, which indicates that soil sampling locations that are
apart by 150 m or less are spatially correlated with each other beyond which it shows
a random pattern. In the case of a random pattern, which is generally observed for the
pure nugget model, the arithmetic average of all sampling points could be a simple
approach to obtain an estimate. However, still we prefer nugget model
semivariogram because in this case, we get an estimate at an unsampled location
along with error variance, which helps to judge the reliability of the estimate. Later
on, we will discuss the accuracy and uncertainty issue of a digital soil map. Such a
digital soil map may be quite helpful for the management of organic manure
applications in a farmer’s field.

Fig. 9.6 Semivariogram and ordinary kriging map of SOC content in a farmer’s field at Jaisalmer.
(Adopted, Santra et al. 2012a, b)
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Apart from the SOC content map, digital maps of soil nutrient content prepared
through the OK approach are depicted in Fig. 9.7. The spatial continuity in P content
as we observed in the semivariogram of this property (Fig. 9.5) is also clearly visible
on the map. The patchy variation in N content is quite understood from the short
range in semivariogram. These maps of soil nutrient content will be quite helpful for
nutrient management in the agricultural field. However, it is quite difficult to obtain a
good spatial variation structure of nutrient content since it is largely influenced by

Fig. 9.7 Ordinary kriging map of SOC and major soil nutrient (N, P, and K) content in an
intensively cultivated village in West Bengal, India. (Adopted, Chatterjee et al. 2015)

9 Digital Soil Mapping: The Future Need of Sustainable Soil Management 333



the application of fertilizer. Therefore, it is suggested to include the past history of
fertilizer doses applied at different locations in the field to detrend the influence of
external fertilizer application and then modeling the spatial variation using the
standard semivariogram.

9.5.3 Co-kriging

Sometimes, the target soil property, which we want to estimate spatially, is very
costly and time-consuming to measure at multiple locations in the field. In those
cases, we use the information about surrogate soil properties, which have an
influence on target soil properties. Co-kriging may be a suitable solution under
such a situation. For applying co-kriging, the data on co-variables may be available
at the same locations where the measured value of the target variable is available
(co-located points) or may be available at other locations or both. Generally,
co-kriging is most appropriate if the co-variables can be measured cheaply and
therefore a denser sampling of co-variables than of target variable can be done. A
detailed description of the co-kriging method can be found in Webster and Oliver
(2007) and Rossiter (2018). Here, the co-kriging system is mentioned in brief to
understand the theory behind it. Co-kriging is an extension of the theory of single
regionalized variable used for OK. Similar to semivariogram, the cross-
semivariogram between the target variable and co-variable is calculated as follows:

bγuv hð Þ ¼ 1
2m hð Þ

Xm hð Þ

i¼1

zu xið Þ � zu xi þ hð Þf g zv xið Þ � zv xi þ hð Þf g ð9:13Þ

where bγuv hð Þ is the cross-semivariogram between target variable, zu, and co-variable,
zv, and m(h) is the number of data pairs of target variable and co-variable with a lag
distance of h. The co-kriging system estimates zu at unknown location x0 with the
following expression:

zu x0ð Þ ¼
XV
l¼1

Xnl
i¼1

λilzl xið Þ ð9:14Þ

where V is the number of variables and among these one is target variable and λil is
the weight, which is assigned in such a way that

Xnl
i¼1

λil ¼
1 l ¼ u

0 l 6¼ u

�
ð9:15Þ

An example of cross-semivariogram of SOC with pH and EC is depicted in
Fig. 9.8. It is to be noted here that this cross-semivariogram is calculated because of
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significant correlation of SOC with pH and EC. From the cross-semivariogram, it is
observed that range of target variable (OC) is almost similar with the co-variables
(pH and EC) and this should be a major criterion to apply co-kriging.

If OK is compared with co-kriging, we generally observe that the prediction
performance is improved in co-kriging. However, the uncertainty of prediction is
higher in the case of co-kriging since multiple numbers of variables are employed in
the prediction process. For example, the performance of OK and co-kriging in the
prediction of SOC content in the above example is presented in Table 9.1. Mean
error (ME) and root mean squared residual (RMSR) of predicted SOC are slightly
lower in co-kriging than OK, and the performance is best when both the co-variables
(pH and EC) are used in the co-kriging process. Such superior performance of
co-kriging was also reported in literatures, e.g., Ersahin (2001), Carter et al.
(2011), etc. However, the value of mean squared deviation ratio (MSDR), which
generally quantifies the uncertainty, deviates from its desirable value of 1 in case of
co-kriging. This suggests that co-kriging improves the prediction of the target
variable but along with it also increases the uncertainty in predicted values;

Fig. 9.8 Cross-variograms of SOC contents, pH, and electrical conductivity (EC)
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therefore, it is strictly followed if only the target variable is very costly and time-
consuming to measure in the field. Otherwise, it is always advisable to follow OK.

9.5.4 Other Variants of Kriging

The OK approach is mostly followed for providing a spatial estimate of soil
property. When the OK approach provides the estimate for a point location, it is
called punctual kriging. Otherwise, if the OK approach provides the estimate over
block support, then it is called block kriging. Other than OK, simple kriging is also
sometimes followed where the mean value of the target variable is known. Apart
from OK and co-kriging, there are several variants of kriging approaches, e.g.,
regression kriging (RK), universal kriging (UK), kriging with external drifts
(KED), probability kriging (PK), indicator kriging (IK), lognormal kriging (LK),
etc. Regression kriging is followed if there is a presence of an external trend on data.
Under such cases trend is predicted through regression model, and regression
residual is predicted through OK, which is finally added to obtain RK prediction.
RK is often confused with UK and KED since all these three kriging approaches
model the trend (drift) in the data. However, there is little difference between RK and
(UK and KED). In the case of RK, the trend and residuals are predicted separately,
whereas in the case of UK and KED, trend and residual predictions are made
simultaneously within the kriging system. In the case of UK, the trend of spatial
coordinates is only considered, whereas in the case of KED, the trend of an external
variable is modeled. The PK is able to provide an estimate with a probability to be
near to a predefined threshold value and thus is often used to assess the risk
associated with a target variable. The IK is a nonparametric and nonlinear approach
of kriging where target variables are converted to a binary variable (indicator). In the
case of LK, the target variable is first transformed logarithmically to fit it in a normal

Table 9.1 Cross-validation performances of ordinary kriging and co-kriging

Kriging method
Target
variable Covariates

Soil layer
(cm) ME RMSR MSDR

Ordinary
kriging

Log[SOC] - 0-15 0.0085 0.37 1.04

15-30 0.0053 0.35 0.95

Co-kriging Log[SOC] pH 0-15 -
0.0018

0.28 1.13

15-30 0.0005 0.31 1.07

Log[SOC] Log [EC] 0-15 0.0018 0.30 1.12

15-30 -
0.0002

0.30 1.11

Log [SOC
(%)]

pH and Log
[EC]

0-15 -
0.0005

0.26 1.15

15-30 -
0.0006

0.28 1.14
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distribution, and then OK is applied on the log-transformed variable. However, to
understand better the prediction, it is to be back-transformed. The back-
transformation of predicted log-transformed values needs to be done carefully
following the standard procedure; otherwise, it will lead to wrong interpretation
(Webster and Oliver 2007). Details of all these kriging approaches are available in
Webster and Oliver (2007) and Santra et al. (2017b, c).

9.6 State-Factor (Clorpt) Approach of DSM

In the state-factor approach, statistical models are built between target soil property
and the “clorpt” factors. The information on “clorpt” factor is now abundantly
available in digital platforms, which are often called as covariates. Apart from the
availability of data on covariates, several statistical and mathematical tools have
been evolved in recent times, which have the capability to handle a huge amount of
fine-resolution data on covariates and also are able to build model both linear and
nonlinear relationship. Therefore, the state-factor approach of DSM methodologies
has now been preferred over the other two approaches. In the following, we describe
the data on covariates and the machine learning tools that are available to apply the
DSM methodology.

9.6.1 Covariates on Terrain Attributes

Maps of terrain attributes provide information on the relief factor of the “clorpt”
approach. Different terrain attributes can be calculated using the digital elevation
model (DEM) of an area. Hydrology and spatial analysis tools of GIS software, e.g.,
ArcGIS, QGIS, SAGA, etc., may be used to determine these terrain attributes. For
the processing of DEM of a targeted study area, the data acquired through Shuttle
Radar Topography Mission (SRTM) with a spatial resolution of 90 m may be used
which is available at http://srtm.csi.cgiar.org/ (Rabus et al. 2003). In Fig. 9.9,
examples of terrain attributes determined from SRTM DEM of arid western India
are presented. These terrain attributes are altitude, slope, elevation, above channel
network, hillshade, profile curvature, plan curvature, terrain ruggedness index (TRI),
and topographic wetness index (TWI).

A detailed description of such terrain properties may be found in Santra et al.
(2017a). All these derived terrain attributes have significant relation with sand
content in arid western India as observed through stepwise regression analysis.
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9.6.2 Covariates on Bioclimatic Variables

Bioclimatic variables provide information on the climate factor of the “clorpt”
approach. The increasing availability of these bioclimatic variables in digital plat-
forms makes it easy to apply these covariate data in the DSM approach. The raster
data (30-second resolution) on bioclimatic variables can be downloaded from http://
worldclim.org/current for its use in DSM. Hijmans et al. (2005) presented a detailed
description of such bioclimatic variables. Examples of bioclimatic variables for arid
western India, which were used in DSM of sand content by Santra et al. (2017a), are
presented in Fig. 9.10.

These bioclimatic variables are annual mean temperature and precipitation,
seasonality of temperature and precipitation, annual range of temperature, mean
diurnal range of temperature, and precipitation during the wettest quarter of the year.
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Fig. 9.9 Covariate maps of terrain attributes in arid western India. (Adopted, Santra et al. 2017a)
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9.6.3 Machine Learning Algorithms in DSM

With the advancement of machine learning algorithms as a field of artificial intelli-
gence, there is a possibility to build a model describing the relationship between soil
parameters and the covariates affecting soil formation process (Murase 2000;
Banerjee et al. 2018; Jha et al. 2019). The machine learning tools apply data mining
techniques to identify the statistical relationship and then build the model. Different
machine learning tools are now available to identify the relationship between soil
properties and covariates. Few common machine learning tools are multiple linear
regression (MLR), support vector machine/regression (SVM/SVR), random forest
regression (RF), artificial neural network (ANN), k-nearest neighborhood (k-NN),
cubist, etc. The machine learning tools are becoming popular since it requires less
intervention of human brain and also learns input-output relationship in a better way.
Increasing accessibility of high-level computer programming language, e.g., R,
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(g) Rainfall of wettest quarter (mm)
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Fig. 9.10 Covariate maps of bioclimatic variables in arid western India. (Adopted, Santra et al.
2017a)
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Python, etc., makes it much easier to apply machine learning tools in DSM. Few
commonly used machine learning tools in DSM are discussed below. However, a
detailed description of these machine learning tools is available in Khaledian and
Miller (2019).

The MLR approach builds the linear regression equations between soil properties
and multiple covariates. It is the most simple and popular approach to machine
learning tools. The coefficients of the regression equations are called the model
parameters. A basic requirement of the MLR approach is that the covariates should
not be correlated with each other, i.e., absence of collinearity in covariates. For this
purpose, often stepwise regression analysis is carried out before building the MLR
model to remove the collinearity in data. Several efforts have been made in the past
to apply the MLR approach in DSM, e.g., Angelini et al. (2017), and are still
widely used.

SVM/SVR is an ML algorithm that has gained popularity in recent times. The
procedures adopted in SVR are complex in nature to understand; however, the
outputs are very close to the real field situation. An SVM actually constructs a
hyperplane or a set of hyperplanes in a high- or infinite-dimensional space, which are
used for regression models. In the SVR approach, a margin of tolerance is defined for
covariates using the observations (support vectors), and then data are separated and
fitted linearly. The margin is actually the distance from the decision surface, which is
maximally far from any observation. This decision surface ensures the high gener-
alization ability of the algorithm and thus makes the results more applicable to the
unseen data. In addition, the SVR approach applies kernel functions to map
nonlinear vectors to a very high-dimensional space for solving nonlinear problems.
The SVR algorithm requires the user to set the number of support vectors and the
fraction of support vectors needed to maximize the margin, which is also called the
hyperparameter of the algorithm. Application of SVR in the classification of soil
types and estimation of soil properties may be found in Kovačević et al. (2010).

RF regression is a ML approach, which consists of an ensemble of randomized
classification and regression trees (CART) (Breiman 2001). Predictions through RF
regressions are made by generating numerous trees within the algorithm and finally
aggregating them using the average of the individual tree outputs. There are three
user-defined parameters on which RF regression is dependent, and these are the
number of trees in the forest, the minimum number of data points in each terminal
node, and the number of features tried at each node (mtry). A detailed description of
the use of RF regression in DSM is available in Grimm et al. (2008). Here an
example of preparing a sand content map by applying the RF regression algorithm is
presented in Fig. 9.11. Covariates used in this example are soil category map, terrain
attributes, and bioclimatic variables. A major advantage of RF regression-based
digital soil maps is that the predicted data are available in the resolution of covariate
maps. Therefore, the use of fine-resolution covariate maps results in digital soil maps
with detailed information. Hence, the RF regression-based DSM is most suitable in
case of sparsely available soil data, where it is difficult to build semivariogram
models from limited data.
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ANNs are composed of artificial neurons that mimic biological neurons, which
receive input, combine the input with their internal state, and produce output using
an output function. The neurons are typically organized into multiple layers. Neu-
rons of one layer are connected to neurons of nearby layers, which may be imme-
diately preceding layer and immediately the following layer. The neuron layer that
receives external data is called the input layer, whereas the layer that produces the
output is called the output layer. In between the input and output layer, there may be
hidden layers. Major hyperparameters of ANN are learning rate, the number of
hidden layers, and batch size. Learning from the input data through ANN is done by
adjusting the weights of the network so that the accuracy of the output is highest. The
hyperparameter learning rate is defined as the number of the corrective steps to
adjust for errors in each observation. A high learning rate shortens the training time,
but with lower ultimate accuracy, whereas a lower learning rate takes longer time,
but may lead to greater accuracy. Because of their ability to reproduce and model
nonlinear processes, ANN has found applications in many disciplines. Details on the
procedures of ANN application in DSM methodology may be found in Behrens
et al. (2005).

k-NN algorithm applies a nonparametric method to provide an output based on
the similarity concept, which assumes that similar things exist together in proximity.
An estimate of soil property at an unknown location is obtained by averaging the
values at k-nearest neighbors. Weights are assigned to each neighbor based on the
distance; the higher is the distance of neighbor the lesser is the weight. The distance

(a) Sand content (%) (0-5 cm) (b) Sand content (%) (5-15 cm) (c) Sand content (%) (15-30 cm)

(d) Sand content (%) (30-60 cm) (e) Sand content (%) (60-100 cm) (f) Sand content (%) (100-200 cm)

100

90

80

70

60

50

40

30

100

90

80

70

60

50

40

30

100

90

80

70

60

50

40

30

100

90

80

70

60

50

40

30

100

90

80

70

60

50

40

30

100

90

80

70

60

50

40

30

Fig. 9.11 Spatial maps of sand content in arid western India developed through random forest
regression approach
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metric is commonly calculated as Euclidean distance. Other distance metrices, e.g.,
Mahalanobis distance, Manhattan distance, Hamming distance, etc., are also used.
The k-NN is an instance-based learning where the regression functions are approx-
imated locally, and therefore a variety of regression curves are calculated based on
the neighbors. The parameter k needs to identify optimally to obtain the best estimate
of the target variable. An example of k-NN application in DSM may be found in
Mansuy et al. (2014).

The cubist is a rule-based algorithm that is an extension of Quinlan’s M5 model
tree. Cubist generates a tree structure from a pool of covariates. The tree breaks
through intermediate nodes to several final nodes using rules. A prediction is made
using the linear regression model at the terminal node of the tree but is “smoothed”
by taking into account the prediction from the linear model in the previous node of
the tree. Besides, cubist as an ensemble model adds boosting to improve the
prediction performance using two hyperparameters (i.e., committees and instances).
Through the committee parameter, iterative model trees are created in sequence, and
final prediction is obtained by simple averaging of the predictions from each model
tree. The instance parameter adjusts the predictions from rule-based models (whether
it is with a committee or without committee) using nearest neighbors. Thus, ensem-
ble learning combines models produced by multiple repetitions of the same algo-
rithm. This strategy usually obtains stronger predictive performance than results
produced from any of the models individually. The application of the cubist model in
DSM may be found in Akpa et al. (2016).

9.6.4 Application of Hyperspectral and Remote Sensing
Signature in DSM

Quantifying the spectral reflectance of soil visible, near-infrared, and shortwave
infrared (VIS-NIR-SWIR) region (350 to 2500 nm) and then relating it with soil
properties has emerged as a rapid and noninvasive technique for estimation of soil
properties (Ben-Dor et al. 2009). Hyperspectral signature of soil in 350–2500 nm
region has been successfully used for estimating soil properties. A brief review of
such applications of hyperspectral signature in estimating soil properties is available
in Das et al. (2015) and Santra et al. (2015).

Figure 9.12 represents typical hyperspectral signatures in the VNIR region
(350 to 2500 nm) for few arid soils of India. From the spectral curves, a wide
range in spectral signatures is quite visible. The vibrational absorbance of the soil
reflectance spectra is because of presence of various functional groups, namely, –OH
in minerals and –OH, –CH, and –NH in soil organic matter (Rossel and McBratney
1998; Reeves et al. 1999). The soil reflectance spectra predominantly shows three
absorption peaks at 1400, 1900, and 2200 nm as presented in Fig. 9.12. The
absorption peaks at 1400 and 1900 nm correspond to water absorption (Leone and
Sommer 2000), and 2200 nm indicates metal-hydroxyl stretching because of clay
mineral (Chabrillat et al. 2002). The absorption features at 870 and 1000 nm and
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between 2200 and 2500 nm are mainly due to the presence of iron oxides and
carbonates, respectively (Clark 1999; Chang and Laird 2002).

Soil properties and parameters influencing the reflectance at specific bands can be
identified through the spectral data modeling approach. Band reflectance from these
spectral data can be calculated to relate to soil properties. While calculating the band
reflectance, it may also be kept in mind the bandwidth corresponds to the available
spectral bands in operational or futuristic remote sensing satellites so that the
algorithm can be translated to remote sensing platforms in the future. The overall
brightness of spectra and the slope of the spectra at red to the near-infrared region
can also be used to relate with soil properties. Spectral absorption features at specific
wavelength region can also be analyzed in detail to capture the variation in spectral
features so as to relate with content of a specific material in soil, which causes the
absorption feature. Use of spectral signatures to estimate soil properties have been
tried by different researchers throughout the world (Das et al. 2015). Here, an
example of few spectral algorithms is presented in Table 9.2 from Santra
et al. (2015).

Laboratory-based algorithms developed using relationship between soil proper-
ties and proximally measured spectral reflectance can be translated to the remote
sensing platforms. However it depends on various factors like spectral resolution,
spectral and spatial resolution, consistency of satellite images, atmospheric degra-
dation of spectral behavior, land surface composition, soil moisture content, rough-
ness of the surface, presence of gravels on surface, etc. An example of such
demonstration is shown in Fig. 9.13, where sand content is estimated using the
band reflectance of Landsat-8 data (path, 142; row, 49). The Landsat-8 data that
corresponds to 19th of June 2013 was downloaded from the earth explorer website
(http://earthexplorer.usgs.gov/). Finally, the reflectance-based models as shown
in Table 9.2 were used to convert Landsat-8 data to map of sand content.

Fig. 9.12 Hyperspectral signature of soils from hot arid region of India
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Table 9.2 Spectral algorithms soil properties estimation using principal components of soil
reflectance spectra in VNIR-SWIR region, using Resourcesat-1 and Landsat-8 OLI band reflectance

Model type Model equation R2

PCs of hyperspectral soil
reflectance -based model

OC¼ 0.192 + -0.0008� PC1 + 0.002� PC2 + 0.002�
PC3

0.12

Sand ¼ 90.15 + 0.025 � PC1 – 0.537 � PC3 0.41

Silt ¼ 4.46 + 0.284 � PC3 0.27

Clay ¼ 5.40 – 0.017 � PC1 + 0.252 � PC3 0.43
aDerived IRS- P6 band
reflectance-based model

OC ¼ 1.11 +3.82 � B2 – 5.64 � B3 0.27

Sand ¼ 66.3 – 304.5 � B2 + 605.7 � B3 – 366.3 � B4
+ 88.1 � B5

0.20

Silt ¼ 11.53 + 157.52 � B2 – 264.82 � B3 + 102.10 �
B4

0.17

Clay ¼ 18.19 + 109.65 � B2 – 255.16 � B3 + 175.8 �
B4 – 49.42 � B5

0.16

bDerived Landsat-8 OLI band
reflectance-based model

OC ¼ 1.12 + 3.72 � Band 3 – 5.56 � Band 4 0.27

Sand ¼ 52.8 – 168.5 � Band 3 + 316.1 Band 4 – 129.1
� Band 5 – 434.9 � Band 6 + 480.5 � Band 7

0.44

Silt ¼ 22.54 + 102.21 � Band 3 – 147.35 � Band 4 +
266.63 � Band 6 – 253.86 � Band 7

0.32

Clay ¼ 23.67 – 45.91 � Band 4 + 251.89 � Band 6 –

252.77 � Band 7
0.44

Adopted, Santra et al. (2015)
aDerived band reflectance corresponding to IRS-P6 bands of LISS-III, LISS-IV, and AWiFS
camera: B2 ¼ 520–590 nm, B3 ¼ 620–680 nm, B4 ¼ 770–860 nm, B5 ¼ 1550–1700 nm
bDerived band reflectance to Landsat-8 OLI bands: Band 3¼ 530–590 nm, Band 4¼ 640–670 nm,
Band 5 ¼ 850–880 nm, Band 6 ¼ 1570–1650 nm, Band 7 ¼ 2110–2290 nm

Fig. 9.13 Estimated sand content map of Shergarh Tehsil, Jodhpur, using spectral algorithm and
Landsat data (OLI band)
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9.7 Pedotransfer Function (PTF) Approach for Digital Soil
Mapping

PTFs are models which help to estimate complex and difficult to measure soil
properties using basic soil properties as input. Soil water retention behavior relating
soil moisture content (θ) with pressure head (h) is generally tedious to measure at
multiple locations in field and therefore is often estimated through PTF models
(Santra and Das 2008; Santra et al. 2018). Soil physicochemical properties, e.g.,
cation exchange capacity (CEC), and soil thermal properties, e.g., specific heat
capacity, conductivity, etc., have also been used as a target variable in PTF model.
These established PTF models can be used to convert digital soil maps of basic soil
properties to maps of complex soil properties. In the following, few examples on
converting maps of basic soil properties to soil water retention behavior are given.

In the first example, spatial maps on water content at field capacity (FC) (θFC) and
permanent wilting point (PWP) (θPWP) were prepared through linking soil maps on
basic properties and PTFs (Santra et al. 2008). The PTFs for θFC and θPWP used in
this example were developed from the available soil data in benchmark soils of
India, and these PTF models are given below:

θFC %, w=wð Þ ¼ 21:931� 0:20564� sandþ 0:175� clayþ 4:6737

� OC R2 ¼ 0:89

 � ð9:16Þ

θPWP %, w=wð Þ ¼ 8:7255� 0:092946� sandþ 0:15944

� clay R2 ¼ 0:78

 � ð9:17Þ

where sand is the % sand content (0.05–2 mm), clay is the % clay content (<0.002
mm), and OC is the % OC content in the soils. Using OK approach, maps of sand
content, clay content, and OC content were first prepared, and then these three maps
were joined together using above mentioned PTF models. The developed maps of
θFC and θPWP are presented in Fig. 9.14. Another possible way to generate these
maps is to predict θFC and θPWP at each location, where basic soil properties were
measured and then OK is applied on estimated θFC and θPWP to generate the final
maps. In the first approach, the error of spatial prediction associated with each map
of basic soil property and the error of PTF model will be added on to the final map of
soil water retention behavior. Therefore, the reliability of final map highly depends
on the accuracy of spatial prediction methods as well as on the accuracy of PTF
models. In the second approach, the limitation is to obtain good spatial trend to apply
geostatistical methods for preparation of maps of complex soil properties which
therefore are not commonly used. Moreover, in the first approach, we obtain the
digital map of basic soil properties along with target map of complex soil properties,
which together help in several land management decisions. These maps of soil water
retention at farm level may help in applying right amount of irrigation water at right
time.

9 Digital Soil Mapping: The Future Need of Sustainable Soil Management 345



Another example of converting maps of basic soil properties to maps of soil water
retention at field capacity and the permanent wilting point is presented in Fig. 9.15.
Here, maps of sand, silt, and clay content are converted to maps of FC and PWP
content in the hot arid ecosystem of India. The PTFs used in this example are
regression-based PTF models and are available in Santra et al. (2018). The devel-
oped maps of FC and PWP may be quite useful for the sustainable utilization of
water resources in arid western India (AWI). From these maps, it is noted that soil
water retention at FC was lowest (~10%) at the western part of the AWI, where sand
dunes are dominant. The value of θ1/3bar was around 25% for soils at coastal deltaic
plain lying at the southern part of the AWI. The central and northern part of AWI,
which covers a major portion of the region, has θ1/3bar of 15%. Similarly, soil water
retention at PWP was also very low (~4–6%) at the western and northern plain of the
AWI and high (~8–10%) at the southern coastal plain of the AWI. Soil water
retention at FC reaches 2–3 days after saturation, whereas to reach PWP it may
require a long time to dry at which plants start to wilt. The amount of soil water
available between these two critical soil moisture contents is called available water
capacity (AWC), which is extracted by the plant for its growth and development.
From the surface maps of θ1/3bar and θ15bar, it is found that the plant available water
content is about 6–9% for western, central, and northern part of the AWI. Therefore,
growing crops with high water requirement in this region may not be feasible since it
will require frequent application of irrigation water to maintain sufficient soil
moisture regime for plant growth. In such situation, surface map of θ1/3bar and

Fig. 9.14 Translating digital soil maps of basic soil properties to map of soil water retention using
PTF model at experimental farm of ICAR-Indian Agricultural Research Institute, New Delhi.
(Adopted, Santra et al. 2008)
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θ15bar may help the end users for judicious use of water, which is very scarce in the
region.

9.8 Accuracy and Uncertainty Analysis of Digital Soil Maps

Accuracy and uncertainty of digital soil maps play a key role in the reliability of
digital products. Accuracy is generally defined as how close is the estimated value to
the true value. The more close is the estimated value toward the measured value, the
higher will be the accuracy. It is generally calculated as an error, which is the
difference in observed and predicted value. Several error indices are used to quantify
the magnitude and distribution of error. Uncertainty indicates the fluctuations of the
estimated value from its mean. Otherwise, it can also be quantified as a confidence
interval. The narrow is the range of confidence interval, the less is the uncertainty
and vice versa. The uncertainty of digital soil products is often neglected. Because in
most of the classical spatial prediction approaches, the error variance of the predicted
values at a particular location is not calculated, rather a single predicted value is
obtained in most cases. However, in geostatistical approaches, kriging variance of
prediction is always calculated along with the mean predicted values. Therefore,
confidence interval may be calculated either at 90% significance level (μ �

Fig. 9.15 Estimated surface map of soil water retention within the arid western India (AWI) for
(a) 1/3bar (θ1/3bar) and 15 bar (θ15bar) using PTF model
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1.645�σ) or 95% significance level (μ�1.96�σ). Otherwise, repetitive stochastic
simulations, e.g., sequential Gaussian simulation, are carried on a particular location
to obtain the mean and standard deviation of predicted values, which helps to
quantify the uncertainty.

In DSM approaches, accuracy is generally quantified through cross-validation
approach. k-fold cross validation is generally followed. In this approach, the total
dataset is randomly divided into k sets of data. Then the (k-1) sets of data are used as
training data for building the model, and then the developed model is tested on kth

fold dataset as validation data. The procedure is repeated till each set of data gets a
chance to appear as validation data once in the total procedure. The k-fold cross-
validation approach results into observed and predicted values of soil property at
each measured location. These observed and predicted values are then used to
calculate different cross-validation indices, few of which are given below:

r ¼
Pn
i¼1

z sið Þ � zobs½ � bz sið Þ � zpred
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

z sið Þ � zobs½ �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1
bz sið Þ � zpred
� �2s ð9:18Þ

LCCC ¼ 2ρσobsσpred
zobs � zpred

 �þ σ2obs þ σ2pred

ð9:19Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Z sið Þ � bZ sið Þ
h i2s

ð9:20Þ

bias ¼ 1
n

Xn
i¼1

Z sið Þ � bZ sið Þ
h i

ð9:21Þ

where z(si) is the measured values of the variable at the location si,bZ sið Þ is the
predicted values with variance σ2 at the location si, and n is the number of sampling
sites.

The R2 indicates the precision of prediction, and it is actually measured as square
of the Pearson correlation coefficient (r) between observed and predicted values.
Both accuracy and precision of the prediction are evaluated by Lin’s concordance
correlation coefficient (LCCC) (Lin 1989). LCCC is calculated as the orthogonal
distance of values from the 1:1 line of observed vs predicted values and it ranges
from -1 to +1.

A zero LCCC value indicates no agreement between measured and predicted
values. However, values equal to 1 and -1 indicate perfect positive and negative
agreement, respectively. The accuracy of the prediction can be measured using
RMSE statistics. The larger RMSE value shows less prediction accuracy. Similarly
the mean error of prediction can be estimated using bias, and a value of zero
indicates unbiasedness of the prediction.
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Apart from these indices, mean squared deviation ratio (MSDR) is also an
important index to judge the goodness of fit in prediction (Bishop and Lark 2008),
which is actually the transformation of G index and is calculated as follows:

MSDR ¼ 1
n

Xn
i¼1

z xið Þ �bz xið Þf g2
σi2

� �
ð9:22Þ

If the correct semivariogram model is used, the MSDR values should be close to
1 (Lark 2000).

Most commonly used approach to quantify the uncertainty of prediction is the
calculation of 95% confidence interval maps as follows:

Upper limit ¼ kriged prediction mapþ 1:96
�map of standard deviation of prediction

Lower limit ¼ kriged prediction mapþ 1:96
�map of standard deviation of prediction

An example of such confidence interval map of SOC in a horticultural orchard is
presented in Fig. 9.16. The left-hand side maps of the figure show the lower limit,
and right-hand side maps show the upper limit of 95% confidence interval, whereas
the central map shows the mean predicted SOC content of the orchard. From these
maps, it is clearly visible that if we ignore the confidence interval maps, we remain
unaware of the fluctuation in predictions. The more is the fluctuations (the wider is

Fig. 9.16 Uncertainty of digital soil map of SOC content in horticultural orchard of ICAR-CAZRI,
Jodhpur. (Adopted, Singh et al. 2016)
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the range of confidence interval), the less is the reliability of the map. It is like the
wild guess on soil properties for a particular location and judges how much correct is
the guess. The wider is the interval, the higher will be chance of correctness of the
guess. Supposing that if the confidence interval is more than standard deviation of
measured values, the predicted map is of little use because under such cases we can
rely more on the arithmetic mean as the most probable value of any unsampled
location.

9.9 DSM Applications: Soil Information System

The ultimate goal of the DSM is to make available the unutilized soil data (legacy
data) to end users at a spatial scale. This helps a wide variety of users for different
purposes, e.g., farmers for nutrient and water management in an agricultural field,
decision-makers for adopting different land management decisions, researchers for
modeling landscape processes, etc. The development of the soil information system
leads to achieving the ultimate goal of DSM. Several countries have developed the
national-level soil information system throughout the world. Here, as an example,
the soil information system “SoilGrids250m” developed by ISRIC-World Soil
Information is discussed. Soil organic stock map of the world as a snapshot from
“SoilGrids250m” is presented in Fig. 9.17.

The “SoilGrids250m” is developed based on soil profile data of 240,000 loca-
tions. Global-level predictions of organic carbon concentration, total nitrogen

Fig. 9.17 SoilGrids250m: An example of soil information system
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content, pHwater, cation exchange capacity (measured at pH 7), soil texture (propor-
tion of sand, silt, and clay), and volume of coarse fragments are available in the
“SoilGrids250m.” Predictions are available in six standard soil depths as specified
by the Global Soil Map project (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm,
and 100–200 cm). The major features of the “SoilGrids250m” are:

(a) Direct coupling with standardized soil profile (point) data provided by the
ISRIC-World Soil Information Service (WoSIS)

(b) Use of the modern map projection like homolosine that minimizes angular and
distance distortions simultaneously

(c) An improved selection of covariate layers using recursive feature elimination
(d) Adoption of an improved and more realistic cross-validation procedure
(e) Quantification of uncertainties in the soil predictions, using prediction intervals,

through implementation of quantile regression forests

9.10 Conclusion

Soil plays a crucial role not only in the agricultural production system but also helps
in taking many soil and land management decisions. For example, soil nutrients
support plant growth and yield, soil hydraulic properties dictate partitioning rainfall
into a runoff, soil water retention behavior governs soil moisture regime in an
agricultural field, soil pollutants content helps in assessing the risk associated with
handing polluted soils, etc. Therefore, soil survey or target-based soil sampling
efforts have been done regularly to gather knowledge on soil properties to adopt
suitable soil management practices. However, it is not always possible to collect soil
samples from multiple locations from a target area. Therefore, estimates are tried at
unsampled locations using the information at measured locations of the surveyed
area. DSM provides the estimate of soil properties at unsampled locations in the
most rational approach which includes geostatistics, state-factor (clorpt) approach,
and PTF models. Here, we discussed, in brief, these three approaches with examples.
Further, the accuracy and uncertainty of digital soil products help to judge the
reliability of it to stakeholders, and thus the inclusion of this information in digital
soil products should be an essential requirement. With the advancement of informa-
tion technology (IT) applications, it will be more appropriate to make these digital
soil products available in different IT platforms, e.g., android applications, WebGIS
applications, spatial soil database management systems, etc., which together is called
soil information system. Therefore, future efforts are required to apply DSM tech-
nology to available legacy soil data and to prepare soil maps and make it accessible
to wide users as soil information systems.
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Abstract Soil moisture is required to understand the land surface processes, land-
atmosphere interaction, drought forecasting, crop growth patterns, etc. It is a
dynamic variable that changes significantly on different spatial and temporal scales
even in a smaller area. Remote sensing (RS) techniques provide an alternative way to
estimate the high spatial and temporal variability of soil moisture. This chapter
includes the state of art and techniques used to retrieve soil moisture from satellite
RS in different parts of the world. Several techniques have been developed to
retrieve soil moisture either from optical/thermal/microwave sensors or fusion of
these sensors, but microwave sensors either with a fine spatial resolution (and coarse
temporal resolution) or with a coarse spatial resolution (and fine temporal resolution)
seem promising than optical and thermal sensors depending on applications.
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However, microwave sensors have shown its high potential and capability for
deriving global soil moisture information due to all weather capability and longer
penetration depth. Many operational products of soil moisture have been developed
using passive microwave sensors; however, coarse spatial resolution and penetration
depth over vegetation-covered surfaces are the major factors that limit the utility of
these soil moisture products for agricultural purposes. The major initiatives have
been taken by various space agencies across the globe to develop the microwave
sensors with L and/or S bands for its potential use in soil moisture besides other
applications. Sentinel-1 synthetic aperture radar (SAR, active microwave sensor)
data has opened up a new research area to develop high-spatial-resolution soil
moisture products for agricultural applications. Several studies have shown the
potentials of Sentinel-1 SAR data and high-resolution optical data along with
operational products (like SMAP) to downscale the coarse soil moisture data to
retrieve high spatial soil moisture at a regular interval over vegetation-covered
surfaces. However, future sensors are required to estimate soil moisture from
depth up to 0.7–1 m (microwave sensors with P band) over sparse vegetation areas
and varying surface roughness using active and passive microwave sensors.

