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Abstract Video compression is a computationally intensive task that generally
demands high performance for portable device application. This high performance is
mainly attainedbymotion estimation (ME) in the video encoder.With the larger block
size and flexible block, partitioning in High Efficiency Video Encoding (HEVC)
makes ME block more complicated. The sum of absolute difference (SAD) is exten-
sively used as a distortion metric in the ME process. It is highest computing task
with more calculation time and hardware resource. In this paper, an efficient mixed
parallel-pipeline SAD architecture is proposed for high frequency. The performance
optimization techniques are used at different levels of abstraction: Architecture level
(parallel and pipeline), RTL level (grouping and resource sharing) and Implementa-
tion level (retiming). The proposed architecture has been simulated, synthesized and
prototyped using 28 nmArtix-7 Field Programmable Gate Array (FPGA). The result
shows that the proposed design provides a significant increment in the maximum
frequency of 498.4 MHz when compared with other existed work in the literature.

Keywords Sum of absolute difference · Video coding · HEVC · Motion
estimation · FPGA
1 Introduction

To meet the continues growing demand of video, technologically, the design
constraints such as performance, power and efficient memory at better transfer rate
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are required for a wide range of applications such as high definition (HD) (1080 p
resolution) and ultra-high definition (UHD) (4 K and 8 K resolution). To meet out
this, robust and enhanced video compression efficient designs are required. HEVC
or H.265 is the present popular video compression algorithm designed to increase
the video coding efficiency significantly as compared to its previous standard called
H.264 or Advance-Video-Coding (AVC) [1]. The HEVC is a video coding stan-
dard which supports higher resolutions and can achieve up to 50% bit-rate savings as
compared to earlierH.264 for the same video quality [1, 2]. The considerable increase
in throughput is due to themany enhanced tools, techniques andmethodologieswhich
has been introduced in HEVC. Some of this enhancements are included in the ME
prediction process, which is the critical and complex block of video encoding. The
experimental results show that the ME block is occupied approximately 70% of the
total video encoding load [2].

The main objective of theME process is to identify the suitable matching block in
a search area (SA) of reference frame (RF) corresponding to a current frame (CF) and
provides a map of the displacement directions using a motion vector (MV). Figure 1
shows the general motion estimation procedure.

MV

Reference Frame

Current Frame

Block in current frame

Block in reference frame

Search window in reference frame

Fig. 1 Basic motion estimation process [3]
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In theHEVC, a video frame encoding is performed using basic block called coding
units (CU) of varied sizes (8× 8 to 64× 64) obtained by dividing the frames. The CU
maximum size is 64 × 64 which increases complexity in the design of ME. In every
level of CU, HEVC basically supports eight different partitions in the prediction
block. As shown in Fig. 2, the block partitions from (a) to (d) are called symmetric
mode (SM) partition and from (e) to (h) are called asymmetric mode (AM) partition.

For block-based ME, the SAD is the commonly used metric which perform addi-
tion of the absolute differences between corresponding elements in a current and
reference block. The main bottleneck of the ME process lies in implementation
with an appropriate and efficient SAD design. The SAD calculations are respon-
sible around 65% of the total ME process [3]. The general prediction of SAD value
between the current block (CB) and reference block (RB) is performed using the
following equations [5].

SAD(i, j) =
M−1∑

k=0

N−1∑

t=0

|CB(k, t) − RB(i + k, j + t)| (1)

SADmin = min(SAD(i, j)) (2)

whereN ×M is block size of the current and reference blocks, i and j are coordinates
of the block and SADmin is the minimum SAD value. The HEVC defines different
partitioning sizes for current blocks (CB) to reduce ME complexity. Among all, one
of the constraint is disable the asymmetric motion partitioning (AMP) option with

(a) 2Nx2N (b) 2NxN (c) Nx2N (d) NxN

(e) 2NxnU (f) 2NxnD (g) nLx2N (h) nRx2N

2N=64,32,16,8,1
n=N/2

L =Left,R=Right
U=Up,D=Down

Fig. 2 Different block partitions and sizes for HEVC motion prediction unit [4]
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Table 1 The sum of the total SADs required for every partition sizes in a 64 × 64 unit [6]

