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Abstract

It is assumed that due to the enormous investment in terms of time, money,
human volunteers, and other resources, sometimes failure at the later stage mostly
put pharmaceutical companies on the back foot. For the last two decades,
pharmaceutical companies felt that the traditional drug designing process should
be optimized to avoid huge financial loss and save time. Thus, despite its
limitations, the use of computer-aided drug design (CADD) techniques in drug
discovery and development process is successful. CADD approaches support
almost all phases of the drug designing process, including drug target identifica-
tion, lead identification, optimization of leads, and simulations. Drug target
identification and characterization is a first and most essential step that begins
with identifying the function of a possible molecular target (gene/protein) and its
role in the disease. The availability of the huge amount of molecular data, i.e., big
data, for human as well as pathogens with applications of knowledge-based data
mining approaches can provide a list of probable drug targets which further can
be validated through experiments can save time and cost of pharmaceutical
companies and boost their research towards the development of new drugs.
This chapter focuses on the computational approaches for drug target identifica-
tion, which play a crucial role in the drug discovery and development process.
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8.1 Introduction

Drug designing deals with the discovery and development of therapeutic molecules
for a drug target. The drug is a small molecule that has potential to modulate the
function of drug targets, such as a protein and sometimes nucleic acid tool, i.e.,
regulatory RNAs (Dersch et al. 2017). Drug design involves the design of molecules
that are complementary in shape to the chosen drug target and modulate in the
desired manner (Zauhar et al. 2003). Nowadays various drug designing approaches
are in practice, broadly they can be classified into two types: (1) traditional methods:
traditional methods involve trial and error method of testing for chemicals on
cultured or animals cell, and observe the outcome of treatments, and (2) rational
drug design: this approach is based on the hypothesis that modulation of a specific
biological target which will be considered as drug targets, may have therapeutic
value. In this approach, a potential therapeutic target is identified and purified. The
purified protein is used to develop a screening assay. In rational drug design, 3D
structure of the drug target should be available. The small bioactive searched by
screening libraries of a drug or bioactive compound. This can also be performed by
the screening assay, which also known as chemical or wet screening assay.

Nowadays computational methods are also in practice to screen compounds
virtually and are well known as virtual screening (McInnes 2007). After library
screening, the molecules are subjected to biological screening to test toxicity and
those who show positive screening enter into the clinical trials where they try on
human volunteers/patients to check pharmacokinetics (ADMET) of the drug. In the
case of the successful completion of the clinical trials, a molecule passes to the
approval agency and then finally hits the market (Fig. 8.1). This whole drug
designing process is very time consuming and expensive, and at any stage of the
process, a lead molecule can fail. Failure of leads at a later stage is responsible for the
loss of millions of dollars for pharmaceutical companies (Hughes et al. 2011).

To reduce the chance of later-failure and speed up the molecular screening
process, computational approaches are in practice for the last one and a half decade.
Nowadays, designing drug using computational approaches is well known as
computer-aided drug designing (CADD). CADD involves various approaches
such as QSAR, virtual screening, docking, etc. (Katsila et al. 2016). Computational
approaches have speed up the process of drug discovery and have provided novel
drug targets and lead structures (Katara 2013). The computational method can
identify drug targets and leads against them, affinity and efficacy between them
before clinical trials and saving enormous time and cost (Shekhar 2008; Katara
2017).

8.2 Drug Targets

The term drug target describes the native biomolecule in the human body whose
function can be modulated by a drug molecule, which may have a therapeutic effect
against the disease or some adverse effect. Mostly these drug targets are biological
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targets in nature. Various protein drug targets are currently utilized by available
drugs, most of them belong to one of four major drug target protein classes
(Table 8.1), in some cases, nucleic acids are also utilized by drugs as a target.

Fig. 8.1 The flow of drug designing process (Katara 2017)

Table 8.1 Details of frequently used drug target protein classes

S. No.
Target
classes Description

1 GPCRs G protein-coupled receptors (GPCRs) play a central role in various signal
transduction pathways responsible for cellular responses. Due to its
indispensable role, GPCRs make up a large portion of the targets of
approved drugs. Presently, more than hundreds of GPCRs are already in
practice as targets of�34% FDA approved drugs (Sriram and Insel 2018)

2 Ion
channels

Ion channels play a very crucial role in controlling a very wide range of
physiological processes in humans, and their dysfunction can lead to
abnormalities, thus they are reported as one of the important drug targets
(Kaczorowski et al. 2008)