Keywords Microwave · Remote sensing · Retrieval · Synthetic aperture radar · Soil
moisture content · Thermal emission

Abbreviation

AMSR-E Advanced Microwave Scanning Radiometer-Earth Observing System
ANN Artificial Neural Network
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
ATI Apparent Thermal Inertia
DEM Digital Elevation Model
DWT Discrete Wavelength Transform
EF Evaporative Fraction
ESTAR Electronically Scanned Thinned Array Radiometer
ETM+ Enhanced Thematic Mapper Plus
EVI Enhanced Vegetation Index
HWSD Harmonized World Soil Database
LSMEM Land Surface Microwave Emission model
LST Land Surface Temperature
MIRAS Microwave Imaging Radiometer with Aperture Synthesis
MODIS Moderate Resolution Imaging Spectroradiometer
MOSDAC Meteorological & Oceanographic Satellite Data Archival Centre
MPDI Microwave Polarization Difference Indices
NDVI Normalized Difference Vegetation Index
NIR Near Infrared
NISAR NASA-ISRO Synthetic Aperture Radar
PALS Passive and Active L- and S-band Sensor
RS Remote Sensing
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SAR Synthetic Aperture Radar
SMAP Soil Moisture Active Passive
SMOS Soil Moisture and Ocean Salinity
SWIR Shortwave Infrared
TM Thematic Mapper
TVDI Temperature Vegetation Dryness Index
VEDAS Visualization of Earth Observation Data and Archival System
VI Vegetation Index
VNIR Visible and Near Infrared
VOD Vegetation Optical Depth
WDI Water Deficit Index

10.1 Introduction

The rapid acquisition of spatial and temporal variability of soil moisture remains
vital for agricultural, hydrological, climatological, and other environmental studies
(Aubert et al. 2003). Soil moisture plays an important role in characterizing earth’s
climate; hence, it is included in the list of essential climate variables (ECVs) (GCOS
2010). One of the key drivers for the partitioning of precipitation between infiltration
and runoff is soil water which drives soil erosion and sedimentation. The growth of
plants is mainly controlled by soil moisture, which is required for photosynthesis.
Moreover, soil moisture regulates the rate of plant transpiration and evaporation
which in turn affect near-surface temperature, humidity, and atmospheric water
vapor (Cavanaugh et al. 2011). It plays a significant role in the interaction between
the atmosphere and the land surface (Findell and Eltahir 2003). Therefore, accurate
information about soil moisture is required for understanding the land surface
processes, land-atmosphere interaction, drought forecasting, crop growth patterns,
etc. (Legates et al. 2011). Besides this, soil moisture is used as one of the inputs in
climate models, crop growth and yield models, process-based models for nutrient
dynamics in soils and hydrological models, etc.

Traditionally, soil moisture is measured using a gravimetric technique; however,
soil probes are now used for point measurement of soil moisture as indirect mea-
surement, and this may be representative for a smaller area. However, soil moisture
is a dynamic variable that changes significantly on different spatial and temporal
scales even in a smaller area. Remote sensing (RS) techniques provide an alternative
way to measure high spatial and temporal variability of soil moisture while replacing
costly, time-consuming, and labour-intensive methods for measuring soil moisture
in larger areas. The recent advancement in remote RS technologies such as optical,
thermal, and microwave techniques have created tremendous potential in soil mois-
ture assessment and estimation (Barrett and Petropoulos 2013). Previous studies
have shown that optical RS datasets can be used for assessing soil moisture in bare
surfaces only (Notarnicola et al. 2006). In vegetation-covered soils, optical satellite
data is not useful because it barely reaches the surface (penetrate the surface up to
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5 mm only). However, the penetration of solar radiation into the soil, sand, vegeta-
tion, and building surfaces is usually limited to at most 1 or 2 mm (Sørensen 1991).
The penetration may reach 1–2 cm for large size grain, specifically for the wave-
lengths above 0.5 μm (Sørensen 1991). However, cloud cover is a common problem
in optical RS, particularly during monsoon season, in which the solar radiations are
mainly reflected by clouds and not by earth surface. There is a large difference
between the dielectric constant of dry soil and water at microwave wavelength which
varies between 4 and 40. The radar backscatter and thermal emissions from soils
have strong dependency on moisture content. There is a strong dependence of the
radar backscatter and thermal emission from the soil on its moisture content.
Thermal infrared measurements depend on the diurnal range of land surface tem-
perature (Tmax�Tmin) or measurement of the crop canopy-air temperature differ-
ential (Good 2015). The passive (radiometers) and active (radar) microwave sensors
measure brightness temperature and backscatter coefficient from surfaces during all
the weather conditions, respectively. In this chapter, the estimation of soil moisture
using optical, thermal, and microwave RS techniques has been highlighted. The
main objective of this chapter is to identify the key techniques used for estimating
soil moisture using optical, thermal, and microwave RS techniques. This chapter
also explores new initiatives taken for the estimation of soil moisture.

10.2 Optical, Thermal and Microwave Remote Sensing
of Soil Moisture

In general, the soil moisture content is expressed in four different terms based on the
depth up to which the electromagnetic wave penetrates the soil:

1. Skin or surface soil moisture is usually estimated by optical and thermal RS
methods (Fig. 10.1). The estimation is closely confined to the water content in the
upper thin layer of 1 mm thickness between the land and the atmosphere.

2. Near-surface soil moisture is estimated by using observations through microwave
RS methods (X-, C-, and L- band). The water content within 1–10 cm of the soil
layer is estimated (Fig. 10.1).

3. Root zone soil moisture (amount of water stored in the plant root zone) is
estimated through P-band microwave sensors or various other methods.

4. Vadose zone soil moisture is estimated through deep penetrating airborne elec-
tromagnetic sensors.
Optical RS sensors operate within 400–2500 nm wavelength range and the

change in soil reflectance associated with the change in soil color is measured to
estimate the soil moisture content. Generally, soil moisture decreases the reflectance
of solar radiations (i.e. lowers the albedo) of soil systems (Huan-Jun et al. 2009).
However, a gradual increase in soil moisture results in increasing the dark color of
soils up to field capacity. Beyond field capacity of soils, increasing soil moisture
does not further darken the soils, instead, it results in building up of water sheet on
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the aggregate surfaces which in turn creates a shiny and better reflecting surface and
thereby, increasing the reflectance (higher albedo). This phenomenon is one of the
major reasons for differences in the reflectance of soils (Dobos 2014).

An increase in reflectance with decreasing soil moisture may not always be true,
but it also depends on surface roughness, organic matter content, and mineralogical
composition of soils (Lobell and Asner 2002). The smooth surfaces (like wet soil
surface, plant leaves or water body, etc.) may have higher reflection than rough
surfaces. In general, fine-textured and dry clayey soils (particle size less than
0.002 mm) have a smooth surface that produces high albedo (increased reflectance),
but clayey soils are mostly wet, resulting in absorption of the incoming solar
radiations and thereby, decrease in reflectance. Conversely, coarse-textured and
dry sandy soils (particle size between 2 and 0.05 mm) reflect most of the incoming
solar radiations and increases reflectance. These properties are useful for estimating
soil moisture from bare surfaces only but single spectra or vegetation indices are
used to estimate soil moisture for vegetation-covered soils using optical RS.

In the case of thermal infrared RS methods for soil moisture estimation, wave-
length from 3500 to 14,000 nm is utilized. Primarily, thermal inertia or temperature
index methods are used for estimating soil moisture using the thermal band. The
microwave region of the electromagnetic (EM) spectrum ranges from 0.3 to
300 GHz (wavelength 1 m to 1 mm). It can be used in all weather conditions. The
microwave interactions are majorly governed by the physical parameters of its
targets rather than their spectral parameters. The microwave RS instruments are
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Microwave region C-band (0–1cm)

Optical and thermal region (few mm)
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Fig. 10.1 Overview of optical, thermal and microwave remote sensing of soil moisture
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mostly classified as passive and active: Passive sensors measure the thermal emis-
sion of the targets in their view and active imagers use their own source of
illumination, hence eliminating the need for background sources such as the Sun.
Passive microwave imagers measure the microwave energy radiated (by thermal
emission) or reflected (from sun) from the target. The microwave energy emitted
from the target primarily depends on the physical temperature and dielectric property
of the target. The dielectric property is related to the composition of the target.
Passive imaging measures some of the most important parameters, like, temperature,
roughness, salinity, and moisture content. These parameters are difficult to measure
in other parts of the EM spectrum due to atmospheric interactions and dependency
on background sources like the Sun. Also, passive imagers have an advantage over
active imagers when it comes to the cost and complexity of the system but lack when
it comes to spatial resolution. Active microwave imager or the popular version of it
called Synthetic Aperture Radar (SAR) is an active system that uses its own source
of illumination and works in all-weather conditions suitable for day and night
imaging. The microwave interaction with the surface is singular in nature, hence,
the information obtained will be indicative of moisture content, salinity, and physical
characteristics (orientation, size and shape) along with the reflectivity.

In optical RS, spectral bands are commonly defined using wavelength whereas, in
microwave RS, they are defined using frequency. In general, microwave region of
the EM spectrum is divided into several bands (P, L, S, C, X, Ku, K, Ka, Q, V andW
bands) However, the bands of L, S, C, and X are the most common bands used in the
current trend of microwave RS. There are many advantages of using microwave
sensors but few disadvantages limit its usages. One of the main concerns is the
antenna dimension due to the use of longer wavelengths. Even for data of coarse
resolution (kilometers) about a meter or more long antennas are required which
poses a challenge for deploying space-borne instruments. The coarser resolution is in
the case of passive imaging but for finer or high-resolution imaging, active imaging
is used specifically, SAR at the cost of complex and resource-hungry systems (large
& heavy with high power consumption and high data-rates).

10.3 Techniques to Retrieve Soil Moisture

10.3.1 Optical Remote Sensing Techniques

In the optical region of the EM spectrum, soil moisture is correlated with the spectral
reflectance. The relationship between soil moisture and reflectance for various soil
types is well documented by Weidong et al. (2002) and Gao et al. (2013). Huan-Jun
et al. (2009) developed a moisture adjusting method by estimating the quantitative
relationship between the reflectance of soil and soil moisture particularly for black
soils in northeast China. The changes in soil reflectance for soil samples ranging
from air-dry to saturated soil moisture were depicted using a cubic equation with
parameters reflectance and soil moisture content. The parameters like moisture
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threshold and moisture inflection of soil reflectance were determined from this
equation. When the soil moisture measures below the moisture threshold, then soil
reflectance was derived through simulation (with a linear model). For soils with
different organic matter content, the parameters of the model will differ accordingly.
To estimate the soil moisture over vegetated fields of Beijing, China using Landsat
TM/ETM+ EO images (April 2009), the spectral feature space was plotted from
reflectance of red and Near Infrared (NIR) bands by Gao et al. (2013). The plot
formed a triangular shape and the bare soil pixels form a straight line if the soil
texture is the same where the line is called soil line. In this triangular plot, the
reflectance of the red band is low because of its absorption by chlorophyll, whereas
NIR band reflectance is high because of strong reflection from vegetation (Fig. 10.2).
The long-distance from pixel to soil line indicates higher vegetation fraction and
biomass. The reflectance of bare soil increases with decreasing soil moisture, hence
the longer the distance from the soil line to the red-NIR spectral feature origin, the
lower the soil water content. Based on the linear decomposition of mixture pixel, the
reflectance of red-NIR bands was derived by combining the soil line equation with a
developed empirical relationship between vegetation canopy and mixture pixel and
the results showed that the NIR band reflectance-based soil moisture was better than
a red band.

Hyperspectral data has also potential to estimate soil moisture. Peng et al. (2013)
used the discrete wavelet transform (DWT) method for soil moisture retrieval. They
used the hyperspectral data (ASD Pro FR portable Spectroradiometer) along with a
total of 78 observations of soil moisture (both in the field. They used 13 different
mother wavelet and six decomposition levels (varied from 5 to 10) for hyperspectral
data decomposition. Two feature extraction methods (band selection and DWT)
were used to retrieve soil moisture. The wavelet transform method proved efficient
for soil moisture measurements as it was successful in preserving the high- and low-
frequency spectral information at different decomposition scales. Similarly,

Fig. 10.2 Physical
interpretation of Red/NIR
bands feature space
“scatterplot” (Modified, Gao
et al. 2013)
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Stamenkovic et al. (2013) used airborne hyperspectral imaging spectrometer
(HyperSpecTIR) of April 2007 to estimate soil moisture from bare soils. They
found that the non-linear data-driven method was effective in capturing the depen-
dence between soil reflectance and topsoil moisture even though the penetration
depth of the hyperspectral data is limited.

The reflectance-based methods for soil moisture retrieval have advantages of
good spatial resolution, availability of multiple satellites and the capability of
hyperspectral sensors for effective estimations through promising techniques, but
the limitations of using reflectance are cloudy weather, no night-time image, poor
temporal resolution and failure to establish the relationships with soil moisture
content when the vegetation cover is high.

10.3.2 Thermal Infrared Remote SensingTechniques

The thermal infrared regions have been used to retrieve soil moisture. The basis of
using thermal infrared data is the sensitivity of land surface temperature to surface
soil water content due to its impact on the surface heating process under bare soil or
sparse vegetation cover condition. Qin et al. (2013) developed an algorithm for
upscaling the point scale measurement of soil moisture in-situ data to grid-scale
(or foot print-scale) using the Moderate Resolution Imaging Spectroradiometer
(MODIS) derived apparent thermal inertia (ATI). The relationship between
MODIS derives ATI and the station averaged soil moisture was developed. The
soil moisture time series at a certain spatial scale was calculated based on this
relationship. Apparent thermal inertia can be used to improve the spatial resolution
of soil moisture. Lei et al. (2014) developed a surface soil moisture model based on
the heat conduction equation (for calculation of ATI) with improved spatial resolu-
tion, by integrating MODIS and TM/ETM+ derived mean surface temperature data.
The enhanced ATI has a R2 value of 0.789 with soil moisture content.

The soil moisture retrieval methods using thermal infrared data show promising
results and the availability of multiple satellite datasets also makes it convenient.
Similar to optical RS, the thermal infrared-based method also fails to perform under
cloudy days, and the presence of sparse vegetation cover limits the relationship of
soil moisture content and thermal inertia.

10.3.3 Fusion of Optical and Thermal Infrared Data

Many have used the visible and thermal infrared data together which showed the
potential to derive soil moisture precisely than when used separately. Carlson (2007)
developed a triangle approach to estimate soil surface wetness and evapotranspira-
tion fraction from RS imageries. Normalized difference Vegetation Index (NDVI)
and Radiant surface temperature were plotted on the x- and y-axis, respectively
(Fig. 10.3). Two images from two different sites were used for plotting a triangle.
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One image from AVHRR sensor over eastern Pennsylvania in the summertime and
another from NASA NS001 radiometer (5 m surface resolution) over Walnut Gulch,
Arizona in the summertime. The triangle method can be used for soil moisture
estimation with large image data sets. The required parameters can be generated
quickly with no requirement of atmospheric or surface data. The limitation of the
triangle method is that there involves a matter of subjectivity while interpreting the
triangle plot and also there is a requirement for high-resolution images.

Wang et al. (2007) used the MODIS NDVI (1 km) and LST data to establish the
relationship between NDVI, LST, and ground-based soil moisture observation and
they found a significant correlation between the datasets, irrespective of land cover
and soil type. Mallick et al. (2009) estimated the volumetric surface soil moisture
content in cropped areas at the field to landscape scales in parts of Punjab, Haryana,
Odisha, and Karnataka from NDVI and surface temperature. Using ASTER data for
field-scale and MODIS data for landscape scale, the soil wetness index was derived
by plotting LST and NDVI in feature space (triangle method) from which the
volumetric surface soil moisture content was further derived. The RMSE for field-
scale using ASTER data was higher (0.039m3/m3) than MODIS derived landscape
scale (0.033m3/m3) volumetric surface soil moisture content. Wang et al. (2011)
estimated soil moisture using the trapezoidal relationship between land surface
temperature (Ts) and vegetation index (VI). They used MODIS derived Ts and
enhanced vegetation index (EVI). The algorithm approach was to plot Ts and EVI in
x- and y-axis respectively and to find the trapezoidal vertices for each pixel by
running the algorithm iteratively. Based on the trapezoid the water deficit index
(WDI), they found that the retrieved soil moisture could capture the temporal
variation but not the spatial variation for such a semi-arid region. Rahimzadeh-
Bajgiran et al. (2013) developed a new soil moisture estimation method using
optical/thermal infrared MODIS data based on the evaporative fraction (EF) for
Canadian Prairies in parts of Saskatchewan and Alberta. The land surface temper-
ature method of Wang et al. (2011) was modified by incorporating the North
American Regional Reanalysis (NAAR) air temperature (Ta) data for soil moisture

Fig. 10.3 Physical
interpretation of Vegetation
Index/Land surface
temperature feature space
“scatterplot” (Modified,
Carlson 2007)
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estimation. The difference between MODIS Terra and Aqua derived two separate Ts
data and NAAR derived Ta were used in combination. The estimated soil moisture
was then compared with the in-situ soil moisture measurement and a significant
correlation was found (R2varied between 0.42 and 0.77). Holzman et al. (2014) used
the LST and EVI (Enhanced Vegetation Index) from MODIS to derive TVDI
(Temperature Vegetation Dryness Index) which was used to derive soil moisture
in Argentine pampas. TVDI was significantly positively correlated with soil mois-
ture (R2 between 0.61 and 0.83).

Sadeghi et al. (2017) proposed a novel OPticalTRApezoid Model (OPTRAM)
advantageous over the previously used Thermal-Optical TRAapezoid Model
(TOTRAM) which was based on the pixel distribution of the LST-VI space with
two major limitations. One limitation was the requirement of thermal data and the
second being the requirement for parameterization for each observation date.
OPTRAM was based on the linear relationship between soil moisture and SWIR
transformed reflectance (STR) and the parameterization was done on within the
STR-VI space. They derived soil moisture using OPTRAM from Sentinel-2 and
Landsat-8 data for the Walnut Gulch and Little Washita watersheds study area and
the modelled soil moisture data were compared with in-situ data. Both model
accuracies were found to be comparable where OPTRSM had a requirement for
data from the optical EM domain. Vani et al. (2019) used the triangle method to
estimate soil moisture from Landsat 8 images for years from 2007 to 2011 for a
catchment in Southern New South Wales, Australia. Theoretical dry and wet edges
were derived from the LST-VI space-based triangle method. The general soil
moisture variation patterns were observed between the satellite-derived and in-situ
soil moisture (from 20 agriculture stations) due to the background effects of soil
properties on satellite-derived soil moisture.

The synergistic uses of optical and thermal results in the estimation of soil
moisture with high spatial resolution. The major limitations for creating the opera-
tional products from the fused optical and thermal products are low temporal
resolution, cloudy condition, no availability of data during night-time, and low
penetration depth.

10.3.4 Microwave Remote Sensing Techniques

Optical and thermal RS data have many limitations mainly for its use in estimating
soil moisture but active and passive microwave data is used to measure the soil
moisture with good spatial and temporal resolution over large areas in different parts
of the world (Crapolicchio and Lecomte 2005; Wagner et al. 2009; Njoku et al.
2002; Entekhabi et al. 2010). In a passive microwave system, brightness temperature
is used to measure the soil moisture as decreasing brightness temperature indicates
increasing soil moisture. In the active microwave system, higher backscatter will
indicate higher content of soil moisture. An active microwave system like Synthetic
Aperture Radar (SAR) has the potential to map the soil moisture in high resolution
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(~10 m) but with low temporal resolution (12 to 36 days). In the case of a passive
microwave system (like Radiometer), high temporal resolution can be achieved
(~12 hrs) but with the constraint of low spatial resolution (20 to 50 km). The
following parameters affect the microwave RS measurements and determine the
efficacy of soil moisture retrieval:

• Frequency/wavelength: L band and C band are the most commonly used bands in
microwave systems. L band penetrates most vegetation and successfully reaches
the surface and subsurface. C band does not penetrate as much as L band but is
still used for soil moisture measurements.

• As the incidence angle of a microwave sensor increases, the signal becomes
attenuated (an electromagnetic wave inevitably loses energy when it travels
through a dielectric medium. The energy loss is referred to as attenuation) due
to several scatterers. For soil moisture application, low incidence angle data are
suitable since the surface roughness and vegetation effects become minimum
which in turn resulting in reducing errors.

• Polarization (a property of the EM wave which describes the direction in which
the oscillations are taking place) also affects the retrieval of soil moisture. Active
measurements have VV, VH, HH, and HV combinations, whereas passive
measurements have either V or H. Different polarization has different effect on
the target of interest; for example, HH polarization is most useful for soil moisture
changes in C band, whereas VV polarization is most useful in crustal deformation
and landslide applications for C-band.

• Surface roughness plays a major role in radar backscatter as the signal backscat-
ters to the sensors based on the target’s geometry. In SAR images, water bodies
appear dark in tone due to low backscatter because the surface is smooth except
where the water is disturbed by current or wind stress. This helps in differentiat-
ing land and water in times of flood damage assessment and coastal zone erosion
mapping.

• Microwave signal backscatters are affected by dielectric constant (the ratio of the
electric permeability of the material with respect to that of free space.). In the case
of soil, dry soil has low dielectric constant, and wet soil has a high dielectric
constant. This helps in measuring soil moisture content.

• Topography variations result in change in backscatter, as in slope facing the
sensor would give high backscatter and surface facing away would give low or
zero backscatter. This is true for active systems, whereas passive systems do not
get affected by topography due to its large footprint.

Besides the above parameters, observation depth and vegetation characteristics
also play an important role in estimating soil moisture. In passive microwave images,
the microwaves emitted from the earth’s surface are measured for various applica-
tions. From the passive microwave data, the brightness temperature measured from
the satellite is extracted in order to derive or retrieve soil moisture using various
models. The brightness temperature, TB, of random volume over a surface is
expressed as
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TB ¼ attenuated surface emissionð Þ þ direct volume emissionð Þ
þ scattered volume emissionð Þ

¼ TSURFΥv þ TV þ TVΓΥv ð10:1Þ
¼ 2sTsΥv þ TV 1� að Þ 1� Υvð Þ þ TV 1� að Þ 1� Υvð ÞΓΥv ð10:2Þ

¼ 2sTsΥv þ TV 1� að Þ 1� Υvð Þ 1þ ΓΥvð Þ ð10:3Þ

For the above model, the surface layer is having physical temperature TS and
emissivity es lying beneath a sparse volume scattering layer with a brightness
temperature of TV and vertical opacity (tv). The volume effects become threefold
when the volume is sparse with low transmissivity (ΥV). The volume effects are as
follows:

• The surface emission signal attenuated by the factor, ΥV, which gives (TSURF

ΥV).
• A direct term of its own TV.
• The term TVΓ shows the contribution of the part of the emission from the volume

that goes downwards and scatters off the surface.

The surface emissivity and the volume transmissivity are dependent on the zenith
angle, θ; then for a given zenith angle, θ, the observed brightness temperature is
expressed as

TB ¼ 2vTS cos θ exp � τv
cosθ

� �h i
þ TV ð10:4Þ

The term cosθ accounts for the difference in path length when the measurement is
not taken vertically. For active microwave images, the radar backscatter coefficient
is derived from the signal that is transmitted and received by the radar.

Radar backscatter coefficient:

σ0 ¼ magnitude of received pulse
magnitude of transmitted pulse

ð10:5Þ

Since σ0 is unitless, it is converted to dB ¼ 10log10 (σ0).
The σ0 increases as surface roughness increases and also as dielectric constant

increases. The backscatter coefficient depends on both system and target properties.
System properties are wavelength/frequency, polarization, and the incidence angle.
Target properties are dielectric constant, surface roughness, and feature orientation.

A number of techniques have been developed by scientific community to retrieve
soil moisture from passive and active microwave images, and these techniques are
described below:
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10.3.4.1 Passive Microwave Remote Sensing Techniques

The radiative transfer equations have been used to retentive soil moisture from
passive microwave images. Gao et al. (2004) proposed a land surface microwave
emission model (LSMEM) using the radiative transfer equation (parameters like
sensor viewing conditions and atmospheric parameters over a soil surface) devel-
oped by Kerr and Njoku (1990). The model was used to retrieve soil moisture from
brightness temperature by airborne Electronically Scanned Thinned Array Radiom-
eter (ESTAR) L-band radiometer during the 1999 Southern Great Plains Hydrology
Experiment (SGP99). The estimated soil moisture was validated with an RMSE of
1.8%–2.8%. Chai et al. (2010) tested an artificial neural network (ANN) for deriving
soil moisture at 1 km resolution on different dates using the training sample at the
same site for a specific date. Combing the dual-polarized brightness temperature and
an ANN architecture of a single hidden layer of 20 neurons as input, accuracy up to
3.7% v/v was achieved using the variability and subregion methodology.

Chen et al. (2012) used the Advanced Microwave Scanning Radiometer-Earth
Observing System (AMSR-E) data to derive soil moisture (as an indicative of
drought occurrence) using the inversion method. The brightness temperature
(Tb) from the C band of AMSR-E was used to derive a modified surface roughness
index for mapping the land surface roughness. The AMSR-E-derived Tb was
combined with microwave polarization difference index (MPDI)-based vegetation
cover classification to derive a semi-empirical model. This model was inverted to
calculate surface soil moisture, and the coefficient of determination (R2) was 0.87 for
bare ground and flat areas, 0.85 for sparse vegetation and flat surface areas, and
between 0.8 and 0.83 for dense vegetation areas. The time-series monitoring of
surface soil moisture proved effective to detect initiation, duration, and recovery of
the drought events. Li et al. (2014) also used the AMSR-E soil moisture product
(derived from the X-band frequency brightness temperature using single-channel
retrieval algorithm) coupled with in situ observation over three large climate regions
in the United States. They found that AMSR-E soil moisture retrievals showed the
smallest spatial variability among all the three data types. Pan et al. (2014) improved
the existing LSMEM model to improve the accuracy of soil moisture because it was
using only the H polarization of AMSR-E data for soil moisture retrieval which was
introducing several errors to the system and also the model used a relatively large
number of parameters. They found that the use of dual polarization (H and V) is
much more effective than single polarization where the dual polarization addresses
the problems of vegetation opacity and polarization mixing measured by the sensor.
The existing LSMEM algorithm has revised by combining one roughness and two
vegetation parameters into one effective vegetation optical depth (VOD) value and
by providing the new algorithm that estimates VOD effectively from dual polariza-
tion resulting in the initial guess of soil moisture. The results were validated within
the United States using in situ observations, and these were proven to be good and
robust and were successful in reproducing the spatial and temporal dynamics of soil
moisture.
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Soil moisture estimated by passive microwave remote sensors is useful particu-
larly over bare surfaces. This data is available in all weather conditions along with
high temporal resolution. The major limitations are the coarse resolution of the
radiometer data and its inefficiency to retrieve soil moisture over sparse vegetation
areas and varying surface roughness.

10.3.4.2 Active Microwave Remote Sensing Techniques

Many active microwave images have been used in different parts of the world to map
the soil moisture. Baghdadi et al. (2012) retrieved the bare soil moisture content from
Terra SAR-X data using two cases where the first case was one image at either low or
high incidence angle and the second where two images where one was at low
incidence angle and another at high angle. Their results showed that Terra SAR-X
images were capable enough to retrieve the soil moisture accurately with an RMSE
of 3%. Nevertheless, the use of two incidence angles has no significance when it
comes to soil moisture retrieval than using one incidence angle, but high incidence
angle output was proven to be 1% better than low incidence angle output. Al-Bakri
et al. (2014) studied the performances of empirical and semi-empirical models to
predict soil moisture in the Yarmouk basin in Jordan using the backscatter coeffi-
cient of RADARSAT 2 C- band SAR data during May and June 2010. Soil moisture
content was significantly positively correlated with horizontally polarized backscat-
ter with R2 of 0.64. From the empirical and semi-empirical regression model, the
calculated RMSE for the SAR volumetric soil moisture content was 0.09 and
0.06 m3/m3, respectively. Due to non-inverted pixels in the soil moisture maps
produced by the semi-empirical model, there were high differences in change in soil
moisture content.

Panciera et al. (2013) compared the integral equation model (IEM) and Dubois
and Oh models (surface scattering models) to predict backscatter for fully polarized
L-band airborne observations. The Oh model was found to be most accurate before
any site-specific calibration. The mean errors between the observed and simulated
backscatter were �0.04 dB and 1.2 dB and for VV and HH polarizations, respec-
tively. The IEM and Dubois model presented large errors of which IEM resulted in a
maximum error of 4.5 dB for VV polarization. The error observed was primarily due
to the surface roughness of the targets. A semi-empirical calibration of the surface
roughness was applied to overcome the mismatch between the observed and simu-
lated backscatter value. The IEM resulted in much less error of�0.3 dB and� 0.2 dB
for HH and VV, respectively, outperforming the Oh model after the site-specific
calibration. Baup et al. (2011) used the ENVISAT ASARmulti-angle C-band data to
generate surface soil moisture maps in Sahelian rangelands. They generated a soil
moisture map at 1 km resolution which was in good agreement with field data and
ERS Wind Scatterometer surface soil moisture products.

Dave et al. (2019) used RISAT-1 C-band dual-polarization data for estimating
surface soil moisture for winter wheat crop from the initial to maturity stage in the
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Bhal region of Gujarat (India) using modified Dubois model developed by Rao et al.
(2013). The modified Dubois model is defined as follows:

σohh ¼ 10�2:75 cos 2:5θ
sin 5θ

� 100:028s tan θ ks sin θð Þ1:4λ0:7 ð10:6Þ

Radar backscatter coefficient, σohh, is the function of incidence angle θ, dielectric
constant ε, wavelength l, wave number k (2p/l), and root mean square height s,
which is replaced by HV/HH ratio. Inverting the above equation, dielectric constant,
ε, is given by

ε ¼ log σohh
� �� log ACð Þ

B
ð10:7Þ

A ¼ 10�2:75 cos 1:5θ
sin 5θ

B ¼ 0:028tanθ C ¼ kssinθð Þ1:4λ0:7 ðwhereÞ

From the above-defined dielectric constant, ε, soil moisture θv is derived as
follows:

θv ¼ �5:3X10�2 þ 2:92X10�2ε� 5:5X10�4ε2 þ 4:3X10�6ε3 ð10:8Þ

Dave et al. (2019) modified the above model to use only the backscatter from the
HH polarization along with Topp’s model to derive the soil moisture (Topp et al.
1980). Their results showed the correlation between measured and modelled value
was 0.76 for the initial stage, 0.49 for maximum (peak) growth, and0.63 for the
maturity stage. These results showed that vegetation affects the retrieval accuracy of
soil moisture using radar data.

Active microwave RS-based soil moisture retrieval methods have advantages
(like fine resolution soil moisture output and the capacity to provide data despite any
clouds and time of the day), but temporal resolution, surface roughness, and amount
of vegetation cover limit its use.

10.3.4.3 Active and Passive Microwave Data Fusion

Both active and passive microwave sensors data have their own advantages and
disadvantages which can be used in complement with each other to downscale the
coarse resolution passive radiometer data to obtain finer resolution soil moisture
maps. Passive sensor data is less sensitive to surface roughness and provides soil
moisture on a coarse resolution, whereas the active sensor data is highly sensitive to
surface roughness and other parameters but provides soil moisture on a fine resolu-
tion. Several attempts have been done to obtain fine resolution soil moisture maps by
downscaling approaches.
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Zhan et al. (2006) analysed the data from the observation system simulation
experiment (OSSE) as a performance check before NASA’s Earth System Science
Pathfinder Hydrospheric State (Hydros) mission which used L-band radiometer and
radar systems. Soil moisture at scales 9 km and 3 km were derived using the 36 km
radiometer data and 3 km radar data. The noisy fine-resolution radar data was
compensated by the coarse resolution accurate radiometer data. Using the Bayesian
merging method, the RMSE of low and high noise data sets were reduced by 0.5%
vol/vol and 1.4% vol/vol, respectively, for the 9 km soil moisture product for the
experimental data for consecutive 34 days. The 3 km scale soil moisture product also
performed well using this compared with the direct inversion method.

Piles et al. (2009) developed a change detection algorithm to downscale the
36 km L- band radiometer data and 3 km radar data as preparation for the Soil
Moisture Active Passive (SMAP) mission. For algorithm development, OSSE and
field experiment Passive and active L- and S-band sensor (PALS) data were used.
They used the 36 km radiometer brightness temperature and 3 km radar backscatter
observation to derive 10 km soil moisture observation. They made three assump-
tions: (i) soil moisture and the log of backscatter are linearly related at 10 km scale,
(ii) slope of the linear relation (between soil moisture and the log of the backscatter)
and backscatter changes are uncorrelated, and (iii) variations on vegetation type
occur principally at scales larger than the radiometer pixel area of 40 km. The
algorithm had yielded an improved RMSE by 2% volumetric soil moisture content
when four-month OSSE data were used. Magagi et al. (2012) experimented with
Saskatchewan, Canada, for soil moisture retrieval using the Soil Moisture and Ocean
Salinity (SMOS) satellite data (for data validation of the mission) and SMAP data
(for pre-launch assessment of the mission). The data were collected using both
airborne and spaceborne platforms along with ground measurements on soil prop-
erties such as roughness, soil moisture and temperature, and bulk density and
vegetation parameters like biomass, vegetation height, and leaf area at the time of
sensor acquisitions. Besides, continuous measurement of soil moisture and temper-
ature profiles and meteorological conditions was acquired using two ground-based in
situ networks. Two sites (33 km x 71 km), almost of two SMOS pixel size, were
selected in agricultural and boreal forested areas to capture the contrasting soil and
vegetation conditions. The airborne L-band brightness temperatures matched up well
with the SMOS data over the agricultural area. The absolute soil moisture estimates
could not meet the required accuracy for the SMOS mission, but the temporal
evolution of the soil moisture of the SMOS mission was in good agreement with
the ground data.

Piles et al. (2014) proposed a downscaling algorithm to obtain multi-resolution
soil moisture estimates from the SMOS data using visible and infrared observations.
Two years of SMOS and MODIS terra/aqua data were combined to produce a 1 km
soil moisture map over the Iberian Peninsula. These soil moisture maps were
compared to the 0–5 cm REMEDHUS ground-based measurement network. Down-
scaled maps captured the soil moisture dynamics of general land uses except for
irrigated crops. Results indicate that the downscaled output improved the SMOS
estimates maintaining temporal correlation and root mean squared differences with
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ground-based measurements. Shi et al. (2014) proposed a new algorithm for down-
scaling the radiometer and radar data to produce high-resolution soil moisture maps.
The algorithm was based on spectral downscaling combining the phase and ampli-
tude information in the Fourier domain. The Fourier phase was estimated using the
fine resolution radar data through a new proposed way. The algorithm was applied to
the PALS data from the SMEX02 experiments for downscaling which proved to be
better than the radiometer only inversion product. The RMSE of the downscaled
brightness temperature for H and V polarization were found to be 3.26 K and 6.12 K,
respectively. The RMSE for downscaled soil moisture was found to be 0.0459 m3/
m3.

Akbar and Moghaddam (2015) developed a method for combining active and
passive data to produce soil moisture maps using Monte Carlo numerical simulations
and optimization. The algorithm was tested for corn, soybean, and grassland cover
types for active-only, passive-only, and active-passive combined scenarios. The
combined data output was found to be accurate compared to the other scenarios,
especially in high vegetation water content values. Montazaka et al. (2016) used
active and passive L-band data for producing downscaled soil moisture maps as a
part of the SMAP validation program. They used this dataset to produce soil
moisture using three different fusion algorithms: (i) use of passive sensor data and
subsequent disaggregated active data to estimate the soil moisture, (ii) use of passive
microwave backscatter data disaggregated by active backscatter data and further
inverted to derive soil moisture and, and (iii) fusion of two single-source soil
moisture products from active and passive data sets. The fusion of radiometer
brightness temperatures and radar backscatters shows the best performance, with
the same accuracy as single-source coarse-scale radiometer soil moisture retrieval
but on a higher spatial resolution. Das et al. (2018) tested several soil moisture
retrieval algorithms on the SMAP radar and radiometer data of 2.5 months until the
failure of the radar part of the SMAP sensor. The acquired data till the failure of radar
sensor coincided with the northern hemisphere’s vegetation green-up and crop
growth season. Various algorithms were tested on the data against in situ data
from core calibration and validation sites and sparse networks to produce 3 km
and 9 km high-resolution soil moisture maps. The baseline algorithm was proven
best amongst the other algorithms. The unbiased RMSE was found close to 0.04 m3/
m3for 9 km resolution data as per the SMAP requirement and 0.053 m3/m3 for 3 km
resolution data. The results of this study showed that the product obtained by
combining radar and radiometer data has the potential to provide high-resolution
soil moisture with high accuracy on a global scale.

Das et al. (2019) combined the L-band SMAP radiometer data with the C-band
Sentinel 1A/Sentinel 1B SAR data to produce high-resolution soil moisture of 3 km
and 1 km resolution. Sentinel 1 Interferometric Wide (IW) data was found suitable as
it has a similar orbit configuration that of SMAP. The major differences in Sentinel-1
and SMAP data set are:

I. Sentinel 1 data are of C-band, whereas SMAP data are of L-band.
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II. Sentinel 1 images are acquired in multiple incidence angles, whereas SMAP
data are acquired in single multiple angles.