S. No. Block sizes No.of SAD’s S. No. Block sizes No. of SAD’s

1 64 × 64 1 14 8 × 32 (left) 8

2 32 × 64 2 15 16 × 16 16

3 64 × 32 2 16 8 × 16 32

4 64 × 16 (up) 2 17 16 × 8 32

5 64 × 16 (down) 2 18 16 × 4 (up) 32

6 16 × 64 (right) 2 19 16 × 4 (down) 32

7 16 × 64 (left) 2 20 4 × 16 (right) 32

8 32 × 32 4 21 4 × 16(left) 32

9 16 × 32 8 22 8 × 8 64

10 32 × 16 8 23 4 × 8 128

11 32 × 8 (up) 8 24 8 × 4 128

12 32 × 8 (down 8 25 4 × 4 256

13 8 × 32 (right) 8 –

Total No. of SADs 316 (Square) + 340 (Symmetric) + 168 (Asymmetric)

fixed block size N = 4 [4]. Table 1 lists partitions for 64 × 64 CTB (coding tree
block) and the number of SAD required for each partition.

By supporting variable block size, the compression coding performance can be
improved significantly. Also, the encoding computational complexity is increased
dramatically. The coding block size in HEVC is upto 64 × 64 used for HD/UHD
resolutions as compared to 16 × 16 in H.264 makes the SAD process critical. Obvi-
ously, the number of SAD computations vastly increases resulting into substantial
increase in the processing gate delay and hence a decrease in overall performance.
For instance, the UHD video (4320 × 2160@30 frames/s) required the computation
of 18,345,885,696,000 absolute differences (ADs) and 71,663,616,000 multi-value
summation operations/s [5].

In the literature, several VLSI architectures for SAD computation are reported
[4, 6–11]. These report a trade-off between speed, performance and power for the
hardware implementation of SAD. The architectures considered are mainly either
for low-power or high-performance implementation either on FPGA or on ASIC.
The present available FPGAs contain a lot of dedicated hardware resources which
are more suitable for high-performance optimization providing less opportunity for
power optimization, whereas ASICs can be a good choice for both power and perfor-
mance optimization. In this paper, FPGA is chosen for performance enhancement of
SAD process. The main work contributions are outlined as follows.

1. On-chipmemory and its efficient access architecture for SADhave been proposed
and designed.

2. Performance optimization has been done at different abstraction levels, viz. a at
architectural level by deploying mixed parallelism and pipelining, b at RTL level
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with grouping and resource sharing and c at implementation level using retiming
techniques.

3. Verified with test bench simulations, debug on FPGA with logic analyzer and
constraint-driven synthesis for better performance.

4. Prototyped on FPGA using two consecutive video frames and calculated
corresponding residual image and displayed output on monitor using display
controller. The interfaces at input and output sides have also been developed.

For HEVC ME process, different SAD architectures were proposed in past
targeting FPGA [4, 6–11] with various design and implementation approaches. Dinh
Vu et al. [4] introduced a parallel SAD architecture to reduce the hardware cost and
calculation time. They decreased the number of registers used but the speed degraded
due to higher delay. Joshi et al. [7] reported a high-speed processing architecture with
highest frequency of 475MHz.Nalluri et al. [8] reported another high-speed architec-
ture with trade-off between delay and hardware resources. Medhat et al. [6] reported
a highly parallel architecture. It uses 64 PUs operating in parallel with two memory
banks for each frame. The optimal data flow from the memory for SAD computation
provides better speed and lower delay among above discussed works.