3 Kinases Kinase plays a pivotal role in the regulation of many cellular and
biological processes. Abnormal kinase activity has been well reported to
be linked with a variety of diseases and human cancers (Cohen 2002;
Klaeger et al. 2017)

4 Proteases Deficient or abnormal protease function is linked with many pathological
conditions. An estimated 5–10% of all drugs under progress target the
proteases (Docherty et al. 2003)
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8.3 Drug Target Identification

After identifying the biological nature and origin of a disease, identification of
potential drug targets is the first step in the discovery of a drug. Drug target
identification follows the hypothesis that the most promising targets are tightly
linked to the disease of interest, and have an established function in the underlying
pathology, which can be observed with high frequency in the disease-associated
population. By definition, it is not necessary for potential drug targets to be involved
in the disease-causing process, or responsible for a disease, but they must be disease-
modifying. Currently, various strategies are in practice for drug target identification,
which is either based on experimental approaches or computational approaches.

Experimental approaches are mainly based on comparative genomics (expression
profiling) and supplemented with the phenotype and genetic association analysis.
Mostly, all experimental approaches provide reliable results, and theoretically, they
should be the first choice methods for target identifications. Even though experimen-
tal approaches are more precise, they are suffering from some practical limitations,
i.e., relatively high costs and intensive scientific labor required for experimental
profiling of the full target space (>20,000 proteins, nucleic acid) of chemical
compounds and they often end with few drug targets in hand. Due to all these
limitations, mostly scientists and pharmaceutical companies utilize the computa-
tional methods for first-line research and then use the experimental approaches for
further validation and other purposes.

8.4 Computational Approaches for Drug Target Identification

The development of bioinformatics has come up with various bioinformatics
resources, including the database, algorithm, and software, which push the CADD
in every aspect of the drug designing process (Table 8.2). One of the most important
contributions is computational drug target identification, as discussed earlier that
identification of the drug target is a very crucial and most decisive step of the drug
designing process. In this regard, for the last one and half decades, various scientific
studies carried out with the aim of drug target identification with the help of
bioinformatics resources and proposed various approaches for drug target
identifications. These approaches easily handle and deal with a huge amount of
genomics, transcriptomics, and proteomics data, and also process it efficiently, and
at the end provide potential drug targets in a short period at a low cost.

Currently, several computational approaches are available which utilized differ-
ent molecular information, i.e., gene and genome sequence, molecular interaction
information and protein 3D structure. Most of these approaches are interlinked. Still,
based on their concept, they have broadly classified into two types: (1) homology-
based approaches and (2) network-based approaches. The major features which are
checked for drug target prediction are listed in Table 8.3 (Kim et al. 2017).
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8.5 Homology-Based Approaches

Homology-based approaches utilize sequence similarities among genes and proteins,
further based on predicted homology, it takes the decision just like decision tree
analysis. Mostly these methods consider the various level of homology test, which
follows top-down direction. Each level of homology test scale down the data,

Table 8.2 Bioinformatics resources for drug target identification and CADD

S. No.
Database/
method Description

1 DbMDR It provides a collection of multidrug resistance genes and their
orthologs, acting as potential drug targets (Gupta et al. 2011)

2 DEG It contains all known essential genes from a different organism (Zhang
et al. 2004)

3 DFVF Collection of fungal virulence factors which collected>2000
pathogenic genes from a wide range of fungal sp. (Lu et al. 2012)

4 DrugBank DrugBank is a richly annotated database, which provides detailed
information about the drugs along with their target and drug action
information (Wishart et al. 2008)

5 GEO The database provides transcriptomics data (mainly array- and
sequence-based) useful for functional genomics (Clough and Barrett
2016)

6 KEGG KEGG offers information about the pathway, gene, and ligands in three
different databases, i.e., Pathway, Gene, and Ligand (Kanehisa and
Goto 2000)

7 MvirDB Microbial protein toxins, virulence factors, and genes related to
antibiotic resistance (Zhou et al. 2007)

8 PDTD Database of potential proteins for in silico drug target identification
(Gao et al. 2008)

9 TDR targets Identification and prioritization of molecular targets for drug
development (Magariños et al. 2012)

10 TTD Publicly accessible cross-links database that provides inclusive
information about known therapeutic targets with related information,
i.e., pathway information and the corresponding drugs/ligands (Chen
et al. 2002)

11 VFDB Database contains virulence factors (VFs) of various medical significant
bacterial pathogens (Chen et al. 2005)

12 Daspfind Interactions between drugs and target proteins based on the similarities
among them (Ba-Alawi et al. 2016)

13 iDTI-
ESBoost

Evolutionary and structural feature-based model for identification of
drug–target interactions (Rayhan et al. 2017)

14 NetCBP Drug–target interaction prediction with the help of networks. It also
predicts some new drugs without any known target interaction
information (Chen and Zhang 2013)

15 SELF-BLM It predicts drug–target interactions using a self-training support vector
machine (SVM) based bipartite local model; SELF-BLM (Keum and
Nam 2017)
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starting from complete genes or proteome, and step by step either eliminate those
which fitted in “inappropriate” or select only those which fitted in “appropriate.”
Homology-based approaches always ended with countable potential drug targets
(Fig. 8.2), and because of their scale down nature, these approaches are also known
as subtractive (genomic or proteomic) approaches.