III. The swath is 250 km for of Sentinel-1 and 1000 km of SMAP.

The original developed downscaling algorithm for SMAP mission is given as
follows (Das et al.2013, 2018; Entekhabi et al. 2014):

TBp M j

� � ¼ TBp Cð Þ þ β Cð Þ: σpp M j

� �� σpp Cð Þ� �þ Γ: σpq Cð Þ � σpq M j

� �� ��
ð10:9Þ

where TBp Cð Þ is the coarse resolution (~36 km) brightness temperature in unit K and
σpp(C) and σpq(C) are the co-pol and cross-pol radar backscatter aggregated for
coarse resolution in units dB. σpp(Mj) and σpq(Mj) the co-pol and cross-pol radar
backscatters at medium or desired resolution (3 or 1 km) in dB. β(C) and Γ are
algorithm parameters. Since the SMAP algorithm was optimized for daily coverage
radar data, the authors modified it to incorporate the 12 days coverage radar data of
Sentinel-1using the snapshot retrieval approach by Jagdhuber et al. (2018), and it is
given as follows:

TBp M j

� � ¼ TBp Cð Þ
TS

þ β0 Cð Þ: σpp M j

� �� σpp Cð Þ� �þ Γ: σpq Cð Þ � σpq M j

� �� �� 	
 �
:TS

ð10:10Þ

where TS is the emission temperature of the surface soil in units K and β’(C) is the
snapshot parameter which compensates the sparse time series data of Sentinel-1
12-day coverage. The produced high-resolution soil moisture maps showed a rea-
sonable accuracy of 0.05m3/m3.

Toride et al. (2019) proposed a new downscaling algorithm named integrated
passive and active downscaling or I-PAD to produce high-spatiotemporal-resolu-
tion data over regions without detailed soil data. The data used were AMSR-E and
ALOS PALSAR. The data were combined through a dual-pass land data assimi-
lation system to derive the 1 km soil moisture maps of Mongolia and the Little
Washita basin. The analysis showed that I-PAD could capture the overall spatial
trend of soil moisture proving that the algorithm can be applied over data-sparse
regions.

The primary advantage of fusing active and passive microwave data is its
ability to produce high-resolution soil moisture maps with high temporal resolu-
tion. The method lacks in validation part of the derived products and also use of
multiple satellite results in different penetration depth for soil moisture content
measurement.
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10.3.5 Microwave and Optical/Thermal Infrared Data Fusion

As explained above, optical/thermal RS data produces soil moisture on a finer scale
and at a fairly fine temporal resolution, whereas microwave RS data reacts differ-
ently to various biophysical and geophysical parameters related to land and can
retrieve soil moisture for various ranges of vegetation characteristics. A key advan-
tage in combining microwave and optical data is its capability to minimize the
effects of vegetation biomass and surface roughness.

Using the passive microwave data from AMSR-E, visible wavelength data from
MODIS and topographic attributes from the SRTM DEM, Temimi et al. (2010)
presented a methodology for monitoring soil wetness index over Peace-Athabasca
Delta (PAD) in the Mackenzie river basin (Canada). They proposed a new topogra-
phy wetness index (TWI) using passive microwave data and vegetation parameters
because the classic topography-based wetness index is unable to capture the tempo-
ral variability of soil moisture and also does not take into account the vegetation
effect. AMSR-E data were used to assess the soil wetness regularly. MODIS data
were used to develop a rating curve relationship between discharge observations and
the extent of flooded areas. The proposed index proved efficient than the previous
classic index. Piles et al. (2011) carried different downscaling experiments to
improve the 40 km SMOS data using visible/infrared data from the Landsat
image. The algorithm was based on the universal triangle concept using VIS/IR
data parameters (like NDVI and LST) and relating these to the soil moisture status.
The results matched well with the ground observations at 10 and 1 km spatial
resolution without compromising the RMSE. Gao et al. (2017) used the time-series
Sentinel-1 and Sentinel-2 data of almost 1.5 years over Urgell (Spain) to produce
high-resolution 100 m soil moisture data. They used the following two methods to
produce high-resolution soil moisture data:

(i) Change detection (changes in radar backscatter and NDVI during the study
period) which was optimized to utilize the Sentinel-1 high repeat frequency
through inversion using the following equation:

MV i, j,NDVI, dð Þ ¼
ΔσNDVIi,jð Þ
f NDVIð Þ MVmax �MVminð Þ þMVmin i, j, dð Þ ð10:11Þ

where MV max and MV min are the maximum and minimum soil moisture values
calculated for the time period of the study using SMOS coarse-resolution data,
ΔσNDVIi,jð Þ is the radar backscatter difference of each pixel with its minimum value

where the pixels are within the NDVI range of 0.1–0.8, and f (NDVI) is the slope
between the radar backscatter difference and the NDVI values.

(ii) Computation of radar backscatter difference of two consecutive day Sentinel-1
data expressed as a function of NDVI optical index using the equation:
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MV i, j, t2ð Þ ¼ MV i, j, t1ð Þ þ H δσ t1, t2ð Þð Þ
MV i, j, t3ð Þ ¼ MV i, j, t2ð Þ þ H δσ t2, t3ð Þð Þ ð10:12Þ

For consecutive days t1, t2, t3, and so on, soil moisture is calculated iteratively.
Here, the change in radar backscatter δσ is the difference between the radar back-
scatter of consecutive date Sentinel-1 images. These two approaches of Gao et al.
(2017) are being used by authors to retrieve soil moisture from cropped areas of
Indian Punjab. An overview of the approach is given in Fig.10.4.

Fang et al. (2018,) used the improved thermal inertia theory to downscale the
SMAP radiometer data from 9 km to 1 km utilizing the NDVI and LST derived from
NLDAS (North American Land Data Assimilation System), MODIS, and AVHRR
data. The outputs were validated using the SMAPVEX15 experiment data, and the
algorithm was found to be applicable in any site since the outputs were not site-
specific.

10.4 Operational Products of Soil Moisture

The satellite-based soil moisture product became available since 2002 when the first
global multiannual soil moisture dataset (1992–2000) derived from ERS-1 and
ERS-2 SCAT observations was published (Wagner et al. 2003). Since then, scien-
tists in different parts of the worlds have developed soil moisture products using
different sensors and techniques. The list of operations soil moisture products is
given in Table 10.1. The soil moisture product of AMSR-2, MIRAS, and SMAP
over India has been given in Fig. 10.5, and all of these three soil moisture products
are with coarse resolution. The high-resolution soil moisture of 3 km and 1 km
resolution has been produced by combining the L-band SMAP radiometer data with
the C-band Sentinel 1A/Sentinel 1B SAR data by Das et al. (2019), and the soil
moisture of 1 km resolution over India has been given in Fig.10.5.

10.5 Soil Moisture Data Products: A Case Study from India

Soil wetness index (SWI) and soil moisture (SM) data products were developed by
Space Applications Centre, Indian Space Research organisation using SMAP
L-band radiometer data. The algorithm for soil wetness index (SWI) data products
as a primary product was adopted from ASCAT soil moisture product (Wagner et al.
2013) based on change detection approach (time series methodology). From a
mathematical point of view, the TU Wien change detection algorithm is less
complex as compared to the semi-empirical modelling approaches build upon the
cloud model (Wagner et al. 2013). This model can be inverted analytically; hence,
direct soil moisture estimation is possible from the microwave measurement without
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Sentinel-1

Sentinel-2

Soil Moisture (1 km spatial resolution)

Modelling using
radarbackscatter

and NDVI

Fig. 10.4 Retrieval of soil moisture using the fusion of Sentinel-1 and Sentinel-2. (Modified, Gao
et al. 2017)
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iterative adjustment processes. Because of this, it is also quite straight forward to
perform an error propagation to estimate the retrieval error for each land surface
pixel (Naeimi et al. 2009). With the above advantage of simplistic approach, less
requirement of ancillary data and analytical solution to soil moisture inversion from
time-series data, same algorithm was adopted and implemented using time series

Fig. 10.5 Soil moisture products over India from different sensors (January 2020)
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SMAP L-band Tb data to derive large-scale soil moisture as a soil wetness index
(SWI) whose value ranges from 0 to 1, showing driest to saturation condition
(Pandey et al. 2016).

The absolute soil moisture W(t) at time can also be derived from soil wetness
index (t) at time if the Wmin and Wmax corresponding to the minimum and maximum
soil moisture values (gravimetric or volumetric) are available (Thapliyal et al. 2005;
Chaurasia et al. 2012):

W tð Þ ¼ Wmin þ SWI tð Þ � Wmax �Wminð Þ ð10:13Þ

The Wmin and Wmax represent the permanent wilting point (PWP) and the field
capacity (FC) of soil, which can be derived from soil texture information. Using
above approach, soil moisture as a secondary product was derived using soil wetness
index (SWI) data product and soil texture information from Harmonized World Soil
Database (HWSD) whose value covers the top 5 cm of the soil column, ranges from
0 to 0.55 m3/m3 (Fig. 10.6).

Currently, soil wetness index (SWI) and soil moisture (SM) as primary and
secondary products are generated as daily operational products over India which is
available on https://www.mosdac.gov.in/swi/ in Meteorological & Oceanographic
Satellite Data Archival Centre (MOSDAC) and Visualization of Earth Observation
Data and Archival System (VEDAS) web portal of SAC (ISRO) for visualization
and user interaction. The daily operational soil moisture maps over India are freely

Fig. 10.6 Soil wetness index (SWI) and soil moisture (SM) daily operational data products over
India during January 2020
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available since April 2015 on https://mosdac.gov.in/opendata/soil_moisture/
(Pandey et al. 2016). The spatial resolution of both soil wetness and soil moisture
products is 0.125 degree (~12.5 km).

10.6 Future Missions

The NASA-ISRO Synthetic Aperture Radar (NISAR) is one of the upcoming mis-
sions, having dual-frequency (L&S-band) SAR which will be utilized for major
applications like agriculture, surface deformation, and disaster management. The
NISAR mission will provide data in 10-meter spatial resolution with 12 days of
temporal resolution. Since it is a radar, the coverage will be day/night during
all-weather conditions. NISAR will work in both L-band (λ ¼ 24 cm) and S-band
(λ ¼ 10 cm) wavelength (Rosen et al. 2016). Among other applications, the NISAR
mission will provide high-resolution soil moisture maps at individual field level and
will be helpful inefficient irrigation, water use, and fertilization.

10.7 Conclusions

Soil moisture is one of the important parameters for several applications in fields like
hydrology and agriculture. The accurate retrieval of soil moisture becomes a top
priority in hydrological modelling, crop modelling, atmospheric modelling, etc. RS
techniques are efficient in retrieving soil moisture with high spatial and temporal
resolution up to a depth of about 3–5 cm. Optical, thermal, and microwave regions of
the EM spectrum have their own advantages and disadvantages in retrieving the soil
moisture. Using optical, thermal, and microwave RS in synergy has proved to be
more efficient and has now become the prospect for soil moisture retrieval. The
current soil moisture products provide global coverage with almost-daily temporal
resolution. The vegetation cover is a major challenge to retrieve soil moisture at
places where the land is covered with thick vegetation and the current products prove
accurate in low vegetated to bare soil-covered areas. Although the operational
products are useful in many applications, there is a requirement for soil moisture
products at depths around 10–15 cm. P-band microwave data could be the solution
since it is of longer wavelength (~70 cm, corresponding to a lower frequency of
typically 430 MHz), and the P-band is expected to have higher soil moisture retrieval
accuracy since its sensitivity towards vegetation water content and surface roughness
is minimal compared with other microwave bands. Existing Sentinel-1 SAR data has
great potential to downscale the soil moisture of available operational products (like
SMAP or SMOS) or with optical data to retrieve soil moisture at a finer spatial
resolution over vegetation-covered surfaces.
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Abstract Unsustainable use of land resources leads to degradation of soil resulting
decline in soil functions such as crop productivity, regulation of the hydrological
cycle, water quality, and soil quality. Soil quality is influenced by inherent and
anthropogenic factors. It is used to evaluate soil resource functions as how well soil
performs for all its functions at present and how these functions will be preserved for
future use. It cannot be measured directly, so we evaluate indicators. Indicators are
measurable properties of soil. Indicators can be physical, chemical, and biological
properties or characteristics of soils. Soil quality indices are usually used for the
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objective measurement of soil quality. These are useful tools for assessing the
overall soil condition and response to management towards natural and anthropo-
genic factors. It helps to determine what conservation practices are needed to protect
soil and water resources. The geospatial technique helps in providing spatial distri-
bution of soils and representation of soil quality. Satellite remote sensing data and
derived digital elevation models (DEMs) are used to map soils and landforms to
evaluate soil quality. Soil quality assessment has been recognized as an important
step towards understanding the long-term effects of various land management
practices. It will help the land managers in preparing land use plans and management
decisions for optimal use, hence assisting in sustainable land management. The
chapter discusses various geospatial modelling methods in soil quality assessment.

Keywords Geographic information system · Remote sensing · Soil health · Soil
quality · Soil quality indicators

Abbreviations

AHP Analytical Hierarchy Process
AS Aggregate Stability
ASI Aggregate Stabillity Index
BD Bulk Density
BG b-Glucosidase
BS Base Saturation
CEC Cation Exchange Capacity
DEM Digital Elevation Model
DHA Dehydrogenase Activity
DSM Digital Soil Mapping
DSSAT Decision Support System for Agro-technology Transfer
EC Electrical Conductivity
EPIC Erosion Productivity Impact Calculator
FCC Fertility Capability Soil Classification
FDAse Fluorescein Diacetate Hydrolase
GIS Geographic Information System
GMD Geometric Mean Diameter
IQI Integrated Quality Index
IDW Inverse Distance Weighted
LISS Linear Imaging Self Scanning
LULC Land Use Land Cover
MBC Microbial Biomass Carbon
MCDM Multi-Criteria-Decision-Making
MDS Minimum Dataset
MRS Multiresolution Segmentation
MS Moisture Saturation
MWD Mean Weight Diameter
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NDVI Normalized Difference Vegetation Index
NIR Near Infrared
NQI Nemoro Quality Index
PAW Plant Available Water
PCA Principal Component Analysis
PLS-DA Partial Least Squares-Discriminant Analysis
PLSR Partial Least Squares Regression
PLU Physiography Land Use
PMN Potentially Mineralizable Nitrogen
qCO2 Metabolic Quotient
RothC Rothamsted Carbon Model
RS Remote Sensing
RUSLE Revised Universal Soil Loss Equation
SAR Sodium Adsorption Ratio
SCI Soil Condition Index
SHC Saturated Hydraulic Conductivity
SMAF Soil Management Assessment Framework
SOC Soil Organic Carbon
SOM Soil Organic Matter
SQI Soil Quality Index
SSQI Spectral Soil Quality Index
STIR Soil Tillage Intensity Rating
TCS Total Carbon Stocks
TNS Total Nitrogen Stocks
TOC Total Organic Carbon
TP Total Porosity
TPI Topographic Position Index
USLE Universal Soil Loss Equation
VNIR Visible and Near Infrared
WEPP Water Erosion Prediction Project
WFPS Water-filled Pore Space
WSA Water-stable Aggregates

11.1 Introduction

The ever-growing world population leads to enormous pressure on land resources to
produce almost 70% higher agricultural produce by 2050 compared to 2005 (Lal
2015). Overexploitation of land may lead to degradation, and at present, 33% of
arable land suffers from various kinds of degradation processes. These land degra-
dation processes may result in a decline in soil quality or soil health and a decrease in
ecosystem goods and services. It may severely affect our chances of achieving the
increased agricultural productivity necessary to nourish the expected global
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population of 9.5 billion by 2050 (Lal 2015; Meena et al. 2018). Thus, sustainable
land management practices to maintain or improve soil quality and achieve optimum
agricultural production levels are extremely needed.

Soil quality refers to “the inherent capacity of a soil to function within natural or
managed ecosystem boundaries to sustain biological productivity, maintain envi-
ronmental quality and promote plant and animal health” (Doran and Parkin 1994;
Meena et al. 2018a). A thorough understanding of soil quality or its parameters
enables us to gain insight into the status of soil as a natural resource and also enables
us to make necessary alterations in different soil parameters to improve the func-
tioning of a particular soil (Herrick 2000). The various functions of soil or ecosystem
services derived from it necessitate defining soil quality from other perspectives too.
For example, the definition of soil quality from an environmental perspective states it
as “the capacity of the soil to promote the growth of plants, protect watersheds by
regulating the infiltration and partitioning of precipitation, and prevents water and air
pollution by buffering potential pollutants such as agricultural chemicals, organic
wastes, and industrial chemicals” (Sims et al. 1997). Thus, the definition of soil
quality varies as per its functions and services derived from it.

Soil quality evaluation has widely been accepted as a vital step towards realizing
the long-term consequences of various land management practices. Soil quality
assessment is essential to show the influence of various agricultural management
practices on soil productivity as well as environmental quality (NRC 1993). Several
physical, chemical, and biological indicators are being used to assess soil quality
from a crop production perspective. Among these indicators, biological indicators
are considered most sensitive to changes compared to other physical/chemical
indicators and could effectively describe the soil quality in an overall view. Several
conceptual frameworks for monitoring soil quality have been proposed by various
researchers (Andrews et al. 2004; Viscarra Rossel et al. 2006, Basak et al. 2016;
Biswas et al. 2017). Selection of a minimum dataset (MDS) consisting of different
physical, chemical, and biological properties vital in terms of soil functioning has
been usually described as a common initial step in all these frameworks (Rezaei et al.
2006).

Geospatial techniques widely used for assessing soil quality and mapping involve
visual interpretation of aerial photographs as well as satellite images to delineate soil
physiographic units, which form the basis of soil survey and characterization. This
technique helps to understand how the complex relationships among landforms, land
use land cover (LULC), and the terrain will result in variations of soil properties on a
spatial domain. Thus, the mapping of soil quality involves two steps: The first step
involves the generation of the different soil property maps, while the second one
involves the interpretation of the soil properties for a specific soil function or service
of our interest, which will help to guide the decision-making process (Miller 2017).
Li et al. (2005) used 13 soil quality indicators to generate soil quality map for
sustainable agriculture management by integrating remote sensing (RS)-derived
LULC maps and soil map along with soil information of the study area. They
demonstrated the use of geospatial techniques and modelling for soil quality assess-
ment and mapping with adequate as well as accurate soil properties data. Though the
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soil quality tends to give an overview of the functional capacity of the soil, it is yet to
be widely adopted as a land management indicator worldwide. Among the different
limitations which tend to restrict its adoption, one of the main barriers is that most
soil quality assessments provide information at small scale or point scales, while
management of various ecosystems are majorly undertaken at landscape levels, thus
necessitating the representation of soil quality over large spatial extends. This spatial
representation of soil quality could help to bridge the gap between its current use and
its potential use for land management (Jaenicke 1998). The localized nature of soil
quality information can be expressed over a large spatial extent with the aid of
various geospatial techniques through the amalgamation of remote sensing data and
field generated soil information in a geographic information system (GIS) environ-
ment. The chapter discusses various soil quality indicators, their measurement and
geospatial methods for assessing soil quality, and how they can be used for sustain-
able land (soil) management.

Geospatial techniques involving the use of RS, Global Positioning System (GPS)
and GIS, provide new approaches for studying various soil quality aspects in
different spatial as well as temporal domains (Schiewe 2003). It has been widely
documented as a vital tool for soil/land resource inventory at different scales
extending from local to regional and even up to global scales. Reliable and timely
soil information regarding their extent, nature, spatial distribution, and limitations
due to land degradation caused by water/wind erosion, soil salinity and/or alkalinity,
soil compaction, wetness, etc. is necessary for soil health and quality assessment.
The prime role RS plays in land resource management is providing information
regarding soil, terrain, and LULC types and is the most effective tool for land
resources monitoring. Availability of high-spatiotemporal-resolution RS datasets
has facilitated the monitoring of various land resources regarding their diverse
uses, soil health, wetlands, and land degradation status. Spaceborne RS data is
widely being used for mapping soil resources. The main use of RS data is for the
segmentation of landscape into more or less homogeneous soil-landscape units.
Subsequently, soils occurring in each unit are characterized by dominant soil type
(Dwivedi 2001). Digital soil mapping techniques, incorporating different secondary
(non-soil) data sources into the mapping process, have been identified as potential
means of soil mapping and can improve the detailing as well as geographic coverage
of soil databases (Mulder et al. 2011). Various DEM-derived terrain parameters were
found to be efficient in characterizing different soil-forming environments as well as
delineating soil patterns at various scales. The integration of RS data (with high
precision and synoptic coverage) with GIS will help in decreasing the cost and time
as well as increasing the information content for effective soil quality estimation.
The availability of remote sensing data ranging from coarser resolution to very high
spatial resolutions will help in the preparation of soil/soil quality maps at diverse
scales to meet the planning requirements at different levels. Advanced RS techniques
such as hyperspectral remote sensing as well as microwave remote sensing have
opened new vistas for soil mapping especially concerning the quantification of soil
properties including nutrients, texture, and soil moisture status at varying
resolutions.
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11.2 Soil Quality Indicators and Measurement

11.2.1 Soil Quality Indicators

Assessing soil quality with respect to desired function or attribute involves the
identification and subsequent quantification of certain sensitive parameters, referred
to as soil quality indicators. Soil quality indicators, which reflect the changes due to
land management practices, may include various chemical, physical, and biological
soil properties. At any given point of time, a baseline or reference value of these soil
quality indicators is essential to identify the impact of the different management
practices (Bunemann et al. 2018). Indicators are identified as a soil property or
attribute, which needs to be estimated for assessing soil quality pertaining to a given
soil function. The measurement of many of these indicator properties is possible
through routine laboratory analysis, while some require more sophisticated mea-
surement techniques. Soil quality can be classified into (i) inherent and (ii) dynamic
soil quality (USDA 2006). The inherent soil quality is constant and does not show
much temporal variation. The various management practices have little or negligible
influence on the inherent soil properties, and they do not change over a given
timeframe. They are a direct derivation of the different soil-forming factors and
include properties like soil texture, mineralogy, soil depth, pattern etc. On the other
hand, the dynamic soil properties are easily influenced by anthropogenic activities or
disturbances occurring in nature, and they are subject to change in a given time
frame. These include various physical, chemical, and biological properties like bulk
density, porosity, infiltration rate, soil organic carbon (SOC), available nutrients, soil
pH, various soil enzyme activites etc. The dynamic soil quality is subject to changes
depending on the management practices such as the quantity of soil organic matter
(SOM), the soil structure, cation exchange capacity (CEC) etc. that change with the
variation in the soil management practices. Soil quality research generally revolves
around the concept of managing these dynamic parameters to improve the soil
functions and maintain the fitness of soil resources (de La Rosa and Sobral 2008).
In general, for efficient characterization of the different soil functions, a group of soil
quality indicators is assessed which is referred to as the minimum dataset. This
minimum dataset helps us to measure the capability of soil to execute a definite
function and also capture the change in temporal scale. The minimum dataset should
include such parameters, which will easily aid us to detect the changes brought about
by different soil management practices. In most cases, minimum data sets are
sensibly chosen by combining different soil properties, which would reflect the
key soil function under consideration (Franzlubbers and Haney 2006; Meena et al.
2020). Soil Quality Institute (USDA 2006) has laid down the prerequisites for a
minimum dataset for measuring soil quality. The most commonly used soil quality
indicators forming components of the minimum dataset that includes different
chemical, physical, and biological parameters are given in Fig. 11.1 (USDA 2006).
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11.2.2 Soil Quality Measurement

Though the concept of soil quality and its systematic measurement was introduced
during the late twentieth century, the evaluation of soil and land existed much before
in terms of fitness of a particular land unit for specific land use (FAO 1976).
Measurement of the suitability of land or soil is to assess potentials or limitations
of the land towards a particular use, whereas soil quality measurement gives us more
quantifiable and detailed information regarding the current state of soil and helps to
quantify the deviation of soil from the optimal functioning state.

Physical properties considered for soil quality measurement includes bulk density
(BD), total porosity (TP), saturated hydraulic conductivity (SHC), moisture satura-
tion (MS), aggregate stability (AS) larger than 2 mm, aggregates between 2 and
1 mm, and aggregate stability index (ASI). The chemical properties primarily used as
soil quality indicators consist of pH, soil organic matter (SOM), CEC, exchangeable
cations, available phosphorus (P), total nitrogen (N), and base saturation (BS).
Whereas, the different biological properties are total organic carbon (TOC), total
carbon stock (TCS), microbial biomass carbon (MBC), total organic N (TON), the
metabolic quotient (qCO2), total N stock (TNS), and C/N ratio. The Soil Manage-
ment Assessment Framework (SMAF) has proposed interpretation algorithms for
13 soil properties to be used as soil quality indicators. Those properties include BD,
plant available water (PAW), water-stable macroaggregation (WSA), water-filled
pore space (WFPS), pH, electrical conductivity (EC), SOC, extractable P, sodium
adsorption ratio (SAR), and extractable K in addition to potentially mineralizable N
(PMN), MBC, and b-glucosidase (BG) activity (Andrews et al. 2004). The SMAF
has been widely adopted in the United States and other similar countries abroad for
evaluating near-surface (0–5 and 5–15 cm) soil properties and processes (Imaz et al.
2010; Stott et al. 2011). Ezeaku (2015) assessed soil quality based on various
biological and physico-chemical soil quality indicators to study the sustainability

Fig. 11.1 Different soil quality indicators. (Adopted, USDA 2006)
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of various management and land-use systems. The most sensitive indicators
observed in the study were soil pH, porosity, CEC, available P, BD, TOC, earth-
worm population, and plant available water holding capacity (PAWC). However,
total N, exchangeable K, total P, and K were found to be moderately sensitive, and
percentage base saturation was observed to be a weaker indicator. Mukherjee and
Lal (2014) used various physical indicators, namely, potential AWC, soil penetration
resistance, BD, mean weight diameter (MWD), aggregate size distributions, a
fraction of water-stable aggregates (WSA), and geometric mean diameter (GMD)
along with other chemical indicators for assessing soil quality. Sofi et al. (2016) used
various SOC fractions as well as activities of different soil enzymes such as
dehydrogenase, phosphatase, aryl sulphatase, and fluorescein diacetate hydrolase
(FDAse) as biological indicators for soil quality assessment under diverse cropping
systems in the northwestern Himalayas. Basak et al. (2016) and Biswas et al. (2017)
assessed soil-quality indices for subtropical rice-based cropping systems in Eastern
India. Luo et al. (2017) used different biological soil quality indicators comprising
microbial biomass, microbial count, and activities of various soil enzymes (such as
urease, catalase, invertase, alkaline phosphatase) along with different physical and
chemical indicators as the minimum dataset for assessing the impact of long-term
tillage systems on soil quality indicators, in Northwest China. Similarly, Bhaduri
et al. (2017) have reported the effectiveness of biological indicators for soil quality
assessment under a long-term rice-wheat cropping system in the semi-arid Indo-
Gangetic plains with different tillage-water-nutrient management scenarios. They
used MBC, dehydrogenase activity (DHA), soil respiration, PMN, and qCO2 as
quality indicators. In addition to the various indicators discussed above, Stefanoski
et al. (2016) used macroporosity, microporosity, SHC, MS, effective saturation,
aggregate size distribution, ASI, exchangeable Ca and Mg, exchangeable acidity,
potential acidity, aluminum saturation, basal respiration, C stock, and N stock also as
potential soil quality indicators. Apart from the above-mentioned indicators that
need quantitative measurement in the laboratory, there are more generalized indica-
tors like the visual indicators, which help to detect or identify the current state of the
soil resources. Unlike the quantitative ones, observations of the visual indicators can
be undertaken by a layman and can have wider acceptability to common masses.
Some of these visual indicators are changes in soil color, above-ground vegetation
and weed species, earthworm population, signs of soil erosion, water stagnation or
undulations in topography, etc. (USDA 2001). Synthesizing the numerous studies
help us in identifying some soil properties, which are widely adopted and used as soil
quality indicators across the world, maybe due to their ease of measurement as well
as higher sensitivity to variations in management practices (Table 11.1). The various
standard available protocols for measuring these widely adopted indicators and their
relation to various soil management practices are also mentioned in Table 11.1.
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11.3 Soil Quality Assessment

Soil quality assessment is required to assess the sustainability of soils under the
present ecosystem as well as to predict the sustainability of the ecosystem in the
future for the present environmental conditions. Unsustainable use of land resources
leads to degradation of soil, which results in a decline in the functionality of soils
such as crop productivity, hydrological cycle, water quality, biochemical cycle, and
soil quality. Soil quality parameters are in general defined by considering the
sustainability of soils under changing management practices or based on soil resil-
ience under varying environmental conditions (Hartemink 1998). Physical, chemi-
cal, and biological parameters of soils of natural undisturbed lands are considered as
the highest soil quality and hence used as reference level (Doran et al. 1994; Mitran
et al. 2018).

Precise assessment of soil quality requires a systematic method to measure and
interpret soil properties. These properties vary with agroecosystems to serve as soil
quality indicators (Granatstein and Bezdicek 1992). Soil quality indicators refer to
soil processes and properties that are sensitive to changes in soil functions. These
indicators should be simple, sensitive, and measurable to use for soil quality
assessment. Soil quality indicators are comprised of physical, chemical, and biolog-
ical properties of soil. There are sets of soil quality indicators proposed to assess soil
quality (Doran and Parkin 1994; Karlen et al. 1997). Researchers have used various
evaluation methods to assess soil quality such as soil quality card design and test kit
(Ditzler and Tugel 2002), indicator kriging, soil quality indices (Doran et al. 1994;
Doran and Jones 1996), and soil quality models (Larson and Pierce 1994). Among
these methods, soil quality indices are the most widely used due to their ease to
application in a quantitative manner (Andrews et al. 2002). Soil quality indices are
based on indicators of site-specific soil conditions under specific soil management
practices. They reflect the integrated effects of dynamic and inherent soil properties
under the specific management practices over the period (Wang and Gong 1998;
Arshad and Martin, 2002). There is no universally accepted method for developing
soil quality indices. Several researchers have evaluated soil quality and proposed a
self-defined indicator method and equation in developing soil quality indices (Sun
et al. 2003; Zhang et al. 2004). There are various quantitative soil quality assessment
methods to evaluate soil quality. These are classified under two groups: (i) soil
quality index (SQI)-based approach and (ii) soil quality modelling approaches. They
are discussed below.

11.3.1 Soil Quality Indices

Soil quality indices integrate different physical, chemical, and biological soil prop-
erties. There are various soil physical indicators such as soil aggregate stability, BD,
porosity, infiltration rate, hydraulic conductivity, effective soil depth, and WHC of
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Table 11.1 Standard protocols to measure various soil quality indicators

Sl
no. Soil quality indicator

Measurement
technique References Remarks

Physical soil quality indicators
1. Soil texture Hydrometer

method
Bouyoucos
(1951)

Affects water holding
capacity, drainage
and soil erodibility

2. Soil depth Field method USDA, 2001
Soil quality
test
Kit guide

Rooting depth, water
availability to plant
growth

3. Coarse fragments Field method Provide aeration and
drainage

4. Bulk density Cylindrical core
method

Arshad et al.
(1997)

Soil compaction

5. Aggregate stability Wet sieving Kemper and
Rosenau
(1986)

Resistance to soil
erosion

6. Available water capacity Pressure plate
apparatus

USDA NRCS
(2005)

Soil moisture reten-
tion and its availabil-
ity to plant growth

7. Infiltration and hydraulic
conductivity

Double-ring
infiltrometer, ten-
sion infiltrometer

Lowery et al.
(1996)

Water movement at
surface and subsur-
face layer

Chemical soil quality indicators
8. Soil pH pH meters Brady and

Weil (2002)
Nutrients availability
and land degradation

9. Electrical conductivity Conductivity
meters

Brady and
Weil (2002)

Soluble salt concen-
tration in the soil
solution

10. Cation exchange capacity Standard analyti-
cal procedures

Jackson
(1973)

Nutrient holding
capacity and soil
fertility

11. Available nutrients Standard analyti-
cal procedures

Jackson
(1973)

Nutrient supplying
capacity to support
plant growth

12. Soil organic carbon Wet oxidation/
digestion, dry
combustion

Walkley and
Black, 1934;
Sikora and
Stott (1996).

Influence the mea-
sured soil properties,
most important
indicator

Biological soil quality indicators
13. Soil respiration CO2 evolution Parkin et al.

(1997)
Overall microbial
activity; related to
organic matter
recycling

14. Microbial biomass carbon Fumigation-
extraction

Horwath and
Paul. (1994)

Organic matter and
nutrient recycling

(continued)
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the soil, which are commonly used. Whereas, most important chemical indicators
used are soil pH, EC, CEC, nutrient availability, and deficiency/toxicity of
micronutrients in the soil. The most relevant biological indicators used are SOM,
MBC, soil respiration, or soil enzyme activities. Optimal integration of these soil
properties improves crop productivity, water use efficiency, nutrient availability, and
sustainability of agro-ecosystems. Soil quality indicators vary with soil types,
climatic condition, and land use/land cover and management types. Various soil
quality indices commonly used to assess soil quality can be discussed as follows:

11.3.1.1 Simple Ratio Based Index

SOC is considered as the most sensitive soil parameter as an indicator of soil quality.
Anderson and Domsch (1985) described a simple ratio of MBC upon TOC as an
indicator to assess soil quality, which is a more sensitive index compared to changes
in TOC contents. The MBC values change much more rapidly in response to
management regimes compared to soil organic matter (Powlson and Jenkinson
1981). Thus, early stages of soil degradation may be easily identified by variations
in microbial biomass rather than changes in SOM, which is more stable and
subjected to fewer variations.

11.3.1.2 Multiparametric Soil Quality Index

A framework based on weighted integration of normalized scoring functions for
evaluating a production system’s effect on soil quality was proposed by Karlen and
Stott (1994). In this method, the value of each soil parameter is assigned between
0 and 1 following a standardized scoring function method. The weight score for each
parameter was assigned based on the experience of the researcher where no

Table 11.1 (continued)

Sl
no. Soil quality indicator

Measurement
technique References Remarks

15. Potentially
mineralizable
nitrogen

Aerobic and
anaerobic incuba-
tion methods

Drinkwater
et al. (1996)

Easily available N in
the soil

16. Soil enzymes (dehydroge-
nase, phosphatases, urease,
arylsulphatase,
β-glucosidase, FDAse, etc.)

Standard protocols
for measuring var-
ious soil enzy-
matic activities

Tabatabai
(1994)

Indicates nutrient as
well as organic matter
cycling processes

17. Earthworms Numerical
counting

USDA
(2001a, b)
Soil quality
test
Kit guide

Related to biological
activity/diversity as
well as the detoxify-
ing ability of soil
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mathematical method was used. It was primarily proposed to demonstrate the
methodology to compute SQI using major soil functions. It intends to suggest an
index to evaluate soil conditions with an environmental point of view. It will provide
the overall soil quality score based on the sum of all function scores. It is
described as:

Soil Quality ¼ W � Qwe þW � Qwma þ Q � Qrd þ Q � Qfqp ð11:1Þ

where Qwe is the rating of the ability of soil to facilitate entry of water into soil, Qwma

is the rating of the ability of soil to facilitate water movement/transfer and absorp-
tion, Qrd is the rating of the ability of soil to resist degradation, Qfqp is the rating of
the ability of soil to sustain plant growth, and W is the numerical weight assigned to
each soil function.

11.3.1.3 NIR Spectra for Measurement of Soil Quality

Reflectance spectroscopy techniques involving the visible (VIS, 400–700 nm), near-
infrared (NIR, 700–1100 nm), and shortwave infrared (SWIR, 1100–2500 nm)
spectra can be used for assessing soil quality (Ben-Dor and Banin 1995). Current
developments in soil analysis reveal that reflectance spectroscopy is a vigorous
diagnostic technique suited for swift and concurrent analysis of the soil characteris-
tics with several levels of estimation accuracy (Awiti et al. 2008; Cécillon et al.
2009). It is emerging as a powerful methodology for soil quality assessment which is
rapid and inexpensive. It provides consistent quantification of specific soil functions
or ecosystem services as a combined measure of soil quality. It can be used to
characterize areas based on their degradation status as well as for evaluating the
outcome of an environmental factor on soil quality. Laboratory-based NIR spectra
characterization offers a cost-effective solution for monitoring and assessment of soil
quality. It can be observed through an aerial survey or high-resolution satellite
observations which increases the spatial coverage and sampling frequency. NIR
imagery acts as an innovative tool for the spatial estimation of various soil threats in
ecologically sensitive areas. Shepherd and Walsh (2002) demonstrated a reflectance
spectroscopy-based scheme to use soil spectral libraries for fast non-destructive
determination of soil properties. Statistical models were developed for SOC, TN,
EC, and clay contents for different land uses and landscape types. Similarly, IR
spectroscopy can also be used for predicting biological soil properties (Terhoeven-
Urselmans et al. 2008).