From the above brief literature survey, it is evident that there is a trade-off between
speed and processing delay. So, the development of high-speed processing archi-
tecture for SAD on FPGA is of great interest. Hence, an efficient mixed parallel-
pipelining architecture is proposed, designed and verified on FPGA and results
compared with relevant SAD architectures. The implementation results show that
the present architecture can process the video with a significant delay reduction in
critical path and hence increased frequency which can efficiently meet the require-
ments of 4K resolution at 30 frames/s for high-speed portable applications. The paper
is organized as follow. Section 1 gives an introduction and overview of HEVC, ME
and SAD process and provides literature review and related works reported till date.
Section 2 explains the proposed SAD unit architecture and sub modules. Section 3
shows the hardware implementation. Section 4 presents result and comparison with
existing works in terms of logic delay, hardware resource usage and operating speed.
Finally, Section 5 concludes the findings and features of the proposed work.

2 Proposed Architecture and Design Process

Theproposed architecture shown inFig. 3 ismainly composedof: (i) External random
access memory (RAM) for current and reference block data, (ii) on-chip memory
register files (RF), (iii) processing element (PE), (iv) absolute difference (AD) circuit
and (v) adder tree structure to calculate the SADmin.

It receives the data related to reference and current pixels from external RAM.
This data is pushed into on-chip memory RF. The data from on-chip memory RF
is further fed to PE for calculation of ADs and not accessed from external memory
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directly. This reduces the access time of data, and hence, processing time is improved.
Finally, ADs are fed to adder tree for calculating the SADs.

2.1 Memory Organization and Parallel Processing

The memory architecture for calculating all possible SADs value from 4×4 to 64 ×
64 blocks of HEVC encoder has been considered.

At architecture level, 64 × 64 block unit of current and reference frames are
fetched from external memory which are stored in the on-chip RFs. Each 64 × 64
block is divided into sixteen 32 × 32 blocks at level 1 and 16 × 16 blocks at level 2.
The 16× 16 block is divided into sixteen 4× 4 block to be used for SADcalculations,

Fig. 3 Proposed SAD architecture
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Fig. 4 Memory organization of 64 × 64 block unit
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as shown in Fig. 4. Here, this process has been adopted to exploit more degree of
parallelism.

2.2 Register File as On-Chip Memory

Register File (RF) stores the data of each current and reference block of 64× 64 size.
Each column and rowdata of 64× 64matrix are stored in associatedmemory address.
The size of each RF requires approximately 4 KB of on-chip memory required. In
FPGA, block random access memory (BRAM) is sufficient for storing the above
mentioned data. However, for high resolution videos having higher number of bits
per pixel requiring higher memory than 4 KB, look up tables (LUTs) can be used
in the place of RF for on-chip data storage. In case for higher requirement, so, LUT
can be used for RF.

2.3 Processor Element (PE)

The processor element (PE) block implementation is shown in Fig. 5, CP refers to
current pixel and RP refers to reference pixels. It uses 4 ADs to calculate one row
of 4 × 4 block in parallel. The AD values of each row are added to calculate 4 SAD
values stored in next level RF memory which forms the primitive block for 64 SAD
computations.

AD1 AD4AD3AD2

CP1 RP1 CP2 RP2 CP3 RP3 CP4 RP4

+ +

+

SAD1
Reg

Fig. 5 The architecture of processor element
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Fig. 6 16 × 16 pipelined architecture

The 16 × 16 array is implementing using a 4 × 4 block. The data block of 16
pixels is splitting into four groups and each group holds 4 pixels data and sent it to
hierarchical SAD summation block.

The 16 × 16 size has implemented a three-stage pipeline structure as shown in
Fig. 6, where all 4× 4 blocks are operated in parallel. The critical path has a long path
which is a tremendous amount of adder computation. The pipeline helps to decrease
critical path delay.

2.4 Absolute Difference (AD)

An absolute difference (AD) circuit is 4 × 4 calculation of the absolute differences
between current and reference pixels. Figure 7 showsADblockdiagram implemented
by using 8-bit comparator and subtractor. The comparator determines the higher
value from current and reference pixel. The subtractor subtracts the lower value
from higher to provide the AD value which is stored in an on-chip register file (RF)
by 4-bit subtraction. Equation (3) represents AD operation [3].