Table 8.3 Important features utilized in drug target identifications

S. No. Features Description

1 Essentiality of targets To find out the indispensable nature of probable
target for disease/pathogen

2 Gene ontology, biological
process, involvement in
pathways

To find out the biological process, pathways, and
functional involvement of probable targets

3 Cellular localization To find out the accessibility of probable target for a
drug

4 Structural availability,
druggability

To find out the binding pockets along with various
physiochemical features involved in binding. It also
helps to predict binding affinity and drug–target
interaction mode

5 Gene expression patterns Expression patterns play a significant role to check
the availability of targets in given conditions. It also
helps to predict the chance of adverse drug reaction,
especially in the case of polypharmacological drugs

Fig. 8.2 Schematic diagram of the standard flowchart for drug target identification using
homology-based approach
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The term “inappropriate” and “appropriate” are conditional, and they are tested
on various biological conditions that play a decisive role in target selection. The
following are the major conditional tests that help to decide the further consideration
of molecules for drug target identification.

8.5.1 Human Homologs

It is assumed that humans have various genes, and few of them are playing an
indispensable biological role, considered as housekeeping genes. The use of human
housekeeping genes or homologs of human housekeeping genes as a drug target can
create lethal conditions and result in the death of human patients. To avoid such
accidental use of the housekeeping gene as well as some important pathway-related
gene as a drug target genes of the microbial pathogen are generally compared against
the human, and those genes which show significant similarities with human
housekeeping or crucial genes will be considered as “inappropriate” and mostly
eliminate from rest of the process.

8.5.2 Human-Microbiome Homologs

The human body, especially, the gut has a lot of microbes that are already listed by
the human microbiome project. Most of these microbes are involved in the biological
process, which is beneficial for humans and thus considered beneficial microbes.
Use of homologs from these beneficial microbes as a drug target can harm these
bacteria, which can affect the related biological process in the human host, i.e.,
digestion, respiration process, etc., because of the above said reason, human-
microbiome homologs are considered as “inappropriate” and eliminated from the
further process.

8.5.3 Essentiality

Identification of drug targets against the microbial pathogen assumes that the
essentiality of the target protein for pathogen-microbes is one of the advantageous
and “appropriate” features. Without the function of essential proteins, microbial-
pathogen will not able to survive. Various essential genes and proteins are identified
by experimental approaches and enlisted in various databases. The database of
essential genes (DEG) is one of the most active databases providing a collection of
essential genes and protein sequences. Based on the above concept, those pathogenic
genes/proteins which show homology with essential genes/proteins are considered
as “appropriate” and include for the further process.
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8.5.4 Virulence Factor Homologs

Those proteins whose role in virulence and pathogenicity is reported through the
experiment are considered as virulence factors. Various such proteins are available,
especially for microbes, and their molecular information is stored in various
databases, i.e., virulence factor database (VFDB) and database of fungal virulence
factors (DFVF). Genes/proteins of the pathogens that show homology with these
virulence factors can be considered as “appropriate” and utilized as a potential drug
target.

8.5.5 Drug Target Homologs

Information about known and explored drug/therapeutic targets is available, i.e.,
therapeutic target database (TTD). Homology mining with TTD is in practice, and
those candidate molecules which show significant homology with these known
targets are considered as “appropriate” and included for further exploration.

8.5.6 Cellular Location

The cellular location of the target protein is one of the very important features and
plays a crucial role in target selection. In a homology-based approach, sequence-
based gene ontology (GO) and annotation are in practice to look at the sub-cellular
location along with the cellular component, biological process, and molecular
function. Generally, those targets whose access is easy are preferable over others.