11.3.1.4 Spectral Soil Quality Index (SSQI)

An SSQI is proposed as an analytic tool for assessing soil quality. In this method,
distinct spectral characteristics of physical, chemical, and biological soil attributes
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are derived based on reflectance spectroscopy. These spectral characteristics are
combined to specify how well the soil is functioning for a particular use. A partial
least squares-discriminant analysis (PLS-DA), a linear regression technique, is used
most commonly to compute the alterations in soil quality under the changed land
uses in various ecosystems (Singh et al. 2005). This technique was used for
classifying various soil types, based on their properties (physical, biological, and
chemical) as well as for the identification of relative changes (Carroll et al. 2006).
Awiti et al. (2008) classified degraded soil classes in a tropical forest-cropland using
discriminant analysis. The PLS-DA output generated was used to formulate a
scoring function for evaluating soil quality only by spectral differences. A spectral
fertility index was developed to study the impact of land-use changes and time
elapsed after the conversion of forest on soil conditions in Madagascar by Vågen
et al. (2006). Paz-Kagan et al. (2014) compared the soil quality and developed SSQI
in various LULC such as agro-pastoral, traditional grazing and afforestation that
were changed from managed to unmanaged or vice versa at the fringe of the northern
Negev Desert, Israel. They have also developed and implemented an SSQI using
field-, lab-, and image-based spectral information in two anthropogenically induced
land-use changes sites located in Israel and Germany (Paz-Kagan et al. 2015).

11.3.1.5 Fertility Capability Soil Classification (FCC) System

The FCC system is the beginning of soil quality assessment in tropics, which is the
most useful approach of quantitative soil quality assessment in the tropics. FCC is
different from soil quality, which is in many occasions a challenging concept to put
in practice. Soil taxonomy and quantitative topsoil properties primarily form the
basis of FCC. It does not consider annually changing soil attributes. It takes into
account dynamic soil attributes (showing the temporal variation over years/decades
with management), as well as inherent ones (that remain unaltered over a century).
FCC can take either positive or negative values based on the land use as well as
the temporal/spatial scales in consideration. The FCC system comprises two levels:
The first level is described by type/substrata type of topsoil and subsoil texture. The
second level describes condition modifier defined by 17 modifiers to delimit specific
soil conditions affecting plant growth with quantitative limits (Sanchez et al. 2003).

11.3.1.6 Soil Quality Index

The SMAF was used to calculate an SQI. SQI estimation is an indirect method based
on the weighted integration of soil quality indicators. It is a widely accepted method
as it provides an opportunity for detecting the systematic intricacy of soil produc-
tivity under managed as well as natural ecosystems. Many quantitative models such
as integrated quality index (IQI) and Nemoro quality index (NQI) have been
developed for calculation of SQI. By definition, the IQI model is described as the
sum total of equivalent weight values of all the chosen indicators. It employs a
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simple system of scoring where equal weights are assigned to all the quality
indicators (Doran and Parkin 1994). The NQI model developed by Nemoro does
not use the indicator weights; rather it considers the mean and the lowest indicator
scores and portrays the law of the minimum in crop production (Han and Wu 1994;
Qin and Zhao 2000). The most widely adopted approach of soil quality indices
involves scoring functions and corresponding weightage for each soil property
(Andrews et al. 2004). SQI calculation involves three steps: soil quality indicator
selection, scoring of indicator and weightage of each soil quality indicators, and then
integration into a soil quality index. The MDS for SQI calculation was identified
based on the correlation of indicators with ease of measurement (Andrews et al.
2002; Govaerts et al. 2006). Many times, soil quality indicators are also selected
based on expert opinion (Herrick et al. 2002). Principal component analysis (PCA) is
a method used to identify suitable physical, chemical, and biological indicators in
the ecosystem for soil quality assessment (Govaerts et al. 2006). It aims to decrease
the data dimensionality while retaining the maximum possible variation present in
the dataset. The score value of each soil quality indicator is estimated using scoring
functions. A simple nonlinear polynomial framework was used for defining the
scoring functions. Each soil property value was converted into a unitless score
(0–1) using a scoring algorithm (Karlen et al. 2001, 2003). Three kinds of scoring
functions were considered: (i) more is better, (ii) less is better—lower asymptote
(positive slope), and (iii) an optimum midpoint Gaussian function. The curve shapes
for different soil properties are obtained from the literature (Masto et al. 2007, 2008).
The analytical hierarchy process (AHP) is a method commonly used to assign
indicator weights (Qi et al. 2009). AHP is used to measure the degree of consistency;
and if found unacceptable, pairwise comparisons can be revised (Saaty 1990). AHP
rules are applied to derive the final weightage ratings. Numerical weights of each
indicator are multiplied by the corresponding indicator scores (estimated using
standardized scoring functions which normalize indicator measurements between
0 and 1.0) to yield index values. The index values range between 0 and 1. Soils with
low values indicate poor soils, whereas high values indicate healthy soils (Gugino
et al. 2009).

SQI is computed as a function of summation of the product of weight and score of
each indicator:

SQI ¼
Xn

i¼1

ðWix SiÞ ð11:2Þ

where w is the weight assigned for each soil quality indicator through AHP, S is the
score value of each indicator, and n is a number of soil samples in each ecosystem/
land use type.
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11.3.2 Modelling Soil Quality

SOC is one of the most commonly acknowledged indicators of soil quality. It acts as
a functioning part of the ecosystem and improves various soil characteristics like soil
structure, fertility, and water storage capacity. SOC content is controlled by various
natural (land cover and/or vegetation, soil parent material, climate, and topography)
and human-induced factors (land degradation, land use, and management) (Jones
et al. 2004). Numerous researchers used a modelling approach to assess soil quality
in various ecosystems characterized as natural and managed ecosystems. It can be
grouped into (i) modelling change in SOC, (ii) modelling crop simulation yield, and
(iii) modelling soil erosion.

11.3.2.1 Modelling Change in SOC

The SOC pool is a key indicator of soil quality. It is one of the most active soil
biological parameters that is vital for the sustainability of agricultural systems. It
plays a central role in several agricultural and ecological processes associated with
soil fertility, carbon (C) cycling, and soil-atmosphere interactions, including CO2

sequestration. Information on SOC content in soils is quite important to determine
soil quality in natural as well as managed ecosystems. Change in SOC content in soil
provides a vital clue to land use and management changes. SOC contents vary with
various land-use types. There are several process-based soil C models which require
many detailed parameters as model inputs, which are not easily available at large
scale. With the help of these models, dynamics of soil C under diverse environmen-
tal and management conditions over large spatial and temporal scales can be
captured and represented. Soil C models are described as below:

11.3.2.1.1 RothC Model

The Rothamsted carbon model (RothC) is widely used to simulate soil C dynamics
in cropland and other land-use systems and management practices. It can predict
reasonably good results of SOC dynamics. The model takes into account monthly
climate data of mean air temperature, precipitation, potential evapotranspiration, and
soil data to simulate the C pool in the landscape. The annual amount of crop residue
and roots are computed based on crop yield data. C:N ratio of different types of
manures is defined. The amount of above-ground biomass returned to the soil after
harvest is also defined. It helps to evaluate the performance of the cropping system in
soil C sequestration potential and SOC change that serves as an indicator of soil
quality. SOC change depicts the balance of C input and its output after decomposi-
tion. Roth C model has been developed to simulate soil SOM turnover in uplands
soils. The model needs to be calibrated with long-term experimental data in diverse
climate, soil, and management practices. The model was tested for 16 long-term
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experimental sites and reported a good performance in representing the SOC
dynamics under various treatments across the sites (Wang et al. 2016).
Bhattacharyya et al. (2011) used the Roth C model to simulate the SOC changes
under different soil and climate conditions with different cropping systems. Wang
et al. (2017) used state-of-the-art databases of soil and climate variables to simulate
SOC density using Roth C model in croplands of major cereal cropping systems in
the world.

11.3.2.1.2 CENTURY Model

TheCENTURYmodel is a site-specific complex model used to simulate C, N, P, and
S dynamics in the soil (Smith et al. 2009). It has been primarily developed for
grassland and later expanded to the agricultural system and forest system. The model
includes several sub-models such as the SOM sub-model, water budget, and plant
production sub-model. The model uses a monthly time-step weather input of mean
monthly minimum and maximum temperature, and monthly precipitation. It uses
site-specific information and initial condition of soil parameters (texture, depth, BD,
total C and N) and crop growing parameters (sowing date, fertilization, harvesting
period, and crop varieties). The model simulates the steady-state SOM level and
provides information on SOM turnover levels in varying climate and management
practices over diverse landscapes. Several researchers used this model to study the
increase in average soil C density under improved management (Ogle et al. 2010; Yu
et al. 2012; Lugato et al. 2014). Gupta and Kumar (2017) used theCENTURYmodel
to simulate climate change impact on soil C sequestration in croplands of
mid-Himalaya, Uttarakhand, India. Di Tizio and Grego (2006) used the CENTURY
model for annual C balance in agricultural lands under organic and conventional
management. The study revealed that the loss of soil C depends on the management
types, weather, and physical characteristics of soils.

11.3.2.2 Crop Simulation Models

Crop growth models simulate soil and plant processes to approximate crop biomass
and yield for a given period. These models are process-based models that require a
large number of soil, plant, and weather input parameters to compute processes on
the daily time step. These models can be classified into field-scale and regional-scale
models. Field-scale model comprehensively simulates plant functions at site-specific
soil and weather conditions, whereas the regional-scale model simulates plant
processes by establishing a crop-climate relationship at a broader scale. Crop growth
models account for spatial and temporal variability of soils at large scale and could
be used as a soil quality assessment tool. Traditional land evaluation methods are
based on the physico-chemical properties of soils and used as a land quality
assessment tool. Crop growth models simulate crop growth processes, and crop
yield is used as biological indicators of soil quality assessment. Process-based crop
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growth models (e.g. World Food Studies simulation model (WOFOST ), global
circulation models (GCMS)) based on soil processes and plant physiology have
been used to predict crop yields (Kasampalis et al. 2018). Decision Support System
for Agro-technology Transfer (DSSAT) model has been parameterized to simulate
crop yield for several crops (Jones et al. 2003). Rossiter (2003) described various
crop growth models and their biophysical models in land evaluation. Some of the
crop simulations models that can be used for soil quality assessment are listed in
Table 11.2.

11.3.2.3 Modelling Soil Erosion

Land degradation due to soil erosion processes is a major problem in the world. It
removes soil nutrients including SOC from the surface soil and adversely affects soil
quality and productivity. Eroded lands face soil quality issues of severe rates of soil
erosion, depletion of SOM, and reduction of soil fertility and crop productivity
(Doran and Parkin 1994; Karlen et al. 2003). Field surveys are conducted to assess
soil quality through a paired comparison of soil samples collected from eroded and
non-eroded lands. It also enables to detect differences in soil management practices.
Proper soil samplings at point or landscape level are conducted to make an overall
assessment of soil quality (Cambardella et al. 2004). There are several soil erosion
models, including empirical to process-based, available to estimate soil erosion rates
under different land use/land cover types in diverse landscape and management
conditions in various climatic regions. These erosion models have provided insight
into understanding soil erosion processes and characterizing processes influencing
soil properties at landscape level under various ecosystems. Process-based erosion
models simulate surface runoff generation processes and their impact on the spatial

Table 11.2 List of crop simulation models used in soil quality assessment

Crop simulation models Sources

Decision Support System for Agro-
technology Transfer (DSSAT)

http://dssat.net

Environmental Policy Integrated Cli-
mate (EPIC)

https://epicapex.tamu.edu

FarmSim: Wageningen—model library http://models.pps.wur.nl/node/961 http://www.fasset.
dk

General Large Area Model (GLAM) https://www.see.leeds.ac.uk/research/icas/research-
themes/climate-change-andimpacts/
Climate-impacts/glam

WOFOST: Wageningen—model library http://www.wageningenur.nl/en/Expertise-Services/
Research-Institutes/alterra/
Facilities-products/software-and-models/WOFOST.
Htm

ORYZAv3 https://sites.google.com/a/irri.org/oryza2000/about-
oryza-version-3

Soil Water Atmosphere Plant (SWAP) http://www.swap.alterra.nl

11 Geospatial Modelling for Soil Quality Assessment 403

http://dssat.net
https://epicapex.tamu.edu
http://models.pps.wur.nl/node/961
http://www.fasset.dk
http://www.fasset.dk
https://www.see.leeds.ac.uk/research/icas/research-themes/climate-change-andimpacts/
https://www.see.leeds.ac.uk/research/icas/research-themes/climate-change-andimpacts/
http://www.wageningenur.nl/en/Expertise-Services/Research-Institutes/alterra/
http://www.wageningenur.nl/en/Expertise-Services/Research-Institutes/alterra/
https://sites.google.com/a/irri.org/oryza2000/about-oryza-version-3
https://sites.google.com/a/irri.org/oryza2000/about-oryza-version-3
http://www.swap.alterra.nl


distribution of soil nutrients in the landscape. Thus, these models can serve as an
important tool for assessing soil quality. Several researchers have integrated these
models with GIS to predict the spatial pattern of soil erosion and the distribution of
sediments in the landscape. Erosion models helped in understanding soil erosion and
sedimentation processes in detail as well as in assessing on-site soil erosion and its
influence on soil quality. Soil erosion models are grouped into empirical and
physically based process models. Major empirical models are Universal Soil Loss
Equation (USLE), it was modified as Modified Universal Soil Loss Equation
(MUSLE) and later revised as Revised Universal Soil Loss Equation (RUSLE).
Empirical models are easy to apply and require less data for soil loss estimation,
whereas process-based models are complex and require detail data of climate, soil,
terrain, vegetation, and management practices (Merrit et al. 2003). Empirical model
RUSLE 2 was primarily developed to compute soil erosion due to sheet and rill
erosion processes in the croplands. Later, it was further extended to compute soil
condition index (SCI) and soil tillage intensity rating (STIR). SCI value is influenced
by soil erosion, organic matter decomposition, tillage operations, and management
practices. USDA-ARS (2008) is using the SCI as a tool for soil organic management,
and it can be used as an indicator of soil quality. RUSLE 2 model requires the input
of climate, soil texture, slope steepness, slope length, management practices, vege-
tation cover, and application of organic manures for computation of SCI.

Wilson et al. (2009) used process-based Water Erosion Prediction Project
(WEPP) and CENTURY SOM dynamics models to study soil C loss in the
agricultural field of the watershed. They evaluated change in SOM with soil erosion
scenarios in the field using historical and current crop management practices.
Erosion Productivity Impact Calculator (EPIC) model (Williams 1990) was used
to predict the impact of soil erosion on crop productivity. It simulates major soil and
water processes related to crop growth. It also simulates the impact of atmospheric
CO2 level on crop yield and soil C sequestration. Wang et al. (2006) used EPIC to
simulate wheat yields, sediment loss, organic N and P, soluble P, and NO3-N losses
in six cultivated small watersheds. The EPIC model was later renamed as the
Environmental Policy Integrated Climate model by incorporating environmental
modules in the model (Mitchell et al. 1991). Thus, these erosion models emerged
as a potential tool in characterizing and quantifying soil quality parameters and
assessing the impact of land-use systems and management types on soil quality.

11.4 Geospatial Methods in Soil-Landscape Delineations
for Soil Quality Assessment

11.4.1 Visual Method of Analysis

Geospatial techniques using various RS data have been widely adopted for soil
survey at different scales as well as mapping of various soil quality parameters.
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Dwivedi (2017) provided a detailed review of RS for various soil-related applica-
tions. Among the various applications of geospatial technology, the use of RS data
for soil surveys including the delineation of soil mapping units needs special
mention. It involves the delineation of soil scape boundaries, which act as sampling
units for soil survey, soil profile study, and characterization of various soil properties
leading to soil resource inventory. A detailed description and knowledge about the
different kinds of soils and their geographic distribution are essential prerequisites
for rational land use planning, improved agricultural production, and identification
of the potentialities and limitations of different areas.

The soil-scape boundary delineation and mapping using RS data are based on
physiographic soil analysis, where different physiographic units are delineated to
account for the climate, soils, vegetation, geology, water, surface form, and their
interrelationships. The different factors involved in physiographic processes approx-
imately correspond to the different soil-forming factors; hence, knowledge regarding
physiographic processes serves to indicate the broad general pattern of soil devel-
opment. This approach is based on the concept that analogous physiographic
processes at two widely diverse places are anticipated to support almost alike soil-
forming processes resulting in similar soils with broad general characteristics.
Similarly, the spatial variations in surface features such as vegetation, topography,
relief, and slope can also aid in the delineation of soil boundaries, due to their
relation with physiographic processes. Various landforms or surficial features of the
earth at different scales and resolutions can be easily identified by the interpretation
of various remote sensing data products which helps in reconstructing and studying
the dominant physiographic processes at different locations. The soils within differ-
ent physiographic units will be studied in detail to characterize the soil properties.
Detailed study and interpretation of RS images help us in the identification and
geomorphic description of landforms with varying origin such as structural origin,
denudational origin, fluvial origin, and aeolian origin. The delineated landforms will
be further subdivided systematically based on relief as well as land use/land cover.
This accounts for various soil farming factors influencing variations in soil proper-
ties especially landform (parent material), relief (topography), and land use/land
cover (vegetation). Whereas in the case of smaller spatial extents, time, parent
material, and climate being almost identical, the soil property variations can be
credited to variations in relief along with vegetation factors (Dobos et al. 2000;
Srivastava and Saxena 2004). Thus, the delineated physiographic units will have
similar soil forming factors and will result in similar soils due to the similar
pedogenic processes.

Detailed scale (cadastral-level) soil mapping can be achieved by delineating
various landforms through the integration of information derived from the 3D
perspective view of different slope class areas, employing high-resolution
Cartosat-1 DEM following visual interpretation (Nagaraju et al. 2014). The land-
forms were further segmented into different precise land use and land cover classes
using Cartostat-1 sharpened LISS IV image. The physiography-land use (PLU) units
generated by integrating slope, landform, and LULC information were more or less
internally homogenous in terms of factors of soil formation and served as soil
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boundaries for further soil sampling as well as classification. Chattaraj et al. (2017)
developed a semi-automated object-based modelling methodology for landform
classification as well as delineation. They employed geospatial object-based image
analysis (GEOBIA) technique with knowledge-based modelling. Landform classi-
fication was carried out through a multiscale mapping workflow comprising various
procedures, viz. digital terrain analysis, multiresolution segmentation (MRS) (using
raster datasets of Cartosat-1 Digital terrain model and IRS P6 LISS IV images as
input), knowledge-based landform classification, and accuracy assessment.

11.4.2 Digital Method of Analysis

Digital soil mapping (DSM) refers to an innovative technique for mapping primary
as well as secondary (derived from primary properties) soil properties or soil classes
employing spatial inference models. It is defined as the “computer-assisted produc-
tion of digital maps of soil types as well as soil properties using various mathemat-
ical/statistical models, which combine information from soil observations with the
information contained in correlated environmental variables and remote sensing
images” (McBratney et al. 2003). Digital soil mapping can aid in extrapolating
point-scale information to bigger areas. It offers a unique opportunity to tide over
the scales between ground-based soil properties (point or field data) to model for
larger extents. DSM attempts to integrate RS data derived soil-related information
with proximally sensed as well as conventionally estimated soil property data at
bigger spatial scales. The forthcoming studies will focus on improving the amal-
gamation of data derived from proximal as well as remote sensing through scaling-
based methods to make the best use of all available data sources (Mulder et al. 2011).
DSM can also be used for upscaling from field observations to more regional areas. It
makes use of various RS data including hyperspectral images, field measurements,
and spectroscopy in combination with various processing algorithms (including
statistical, mathematical, and machine learning) for extrapolating field-collected
information to the scale of remote sensing data.

Various environmental covariates or so-called scorpan factors (an acronym for
the various factors for soil attribute prediction, i.e. “soil, climate, organisms, parent
materials, age, and spatial position”) have been suggested by McBratney et al.
(2003). They can be obtained in digital form from various sources like remote
sensing images, digital elevation models, and existing soil maps. The
DEM-derived terrain parameters help us in quantifying the (geo) morphology of
the terrain (soil scape or soil landscape), thus accounting for accretion and deposition
potential, as well as to adjust the effect of climatic elements on the local topography.
The RS images of different resolutions reveal and help us to capture the overall
variability in environmental conditions, form, and state of the vegetation affected by
various soil properties, colour, surface roughness, moisture content, and other soil
surface features. Many researchers have used these numerous environmental
covariates for the generation as well as updation of soil maps in raster format at
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different resolutions, employing various spatial soil prediction functions (Minasny
et al. 2008). Several procedures of kriging, as well as decision tree-based analysis
(classification/regression trees), have been used together with various RS data for
predicting soil properties at unvisited locations pointing towards attaining continu-
ous area coverage (Mulder et al. 2011).

Several regression models correlating DEM-derived terrain parameters with soil
properties have been reported with a high degree of success (Oldak et al. 2002).
Mehammednur Seid et al. (2013) provided spatial distribution information of soil
properties using topographic parameters along with the normalized vegetation index
(NDVI) employing clustering and other statistical techniques. A methodology for
automatic soil texture mapping by integrating ground, satellite, and ancillary data
was successfully developed and employed by Maselli et al. (2008). Artificial neural
networks (ANN) and decision trees are the novel methods extensively used in soil
studies, especially for predicting soil properties. ANN modelling can predict soil
types at locations devoid of any existing soil maps, by integrating soil map data from
other regions with similar landscape characteristics known to be accountable for the
spatial variability of soils. Zhao et al. (2009) predicted soil texture at improved
resolution using a combination of soil attributes (from existing coarser-resolution
soil maps) and various DEM-derived terrain indices employing ANN modelling
technique. Ugbaje and Reuter (2013) described a methodology to employ DSM
procedures for predicting available water capacity of soils making use of
pedotransfer functions (PTFs). DSM has been used to predict pH, bulk density,
soil texture, and organic carbon (OC) content using different environmental
covariates as probable predictors including terrain parameters, land cover informa-
tion/images, vegetation indices (e.g. NDVI), and land surface temperature.
Regional-scale soil parameter prediction has been reported by Martelet et al.
(2013). Casa et al. (2013) estimated and mapped soil properties at field scale by
utilizing and comparing different methodologies, integrating information obtained
from hyperspectral RS data (vegetation/bare soil images) with geophysical data.
Kalambukattu et al. (2018) mapped various soil quality parameters in a hilly
watershed using remote sensing–derived inputs using ANN technique. They were
able to map spatial SOC distribution and other nutrients using various spectral and
terrain indices. Dharumarajan et al. (2019) have discussed the need and importance
of digital soil mapping in India with special emphasis on soil quality parameters.
They had given an account of the limited attempts done in India for digital soil
mapping of soil quality parameters along with the approaches for achieving the
digital soil map of India.

11.5 Soil Quality Assessment in a Watershed: A Case Study

The present study was aimed to assess soil quality of landform types in a watershed
of a mountainous ecosystem with objectives to identify soil quality indicators and to
compute relative SQI of various landform types in the watershed (Roy 2014).
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11.5.1 Experimental Site

The watershed located in one of the mountainous districts of Tehri Garhwal,
Uttarakhand State, India extends between 78�22047“ E to 78�30’ E longitudes and
30�30’29.33”N to 30�22047”N latitudes. The geographic area of the study area is
46.14 km2. Paddy and maize are grown in summer (kharif), whereas wheat is
cultivated during winter (Rabi) season. The soil of the area is varying from loam,
sandy loam, to silt loam.

11.5.2 Methodology

CartoDEM digital elevation model was used for slope analysis and landforms
delineation in the watershed. Remote sensing data IRS LISS III acquired of March
2014 was used to prepare land use/land cover. Garmin GPS was used to record the
geographic location of the soil sampling sites in the watershed. A brief description of
the methodology is discussed below.

11.5.2.1 Delineation of Landform Types in the Watershed

CartoDEM was used to delineate landform elements based on TPI and slope classes
in GIS environment. TPI is an algorithm increasingly used to measure topographic
slope positions and to automate landform classifications. Positive TPI value repre-
sents ridges, which are higher than the average of their surroundings, and negative
TPI value represents valleys, which are lower than the average of their surroundings.
TPI value near zero represents a flat area or areas of constant slopes. Thus, the
watershed was delineated into landform types of the valley, lower slope, mid-slope,
and upper slope (Fig. 11.2).

11.5.2.2 Soil Sampling

Soil samples were collected from each landform types, namely, valley, lower slope,
mid-slope, and upper slope. Three transects were selected in the watershed. Soil
samples from 45 sites of surface (0–20 cm) and subsurface (20–50) were collected.
There were 6 sites in the upper slope and 9, 20, and 10 sites, respectively, in mid,
lower, and toe slopes. Soils were analysed for the physical properties (coarse
fragments, soil depth, bulk density, sand, silt, clay, and stable aggregates) and
chemical properties (pH, EC, CEC, TC, TN, available P, available K, and S).

408 S. Kumar and J. G. Kalambukattu



Fig. 11.2 Landform units delineated in the watershed
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11.5.2.3 Soil Quality Assessment

11.5.2.3.1 Identification of Soil Quality Indicators

After analysing soil samples, PCA was used for minimum data set selection or
identifying suitable indicators. PCA converts the correlated set of data to
uncorrelated set and thus reduces data redundancy. Soil parameters with Eigenvalue
more than one were selected as the most suitable indicators. These indicators are the
most uncorrelated set of parameters among all that have been selected for computing
soil quality index.

11.5.2.3.2 Assigning Weightage to the Indicators

AHP, a multi-criteria decision-making (MCDM), was used in assigning weight to
the indicators. It uses pairwise comparison which relies on the judgments of experts
to weigh priority wise.

11.5.2.3.3 Scoring to the Indicators

Soil data were scaled based on the importance of parameters. Some parameters are
better if they are more in soil, and some are better if they are less in soil. Simply,
indicators were ranked based on its importance for soil functions. If the value of the
soil parameters such as OC, CEC, aggregate stability, OC, N, P, and K are more in
soil, then the soil is represented as good, and if bulk density, coarse fragment, and silt
values are less in soil, then it is good. Therefore, the values of OC, silt, clay, CEC, N,
K, aggregate stability, and soil depth were divided by the highest value for normal-
izing the score, and bulk density, coarse fragment, silt values were divided with the
lowest values for the parameters in the landscape. For indicators such as pH, “higher
is better” up to a threshold value (e.g. 7 for pH) than scored as lower is better above
the threshold (Diack and Stott 2001; Andrews et al. 2002).

Thereafter, SQI (Wu and Wang 2007) was computed as a function of summation
of weight multiplied by the score of each indicator:

SQI ¼
Xn

i¼1

ðWix SiÞ ð11:3Þ

where w is the weight assigned for each indicator which is done through AHP, S is
the score, and n is a number of samples in each landform types.
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11.5.2.4 Soil Quality Index

PCA was carried out for selecting suitable soil quality indicators. A total of 11 indi-
cators (parameters) such as OC, TN, soil depth, pH, silt, clay content, bulk density,
coarse fragments, CEC, available K, and aggregates stability were selected. Scores
to each indicator were computed following the scaling method. AHP analysis was
carried out to determine the weight for soil indicators. The SQI was computed for
agricultural lands for landform types. SQI for the valley, lower slope, mid-slope, and
the upper slope is 0.71, 0.68, 0.67, and 0.65, respectively. Soils of toe slope (valley)
had the highest soil quality followed by a lower, mid, and upper slope. SQI values of
the landform types revealed its sustainability state of soils in the watershed of the
mountainous ecosystem. Soil quality evaluation at the hill slope scale will serve as
an important mean to prepare effective land use and management plan in the
watershed.

11.6 Assessing Spatial Variability of Soil Quality Attributes
in a Watershed: A Case Study

11.6.1 Experimental Site

The study was conducted in a hilly watershed in the mid-Himalayan region of
Himachal Pradesh, India, to assess the spatial distribution of different soil quality
parameters including SOC, SOC stratification ratio, and C: N ratio (Kalambukattu
et al. 2018a, b). Grid sampling approach was used for the collection of soil samples
during the fallow period.

11.6.2 Method of Approach

The collected soil samples were preprocessed and analysed for estimation of various
soil quality indicators like pH, EC, SOC, N, P, and K as well as soil texture. In
contrast, other parameters like SOC stratification ratio and C:N ratio were computed
using the estimated values. Subsequently, SQI was also calculated using different
quality indicators employing AHP. Inverse distance weighted (IDW) interpolation
method was used for mapping the spatial distribution of SOC content, SOC strati-
fication ratio, CN ratio, and SQI in the study area.
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11.6.3 Salient Findings

SOC concentration was found to be decreasing with soil depth all over the study area
and varied significantly (P < 0.01) between the first two depths (0–15 cm and
15–30 cm). The values of the SOC stratification ratio exceeded 1.2 in the majority
area within the watershed representing an overall improvement in soil quality. C:N
ratio values appeared to be <12:1, indicating improved organic matter mineraliza-
tion rates as well as higher soil quality. The spatial distribution of SOC stratification
ratio, and SQI in the study area is presented in Figs. 11.3 and 11.4. A perusal of the
SQI spatial distribution revealed that approximately 76% of the study area had SQI

Fig. 11.3 Spatial distribution of SOC stratification ratio
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values ranging from 60 to 75, whereas 22.16% area had SQI values lower than
60 and 2.59% area were found to have SQI values greater than 75. Overall, a high
degree of soil quality was found to exist in the higher elevation zones of the study
area. Majority of the watershed area had SQI values around 60%, which demands
improved management strategies for enhancing the quality of the soil. The spatial
mapping of SQI values will help us in identifying priority areas for better manage-
ment as well as resource allocation for maintaining crop productivity and soil health.

Fig. 11.4 Spatial distribution of SQI
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11.7 Conclusion

Soil quality assessment is of particular importance to assess the sustainability of soils
under the present ecosystem as well as to forecast the resilience of the ecosystem
under the environmental constraints. It is a concept that integrates soil physical,
biological, and chemical factors into a framework for soil resource assessment.
Several physical, chemical, and biological indicators are used to assess soil quality
from a crop production perspective. Among these indicators, biological indicators
are considered as most sensitive to change. The primary role of remote sensing in
land resource management is to provide information related to terrain, land, and soil
under various land use land cover.

SQI methods are widely being used to assess soil quality at present as they are
easy to use and quantitatively flexible. Soil quality indices are especially relevant to
soil management practices because they use site-specific indicators of soil condi-
tions. Recently, the geospatial modelling approach involving modelling change in
SOC and crop simulation yield and soil erosion modelling approaches have been
attempted by various researchers. SOC and N stock are also used as potential
indicators of soil quality. The chapter discusses two case studies: (i) one study
assessing soil quality by characterization of soil and terrain parameters and comput-
ing SQI by selecting minimum soil dataset in a watershed where PCA was used to
find suitable indicators of soil quality and weights were assigned using AHP method
and (ii) another study that investigated the spatial distribution of SOC, CN ratio, and
SOC stratification ratio and other soil quality parameters in a small hilly watershed.
Soil quality parameters such as pH, EC, SOC, N, P, K, and soil texture were studied.
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Abstract Land degradation is a thoughtful threat involved in reducing area and
productivity of 13.4 billion ha in the global cultivable land. The genesis and
distribution of different types of land degradation processes depend on climate,
topography, vegetative cover, parent material (salty or acidic), and groundwater
(saline, sodic, or heavy metals/metalloid). Above all, human-induced degradation of
land has been exaggerated recently. These changes in land degradation can be
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monitored and assessed through geospatial techniques such as remote sensing
(RS) and geographic information system (GIS) with fine spatial and spectral reso-
lution imageries. The advanced techniques such as microwave, hyperspectral, and
proximal ground-based sensor data with multivariate statistical algorithms have
increased the efficiency of classification and mapping of degraded lands. The values
of different parameters extracted from thematic map of the terrain, surface, hydrol-
ogy, and spectral ratio indices of multispectral, hyperspectral images are used as an
input parameter for the generation of a digital soil map. The digital soil map with
seasonal/temporal variation (possible with fine temporal resolution) conveys
detailed information regarding the study of changes, characterization, causes, pro-
tection, and reclamation of the land degradation processes. The method of real-time
monitoring and assessment of land degradation using RS/GIS techniques is cost-
effective, fast, and accurate and indicates land/resource management quickly to
secure the food, water, and environmental security. This chapter summarizes the
comprehensive understanding of the extent, type, cause of land degradation pro-
cesses, and indicators of land degradation as well as assessment and monitoring of
such through advanced remote sensing techniques.

Keywords Degraded soils · Ground-based sensor · Geographic information
system · Hyperspectral · Multispectral · Synthetic aperture radar · Temporal variation

Abbreviation

ANN Artificial Neural Networks
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
AVHRR Advanced Very High Resolution Radiometer
BART Bayesian Additive Regression Trees
CT Classification Tree
DEM Digital Elevation Model
ESP Exchangeable Sodium Percentage
ETM+ Enhanced Thematic Mapper Plus
GBM Gradient Boosting Machines
GIS Geographic Information System
HRS Hyperspectral Remote Sensing
IRS Indian Remote Sensing
LDN Land Degradation Neutrality
LISS Linear Imaging Self Scanning
MODIS Moderate Resolution Imaging Spectroradiometer
MSS Multispectral Scanner System
NDSI Normalized Difference Salinity Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NIR Near Infrared
PCR Principal Component Regression
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PLSR Partial Least Squares Regression
RF Random Forest
RS Remote Sensing
RT Regression Tree
SAR Synthetic Aperture Radar
SAVI Soil-Adjusted Vegetation Index
SI Salinity Index
SPAD Soil Plant Analysis Development
SPOT Système Pour l’Observation de la Terre
SVM Support Vector Machine
SVR Support Vector Regression
SWIR Shortwave Infrared
TDR Time-Domain Reflectometry
TM Thematic Mapper
UNCCD United Nations Convention to Combat Desertification
VI Vegetation Index
VNIR Visible and Near Infrared

12.1 Introduction

Land degradation is a challenge for the existence, prosperity, and future of any
civilization. Currently, several types of land degradation are major threats for the
developing countries for declining productivity of soil, water, pastureland, agricul-
tural, and economic growth further arising of conflict at a regional level and question
of security of livelihood (Reddy 2003). Agricultural production is deleteriously
affected due to inappropriate land care strategies in maximum portions of the
world (FAO 2005; Lambin and Meyfroidt 2011; Lambin et al. 2013). Sometimes,
direct land degradation may appear in expanding the area under desertification in
semi-arid and arid climatic region, frequent and intense drought occurrence, extreme
types of water, and wind erosion promote a severe amount topsoil loss and flooding
leads to a reduction of soil productivity, alterations of soil properties, biodiversity
deterioration and encourages the loss of soil organic carbon (Foley et al. 2005; Gibbs
et al. 2010; Lambin and Meyfroidt 2011). The main physical agents of land
degradation are water, wind, expansion of the desert and flood, etc. Among these
wind erosion, high wind velocity and intense heat carry the top fertile soils from one
area to other sites, and soil nutrients are lost carried out to certain distance, and
subsoil gets exposed and soil loss with productivity due to lost away of fertile soil.
The secondary land degradation arises mainly due to the rapid development of
irrigation infrastructure without the optimum implementation of irrigation practices,
and drainage measures have caused a rise in the water table, and consequent
widespread waterlogging and salinization in several arid and semi-arid regions in
the world (Tyagi 1998). Agricultural intensification arises stress on soil resources,
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the decline in soil quality, and overexploitation of groundwater. Such intensification
increases the cost of cultivation, decrease/deposition of nutrient content, the decline
in organic carbon of soil, distortion of soil structural, the addition of salts and toxic
chemicals, and decline in soil resilience and resistance (Lal and Stewart 1990; Basak
et al. 2014; Bhattacharyya et al. 2015). Land productivity from all aspects has been
reduced by human intervention during land preparation, overexploitation of vegeta-
tion, and overgrazing, leading to soil quality deterioration (UNEP 1992; Holm et al.
2003; Kniivila 2004). The extent of land degradation varies from region to region
and rapidly changes with time. There is a problem with the availability of clear
information on the extent of land degradation, neither worldwide nor a particular
country (FAO 2008; Bindraban et al. 2012; Mitran et al. 2018). Monitoring of land
degradation depends on visual and digital analysis of an image, ground-truthing of
soil, water, the pattern of the river, water bodies, land surface, land cover, natural
vegetation, crops, temperature, rainfall pattern and shift, the presence of salts, toxic
pollutants and determination of the source of contaminants and pollutants. There-
fore, to cope with the adverse effect of land degradation, undertaking RS and GIS
applications is vital for rapid and real-time estimation and assessment of the extent,
type, and nature of degraded lands. Assessment, monitoring, and rehabilitation of
degraded lands are the options to minimize the gap between supply and demand of
our daily needs and improve agricultural productivity, strengthening the economy of
agrarian countries. The digital soil maps with seasonal/time variation (possible with
fine temporal resolution) give detailed information regarding changes, characteriza-
tion, causes, protection, and reclamation of the land degradation process. Land
degradation is a thoughtful threat which involved in reducing area and productivity
of 13.4 billion ha in the global cultivable land. Space Applications Centre of India
(SAC) (2016) reported that out of the total geographic area (TGA), 96.4 Mha
(29.3%) areas come under the land degradation process in India. Change analysis
after 10 years reported that 1.95 Mha lands have been reclaimed and around half
million ha land reduced its severity level from high to medium, whereas 0.75 Mha
land converted to high severity level from low in India. The genesis and distribution
of different types of land degradation processes depend on climate, topography,
vegetative cover, parent material (salty or acidic), and groundwater (saline, sodic, or
heavy metals/metalloids). Above all, human-induced degradation of land has been
exaggerated recently. These changes in land degradation can be monitored and
assessed using different techniques of RS and GIS with fine spatial- and spectral-
resolution imagery. The advanced techniques such as microwave, hyperspectral, and
proximal ground-based sensor data such as multispectral, hyperspectral, microwave,
and ground-based sensor, viz. EM38, time-domain reflectometry (TDR),
spectroradiometer, ground-penetrating radar (GPR), resistivity meter, soil plant
analysis development (SPAD), green shaker, and chlorophyll meter, with multivar-
iate statistical algorithm (principal component regression (PCR), partial least-
squares regression (PLSR), random forest (RF), support vector machine (SVM),
etc.), have increased the efficiency of classification and mapping of degraded lands.
The values of different parameters, extracted from thematic map of the terrain,
surface and hydrology, and spectral ratio indices [normalized difference vegetation
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index (NDVI), soil-adjusted vegetation index (SAVI), normalized difference water
index (NDWI), etc.] of multispectral, hyperspectral images, are used as an input
parameter for the generation of a digital soil map. The method of real-time moni-
toring and assessment of land degradation using RS/GIS techniques is cost-effective,
fast, and accurate and indicates land/resources management quickly to secure the
food, water, and environmental security. Land degradation is a thoughtful threat
which involved in reducing area and productivity of 13.4 billion ha in the global
cultivable land. The genesis and distribution of different types of land degradation
processes depend on climate, topography, vegetative cover, parent material (salty or
acidic), and groundwater (saline, sodic, or heavy metals). Above all, human-induced
degradation of land has been exaggerated recently. These changes in land degrada-
tion can be monitored and assessed through geospatial techniques such as RS and
GIS with fine spatial- and spectral-resolution imageries. The advanced techniques
such as microwave, hyperspectral, and proximal ground-based sensor data with
multivariate statistical algorithm have increased the efficiency of classification and
mapping of degraded lands. The values of different parameters, extracted from
thematic map of the terrain, surface, hydrology, and spectral ratio indices of multi-
spectral, hyperspectral images, are used as an input parameter for the generation of a
digital soil map. This digital soil map with seasonal/temporal variation gives detailed
information regarding changes, characterization, causes, protection, and reclamation
of the land degradation processes. This chapter summarizes the comprehensive
understanding of the extent, type, cause of land degradation processes, and indica-
tors of land degradation as well as assessment and monitoring of such through
advanced remote sensing techniques.