AD = |C − R| =
{

C − R = C + R + 1 ifC > R

R − C = R + C + 1 if R > C

}
(3)

where C is current pixel, R is reference pixel.
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8- bit Comparator

Current pixels Reference pixels

8- bit Subtractor

Reg

Fig. 7 Absolute difference circuit block diagram

2.5 Adder Tree Structure

The adder tree structure is used to calculate the SAD of different block sizes using
SAD of 4 × 4 primitive block size. Figure 8 shows the hierarchical SAD adder tree
structure. This is similar to the HEVC quad-tree CU structure in which each 2n ×
2n blocks consisting of four n × n blocks.

SAD 
2n×2n

SAD
n×n

SAD
n×n

SAD
n×n

SAD
n×n

Fig. 8 The hierarchical view of SAD adder tree structure
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Fig. 9 SAD top-level architecture

2.6 SAD Top Level

The basic 4 × 4 block has been reused four times to obtain the SAD for 8 × 8 block
size. Likewise, SAD of other block sizes viz. 16 × 16, 32 × 32 and 64 × 64 can also
be calculated using reuse process. Figure 9 shows the top-level architecture of SAD
calculation.

2.7 Minimum Frequency Requirement

In this design, each CTB of 64 × 64 size is decomposed into 256 number of (4 × 4)
block size for SADcalculation.Therefore, it takes 2048 cycles (256×8bit) to process
each CTB. To achieve high throughput, for the application of 4K video (3840× 2160
at 30 frames/s) encoding, the following is minimum necessary operating frequency
(f min) [12].

fmin = (2048 cycle/CTB) ∗ (3840 ∗ 2160 ∗ 30 pixels/s)

(64 ∗ 64 pixels/CTB )
= 124MHz (4)
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On the other hand, Fan and Yibo, et al. [13] reported the maximum necessary
frequency for 4 K at 30 frames/s to be approximately 500 MHz. So, when a 4 ×
4 SAD tree is adopted, the minimum and maximum frequency is 124 MHz and
500 MHz, respectively.

3 Hardware Implementation and Prototype

The proposed SAD architecture is designed in Verilog HDL and prototyped using
Artix-7 FPGA. The test bench has been modeled for logic and functional verification
with “foreman” video sequence of quarter common intermediate format (QCIF)
176 × 144 resolution [13]. The reason for choosing QCIF resolution is to keep it
simple for simulation observations.

The simulation result of the proposedSADarchitecture for two consecutive frames
is shown in Fig. 10.

The two consecutive frames data are given to the test bench. It generates the
corresponding SAD. The design is also verified with an on-chip debugging tool
(chip-scope pro logic analyzer) as shown in Fig. 11.

Figure 12 presents the RTL schematic view of 4 × 4 SAD block in which PE and
adders tree are operating in parallel. The synthesized logic can be further improved
by (a) resource sharing, (b) grouping logic and (c) retiming pipeline.

Fig. 10 Test bench simulation of the “foreman” test sequence for SAD calculations
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Frame_number 30. txt

Frame_number 32. txt
Chipscope pro 
Logic Analyser

Fig. 11 Simulation and on-chip debug flow

Fig. 12 RTL elaborated view of SAD 4 × 4 block

3.1 Resource Sharing [14]

At RTL level, resource sharing technique can be utilized for optimizing the perfor-
mance parameter (such as speed). As shown in Fig. 13a and b, for some logics,
if adders are used, it consumes more area. To overcome this problem, multipliers
are used instead of adders to reduce the area. Moreover, we can use the optimized
DSP48E1 slices for multipliers in FPGA.

This technique can also optimize the critical path of the logic designs which can
decrease delay and increase processing speed.