8.5.7 Role in the Biological Pathway

Biological pathways are responsible for the synthesis or metabolism of various
bio-products. Few of these pathways are very important and unique, and they are
solely responsible for their processes and products. The blockage of these pathways
creates a scarcity of their products and finally reduces the chance of survival of the
pathogen. Various pathway databases are available to conduct such checks. Current
literature shows that the KEGG pathway is one of the richest and preferable pathway
databases utilized for this purpose. Those pathways which are unique for pathogen
are considered as appropriate pathways, and gene/proteins involved in them were
considered for the further process. In contrarily those pathways which are also
shared by human/host and their gene/proteins are “inappropriate” and excluded
from further consideration.

It has been observed that homology-based approaches are very fast and almost
cover the entire target space, and it only needs sequence information as input.
Available reviews suggest that uses of homology-based approaches are very
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common for microbial disease and generally restricted with them only. Their use for
other types of infection or disease is not in common practice.

8.5.8 Case Study: Subtractive Approach for Drug Target
Identification

The subtractive approach is one of the very famous approaches that have been
utilized for target identification against various pathogens. In 2011 Katara et al.
presented a subtractive approach exploiting the knowledge of global gene expression
along with sequence comparisons to predict the potential drug targets in Vibrio
cholerae, cholera causing bacterial pathogen, efficiently. Their analysis was based
on the available knowledge of 155 experimentally proved virulence genes (seed
information) (Fig. 8.3). For target identification, they utilized co-expression based
gene mining and multilevel subtractive approach. At the end, they reported 36 gene
products as a drug target, to check the reliability of the predicted targets they also
performed gene ontology through Blast2GO. They observed these targets for their
involvement in a crucial biological process and their cellular location. They found all
these 36 gene products as reliable targets and conclude them as potential drug
targets.

Fig. 8.3 Subtractive approach for drug target identification

8 Computational Approaches for Drug Target Identification 171



8.6 Network-Based Approaches

It examines the effects of drugs in the context of molecular networks (i.e., protein–
protein interactions, gene networks, transcriptional regulatory networks, metabolic
networks, and biochemical reaction networks). In molecular network models,
molecules refer as nodes, and each edge corresponds to an interaction between
two molecules, based on the direction and importance of interaction between
nodes, sometimes edges also mention the direction and weight (Fig. 8.4). Drug
target identification through the network is based on the fact that networks have
many important nodes that are vulnerable and can be targeted in many ways. Most of
the time, these nodes are very crucial, and sometimes essential for the whole network
structure, inhibition of such nodes can reduce their efficiency and damage of these
nodes can shut down the complete network. Network inhibition process follows one
of the following two models: (1) partial inhibitions: Partial knockout of the
interactions of the target nodes, and (2) complete inhibition: all interactions around
a given target node are eliminated.

In the drug designing process, these target nodes can be considered as potential
drug targets. Various molecular networks (Table 8.4), including protein-interaction
networks, regulatory, metabolic, and signaling networks individually or in integrated
form can be subjected to a similar analysis (Imoto et al. 2007; Sridhar et al. 2008;
Kotlyar et al. 2012; Shin et al. 2017).

8.6.1 Centrality Based Drug Target

Network centrality can be used as a potential tool for network-based target identifi-
cation. Network centrality can prioritize proteins based on the network centrality
measures (i.e., degree, closeness betweenness). It can be used to characterize the
importance of proteins in the biological system.

Fig. 8.4 Various components of a standard network
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8.6.1.1 Hubs as Target
Real-world networks almost show a scale-free degree distribution, which means that
in these networks, some nodes have a tremendous number of connections to other
nodes (high degree), whereas most nodes have just a few. Here, nodes with a great
number of connections than average called hubs. It assumes that the functionality of
such scale-free networks heavily depends on these hubs, and if these hubs are
selectively targeted, the information transfer through networks gets hindered and
results in the collapse of the network (Pinto et al. 2014).

8.6.1.2 Betweenness Centrality Based Target
Hubs are the centers of local network topology, thus only provide the local picture of
the network. Betweenness centrality is another approach that can be used to explain
network centre, unlike, hub it provides central elements of the network in the global
topology, thus, provide a global picture of network connections. Conceptually,
betweenness is the number of times a node is in the shortest paths between two
other nodes (Fig. 8.4), thus higher the betweenness means more importance of the
node in quick network communication. Such higher betweenness centrality nodes
can be utilized as a potential target against drugs (Melak and Gakkhar 2015).