12.2 Geographical Extent of Land Degradation: Global and
Indian Perspective

The estimated global total degraded land area was varied from 0.99 to >6.0 billion
ha (UNCCD 2017). These huge discrepancies among researchers are mainly due to
their approaches and lack of cohesiveness. In a worldwide, mainly, three methodol-
ogies have been followed to estimate degraded lands, i.e. expert view, RS observa-
tion, and biophysical models. Global-estimated land degradation by these
approaches is presented in Table 12.1.

According to the Global Assessment of Human-Induced Soil Degradation (Brid-
ges and Oldeman 1999), globally, ~15% of the land was found to be degraded.
Among the various agents, soil erosion, nutrient loss, salinity, soil physical prob-
lems, and chemical contamination degrade 83, 4, 4, 4, and 1% of the land, respec-
tively. In South Asia, 43% of the agricultural land was degraded. Among this
strongly degraded land was 31.0 Mha, and moderately degraded land was
63.0 Mha. The severely affected country was Iran (94% of agricultural land under
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degradation), and the least affected was Bhutan (10%). Only because of land
degradation South Asian countries are losing US$10 billion annually.

Land degradation assessment using satellite remote sensing helped to present
precisely the spatial distribution of global degraded lands. However, the main
limitation of this method is to separate saline and naturally low productive areas
from those human degraded lands. However, it was observed that soil degradation
information derived from RS imageries in slightly and moderately degraded areas
was less accurate. This limits the perspective of RS for land degradation assessment
specifically in the low to moderately degraded areas. Based on NDVI imageries on
land productivity, GLADA estimated a falling inclination of net primary productiv-
ity (NPP) over 21% of global land area, ranging from tropical Africa, Southeast Asia,
Australia, and North America. In the biophysical approach of land degradation
assessment, cropping suitability of land was combined with productivity. Based on
this approach, Cai et al. (2011) reported that globally, 1.0 billion ha of lands
(approximation) were affected by various types of land degradation and of which
China and India contained nearly 490.0 Mha of degraded lands.

Unlike the world database, in India, a systematic approach has been followed for
estimating degraded land. According to the latest land degradation assessment (SAC
2016) in 2013, 96.4 million hectares of land area affected by land degradation,
representing 29.3% of India’s total land area. Around 24.0% of the total geographic
area was degraded mainly in the arid and semi-arid regions of India (Rajasthan,
Jharkhand, Maharashtra, Gujarat, etc.). Although 1.95 Mha of land was reclaimed
within 2003–2005 to 2011–2013, surprisingly, it was observed that during the same
period, 3.63 Mha of productive land had undergone degradation. From 2003 to
2013, severe land degradation (11.03 to 4.34%) was observed in the states of Delhi,
Nagaland, Tripura, Mizoram, and Himachal Pradesh, whereas maximum land rec-
lamation (0.11 to 1.27%) was noticed in Odisha, Rajasthan, Telangana, and Uttar
Pradesh. Among all the land degradation processes, water erosion contributed the

Table 12.1 Percent of degraded lands based on three methodologies

Area

Expert opinion
Satellite
observation

Biophysical
models

Dregne and Chou
(1992) GLASOD

FAO
TerraSTAT GLADA

Cai et al.
(2011)

Africa 29.12 26.40 19.90 24.09 13.32

Asia 37.36 37.25 40.73 33.28 49.45

Australia and
Pacific

10.47 0.49 5.99 8.61 1.31

Europe 2.62 12.99 6.56 2.37 10.49

North
America

11.94 11.51 12.96 17.12 9.69

South
America

8.52 11.43 13.86 14.53 15.74

Modified, Gibbs and Salmon (2015)
GLASOD Global Assessment of Soil Degradation, FAO Food and Agriculture Organization,
GLADA Global Assessment of Land Degradation and Improvement
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most (37.0%), followed by deforestation (30%) and wind erosion (19%)
(Table 12.2). During 2003–2013, an area under desertification increased from 81.5
to 82.6 Mha. Wind erosion is the main significant process of desertification in the
arid region, while deforestation and water erosion are the main process of degrada-
tion in the regions of semi-arid and dry subhumid.

In recent estimates (SAC 2016) of salt-affected land, only 3.67 Mha areas were
affected by salinity and alkalinity. But these estimates have a huge deviation from
the earlier estimates (6.73 Mha) done by National Remote Sensing Centre (NRSC),
Central Soil Salinity Research Institute (CSSRI), and National Bureau of Soil Survey
and Land Use Planning (NBSSLUP). They have used LANDSAT satellite data
corresponding to 1996 along with soil chemical analysis data and estimated the total
salt-affected area of 6.73 Mha and out of which saline soil cover 2.9 Mha and sodic
soil cover 3.7 Mha in India (Mandal et al. 2010). This large difference in totality as
well as on the spatial distribution of salt-affected degraded lands illustrates the
scalability of the problem and the necessity of accurate data and techniques for
estimation salt-affected areas.

12.3 Land Degradation Processes

The project of GLASOD (Oldeman et al. 1991) distinguishes four types of soil
degradation around the world such as water erosion, wind erosion, chemical degra-
dation (salinization/alkalization, acidification), and physical degradation (glacial,
waterlogging), but nowadays, anthropogenic factors become more dominant due
to pressure of burgeoning population. In India, NRSC (2010) had used a 13-fold
major category to generate wasteland (degraded land) map at 1:250,000 and

Table 12.2 Process wise land
degradation status during
2003 and 2013 in India (per-
cent of total area under
desertification, modified, SAC
2016)

Process of land degradation

Degraded land area (%)

2003 2013

Deforestation 29.92 30.39

Water erosion 37.67 37.45

Wind erosion 19.41 18.91

Salinity 4.24 3.81

Waterlogging 0.63 0.67

Frost shattering 3.29 3.46

Mass movement 0.89 0.96

Manmade 0.39 0.43

Barren/rocky 1.99 1.96

Settlement 1.57 1.95
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1:50,000 scale using visual and digital remote sensing techniques) under National
Wastelands Monitoring Project. These 13-fold major categories are as follows:

1. Gullied and/or ravinous (eroded) lands
2. Undulating uplands with or without scrub
3. Marshy and water stagnated land
4. Coastal or inland salinity/alkalinity affected lands
5. Shifting cultivation area
6. Degraded informed forest land
7. Pastures/grazing land degradation
8. Degraded non-forest plantation area
9. Sandy areas in the desert or coastal region

10. Wasteland in the industrial/mining area
11. Barren/sheet/stony rocky area
12. Sloppy (steep) areas
13. Snow/glacial areas

These 13-fold categories can be broadly grouped as water and wind erosion,
waterlogging, salinization/alkalization, acidification, glacial, anthropogenic, and
others.

12.3.1 Water Erosion

Worldwide water erosion is an important hazard, and annually, ~24 billion tonnes of
top fertile soil is washed away (FAO 2011; Meena et al. 2018). This soil erosion also
aggravated a loss of 1100 Mt. C into the atmosphere and conjointly erosion-induced
transportation loss of 300–800 Mt. C to the ocean through soil loss (Lal 2011).
Besides organic C loss, water erosion also results in losses of inherent and applied
nutrients, the soil compacted as top fertile soil eroded out, loss in soil biodiversity,
and chances of contamination with heavy metals and pesticides. Water erosion
negatively affects crop productivity. It has an important threat to the security of
food, livelihood, and environment in a country. In India, around 13.4 Mt. (�205.32
billion rupees) of annual productions are lost due to water erosion (Sharda et al.
2010). The climatic, physiographic, and parent material characteristics show a 32%
water erosion registered for the southern plateau region, while north India claimed
68% registered water erosion (NAAS 2017). In north India, the Brahmaputra, the
Ganges, and the Indus, rivers which flow the northern Himalayan region, jointly
contribute half of the total gross erosion in India.
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12.3.2 Wind Erosion

Wind erosion is the process of movement of soil particles by strong wind regime
which cross over the critical velocity for beginning the movement of soil particles
(Samra et al. 2012). The topsoil erosion disturbs the soil air composition, soil
temperature and water status, microbial respiration, and carbon storage in soils. In
the region of semi-arid and arid, nearly devoid of native or planted vegetation with
high wind velocity tends to wind erosion. The single grained sandy soils are most
prone to this erosion. The finer soil particle and externally applied soil nutrients are
carried out to a certain distance, and subsoil get exposed and soil loss with produc-
tivity due to blown away of fertile soil. The Sahelian Africa (Sterk 2003), northern
China (Yan et al. 2005), and North-western Thar Desert of India are severely
affected by wind erosion.

12.3.3 Chemical Degradation

Soils that need unusual management are collectively known as chemically degraded
soil or problem soils. These types of soils are characterized by the excess or
deficiency of some characteristics parameters and making it barren or less productive
soil. These soils are affected by different degrees of soil degradation problems.

12.3.3.1 Salinization/Alkalization

The higher content of electrolytes (cations and anions) causes the problem of
salinity. The presence of salts causes the high osmotic potential results in plants
and native soil microbes start experiencing severe water stress due to the physio-
logical unavailability of water. Further, antagonism relation between electrolytes
(Cl� and H2PO4

�), (Cl� and NO3
�), (Cl� and SO4

2�), and (Na+ and K+) affects the
normal nutrition of the plant, whereas high pHs and alkalinity (pHs >8.5) and
exchangeable sodium percent (> 15%) create the problem of the low permeability
of water and air entry in soil due to dispersion of aggregates and clay particles. The
hard crust on the surface delays seedling emergence. The toxic concentration of
alkaline anion (HCO3

� and CO3
2�) causes a deficiency of N, Zn, and Fe (Rai et al.

2020; Basak et al. 2020).
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12.3.3.2 Acidification

Soil having pH ranges from 4.5 to 6.5 categorized as acid soil. The deficiency of P,
Ca, and Mg and excess of Al3+, Fe3+, and Mn3+ cause root injury and soil limited soil
biological activity.

12.3.3.3 Physical Degradation

The unfavourable soil physical conditions make soil underproductive. The major soil
physical constrains are soil compaction due to mechanical impedance, crust forma-
tion, hardening and sealing of topsoil, low water retention and highly permeable soil,
shallow soils, and slowly permeable soil.

12.3.3.4 Waterlogged Soil

Water table rises to such an extent that the root zone becomes saturated with water.
Impair in aeration results in poor crop growth and limited nutrient uptake. The
nitrification process is badly affected.

12.3.4 Anthropogenic and Agricultural Activity

The populous country (like India and China) achieves security for food production
by an intensification of agriculture. This intensification and associated food security
are accomplished with a huge challenge and a serious deterioration and degradation
of soil and land quality. Burgeoning population drastically shrinks the land avail-
ability (land-human ratio) in India with land availability decline 0.34 ha in 1961–52
to 0.14 ha in 2012–2013 and expected it will decline further. Therefore, it is
inevitable to raise in more pressure for finite soil resources and prone to degradation
for perceive agricultural productivity, sustaining economic growth (IPES-Food
2019). High fertilizer consumption for agriculture intensification increases its neg-
ative fates, a possibility for its indiscriminate use also enhanced with attendant loss
of efficiency and imbalances in rates of the fertilizing nutrients particularly NPK.
Such imbalances in fertilization eventually cause deterioration in the health of soils
and the environment simultaneously. Symptoms of such deterioration of soil health
are captured by different researchers computing soil quality index under various
fertilization treatments and cropping systems in a large number of long-term fertility
experiments in diverse agroclimatic areas (Basak and Mandal 2019).

The important key visual interpretation feature of several types of land degrada-
tion depends on colour, texture, pattern, size, shape, association, etc. Identification of
different land degradation process depends on different types of land degradation.
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The false colour composite (FCC) image helps to identify the different types of land
degradation processes. Some of the important visual interpretation features of land
degradation process have been presented in Table 12.3.

12.4 Causes of Land Degradation Process

The causes of land degradation are directly/indirectly linked to human activities. The
pressure of the population in a rural and urban area with the development of the
economy pressurizes the change of land use, leading to the function and productivity
degradation of an ecosystem (Cherlet et al. 2018). Removal of soil covers by the
means of overgrazing, deforestation and deterioration of soil health by agricultural
activity overdose of fertilizer, and nutrient mining for supporting the increasing
demand of national are the core reasons for land degradation. Man-made soil
deterioration rate has been projected based on changes in local population densities
(both human and animal) and/or in relation to mechanization, agricultural expansion,
fertilizer use, etc. during 10 years. The reason for land degradation differs from
country to country (Table 12.4). Deforestation followed by agriculture is the dom-
inant cause of degradation in Asia and South America, whereas, in Africa and South
America, it is overgrazing and agriculture, respectively. Australia and New Zealand
of the Oceania continent are the main contributors to overgrazing. Overutilization by
woodcutting for fuel purposes is very high in lower developing continents, while this
scenario is absent in developed continents, where other causes of degradation
became prominent (Table 12.4).

Table 12.3 Keys of visual image analysis for different land degradation

Process Colour Shape Texture Pattern

Water erosion Slightly brighter/brighter
grey to dark grey than
surrounding land

Irregular Smooth/
medium
to course

Contiguous/dis-
crete patches to
contiguous
patches

Wind erosion Light grey/yellow to pink
mottles

Irregular/
regular

Smooth/
medium
to course

Contiguous/dis-
crete patches/
mottling

Waterlogging dark or shaded blue/grey Irregular/
regular

Smooth Discrete/contigu-
ous patches

Salinization/
alkalization

Light grey/greyish white
to white/dull white

Irregular Smooth Discrete patches

Acidification Green/black shades Irregular Smooth-
medium

Contiguous/dis-
crete patches/
mottled

Anthropogenic
(industrial effluent,
mining, brick factory)

Shaded/dull white, grey,
blue to yellow, red, black

Irregular/
Regular

Smooth-
medium

Contiguous/dis-
crete/Isolated
patches

Modified, Ravishankar and Sreenivas (2010)
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Gao and Liu (2010) reported that overgrazing, intensive cultivation, unnecessary
reclamation of grassland for farming, and deforestation leads to the worsened
degradation situation. They reported that land degraded area increased from 2400
to 4214 km2 due to soil salinization, waterlogging, and desertification. A different
agricultural activity like deforestation, overgrazing, excessive irrigation, groundwa-
ter withdrawal, intensive tillage operation with heavy agriculture machinery, crop
residue burning and low return of organic input, impaired irrigation, drainage, and
water management, monoculture and faulty crop rotation, and misuse of pesticide
further aggravated the degradation (Bhattacharyya et al. 2015).

12.5 Indicators of Land Degradation Assessment

Identification of potential indicators of land degradation followed by empirical
verification with ground-truthing and remote sensing data are used to measure and
monitor spatial and seasonal variability of degraded land. The most important
indicators are:

• Sparse vegetation/increased bare ground
• Increased soil looseness
• Reduction of soil organic matter
• The non-uniform rainfall distribution pattern
• High concentration of salts in soil surface
• Water stagnation on the soil surface
• Reduction of rain use efficiency (annual sum NDVI/annual rainfall)
• Reduction of energy use efficiency (annual sum NDVI/annual accrued

temperature)

Table 12.4 Sources of human-induced land degradation (percent of total human-induced degraded
land; Modified, Oldeman 1992)

Area Deforestation Overutilization Overgrazing
Agricultural
practices Mechanization

Asia 15.17 2.34 10.03 10.38 0.05

Europe 4.27 0.05 2.54 3.26 1.07

Africa 3.41 3.21 12.37 6.16 –

North
America

0.20 – 1.48 3.21 –

Central
America

0.71 0.56 0.46 1.42 –

South
America

5.09 0.61 3.46 3.26 –

Oceania 0.61 – 4.22 0.41 –

World 29.47 6.77 34.55 28.09 1.12
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Most of these indicators directly or indirectly linked with the influence of
vegetation which varies with the season, crop, and degree of maturity of the
vegetation, soil and climate, and the kind of vegetative material, namely, roots,
plant tops, and plant residues. Residue from vegetation protects the surface soil from
raindrop impact and recovers the soil structure and organic carbon. Soil erosion can
be reduced by control tillage and residue management practices. The major efforts of
vegetation in reducing erosion are as follows:

• Surface sealing and runoff are reduced by the interception of rainfall by reducing
the raindrop energy.

• Decreased surface velocity retards erosion and nutrient.
• Vegetation cover serves as a physical limit of soil displacement.
• Soil physical properties like porosity, structure, and aggregation are improved by

root and crop residue.
• Improve soil biological activity.
• Water stagnation on the soil surface is reduced by plant transpiration and favour

for the agroforestry system which reduces runoff and improves the soil storage
capacity.

• Vegetation cover checks the evaporation and breaks the capillary rise of water; as
a result, salt accumulation is reduced on the surface soil.

Besides vegetation cover, other indicators like inherent soil properties, slope,
topographic position, volume, intensity and frequency characteristics of rain, and
wind speed influence the degree of degradation.

12.6 Land Degradation Assessment Using RS and GIS
Techniques

Degraded land in arid and semiarid regions creates a severe problem. Several
researchers (FAO 2005; Lambin and Meyfroidt 2011; Lambin et al. 2013; Gelfand
et al. 2013) reported that in many parts of the world, agricultural lands are shrinking
and not enough to satisfy the demand of our daily need. Land scarcity becomes more
vulnerable under the pressure of population growth especially, in the south-eastern
countryside of Asia. In this scenario, degraded lands minimize the land scarcity
problem by meeting the demand for food. However, regular monitoring and assess-
ment of these lands in a spatiotemporal scale is a very difficult task. Many different
approaches have been adopted by different researchers to monitor its type, extent,
degree, rate, and causes; these can be grouped as (1) expert opinion during the survey
and used to quantify the area and mapped; (2) biophysical modelling based on
auxiliary parameters that indicate the crop productivity, which can be used as a
proxy for assessment of degraded land; (3) abandonment of agricultural lands due to
some economic, political, and low productive issue—these lands converted to a
wasteland. All of these approaches take more time, capital, and labour; and (4) the
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satellite-based approach comes to frontline due to the advancement of the satellite,
software, and a new algorithm for estimating the area of degraded land and also can
be assessed the cause of area extension. But the problem of delineation of degraded
land using advanced different RS and GIS techniques has been overcome efficiently
and very useful for monitoring purposes (Khan et al. 2005). The different features on
the earth’s surface can be identified using different RS data (Metternicht and Zinck
2003).

12.6.1 Aerial Image Processing

Colour/or tone, texture, pattern, association, and size of the vegetative canopy on
aerial photographs and satellite images help directly or indirectly to detect the type of
soil degradation. Among aerial and satellite images, the areal image is the old
technique of RS, and even today, it is used intensively for detailed study. To monitor
the land degradation (salt-affected lands and waterlogged lands) from a small
distance, (fine) resolution imaging/non-imaging sensor is mounted on drone with
GPS to scan at a fixed time and space resolution and capture detailed information
about degraded land. This areal image is used to confirm the data interpretation along
with RS images and served as supplement image (Haseena et al. 2013). Salt-affected
soil surface is generally appeared as smoother and discrete patches over normal soil
surfaces and gives high reflectance value in VNIR (visible and near-infrared) region
(Dehni and Lounis 2012; Srivastava et al. 2017). But in waste or degraded land, the
reflection is reduced in the VNIR region (Mandal 2019). However, the aerial
photograph will be most useful in conjunction with other ground- and satellite-
based RS techniques.

12.6.2 Satellite Image Processing

Land degradation differs from space to space and also with seasons which can be
characterized by spatial, spectral, and temporal characteristics of different surface
features (Metternicht and Zinck 2008). Defining land degradation and mapping
criteria become more difficult when both surfaces, as well as subsurface variability,
are considered. Notably, RS and GIS techniques with ground-based sensors are
fetching popularize over conventional techniques for its fast assessment and estima-
tion of land degradation for monitoring and mapping purposes. Both passive/active
RS sensors are classified as multispectral, hyperspectral, and microwave sensors.
Their amalgamation for assessment and prediction of degraded land has defined an
extraordinary ability to monitor and map.
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12.6.2.1 Multispectral Imagery

Integrated approach (Douaoui et al. 2006; Farifteh et al. 2006a, b; Eldeiry and Garcia
2008) of multispectral sensors (Landsat MSS, TM, ETM+, SPOT-XS, MODIS,
Sentinel, Terra-ASTER, IRS-LISS-III and IV, IKONOS, Quick Bird, Hyperion,
and World Vision satellite images) with ancillary information like terrain model
data, spatial model data, geography survey data, and field information can increase
the accuracy of degraded soil mapping (Setia et al. 2013; Rawat et al. 2018).
Nowadays, multispectral advanced sensors capture images with fine (<1.0 m) spatial
resolution, whereas course spatial with a high-spectral-resolution image can be fused
with pan band, which has a fine spatial resolution; in this way, both spatial and
spectral resolution of any image can be improved and subsequently become easy to
update the information of slight to severe degree of degradation at fine scale in a very
economical mode.

There was a 40% increase in salt-affected soils and waterlogged areas observed in
Punjab within 5 years using IRS imageries under a project funded by the World
Bank (Sethi et al. 2006). GIS platform with RS techniques was utilized for incor-
porating both non-spatial and spatial attributes, which were recorded from different
sources like proximal sensing instrument, traditional laboratory analysis, and other
sources to generate the spatiotemporal database and quantification of problem soil-
related parameters through multivariate statistical modelling (Singh et al. 2010; Sethi
et al. 2014). Digital image processing with visual interpretation and capturing of the
spectral signature of salt-affected soils, waterlogged soil, vegetation, crop and sandy
soils on multispectral FCC imagery with reference of NDVI (NIR-R/NIR + R), VI
(NIR/R), etc. spectral index map are used to discriminate normal and stressed crops.
Image classification techniques like maximum likelihood, random forest, and prin-
cipal component classification with advance PCR, PLSR, and ANN algorithm and
black box model (classification tree, regression tree, decision tree, etc.) have been
used and optimized for monitoring and mapping of degraded soil (Metternicht and
Zinck 2003; Dwivedi et al. 2008).

Waterlogged and salt-affected soils are mainly governed by groundwater quality
and its depth. But to monitor the hydrogeological parameter, using RS imagery is
very difficult. However, Sander (2007) predicted the depth and availability of water
table through lineament analysis on RS imagery along with DEM image analysis
using surface and hydrology tools of GIS. Currently, the temporal resolution of the
satellite has been improved which helps to monitor the waterlogged status at
different seasons. Techniques of RS and GIS become very handy to inaccessible
areas within a short time and explore and evaluate the groundwater resources
(Chowdhury et al. 2003). Hydrological with RS data had significantly used to
explore aquifer geometry, details, and groundwater quality (Jha et al. 2007).
Dubey and Sharma (2002) used a factor analytical model to establish a programming
system to decide on the groundwater pollution potential with the help of RS, GIS,
and auxiliary data. Satellite imagery and ancillary data have used in a GIS-based
groundwater prediction model which enabled the prediction of the risk of
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salinization by the prediction of groundwater level in the region of Murray Valley
Irrigation Region of New South Wales, Australia (Lamble and Fraser 2002).

12.6.2.2 Hyperspectral Imagery

Most broadband data mainly multispectral data, derived from satellite-like Sentinel,
AVHRR, IRS, SPOT, Landsat, etc., quantify the reflected radiation at a wide spectral
band from surface features. Hyperspectral imagery (narrowband data) capture the
reflected radiation at a sequence of 1.0 nm spectral bands. That’s why one pixel of
the hyperspectral image can supply huge information regarding any surface charac-
teristics due to its high spectral resolution at a 1.0 nm interval, despite 30.0 m spatial
resolution (Hyperion). A number of the spectral bands do not prove a sensor as a
hyperspectral sensor. The main characteristic of a hyperspectral sensor is that it
should be narrow (<10.0 nm) and produce contiguous spectral information. Spectra
of soil, vegetation, and mineral have unique absorption drop at a different wave-
length (Fig. 12.1a). Absorption peak shifted to higher wavelength with the increase
of moisture content (Fig. 12.1b) and reflectance values in same soil are reduced with
the increase of volumetric moisture content (Das et al. 2015; Fabre et al. 2015).
These unique characteristics of spectra help to identify and quantify different
properties of a certain material. Hyperspectral data/images can identify the different
field crop canopy, in marginally and severely degraded areas, whereas multispectral
images classify different vegetative growth and salinity intensity based on different
spectral indices, and mapping of salt-affected soils is prepared maximum based on
poor vegetative growth.

12.6.2.2.1 Spectral Libraries

Problem soil measurement using optical sensing (e.g. VNIR, SWIR) involves the
fine-tuning of spectra for a degraded soil-related parameter using different multivar-
iate statistical models. Existing spectral libraries (ESLs) and site-specific developed

Fig. 12.1 Different spectra recorded by a spectroradiometer (a) for a vegetative cover, soil, talc
mineral; (b) for soil with different moisture content. (Adopted, Fabre et al. 2015)
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spectral libraries based on local soil samples (LSLs) are used for model fine-tuning
(Shepherd and Walsh 2002; Viscarra Rossel and Webster 2012; Stevens et al. 2013).
Nowadays, during the purchase of spectroradiometer, these ESL is supplied with
instrumental software, which can be directly used for the prediction of different
parameters without any analysis cost, whereas laboratory analysis cost is involved
for LSL to develop an accurate (unbiased) local spectral model (Guerrero et al. 2014;
Clairotte et al. 2016). Many researchers (Shepherd and Walsh 2002; Brown et al.
2006; Viscarra Rossel et al. 2016) reported that large capital is required to develop a
regional-, country-, and global-level soil spectral library; that’s why the cost is
involved to utilize these developed spectral model for the calibration of the local
spectral model. These developed spectral libraries reduce the laboratory analysis
cost, time, and labour and make popularize the soil spectroscopy. In India, full-range
(350.0–2500.0 nm) soil spectral library was prepared by Saxena et al. (2005) based
on collected soil samples from different agroecological zones of the country. Sim-
ilarly, Das et al. (2015) reported unique spectral characteristics of different soil
orders of aridisols, inceptisols, alfisols, vertisols, and laterite soil across India.
Vertisols have less reflectance value, whereas inceptisols have high reflectance
value due to less clay content. Curcio et al. (2013) reported the all measured
reflectance with average values for each soil groups. The soil texture varied from
clay to clay loam, loam to sandy loam, and clay to silty clay loam for Pietranera,
Dirillo, and Bompensiere soil of Sicily, Italy.

12.6.2.2.2 Methodology of Salt-Affected Soil Characterization
and Mapping using HRS

Planning of salt-affected/problem soil mapping is a very difficult task due to the
complexity of salt composition and its development process (salinization) along with
seasonal and spatial variability. Identification of severely affected salt-affected soils
using RS imagery is very easy for high reflectance value, whereas mixed reflectance
value is recorded in the case of slight and moderately salt-affected soils for its
association with soil, water, and crop canopy cover. New advanced methodology
for salt-affected soil mapping and characterization was developed by CSSRI using
multispectral, hyperspectral, proximal sensing for ground truth and different linear,
non-linear, and black-box modelling of spectra for quantification of parameters.
More than 90% of spatial variability of salt-affected soil parameters such as ECe,
saturated extract Cl�, CO3

2�, HCO3
�, and Na+ (me L�1) can be predicted by

hyperspectral modelling. Prominent absorption drops of 1.4, 1.9, and 2.2 μm were
found in salt-affected soils of Haryana. Absorption drops at 1.9 μm shifted to higher
waveband with the increase of salt concentration. The proposed methodology was
found useful for delineating salt-affected soils from the space platform (Fig. 12.2).
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12.6.2.2.3 Prediction of Soil Attributes Based on Reflectance Data

Developed spectral models (Shepherd and Walsh 2002; Farifteh et al. 2004,
2006a, b, 2007, 2008; Wang et al. 2012; Mitran et al. 2015; Srivastava et al. 2017)
by several workers using soil reflectance values and soil attributes were effectively
used to predict different soil parameters. The multivariate spectral model has a huge
potential to distinguish the type of land degradation in a precise region (Leone and
Sommer 2000). Hyperspectral techniques with multi-temporal images solve the
problem of similarity among salt-affected soil, sandy soil, and settlement (Lu et al.
2005; Farifteh et al. 2007). Representative waveband needs to be collected from
mixed spectral tones of soil and crop cover to reduce errors in the NIR, red, and
green bands, used for FCC image during classification (Rao et al. 1995; Metternicht
and Zinck 2003; Farifteh et al. 2006a, b, 2008). Distinctive spectral reflectance in the
VNIR region is reduced by hydrated evaporative minerals in salt-affected soils
(Farifteh et al. 2008). A significant absorption drop was found at 505, 920, 1415,
1915, and 2205 nm. But there was a difference within the spectra of pure salt and

Fig. 12.2 Methodology for characterizing SAS using spectral data. (Adopted, Barman et al. 2017)
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mixed salt with soil and/or associated with other minerals. In general, identification
of degraded lands on an RS image faces the following problems:

(a) Absence of crust
(b) Mixing of degraded soil signature with others like sand and settlements
(c) Mixing of soil and vegetation cover
(d) Presence of soil moisture

Therefore, indirect mapping of degraded lands based on the vegetative spectral
signature, affected by problem soil, increases the accuracy of mapping. Taylor and
Dehaan (2000) reported that the decreasing trend of the reflection curve was
observed in the NIR region (800–1300 nm). Different types of vegetation like
vegetation under stress, narrow or broad leaves, cereal or legume, etc. can be studied
using fine spectral resolution (Dehaan and Taylor 2001). High reflectance in the
visible region over the NIR region of stressed vegetation (Weiss et al. 2001) helps to
identify the different soil-related stress (Tilley et al. 2007). Hyperspectral images,
i.e. Hyperion data (Weng et al. 2008), HyMAP (Dehaan and Taylor 2003), ASTER
(Melendez-Pastor et al. 2010), and different indices of problem soil such as normal-
ized difference vegetation index (NDVI), salinity index (SI), normalized difference
salinity index (NDSI) (Huete 1998; Huete et al. 2003), and soil-adjusted vegetation
index (SAVI) using Landsat imagery (Bannari et al. 2008; Jabbar and Chen 2008;
Odeh and Onus 2008) can identify the different category of SAS. Kumar et al. (2015)
showed a significant coefficient of determination (R2 > 0.75) with soil salinity-
related parameter (ECe, SAR, and ESP). In India, NBSS&LUP (2006) developed a
national soil spectral library, including problem soils, and this library can be used to
increase the precision of degraded soil map. Srivastava et al. (2017) showed the
effect of different salt concentrations based on ECe (mS m�1) in the optical region on
soil spectral signature (Fig. 12.3a). The variation of absorption peak (on first deriv-
ative spectra) was more prominent at 1.4, 1.9, and 2.2 μm. There was a shifting of

Fig. 12.3 Soil spectra with different salinity classes based on ECe (dS m�1) in the optical region (a)
and shifting of absorption drop to higher wavelength with increase of salt concentration (b).
(Adopted, Srivastava et al. 2017)
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absorption drop to a higher wavelength with an increase of salt concentration at
1.9 μm (Fig. 12.3b).

12.6.2.3 Microwave Sensors in Land Degradation Assessment

Microwave RS, i.e. synthetic aperture radar (SAR) data, has huge potential in the
delineation of saline/sodic and waterlogged soils despite cloudy weather conditions
(Metternicht 1998; Bell et al. 2001; Metternicht and Zinck 2003). The information
from the SAR image has huge potential in the mapping of environmental change.
The microwave RS (backscattering) works based on the principle of dielectric
constant-polarization (Engman 1991), the roughness of features, wavelength or
frequency (Evans et al. 1992), slope, and orientation, i.e. look angle. The results of
small perturbation model (SPM), physical optics (PO), semi-empirical polarimetric
model (SEPM), Dubois model (DM), and other algorithms were compared with soil
texture, salinity, frequency, moisture content, and vegetation canopy parameters to
estimate imaginary part of the dielectric constant of soil. The real part of the radar
backscattering model is associated with moisture content, whereas the imaginary
part is responsible for salt concentration. These soil properties depend on the
backscattering coefficient which depends on the dielectric constant of soil, and this
dielectric property depends on free water, bound water, air, and soil solids. Soil
salinity mainly depends on free water content. Low-frequency (L-band or high-
wavelength) microwave RS (active/passive) is best for the mapping of surface salt-
affected soil (Dongryeol 2003). The sensitivity of imaginary soil dielectric constant
proportionately correlates with salinity and moisture (Sreenivas et al. 1995). Jain
(2011) measured the dielectric constant by inversed co-polarized techniques from
SAR images and reported that this technique identifies soil salinity (EC) in Unnao
district of Uttar Pradesh, India. The derived radar attributes have also potential in the
mapping of degraded soil in an irrigated condition of Chubut, Argentina (Del Valle
et al. 2009). There is a possibility to differentiate the salinity from sodicity using L
waveband under wet soil regimes. Long wavelength of microwave RS can penetrate
soil and vegetation. The soil penetration depends on profile moisture, but long
wavelength, i.e. P (30.0–100.0 cm wavelength) and L bands (15.0–30.0 cm wave-
length), has high energy to penetrate the feature over C band (3.8–7.5 cm wave-
length) (Bell et al. 2001; Lasne et al. 2008). These SAR images are validated using
radiometers (ground-based microwave) for the study of degraded soils. Chakraborty
et al. (2013) enlisted the area of applicability of Indian radar satellite (RISAT-1) with
HH, VV, HV, and VH polarizations, and these are vegetation, crop monitoring, flood
mapping, salinity monitoring, degraded soil mapping, forestry study, soil moisture
study, estimation of rice productivity, geology study, sea ice, and coastal monitoring.
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12.6.3 Ground-Based Sensing

Data from space-based satellite images can be validated by ground-based imaging/
non-imaging data. These ground-based advanced electronic sensors and other prox-
imal devices such as electromagnetic/electrical probes, time-domain reflectometry—
TDR (emissivity), resistivity tool, salinity and moisture sensors (electrochemical),
chlorophyll meter (optical), and ground-penetrating radar with GPS devices are used
to record data from less height of the feature surface at the field for the mapping and
monitoring of degraded status. Ground-penetrating radar and TDR are indirectly
linked with soil surface/underground moisture and salt concentration. These handy
tools are very cost-effective (Aldabaa et al. 2015) and can be mapped and/or in situ
monitor based on an empirical site-specific model of infiltration and profile moisture
(French and Binley 2004; Jayawickreme et al. 2008), EC, and resistivity model
(Slater and Sandberg 2000; Kemna et al. 2002) with less time and capital (Hamed
et al. 2003; Robinson et al. 2003). The ground-penetrating radar (for groundwater
survey) can sense the little variation in salt and water movement at <30.0 m soil
depth (Ludwig et al. 2011); however, this tool shows its difficulty in soil with
EC > 4.0 dS m�1 and SAR > 13.0 due to high attenuation of backscattering.
Goldshleger et al. (2010) generated a 3D map of land degradation in cropland
using hyperspectral RS, frequency-domain electromagnetic induction (FDEM).
and ground-based radar data. Sethi et al. (2014) estimated soil and plant properties
using IRS and ground data to manage the problem soils of Haryana, India. Multi-
spectral image with DEM gives more information regarding paleo-drainage patterns,
sunken area, playas, and catchment areas which are very useful to estimate the water
accumulation, recharging potential during heavy rainfall (Kwarteng 2002). Guo
et al. (2015) reported that backscattering coefficient from HH polarization of
ALOS/PALSAR radar imagery and apparent electrical conductivity (ECa) value of
EM38 sensor were imported to ArcGIS platform to perform the spatial model with a
geostatistical tool to know the variability of moisture and salt concentration of soil,
respectively, in reclaimed coastal of south Hangzhou Gulf. Traditional laboratory
determination of salinity and sodicity are costly and laborious and requires intensive
time to get desired information. Electromagnetic (EM) induction techniques are
nowadays widely used as an alternative tool for collecting information on soil
properties relevant to salinity and sodicity. Recently, in India, geophysical EM
induction techniques were used to characterize soil salinity and their extent and
represent soil salinity three-dimensionally (Narjary et al. 2017, 2019; Koganti et al.
2018). But lots of research is required to standardize and development of models to
get its effective application for degradation land mapping and monitoring.
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12.6.4 Methodology of Land Degradation Mapping: Visual
Interpretation and Digital Approaches

Multispectral imageries of three different crop growing periods (kharif, rabi, and
zaid) can be used as input to identify the seasonal variation of land degradation
(Fig. 12.4) using an on-screen digitization technique (SAC 2016; NRSC 2020).
These satellite data are processed in image processing software with the help of
image enhancement, visual interpretation, spectral ratio, and ancillary information/
legacy data as thematic maps, existing LULC, wasteland map, and other printed
material. Satellite image processing and interpretation are very important for the
identification of ground-truth sample collection. Different types of land degradation
can be visually identified based on colour/tone, texture, pattern, size, shape, and
association (explained in Sect 12.3.4). Collected soil samples are analysed for pHs,
ECe texture, organic carbon, exchangeable cation and anion, CaCO3 percentage, etc.
These are used to develop the final land degradation map after the validation and
accuracy assessment.