3.2 Grouping Logic [14]

Similarly, the design performance can be improved by grouping the resources at RTL
level, as shown in Fig. 14.
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(a). without resource sharing

(b). with resource sharing

Fig. 13 Typical resource sharing techniques after synthesis

(a). without grouping

(b). with grouping

Fig. 14 Typical grouping techniques after synthesis
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(a) Common logic inferred (b) Pipelined logic (c) Retiming logic

Fig. 15 Concept of retiming after synthesis

Figure 14a shown without grouping a cascaded logic comprising of one adder and
two subtractors. The cascaded logic is a priority logic with estimated delay value of
n * tpd, where n is number of adders/subtractors with tpd propagation delay. For the
present case, the estimated delay is 3tpd, whereas in Fig. 14b shows the realization
of same logic using grouping technique which utilizes two adders followed by one
subtractor and estimated delay become 2tpd only.

3.3 Retiming Pipeline [15]

Register timing concept is used at implementation level to improve timing by
reordering the combinational and sequential logic in the data path. This technique can
optimize registers and the balance pipeline to achieve higher operating frequency.
Figure 15a–c shows the common logic inferred with combinational delay, pipeline
register logic and retiming registers logic, respectively. For proposed SAD design at
implementation level, retiming pipeline has been used to improve the speed.

3.4 Hardware Prototyping Setup

Represented in Fig. 16, the hardware was set up for prototyping on Xilinx Zybo kit
(Artix-7 FPGA). The “foreman” video sequence has been prepared as data set for
testing. The frame number 32 used as a current frame and frame number 30 used as a
reference frame, which are stored in BRAM. These two data sets have been given as
input to the SAD logic which computes the difference between the given two frames
and stores it in flash memory.

Further, the flash memory data is provided as input to video controller unit to
display the reconstructed residual frame on monitor as shown in inset of Fig. 16.
Due to default tiles configuration of monitor (output display), output image of video
controller unit displays all over the monitor screen.
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Fig. 16 Residual frame generation on FPGA

4 Results and Discussion

The design comparison of proposed work with existing design is shown in Table 2.
More work has been reported on 65 nm technology node in past ten years [4,
7, 8], whereas very few work has been reported on 28 nm technology node [6].
The proposed design shows higher operating frequency because of the techniques
employed as shown in Table 3, which optimizes the speed on the expense of higher
number of LUTs and register as compared to 65 nm technology node.

Table 2 FPGA implementation results and comparison

[4] [7] [8] [6] This work

FPGA Virtex-5 Virtex-5 Virtex-5 Virtex-7 Artix-7

Technology node (nm) 65 65 65 28 28

No. of used registers 8841 4266 9180 39,901 22,880

No. of LUTs 17,992 14,761 15,453 24,957 25,072

Max. Frequency (MHz) 190.785 475.21 171.9 458.7 498.4

Block size (4 × 4 to 64 × 64) Yes Yes Yes Yes Yes

Delay for every 64 × 64 block (ns) 167.73 44.19 372.2 45.98 32.06

AMP support Yes Yes Yes Yes Yes
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Table 3 List of optimization
techniques employed

S. No Technique Levels

1 Parallel Architecture

2 Pipeline

3 Grouping logic RTL modeling

4 Resource sharing

5 Retiming Implementation

The SAD designwithout optimization operates at 368MHzwith delay of 58.07 ns
for each 64 × 64 block, whereas with optimization, it operates at 498.4 MHz with
delay of 32.06 ns for each 64 × 64 block.

5 Conclusion

Amixed parallel-pipelined processing SAD architecture for ME has been presented.
The architecturewas synthesized andprototypedonXilinxArtix-7FPGA.Thedesign
uses 256 number of 4 × 4 SAD blocks which are operating in a mixed mode of
parallel-pipeline to calculate SAD values of 64 × 64 block. The design operates
at frequency of 498.4 MHz with the delay of 32.06 ns for each 64 × 64 block.
The design performance has been improved at different levels viz. architecture, RTL
modeling and implementation. This design can be used for any kind ofME processes
including fast and full search algorithms. It can also be used in consumer electronics
where the performance is most crucial.
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