8.6.1.3 Mesoscopic Centrality Based Target
Considering the advantage of both local and global centers of network topology for
drug target identifications, the third class of centrality called mesoscopic centrality
has also been reported. Mesoscopic centrality is neither fully based on local

Table 8.4 Types of the biological network for drug target identification

S. No. Network Description

1 Protein–protein
interactions (PPIs)

Here, proteins are nodes, and their interactions are edges.
Proteins with high degrees of connectedness are likely to be
more crucial than proteins with lesser degrees (Zheng et al.
2013; Shin et al. 2017; Verma et al. 2020)

2 Gene regulatory
networks (GRN)

Transcription factors bind to multiple binding sites in a
genome. As a result, all cells have complex networks
between transcription factors (with respect to their target
gene) that form a GRN (Imoto et al. 2007)

3 Gene co-expression
network (GCN)

GCN is an undirected graph network that shows connectivity
between co-expressed genes that supposed to be regulated by
the same transcriptional regulatory system (Cheng et al.
2012; Yang et al. 2014)

4 Metabolic networks The network of biochemical reactions is called metabolic
network. Flux-balance analysis of these networks provides
information about potential targets (Sridhar et al. 2008)

5 Cell signaling
networks

Signaling networks represent connectivity between cellular
signals typically, by combining PPIN, GRN, and metabolic
networks (Behar et al. 2013)

6 Composite network Composite cellular (transcriptional, signaling, PPI) networks
identify the susceptible nodes which can act as a potential
target (Pinto et al. 2014)
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information (such as hubs) nor global information (such as betweenness centrality)
on network structure. It mainly considers long-range connections between high
degree nodes, which make a profound effect on small-world networks.

8.6.1.4 Weight-Based Drug Target
Recently, the weighted-directed network is also reported for drug target identifica-
tion studies (Wang et al. 2013). The weighted-directed network is closer to the real,
cellular scenario, where PPIs are characterized by their affinity and dominance (link
weight) as well as direction (e.g., in form of signaling), as mentioned in Fig. 8.5. It
has been assumed that the deletion of the links with the highest weighted centralities
is often more disturbing to network behavior than the removal of the most central
links in the similar un-weighted network topology.

Utilization of the complex structural information of real-world networks to
measure the centrality is not an easy task, and it requires more sophisticated methods
to overcome these challenges. Bioinformatics provides various tools to support
network construction, visualization, and network-based analysis, i.e., weight, cen-
trality, interaction directions (Table 8.5).

Fig. 8.5 Molecular network with a different type of connectivity between nodes (a) undirected (b)
directed (c) weighted, and (d) weighted directed
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8.6.2 Limitations

Drug target identification through the biological network is an empirical approach,
which relies on available information on molecular networks. However, numbers of
molecular interaction databases are available, and most of them suffer from
uncertainties, false-positive entries, and the average probability of particular interac-
tion along with nomenclature as well as interpretation problems. However, to
overcome these issues, recently, PPI databases are linked with protein structure
data, which provides more reliable and validated interactions. At the same time,
scientists also propose some alternative, i.e., use of the curated database and
low-resolution network to surmount the above-mentioned problems (De-Alarcón
et al. 2002).

8.7 Properties of an Ideal Drug Target

Identification of potential drug targets is not the last step. Nowadays, through various
computational approaches, a huge number of probable targets are reported against
different diseases and are available in databases and literature (Katara et al. 2011). It
is not a good idea to recommend them directly for testing, its recommendation that
first, we check them for an ideal property (Table 8.6), and then for druggability. Only
those targets which fulfill most of them are considered as an ideal drug target and
recommended them for further validation and testing (Gashaw et al. 2011).

Table 8.5 Tools supporting molecular network analysis for drug target identification

S. No. Resource Description

1 BioGRID It is a repository of biological network information that can be
visualized by Cytoscape (Oughtred et al. 2019)

2 BioMart It contains data, software, and provides data services to facilitate
scientific interactions and drug target discovery (Haider et al. 2009)

3 Connectivity
map

It is a collection of genome-wide expression data from bioactive
treated cultured human cells. It provides transcriptome based
functional connections between drugs, genes, and diseases (Lamb
et al. 2006)

4 MetaboAnalyst It is an analysis tool for high-throughput metabolomics data,
including data processing, biomarker discovery, and pathway
analysis (Xia et al. 2015)

5 Netpredictor Netpredictor is an R package that dealing with a unipartite or
bipartite network. It can utilize to explore interactome and
enrichment analysis for disease pathway and ontology (Seal and
Wild 2018)
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8.8 Druggability of Drug Target

In drug designing process, the potential of any target is defined by its druggability
(affinity of the target to bind with drug-like molecules), thus the target must be
druggable (Fauman et al. 2011). Biomolecules (i.e., protein, nucleic acid) with an
activity that can be modulated by a drug are considered as a druggable target. These
targets must have binding sites with typical structural and physicochemical
properties that favor binding interaction with high affinity and specificity.