However, various digital approaches have also been adopted for qualitative and
quantitative assessment of degraded soils by various researcher across the world

Fig. 12.4 Methodology of land degradation mapping. (Modified, Ravishankar and Sreenivas
2010)
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Table 12.5 Methodology and remote sensing data used in different studies for land degradation
assessment

Land
degradation
processes Study area Method Data used References

All land deg-
radation
processes

India On-screen visual inter-
pretation along with soil
sample analysis

IRS AWiFS
(1:500 K)

SAC (2016)

All land deg-
radation
processes

India On-screen visual inter-
pretation along with soil
sample analysis

LISS-III (1:50 K) NRSC
(2015, 2020)

Soil salinity
Mapping

Bhavnagar,
Gujarat

Spectral angle mapper
algorithm

Hyperion data Mitran et al.
(2015)

Soil moisture
and salinity
stress

Dharmapuri,
India

Microwave and multi-
spectral model

Radar Imaging
Satellite and
Landsat data

Periasamy
and
Shanmugam
(2017)

Surface
waterlogging

Rohtak, India Thresholding of NDWI
for optical image and
Sigma0 for SAR images

Sentinel 2 MSS
images and Sen-
tinel 1A SAR
images

Kaushik
et al. (2018)

Dynamics of
waterlogged
area

Bangladesh Random forest classifica-
tion based on training
pixel

Landsat imager-
ies (Time series)

Islam et al.
(2018)

Saline soil
map

SE Spain Matched filtering
(MF) and mixture-tuned
MF

ASTER Images Melendez-
Pastor et al.
(2010)

Hydro saline
land
degradation

Faisalabad,
Pakistan

Salinity indices and digi-
tal image processing

IRS-1B Khan et al.
(2005)

Salinity stress Hakim Farabi
Farming in
Iran

Hyperspectral vegetation
indices

Hyperion image Hamzeh
et al. (2013)

Wind erosion
hazard
mapping

Laghouat
region
(Algeria)

Fuzzy logic approach Landsat 8 OLI
images

Saadoud
et al. (2018)

Soil wind
erosion

Inner Mongo-
lia, China

Improved AHP and a
weighted summation
method

AVHRR and
MODIS NDVI

Zhou et al.
(2015)

Acid sludge
concentration
in soil

Balikpapan,
East Kaliman-
tan
(Indonesian)

NDVI method Landsat images Haryani
et al. (2017)

Acid mine
drainage map

Mpumalanga
Province of
South Africa

Spectral signatures of
jarosite and haematite

Landsat 8 Sakala et al.
(2017)

Trace metal
content in
Soils

New York Correlation analysis
(surrogate)

ASD data Wu et al.
(2010)

(continued)
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(Table. 12.5). They have used multispectral, hyperspectral, and microwave satellite
datasets to map degraded soil through different modelling techniques. A number of
researchers have used various hyperspectral based indices and algorithm to assess
and map soil salinity at regional scale (Melendez-Pastor et al. 2010; Hamzeh et al.
2013; Mitran et al. 2015). Saadoud et al. (2018) generated wind erosion hazard map
at Laghouat region in Algeria using Landsat 8 OLI data using the fuzzy logic
approach. Teng et al. (2016) assessed soil loss by water erosion in Australia using
SRTM and MODIS data using an universal soil loss equation. Dynamics of water-
logged area was mapped by Islam et al. (2018) using Landsat time-series datasets
through random forest classification technique. Kaushik et al. (2018) were used
NDWI thresholding method on optical image and SAR images of Sentinel 1 and 2 to
map surface waterlogging in parts of Rohtak, Haryana, India.

12.6.5 Assessing Spatial and Temporal Pattern
of Salt-Affected Soils: A Case Study

12.6.5.1 Study area

An experiment was conducted by CSSRI in the Nain experimental farm of Panipat,
Haryana (between 29o18037.9300N longitude to 29o19020.8600N latitude and
76o47008.6200N longitude and 76o48021.7900E longitude) states of India to study the
changing pattern of salinity/sodicity through RS and GIS using field-based
observation.

12.6.5.2 Data and Methodology

The high temporal resolution of any satellite images helps to monitor the extent and
pattern of degraded land over a time period in a specific region. Hence, different
seasonal satellite datasets of years 2011–2012 and 2017–2018 (here, IRS LISS III
and Landsat satellite imageries) of a year were collected and corrected by the
removal of the effects of sun elevation angle, atmospheric influences, and normal-
ization of radiometric differences for comparing the land degradation. The satellite

Table 12.5 (continued)

Land
degradation
processes Study area Method Data used References

Soil loss by
water erosion

Australia Factors of RUSLE esti-
mation to model soil loss
by water erosion

SRTM and
MODIS data

Teng et al.
(2016)

Deforestation
detection

Viti Levu
Island, Fiji

MulTiFuse approach for
detecting deforestation

Landsat and SAR
time series

Reiche et al.
(2015)
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data was used to identify the salt-affected soils at the study site through visual
interpretation technique. After the identification of the area, the soil samples were
collected. The sampling time and weather condition have a great impact on the
increment of area. Hence, the surface (0–15 cm) soil samples were collected during
April–May during 2011–2012 and 2017–2018, and that time salt has been accumu-
lated to the surface due to high evaporative demand during hot dry weather
condition.

The soil samples were analysed for pHs and ECe using standard protocols. The
spatial interpolation technique, i.e. ordinary kriging, was used to create spatial soil
pHs and ECe map of the experimental site for 2011–12 and 2017–18. Both the maps
were used to assess the changes in soil salinity and sodicity over 6 year period.

12.6.5.3 Salient Findings

The spatial pattern of ECe and pHs of the study site is presented in Fig. 12.5. Results
of the study show that the extent of soil salinity increased by 8.3 and 15.8%
(Table 12.6) over 6 years period in moderate (ECe 8.0–30.0 dS m�1) and strong
(ECe > 30.0 dS m�1) salinity region, respectively, whereas, the extent of pHs

increased by 28.9 and 20.3% (Table 12.6) over 6 years period, in the region where
pHs ranges from 8.2–8.5 and > 8.5, respectively.

Fig. 12.5 Changes of salinity/sodicity after 6 years. (Adopted, *Mandal et al. 2013 and **CSSRI
2018)
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12.7 Conclusions and Future Perspectives

Remotely sensed data become more efficient when it combines with numerical
modelling. Predictive models to estimate degraded soil-related parameters are empir-
ical and site-specific in nature and have limited applicability beyond the area of
development, but for qualitative assessment of degraded soil for mapping, monitor-
ing and some management practices can be done using multispectral imagery, and its
accuracy can be improved by using hyperspectral, radar, and ground-based sensor.
So, there is a need to develop methodologies for rapid detection and mapping of salt-
affected soil by integrating satellite RS with ground-based proximal sensors. Ground
truthing is a must for removing the confusion of mixed pixel or signatures and also
used for accuracy assessment in the mapping of degraded soil. All spectral, GPS, and
ground-based sensor data are imported to a GIS platform which provides an efficient
handling and management system for handling large and complex databases for land
degradation assessment studies. Predicting warmer temperatures, change of rainfall
distribution pattern and intensity, rising sea level, etc. leads to a change in the extent
of degraded land. Therefore, monitor and assessment of degraded soil of any country
becomes a flagship program after a minimum of 3–5 years interval due to a change of
climatic scenarios. With the growing interest on high-resolution satellite imagery
data applicability, rapid assessment of soil salinity, sodicity, acidity, waterlogged,
and wasteland through visual and digital models that are encouraging as it assists in
real-time precise monitoring of degraded soil over the spatiotemporal context and
also helps in the collection of spectral signature, facilitating the farmers to manage
more effectively and efficiently based on the mobile-based decision support system
in regional language. As a new step of the digital era, digital soil mapping of a
country gives the detailed information of each point of the map and stored spectral
library in Web-GIS server help to retrieve any information or parameters related to
degraded soils. The collaboration of different sensors (e.g. optical, microwave, and

Table 12.6 Changes of surface soil salinity and sodicity over 6 years

Soil
properties

Range in
property

Percent of the total area
(2011–12*)

Percent of the total area
(2017–18)

Δ6%
area

pHs <8.2 67 17.8 49.2

8.2–8.5 29 57.9 (+)
28.9

>8.5 4 24.3 (+)
20.3

ECe

(dS m�1)
<4.0 8.7 0.01 8.69

4.0 to 8.0 16.9 1.49 15.41

8.0 to 15.0 25.4 15.4 10

15.0–30.0 31.2 49.5 (+)
18.3

>30 17.8 33.6 (+)
15.8

Adopted, CSSRI (2018) and *Mandal et al. (2013)
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thermal sensors) and platforms (e.g. ground-based, air-based, and space-based
sensing) improves the accuracy and reproducibility of degraded soil map in time.
In 2015, United Nations Convention to Combat Desertification (UNCCD) has
developed Land Degradation Neutrality (LDN) programme in collaboration with
multiple international partners (over 120 countries) and committed to setting LDN
targets, and out of these, 80 countries have already set their target. The LDN target
follows the Sustainable Development Goal (SDG) target 15.3 which states to
achieve a land degradation-neutral world by combating desertification and restora-
tion of degraded land and soil by 2030. In this scenario India sets its target to restore
degraded lands from 21 Mha to 26 Mha, by 2030 (Press Information Bureau,
Ministry of Environment, Forest and Climate Change, GOI, 2019). Geospatial
techniques can play a meaningful role in support to achieve LDN target through
the qualitative and quantitative assessment of land resources which are necessary to
the ecosystem functions and services and enhance food security and production by
the reclamation and restoration process.
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modeling of groundwater availability, condition, and distribution are the major step
to formulate a sustainable groundwater management plan for agricultural use. The
conventional methods to manage groundwater are tedious and costly. However, the
modernization of geospatial techniques, namely, remote sensing (RS), geographic
information system (GIS), Global Positioning System (GPS), etc., along with dif-
ferential proximity sensing has enabled groundwater management both spatially and
temporally. It can help in surveying, analyzing, detecting, differentiating, character-
izing, mapping, monitoring, and modeling of the groundwater quantity, quality,
distribution, extent, and association of groundwater resources. The major interven-
tions of geospatial techniques in groundwater management are groundwater quality
assessment, spatial zonation for irrigation, groundwater prospects mapping,
dynamicity of groundwater storage, saltwater intrusion, etc. These applications
have made a huge impact on groundwater management for crop and land resources
on a sustainable basis. The multiparametric approach of geospatial techniques can
minimize the time, labor, and money and thereby enable quick decision-making for
efficient water resources management. However RS data has some inherent limita-
tions of spatial, spectral, and temporal resolution, which sometimes makes it difficult
to understand and asses the groundwater condition. Still, it is very important for the
areas/regions especially developing nations where data scarcity in terms of quantity
and quality is often an obstacle for solving real-world water problems. This chapter
highlights the various approaches of groundwater management for irrigated agricul-
ture using geospatial tools and techniques.

Keywords Geographic information system · Groundwater irrigation · Groundwater
prospects · Groundwater sustainability · Remote sensing

Abbreviations

BIS Bureau of Indian Standards
DC Dharwar Craton
EC Electrical Conductivity
EMAG Earth Magnetic Anomaly Grid
EO Earth Observation
ERT Electrical Resistivity Tomography
EVI Enhanced Vegetation Index
FAO Food and Agricultural Organization
FCC False Color Composite
GIS Geographic Information System
GPR Ground Penetrating Radar
GRACE Gravity Recovery and Climate Experiment
GWP Groundwater Potential
IDW Inverse Distance Weighted
LISA Local Indicators of Spatial Autocorrelations
LULC Land Use and Land Cover
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NDMI Normalized Difference Moisture Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
NGLM National Geomorphological Layer Mapping
NRDWP National Rural Drinking Water Program
OECD Organization for Economic Co-operation and Development
RSC Residual Sodium Carbonate
SAR Sodium Absorption Ratio
SWIR Shortwave Infrared
TDS Total Dissolved Solids
TWS Total Water Storage
VNIR Visible and Near-Infrared

13.1 Introduction

Groundwater is the portion of water present below the Earth’s surface in pore spaces
of soil/unconsolidated rocks and in the fractures/fissures of crystalline rock forma-
tions, etc. Groundwater constitutes about 30% of the world’s freshwater supply,
which is about 0.76% of the entire world’s available water (Gleick 1993). Ground-
water distribution in the globe is heterogeneous and varied both spatially and
temporally. Diverse geomorphic conditions along with uneven precipitation type
may be the reason. The fracture/lineament distribution, variation in lithology and
geomorphology, and hydrological characteristics produce heterogeneous and incon-
sistent yield as well as the depth of groundwater. Groundwater serves as a depend-
able source of water for various purposes including irrigated agriculture and
domestic and industrial uses. It is the major contributor in areas with high
populations, irrigated agriculture, and insufficient surface water resources (Shah
et al. 2001). The use of groundwater for agricultural irrigation overthrows the rest
of other uses (Burke 2002). The world has witnessed the rapid growth of ground-
water irrigation for crops over the past five to six decades (Shah 2014). Asia has
contributed about 70% of this groundwater for irrigation use leading to substantial
improvement in agriculture and food security (Siebert et al. 2010). This has posi-
tively impacted the economic growth and improves millions of household financial
condition from poverty. It balanced marginal to submarginal farming by mitigating
drought effects, allowing farmers to intensifying, diversifying, and changing in
cropping patterns. It has also allowed farmers to adopt cultivation of high-value
crops, multiple cropping, etc.

The innovation in tubewells and pumping technologies has excelled in the growth
of groundwater irrigation. As a part of a long-established practice, groundwater use
was initially limited to arid regions and rechargeable shallow alluvial aquifers of
Ganga and parts of the Indus river basin. However, with the progress of time, it has
rapidly spread over other regions with diverse environmental and geological setup. It
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got spread to hard rock terrains of peninsular India to the hot and humid southeastern
Asian countries and northeastern part of Sri Lanka, where aquifer storage is incon-
sistent with low yield (Shah 2010). It was observed that in Indian subcontinent,
annual groundwater abstraction increased from 10–20 km3 before 1950 to
240–260 km3 in 2009 (Shah 2010). European countries like Spain had experienced
a huge demand increase in groundwater draft for agricultural irrigation purposes
from 2 km3 during 1960 to 6 km3 during 2000 (Martinez-Cortina and Hernandez-
Mora 2003). South Asian countries’ groundwater irrigation development has
reached a plateau, whereas in countries in sub-Saharan Africa, Southeast Asia, and
South America, groundwater use is just beginning to grow (Barker and Molle 2005;
Giordano 2006; Shah 2010; Shah 2014). The Food and Agricultural Organization
(FAO) reported that groundwater irrigates around one-third of the world’s total
irrigated area out of that more than 70% area belongs to Asia (Siebert et al. 2010).
However the estimates provided by South Asian countries like India and China show
a periodical upward revise trend of groundwater-irrigated area over surface water-
irrigated area (Shah 2010). These data indicate that in Asia groundwater-irrigated
area is significantly greater than FAO estimates.

Excel in groundwater irrigation is the result of a high demand from agricultural
industries. This is due to the stability provided by groundwater during drought
season and contribution over dry land which helps in crop intensification and
diversification (Tsur 1990). These also all affect countries’ agricultural and socio-
economic development. Groundwater irrigation has created many dry season crops
in several South Asian countries (Barker and Molle 2005). Vietnam became the
largest producer of pepper and robusta coffee by adopting groundwater irrigation
(Zhu et al. 2007). Groundwater irrigation has enabled and intensified pre-summer
Boro rice cultivation in Bangladesh, which revolutionizes the country from food
borrower to a rice exporter (Palmer-Jones 1999). It has positively impacted the
economy by raising the land value in the USA and Spain (Lee and Bagley 1972;
Garrido et al. 2006).

Groundwater monitoring and management is very crucial for sustainable agricul-
ture and economic growth of a country. Hence, continuous monitoring of such is
required both spatially and temporally at global or regional scale. As the conven-
tional methods are laborious, costly, and time-consuming, geospatial techniques can
play a meaningful role. Remote sensing (RS) and geographic information systems
(GIS) are very useful to extract information on groundwater-irrigated areas and their
historical evolution (Sharma et al. 2018). However, use of only RS data in case of
precise estimation of groundwater irrigation is very difficult as fragmented land-
holdings, intense cloud cover in tropical regions, issues with satellite data resolution
and repeativity, and spectral and spatial heterogeneity of crops (Velpuri et al. 2009;
Thenkabail et al. 2009a, b). Nowadays census-based data along with sensing-based
approaches have been used to generate groundwater-irrigated land statistics at a
regional or national scale. But there are variations in data used, method of
approaches, and results (Thenkabail et al. 2005; Thenkabail et al. 2009a, b). Inter-
polation methods are commonly used to assess spatial variability of groundwater
(Corwin and Lesch 2005; Gunarathna et al. 2016). But such approaches may not be

458 R. Saha et al.



enough to understand the spatial and temporal distribution of water to formulate
groundwater management plans for agricultural purposes. Even though there is a
huge advancement in the RS imaging capabilities, accurate identification and mon-
itoring is still an enormous challenge for groundwater resources, i.e., managing at
micro-watershed level (Robert et al. 2017). Besides, various other socioeconomic
factors along with diversified farming practices increase the difficulty in assessing
groundwater-irrigated areas. Thus integrated use of RS and GIS is needed with
various optical indices, classification algorithms, data assimilation, as well as data
modeling (Gunaalan et al. 2018). Satellite image-derived indices were mostly used
by various researchers to differentiate between irrigated and nonirrigated cropland
area. These are generally dependent on spatial, spectral, and temporal differences
water and/or vegetation cover (Jin and Sader 2005; Dutrieux et al. 2016; Ambika
et al. 2016). Normalized Differential Moisture Index (NDMI) (Jackson et al. 2004;
Jin and Sader 2005; Dutrieux et al. 2016) and Normalized Differential Vegetation
Index (NDVI) were generally used to identify the irrigated cropland and land use and
land cover (LULC) classification at different scales using various spatiotemporal
resolution satellite images (Thenkabail et al. 2010; Dhiman 2012; Ambika et al.
2016). However multiple indices (vegetation, surface moisture, and surface
temperature)-based approach is mostly preferable for irrigated and nonirrigated
cropland classification (Ozdogan and Gutman 2008; Shahriar Pervez et al. 2014).
The temporal NDVI and Enhanced Vegetation Index (EVI) data are commonly used
to represent seasonal rhythms and phenological variations for different land-use
types which showcase the groundwater irrigation impact (Jin and Sader 2005).

Groundwater occurrence and distribution vary spatially and temporarily
depending upon lithology-geomorphology, hydrogeology, lineament/fracture distri-
bution, and stream/drainage network and which eventually control its yield and
depth. This spatiotemporal variability along with other associated factors makes it
very complicated and time-consuming to identify its occurrence by conventional
field mapping. The integration of RS and GIS with filed data could provide various
impact components of groundwater occurrence and its movement depending on
geology, geomorphology, soils, LULC, drainage, and lineaments (Jha et al. 2007).
Modernization and sophistication in RS and GIS can help to integrate the data
collected from various sources and methods. Many researchers have used such
data to delineate groundwater prospects zones in different geological terrains (Prasad
et al. 2008; Chowdhury et al. 2009; Rashid et al. 2012; Magesh et al. 2012; Adiat
et al. 2012; Satapathy and Syed 2015; Agarwal and Garg 2016; Das et al. 2017;
Ahmed and Mansor 2018). This chapter highlights the aptness of the geospatial
technologies for groundwater irrigation and its positive impact on the socioeconomic
environment through agriculture and food security. It also gives an insight into the
groundwater usage regime that fits well with a nation’s hydrogeological and socio-
ecological reality.
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13.2 Groundwater Usages in Irrigated Agriculture: Global
Scenario

It is essential to manage groundwater resources to stabilize and increase agricultural
production. Groundwater has contributed significantly toward agricultural transfor-
mation in Asia, the Middle East, and North African countries over the last five to six
decades. A total of 38% of the world’s irrigated area is currently supported by
groundwater irrigation (Siebert et al. 2013). Groundwater contributes 13% of world
total food production and 44% of world total irrigated food production (CGIAR
2017). The dependence on groundwater irrigation for crops is highest in South Asia
followed by East Asia, Organization for Economic Co-operation and Development
(OECD) countries, and East African and North African countries, respectively
(Fig. 13.1).

Nowadays most countries like the USA, China, India, Spain, Bangladesh, Viet-
nam, and many African countries are managing groundwater resources for sustain-
able agricultural production (Shah 2014). This social and economic well-being by
agriculture was associated with a high increase of groundwater abstraction (Shah
2010). Thus the global usages of groundwater for irrigation purposes show a steep
increase (Fig. 13.2). As per FAO estimates, earth’s total irrigated area is 307 million
ha (Mha) out of which around 90% area belongs to Asia and America (Siebert et al.
2013). Table 13.1 represents the total area equipped with irrigation as well as area
with surface and groundwater irrigation. In America, Asia and Europe the usage of
groundwater for irrigation purpose are around 47, 38 and 31%, respectively, but in
other continents, it is less than 25% (Fig. 13.3). Africa has a large potential for
groundwater irrigation across the continent. Recent studies show that the semiarid
Sahel and the eastern regions, stretching from Ethiopia to Zimbabwe, may have
significant potential for groundwater irrigation (CGIAR 2017). Large portions of the
region in Southern and Northern Africa have overexploited the groundwater

Fig. 13.1 Global scenario of dependence on groundwater irrigation for agriculture. (Modified,
CGIAR 2017)
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resources without considering the recharging capacities of aquifers and other
geo-environmental factors (Shah et al. 2001; Hamed et al. 2014;Ahmed et al.
2014; Closas and Villholth 2016).

This has potentially ended the sustainable development of groundwater irrigation
(Altchenko and Villholth 2015). Several studies have indicated that many Southern
African countries are at greater risk of climate change and groundwater drought in
the future (Villholth et al. 2013). Asia’s groundwater-irrigated area contributes to
almost 70% of the world’s groundwater-irrigated area (Siebert et al. 2013). Asia
demonstrates a blended representation of areas with potential and overexploited
groundwater irrigation (Shah 2014). Countries like India, China, Pakistan,
Bangladesh, and Sri Lanka where groundwater irrigation experienced rapid
increases show a mixed picture of potential and overexploited areas (CGWB 2011;
CGIAR 2017). In parts of South and Western India, extensive use exhausted the
groundwater resources. However, there is plenty of opportunity for groundwater
irrigation in Northeastern India. In India and Bangladesh, the uses of groundwater
for irrigation are more than 60% (www.fao.org) of total irrigated areas. However, the
statistics are on the lower side in countries like Afghanistan, Sri Lanka, and
Indonesia (Fig. 13.4).

In Northern America, groundwater-irrigated area is around 59% of the total
irrigated area, while it is on the lower side in Central and Southern America.
However, Europe shows a very diverse picture of groundwater irrigation. In Eastern
Europe, the groundwater-irrigated areas are around 10%, while in Central and
Western Europe, it shows a higher value. Countries like Germany, the UK, and
Spain show a prosperous picture on groundwater irrigation (Fig. 13.4). In Australia
groundwater irrigation is around one-fourth of total irrigated land of the country.

Fig. 13.2 Growth trends of
global groundwater use
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13.3 Sources of Groundwater for Agricultural Use

The source of groundwater origin is from rainfall, lakes, rivers, streams snow, and
ice, which is a part of the water cycle. Groundwater is the part of the water that is
present beneath Earth’s surface in soil pore spaces and in the fractures/fissures of
rock formations, etc. below the zone of aeration (Todd 1980). This zone of aeration
is nothing but the region between the earth’s surface and the water table. Below the
zone of aeration, the earth rock strata or sedimentary layer holds a considerable
amount of water; this is called an aquifer. Aquifers are of porous which allows water

Table 13.1 Total area equipped for irrigation and area with surface and groundwater irrigation
(Adopted, Siebert et al. 2013)

Area equipped for irrigation (ha)

Region Total
Area equipped
with groundwater

Irrigation with
surface water

% area under
groundwater
irrigation

Northern Africa 6,400,826 2,113,437 4,273,626 33

Sub-Saharan
Africa

7,148,268 399,210 6,747,858 6

Africa total 13,549,094 2,512,647 11,021,483 19

Central America
and Caribbean

1,865,268 651,185 1,214,083 35

Northern
America

36,411,337 21,355,866 15,055,471 59

Southern
America

13,055,707 2,235,854 10,819,854 17

America total 51,332,312 24,242,905 27,089,407 47

Central Asia 13,657,552 1,085,033 12,572,518 8

Middle East 24,083,108 10,747,301 13,130,305 45

Southern and
Eastern Asia

175,983,556 68,929,063 107,054,494 39

Asia total 213,724,215 80,761,397 132,757,317 38

Eastern Europe 5,198,729 494,759 4,703,970 10

Western and
Central Europe

19,138,579 7,004,714 12,133,292 37

Europe total 24,337,308 7,499,473 16,837,262 31

Australia and
New Zealand

4,688,259 1,135,787 3,478,479 24

Other Pacific
Islands

4471 759 3712 17

Oceania total 4,692,730 1,136,546 3,482,191 24

World 307,635,659 116,152,968 191,187,660 38
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to flow or percolate. Depending upon the nature of flow or recharge, aquifers are
characterized. Surface water when directly flows to the aquifer-saturated zone is
called unconfined aquifer or vadose zone (Fig. 13.5a). If the aquifer is sealed with
impermeable layers at the bottom and top, it is called confined aquifers. These
impermeable layers with very low porosity are called aquitard, and if it stops, the
flow is called aquiclude.

Fig. 13.3 Continent-wise groundwater vs surface water irrigation area. (Data source: www.fao.
org)

Fig. 13.4 Country-wise groundwater-irrigated area (%) with respect to total irrigated area. (Data
source: www.fao.org)
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Groundwater constitutes about 30% of the world’s freshwater supply, which is
about 0.76% of the entire world’s available water (Gleick 1993; USGS 2020).
Groundwater resources in the world are heterogeneously distributed both spatially
and temporally. Diverse geomorphic and lithological conditions along with uneven
precipitation type give rise to the heterogeneous distribution of groundwater (Preeja
et al. 2011; Saha et al. 2018). The fracture/lineament distribution system, variation in
lithology and geomorphology, and hydrological characteristics produce heteroge-
neous and inconsistent yield as well as the depth of groundwater. Furthermore,
groundwater occurrence and distribution in hard rock terrain is much more compli-
cated than the soft rock terrain. The majority of groundwater use for agricultural

Fig. 13.5 (a) Schematic diagram of confined and unconfined aquifer with recharge zone; (b)
schematic diagram of perched water table, springs, successful and unsuccessful wells
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irrigation are from various groundwater resources, like unconfined aquifer sources
by dug well and hand pumps, confined aquifer sources through bore well, and
perennial and seasonal spring’s water in hilly terrains. Usually, in the soft rock
terrains of alluvium zones, sandy aquifers of semiarid to arid regions water are of
unconfined condition. The water from the confined aquifers mainly hard rock
terrains of arid to the semiarid region is used by bore-well pumping technologies.
These unconfined and confined waters of these aquifers are used for sustainable
agricultural purposes where surface water is unavailable and during droughts as well
as spells. In the hilly regions, perennial and seasonal spring water (Fig. 13.5b) is
channelized to the agricultural fields for usage, when a surface water source is
unavailable. There are many other sources of groundwater like well in the perched
water table and artesian wells groundwater, and qanat well is used for agricultural
usage. In this way groundwater plays a pivotal part in socioeconomic development
in arid to semiarid region by backing agricultural activities; otherwise it couldn’t
sustain.

13.4 Groundwater Management Through Conventional
Methods

There are various conventional groundwater management practices that have been
used across the world since ancient times (Fig. 13.6). These practices are usually
dependent on local socioeconomic environmental factors linked with surface and
groundwater extraction and management. In many countries such as Spain,
Morocco, Iran, and Syria and Central and Eastern Asia, a conventional water
extraction and transporting technique called “qanat” is prevalent for a long period
of time (Hartl 1989; Canvas 2014). This is a subsurface mildly sloping tunnel
constructed to guide water from high elevated region to habitations situated below
(Fig. 13.7a). Qanat is also called khettara in Morocco and kariz (kahrez) in Central
and Eastern Asia including China. In Spain it is known as galerias (Taghavi-Jeloudar
et al. 2013; Canvas 2014). This system has been operating for centuries to extend
well-being of life in deserts (Hartl 1989; Canvas 2014). Traditional practices in
Borana and Konso communities of Ethiopia include Ella (wells) and Harta (ponds)
(Behailu et al. 2016).

The primary cause of conventional water management is water shortage and the
need for survival. In arid regions where rainfall is low and the temperature is
extremely high with a deeper groundwater table (~300 m), qanat is the only means
of harvesting water for domestic and irrigational use (Taghavi-Jeloudar 2013;
Canavas 2014). In the semiarid regions where rainfall is erratic, rainwater harvesting
techniques such as the construction of ponds, check dams, nala bundh, nala pluge,
etc. allowing runoff to percolate into shallow unconfined aquifers are practiced for
centuries to secure the water needs of respective communities (Akpinar Ferrand and
Cecunjanin 2014). The conventional groundwater management systems are related
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to water sources which include springs, shallow wells, and deep wells in Borana and
qanat systems which are very much existent in the developing countries. Many
European countries such as Sweden and Finland traditional beliefs governed their
water management practices (Katko 2000; Knutsson 2014). The various sources to
procure water were public wells and natural springs, and their management was
governed by local customs.

In countries like India and China, groundwater harvesting techniques have been
used for over 4000 years to meet the domestic and agricultural demand (Oweis et al.
2004). The major traditional practices used in India are as follows:

I. Bamboo Drip Irrigation System: This system of water conservation uses
bamboo pipes to distribute spring water. Different diameter bamboo is used
in perennial as well as seasonal springs for irrigation purposes in northeastern
state of Meghalaya (Singh and Gupta 2002).

II. Zabo: It is also known as “Ruza,” a unique combination of water conservation
with animal care, forests, and agriculture. Practiced in Nagaland (Singh and
Gupta 2002).

III. Khadin: In this water conservation technique, surface runoff is stored for
agricultural purposes. An embankment is usually constructed around the

Fig. 13.6 Conventional groundwater management practices around the world
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slope to collect and distribute groundwater to the agricultural fields. Generally a
dug well is constructed nearby to get advantage from groundwater recharging.
This practice is usually seen in arid regions of Rajasthan (Kolarkar et al. 1983).

IV. Virdas: Developed by Maldhari nomadic tribes of Rann of Kutch, these are
shallow wells dug within a natural depression (jheel). It is an intelligent way to
extract freshwater from saline groundwater (Machiwal et al. 2018).

V. Bore Well and Dug Well: Bore wells are constructed and used for flooding
irrigation where there is plenty of groundwater (Fig. 13.7b–d).

The USA is predominantly surface water-dependent; hence, traditional methods
of groundwater conservation are not used so much. One of the very popular
conventional methods of groundwater irrigation in Australia is a mound spring.
Carbonated water fed these springs which later rises to the surface through fissure/
cracks in the overlying strata (Michael et al. 2018). Another traditional method of
using groundwater is through rock wells, which are open entries to fractured rock
aquifers.

Fig. 13.7 (a) Schematic diagram of qanat well (Adopted, Wikipedia); (b and c) Representing bore-
well-driven groundwater irrigation techniques in peninsular India; (d) Representing dug well
irrigation system in Basaltic terrains of India
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13.5 Role of Geospatial Technologies in Groundwater
Management for Irrigated Agriculture

Geospatial technologies have demonstrated huge potential in agricultural ground-
water management. Lithology, geomorphology, structure along with physical pro-
cesses such as climatic control, weathering pattern, and erosional agents acting upon
a terrain for a substantial period control the terrain’s groundwater regime. With the
remarkable progress in RS technologies, satellite data of various electromagnetic
wavelengths, types, and resolution gives valuable information about groundwater
occurrence and distribution either directly or indirectly. Even though much of the
earth surface is covered by soil or vegetation, RS has capabilities to provide
subsurface aquifer information up to an assertive level (Rose and Krishnan 2009;
Muralitharan and Palanivel 2015). This can provide indirect information on ground-
water potential. RS along with GIS-integrated studies provide a double dimension,
firstly, to visualize any earth feature in variable spectral, temporal, and spatial
resolution and, secondly, to overcome the inaccessibility and duration of field
investigation. Various decisive geospatial indicators may be of direct, indirect, or
derived in nature and provide the probable location of groundwater occurrence as
well as its variability (Fig. 13.8) for agricultural use.

Optical RS data can provide qualitative and quantitative information on tone,
texture, pattern, shape, size, shadow, association, and resolution which are very
essential in groundwater prospects study (Navalgund et al. 2007; Bennia et al. 2013).

Fig. 13.8 List of decisive geospatial indicators for groundwater prospecting. (Ellyett and Pratt
1975; Singhal and Gupta 2010; Gupta 2003)
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Lithological characteristic, moisture content, porosity, etc. of an aquifer can be
characterized through tonal variations of satellite images, which give potential
groundwater site information (Solomon and Quiel 2006; Adham et al. 2010; Abdalla
2012). Integrated use of RS elements such as texture, pattern, etc. and resolution can
provide information on geomorphology, geological structures, the extent of major
lineaments, change in moisture content, and hydrogeological characteristics. These
eventually indicate the spatial and temporal variability of groundwater occurrence as
well as distribution. Thermal RS data has shown enormous potential in determining
lithotypes, major geological structures, buried lineament, soil moisture, canal, water
body seepages, etc., which provides information of probable water-bearing horizons
(Gupta 2003). Hyperspectral RS data provides information on an altered and lateritic
zone within the earth’s surface, thus providing indirect evidence of unconfined
storage of water (Jensen 2016). Microwave RS data is very useful in delineating
major litho units, mapping, and identification of major structural discontinuities like
fold, fault, joint planes, and shear zones as well as the orientation of bedding plain,
dipping strata, etc. (Lillesand et al. 2015). These determine the lithological, geomor-
phological, and structural variability of the earth’s surface for identification as well
as an understanding of aquifer heterogeneity and diversity. Eventually, this diversity
and heterogeneity denote differential yield and depth of groundwater. Different
geospatial sensors are capable to capture variable magnetic anomalies arising from
geological features that enhance or reduce the local magnetic fields. The quantifica-
tion and interpretation of these magnetic anomalies provide variable information on
conduits and barriers (fracture, lineament, and dyke) of groundwater movement and
characterization of aquifers (Subrahmanyam and Rao 2009). Gravity data from
Gravity Recovery and Climate Experiment (GRACE) satellite is useful to calculate
the change in total water storage (Tiwari et al. 2011; Dasgupta et al. 2014). The
assimilation of additional datasets (evapotranspiration, runoff, precipitation, soil
moisture) along with gravity data helps to find out a change in storage and temporal
variability of groundwater. This is particularly useful in the modeling of groundwa-
ter impact assessment and depletion studies (Rodell et al. 2009; Feng et al. 2013) due
to abstraction. Digital elevation model (DEM) also provides valuable information
about physiography of any area, which helps in the delineation of geomorphic
control on groundwater (Vittala et al. 2006; Singh et al. 2015). NDVI, NDMI, and
other various satellite-derived parameters as well as indices are useful in differenti-
ating irrigated cropland and LULC (Seeyan et al. 2014; Sharma et al. 2018).