8.8.1 Importance of Druggability

Despite technological advancement in the drug designing process, most drug dis-
covery projects fail because of the druggability problem. To avoid the failure of a
drug discovery project, which is mostly very expensive, it is very important to
understand the difficulties associated with a potential target. Druggability has
become part of the target identification and validation process, more significantly
in the case where targets do not belong to traditional classes (Finan et al. 2017).

8.9 Computational Methods for Druggability Assessment

To date, various targets are reported and documented through various methods, and
few of them are already in practice (drugs are available against them), such targets
are druggable. If no drug available for a target, then predict druggability is required.
Various computational methods are available to evaluate the druggability of target
protein, mainly rely on either sequence-based or 3D-structure based properties of
proteins (Fauman et al. 2011).

Table 8.6 Important properties to assess the ideal drug targets

S. No. Property Detail

1 Disease-modifying Target should be disease-modifying with proven function in
disease pathophysiology

2 Disease specific
modulation

Modulation of the target must be explicit to the targeted disease,
should not affect standard physiology in normal or other disease
conditions

3 Druggability
assessment

Target druggability should be observable

4 Assay ability Target should have favorable assay ability, specifically through
high-throughput screening

5 Tissue-specific
expression

Target expression should be tissue-specific, it should not affect
unrelated tissue or organs
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8.9.1 Sequence-Based Methods

A protein is druggable if its other family members are known to be targeted by drugs.
For such analysis, sequence alignment can be used to predict sequence similarity
(homology) between probable target (query) proteins and database of known
druggable targets (Finan et al. 2017). The sequence-based concept provides a
significant approximation of druggability, but it suffers from the following
limitations: (1) its predictions are limited to known drug target families, it does not
attempt for those potential targets, which belong to the novel “un-drugged” protein
family; and (2). It assumes that all members of the protein family are equally
druggable, which is not true.

8.9.2 Structure-Based Methods

Structure-based methods rely on the availability of 3D structure information, thus
only can apply to those proteins whose structures are available. Along with experi-
mentally determined 3D structures, it also considers high-quality structure models
through homology modeling. Several structure-based methods are available for the
assessment of target druggability, irrespective of their different algorithms; all of
them consist of the following three common components.

8.9.2.1 Identifying Cavities and Binding Pockets
Many computational methods and tools have been developed for binding pocket
identification, which scans 3D surface and interior of the target protein for potential
cavities (possess suitable properties for binding a ligand) that can act as binding
pockets. These tools mainly tend to look for cavities with suitable size, shape, and
composition to accommodate drug-like molecules.

Working of binding pockets detection methods depends on either energy-based or
geometry-based detection algorithms (Nisius et al. 2012; Zheng et al. 2013). Energy-
based detection predicts pockets by computing the interaction energy between atoms
of protein and a probe molecule (Ghersi and Sanchez 2011). Geometry-based
detection predicts the solvent accessible area that is embedded in the protein surface.
Comparative studies suggest that both types of detection algorithms have good
performance and advantages (Schmidtke et al. 2010). It has been observed that
geometry-based detections are more suitable for large-scale pocket detection. Their
inherent advantages, i.e., high speed and robustness against structural variations or
missing atoms and residues in the input structures, provide the edge over an energy-
based detection algorithm (Schmidtke et al. 2010). With the increasing availability
of binding cavity information, recently, one new class of methods called
information-based detection methods are developed. These methods utilize available
cavity information from its neighbor and similar proteins whose binding cavities are
known.
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8.9.2.2 Druggability of Binding Pocket
This second step aims to calculate the physicochemical and geometric properties of
the pocket to check whether these properties are complementary with the properties
of drug-like molecules. Lipinski’s rule of five (RO5) connects the physicochemical
properties of a drug with its pharmacokinetic properties (Lipinski 2000). It is a well-
known fact that the physicochemical properties of the druggable pocket should be
the mirror image of the physicochemical properties of the drug-like molecule itself.
This analogy gave the concept of a druggable pocket. Therefore, the complementary
properties of the pockets reflect the Lipinski’s rule of five of “drug-likeness”
(H-bond donors >5, H-bond acceptors ¼ 10, molecular weight > 500, and the
Log P (CLog P) is >5).

The major features which define and affect the druggability of pockets are pocket
descriptors. Characteristic features of a binding site play a very crucial role in
druggability calculation, and the selection of those descriptors, which are crucial
for binding drug-like molecules, needs to be described as accurate as possible.
Observations suggest that none of the individual pocket descriptors is sufficient for
druggability explanation, and a group of descriptors is required to describe and
calculate pocket druggability. Both physiochemical and geometrical features play a
crucial role as descriptors. Physiochemical descriptors and frequently used
physiochemical pocket descriptors include size, shape, electrostatics, hydrogen
bonding, hydrophobicity, polarity, amino acid composition, rigidity, and secondary
structure (Halgren 2009; Krasowski et al. 2011). Geometrical descriptors: Along
with physicochemical properties, geometrical properties, i.e., the shape and size of
the binding pocket, play a crucial role in suitable interactions with a small molecule
(Zheng et al. 2013). The following are the major geometrical features involved in
pocket druggability measurement.

Position of the Atoms
It has been observed that the position of the atoms in pockets affects the contribution
of an atom in interaction. Atoms located at the contact surface considerably give a
major contribution in contact energy (hydrophobic interaction) than those who lie
outside of the surface, i.e., within the bulk of the protein cavity.

Cavity Size
Large spherical cavities are more exposed to the solvent, thus not suitable for
binding, especially with small drug molecules. Narrow (micro) cavity pockets are
less exposed to the solvent and offer more van der Waals contact, thus they are more
druggable. These micro-cavities are also defined as hot spots, which are characteris-
tic of highly druggable targets.

8.9.2.3 Target Specificity Assessment
Drug target must be specific; structure similarity of drug target molecules with other
unwanted molecules will create problems in the drug development process. Struc-
tural similarity of the binding sites could make the design of selective inhibitors
difficult. During target selection, it is very important to assess the structural
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landscape of the primary binding sites of the target to confirm the druggability.
Sequence and structural alignment based computational methods are available to
perform specificity assessment.

Sequence Alignment Based Assessment
It is based on the sequence information of binding sites of the target protein. It
assumes that when the degree of conversation between the two sequences is suffi-
ciently high, then identical amino acids in the sequence will likely correspond to
identical binding site structure.

Structure Alignment Based Assessment
These methods are based on either structural superposition or pharmacophore
features. Structural superposition generally utilizes a 3D grid force field around the
binding sites, which can be calculated using various types of energy terms, i.e.,
electrostatic, hydrophobic, and hydrogen bonding. In the grid approach, the field
potentials can be calculated for each suspicious protein and are used for comparing
their binding sites. The structural similarity between a pair of proteins can be studied
by correlation functions of the various molecular interaction fields (MIFs) of the two
grids or by utilizing the Fourier transformation of correlation functions or related
approaches. Another approach consists of identifying pharmacophore features that
generally summarized with the help of surface chemical features (SCF), including
hydrophobic centers, H-bond donors and acceptors, positive and negative charges,
and aromatic centers, etc. This SCF based on the consideration can be determined on
the whole protein surface or a chosen cavity. Binding sites with the highest SCF
matches show the highest similarity with the query binding site. Various computa-
tional tools are already available, which provide the facilities to evaluate binding site
similarities and assess the specificity (Table 8.7). Almost all tools rely on the
available entries at the protein structural database.

8.9.3 Quantification of Druggability

Quantification of druggability could provide the best criteria for target selection, but
till now, none of the standard explanation is available for this purpose. Each method
has its measures for druggability, thus a druggability score of a specific target might
vary. However, irrespective of an individual’s weaknesses and strengths, all major
druggability measures can classify targets into druggable, non-druggable, medium
druggable, and difficult-druggable.

8.9.4 Major Concern

8.9.4.1 Size of Training Sets
Most of the druggability assessment methods are based on the machine learning
algorithm, thus highly dependent on available training sets (ChEMBL, BindingDB,
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PubChem, etc.) used to train them. The size and quality of the available datasets in
databases directly affect the reliability and scope of the assessment methods.

8.9.4.2 Binding Site Flexibility
The identification of the binding cavity in a rigid target is based on the assumption
that the cavity already exists. There are some proteins whose binding pockets do not
exist in their native structure, and their active pockets behave like inducible allosteric
sites, which only revealed after protein conformational changes. In such a case, it is
very difficult to assess the binding pockets, and this situation is considered as a
binding site “flexibility problem.” The presence of multiple X-ray conformers for a
specific target can help us to handle binding site flexibility. Multiple conformers
allow us to assess the relative variability of certain residues within the binding site
pockets. Based on such relative variability information, it is possible to assess the
plasticity of the binding site.