13.6 Application of Geospatial Technologies
for Groundwater Management

Geospatial technologies applications are very crucial in mapping, monitoring, and
modeling of natural resources, especially for groundwater as it is very dynamic
(Teeuw 1995). The systematic and integrated use of RS and GIS along with other
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ancillary information provide decisive information about groundwater studies (Naqa
et al. 2009; Dar et al. 2010; Gupta and Srivastava 2010). Remotely sensed earth
observation (EO) datasets are valuable sources for creating major geospatial indica-
tors for groundwater occurrence and distribution (Ganapuram et al. 2009; Shaban
2010). The list of satellite data and sensors used for water management is presented
in Table 13.2. The major applications of geospatial techniques in agricultural
groundwater management are described as follows.

13.6.1 Groundwater Prospects Mapping for Site Suitability

The role of remotely sensed EO data and GIS in groundwater targeting and
prospecting is enormous both locally and regionally (Prithviraj 1980; Parker 1988,
Das et al. 1997; Thomas et al. 1999; Pratap et al. 2000; Sreedevi et al. 2005; Elbeih
2015; Naghibi et al. 2016; Gopinathan et al. 2019; Haque et al. 2020). Groundwater
is very dynamic and multidisciplinary and acts as an integrated function of geology,
geomorphology, structure, hydrology, slope, elevation, and LULC. RS data provides
information about these decisive factors which directly or indirectly govern the
movement and occurrence of groundwater within the aquifer (Gupta 2003; Jha
et al. 2007; Machiwal et al. 2011). These factors can control the groundwater regime
both quantitatively and qualitatively. Geospatial techniques can provide an efficient
platform through GIS where all the satellite-derived thematic layers are integrated
with large ancillary information and spatial and nonspatial data to delineate suitable
groundwater prospects zone for irrigation (Stafford 1991, Machiwal et al. 2011;
NRDWP 2012). The integration of RS data along with electrical resistivity tomog-
raphy (ERT) is very efficient to assess the geo-structural settings and groundwater
prospects with subsurface perspective, finer resolution, and larger coverage (Stan
and Stan-Kleczek 2014). Thermal remote-sensed data can provide a regional and
local flow of groundwater (Thakur et al. 2017). Integrated modeling (1D, 2D, and
3D) of thermal RS data along with groundwater prospects data and GPS-based field
observations can provide groundwater zonation with more spatial and temporal
accuracy (Gao 2002).

13.6.2 Dynamicity of Groundwater Storage

GRACE satellite data gives temporal gravity field and total water storage (TWS)
dynamics of the entire Earth, with a coarse spatial resolution ~300 kilometers.
Geospatial techniques make it possible to integrate GRACE data with various
hydrological models for a better understanding of hydro-dynamicity, with higher
accuracy at a regional scale (Swenson et al. 2003; Wahr et al. 2004). Modernization
of geospatial technologies has provided quantitative dynamicity of groundwater
storage and its impact using GRACE data (Rodell et al. 2009; Tiwari et al. 2011;
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Table 13.2 The list of satellite data and sensor used for groundwater management

Sl
No.

Satellite/
sensor/
geophysical
sensor Resolution Band specification

Uses in
groundwater
management Source

1 IRS 1C/D;
Resourcesat-
1 and
Resourcesat-
2 (LISS-III)

23.5 m Consists of four
spectral bands
B2 (green;
0.52–0.59 μm), B3
(red;
0.62–0.68 μm), B4
(NIR;
0.77–0.86 μm), and
B5 (SWIR;
1.55–1.70 μm)
Repeativity 24 days

Thematic mapping
of decisive spatial
layers which con-
trols the groundwa-
ter occurrence and
movement. Indices
like NDVI, NDWI,
NDMI

bhuvan.nrsc.
gov.in

2 Cartosat-1
DEM

10 m Consists of a single
panchromatic band
with circular accu-
racy of 15 m and
vertical accuracy of
10 m

Topographic con-
trols in GWP
mapping

bhuvan.nrsc.
gov.in

3 Landsat-8/
OLI

15 m for
Pan
30 m for
visible,
NIR, SWIR
100 m for
thermal

Different bands
11 spectral bands
(0.433–0.453;
0.450–0.515;
0.525–0.600;
0.630–0.680;
0.845–0.885;
1.560–1.660;
2.100–2.300;
1.360–1.390;
10.6–11.2;
11.5–12.5;
0.500–0.680 in μm)

Thematic mapping
of decisive spatial
layers which con-
trols the groundwa-
ter occurrence and
movement. Indices
like NDVI, NDWI,
NDMI, and EVI,
regional and local
flow of
groundwater

www.usgs.
gov

4 ASTER TM 15 m for
Pan
30 m for
visible,
NIR, SWIR
90 m for
thermal

Different bands
14 spectral bands
(0.520–0.60;
0.630–0.690;
0.760–0.860;
1.600–1.700;
2.145–2.185;
2.185–2.225,
2.235–2.285;
2.295–2.365;
2.360–2.430;
8.125–8.475;
8.475–8.825;
8.925–9.27;
10.250–10.950;
10.950–11.650 in
μm)

Thematic mapping
of decisive spatial
layers which con-
trols the groundwa-
ter occurrence and
movement. Indices
like NDVI, NDWI,
NDMI, and EVI,
regional and local
flow of
groundwater

asterweb.jpl.
nasa.gov

(continued)
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Longuevergne et al. 2010; Chinnasamy et al. 2013). Determination of groundwater
storage both qualitatively and quantitatively at finer temporal and spatial scale is
challenging because of the limitations of data. The coarse GRACE data can be
integrated with other hydrological parameters having finer spatial resolution to
determine a change in groundwater storage for a better understanding of groundwa-
ter management (Bates et al. 2007; Dasgupta et al. 2014). Magnetic anomaly data
quantification and interpretation provide variable information on conduits and bar-
riers (fracture, lineament, and dyke) of groundwater movement and characterization
of aquifers (Subrahmanyam and Rao 2009).

13.6.3 Assessing Spatial Variability of Groundwater Quality
Using GIS

Water quality depends upon various biological, physical, and chemical characteris-
tics (Apha 2005). Irrigation water quality mainly depends upon physical and chem-
ical parameters. The methods for suitability assessment of irrigated water include the
following: (i) calculation of sodium, borate, and chloride ion and excessive presence
of these affects sensitive crops (Wilcox 1955; Todd 1980); (ii) residual sodium
carbonate (RSC) indicates alkalinity hazard (Richards 1954); (iii) trace elements and
toxicity affect susceptible crops (Ayers and Westcot 1994); (iv) sodium absorption
ratio (SAR) indicates sodium hazard affects infiltration rate of water into the soil
(Richards 1954); and (v) electrical conductivity (EC) and total dissolved solids
(TDS) indicate salinity hazard affects crop water availability (Wilcox 1955). GIS

Table 13.2 (continued)

Sl
No.

Satellite/
sensor/
geophysical
sensor Resolution Band specification

Uses in
groundwater
management Source

5 GRACE ~330 km Earth gravity
anomaly

Dynamicity of
ground water
storage

gracefo.jpl.
nasa.gov

6 EMAG2 ~3.5 km Magnetic anomaly
grids compiled
from satellite, ship,
and airborne mag-
netic measurement

Magnetic anoma-
lies provide vari-
able information on
conduits and barrier
(fracture, linea-
ment, and dyke)

www.ngdc.
noaa.gov/
geomag/
emag2

7 GPR Depth of
penetration
up to 40 m

Multifrequency
(25, 80, 200, 400,
600, and 900 MHz)

Saltwater intrusion
and coastal geo-
morphology study

Jol and Smith
(1991), Neal
and Roberts
(2000a, b) and
Bennett et al.
(2009)
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enabled the interpolation techniques by which spatial distribution maps of water
quality elements (field-collected and lab-analyzed data) can be prepared. Such
spatial maps are useful to formulate irrigation management plans for agricultural
crops. The spatial distribution of water quality parameters by inverse distance
weighted (IDW) method demonstrates accurate estimation (Corwin and Lesch
2005; Asadi et al. 2007; Mir et al. 2017). These interpolation results can be classified
based on national or international irrigational quality standards (FAO 1985; BIS
2002) for suitability zonation as per groundwater quality (Richards 1954; Wilcox
1955; Donen 1964; Ayers and Westcot 1985). Gradient analysis methods provide
spatial variability patterns more accurately of key elements, where the boundary
conditions are heterogeneous. It generally creates multiple ring buffers around the
point known point origin (Chen et al. 2016; Ranagalage et al. 2017). Local indicators
of spatial autocorrelations (LISA) is a dimension of spatial relationships; it creates
clusters of key elements under the assumption that a spatial pattern is a nonrandom
distribution, which enables us to understand the spatial relationship (Anselin 1995;
Anselin et al. 2010; Guo et al. 2015). These techniques help to know the spatial
extent, inter-variability, relationship, and distributions of quality parameters of
groundwater for irrigation purposes, which eventually allow us to map, monitor,
and measure irrigation suitability spatially.

13.6.4 Assessment and Monitoring of Saltwater Intrusion

The coastal aquifers occupy some of the most potential aquifer systems in the world,
but they are very vulnerable to seawater intrusion and salinity hazard from the host
aquifer lithology (Frind 1982; Jalali 2007; Das et al. 2016). These external factors
determine the quality of groundwater in coastal aquifers. The lowering of ground-
water table by excessive abstraction, sea-level rise, and nonscientific processes of
pumping groundwater by puncturing both fresh and saline aquifers are the main
causes of seawater intrusion (Lee and Song 2007; Werner and Simmons 2009;
Sebben et al. 2015). Apart from this geology, geomorphology, lineament, change
in land-use pattern, and drainage also play a major role in seawater intrusion
(Custodio and Bruggeman 1987; Dagan and Zeitoun 1998; Held et al. 2005; Kerrou
and Renard 2010). Multifrequency ground-penetrating radar (GPR) is one of the
major geophysical techniques used in groundwater studies by many researchers
(Beres and Haeni 1991; de Menezes Travassos and Menezes (2004); Doolittle
et al. 2006). It gives a good knowledge about coastal aquifer subsurface geology,
which controls groundwater occurrence (Leatherman 1987). GPR measures and
maps the water table indirectly by responding to the saturated conditions within or
near the top of the capillary fringe (Doolittle et al. 2006). GPR has also been used to
define recharge and discharge areas, identify groundwater flow patterns, and under-
stand near-surface hydrological conditions (Steenhuis et al. 1990; Beres and Haeni
1991). GPR profiles of various frequencies provide a continuous image of the
subsurface, from which groundwater depth to the water table and interface between
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saltwater and freshwater can be determined (Lee and Song 2007). GPR detects the
electrical discontinuities both in liquid and solid medium in shallow subsurface
conditions (Neal 2004). Differences in the dielectric constant usually cause strong
reflections from lithological boundaries in the subsurface (Jol and Smith 1995).
Besides, saline water attenuates and absorbs the GPR signal. This helps in the
identification of saltwater intrusion, depth of fresh- and saltwater interface zone,
and magnitude of the intrusion (Lee and Song, 2007). This helps in understanding
the coastal aquifer characteristics for groundwater management.

13.7 Assessing Site Suitability for Groundwater Irrigation
Using Geospatial Techniques: A Case Study

Identifying the groundwater in hard rock terrain is one of the major challenging tasks
for hydrogeologists in the groundwater research domain. The objective of the
present case study is to identify suitable sites for groundwater irrigation in a
peninsular gneissic terrain, part of Dharwar Craton, India. The complexity of
geology and structural origin of the study area is the major obstacle to delineate
suitable groundwater prospects zone. Accordingly, a systematic procedure of
geospatial techniques was adopted by integrating various thematic inventory and
remotely sensed data in conjunction with limited field observations. The results
highlight the importance of geospatial techniques to understand/identify suitable
sites for groundwater for irrigated agriculture.

13.7.1 Study Area: Location and Hydrogeological Setup

The study area Palcherla watershed is a part of the granodiorite and hornblende-
biotite gneissic province of Dharwar Craton (DC). It is situated in the Anantapur
district of Andhra Pradesh, India, with latitude-longitude ranges between 14�2000000

N to 14�3603000 N and 77�2103000 E to 77�3403000 E (Fig. 13.9). The study area is a
macro-watershed covering 214 sq. Km. The study area represents undulating topog-
raphy, where the elevation ranges from 294 m to 593 m above mean sea level (MSL)
(Fig. 13.10f). It demonstrates gently to the moderately dipping slope of 2–10�, but in
some places, the slope is greater than 15� (Fig. 13.10b). The lithology of the site
consists of granodiorite and hornblende-biotite gneisses of Archean age, which is
crosscut by basic dolerite dikes of Paleocene to Cretaceous age. The field evidence
also supported the fact that the host rocks gneiss was intruded by basic dolerite dykes
at a later stage (Fig. 13.10a). The presence of metabasaltic rock of Archean age is
also observed in the study area (Taylor et al. 1984; Rao et al. 1992). The lithology of
this watershed is constituted by medium- to coarse-grained gneisses with very little
porosity. The area shows predominantly pediplains of various depths weathering
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Fig. 13.9 Location of the study area. (It is shown in Resourcesat-2 LISS-III FCC composite with
field photograph of bore-well irrigation)

Fig. 13.10 (a) Lithology map showing the variation of different gneissic rocks and metabasalts; (b)
slope map representing the slope variation in degrees; (c) geomorphology map showing different
geomorphic features; (d) LULC map represents different patterns; (e) spatial distribution of
lineaments; (f) variation of elevation in meters; (g) distribution of drainage and water body; and
(h) EMAG2 data showing variation in earth magnetic anomaly datasets and method of approach
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thickness, ranging between less than a meter and 30 m, and structural as well as
residual hills. The weathered pediplains are mostly of shallow depths; only in some
parts, it demonstrates moderate to a deeper thickness of overburden. The overburden
material consists of particles of variable size and textures ranging from clay soil to
gravelly soil to loamy soil. The hills are mainly of two types of residual hills which
represent severe weathering pattern and hills with prominent structural control. The
rest of the study area is covered by a pediment inselberg complex, valley fills
(Fig. 13.10c) (NRDWP 2012; NGLM 2005). Regional lineament pattern reveals
NE-SW and NNW-SEE trend (Fig. 13.10e). Dendritic to a sub-dendritic pattern of
drainages is observed with streams trending in a NE-SW direction and very few
tanks in this watershed region (Fig. 13.10g). LULC pattern of the study area shows a
majority of the area comes under wasteland, followed by single-crop, double-crop,
and fallow agricultural land; the rest is covered with forest and built-up area
(Fig. 13.10d) (LULC 2015–2016).

13.7.2 Datasets and Method of Approach

13.7.2.1 Satellite Data

Resourcesat-2 LISS-III satellite data with a spatial resolution of 23.5 m was used in
the current study (bhuvan.nrsc.gov.in). The false-color composite (FCC) data along
with Cartosat DEM (10 m spatial resolution) (bhuvan.nrsc.gov.in) was used to
generate various thematic layers related to geology, geomorphology, and hydrology.
EMAG2 (Earth Magnetic Anomaly Grid) data (~3.5 km) was (www.ngdc.noaa.gov/
geomag/emag2) integrated with the hydrogeomorphic unit to get the suitable site for
groundwater irrigation purposes. These anomaly data grids provide insightful
knowledge into subsurface structures which mostly act as conduits and barrier for
groundwater movement.

13.7.2.2 Field and Ancillary Data

The field-based observations, i.e., GPS location, groundwater yield depth, geolog-
ical formation, geomorphology, and LULC, were collected from the study site.
These datasets were integrated with geospatial information to create site suitability
map for groundwater irrigation. A set of field observations were also used to validate
the site suitability map derived through geospatial techniques. To gain knowledge
about the hydrogeological characteristics of the study area, hydrogeomorphology
maps (NRDWP 2012), available well-drilled data, reports (CGWB 2013), and
historical records were also collected from various sources. Such information
gives an insight into aquifer characteristics in a holistic manner.
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13.7.2.3 Method of Approach

The brief methodology of the study is presented in Fig. 13.11. The LISS-III image
was processed and enhanced to bring the spectral and spatial variability between the
features. The various thematic layers related to geology, geomorphology, structure,
hydrology, slope, elevation, and LULC were prepared using LISS-III data and DEM.
All the thematic layers were integrated into a GIS environment based on their
relative importance in the spatiotemporal occurrence of groundwater (Fig. 13.11)
to delineate the hydrogeomorphic unit. These different hydrogeomorphic units were
later combined with the earth’s magnetic anomaly data and field observation. The
integration of satellite imagery-DEM-derived thematic layers, ancillary datasets, and
field information has been made in a GIS platform to delineate suitable sites for
groundwater irrigation.

13.7.3 Salient Findings

The site suitability zonation map of groundwater for the study site is presented in
Fig. 13.12. The map consists of four suitability classes: (i) highly suitable,
(ii) moderately suitable, (iii) slightly suitable, and (iv) unsuitable (Fig. 13.12). The
spatial distribution shows that the slightly suitable and unsuitable zones are mainly
concentrated in the western side of the watershed. Result shows that around half of
the watershed is unsuitable or slightly suitable for groundwater irrigation for agri-
culture. These zones mainly consist of a structural or residual hill, where soil cover is

Fig. 13.11 Brief methodology of the study
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almost nil for any agriculture vis-à-vis no groundwater source is available. The
spatial distribution also shows the areas which are highly suitable to moderately
suitable are the zones of weathered pediplains and valleys with the presence of a
considerable amount of weathered overburdens/soils. These areas are usually char-
acterized by a gentle slope, high lineament, and drainage density as well as high
prospects for groundwater irrigation. The findings of the study area are in good
agreement with the field observations and available data from different sources.

The study area Palcherla is a dry macro-watershed covering 214 sq. km which is
part of the gneissic province of Dharwar Craton facing water shortage for irrigation
purposes for the past few years. The overdependence on agriculture and
unpredictable retreating monsoon has worsened the scenario. The result of the
present case study can guide the groundwater irrigational practices in the study
area as well as similar geological provinces. This study using geospatial techniques
involving RS and GIS data interpretation with minimum groundwater field survey
can drastically reduce the time, labor, and money and enables quick solution. Even

Fig. 13.12 Site suitability zonation map of groundwater for irrigation
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though there are several limitations, the methods and results of the study show the
potentialities of geospatial tools and techniques for solving real-world water
problems.

13.8 Groundwater Management for Irrigated Agriculture
Using Geospatial Approaches: Current Status
and Challenges

The integrated use of geospatial tools and techniques are encouraging enough to be
used in different groundwater management plans (Srivastava et al. 2011; Srivastava
et al. 2012a, b). This involves the assimilation of near real-time information and their
various utilizations (Yaduvanshi et al. 2015). The use of geospatial technologies are
cheaper, more efficient, and time effective than conventional approaches (Okoye and
Koeln 2003) and can be used for automated analysis using different approaches and
modeling techniques. Advanced modeling is carried out to improve the knowledge
about the quality/quantity of groundwater and related studies, such as prediction
studies on how the vegetation changes with change in parameters of groundwater.
Many advanced nations conduct drone surveys to generate real-time datasets which
help in better monitoring of water resources (Lally et al. 2019). The mapping of
groundwater resources in arid regions is well documented from Namibia (https://
cals.arizona.edu/OALS/ALN/aln51/ednote51.html), America, and other countries.
India is emerging as a global player in utilizing geospatial technologies to map
groundwater potential zones as demonstrated by the National Rural Drinking Water
Programme (NRDWP 2012). According to the survey carried out by Devex and
CRS (2019), geospatial analysis and mapping will be the fourth major sector which
will have a great impact in the development sector, in the coming 5 years with the
Asia Pacific being the most accepted region (geospatialworld.net).

However, there are several limitations associated with the use of space-based
sensors for groundwater monitoring. A huge volume of datasets needs to be mon-
itored and is essential for real-time monitoring purposes. The remotely sensed data
should be properly calibrated and validated with ground truth data (reference data).
Another challenge in RS is the unavailability of spatiotemporal datasets with low
revisit time. Besides, the RS datasets should be available in different formats so that
it can be processed in different software with ease. The majority of the satellites have
a short life span barring a few which makes it difficult to analyze changes over a
while for impact assessment studies. Most of the commercially available satellites
with high temporal resolution provide medium spatial resolution datasets which are
sometimes inefficient in monitoring small irrigated landholdings. Besides, people
are largely unaware of the benefits of geospatial technologies and are afraid to use
them. Very high-resolution datasets with high temporal resolution are essential to
carry out water management-related studies and policymaking decisions. Lack of
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skilled personnel is another challenge; hence hands-on training should be given to
handle the datasets and process them which are essential at a grassroots level.

13.9 Conclusions and Future Perspectives

All over the world, groundwater irrigation provides a significant contribution to food
security and socioeconomic development. Various scientific and conventional
approaches have been adopted for groundwater irrigational practices. The use of
geospatial technology in groundwater irrigation and management has grown very
rapidly in the last two and half decades. The use of geospatial techniques by
integrating EO data derived inputs as well as other ancillary information in a GIS
platform to measure, monitor, and model the groundwater and provide another
dimension to groundwater irrigation for agricultural purposes. The multiparametric
approach of geospatial techniques can minimize the time, labor, and money and
thereby enable quick decision-making for efficient water resources management. But
RS data have some inherent limitations of spatial, spectral, and temporal resolution,
which sometimes makes it difficult to understand and asses the groundwater condi-
tion as it is not directly visible and present below the Earth’s surface in pore spaces of
soil/unconsolidated rocks and in the fractures/fissures of crystalline rock formations,
etc. In spite of limitations, the conjunctive use of RS data along with other ground-
based and available ancillary information makes it a valuable practical tool. Thus it is
very important for the areas/regions especially developing nations where data
scarcity in terms of quantity and quality is often an obstacle for solving real-world
water problems. But this advancement has a potential seed of a grave danger hiding.
The ever-increasing dependence on groundwater and scientific as well as techno-
logical advancement of its abstraction has resulted in indiscriminate extraction
without due regard to the recharging capacities of aquifers and other
geo-environmental factors. This may result in further depletion of groundwater
sources globally by impacting sustainability. Hence the groundwater extraction
should be made with proper regards to recharge, and overexploitation should be
curtailed to create a sustainable scenario.
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Abstract The number of city dwellers around the world is expected to increase
about 2.5 billion between 2018 and 2050. This increment will lead to urban sprawl
which is associated with destruction of agricultural lands, loss of fertile soils and
reduction in food production. Already around 3–4% reduction of global crop
production has been reported, in which Africa tops the list with 9% loss followed
by Asia (5–6%). Hence, impact assessment of urban sprawl on agricultural land uses
at both regional and global scale is required. The data from global satellite imageries
and new geospatial technologies can play a crucial role in facilitating the impact
assessments with precision and regularity. Remote Sensing (RS) and Geographic
Information System (GIS) coupled with various modelling techniques have been
proved to be an efficient tool for the analysis of land use/land cover (LULC). Such
modelling approaches can be utilized to explore potential future impact of urban
expansion on croplands and evaluate potential trade-offs between different land
demands and thus are helpful for informed decision-making. This chapter empha-
sizes on the usage of RS and GIS to address the impact of urbanization on agricul-
tural lands.

Keywords Cropland · Global land use change · Geographic information system ·
Land use/land cover · Remote sensing · Spatial statistics · Urban expansion

Abbreviations

ANN Artificial Neural Network
CAPRI Common Agricultural Policy Regionalized Impact model
CLUE Conversion of Land Use and its Effects modelling framework
ETM Enhanced Thematic Mapper
GDP Gross Domestic Product
GILA Greater Ibadan-Lagos-Accra
GIS Geographic Information System
HAF Harvested Area Fraction
IAMs Integrated Assessment Models
IRS Indian Remote Sensing Satellite
ISRO Indian Space Research Organization
KH Key Hole
Landsat Land Satellite
LandSHIFT Land Simulation to Harmonize and Integrate Freshwater Availability

and the Terrestrial Environment
LST Land Surface Temperatures
LULC Land Use and Land Cover
LULCC Land Use and Land Cover Change
LUS Land Use Systems
LUSD Land Use Scenario Dynamics
MA Metropolis Area
Mha Million Hectares
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MSS Multispectral Scanner System
MUR Mega Urban Region
MURs Mega Urban Regions
NDVI Normalized Difference Vegetation Index
NRSC National Remote Sensing Centre
NUTS Nomenclature of Territorial Units for Statistics
RMS Root Mean Square
RS Remote Sensing
SALU Sudano-Sahelian Countries of Africa
SAVI Soil-Adjusted Vegetation Index
SSPs Socioeconomic Pathways
TGA Total Geographical Area
TM Thematic Mapper
TM Thematic Mapper
UTM Universal Transverse Mercator
WGS World Geodetic Survey

14.1 Introduction

The processes of industrialization, urbanization and globalization together have
posed mounting environmental problems in the present world. These include the
change in climate; scarcity of freshwater; desertification; pollution of soil, air and
water through contamination of hazardous waste; loss of biodiversity; and many
more which are creating hindrances to sustainable development (Mitran et al. 2018).
Therefore, at present, environmental assessments are gaining significance in the
urban planning processes around the world. Around 1800 AD, only 3% of the
world’s population resided in urban centres. It increased to 14% in 1900 and in
2000 it reached to 47% (World Bank 2013). However, the rate of urbanization is not
the same throughout the world. In 2018, almost 82% of population of North America
lived in urban areas, whereas the corresponding figure was 50% in Asia; but at
present, the pace of urbanization is higher in developing nations. From 1990 to 2018,
the average annual rate of urbanization in high-income nations was 0.32%, while in
China it was 2.9% (United Nations 2019). Although 68.8% of population in India
were living in rural areas in 2011, the pace of urbanization is increasing in the
country. India’s urban population increased by 31.8% between 2001 and 2011, while
the rural population increased by just 12.18% during this period (Chand et al. 2017).
As per the Census of India, 79 million individuals lived in urban regions in 1961 and
it had gone up to 377 million in 2011. Only 23 metropolis areas (MAs) existed in
India in 1991 which increased to 46 in 2011 (Chandramouli and General 2011).
Rapid urbanization is associated with tremendous growth of population and con-
struction exercises in urban areas, resulting in an exceptional loss of urban green
spaces and expansion of the impervious region. Nevertheless, short-term and
unsystematic planning approaches of cities lead to urban sprawl, resulting in
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deterioration in the social, economic and ecological sustainability of the city (Islam
and Ahmed 2011). Hence there is a need for continuous monitoring of such changes
through a systematic approach.

The recent advancement of geospatial technologies including RS and GIS can
play a meaningful role in land use/land cover (LULC) assessment. The various
spatial and temporal satellite images have been widely used by many researchers to
monitor the land use and land cover changes as due to urban growth. Such infor-
mation is also used to retrieve various biophysical attributes of land such as land
surface temperatures (LST), vegetation abundances and built-up indices which are
good indicators to measure an urban ecosystem condition (Streutker 2002; Sobrino
et al. 2004; Xu 2008a, b; Lu and Weng 2009; Tooke et al. 2009; Zhang et al. 2009).
Villages in India are embracing the urban way of life and have capitulated to the
present advancement exercises. These villages are located at the peri-urban or fringe
areas and getting acclimatized with the developing urban communities and advance-
ment of “new towns”. At a certain point when urban communities slowly spread out
over the hinterlands due to excessive population pressure, villages in the fringe areas
get transformed at a slow pace. These areas have comprehensively alluded to a rural-
urban fringe. The rural-urban fringe which is the territory at the edge of a city has
become an inexorably well-known region for economic developments. In India,
rivalry for land in these areas increased significantly during the 1990s. Here, the land
is less expensive as compared to the core of the city. Therefore, various service
centres, offices, manufacturing units, etc. which were situated in the prime down-
town areas moved to these territories as their past areas lacked space for extension.
These rural-urban periphery zones also attract shopping centres, business parks and
amusement facilities like golf courses.

An eccentricity of Indian urban system is the villages in periurban areas where the
prime change occurs in the landscape segment. Most of the Indian urban areas are
not continuous uninterrupted urban agglomerations. One can find the remnants of
villages inside the built-up areas of the Indian city. These remnants are the signs of
existence of villages in those areas which were consumed in the process of urban
expansion of the concerned city or advancement of new towns. The expansion of the
city immerses the villages by transforming their land form agricultural use to urban
use. Thus, urban encroachment brings in extraordinary changes in the economic base
of the communities which ultimately convert the villages into urban systems.
However, the physical and social patterns of the villages change just in a relative
sense. In the developing countries like India, the rural areas which are brought under
urban fold can’t be immediately acclimatized to the new urban form of development
(Shaw 2020).

Urban sprawl takes a wide range of forms, including residential buildings,
industrial compounds, infrastructural development, agricultural land, etc. The toll
of urban sprawl is heavily paid by agricultural lands. Loss of agricultural land as a
result of urban sprawl has become a global phenomenon tormenting all countries of
the world, rich or poor. It is influencing urban communities as well as suburban and
rural areas, as it is responsible for the loss of cropland, asset exhaustion and the
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decay of old urban centres. Urban sprawl, actually, consumes vast amount of land
under agriculture or forest cover.

Ideally, economic data shows agricultural lands present in urban areas are mainly
exposed to marginalization leading to the weakening of productive, social and
environmental functions of farmers (Lovell 2010; Zasada 2011). The most important
negative consequence of the process of urbanization is the acquisition of productive
land, in particular the loss of highly fertile land (Mazzocchi et al. 2013; Huang et al.
2015; Busko and Szafranska 2018). The reduction of cultivable fertile lands is
mainly noticeable in developing nations (Su et al. 2011; Deng et al. 2015) but is
also occurring in Europe (Wojciech et al. 2020). It is evident from the research
conducted as a part of the project “Peri-urban Land Use Relationships Strategies and
Sustainability Assessment Tools for Urban-Rural Linkages (PLUREL)” (Piorr et al.
2011). It has been identified that the process of rapid urbanization is bringing
significant changes in available spaces and causing degradation of quality of the
MAs. Research shows areas that are arable, open and environment friendly, mostly
preferable for building house infrastructure and business centres (Piorr et al. 2011;
Mazzocchi et al. 2013). Research performed in Poland also highlights the fact that
the contemporary farmlands in and around metropolitan areas are kept as a reserve
for more profit-gaining activities (Lorens and Martyniuk 2010; Krzyk et al. 2013).

14.2 Factors Influencing Land Use Changes with Special
Reference to Farmland

To analyse the factors of influencing the proportion of agricultural land in urban
region, both internal and exterior factors are significant (Mazzocchi et al. 2013).
Factors can be categorized into socioeconomic issues, natural constraint (geophys-
ical), institutional structure and causes associated with unadapted agricultural
arrangement, particularly, land fragmentation (Mitsuda and Ito 2011; Huang et al.
2015; Deng et al. 2015).

Drivers for land use may be categorized into four types such as (a) socioeconomic
aspects that exhibit the influence of the urbanization process, (b) ecological and
permanent geographic features, (c) traits of agricultural system and (d) the institu-
tional structure (Table 14.1). Let us discuss some of the factors in brief. Firstly, let us
analyse the role of socioeconomic factors on the changing nature of land use. The
socioeconomic factors refer to demographic and economic factors that are influenc-
ing urban sprawl. Pressure of population in metropolitan cities changes agricultural
land into urban tracts, and the inherent limitation of cultivation makes transformation
easy (Mazzocchi et al. 2013). The need for space for humans to work and live is
accelerated by rapid population growth and (Huang et al. 2015) through in-migration
(Zasada 2011). Huge population growth in the cities due to more opportunities for
employment (Ravetz et al. 2013) leads to the changes in urban land use. According
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to Alonso (1964) and Konagaya (1999), in the areas where population density is very
high and nonagricultural enterprises are prevalent, there would be minimum share of
agricultural land as economic worth of urban land use is higher than agricultural land
use.

Another important factor that influences urban land use is environmental and
fixed geographic features. The pattern of land use is controlled by urban proximity as
well as by the distance from port and roadway (Mitsuda and Ito 2011; Deng et al.

Table 14.1 Factors influencing land use/land cover change

Drivers
Important
entities Impact on agriculture References

Demographic
character

Density of
population

The increase in density of
population, net migration
and rate of unemployment
stipulate people to go for
nonagricultural activities
which result in the conver-
sion of the agricultural land
into nonfarm uses

Zasada et al. (2011), Ravetz
et al. (2013), Huang et al.
(2015) and Deng et al.
(2015)

Combination
of in-migration
and
out-migration
rate

Rate of
employment
generation

Labour
characteristics

Geographical
factors

Proximity to
market

Infrastructural development
creates better access to mar-
ket which in turn influences
the cropping pattern in the
region. Proximity to
market also changes the land
use pattern from agricultural
to nonagricultural as the lat-
ter brings higher rent for
every unit of surface area

Gellrich (2007), Mitsuda
and Ito (2011), Diogo et al.
(2015), Deng et al. (2015)
and Huang et al. (2015)

Road networks

Infrastructure

Environmental
condition

Socioeconomic
factors

Commercial
crops

Due to export potentiality,
farmers shift towards com-
mercial crops such as cotton,
sugarcane, etc. Cities which
act as market centres of
these crops grow with time
and influence the conversion
of agricultural land into
built-up areas

Lambin and Meyfroidt
(2010), Mitsuda and Ito
(2011) and Dang and
Kawasaki (2017)

Export
potentiality

Urban
population

Institutional
factors

Government
policies

Effective policies and
programmes of the govern-
ment and legal support may
influence the decision-
making of individuals that
can restrict the conversion of
agricultural land into
nonagricultural uses

Van Rij et al. (2008),
Pölling et al. (2016) and
Busko and Szafranska
(2018)

Spatial
planning

Land
conversion
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2015), environmental conditions and quality of agricultural products including
climate, availability of water and the type of land (Gellrich 2007; Huang et al.
2015). In which specific way a land owner will utilize its land depends on the
remoteness of a land from markets (von Thünian ideas) and the “nature” of land in
terms of geophysical features (Ricardian ideas) (Gellrich 2007). Intense competition
for plots in “ideal” location (near the market place, by rivers, at airports, at ports,
etc.) raises the demands of the plots. Subsequently, in accordance with the theory of
utility maximization, the land will be allocated to people who can offer high
economic rents. Only when high return from land is guaranteed, a person will invest
considerable amount of money to buy that land or take lease of that land.

The pattern of land use is also determined by the characteristics of agricultural
system. Low return from agriculture due to faulty farm structure (prevalence of small
farms and land fragmentation) forces the land owner, first, to keep it unutilized and
then convert it to nonagricultural uses (Mazzocchi et al. 2013; Xie et al. 2014).
Grădinaru et al. (2015), as well as Hagedorn (2004), in their respective study found
that the problem of fragmentation of farms was particularly prevalent in Poland.
Additionally, Wästfelt and Zhang (2016) pointed out that, due to high price of land
in urban region, it was not possible for the cultivators to increase the area of
production, and they had to remain satisfied with lower economic rents. Previously,
Sinclair and Thünen (1976) opined that, with the spreading of urban land use, the
chances of maintaining agricultural production or increasing its intensity would be
lesser in the future.

The final and most important factor is the institutional framework which plays a
vital role in preserving agricultural land in metropolitan regions (Van Rij et al.
2008). For example, government departments in many places formulate laws to
protect green areas (Pölling et al. 2016), make suitable provision in development
strategy (e.g. not allowing a good quality of land to be abandoned) and limit the
spatial expansion of cities to check the function of market mechanism, i.e. the effect
of economic rents (Huang et al. 2015).