Table 8.7 Bioinformatics resources for druggability detection and evaluation

S. No.
Tool/
algorithm Description

1 CavityPlus Protein cavity detection and functional analyses (Xu et al. 2018)

2 Dr. PIAS A druggability assessment system. Along with druggability, it also
provides functional annotation of interacting proteins (Sugaya and
Furuya 2011)

3 DrugEBIlity It evaluates the druggability of targets. The server can search with a
sequence, PDB id, or uploaded structure (https://www.ebi.ac.uk/
chembl/drugebility)

4 DrugPred Structure-based druggability predictor that relies on the affinity
between known drugs and their target proteins (Krasowski et al. 2011)

5 IsoCleft Detection of local geometric and chemical similarities between
potential binding cavities for small molecules (Kurbatova et al. 2013)

6 IsoMIF
finder

Detection and comparison of binding site molecular interaction field
(MIF) (Chartier et al. 2016)

7 MultiBind Recognize the common spatial chemical binding patterns along with
shared physicochemical binding site properties (Shulman-Peleg et al.
2008)

8 PockDrug-
server

Pocket druggability with and without ligand proximity information. In
both cases, it provides consistent druggability results using different
pocket estimation methods (Hussein et al. 2015)

9 SiteAlign Align, compare druggable ligand-binding sites, and to measure
distances between druggable protein cavities (Schalon et al. 2008)

10 SiteMap’s Provide prediction of the target’s binding sites with druggability. It also
provides quantitative and graphical information about the target
(Halgren 2009)
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8.10 Target-Based Drug Discovery

As discussed, drug targets are the most crucial element of the drug designing
process, and selection of the targets decides the fate of the drug designing process
that it will succeed or get fail at a later stage. For several decades, pharmaceutical
companies are successfully using well established one drug-one target approach for
drug designing purposes. By realizing the scenario, the central dogma of the drug
designing process has now shifted from one drug-one target to one drug-multi-target
concept and considers multiple targets for a single drug.

8.10.1 Multi-Target Drug Designing

Computational approaches specifically those, which are based on system biology
concepts are very crucial in the identification of multi-targets, thus play a major role
in the success of the multi-target-based drug designing (Vasaikar et al. 2016). Multi-
target-based drug designing approach is, to some extent, similar to single target-
based drug designing, but it initiated with the set of targets multi-targets (Fig. 8.6).
The following are the main steps of multi-target drug designing.

8.10.1.1 Identification of a Set of Targets “Multi-Targets”
This is the most crucial step which decides the fate of the whole following process.
System biology-based molecular networks are in practice to identify multi-targets.

8.10.1.2 Generation of Multi-Target Pharmacophore
Computational methods are available to design multi-target (structure) based
pharmacophore, which utilizes combinatorial algorithms (Kumar et al. 2018;
Ramsay et al. 2018). The most common steps in multi-target pharmacophore
generation include (1) interaction profiling (MIFs) of all targets, (2) identification
of common MIFs/features, and (3) multi-target specific and selective ensembles
development.

8.10.1.3 Virtual Screening
Pharmacophore generation is followed by virtual screening of chemical libraries to
find suitable compounds against multi-target pharmacophore.

8.10.1.4 Generation or Selection of Multi-Target Compound
Multi-target compounds are generated through the integration of pharmacophore of
above-selected molecules (already known drugs or drug candidates).

8.10.1.5 Evaluation and Optimization of Multi-Target Specific
Compound

Evaluation and optimization process mainly includes multi-target specific interac-
tion assay (to avoid off-targeting), QSAR, and degree of modulation. Though multi-
target drugs seem promising and designing of these compounds is not a
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straightforward task. It needs to deal with various crucial issues, i.e., right target-sets
selection, balanced activity towards them, and excluding activity at off-target(s),
while at the same time retaining drug-like properties (Hopkins 2008; Bottegoni et al.
2012). Available experimental methods are not enough to handle these issues, thus
the feasibility of multi-target drugs profoundly depends on computational
approaches and resources. Various databases are also there, i.e., DrugBank, STITC
H, BindingDB ZINC, PubChem, KEGG DRUG, which provide required informa-
tion about molecular pathways, 3D structure, chemical reactions, side effects, and
known drug targets, thus help in the success of poly-pharmacologic drugs.

8.11 Summary

Now day’s computational biology becomes an indispensable tool for almost every
aspect of biology and related fields, and drug designing is not an exception. CADD is
now a mature field, and its success influenced by its first and pivotal step that is the

Fig. 8.6 Target-based drug designing (a) single target-based drug designing, (b) multi-target-
based drug designing and (c) major steps involve in multi-target-based drug designing
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identification of drug targets. This chapter provides an overview of various compu-
tational approaches available for drug target identification. It also discusses various
bioinformatics resources, i.e., database, methods, and software, which can be handy
for drug target identification purposes.
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