14.3 Loss of Agricultural Lands Due to Urbanization:
Global Estimates

More than 60% of the irrigated cropland in the world is located in the vicinity of
urban areas, emphasizing significant contest for land between urban and agricultural
uses. A number of studies show that rapid urban growth over the past 30 years has
resulted in the shrinking of cropland worldwide, including China, India, the USA,
Turkey, Egypt and other countries (Chen 2007; Bagan and Yamagata 2014; Ahmad
et al. 2016). The loss of agricultural land has direct impact on production of food
grains and livelihood security (Brook and Davila 2000) in many countries. Unfor-
tunately, not adequate efforts are made to study and understand the impact of future
urban expansion on farmland. Nevertheless, we cannot deny the possibility of major
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land conflicts between nonfarm and agricultural uses in the transition of mega
urbanization. Seto and Ramankutty (2016) predicted that in the future most of the
urban expansion will occur in Africa and Asia, often in places characterized by high
level of poverty and systemic interruption in the food system (d’Amour et al. 2016).
In many countries, the economic importance of agriculture is tremendous as it
ensures economic growth by providing considerable amount of employment and
holding a large share in the gross domestic product (GDP) at national level. Hence, it
is necessary to evaluate the impact of urban expansion on agricultural land at
regional, national, subnational level and global scale to recognize the possible
areas of conflicts as well as strategies to pursue sustainable form of urban expansion.

It is expected that in the future urban expansion will take place in areas which are
at present under cultivation (Fig. 14.1). In 2000, around 46 million hectares (Mha) of
croplands equivalent to 3.2% (3.0–3.8%) of presently available cropland were
situated in places which are most likely to be grown as urban area by 2020 (d’Amour
et al. 2016). However, potential of urban agriculture has been recognized recently
and it is practised in many cities. d’Amour et al. (2016) observed that 36% of urban
(on average) places were utilized for cultivation. According to them, this percentage
of urban agriculture should prevail when urban area expands, but always there would
be regional variation (e.g. 32% in Africa and 41% in Asia). Following those
prevailing cropland fractions, between 2000 and 2030, total cropland loss would

Fig. 14.1 Map shows future urban growth until 2030 and probable agricultural loss. Competing
areas (red) hold farmlands but have a high likelihood (>75%) of becoming urbanized by 2030. (A–
E) show hot spots of rapid urban growth areas. (Adopted, d’Amour et al. 2016, 2017)
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amount to 2.0% (1.8–2.4%) of the global total, i.e. 30 Mha (27–35 Mha), and the
countries like Pakistan, China and Vietnam would experience the fraction ranging
between 5% and 10%.

Globally, the cumulative effect of urban growth on cropland was well marked,
but at regional level, the impact would be critical and differentiated. In case of
moderate urbanization, Asia and Africa together would account for around 80%
(24 Mha) of the total global cropland loss. In Africa, three regions, namely, Nigeria,
Egypt and the region surrounding Lake Victoria Basin, would be severely affected
(Fig. 14.1). On the other hand, in Asia, major cropland loss would be visible along
coastlines and river valleys, many of which are located at the transition zone of mega
urban regions (MURs), such as the Bohai Economic Rim and the Yangtze River
Delta in China, Java Island in Indonesia, etc.

China is experiencing tremendous rate of urban growth, but the urban area is
expanding at the expense of country’s most productive agricultural tract (d’Amour
et al. 2017). It would possibly pose severe threat to domestic food production in the
future. India, Brazil and the USA would also experience loss of agricultural land, but
in contrast to China, urban expansion in these countries would not probably touch
big tracts of croplands, so there would be lesser chance of drastic drop in domestic
crop production (Table 14.2).

Future urban growth will continue to take place on primary croplands. According
to d’Amour et al. (2017), due to expansion of urban area, there would be a loss of
3.7% in crop production by the end of 2030. On an average, the farmland lost due to
urban growth was 1.77 times more productive than the average global croplands.
Other studies (Chen 2007; Bagan and Yamagata 2014; Ahmad et al. 2016) have also
confirmed the fact that farmlands surrounding urban agglomerations possessed
higher productivity than average. Their analyses also revealed that Africa and Asia
were expected to face 8.9% and 5.6% of global production losses, respectively

Table 14.2 Impact of urban area expansion on crop production at country and regional level

Country/
region

Total urban
expansion (in km2)

Production
loss (in %) References

World 346,491 3.7 d’Amour et al. (2016), d’Amour et al.
(2017) and He et al. (2019)Asia 144,186 5.6

Africa 19,897 8.9

Europe 39,861 1.2

America 199,253 1.3

Australia 8350 0.2

China 66,351 8.7

India 14,438 3.9

USA 66,389 0.7

Brazil 28,817 2.4

Vietnam 4499 15.9

Mexico 7928 3.7

Indonesia 4391 2.3
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(Table 14.2). Globally, there are very few countries where agricultural productivity
of urban farmland is below national average (e.g. the USA). China and India’s
urbanization is likely to be continued but with various spatial pattern and growth
dynamics. In China, cropping areas are concentrated along the coastal tracts which
are expected to be affected by 2030 due to urban expansion. In India, the urban
extent was quite small (3 Mha) compared to China (8 Mha) in 2000. In India, the net
expansion of urban area until 2030 is expected to cover 3–4 Mha which would be
almost double in case of China (7–8 Mha). In 2012, China’s urban population has
surpassed its rural counterpart; and by 2050 it is projected that three fourths of the
country’s population will reside in urban areas. In 2011, the proportion of urban
population in India was around 31% which is expected to be 50% by 2050.
Moreover, in 2011, 79% of India’s urban population lived in cities with 100,000
population or fewer, and 52% of the total population of India lived in villages and
towns (urban sprawl) that had population below 5000 (Mitra et al. 2016). As per the
study, cropland loss is not going to harm India by 2030 as it is only about 2%
(d’Amour et al. 2016; d’Amour et al. 2017); however, other studies have suggested
that in the future, urban expansion can accelerate the risk of cropland loss and the
rate of cropland destruction would be much faster than rate of urban growth (Pandey
and Seto 2015).

In African countries, cropland loss varies over the space. Unlike China, in Africa
major urban areas are expected to grow along the coastal areas, whereas most of the
farmlands have inland location (d’Amour et al. 2017). The situation is still not less
troublesome because in another study it has been estimated that 11% area under
soybean, 14% under maize, 19% under rice and 26% area under wheat production
will be urbanized by 2030 (d’Amour et al. 2016). On the other hand, in Asia, the
corresponding crop area loss is predicted as 7%, 10%, 9% and 13%, respectively,
due to urban expansion. However, in arid zones of Africa, cropland is going to be
relatively less affected by urbanization (Fig. 14.1). In the developed countries, the
situation is not so grim. Therefore, urbanization is definitely going to effect the staple
food production in Asia and Africa. However, in the developed world, impact of
future urbanization on staple food crops would be less. In the USA it would be
around 1 to 2%, in Europe 2 to 3%, and in Australasia it will be less than 1 percent.

Tremendous cropland loss has been observed for urban megalopolis and an
increasing often spreading over 10,000 sq. km with population over than 20 million
(d’Amour et al. 2016). As per the case studies of Doos (2002) and d’Amour et al.
(2016), Divine et al. (2019), principal farming lands are highly susceptible to
conversion in expansion regions with estimated farmland losses between 0.1 and
1.2 Mha. According to d’Amour et al. (2016) in mega urban regions (MURs) of
Bangladesh, Indonesia and India, the relative productivity is<2 pico-calories (Pcal),
whereas the relative productivity in MURs of China is 1.05–22.05 Pcal.

To comprehend the evolving MURs agricultural production system patterns, the
harvested area fraction (HAF) was analysed. According to the analysis, the aggre-
gated HAF of the crops in majority of the MURs is very high. The combined HAF of
rice and wheat in the Yangtze River Delta around Shanghai MURs accounts for 50%
of total area harvested in competing areas, whereas it is quite small in the USA,
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Japan and Brazil as these areas produce other foodstuffs like vegetables. HAF is also
small in the Greater Ibadan-Lagos-Accra (GILA) corridor in Western Africa as crops
produced in this area do not contribute much to diets.

It has already been mentioned that loss of farmland is a direct effect of urban
expansion. MURs most of the times contain multiple urban centres, with fertile
farmland spread all through the urban framework. However, there are regions with a
single principal urban centre, like Greater Delhi where croplands surround the urban
centre. In this case there exists little possibility for the formation of extensive
continuous urban tract. As per Pandey and Seto (2015), agricultural land in these
regions will continue to be transformed, but not at a similar pace like multi-nodal
urban regions.

Let us look at another problem of urban expansion faced by the farmers living in
urban sprawls. In this region the remaining croplands and farmers suffer from
scarcity of water and climate hazards. Dewan et al. (2012) reported that the urban
growth into the Ganges-Brahmaputra Delta is responsible for the loss of wetlands
and drying up of water bodies which otherwise helps to protect flood. Excessive
extraction of groundwater for urban development and transformation of cropland is
creating obstacles for compaction and aggradations of sediments which is ultimately
leading to the sinking of Ganga-Brahmaputra Delta. As a result, with the adverse
effect of climate change, this delta becomes more prone to hazard due to rise in sea
level (Higgins et al. 2014).

Climatic hazards not will only pose a threat towards urban areas but to the rest of
the croplands in this delta region which produce rice (HAF of rice >83%), the main
staple food of this region. The rise in sea level and submergence of land is a matter of
concern for Greater Cairo because the significant part of Nile Delta is about to sink
below sea level (Syviski et al. 2009) and expected to sink further (Syvitski et al.
2009). In this case another problem is that the amount of sediment discharged from
the southern dams is decreasing day by day. It will enhance the pressure on the delta,
which will ultimately reduce the size of delta (Redeker and Kantoush 2014). Study
shows that extremely fertile farmlands along the Nile have been changed into urban
tracts although they are the primary source of the food supply for the people of this
region (combined HAF for wheat and maize, 49%).

14.4 Assessing Impact of Urbanization on Agricultural
Land: Geospatial Approaches

The geospatial data fill the information gaps by asking the following questions:
(i) Which parts of the croplands are more prone to transformation because of
potential urban growth? (ii) What is estimation of cropland loss in the future,
particularly main cropland, due to urban expansion? (iii) What will be the impact
of cropland loss on the total agricultural area and economic significance of agricul-
ture in different countries?
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The understanding of “hidden linkages” between urbanization and food systems
is the key for sustainability in the era of mega urbanization (Seto and Ramankutty
2016). It is not possible to stop urbanization but we must focus on where and how to
maintain cropland for producing food. Hence this food system includes fabrication,
refining, disposition, utilization and disposal of wastes just like other related direc-
tive establishments and activities (Pothikuchi and Kaufman 2000). Presently satellite
imageries are used to study urban sprawl and changes in other LULC. Alqurashi
et al. (2016) analysed the urban expansion and changes in land cover in five Middle
East cities using an object-based image analysis approach. Cao et al. (2018)
performed a study on urban expansion and its consequences on land use changes
utilizing radar graph as well as inclination bearing techniques and landscape metrics.
Liu et al. (2016) examined urban extension in China in recent decades utilizing
satellite imageries. Gumma et al. (2011) made a study on urban extension and
wastewater-irrigated areas in Hyderabad, India, using Landsat images. Many of
these studies used Landsat imageries to analyse the changes with time. Using
sophisticated techniques of satellite image analysis, a number of studies have
demonstrated the mapping processes of agricultural areas (Thiruvengadachari and
Sakthivadivel 1997; Sakthivadivel et al. 1999; Bastiaanssen et al. 2002; Velpuri
et al. 2009). Parece and Campbell (2013) designated urban impervious surfaces of
Roanoke in the USA utilizing Landsat imagery and high-resolution aerial photo-
graphs. Myint et al. (2011) specifically classified land use pattern utilizing high
spatial resolution imagery and object-based classification. Zhang et al. (2017)
evaluated the effects of urban growth on ecosystem services through various models.
For example, he used shared socioeconomic pathways (SSPs) and the land use
scenario dynamics-urban (LUSD-urban) model for his study. However, mapping
of urban agricultural areas, particularly fragmented irrigated areas, is a challenge
because of the differing scope of irrigated plot sizes, crops and water sources used by
farmers (Draeger 1976; Gaur et al. 2008). Another popular indicator to observe
cropland and LULC changes over a set period is Normalized Difference Vegetation
Index (NDVI), and it has been used in many studies (Gumma et al. 2011; Gray and
Bilsborrow 2014).

14.4.1 Selection of Geospatial Data and Scale of Mapping
Through the Understanding of Land Use Functions

Land cover indicates the physical type or surface qualities of land (e.g. forest or the
existence of any construction). Therefore, during fieldwork or through remote
sensing, one can directly recognize land cover. In contrast, land use describes the
economic and social functions of land or how humans are utilizing the land. Land
use systems exist when land uses are systematically linked through temporal or
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spatial interactions such as crop rotation (Fig. 14.2). Land cover observations
(e.g. satellite imageries) alone are normally not enough to detect and analyse such
land use systems.

Additional socioeconomic data (e.g. harvest statistics) are necessary to assess
these systems (Kruska et al. 2003). At a landscape level, there may be various
interrelated land use systems which offer a variety of products and services to society
(Verburg et al. 2009). The ability of the land to supply goods and services is referred
to as land use functions or ecosystem functions (de Groot 1992; de Groot 2006;
Verburg et al. 2009). In geospatial studies choice of appropriate data on the basis of
scale is of utmost importance. The scale of a geospatial analysis sets limits of
information contents and the degree of reality with which it can be delineated on
the map. A multi-scale view of remote sensing (RS) data analysis for urban expan-
sion and land use change has been illustrated in Table 14.3 for the mapping and
investigation of urban land use dynamics. It has highlighted four levels of geograph-
ical scale. Each scale determines their spatial characteristics and is associated with
specific urban dynamics. Besides, each scale is influenced by different drivers and
factors of growth and shows scale-specific effects and patterns as a result of the
process separation. Based on the framework, we examine scale issues related to both
RS data analysis and modelling of urban change dynamics (Herold et al. 2002).

Fig. 14.2 Correlation between land cover, land use and land function and possible methods to
collect spatial data. (Modified, Verburg et al. 2009)
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14.4.2 Land Use Models

Land use models can broadly be understood as tools that help us in understanding
and analysing complex linkages and feedbacks between various operators of land
use change. However, there are a number of definitions of land use models.
Heistermann et al. (2006) define a land use model as an instrument to figure out
the change of area allocated to at least one specific type of land use. Verburg et al.
(2004) define a land use model as a device to carry on the analysis of the cause and
effects of land use dynamics.

Models that are capable of capturing (reproducing) aspects of the complex
dynamics involved in land use change can support understanding of these dynamics.
Land use models may be applied to project demand for land for specific purposes
and where resulting land use changes will occur given different boundary conditions.
They can, therefore, help in understanding the drivers of land use change and
identify the areas that are likely to be under the greatest pressure and can, thus,
provide support to land use and policy decisions. Land use models can also be used
to explore alternative futures using scenarios. However, not all land use models can
be used for scenario analysis. Models that are dependent merely on an extrapolation
of trends in land use change may not be appropriate for scenario analysis as they are
only applicable within the range of land use changes on which they are based
(Verburg et al. 2004).

Because of the significance of monitoring the effect of urbanization on the
physical condition, many scientists have shown interest in urban extension and
land use dynamic analysis and developed prediction models. Various types of
such models have been distinguished in the writing. Important among them are
(i) urban spatial change or land use models (Wray and Cheruiyot 2015) and (ii) urban
growth prediction models (Triantakonstantis 2012). These models may have

Table 14.3 A multi-scale framework for the mapping and analysis of urban land use change using
remote sensing

Spatial extent Change dynamic Mapping entity
Spatial
resolution

Mapping
intervals

Global level Trend of urbanization globally
Uneven development
Regional polarization

Spatial extent
of urban area

1 km 10–50 ys

Superregional
level

National/coun-
try level

Formation of exhubs/edge cities
Urban deconcentration
Counter-urbanization

30 m 5–10 ys

City level Intra-urban land use conversion
Socioeconomic segregation

Urban land
cover objects
(vegetation
patches, build-
ings, etc.)

5 m 2–5 ys

District/block
level

Housing/land development
Neighbourhood changes

1 m 1–2 ys
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common objectives, but they differ in terms of methodology and/or theoretical
assumptions. Heistermann et al. (2006) reviewed land use models at continental to
global scales and categorize them into (a) geographic land use models, including
empirical-statistical and rule-based or process-based models, (b) economic land use
models and (c) integrated models. Geographic models are those that allocate area or
commodity demand on suitable locations based on local characteristics. Economic
models apply supply and demand of land-intensive commodities as the basis for
allotment of land (albeit at large geographical scales), while integrated models
combine these two approaches. It incorporates economic analysis of world markets
and policies to measure demand and supply and also geographic analysis for
allotment of land under different uses.

14.4.2.1 Geographic Model

14.4.2.1.1 Empirical-Statistical Models

The CLUE (Conversion of Land Use and its Effects modelling framework) model
framework (Veldkamp and Fresco 1996) is probably the most well-known and most
frequently used land use model globally. Over the years, the model has evolved, and
different versions have been developed (CLUE, CLUE-s, Dyna-CLUE and CLUE-
Scanner). The key assumption underlying the CLUE models is that observed spatial
relations between land use types and possible explanatory factors signify currently
active processes and remain valid in the future. Logistic regression is used to derive
relationships between observed land use and spatial variables.

14.4.2.1.2 Rule-Based/Process-Based Models

In contrast to empirical-statistical models that are based on statistical relationships
between drivers and historical land use changes, rule- or process-based models
reproduce processes dealing with the interaction of different elements forming a
system (Lambin et al. 2000). For example, the SALU (Sudano-sahelian countries of
Africa) model (Stéphenne and Lambin 2001) simulates spatially explicit changes of
land use at a coarse resolution for the Sahel zone using a series of agricultural land
use transformations that are typical for many regions, because agricultural develop-
ment at the most extensive technological level is followed by agricultural intensifi-
cation once a land threshold is reached.
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14.4.2.2 Land System Models

Land system models are also classed as integrated models as they combine economic
and environmental processes. An example of the land system approach is the model
developed by Letourneau et al. (2012). They have used a land use system (LUS)
approach to model the change of land at global level. The LUS are combinations of
land cover, land use (such as livestock, cropland and pasture), population and
accessibility and were modelled at 5 arc minute resolution (~10 � 10 km). Regions
and management intensities are controlled by global economic models based on
global trends and the choice between land cover change and intensification of
agriculture. This approach is advocated for better understanding of the land-shar-
ing/land-sparing debate as it can show regionally variable outcomes of expansion of
arable land based on local aspects that either restrain or endorse land system
conversion (Phalan et al. 2011; Tscharntke et al. 2012; van Asselen and Verburg
2013).

Another example of a land use system model is the LandSHIFT (Land Simulation
to Harmonize and Integrate Freshwater Availability and the Terrestrial Environ-
ment) model framework (Schaldach et al. 2006). LandSHIFT is an instrument for
medium-term scenario analysis (20–50 years). It helps in assessing environmental
impact of land use change, and the model simulates spatial-temporal dynamics of
settlement, farming and livestock grazing. Land use system is at the core of
LandSHIFT as it combines model components representing anthropogenic and
environmental systems.

14.4.2.3 Economic Land Use Models

In economic models, demand and supply functions for tradable commodities are
recognized as the main drivers of land use change. Among such models, the
Common Agricultural Policy Regionalized Impact (CAPRI) model is an agricultural
economic model developed to assess agricultural policies within the European
Union (Britz 2005). The model links approximately 280 administrative regions at
the NUTS-2 (Nomenclature of Territorial Units for Statistics) level with a global
agricultural trade model. For each of the NUTS-2 regions, CAPRI simulates changes
in crop areas and yields for 35 crops, herd sizes of 13 animal groups as well as
feeding and fertilizing practice. It also includes fallow land that exhausts the
available agricultural area. Economic land use models have the advantage that
they can persistently deal with demand, supply and trade via price mechanisms.
However, they are often unable to explain supply-side constraints (such as behaviour
not related to price mechanisms) as well as incorporate the effect of demand on real
land use change processes.
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14.4.2.4 Integrated Land Use Models

Integrated land use models are models that combine both economic and environ-
mental factors and thus overcome the limitations associated with purely geograph-
ical and economic land use models. Integrated assessment models (IAMs) are
typically large-scale models that combine natural and human subsystems and can
thus be classified as a type of integrated models although they are not specifically
focused on land use modelling. The Model of Agricultural Production and its Impact
on the Environment (Lotze-Campen et al. 2008) is a global, spatially explicit model
of land use change. The model concentrates on agricultural production along with
land and water for the most important crop and livestock production and covers ten
economic regions of the world. The model develops land use patterns for grid cells at
a resolution of three by three degrees (ca. 300� 300 km at the equator) incorporating
regional economic conditions and spatially explicit data on potential crop yields and
land and water constraints. The main urban development indicators come from
socioeconomic exercises which obviously could impact changes in land use and
urban development design.

So, different models use different indicators to predict urban expansion. These
explain the variation in their performances. Important models explaining urban
growth and indicators used in those models are presented in Table 14.4.

Table 14.4 Urban growth indicators and their respective models (Modified, Musa et al. 2017)

Models Urban growth indicators References

Fractals Remoteness from central business district (CBD), nearness
to urban functionaries, neighbourhood quality and land use
types

Batty and
Longely (1986)

Agent based Land use category, size of population and its density,
distance from noise levels, shops; entry permission to
green/vegetated areas and transportation zone

Bharat et al.
(2016)

Artificial neu-
ral networks

Elevation, gradient, population growth per annum, cate-
gory of land parcels, propinquity to roads, service facility
and built-up areas

Wang and
Mountrakis
(2011)

Cellular
automata

Distance to centre of the town, railways and roadways, as
well as land use and terrain category

Vaz and
Arsanjani (2015)

Decision trees Development type; elevation; gradient/slope; interior/exte-
rior subregions; land use category; accessibility to enter-
tainment zone; large industries; rivers/streams/canals;
primary, secondary and minor roads; kernal densities of
croplands; residential zones; urban expansion area; educa-
tion facilities; ponds or lakes; lands for cultivation and
natural green space/vegetation

Jin and
Mountrakis
(2013)

Linear/logistic
regression

Coordinates (x, y), land use category, gradient, restricted
location, size of population, nearness to main active busi-
ness/commercial/financial centres, nearness to urban cen-
tres and roadways

Alsharif and
Pradhan (2014)
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14.5 The Impact of Urbanization on Land Transformation
with Special Reference to Cropland: A Case Study

In India the land use pattern is changing rapidly as the result of urban growth. The
impact of urbanization on agricultural land in the last 50 years (1965–2014) in parts
of Pune, Maharashtra, is presented here as a case study.

14.5.1 Study Area

The study was conducted in a section of Pune district covering four taluks, namely,
Haveli, Khed, Marvel and Mulshi, and spreading over an area of about 5533 km2

(Fig. 14.3).
The study region is traversed by three main rivers, namely, Pavana, Mula and

Mutha. The study area is situated at the lap of hills bordering the west. Steep slopes
and rocky red soils add geomorphologic characteristics to this region. The alluvial
deposits along the bank of the rivers contain sand, gravels, fine silts and clays.

Fig. 14.3 Location of the study area
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14.5.2 Datasets Used and Method of Approach

The geometrically corrected satellite datasets such as Landsat MSS, Landsat TM,
Landsat ETM+, Landsat 8, and IRS Resourcesat 2 LISS-3 have been examined for
this study. The list of satellite data used and their specification is presented in
Table 14.5. The declassified CORONA image was also used after geometric
correction with a root mean square error of 0.238. The Universal Transverse
Mercator (UTM) Zone 43 N’ coordinate system and WGS-84 datum were used for
all the images. The boundaries of the villages correspond to the cadastral boundaries.
These boundaries were utilized to analyse LULC at village level.

Present study includes creation of geospatial outputs following data preparation,
processing and in-depth research; the workflow of the study is presented in Fig. 14.4.

Table 14.5 Satellite image specifications

Sensor types Sensors Platforms
Spatial resolutions
(in meter)

Operational
from

Multispectral MSS Landsat 1 60 4 Feb 1973

17 Mar 1981

TM Landsat 5 30 22 Mar 1992

ETM+ Landsat 7 27 Mar 2002

Landsat 8 4 Apr 2014

Resourcesat
2, LISS-3

IRS 23.5 17 Mar 2012

Panchromatic KH-A.B CORONA 2.5 11 Nov 1965

Fig. 14.4 Workflow of the study
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14.5.3 Land Use/Land Cover Classification

Satellite image classification is the base of all land cover analysis. In the present
study, object-based classification system was adopted to classify LULC for better
accuracy (Ganguly et al. 2016). This technique depends on the interpreter who uses
visual cues such as tone, texture, shape, pattern and relationship to other objects to
make out the differences in land cover classes (NRSC 2010). The classification
scheme, at level 2 classes, was used which is neither very detailed nor much
generalized (Table 14.6). This classification scheme was based on the LULC
classification system developed by National Remote Sensing Centre (NRSC),
India. It was used to build a pan-India LULC 1:50000 Atlas in 2011. The LULC
classified maps were prepared for six different years, i.e. 1965, 1973, 1981, 1992,
2002 and 2014 (Fig. 14.5).

14.5.4 Assessment of LULC Change Dynamics and Statistical
Interpretations

The classified LULC maps were analysed for the past 50 years (Fig. 14.5). Based on
the available data, the individual LULC class area and change statistics were
generated for 6 years, i.e. 1965, 1973, 1981, 1992, 2002 and 2014 (Table 14.7).

Table 14.6 Basis of land use/land cover classification

LULC
category Description

Urban Residential, commercial and mixed built-up areas, public facilities, green or
vegetated landscapes, utilities and facilities, transportation and recreational facil-
ities, reclaimed zones

Rural Large-/small-size built-up areas, associated mainly with agricultural lands and
noncommercial allied sectors. Generally grouped or cluster in form and scattered

Industrial Industrial buildings, dumps of ash and cooling ponds, quarries, brick kilns, gravel
and sandpits, dump of industrial raw materials, etc.

Cropland Standing or growing crops, agricultural plantations

Fallow
lands

Bare lands with no crops, taken up for agricultural use but temporarily left
uncultivated for more than a year

Forests A large area with more than 10% of tree canopy cover (more than 0.5 ha of area).
Includes forest plantation and scrub kind of forests

Tree clads Tree or woody vegetation outside of designated forest

Wastelands Lands which are un-capable for cultivation, degraded due to natural causes. It
includes saline land, rocky barren area, gullied/ravinous land, Ranna, shrubs

River Consistent or inconsistent flow of water through a definite channel into sea/lake/
inland basin/marsh

Water
bodies

Surface water (permanent/seasonal) like dam, reservoir, tanks, lakes and ponds

Adopted, NRSC (2010)
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Table 14.8 shows that between 1965 and 2014, the land use pattern in this region
has changed drastically. It is found that urban and industrial zones have been
expanded substantially as compared to other land use classes. However, the maxi-
mum growth was noticed during 1992 to 2014. The rate of increment in urban built-
up and industrial area during this period was 8 times higher than the previous
decades. As a result constant decreases in croplands were also observed between

Fig. 14.5 Land use and land cover change map

Table 14.7 Land use/land cover changes from 1965 to 2014 (in km2)

LULC class Year 1965 Year 1973 Year 1981 Year 1992 Year 2002 Year 2014

Urban 45.69 55.71 63.16 231.0 250.49 456.6

Rural 4.44 5.80 6.15 6.79 16.25 18.33

Industrial 8.04 16.1 17.84 23.44 41.64 98.7

Forest 905.98 905.9 905.9 905.9 905.8 898.4

Tree clad 604.33 604.3 604.3 603.18 605.9 598.02

Cropland 2538.10 2519.2 2509.8 2347.3 2311.5 2154.8

Fallow land 191.25 191.2 191.2 239.2 222.7 181.0

Plantation 39.06 39.06 39.06 39.06 38.36 37.09

Wastelands 1017.5 1018.4 1018.4 904.8 885.1 806.4

River 57.66 57.67 57.67 55.94 54.40 49.73

Water body 121.13 121.1 121.1 160.2 192.48 233.4
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1992 and 2014. A significant amount of change was found in case of wastelands, the
area of which decreased around 200 km2 between 1981 and 2014. Besides, con-
struction of new reservoirs in this area brought significant changes in land cover by
increasing water bodies during 1965 to 2014.

A comparison between temporal changes in area under built-ups, agricultural
lands and wastelands from 1965 to 2014 is presented in Fig. 14.6. Besides, the
interclass changes of LULC classes were also compared and presented in Table 14.8.
The comparison between built-up area and agriculture shows opposite trend as the
expansion in urban areas has caused a remarkable reduction in the amount of
agricultural lands and wastelands (Fig. 14.6). The maximum changes in LULC
were observed in urban areas (456.3 km2) due to newly constructed water bodies
(233.12 km2) and industrial expansion (100.67 km2).

14.5.5 Optimization of Geospatial Techniques

In this study, geostatistical measures with spatial technique named as spatial auto-
correlation were implemented. The basic principle of spatial autocorrelation in
geospatial statistics is the task of assemblage a set of items in a way that intends to
put together or cluster items into the same group that is more analogous to each other
than other groups. It is defined as the interrelation between variables assembling
together through space. It assesses the efficiency of spatial correlation and executes
the theory of entropy. As per this technique, the presence of any orderly pattern in
the spatial distribution of a variable is said to be spatially correlated, and the
correlation is positive if surrounding areas are similar. On the other hand, if the
adjacent areas are dissimilar and random patterns are exhibited with no significant
spatial cluster, it is said to be negatively correlated. However, in spatial statistics
cluster analysis is not able to elucidate the reason of importance of location which
carries statistically considerable cluster of LULCC. These clusters have maximum
rate of transformation than other locations. This technique fails to recognize com-
ponents that force changes in LULC.

Fig. 14.6 Temporal changes in LULC from 1965 to 2014
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14.5.5.1 Spatial Autocorrelation Using Statistical Method

Gi-statistics was developed by Getis and Ord (Getis and Ord 1992; Ord and Getis
1995) that represent a global spatial autocorrelation (SA) index. Applicability lies in
its discerning cluster structures of high or low concentration. The simple form of this
method has been suggested by Songchitruksa and Zeng (2010) in the following
manner:

Gi� ¼

Pn

j¼1
Wijx j

Pn

j¼1
x j

ð14:1Þ

where Gi* ¼ SA statistic of an event i over n events

wij ¼ measure of the spatial proximity between regions i and j
xj ¼ magnitude of the variable x at events j over all n

The standardized Gi* is a Z-value which can be expressed as follows:

Z Gi�ð Þ ¼

Pn

j¼1
wijx j � x

Pn

j¼1
w2
ij

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

j¼1

w2
ij�

Pn

j¼1

wij

� �2

n¼1

v
u
u
t

ð14:2Þ

The Gi value close to “0” represents a random distribution of events. A high
positive and negative absolute value indicates the clusters of transforming land with
high- and low-value events, respectively (Manepalli et al. 2011).

14.5.6 GIS Database Design for Spatial Statistical Model

GIS database is advantageous as one can utilize the data more efficiently without
altering the original dataset. In this study, the classified dataset was redefined in the
form of land use/land cover change combinations to execute spatial database queries
more accurately. For computational advantage of Getis-Ord Gi* model in ArcGIS
10.2.1, a unique value was assigned to all the LULCC combinations (Ganguly et al.
2016). The returned Gi* value for each polygon in the dataset was further used for
ordinary kriging to ascertain a contiguous map for showcasing all other prediction
points through the chosen model. The resultant Gi* score helps to categorize the
study area into hot and cold spots. The hot spot represents the maximum spatial
change area, whereas the cold spots is the minimum spatial change area. This was
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further categorized into high-, medium- and low-intensity zones on the basis of its
scores.

14.5.7 Zonation of Land Use Change Clusters

In this study, regions with higher concentration of LULCC clusters have been
identified using the Z-score. The nature of hot spots from 1965 to 2014 was
identified using GIS-based kriging interpolation technique which helps to categorize
the whole study area into three zones as high-, medium- and low-intensity clusters
(Fig. 14.7).

Clusters where land transformation had taken place after 1992 were identified as
high-intensity zones. In this zone adjacent villages near to Pune and Pimpri-
Chinchwad city areas showed continuous and higher rates of LULCC since 1992
(Fig. 14.8). Along with rapid urbanization, vigorous industrialization had also
changed the land use pattern in this zone. As a result, higher rate of reduction in
croplands and wastelands was noticed.

It was observed from the analysis of land transformation of the past five decades
(1965–2014) that about 190 new villages surrounding of Pune city experienced a
higher concentration of LULCC after 1992. There was a marginal increase (2% of
the total geographical area (TGA)) in urban built-up area during 1965 to 1992.

Fig. 14.7 Zonation of LULCC intensity
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Compared to this period, the increase was more than three times (more than 6.5% of
TGA) between 1992 and 2014. Likewise, industrial area increased from less than 1%
to nearly 4% of the TGA during the last 50 years. A considerable decrease (9% of
TGA) in agricultural land was also noticed. Similarly, an area comprising 6% of
TGA was transformed from wastelands to urban built-up area during the last
40 years. The medium-intensity cluster represents the areas which are already
developed zone and still expanding rapidly and filling up all empty lands due to
urban expansion. Figure 14.9 shows the changes in LULC in villages under medium-
intensity cluster. A higher rate of urbanization (~40%) and marginal changes in
industrial expansion (below 5%) were observed in medium-intensity cluster. A
significant decrease of area under croplands and wastelands was also observed
between 1965 and 2014. The low-intensity cluster represents the areas having very
less changes during the last 20 years. The low-intensity clusters practically represent
nonprogressive zone.

It was found that in the study region during 1965 to 2014, urban area and
industrial area recorded an increase of 1.5%. Although here the loss of cropland
and wasteland proceeds with supplementary hot spot, yet the extent of transforma-
tion was not consequential.

14.5.8 Temporal Variations in Surface Greenness During
1973 to 2014

To assess the temporal variation of surface greenness due to urban expansion in the
study region, the Soil-Adjusted Vegetation Index (SAVI) has been calculated from
the satellite images (Ganguly et al. 2014). SAVI can overcome the effects of soil

Fig. 14.8 Changes in LULC in villages under high-intensity cluster
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pixel by using a canopy background adjustment factor. An optimal value of 0.5 has
been suggested by Huete and Huete (1988) to account for first-order soil background
variations. It can be best used in areas with sparse vegetation and where soil is visible
through the canopy. It is computed in the following manner:

SAVI ¼ 1:5 � NIR� REDð Þ
NIRþ REDþ 0:5ð Þ ð14:3Þ

The value of SAVI ranges from �1 to +1. The positive values signify wet area or
greenness and negative values indicate less vegetation. The images obtained from
SAVI model can visually distinguish vegetated and non-vegetated areas. SAVI
results often get affected by sparse vegetation characteristic. However a gradual
decreasing trend in greenness was noticed in SAVI images from 1973 to 2014.

Results of the study area show considerable amount of greenness with a very high
SAVI value (0.92) in 1973. However a reduction of greenness was observed in 1992
(SAVI¼ 0.76). Thereafter a gradual decrease of SAVI indicates very low vegetation
cover (SAVI ¼ 0.2) in 2014 (Fig. 14.10).

Correlation analysis was carried out to understand the relationship between
greenness and impervious surface. A negative correlation (R2 ¼ �0.61) between
the above two parameters was found which reflects that 61.6 percent variation in
vegetation cover in the study region was due to the presence of impervious surface/
built-up areas (Fig. 14.11).

Fig. 14.9 Changes in LULC in villages under medium-intensity cluster
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14.5.9 Conclusions and Future Perspectives

According to Global Land Outlook report published by United Nations (Al Malalha
2016), an estimated 30 Mha of global area is expected to be urbanized by 2030. Asia
and Africa are projected to lead the chart. Together they are predicted to account for
nearly 80% of the global cropland loss due to urban expansion. Hence a continuous
monitoring is required to identify the impact of urban sprawl on agricultural land at
both regional and global level. However, systematic studies using traditional tech-
niques have become time-consuming and burdensome over the years. The uses of
RS and GIS have generated ample scopes to analyse the current situations rapidly
and create a spatial forecasting system for better decision-making processes. The
various spatial modelling tools and approaches have been used by many researchers
to determine the potential impact of urbanization on cropland. Different GIS and RS
modelling approaches under various scenarios show a declining trend in croplands in
the future. Forecasting the potential changes in land use is generally a multistep

Fig. 14.10 Calculated SAVI showing changes in greenness over time

Fig. 14.11 Relationship between built-up area and vegetation
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approach which involves several datasets, models and assessment methods, intro-
ducing and propagating uncertainty at each step. However, land use modelling is
very complex and in most cases requires significant expertise and capacity in terms
of understanding of drivers, spatial data analysis and statistical relationships. The
choice of land use model to be used in a project, therefore, depends on the scale,
scope and purpose of the study as well as the resources and capacity available. There
are many existing models of land use which can be used for LULCC analysis within
a range of future scenarios.
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